
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Masters Theses Graduate School 

7-2008 

Wide-Area Surveillance System using a UAV Helicopter Wide-Area Surveillance System using a UAV Helicopter 

Interceptor and Sensor Placement Planning Techniques Interceptor and Sensor Placement Planning Techniques 

Marcus James Jackson 
University of Tennessee, Knoxville 

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Jackson, Marcus James, "Wide-Area Surveillance System using a UAV Helicopter Interceptor and Sensor 
Placement Planning Techniques. " Master's Thesis, University of Tennessee, 2008. 
https://trace.tennessee.edu/utk_gradthes/3625 

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and 
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: 
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F3625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_gradthes%2F3625&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a thesis written by Marcus James Jackson entitled "Wide-Area 

Surveillance System using a UAV Helicopter Interceptor and Sensor Placement Planning 

Techniques." I have examined the final electronic copy of this thesis for form and content and 

recommend that it be accepted in partial fulfillment of the requirements for the degree of 

Master of Science, with a major in Electrical Engineering. 

Mongi Abidi, Major Professor 

We have read this thesis and recommend its acceptance: 

Andreas Koschan, Seddik Djouadi 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



To the Graduate Council: 
 
I am submitting herewith a thesis written by Marcus James Jackson entitled “Wide-Area 
Surveillance System using a UAV Helicopter Interceptor and Sensor Placement Planning 
Techniques.” I have examined the final electronic copy of this thesis for form and content 
and recommend that it be accepted in partial fulfillment of the requirements for the 
degree of Master of Science, with a major in Electrical Engineering. 
 
 
 

   Mongi Abidi, 
 

   Major Professor 
 
 
We have read this thesis 
and recommend its acceptance: 
 
 
     Andreas Koschan 
 
 
     Seddik Djouadi 
 
 
 
 
 
 
 
 

Accepted for the Council: 
 
 
 
  Carolyn R. Hodges, 
 
  Vice Provost and  
  Dean of the Graduate School 
 
 

 
 

(Original signatures are on file with official student records.) 



Wide-Area Surveillance System using a 
UAV Helicopter Interceptor and Sensor 

Placement Planning Techniques 
 
 
 
 
 
 
 
 
 
 

A Thesis 

Presented For The 

Master of Science  

Degree 

The University Of Tennessee, Knoxville 

 

 

 

 

 

 

Marcus James Jackson 

July 2008 



 

 ii

Abstract 
 This project proposes and describes the implementation of a wide-area 
surveillance system comprised of a sensor/interceptor placement planning and an 
interceptor unmanned aerial vehicle (UAV) helicopter. Given the 2-D layout of an area, 
the planning system optimally places perimeter cameras based on maximum coverage 
and minimal cost. Part of this planning system includes the MATLAB implementation of 
Erdem and Sclaroff’s Radial Sweep algorithm for visibility polygon generation. 
Additionally, 2-D camera modeling is proposed for both fixed and PTZ cases. Finally, the 
interceptor is also placed to minimize shortest-path flight time to any point on the 
perimeter during a detection event.  

Secondly, a basic flight control system for the UAV helicopter is designed and 
implemented. The flight control system’s primary goal is to hover the helicopter in place 
when a human operator holds an automatic-flight switch. This system represents the first 
step in a complete waypoint-navigation flight control system. The flight control system is 
based on an inertial measurement unit (IMU) and a proportional-integral-derivative (PID) 
controller. This system is implemented using a general-purpose personal computer 
(GPPC) running Windows XP and other commercial off-the-shelf (COTS) hardware. 
This setup differs from other helicopter control systems which typically use custom 
embedded solutions or micro-controllers.  

Experiments demonstrate the sensor placement planning achieving >90% 
coverage at optimized-cost for several typical areas given multiple camera types and 
parameters. Furthermore, the helicopter flight control system experiments achieve 
hovering success over short flight periods. However, the final conclusion is that the 
COTS IMU is insufficient for high-speed, high-frequency applications such as a 
helicopter control system. 
 

 



 

 iii

Contents 
1. Introduction..................................................................................................................... 1 

1.1 Motivation................................................................................................................. 1 
1.2 Problem Description ................................................................................................. 2 
1.3 Contributions............................................................................................................. 3 
1.4 Organization.............................................................................................................. 4 

2. Literature Review............................................................................................................ 5 
2.1 Multiple Unmanned Vehicle Control Systems .........................................................5 

2.1.1 Emerging Results in Cooperative UAV Control ............................................... 5 
2.1.2 COMETS ........................................................................................................... 6 
2.1.3 MICA ............................................................................................................... 10 
2.1.4 JAUS................................................................................................................ 13 
2.1.5 Stanford............................................................................................................ 14 
2.1.6 Elemental Maneuvers....................................................................................... 15 
2.1.7 STOMP ............................................................................................................ 16 
2.1.8 DSP-Based Control of Mobile Robots............................................................. 17 
2.1.9 Agent-Based Mission Management................................................................. 19 
2.1.10 HICA.............................................................................................................. 21 
2.1.11 Framework for Coordinated Control of Multi-Agent Systems...................... 22 
2.1.12 Hybrid Algorithms of Multi-Agent Control .................................................. 23 
2.1.13 Intelligent Systems for Autonomous Aircraft................................................ 24 

2.2 UAV Flight Control Systems.................................................................................. 25 
2.2.1 Traditional R/C Systems.................................................................................. 25 
2.2.2 Current UAV Helicopter Autonomous Systems.............................................. 27 
2.2.3 Brief Survey of Commercial Miniature UAV Autopilots................................ 30 

2.3 Sensor Placement Planning..................................................................................... 34 
2.3.1 The Art Gallery Problem ................................................................................. 34 
2.3.2 Visibility Graphs and Polygons ....................................................................... 36 
2.3.3 Erdem and Sclaroff’s Radial Sweep for Visibility Polygons........................... 39 

3. UAV Helicopter Control System.................................................................................. 42 
3.1 Sensor Planning ...................................................................................................... 43 

3.1.1 Vertex Visibility Polygons from Room Layout............................................... 43 
3.1.2 Vertex Visibility Polygons from Visibility Graph........................................... 45 
3.1.3 Edge Intersection ............................................................................................. 47 
3.1.4 Filtering Unique Points and Outliers from the Visibility Polygon .................. 48 
3.1.5 Fixed Camera Modeling .................................................................................. 49 
3.1.6 Pan-Tilt-Zoom (PTZ) Camera Modeling......................................................... 52 
3.1.7 Best Mask Combination Searching.................................................................. 54 
3.1.8 Shortest-Path Interceptor Placement................................................................ 56 
3.1.9 Object/Face Recognition and Tracking ........................................................... 60 

3.2 Proportional-Integral-Derivative (PID) Control System ........................................ 63 
3.2.1 Hardware.......................................................................................................... 63 
3.2.2 PID Control Theory ......................................................................................... 68 
3.2.3 Position, Altitude, and Attitude Control .......................................................... 69 
3.2.4 PID Tuning Techniques ................................................................................... 71 



 

 iv

3.2.5 Controls/Servo Mixing..................................................................................... 71 
3.2.6 Flight Data Collection...................................................................................... 73 
3.2.7 Control System Hardware Implementation ..................................................... 73 

3.3 Summary and Conclusions ..................................................................................... 75 
4. Experiments .................................................................................................................. 77 

4.1 Sensor Placement Planning Experiments................................................................ 77 
4.1.1 Optimal Camera Placement Planning .............................................................. 77 
4.1.2 Shortest-Path Interceptor Placement Planning................................................. 81 
4.1.3 Object/Face Detection & Localization............................................................. 82 

4.2 Flight Control System Experiments........................................................................ 84 
4.2.1 Servo Mixing ................................................................................................... 84 
4.2.2 Improving the IMU Orientation Estimate........................................................ 87 
4.2.3 Flight Testing................................................................................................... 93 

5. Conclusions................................................................................................................. 109 
5.1 Summary............................................................................................................... 109 
5.2 Future Work.......................................................................................................... 110 
5.3 Final Conclusions.................................................................................................. 110 

References....................................................................................................................... 111 
Vita.................................................................................................................................. 120 
 



 

 v

List of Tables 
Table 1. Levels of intelligence and partitioning between a central station and a robot 

[Gancet, 2004]............................................................................................................. 9 
Table 2. Comparison Table of Modern R/C Transmitters ................................................ 26 
Table 3. Autopilot Features Comparison.......................................................................... 33 
Table 4. Xsens MT9-B Specifications.............................................................................. 65 
Table 5. Reverse-Engineering the Transmitter Servo Mixing.......................................... 85 
Table 6. Finding Optimal Setpoints .................................................................................. 98 
Table 7. Flight Test Data Summary................................................................................ 108 
 

 



 

 vi

List of Figures 
Figure 1. Complete UAV helicopter interceptor system. ................................................... 3 
Figure 2. COMETS Global Architecture [Ollero, 2005]. ................................................... 7 
Figure 3. MICA System Architecture [Rathinam, 2004].................................................. 11 
Figure 4. JAUS Domain Model [JAUS Reference Architecture, 2005]........................... 13 
Figure 5. STARMAC Rotorcraft [STARMAC, 2008]. .................................................... 15 
Figure 6. Virtual UAV and Real UAV Communication [Jones, 2003]. ........................... 16 
Figure 7. FAAK Control System [Masar, 2005]............................................................... 18 
Figure 8. Agent – FCS Architectural Design [Karim, 2004]............................................ 20 
Figure 9. HICA in an environment [Rathinam, 2004]. ..................................................... 22 
Figure 10. MARS Architecture [Timofeev, 1999]............................................................ 24 
Figure 11. Developmental model of IFD [Krishnamurthy, 2000]. ................................... 25 
Figure 12. COMETS overall system setup [Gonzalez, 2004]. ......................................... 27 
Figure 13. Overview of the vision system [Kanade, 2004]. ............................................. 28 
Figure 14. Structure of GPS/INS Fusion System [Yoo, 2003]. ........................................ 29 
Figure 15. Autopilots: (a) MicroPilot 2128g, (b) CloudCap Piccolo II, (c) weControl 

wePilot1000, (d) Procerus Kestrel, and (e) Rotomotion UAV Helicopter Controller.
................................................................................................................................... 32 

Figure 16. Simple polygon representations of floorplans (a) Room 209, and (b) IRIS 
West (simple). ........................................................................................................... 34 

Figure 17. Triangulated and three-colored polygons: (a) Room 209, and (b) IRIS West 
(simple). .................................................................................................................... 36 

Figure 18. (a) Area that is not visible, (b) Visibility polygon, (c) Camera view, (d) 
Occluded camera view, and (e) Out of polygon camera view.................................. 37 

Figure 19. RadialSweep Algorithms: (a) Finding the visibility polygons and (b) Handling 
event points [Erdem & Sclaroff]............................................................................... 40 

Figure 20. Illustration of splitting the edge i crossing at θ = 0 [Erdem & Sclaroff]......... 41 
Figure 21. Event point types and a special case, (a) Type 1, (b) Type 2, (c) Type 3, (d) 

Special case [Erdem & Sclaroff]............................................................................... 41 
Figure 22. Persistent surveillance system block diagram. ................................................ 42 
Figure 23. Visibility polygon example. ............................................................................ 46 
Figure 24. Calculating Visibility for a 2-D Room with Spatial Resolution Consideraiton: 

(a) typical area with camera point; (b) visibility mask; (c) maximum spatial 
recognition radius; and (d) field of view................................................................... 50 

Figure 25. Accounting for tilt when modeling fixed cameras: (a) side view, and (b) 
overhead view. .......................................................................................................... 52 

Figure 26. Shortest paths from the centroid of a polygon (IRIS West). ........................... 58 
Figure 27. Calculating the intercept mask around an obstacle. ........................................ 59 
Figure 28. Object/face detection and localization block diagram..................................... 60 
Figure 29. (a) Stock Xcell ION-X Electric Helicopter, and (b) JR XP9303 Transmitter. 63 
Figure 30. FMA Co-Pilot System: (a) CPD4 and (b) FS8 package [FMA Direct Co-Pilot, 

2007]. ........................................................................................................................ 64 
Figure 31. (a) Side view of single training gear leg with upper cage leg mounted above; 

and (b) Overhead view of complete training gear assembled................................... 66 



 

 vii

Figure 32. Servo controllers: (a) Pololu USB 16-servo controller and (b) Endurance R/C 
PCTx connected. ....................................................................................................... 67 

Figure 33. Traditional PID controller. .............................................................................. 68 
Figure 34. Two-step PID flight controller. ....................................................................... 69 
Figure 35. Simple PID Control System for Helicopter Attitude Control. ........................ 70 
Figure 36. Trouble-shooting the "Double Servo Mixing:" (a) PCTx control applet, (b) 

XP9303 Monitor . ..................................................................................................... 72 
Figure 37. Old and new hardware setups: (a) Pololu 16-servo controller-based hardware 

setup and (b) Endurance R/C PCTx-based hardware setup. ..................................... 76 
Figure 38. Ferris Hall, Room 209. (a) Minimum FoV for SR Requirements, (b) Visibility 

Polygons Coverage, (c) Solution Camera Coverage, and (d) Solution Camera 
Overlap...................................................................................................................... 78 

Figure 39. IRIS West Indoor Helicopter Testing Area: (a-c) snapshots; (d) Minimum FoV 
for SR Requirements; (e) Visibility Polygons Coverage; (f) Solution Camera 
Coverage; and (g) Solution Camera Overlap............................................................ 79 

Figure 40. Typical Room Layout 1. (a) Minimum FoV for SR Requirements, (b) 
Visibility Polygons Coverage, (c) Solution Camera Coverage, and (d) Solution 
Camera Overlap. ....................................................................................................... 80 

Figure 41. IRIS West Full. (a) Minimum FoV for SR Requirements, (b) Visibility 
Polygons Coverage, (c) Solution Camera Coverage, and (d) Solution Camera 
Overlap...................................................................................................................... 81 

Figure 42. Voronoi Diagram (red lines), Sampled Test Points (pink circles), and Final 
Interceptor Placements (red squares) for (a) Typical Room Layout #1; and (b) Ferris 
Hall, Room 209; and (c) IRIS West Indoor Helicopter Testing Area. ..................... 82 

Figure 43. Face detection and localization demo: (a) snapshots, (b) Real-time measured 
localization estimate (green) versus Kalman filtered (red), and (c) Kalman-smoothed 
localization estimate.................................................................................................. 83 

Figure 44. Servo Mixing Receiver Outputs at Each Input Position.................................. 85 
Figure 45. Adjusting the MT9-B crossover frequency. (Exp. X11). ................................ 88 
Figure 46. Magnetometer weighting set to zero. (Exp. X9). ............................................ 88 
Figure 47. Magnetometer weighting set to 5.0. (Exp. X12). ............................................ 90 
Figure 48. MT9-B mounted on the tail boom. (Exp. X14). .............................................. 90 
Figure 49. MT9-B mounted on the training gear with foam padding. (Exp. X17)........... 91 
Figure 50. MT9-B mounted on the tail-boom with foam padding. (Exp. X19). .............. 92 
Figure 51. Early flight tests: (a) success and (b) failed follow-up. (Exp. 4/7).................. 93 
Figure 52. (a) Evaluating pitch and yaw data (Exp. 9) and (b) Adjusting the PID gians to 

4-1-1 did not improve flight results (Exp. 10). ......................................................... 94 
Figure 53. (a) Semi-successful flight test over short duration; (b) follow-up tilted 

backwards when given control; and (c) continued tilting backwards when given 
control. (Exps. 15-17). .............................................................................................. 96 

Figure 54. (a) Unsuccessful automatic flight test with IMU moved to rear servo and 
setpoints adjusted; and (b) repeat with remounted IMU and adjusted setpoints. 
(Exps. 18-19)............................................................................................................. 98 



 

 viii

Figure 55. (a) First flight test after removing software servo mixing; (b) repeat of flight 
test indicating possible bad data from IMU; and (c) third test flight after removing 
servo mixing. (Exps. 23-25).................................................................................... 100 

Figure 56. (a) Successful flight test with adjusted setpoints to statistically-determined 
values; and (b) repeat of flight test with degraded performance. (Exps. 26-27). ... 101 

Figure 57. Flight test with adjusted PID gains: success (Exp. 28). ................................ 103 
Figure 58. Semi-successful flight test after adjusting PID gains (Exp. 29).................... 103 
Figure 59. Adjusted setpoints to compensate for IMU drift. (Exp. 32). ......................... 103 
Figure 60. (a) Semi-successful flight test with returned setpoints to statistically-

determined values; and (b) successful repeat of flight test. (Exps. 33-34). ............ 105 
Figure 61. (a) Setpoints gains adjusted again to 6.6/0.43: no flight improvement seen 

(Exp. 35), and (b) PID gains adjusted to increase P term: results degrade over time 
(Exp. 36). ................................................................................................................ 105 

Figure 62. (a) Flight test after source code optimized and training gear removed; (b) 
repeat, manual control is very difficult with the removal of the training gear lower 
tier; and (c) another repeat of the flight test without significant improvement. (Exps. 
37-39)...................................................................................................................... 107 

Figure 63. Manual elevator control with automatic aileron control: successful. (Exp. 40).
................................................................................................................................. 107 

 
 
 
 
  



 

 1

1. Introduction 
Many sensitive areas, such as armories, hazardous materials storage, military 

bases, borders, etc., require complete wide-area surveillance and monitoring. However, 
significant manpower is needed to adequately monitor these large outdoor environments. 
A viable solution should provide persistent wide-area surveillance at an optimized cost. 
Furthermore, the system should have the capability to detect and track intruders that enter 
the restricted area. One viable solution utilizes automated aerial surveillance through 
unmanned aerial vehicles (UAV). 

In this system, perimeter video cameras (or human guards) are responsible for 
persistent monitoring (motion, intruder detection, etc.). In the event an intruder is 
detected, an alarm is activated while the intruder is automatically tracked via live video. 
To ensure the highest reliability of intruder tracking, an autonomous UAV with 
intelligent imaging capabilities can “intercept” and track the intruder until apprehended. 
Therefore, this thesis describes the development of such a system based on a UAV 
helicopter platform, also expressed further on as the “robot,” “vehicle,” “UAV,” or 
simply “helicopter.” 

The first part of this work focuses on methods of sensor and interceptor placement 
planning towards a cost-optimized persistent perimeter monitoring system. The second 
part describes the design and implementation of the UAV helicopter-interceptor system. 

1.1 Motivation 
As one of the most successful methods of surveillance in oversea conflicts, 

unmanned vehicles, vehicles that are operated remotely, have recently received 
significant attention, particularly unmanned aerial vehicles (UAV). The primary reason 
for this growth of interest is due to the unmanned vehicle’s ability to perform the 
dangerous, dull, or dirty (DDD) missions instead of a human operator.  

A “dangerous” mission is obvious – one that could potentially endanger the life of 
the pilot and crew. A “dull” mission is usually long, tedious, and routine. Essentially, 
“dull” missions require constant attention and repetitive interaction from the pilot. 
Finally, a “dirty” mission typically deals with disasters or hazards. For example, in the 
past, when the United States was testing nuclear weapons by detonating them offshore, a 
single fighter jet with a human pilot would fly into the fallout area after detonation to 
collect data. An unmanned vehicle could perform missions such as these much more 
safely and efficiently. 

Fixed-wing vehicles (such as the Predator) require a runway to take-off and land, 
and cannot stop in mid-air. They must instead loiter, flying circles or figure-eights around 
a stationary target. Rotary wing vehicles (helicopters), on the other hand, have the distinct 
advantages of vertical take-off and landing (VTOL) and hovering in a fixed position. The 
payload capacity is also typically larger than that of a comparable fixed-wing vehicle.  

Helicopters provide an especially interesting and useful platform due to their 
ability to perform two different modes of flight: hovering and forward-flight. While 
hovering, the controller of the helicopter must balance it against gravity and in six-



 

 2

degrees of freedom: up, down, north, south, east, and west. The end result is a vehicle 
that is able to become stationary at any altitude or position.  

This behavior is especially useful in surveillance, when an interesting object 
might need to be observed with a fine amount of detail. In addition, a helicopter is able to 
hover slowly in any direction. While fixed-wing aircraft must maintain a minimum 
airspeed to stay in the air, helicopters are able to drift slowly about, providing a 
potentially higher level of detail and resolution of in-flight data.  

One application where hovering becomes vital is object tracking. When a person 
or object enters a restricted area and must be followed, the helicopter must be able to deal 
with drastic changes of speed, from stopped completely to its maximum speed. Thus, the 
helicopter provides the means to track an unpredictable object with dynamic velocity. 

While in forward-flight, the helicopter tilts off-center and accelerates from a 
stable hover. As the velocity of the helicopter increases in a lateral direction, the rotors of 
the aircraft begin to behave less like rotating rotors and more like a fixed-wing. Thus, the 
helicopter actually behaves more like an airplane during flight. The ability of forward-
flight allows for increased airspeed and different flight dynamics. Additionally, tracking 
and following of high-speed objects becomes applicable with forward-flight. The 
helicopter is also provided the ability to move point to point quickly during time-critical 
missions. 

These two modes of flight are not completely distinct. Rarely is the helicopter in 
full forward-flight; rather, the helicopter’s flight behavior gradually moves from that of a 
rotor vehicle in hover to a fixed-wing vehicle flying forward. External conditions affect 
the behavior as well, particularly wind and temperature. Helicopter flight is a dynamic 
and nonlinear operation. 

In terms of payload, an aerial vehicle can be equipped with an array of sensor 
packages. Navigational sensors include gyroscopes, magnetometers, accelerometers, 
altimeters, and global positioning systems (GPS). Data collection sensors generally 
include video cameras, still cameras, thermal imaging systems, laser-range scanners, and 
other high-tech imaging devices. 

1.2 Problem Description 
Large outdoor areas, particularly sensitive borders and military bases, require the 

highest level of persistent monitoring possible. Monitoring includes the detection of 
intruders at all points on the perimeter. Thus, the problem is constant surveillance of 
large, closed environments with the ability to track detected intruders. Intruders can enter 
at any point on the perimeter and must be intercepted in minimal time. This problem is 
general, and could have many solutions. Here, we propose a cost-minimizing method 
employing simple perimeter camera emplacements and a UAV helicopter interceptor. 

A complete diagram of an envisioned wide-area camera surveillance system with 
a UAV helicopter interceptor is depicted in Figure 1. Here, the dotted-line ovals represent 
omni-directional camera coverage along the fence-line. The helicopter interceptor, 
located at the light blue square, is responsible for intercepting intruders detected by the 
cameras at the perimeter. Actual experiments are extended to include entire interior 
coverage along with both fixed and PTZ camera modeling. 

 



 

 3

 
Figure 1. Complete UAV helicopter interceptor system. 

 
 
“Interception” essentially entails the deployment of an interceptor robot to a 

location within line-of-sight of the intruder. The helicopter is not expected to physically 
intercept the intruder, but rather to track him or her. Thus, the overall system is a two-
step detection-interception model, where perimeter camera emplacements would handle 
the persistent monitoring and initial detection. A positive detection would instruct the 
interceptor to navigate to an initial location and track the intruder from there.  

The helicopter control system itself is therefore the focus of this thesis. Because 
the goal is completely automated surveillance, the helicopter must possess autonomous 
navigation abilities for intruder interception. Autonomous helicopter navigation begins 
with simple hovering in place. Hovering can be extended to allow for controlled point-to-
point translation. However, for fastest intruder pursuit, the helicopter’s forward-flight 
dynamics require a more complex control system.  

1.3 Contributions 
The primary contributions of this thesis include:  
 

1. The design of a flight control system for the Imaging, Robotics, and Intelligent 
Systems (IRIS) miniature UAV helicopter, which is normally manual-controlled 
by a human R/C pilot. 

2. Implementation of the flight control system using commercial off-the-shelf 
(COTS) parts and a general-purpose PC (GPPC) running Windows XP (as 
opposed to custom embedded systems or microcontroller-based solutions). 

3. Design and implementation of a sensor and interceptor placement planning 
system towards wide-area surveillance. 

 
Many similar projects have built the entire system from the ground-up. Here, the 

goal is to use existing commercial products – hobby-grade R/C helicopter, general-
purpose PC running Windows XP, etc. – to create a semi-autonomous UAV helicopter 



 

 4

system. Thus, many operations are simply written into the software, and most 
communication is through standard interfaces (i.e., USB). 

1.4 Organization 
Chapter 2 comprises the background literature survey performed while 

researching multi-robot control systems towards automated surveillance. Chapter 3 
describes the sensor placement planning and control system design theory. Chapter 4 
outlines the individual experiments performed during the incremental design. Finally, 
Chapter 5 concludes the paper. 



 

 5

2. Literature Review 
The literature review first looks at other current multi-robot systems towards 

surveillance-type applications. Next, UAV flight control systems are examined. Finally, 
the chapter concludes with a brief look into wireless R/C communications. 

2.1 Multiple Unmanned Vehicle Control Systems 
A multiple unmanned vehicle (UV) or robot control system can be broken down 

into five parts: high-level control, low-level control, communications, sensing, and 
central control. The high-level control encompasses the mission planning and allocation 
systems. The low-level control is the basic navigational system of the robot. The 
communications is the method that the robot coordinates and interacts with other robots 
in the system. The sensing system includes the methods that the robot samples its 
environment and builds a model of the world. Finally, the central control system provides 
a monitoring and control interface as well as a central database accessible by all robots. 
Multiple-robot control systems seek to automate the process of coordinating a large group 
of robots by using a high-level command strategy and allowing autonomous robots in the 
field to plan, coordinate, and act on their own.  

Previously, the common trend in these types of systems was toward the high-level 
control, mission planning and allocation, being performed by the central control station. 
Recently, however, more research has focused on distributed intelligence, allowing 
individual robots to operate fully autonomously, coordinating with other robots, planning, 
and acting on their own. The autonomous robot is still able to accept missions given to it 
by the central control station, but is able to dynamically formulate and re-plan missions 
along the way. 

In the majority of these systems, the individual low-level control systems of the 
robots are abstracted. Most simply consider the onboard controller to accept waypoint 
commands, as is common in many autonomous navigation controllers. Some systems 
also consider the robot to be able to perform simple tasks, such as object avoidance. 
However, other problems such as trajectory-tracking, preventing two air vehicles from 
colliding, are usually considered high-level and handled appropriately. 
 The communications structure in a multi-robot system is of utmost importance. 
When a robot of low-level intelligence is cut-off from the rest of the system, it might not 
be able to complete its mission without further input, or even have a mechanism for 
returning home. The communications in a complex, multi-node, low-bandwidth network 
such as these is a popular research area.  

Some of the most notable systems of late are described in the following sections.  

2.1.1 Emerging Results in Cooperative UAV Control 
Ryan, et al. [2004] with the Office of Naval Research (AINS) performed a brief 

survey on emerging results in cooperative UAV control. The focus was on current 
research in cooperative UAV control, such as efficient computer vision for real-time 
navigation, networked computing, communication strategies for distributed control, 



 

 6

collision avoidance, and formation flight. Without reiterating the details of that survey, 
the five main topics were: 

Aerial Surveillance and Tracking: examining the issues in small, fixed-wing 
surveillance packages, including size/weight limitations and real-time processing 
capabilities. 

Collision and Obstacle Avoidance: one of the largest dangers multiple-UAV 
systems is the chance of two friendly vehicles colliding accidentally. Research into this 
topic considers the limitations of onboard vision processing along with the popularity of 
GPS navigation. Solutions include trajectory tracking and better 
communication/cooperation among UAVs. For obstacles, UAVs must be trained to “see” 
the terrain or have an onboard terrain map. 

Formation Reconfiguration: formation flight is a solution to the collision problem, 
as well. However, reconfiguring the formation during a flight is a problem in itself. The 
paper presents both fixed- and flocking-formation solutions for dynamic 
collision/obstacle avoidance.  

High-Level Control: this section is most applicable to the survey presented here. 
High-level control includes a user interface, communications framework, and the logic to 
convert mission-level commands into resource allocations and formation assignments. 
Additionally, the fusion of data from multiple vehicles must be combined to form a map 
of the world. Thus, the system must be modular in order to decompose the large control 
problem and included a wide variety of implementation platforms (sensors and UAVs).  

Hardware and Communication: finally, the last section of the survey considers the 
hardware topics with the latest small, low-cost aircraft used in multi-UAV programs, 
today. Payload weight and size, as well as the endurance of the vehicles, are issues here. 
Additionally, issues with vision systems, long-range, out-of-LOS communication, and 
modern flight control systems are examined.  

2.1.2 COMETS 
The COMETS (Real-Time Coordination and Control of Multiple Heterogeneous 

Unmanned Aerial Vehicles) project described in Ollero, et al. [2005] seeks to utilize 
airships and helicopter vehicles in a cooperative multi-vehicle environment. The main 
application of COMETS is the detection, monitoring, and fighting of forest-fires [Merino, 
2005].  

The system assumes multiple levels of robot intelligence – some units are directly 
controlled by a human operator, some might have operational autonomy (the ability to 
navigate without the ability to plan), while others perform fully autonomously. Thus, the 
architecture of the system requires the integration of both central and distributed 
decision-making schemes.  

With the infinite variety of robot intelligence, the system should be able to 
dynamically configure itself according to the decisional capabilities of each individual 
robot. Thus, a generic supervisor, a plugin controller, is assigned dynamically to each 
robot. The generic, plug-in supervisor modules are stored in database tables and based on 
models of the vehicles. Thus, the models can be tuned over time to the dynamics of each 
vehicle and also its resource consumption.  



 

 7

The individual decisions within this multi-robot system consider a few different 
ideas: 
 
Supervision and execution: the executive is the reactive management during the 
execution of a task. The supervision of a task is active control of the decisional activities 
of a robot at all times.  
Coordination: ensures the multi-robot cooperative task execution. Solves conflicts 
between robots, whether they are physical (trajectory-based) or resource-conflicts.  
Mission refinement, planning, and scheduling: dedicated to the creation, planning, 
refinement, and scheduling of tasks. In addition, creates the models of the world based on 
current knowledge, such as the motion and perception of the robot. 
Task allocation: distributes tasks among each robot. Considers to capabilities of each 
robot and the relevance to other current tasks.  

The system is broken up into three segments: ground (the central control center), 
flying (each individual helicopter or airship control system), and communications. The 
ground segment performs the centralized planning of the system through the Mission 
Planning System (MPS), as well as proving an interface for human operators through the 
Monitoring and Control System (MCS). Also, cooperative environment perception tasks 
are performed within the ground segment through the Perception System (PS).  
 Within the ground segment is the control center – the core of the decisional 
system. The control center provides a graphical user interface (GUI) to human operators, 
as well as high-level control (deliberative) of vehicles within the system. The function of 
the control center is to break down abstract mission plans into sequences of atomic 
procedures executable by the vehicles, and provide real-time monitoring and control of 
the mission execution. 

Figure 2 depicts the global architecture of the COMETS system [Ollero, 2005]. 
The break down of a mission within the COMETS system includes the basic topics, such 
as mission decomposition, resource allocation, path planning, and conflict resolution. The 
end goal is to provide a timeline of low-level procedures for each vehicle without 
inducing any conflicts in the system. 

 
 

 
Figure 2. COMETS Global Architecture [Ollero, 2005]. 

 



 

 8

 The flying segment encompasses all unmanned air vehicles in the system. Each 
robot has onboard proprietary components, such as flight control, data acquisition, and 
data processing. A generic supervisor is defined that interfaces the vehicle to the 
COMETS system, as well as controlling the vehicle. Above the supervisor sits a 
deliberative layer, if the robot has fully autonomous capability, which performs the high-
level control of the robot – the mission planning, refining, and scheduling.  

The intelligence of each individual robot is broke into five levels within the 
COMETS system [Gancet, 2004]: 
 
Level 1: there is no autonomy onboard the robot. Elementary from only the control center 
tasks can be received and executed. 
Level 2: the robot has executive capabilities, also known as operational autonomy. At this 
state, the robot can accept sequences of fundamental tasks and act upon them. The status 
of the operations is returned to the control center.  
Level 3: at this stage, the robot has all the capabilities of level 2, plus interacting 
capabilities with other robots of the same level of intelligence. For example, the robots 
can dynamically synchronize between one another. 
Level 4: Beginning with level 4 is the introduction of high-level intelligence. Task 
requests are managed onboard and can be planned and scheduled. At this stage, the 
deliberative intelligence of the overall system becomes distributed among the high-level 
intelligence robots, instead of only at the control center.  
Level 5: Finally, level 5 constitutes full autonomy. The robot has all of the task 
management abilities of level 4 plus the ability to reallocate tasks among its peers.  
 

Up to intelligence level 3 (low-level), the control center handles the global 
consistency of the system through mission planning. By levels 4 and 5, the coordination 
and mission planning can be distributed among the high-level intelligence vehicles. A 
table categorizing the levels of intelligence presented above is presented on the following 
page. 

High-level intelligence vehicles can include onboard task-planning and 
scheduling, coordination, and reallocation subsystems. The deliberative layer builds 
executable plans for each vehicle. However, during execution, it might be required to 
dynamically change the plans to better fit the mission. Thus, the original plan should be 
able to be processed again online, according to the current situation. Coordination, as 
mentioned above, is both spatial and interactions-related. Spatial coordination is crucial – 
two vehicles physically striking each other could be disastrous. Work is still ongoing in 
negotiation and coordination of non-conflicting planning. Finally, task reallocation is a 
possibility for level 5 intelligence vehicles. This behavior would allow similar tasks to be 
shared to a single vehicle, and more capable vehicles could dynamically allocate suitable 
tasks when needed for more efficient operation. Table 1 depicts the various levels of 
intelligence [Gancet, 2004]. 
 



 

 9

Table 1. Levels of intelligence and partitioning between a central station and a robot [Gancet, 2004] 

 
 
 

Tasks in the COMETS system are built using elementary, atomic subtasks 
[Ollero, 2004]. The tasks include take-off (TO), go-to (GT), take-shot (TS), wait (WT), 
and land (LD). The atomic tasks are self-explanatory, with the exception of “take-shot” 
that means to perform a perception action (i.e., take a picture). Tasks can be inserted into 
the system dynamically in four different modes: sequential (SEQ), very urgent task 
(VUT), dependant (DEP), and non-urgent task (NUT). SEQ mode tasks are inserted in a 
sequence of tasks with pre- and post-conditions, which can be mandatory or optional. 
Mandatory tasks must be satisfied for the SEQ mode task to execute. Optional tasks can 
be considered satisfied if they complete, or even if they find themselves “un-satisfiable.” 
After execution, the post-condition must be satisfied, as well. VUT mode is a mechanism 
for executing a priority task immediately. DEP mode is similar to a sequential task, but 
can have multiple mandatory preconditions that must be satisfied before it can execute. 
Finally, NUT mode is similar to DEP mode in the fact that it can have multiple 
preconditions, but they can be optional. The full task planning and control system is 
described in detail in [Gancet, 2005].  

The communications system (CS) creates network nodes (NN) out of tasks in 
either single- or multi-tasking environments. For flexibility, a server-less, peer-to-peer 
approach was taken, and the network is able to sit on top of almost any transportation 
layer. Originally, the communications was based around the notion of a “Contract Net 
[Lamaire, 2004].”  However, distributed shared memory, i.e. a blackboard (BB), was 
later chosen for data sharing. Each network node contains an internal copy of the BB. 
The BB is comprised of state-type and streaming “slots,” where each slot has an assigned 
bandwidth, data type, and a specific amount of data. State-type slots contain the latest 
information (state) of the system, while streaming slots are generally for streaming sensor 
data (video or images). Mutual exclusion is enforced by the communications subsystem 
on all of the slots.  



 

 10

 The perception system encompasses the application-independent image 
processing (AIIP), detection/alarm confirmation, localization, and evaluation service 
(DACLE), the event monitoring system (EMS), and the terrain mapping system (TMS).  
The AIIP contains a suite of necessary image processing packages, such as camera 
stabilization, position estimation, image geo-location, and object tracking. The details of 
the AIIP package are described in detail in [Ollero, 2004]. The technique is based on 
large-feature matching, as well as projective methods, and can be applied especially to 
helicopter motion compensation and object detection. 

The DACLE subsystem is specific to the COMETS application of forest-fire 
fighting. The system serves to detect fires through IR and video images, and sound a 
detection alarm. The EMS subsystem deals with the monitoring activities of the 
COMETS system. When an event is detected, monitoring missions are scheduled and 
executed. The TMS subsystem uses the initially available cartographic files and updates 
them according to collected sensor data and the results of the AIIP subsystem.  
 One of the main goals of COMETS is to provide a cooperative perception strategy 
to increase the precision of the location of an event. Techniques to fuse both 
commensurate data (such as from two parallel stereo-vision cameras) and non-
commensurate data (such as video and IR data) are defined within COMETS. Data 
registration, non-coincident sampling, and data resolution are keys to these techniques. 

2.1.3 MICA 
UC Berkeley’s Mixed-Initiative Control for Automata Teams (MICA) 

architecture is an integrated solution to the problem of UAV navigation in potentially 
hostile environments. Large scale UAV control is divided into hierarchical, modular 
tasks. Thus, the architecture is adaptable to a wide variety of missions, strategies, and 
sensing platforms.  

In [Rathinam, 2004], an architecture is presented to control a team of unmanned 
aerial vehicles (UAV) in coordinated searches for ground threats in a region, such as 
surface-to-air missiles (SAM), ground troops, artillery, etc. The system is of a modular 
design, where sensors and the strategies are coupled in the architecture. In addition, the 
“safe flight” [Rathinam, 2004] path planning algorithm is improved upon to allow 
sufficient time for imaging operations, as well as cope with the mobility limitations of the 
UAV. The safe flight algorithm decreases the forward progress of a UAV to allow for 
sufficient time to process sensor data. Path planning within this system is based around 
the use of “risk maps” – essentially, probability maps of an enemy’s location compiled 
using Bayes’ rule. This map is shared with all robots in the system. 

The general system architecture is composed of three main components: the Team 
Manager, the UAV Managers, and the Sensor Information Processing Unit (contains the 
risk map, target distribution model, and the probability update module). The UAV 
manager acts as a generic supervisor layer to the Team Manager – offering high-level 
control of the UAV instead of elementary commands. The Sensor Information Processing 
Unit fuses and shares the information gathered by the sensors onboard each UAV in the 
system. Finally, the Team Manager coordinates and monitors the team members at a 
high-level. All vehicles in the system use the safe flight strategy. Figure 3 depicts the 
system diagram. 



 

 11

 

 
Figure 3. MICA System Architecture [Rathinam, 2004]. 

  
 

In the Team Manager, tasks can be given at a high-level, such as “search this area 
for threats.” A mission can then be broke down into a series of tasks by the Operation 
Decomposer. Afterwards, the Resource Allocation unit allocates the necessary resources 
demanded by the mission. Next, the Dispatcher assigns the tasks to the allocated 
resources. Finally, the Operation Monitor is in place to monitor system status over the 
course of the mission. When a resource is lost (i.e., a UAV is destroyed), or one 
completes a mission and becomes available again, the Operation Monitor prompts the 
Resource Allocation unit to redistribute the task load using the latest set of resources. 
Thus, the system is dynamically adaptable to unforeseen conditions.  

Flight control of a UAV is based on a Dynamic Path Planner (DPP) that sits on 
top of existing navigational control systems (i.e., autopilots). The DPP handles high-level 
control and also automatic obstacle avoidance. The DPP performs this task by creating 
minimum risk paths (using the risk map) between the current position and the destination 
waypoint. The path is created to avoid all obstacles as well as threat zones. During 
execution, the DPP interrupts if an obstacle or threat is detected and dynamically plans 
the path, again. Incidentally, for a fixed-wing UAV, the vehicle cannot stop in any one 
place to reformulate a plan – the loss in airspeed causes loss in altitude. Thus, the safe 
controller is in place to generate looping paths around a fixed point until the new nominal 
path is generated.  

Currently, the system is implemented to perform strategic searching maneuvers 
(safe navigation between waypoints) and threat searching maneuvers (generating the 
threat map of an area). Again, both of these use the “safe flight” algorithm. The strategic 
searching uses the algorithm described above (in the section describing the DPP). For 
threat mapping, the UAV manager generates a space-filling curve, which is just a series 



 

 12

of waypoints, to map the designated area. Once complete, the UAV navigates using the 
minimum risk path from waypoint to waypoint, updating the risk map as it goes.  
The MICA Open Experimental Platform was used to simulate the architecture presented 
above.  

In [Sousa, 2004], an attack of Blue Force UAVs versus Red Force SAM sites and 
radars is designed. The attack is based on priori information and composed of a planning 
and execution phase. The planning phase selects targets, groups them into sub-tasks, 
allocates UAVs to these sub-tasks, and creates a risk-minimized path for the UAV to 
follow. The execution phase coordinates the UAVs using real-time controllers to achieve 
the given missions.  

The implementation is created in the Shift programming language. Shift is 
essentially a language for describing networks of automata, and is briefly described in 
section III of [Sousa, 2004]. The execution control framework is composed of  
 

• Controllers: individual controllers for each task, sub-task, sub-team, and UAV.  
• Specifications: the modular tasks that the controllers execute, separated from 

control code.  
• Localization: the location of a mobile controller is part of its state. 
• Control Structure: the four-layer tree of controller nodes (task, sub-task, sub-team, 

UAV).  
• Creation and Initialization: the control structure is built in steps from the root 

(task), with each controller creating its dependants and links to them.  
• Adaptation: mobile controllers can adapt during a mission by having locations 

changed, being re-created to regenerate the control structure, being added or 
deleted upon initiation or completion of specifications, and having control 
dependencies changed.  

• Patterns of coordination: each controller maintains coordination variables for each 
of its dependants. When it receives status updates from a dependant, it updates 
these variables and commands the dependants accordingly – allowing for 
distributed decision-making.  

 
The Blue (air) force versus Red (ground) force scenario simulated here was based 

on one from the Boeing Open Experimental Platform using a Shift specification for the 
attack task.  

Additionally, Berkeley’s research includes hierarchial multi-agent, multi-modal 
systems [Koo, 2001]. In this system, bisimulation is the basis for the design of the 
hierarchy. Thus, the higher-level and low-level systems are similar. System specification 
conforms between its various levels of granularity by adopting a layered system to 
promote proof obligations. The approach is used to design a system controlling a group 
of autonomous agents in a pursuit-game versus multiple evaders. The target platform is 
UAV aircraft.  



 

 13

2.1.4 JAUS 
 The Joint Architecture of Unmanned (Ground) Systems (JAUS) [JAUS, 2005] is 
sponsored by the Office of the Under Secretary of Defense (OUSD) and was developed 
when the military realized the vast number of new robots being developed did not share a 
unified control system. In the field, a soldier is limited to carrying only a minimum 
number of equipment. Moreover, field troubleshooting and servicing the multiple 
varieties of robots, particularly when all require proprietary control mechanisms, could 
become impossible for a single technician. Thus, the JUAS standard was created to 
standardize the way robots communicate and are controlled.  
 JUAS is a component-based, message-passing architecture that specifies data 
formats and the methods of communication between multiple robots. The JAUS interface 
defines messages and behaviors that are independent of proprietary robot hardware. The 
primary goals of the JUAS architecture are to  
 

1. Reduce life-cycle costs 
2. Lower software maintenance costs 
3. Lower training costs 
4. Reduce the development time 
5. Rapid prototype development 
6. Rapid system engineering focused on new requirements 
7. Create a framework for painless new technology insertion 
8. Expand existing systems with new or better capabilities. 

 
The domain model [JAUS Reference Architecture, 2005], depicted below, shows 

the various components of the JAUS architecture. Functional agents include the 
command, telecommunication, mobility, payloads, maintenance and training. Knowledge 
stores include the vehicle status, the world map, the library, and the log. Figure 4 depicts 
the JAUS domain model [JAUS Tutorial Presentation, 2005]. 

 
 

 

 
Figure 4. JAUS Domain Model [JAUS Reference Architecture, 2005]. 

 



 

 14

The command agent collects data, makes decisions, and assigns tasks. A 
command agent can control a single robot, a squad (a team of robots), or a platoon (a 
team of teams of robots). The telecommunication segment manages connections between 
vehicles and the operator control unit (OCU). The payload agent manages the onboard 
payload – which could be munitions, an imaging package, etc. Maintenance maintains the 
system health, as well as interfaces with diagnostic equipment. Finally, training is 
responsible for providing training support for the operator either internally or using an 
external device. 
 The vehicle status knowledge store provides the real-time status of the vehicle to 
the rest of the system. The world map maintains the dynamically generated map of 
threats, terrain, obstacles, etc. The library keeps the reference material, procedures, and 
performance data on hand for evaluation. Finally, the log knowledge store keeps a 
running log of maintenance and training data.  

While the domain model is considered more for the user of the JAUS system, the 
reference architecture [JAUS Reference Architecture, 2005] is meant for the scientist or 
engineer. The basic physical topology used within JAUS is in terms of Systems, 
Subsystems, Processing Nodes, and Components. A System is typically an OCU or entire 
vehicle. The next level, Subsystem, contains one or more processing nodes. A processing 
node has at least one CPU and one Message Routing Service (MRS). Finally, the 
processing node also contains Components, the individual atomic subsystems 
encompassed by a System. Message-passing can be performed within JAUS either 
periodically or aperiodically, allowing dynamic adjustment to changing bandwidth 
conditions. 

JAUS is an excellent architecture for unmanned systems, exhaustively specifying 
every detail of message-passing between unrelated components. Only the briefest 
overview has been presented here, but all of the JAUS documentation can be found at 
http://www.jauswg.org/.  

2.1.5 Stanford 
Stanford has long been a leader in UAV research. Recent work has focused on a 

fully-capable multi-robot system consisting of fixed-wing UAV’s (DragonFly [Teo, 
2004]), as well as a testbed of rotorcraft vehicles (STARMAC [Hoffmann, 2004]). Both 
systems are autonomous and entirely developed by Stanford University, including the 
onboard architecture, avionics, flight control, and integration with wireless 
communications.  

The fixed-wing aircraft used for the DragonFly project have approximately 10-
foot wingspans and are of a traditional single propeller design. On the other hand, the 
rotorcraft design used is particularly unique. Forgoing the traditional main rotor / tail 
rotor design, Stanford has opted for a more radical quad rotor design. Essentially, the 
craft consist of a cross with arms of equal length, with a rotor attached at each tip of the 
cross. Figure 5 shows a STARMAC rotorcraft [Teo, 2004]. 

The primary focus of the DragonFly project was to develop a system to prevent 
two cooperating robots from physically colliding with each other, while maintaining 
autonomous operation. Given that a vehicle “blunders” into a path of the other, the 
developed algorithm should allow for the “evader” to fly around the “blunderer” and  



 

 15

 
Figure 5. STARMAC Rotorcraft [STARMAC, 2008]. 

 
 
continue with its mission. This maneuver is known as an Emergency Escape Maneuver 
(EEM). 

Pursuit-evasion game theory is used to prescribe the best maneuver to escape 
from a pursuer (blunderer). While a variety of different maneuvers were possible, the 
DragonFly program chose to limit the EEM to only two choices: when the evader is 
leading the pursuer, the evader will accelerate, climb, and turn 45-degrees; when the 
pursuer leads, the evader maintains speed, climbs, and turns 60-degrees. The climb is 
included merely to gain altitude, not as the main method of avoiding the pursuer.The 
automatic control system of the DragonFly UAVs is described in detail in [Jang, 2003] as 
well as in [Teo, 2004]. Both high fidelity nonlinear and linear models of the DragonFly 
aircraft were developed, as well as control algorithms based on these models.  

2.1.6 Elemental Maneuvers 
In [Gancet, 2005], the creation of a distributed control framework for the 

coordination and control of unmanned air vehicles using elemental maneuvers is 
described. Elemental maneuvers are the abstract, high-level commands given to a single 
UAV. Team maneuvers are also considered, which abstract team operations using 
elemental maneuvers and coordination constraints. Within the coordination structure of 
team operations are vehicle supervisors for each UAV, team supervisors, and the links 
between them, which define the dynamic information structure and roles of each vehicle. 
The team supervisors and vehicle supervisors interact with one another through a simple 
coordination protocol. The distributed control problem is modeled in the framework of 
dynamic networks of hybrid automata. Dynamic optimization and nonlinear control 
techniques are used to create elemental maneuver controllers.  



 

 16

2.1.7 STOMP 
STOMP [Jones, 2003], Simulation, Tactical Operations, and Mission Planning, is 

a program put on by U.C. Davis and Lawrence Livermore National Laboratory. The 
STOMP software architecture is a framework for the simulation, control, and 
communication of unmanned air vehicles (UAV). Essentially, the system considers itself 
as a distributed sensor network. One interesting feature of the STOMP architecture is the 
ability to perform hardware-in-the-loop testing. Thus, real UAV units can provide 
feedback state information while interacting with the environment. The result is enhanced 
support for simulation of dynamic and complex events. 
 STOMP is a powerful tool for the testing of new algorithms involving 
cooperation, communication, command, or control of a network of UAV units and 
wireless sensors. The designer can use visual editing software to assemble and configure 
each simulation down to the state of every object, individually or in groups. In addition, 
events can be defined and scheduled for specified times during the simulation. However, 
simulation alone is not enough to completely test and model the dynamics of a UAV 
system. Thus, hardware-in-the-loop (HIL) capability is built into STOMP. The STOMP 
virtual environment can then be connected to real UAV units collecting real data as well 
as simulated data. Figure 6 shows virtual and real UAV communication [Jones, 2003]. 

The HIL ability of STOMP is what it makes it most interesting in terms of this 
paper. When real units are used in the system, it becomes less of a simulation and more 
of an actual ground-station, providing coordination and control to all member UAV units 
in the system. In [Kent, 2002], STOMP was used to rapid-prototype and test a new 
cooperation and path-planning algorithm for large UAV networks. Other multi-robot 
systems could also be rapidly-prototyped on top of the existing STOMP system and 
easily simulated, then HIL-tested. The result is a flexible ground station that can be easily 
configured and updated with new functionality along the way. 
 
 

 
Figure 6. Virtual UAV and Real UAV Communication [Jones, 2003]. 

 



 

 17

2.1.8 DSP-Based Control of Mobile Robots 
The Fully Autonomous Advanced Vehicle (FAAK) program [Masar, 2005; 

Masar, 2004] of the Process Control and Control Engineering Department of the 
University of Hagen seeks to develop a rapid modeling, simulation, and prototyping 
system for mobile ground and air robots. The onboard robot low-level control systems are 
based on programmable DSPs and PID-loops. The vehicles involved include four-
wheeled ground vehicles and airships.  
 Using MATLAB and Simulink, the team designed an integrated environment for 
rapid prototyping control algorithms based on dynamic models of sensors, actuators, etc. 
The MATLAB/Simulink system performs the following: 
 

• Allows the creation of an environment for the robot. 
• Simulates the interaction of multiple robots in the system 
• Generates appropriate code for the onboard DSPs automatically. 
• Provides a communication and control interface (central control station) for all the 

robots. 
 

For the individual robot, the DSPs perform the following: 
 

1. Evaluates sensor data and provide appropriate control signals for the actuators. 
2. Navigates the robot throughout its environment by way of reading the onboard 

odometry (based on encoders). 
3. Communicates with the MATLAB/Simulink external monitoring and control 

system. 
4. Also, performs dynamic event handling such as  

o Collision avoidance. 
o Automatically learning system parameters. 
o Generating environment maps. 
o Path planning. 

 
Additionally, the system is equipped with an onboard image processing system 

for visual servoing. A higher-performance DSP is used for the image processing system 
and linked to the navigation DSP through dual-port memory. An overall control system 
diagram is shown below. Figure 7 depicts the FAAK control system [Masar, 2005]. 
 One of the advantages of the FAAK system is the ability to perform hardware-in-
the-loop (HIL) simulation of a robot control system. Afterwards, the control system code 
for the robot can be automatically generated. When testing the generated program on the 
robot, both online data transfer (real-time wireless communication) and offline data 
transfer (data logging) are possible to examine the results.  

While the FAAK MATLAB/Simulink system can act as a complete multi-robot 
system with its built-in communication system, its use is primarily for the rapid 
prototyping of DSP-based control systems for mobile robots. No high-level control 
possibilities, such as task-planning and scheduling, are yet available within the system. 
 



 

 18

 
Figure 7. FAAK Control System [Masar, 2005]. 

 



 

 19

  
Another type of control system used in the field of vehicle control is the 

intelligent agent. An intelligent agent, or simply agent, typically “wraps” around the 
native control system of a robot or vehicle, accepting high-level commands from an 
operator and issuing sequences of low-level commands to the proprietary control system. 
Additionally, agents have inherent intelligence that allows them to plan autonomously, as 
well as coordinate and communicate with other agents. Moreover, agents can typically be 
organized hierarchically to achieve teams and teams of teams. 
 One of the popular applications of an agent is for the control of hybrid systems. 
The systems are hybrid in the sense that they have both discrete and continuous states. 
Several of the programs surveyed below have hybrid control systems at their core. 

2.1.9 Agent-Based Mission Management 
In [Karim, 2004], the use of intelligent agents to design, implement, and test a 

Mission Management System (MMS) for a small UAV is proposed. The JACK 
Intelligent Agents [Agent Oriented Software, 2003] programming language was used for 
the implementation of the agent-programming paradigm. An autopilot flight control 
system was already onboard the UAV, providing low-level control. The agent-based 
system provided a high-level mission-management interface. Thus, the UAV has a higher 
level autonomy, appropriate to multiple UAV (swarm) situations. 

Agents are the central building block of agent-based systems. Akin to objects in 
the object-oriented software engineering paradigm, they are generally described as 
computer systems with two important and distinguishing capabilities. Firstly, they are 
capable of fully autonomous behavior, which entails independent reasoning, decision 
making, and action in order to satisfy the agents’ assigned goals. Secondly, they are 
situated in an environment which contains other agents with which they can interact by 
way of social protocols such as coordination, cooperation, negotiation, etc. The JACK 
agent-based programming language was used. JACK is built in Java, and can be used to 
build autonomous software systems that are both goal-directed and reactive. The systems 
that are built with JACK can be any type of distributed reasoning entity and will be able 
to cooperate through the JACK system. 

The developed agent sits at the top layer of the control system, as pictured below. 
High-level waypoint commands are issued from the MMS, and the autopilot or flight 
control system simply navigates to the specified waypoint. Figure 8 depicts the Agent—
FCS architectural design [Karim, 2004]. 

The JACK programming language consists of several constructs: agents, 
capabilities, events, plans, and beliefs. At the highest level of abstraction are agents, 
which represent entities with autonomous behavior within the system. Capabilities are 
also abstract entities, but they encompass groups of related events and plans. 

Within this system, events are handled by plans. Plans can then post one or more 
other events. The dynamic selection of plans entails autonomy. Combining all of these 
constructs yields behaviors centered on the Belief Desire Intention (BDI) theory of 
agents. 

 



 

 20

 
Figure 8. Agent – FCS Architectural Design [Karim, 2004]. 

 
 
BDI is similar to the rational process of the human mind. Each agent focuses on 

the goals (desires) given to it, making plans (intentions) according to current data 
(beliefs).  The final design of this system is in fact based on the OODA approach, popular 
in military applications: Observe, Orient, Decide, Act. Essentially, the agent samples or 
observes its environment, orients itself based on its observations, decides its next course 
of action, and then acts upon its plans. 

While this system was only tested on a single UAV, it could be extended to 
coordinate multiple UAVs using the same agent-based framework. The paper 
investigated the use of Contract Nets or Blackboard systems to coordinate multiple units. 
A Contract Net protocol uses managers to broadcast a set of tasks to other contractors 
within the team. The contractors examine the tasks collected and submit a “bid” to the 
manager agent with a plan to achieve the task or mission. The manager then selects the 
“bid” it deems most appropriate. A contractual obligation is then made between the 
manager and contractor, thus producing a “contract net.”  
 Blackboard systems are popular in many current multi-robot systems, such as 
[Ollero, 2005]. In this system, communication is made by creating a central database that 
each agent regularly accesses, and creates a local copy of. Thus, message passing is made 
by writing to the blackboard. Additionally, the state of the world is typically kept in the 
blackboard for access by all agents. This method allows the incremental update of the 
model of the world by each member.  
 Either of the two systems, contract net or blackboard, could be used to extend the 
agent-based mission management system presented above to coordinate multiple agents 
in a UAV team. 
 



 

 21

2.1.10 HICA 
The HICA (Hybrid Intelligent Control Architecture) [Rathinam, 2004; Fregene, 

2001] develops a systems- and control-oriented intelligent agent framework, decomposed 
into specific kinds of multi-agent systems. An agent is a system or process that can sense, 
compute, and act within its own environment in a flexible, autonomous way in order to 
achieve its objectives. Agents can be reactive, where perception is coupled to action 
without an internal model of the agent; deliberative, where the system reasons and acts 
based on the internal model of itself and its environment; or a hybrid, which combines the 
desirable aspects of both. The hybrid agent is used here. Thus, the system is hybrid in the 
sense that it includes systems with both continuous-valued and discrete-event dynamic 
behavior, and also because it allows the use of hybrid agents. Knowledge-based control 
and coordination can then be integrated with hybrid control primitives, achieving 
coordinated control of multiple dynamic systems with multiple modes of operation. 
Figure 9 shows HICA in an environment [Rathinam, 2004]. 

Planning and coordination within the HICA system is based on partial 
knowledge-based planning (PKBP). An agent can find a short sequence of modes that to 
achieve a desired short-term objective while coordinating with other agents to attain team 
goals. Thus, the agent acts before a complete sequence is generated, letting the PKBP 
planner perform multiple-passes dynamically. 
 The HICA can be composed into a multi-agent system by creating a network of 
agents, a supervisory agent team, or multiple supervisory teams. In the network of agents, 
the output of each agent is available as an input to all other agents. When the supervisory 
agent team is added, the global coordination is improved by the utilization of a supervisor 
agent that receives the coordination output from the network of agents and outputs 
supervisory events to the network and coordination events to other supervisors. When 
multiple supervisory teams are used, the teams coordinate using the supervisors to deal 
with certain aspects of a problem in order to solve the overall problem. 

The simulation experiment used in this program is most interesting, as it focuses 
on the use of both air- and ground-vehicles in a pursuit-evasion war game. In this game, 
the air vehicles focus on locating a target enemy ground vehicle while the friendly ground 
vehicles coordinate to perform the actual apprehension of the enemy unit. The simulation 
concluded with the friend ground vehicles flanking the enemy vehicle, a “capture.” 
 An application of the HICA [Rathinam, 2004] paradigm is presented in [Fregene, 
2004]. In this system, multiple unmanned ground vehicles (UGV) are used for intelligent 
terrain mapping.  Each vehicle is a HICA with an embedded hybrid control system, 
planning, and coordination logic. All logic required for mapping and terrain traversal is 
embedded within the individual agent. The team of HICA UGVs coordinates individually 
and with a supervisor agent, whose responsibility is also to update the centralized map. 
Decentralized multi-agent control and coordination is the result. 

The proposed system is a combination of three research areas: hybrid agent 
control, path-planning and traversal, and vision-based terrain-mapping. The results show 
promise for the use of hybrid intelligent control agents in real-world applications.  
 In [Fregene, 2003], the HICA system was used again to model a multi-vehicle 
pursuit-evasion game. Two supervisory teams of HICA were implemented to 
demonstrate control and coordination logic. The scenario was then simulated. 



 

 22

 
Figure 9. HICA in an environment [Rathinam, 2004]. 

 
 
 One supervisory team consisted entirely of air vehicles: one supervisor and three 
HICA. The second team consisted of ground vehicles: one supervisor and two ground 
vehicles. Key to this particular paper was the separation into two supervisory teams. 
When composed in this manner, this class of multiagent systems behaves like a Discrete 
Event System [Fregene, 2002]. This DES has constrained supervisory output events rates 
at the team, or macro, level of abstraction. Additionally, this DES framework was used to 
produce preliminary results at both micro- (individual HICA) and macro- levels [Fregene, 
2003]. 

2.1.11 Framework for Coordinated Control of Multi-Agent Systems 
A distributed framework is proposed in [Karray, 2004] for the coordination and 

control of a multi-agent system. The agents are modeled as Coordinated Hybrid Agents 
(CHA), which have intelligent coordination control layer (ICCL) and hybrid control layer 
(HCL). In ICCL, the planning, coordination, decision-making, and computation occurs – 
equivalent to the high-level intelligence seen in other programs. In the HCL, essentially 
the native control system of the plant, the control signals are generated for a process 
according to the commands of the intelligent coordination control layer. The system 
seeks to create a framework of decentralized control and coordination of its agents.  

The target platform for this program is much different from others surveyed. 
Instead of mobile unmanned vehicles (UV), this system is tested on a system of multiple 
cranes. While the physical dynamics are surely different, the notion of “intelligent 
agents” is readily extendable to other platforms, such as air or ground robot vehicles. In 
this system, the ICCL is able to control the plant in an abstract way, allowing the HCL to 
handle the actual low-level control signals. The ICCL is built upon the action executor, 
planning the sequence of discrete events, or coordination states, for the HCL as well as 
communicating with the supervisor agent and its neighboring agents. A coordination rule 
base, inspired by social laws [Shoham, 1995], coordinates the actions of the agent by 
considering the optimal actions and constraints on the agent.  The intelligent planner uses 
the coordination rule base and methods such as potential fields, fuzzy logic, neural 



 

 23

networks, or knowledge-based planning to create the sequence of events for the HCL. 
Also, the ability to directly communicate with other agents through the communication 
mechanism is implanted within the ICCL.  

The experiment was verified by simulating the coordination of five mobile crane 
robots. Additionally, two industrial overhead cranes were coordinated to test the system 
in an environment where the cranes must manipulate payloads in the same workspace 
without collision.  

2.1.12 Hybrid Algorithms of Multi-Agent Control 
The multi-agent robot system (MARS) [Timofeev, 1999], created by the St. 

Petersburg Institute of Informatics and Automation of Russian Academy of Science, 
coordinates multiple robot-agents in real-time in a dynamic environment. The artificial 
intelligence is based on neural network control strategies. Also, the multi-agent control 
system is organized hierarchically with parallel processing features. Both 
strategic/supervisor and tactical/local levels of control are available within the system. 
 MARS is similar to COMETS in components, but probably the lesser in 
sophistication. MARS is a distributed intelligence multi-agent system comprised of 
executive, information, control, and communication subsystems. The information 
subsystem encompasses perception, and the executive motion. Information is sotred 
within open distributed databases, or knowledge bases. Figure 10 demonstrates the 
MARS architecture [Timofeev, 1999]. 

Within the multi-agent control system (MACS), the supervisor level performs the 
following operations: 

 
1. Decomposition of tasks into sub-tasks for the agents. 
2. Planning optimized distribution of tasks between agents. 
3. Multi-agent global modeling of the environment and dynamic collision avoidance. 
4. Conflict resolution between agents to ensure coordination. 
5. The operation level performs the following: 
6. Local goals and constraints are created. 
7. Local environment modeling (obstacle modeling) and agent navigation (path-

planning). 
8. Optimized scheduling of agents’ paths. 
9. Programming behavior of the agent by calculating sequences of atomic movement 

tasks. 
10. Agent actuator control. 

 
Real-time path-planning is possible in this system through the use of hybrid 

artificial intelligence/neural networks. The path-planning system was simulated using the 
proposed algorithms with a network of twenty-four robot-agents. The simulation results 
verified that the algorithms provided globally and locally optimal/collision-free paths in a 
complex multi-agent system. 
 



 

 24

 
Figure 10. MARS Architecture [Timofeev, 1999]. 

 
 

2.1.13 Intelligent Systems for Autonomous Aircraft  
In [Lee, 2004], a mode-driven intelligent agent is developed for the control of 

autonomous aircraft. A neuro-fuzzy inference engine is implemented to infer the current 
mode from sensor data, as well as provide abstract input for decision-making processes, 
which are based on pilot-type aircraft modes. VS/TOL UAVs are the target platform for 
this project. A block diagram of the overall system is shown below. Figure 11 shows the 
developmental model of the IFD [Krishnamurthy, 2000]. 
The primary component of the system is the Intelligent Flight Director (IFD), heavily 
based on the reasoning and inference methods used by human pilots such as sequences of 
maneuvers and high-level commands. In the diagram of the IFD above, the Command 
Logic block translates high-level commands into maneuver sequences. The Trajectory 
Comparator calculates the appropriate trajectories as maneuvers progress. The Switching 
Logic selects the most appropriate state trajectory strategy for each maneuver. Finally, 
the Mission Segment Modifier infers the current maneuver from the sensor data.  

As shown, a Knowledge Base is used along with the intelligent agent to provide 
suitable trajectories for the maneuvers created by the Command Logic block. Four pieces 
of data are obtained from sensing mechanisms: rates of change of forward velocity, bank 
angle, heading, and altitude. Six Maneuver Segments (low-level sequence operations) can 
then be executed depending on the data, including Level Acceleration, Rolling Transient, 
Steady Turn, Climbing Turn, Aggressive Turn, and Straight and Level. Finally, the 
available Maneuvers to the system (essentially high-level operations) include En Route 
Turn, Holding Pattern, Vertical Break, Horizontal Break, and Cruise. Currently, formal 
testing of the system has not taken place. However, the current research into the IFD has 
shown promise for a modern VTOL UAV control system. 

 



 

 25

 
Figure 11. Developmental model of IFD [Krishnamurthy, 2000]. 

   
 

2.2 UAV Flight Control Systems 
In addition to surveying multi-robot control systems, significant research was 

performed into the current literature of single robot low-level flight control and 
navigation systems for Unmanned Air Vehicles (UAV). 

2.2.1 Traditional R/C Systems 
Recently, converting standard radio-controlled (R/C) vehicles (miniature cars, 

planes, helicopters, etc.) to become fully autonomous vehicles has become a popular 
research trend – both for its low cost and the ability to use commercial-off-the-shelf 
(COTS) parts. However, most R/C vehicles, even the most advanced, typically use a one-
way FM transmitter-to-receiver configuration for communication with the operator. 
Furthermore, these systems typically have a single fixed-frequency generator (crystal) 
inside both of the transmitter and receiver. The limitation to a single frequency can 
generate problems in multi-robot environments. (The FCC has only approved about 30 
channels for surface vehicle use in the 75.4- to 76-MHz band. And for air vehicles, only 
the frequencies in the 72- to 73-MHz band are available). 

In order to combat the ill effects of traditional R/C radios, R/C radio 
manufacturers, Nomadio [Nomadio, 2005] and Spektrum R/C [Horizon Hobby, 2005], 
independently created custom radio systems based on the popular 2.4-GHz frequency 
band. Nomadio’s product, “Sensor” and Spektrum R/C’s product, “DX3,” replace 
standard R/C radios on ground-based miniature-scale race car vehicles. Additionally, 
both systems utilize digital spread spectrum (DSS) modulation for communication. 
Finally, both have the ability to frequency-hop around multiple channels to avoid 



 

 26

interference, and both also multicast commands on several different channels to ensure 
the transmission makes it through to the vehicle. 

Nomadio’s system, in particular, provides several distinct advantages over standard 
R/C transmitters-to-receiver pairs: 
 

• Two-way digital communication providing real-time telemetry from the vehicle. 
• Can use up to thirty-two available channels for telemetry and control. (Comes 

standard with three channels of telemetry). 
• Four servo channels at a resolution of 4096 steps per channel and a frame rate of 

100 Hz (the highest servo resolution currently available in the R/C world). 
• Uses Digital Spread Spectrum (DSS) modulation with frequency-hopping on the 

2.4-GHz band. 
• Eliminates the need for many different fixed-frequency crystals. 
• Race information can be saved for later examination with a PC. 

 
The three default telemetry channels are filled with speed, temperature, and 

battery voltage sensors included with Nomadio’s package. Four additional channels are 
used for high-resolution for servo control. Furthermore, the system has expansion 
capabilities for up to 32 total channels, allowing the later addition of custom sensors. 
Extra usability features are also included, such as tactile and audio alerts to telemetry 
data. Spektrum R/C’s system uses a similar radio system to Nomadio’s, but does not yet 
include telemetry functions. Two servo channels are available with a resolution of 4096 
steps. Essentially, the current DX3 system is only a solution to channel hijacking with the 
additional benefits of high-resolution servo control. Currently, Spektrum's website states 
that real-time telemetry functions will be available Fall 2005 in the form of a plug-in 
module.  Table 2 summarizes the features of these systems. 

 

Table 2. Comparison Table of Modern R/C Transmitters 

 Nomadio Sensor Spektrum R/C DX3 

Modulation 
Digital Spread 
Spectrum 2.4 

GHz 

Digital Spread 
Spectrum 2.4 GHz 

Radio 
Model 

Direct Sequence 
Spread Spectrum 

Direct Sequence 
Spread Spectrum 

Range 1000 ft (LoS) 3000 ft. (LoS) 
Frame Rate 100 Hz Unknown 

Latency 5 -10 ms 5.6 ms 
Servo 

Channels 
4 2 

Channel 
Resolution 

4096 steps per 
channel 

4096 steps per 
channel 

Telemetry 
Channels 

3 0 (currently) 



 

 27

2.2.2 Current UAV Helicopter Autonomous Systems 
 In [Lee, 2004], an autonomous flight, navigation, and guidance system was 
developed that utilized a ground station for telemetry and command. For this project, an 
airship was chosen for its natural characteristics of long-duration flight and gradual 
degradation under system failures. The flight system implemented here controls all flight 
operations of the airship using an autopilot system and control laws based on the 
dynamics of the vehicle. Sensor information is returned to the ground station during flight 
using the onboard communication system, and commands are received from the ground 
station. Finally, all actuator and status subsystems are maintained by the flight control 
package.  

The COMETS system has performed significant research into helicopter UAV 
control systems. In [Gonzalez, 2004], research entailed control and stability analysis of 
autonomous helicopters. Utilizing both linear and non-linear control laws, a two-time 
scale decomposition of helicopter dynamics was created. The fast subsystem deals with 
the rotational dynamics, and the slow subsystem with the translational dynamics. A 
Lyapunov function models the stability of the fast dynamics. Additionally, feedback 
linearization stabilizes the slow dynamics. Using these two subsystems, a linear control 
law was created and analyzed. Finding significant drawbacks to the linear system, non-
linear control laws are also developed and presented within [Gonzalez, 2004]. A block 
diagram of the overall system is shown in Figure 12 [Gonzalez, 2004]. 

Several papers surveyed examined low-cost flight control systems for 
autonomous helicopters. In [Roberts, 2003] a system is implemented that does not rely on 
traditional helicopter UAV sensing means, Inertial Measurement Units (IMU) and Global 
Positioning Units (GPS). Instead, a low-cost inertial sensing package (developed in-
house) and a pair of CMOS cameras are used for navigation. The advantage of this 
method is the inclusion of integrated stereo vision system for further expansion into the 
realm of 3D visual servoing techniques as well as significantly less per-unit costs. 

 
  

 
Figure 12. COMETS overall system setup [Gonzalez, 2004]. 

 



 

 28

 Vision-based systems were also utilized in [Sinopoli, 2001] and [Kanade, 2004]. 
In [Sinopoli, 2001], also performed at U.C. Berkeley, each UAV is equipped with a 
GPS/INS (Inertial Navigation System) package as well as onboard cameras. Low altitude 
navigation is the goal. Real-time creation of a 3D model of the world is performed in-
flight, creating a partially-known 3D environment for the UAV to navigate around using 
path-planning techniques. Image sequences are processed using multi-resolution wavelet 
transforms and fused with sensor data. Using the collected data, a path is planned from a 
start point to an end point, refining and updating the path in real-time as it executes. The 
target platform for this technology is the BEAR helicopter UAV found at [Berkeley 
Aerobot, 2005]. 
 The visual techniques used in [Kanade, 2004] focused on recovering motion and 
structure from a video sequence, as well as 3D terrain mapping from a laser range finder. 
Both of these sets of data are fused with an onboard GPS/INS package. The system is 
targeted at small and micro helicopter UAVs. By using 3D vision techniques, positional 
information can be obtained relative to objects within the environment. Path-planning can 
then ensue based on the created local world model. Simulations have shown promise for 
further research into 3D visual navigation techniques by comparing GPS/INS-based state 
estimation versus the vision-based estimator, or the visual-odometer. An overview of the 
vision system is shown in Figure 13 [Kanade, 2004]. 
 Systems based entirely on GPS/INS data are also prevalent in current research 
literature [Yoo, 2003; Kahn, 2003; Saphyroon, 2004; Sasiadek, 2004; Accardo, 2004]. A 
navigation system based solely on GPS is described in [Hui, 1998].  
The sensor fusion of these two devices, GPS/INS, is examined in [Sasiadek, 2004], 
particularly focusing on proper utilization of multiple GPS satellites. The fusion system is 
based on a Kalman Filter, and the satellite selection algorithm on a Dilution of Precision 
(DOP) technique. Simulation experiments were performed for both real-time error state 
feedforward and feedback Kalman filters with the selection of up to four satellites 
simultaneously. 
 
 

 
Figure 13. Overview of the vision system [Kanade, 2004]. 

 



 

 29

 A low-cost GPS/INS-based UAV navigation system is presented in [Yoo, 2003], 
but targeted at fixed-wing UAVs rather than helicopters. Strict design constraints were 
placed on the sensing system, including very low weight, small dimensions, low power, 
reasonable accuracy, fast update rate, and finally a fast data rate. Aside from the common 
GPS/INS sensing system used in other projects, this particular system investigated the 
use of multiple GPS antennas for boosting signal strength and avoiding complete loss of 
satellite signals. The sensing and fusion subsystem is pictured below. Field tests of the 
sensing system were performed on the ground using multiple antennas, verifying the 
initial constraints on the system. Flight tests will ensue in the future. Figure 14 depicts the 
structure of the GPS/INS fusion system [Yoo, 2003]. 

Another low-cost UAV controller is presented in [Saphyroon, 2004]. In this 
particular system, the constraints call for an embedded microcontroller system and COTS 
hardware and software. An in-house constructed sensing package was created, including 
a Pitot-static tube (collects airspeed, altitude, and angle of attack), absolute pressure 
sensor (can be used to obtain altitude), tilt sensor (measures Euler angles), rate gyroscope 
(measure rate of change of the Euler angles), accelerometers, a digital compass, and GPS. 
Only initial testing of the sensing system has taken place to date. The main advantage of 
this system is it’s very low cost per unit along with fast real-time operation due to the 
embedded microcontroller.  

In [Buskey, 2001], an INS and an artificial neural network (ANN) are combined 
to perform autonomous helicopter hovering. One advantage of this system is an ability to 
deal with sensor errors and maintaining correct operation. The system is purely reactive 
to the environment, using only INS data. Future research will include a stereo-vision 
system for a higher level of accuracy in low-altitude hovering. Research developed in 
[Nakanishi, 2004] also pursues the use of neural networks in UAV control, but also 
considers stochastic uncertainties, such as wind direction and speed – both of which have 
a significant effect on helicopter flight dynamics. 
  
 

 
Figure 14. Structure of GPS/INS Fusion System [Yoo, 2003]. 

 



 

 30

 
 A similar experiment to those described above was performed in [Kahn, 2003]. 
Miniature R/C helicopters are very unstable and require mechanical dampers, or flybars, 
to assist the human pilot during flight. Unfortunately, the flybar also greatly increases the 
complexity of the helicopter rotor dynamics when attempting to model the system, as 
well as increases the drag profile of the helicopter. The project described in [Kahn, 
20039] attempts to circumvent the problems presented by the addition of a flybar by 
removing it from the system entirely. Instead, a lagged-rate feedback system or an 
attitude-command attitude- hold (ACAH) system, based on adaptive neural network 
model inversion control, could be used to assist the pilot during flight. Flight tests and 
simulations of the lagged-rate system are presented within the paper. While the system is 
not a “true” flight control system, it provides limited pilot assistance and has the potential 
to be extended to a full autopilot.  
 Only a handful of the vast amount of research into UAV flight control systems 
has presented here. However, the research trends begin to become clear by looking at 
these individual systems. First, GPS/INS sensor fusion is the primary means of sensing 
the environment, with some departures to only-GPS or only-INS (or IMU) systems. 
Several interesting vision-based systems are on the horizon. Most vision systems are 
based on stereo-vision and 3D modeling of the environment, while others include laser-
range systems. Many of the systems are built specifically for airships, fixed-wing aircraft, 
or helicopters. However, most systems are applicable to any aircraft.  

2.2.3 Brief Survey of Commercial Miniature UAV Autopilots 
An autopilot system for an R/C helicopter can perform a variety of operations, 

from hovering the vehicle in position without constant user input, to navigating along a 
path of GPS waypoints. Most also allow integrated sensor data (INS, GPS, etc.) to be 
logged and/or transmitted to a ground station. Some advanced autopilots also include 
user-configurable loops for extra control over camera stabilization, etc. The purpose of 
this report is to analyze the many available commercial autopilots to find a best-fit for the 
IRIS lab’s electric helicopter. 

The following autopilots are considered: 
 
1. MicroPilot mp2028g with HORIZON ground station and XTENDER 

development kit ($5,500 autopilot + $5,000 software development kit). 
2. CloudCap Technology Piccolo II system kit ($50,000 for airframe modeling and 

hardware) 
3. weControl wePilot1000 flight control system ($35,000 to $45,000 for airframe 

modeling and hardware) 
4. Procerus Kestrel Autopilot 2.22, developed at BYU MAGICC lab ($5,000 

autopilot + $2,995 ground station and software kit) 
5. Rotomotion UAV Flight System Helicopter Controller ($5,500 autopilot and 

software kit) 
 
The final recommendation was the MicroPilot mp2128g. The runner-up was the 

Procerus Kestrel. 



 

 31

First, the mp2028g was originally designed for fixed-wing applications, but 
recently provisions have been added into the code to allow the autopilot to hold a 
helicopter in a hover. This autopilot includes a complete ground station software package 
(HORIZON), and has several advanced features beyond basic assisted manual control 
and waypoint navigation. The telemetry can be customized to provide user-defined fields, 
video overlays can be configured, and user-defined loops can also be created for control 
over camera stabilization, or other payload devices. The system can be made fully 
autonomous, from take-off to landing. 

Additionally, the mp2028g can perform pre-programmed flight maneuvers, such 
as changing altitude and flight speed at each waypoint. The software development kit 
allows the creation of custom control laws, communication, ground control software, 
custom payload control and data collection, and access to the complete autopilot state. 
While the most expensive solution, it is also the most complete and expandable.  

Secondly, the Piccolo II was created specifically with helicopters in mind, based 
on the previous Piccolo Plus system. Like the mp2028g, the system can be made fully 
autonomous, from take-off to landing. The system also has graceful degradation features 
that allow it to cope without GPS data. Assisted manual mode and waypoint navigation 
features are included with the Piccolo II and ground station software. The 
communications SDK is also included for custom interfaces. The main drawback is the 
lack of custom programmability such as that found in the mp2028g. 

Unfortunately, the cost of CloudCap initially modeling the helicopter dynamics 
and configuring the autopilot (estimated at $50,000) far outweighs the cost of the 
hardware. While the features are right, the price is not. 
 Thirdly, the wePilot1000 is a more basic autopilot designed by Swiss company 
weControl. However, it includes features such as automatic take-off and landing, 
waypoint navigation, and assisted manual modes. The ground station software is a bit 
more basic than other competitors, but it provides essential mission planning and status 
monitoring. Also, a software SDK is not mentioned on the website or brochure, so 
custom communications and control software might not be possible. 
Again, the wePilot1000 will require initial helicopter modeling by the manufacturer, 
resulting in too great of an initial investment ($35,000 to $45,000). Not recommended. 

Fourthly, The Kestrel autopilot originated at the Multiple Agent Intelligent 
Coordination and Control Laboratory (MAGICC) at Brigham Young University (BYU). 
The university research led to the production of this commercial autopilot. The Kestrel 
autopilot is on par with the MicroPilot mp2028g in features, including autonomous take-
off, flight, and landing; assisted manual flight modes; a Virtual Cockpit ground station 
kit; hardware-in-the-loop configuration software to reduce time-to-flight; and a 
communications SDK to allow for custom 3rd party communication software. The main 
drawback: helicopter support will not be built into the Kestrel until late 2006, early 2007. 
The main advantage, aside from the extensive features: previous university research has 
provided a bevy of published papers about the autopilot and software development. 

Lastly, The Rotomotion autopilot is not as pretty to look at as the previous 
candidates, nor does it have as many features, but it does provide one distinct advantage: 
the original autopilot software was written under an open source license, so all source 
code should be freely (as in beer) attainable and modifiable. However, the initial setup 



 

 32

seems more complicated than the other candidates, requiring Rotomotion personnel to 
assist, and the hardware is still quite expensive at $5,500. Thus, the author does not 
recommend this autopilot for a final purchase, but it is an interesting candidate for 
consideration. 

In conclusion, the two most advanced solutions surveyed are the MicroPilot 
mp2028g and the Procerus Kestrel autopilot. However, neither was has native support for 
helicopter control. The mp2028g was only recently configured for helicopter hovering at 
the request of a previous customer, and the Kestrel will not have support till the end of 
the year. However, if they do gain full support in the near future, they will be the most 
flexible and useful solutions. 
The second choice would be the CloudCap Piccolo II, designed to support helicopters. 
The software package is not as complete as the previous solutions, but it includes the 
most needed autopilot features with support for custom communication software. 
Unfortunately, the price is not reasonable for our project. 

Finally, the most basic autopilot, the weControl wePilot1000, also provides the 
most needed autopilot features, but does not include a software development kit. The 
ground station also seems less advanced than the other solutions, and no hardware-in-the-
loop simulation seems available (increasing the difficulty of tuning the autopilot for our 
helicopter). Again, the price is not reasonable for our project. Figure 15 depicts all five 
autopilots. Table 3 summarizes the autopilot features. 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 15. Autopilots: (a) MicroPilot 2128g, (b) CloudCap Piccolo II, (c) weControl wePilot1000, (d) 
Procerus Kestrel, and (e) Rotomotion UAV Helicopter Controller. 

  



 

 33

Table 3. Autopilot Features Comparison 

Manufacturer MicroPilot 
CloudCap 

Technology 
weControl Procerus/BYU Rotomotion 

Location 
Manitoba, 

CAN Oregon, USA Zurich, SUI Utah, USA 
South 

Carolina, USA 

Autopilot mp2028g Picollo II wePilot1000 Kestrel 2.22 UAV Heli. 
Controller 

Autopilot 
Cost 

$5,500 $? $? $5,000 $5,500 

Software 
Development 

Cost 
$5,000 $? $? $2,995 N/A 

Manufacturer 
Modeling $0 <$50,000 

$35,000-
$45,000 

$0 $? 

Fixed-Wing 
Control 

Yes Yes ? Yes ? 

Helicopter 
Control ? Yes Yes 2006Q4 Yes 

Autonomous 
Take-

off/Landing 
Yes ?/Yes Yes Yes No 

Integrated 
GPS Yes (1 Hz) Yes (4 Hz) Yes Yes Yes 

Inertial 
Sensors 

(Accel./Gyro) 
Yes Yes Yes Yes Yes 

Other 
Sensors 

Airspeed, 
Altimeter 

Magnetometer, 
Altimeter, Sat. 

Comm. 

Magnetometer, 
Barometer 

Wind, 
Magnetometer 

Magnetometer 

Telemetry 
Yes, with 

video 
support 

Can be 
implemented 

with 
communications 

SDK 

Yes, using 
ground station 

software 

Yes, with 
video support 

Yes, optional 

Onboard 
Data Log 

Yes 
(1.5MB) 

Yes Yes Yes Yes 

Hardware-in-
the-Loop 

Simulation 
Yes Yes ? Yes ? 

Waypoint 
Navigation 

Mode 
Yes Yes Yes Yes Yes 

Assisted 
Manual 
Mode 

Yes Yes Yes Yes Yes 

 



 

 34

2.3 Sensor Placement Planning 
The goal of complete wide-area surveillance using multiple cameras and a UAV 

helicopter interceptor requires pre-planning to position assets most effectively. Thus, the 
field of sensor placement planning was investigated for maximizing the visible coverage 
of an area while minimizing the overall system cost. 

2.3.1 The Art Gallery Problem 
The “Art Gallery problem” is a textbook approach to the camera placement 

component of an automated surveillance system. The 2-D layout of the outdoor area to be 
monitored is represented by a simple polygon, P, with n vertices. Figure 16 depicts two 
polygonal representations of floor-plan layouts used during experimentation. Figure 16 
(a) is Room 209 of Ferris Hall on campus, and Figure 16 (b) is our secondary warehouse 
lab known as “IRIS West.” Both rooms have been simplified in order to create realistic 
environments that a robot could navigate safely.  

For placing cameras within these areas, one of the traditional Art Gallery 
solutions was used. [O’Rourke, 1987] [Berg et al., 2000]. Figure 16 depicts the simply 
polygon representations of floorplans. 
 

1. Partition the polygon into monotone sub-polygons, 
2. Triangulate each of the monotone polygons by adding diagonals, 
3. Three-color the triangulated polygon, and 
4. Place guards (cameras) at vertices with least-used color. 

 
 

 
(a) 

 
(b) 

Figure 16. Simple polygon representations of floorplans (a) Room 209, and (b) IRIS West (simple). 

 



 

 35

 
The first step, partitioning into monotone sub-polygons, is significantly simpler, 

O(nlogn), than the more desirable alternative of partitioning into convex polygons [1]. 
For large polygons, monotone partitioning is much more practical. The results are 
typically y-monotone due to the sweep line partitioning method, where an imaginary line 
is swept downwards across the polygon and each encountered vertex is processed along 
the way. There are typically five types of encountered vertices: start, end, split, merge, 
and regular. [O’Rourke, 1987] [Berg et al., 2000]. 

Start and split vertices lie above their immediate neighbors in internal angles of 
less than and greater than 180º, respectively. End and merge vertices lie below their 
immediate neighbors with internal angles less than and greater than 180º, respectively. 
Regular vertices don’t fall into any of these categories.  

As the sweep line descends, each vertex is processed once and diagonals are 
drawn to remove split and merge vertices according to the algorithm. Once all split and 
merge vertices are removed, the polygon will be partitioned into monotone sub-polygons. 
Please see the references for the detailed algorithm explanation, which is beyond the 
scope of this paper. Afterwards, in step two, diagonals are added in linear time within the 
monotone sub-polygons to create a full triangulation.  

Implementation of steps one and two was accomplished via a freely-available 
sweep line polygon triangulation program. This modified implementation is able to 
handle most polygons with or without holes and output the result to a text file in several 
different formats. The results can then be parsed easily into Matlab. 

Afterwards, step three requires three-coloring the triangulated polygon. For our 
implementation, we used Kooshesh and Moret’s linear-time algorithm [Kooshesh, 1992]. 
Given a triangulation T of a polygon P with a perimeter-ordered list of its N vertices, p0, 
p1, …, pn, the three-coloring can be computed based on the order of each vertex. Since the 
output of polygon triangulation, T, is typically formatted in such a way that the number of 
connections at each vertex is easily obtained, three-coloring can be done in linear time 
with the following algorithm. 

 
Color(p0) � 1 
Color(p1) � 2  
for i = 1 to N-1 do 
    if odd(deg(pi)) 
      then Color(pi+1) � Color(pi-1) 
      else Color(pi+1) � 6 - Color(pi-1) – Color(pi) 
endfor. 

 
Placing cameras at each of the vertices with the least-used-color completes step 

four of the algorithm. For example, Fig. 6(a) has been triangulated and each of the 
vertices assigned a color (red, green, or blue) according to Kooshesh and Moret’s 
algorithm. Three vertices are colored blue, three green, and two red. Since the least-used-
color is red, guards (cameras) should be placed at the red vertices. Figure 17 depicts the 
triangulated and three-colored test areas. 



 

 36

(a) 
 

(b) 

Figure 17. Triangulated and three-colored polygons: (a) Room 209, and (b) IRIS West (simple). 

 
 

Unfortunately, the Art Gallery solutions make several unrealistic assumptions 
about the guards: 360º field of view and infinite viewing range and focus. While the 
method is a great start on solving the camera placement problem, a better model of the 
individual cameras themselves is needed. Thus, the Art Gallery problems and solutions 
were set aside and different methods were investigated.  

2.3.2 Visibility Graphs and Polygons 
Visibility deals with finding the visibility polygon from the perspective of a single 

node within the enclosed area. This polygon encompasses all visible points (i.e., within 
line of sight) from that node. Calculating this polygon can be done in a brute-force, 
exhaustive manner by testing the intersection of all edges against each other. Naturally, 
this leads to a very slow implementation for large, detailed areas. See Figure 18 for an 
example of visibility polygons. 

Assume the polygon, P, has n vertices, vi, and n edges, ei, both ordered counter-
clockwise around the perimeter. An important part of camera placement is calculating the 
visibility, or the set of all visible points, from some point, x, within the polygon. 
Typically, the visibility from a point is represented as a sub-polygon of P. After the 
visibility is obtained for all valid camera placements, an overall coverage map can be 
calculated and the best placements chosen. 

We consider two types of visibility: vertex and full. The result of vertex visibility 
is simply a weighted, connected graph depicting all vertices that can “see” each other and 
therefore have Euclidean distance. Instead of a sub-polygon representing the visibility, 
we only have an nxn Boolean matrix, VIS, which is true if vertex vi is directly visible 
from vertex vj, and vice-versa. Thus, VIS(j,i) is also true if the pair is directly visible to  



 

 37

 
Figure 18. (a) Area that is not visible, (b) Visibility polygon, (c) Camera view, (d) Occluded camera view, 

and (e) Out of polygon camera view. 

 
 
each other. This type of visibility is especially useful for shortest-path operations, such as 
Dijkstra’s algorithm [Dijkstra, 1959]. 

The result of full visibility is a sub-polygon of P consisting of all visible line 
segments from some point x within the polygon. The line segments consist entirely of 
points on the perimeter of P. Once calculated, we can use an estimated camera model 
consisting of pan angle, field of view angle, depth of field, and spatial resolution to 
simulate the actual coverage of that camera. Based on these parameters, we can calculate 
a coverage arc (FOV, r, θ) for the camera with radius, r, field of view, FOV, and pan 
angle, θ. Afterwards, a set intersection of the coverage arc with the visibility polygon will 
give us a good estimate of the actual camera coverage. Again, see Figure 18 for a visual 
model of this process. 

There exists a naïve approach to solving the visibility polygon problem. 
Essentially, for each vertex vi, i = 1, 2, …, n, we draw an imaginary edge, eij, to all other 
vertices vj, j = 1, 2, …, n, j ≠ i, and test for intersection with all edges not adjacent to vi or 
vj. The overall worst-case complexity is O(n3). However, if we find an intersection, we 
can immediately break the testing of edges, declare the pair not visible, and move to the 
next edge, ei,j+1 . Additionally, we can also simplify the algorithm by realizing that 
visibility between vertices i and j implies visibility between vertices j and i, or VIS(i, j) = 
VIS(j, i). Therefore, we only test the imaginary edges, eij, between vi, i = 1, 2, …, n, and 
vj, j = i+1, i+2, …, n. The full algorithm is shown below. 

While fine for small polygons with few vertices, the O(n3) complexity can 
become troublesome as the polygons gain more vertices. A faster O(n2logn) textbook 
alternative is presented in Berg, et al. [2000] as the algorithm VisibilityGraph(S), but not 
implemented here. Additionally, the visibility graph must be calculated for individual 
points on the interior or boundary of the polygon. To accomplish this task, a modification 
of the previous naïve algorithm was implemented. See algorithm VIS = 
VertexVisibility(p, v, n). 

The notion of vertex visibility will be revisited in further sections when 
implementing complete visibility polygons and finding shortest-paths. Next, however, an 
existing complete visibility algorithm is examined. 



 

 38

 
Algorithm  VIS = VertexVisibility(v, n) 
Input x- and y-coordinates of the n vertices, vi, i = 1, 2, …, n, of polygon, P. 
Output n x n visibility matrix, VIS, where VIS(i,j) is true if vi is visible from vj. 
for i = 1 to n 
    VIS(i, i) � true 
    for j = i+1 to n 
        visEdge � edge(v(i), v(j)) 
        test � false 
        for k = 1 to n 
            testEdge � edge(v(k), v(next(k))) 
            if intersect(visEdge, testEdge) 
                test � true 
                break 
            endif 
        endfor 
        if not(test) 
            VIS(i, j) � true 
            VIS(j, i) � true 
        endif 
    endfor 
endfor 
return VIS 
 
Algorithm  VIS = VertexVisibility(p, v, n) 
Input Point, p, and the x- and y-coordinates of the n vertices, vi, i = 1, 2, …, n, of 

polygon, P. 
Output Length n visibility vector, VIS, where VIS(i) is true if vi is visible from p. 
for i = 1 to n 
    visEdge � edge(p, v(i)) 
    test � false 
    for j = 1 to n 
        testEdge � edge(v(k), v(next(k))) 
        if intersect(visEdge, testEdge) 
            test � true 
            break 
        endif 
    endfor 
    if not(test) 
        VIS(i) � true 
    endif 
endfor 
return VIS 



 

 39

2.3.3 Erdem and Sclaroff’s Radial Sweep for Visibility Polygons 
Testing for intersection with each edge needlessly increases the complexity of the 

algorithm. Therefore, Erdem and Sclaroff’s O(nlogn) Radial Sweep algorithm [Erdem, 
2006], an extension of the vertex visibility algorithms by Berg, et al., was implemented. 
The algorithm sweeps an imaginary ray radially around the point x and checks for 
intersections at each vertex it encounters. The end result is a polygon constructed entirely 
of visible line segments. 

First, the Radial Sweep algorithm converts the edge list to polar coordinates 
relative to the point, x. Secondly, any edges that are intersected at θ = 0 by x are split into 
two separate edges. The start and end vertices of the split edge are the start vertex of the 
first edge and the end vertex of the second edge, respectively. The end vertex of the first 
edge is the intersection at θ = 2π. The start vertex of the second edge is the same 
intersection at θ = 0. These edges allow for easier processing during the radial sweep 
phase, since we won’t deal with zero-crossings. The RadialSweep algorithm is shown in 
Figure 19. 

 Next, backwards-facing edges (where the end vertex angle of the edge is less 
than the start vertex angle, θe < θs) are pruned from the edge list. Backwards-facing edges 
cannot be seen from x and are removed to save processing time later. We can then 
construct the list, Q, with an entry for each endpoint in the edge list in the form (θi, ri, εi), 
where θi is the polar angle, ri is the radius, and εi is the incident edge of the endpoint. If 
not attached to a backwards-facing edge, each vertex will be represented twice – first as 
the end vertex of the previous edge and second as the start vertex of the next edge. Thus, 
the list Q can have up to 2n entries. After construction, the list Q is sorted in 
lexicographically increasing order of polar angle and then radius (end vertex entries are 
considered less than start vertex entries). . Figure 20 depicts the process [Erdem, 2006]. 

With the initial data structure creation complete, the algorithm can proceed with 
the radial sweep. Using the ordered list, Q, each vertex is handled based on being a start 
or end vertex, and the type of intersections possible. Type 1 intersections project the 
“shadow” of an end vertex onto the edge behind. Type 2 intersections occur at an edge 
closer to x than the target start vertex (usually when that vertex is the end of a backwards-
facing edge). Finally, Type 3 intersections project the “shadow” of a start vertex onto the 
edge behind. 

The insert function used during Type 2 processing manages the insertion of 
candidate edges into the sorted list by their distance from x (ascending). Event point type 
cases can be seen in Figure 21 [Erdem, 2006]. Additionally, if the top three vertices of 
the visibility polygon are ever found to be collinear (which can happen with Type 2 
intersections or the pseudo-vertices created by intersecting x at θ = 0), the superfluous 
middle point is removed. Once all vertices in the list, Q, have been processed, the 
complete visibility polygon for point, x, has been found. Pseudo-code for the Radial 
Sweep algorithm is presented below [Erdem, 2006]. 
 



 

 40

 

Figure 19. RadialSweep Algorithms: (a) Finding the visibility polygons and (b) Handling event points 
[Erdem & Sclaroff]. 



 

 41

 

 
Figure 20. Illustration of splitting the edge i crossing at θ = 0 [Erdem & Sclaroff]. 

 

 
Figure 21. Event point types and a special case, (a) Type 1, (b) Type 2, (c) Type 3, (d) Special case [Erdem 

& Sclaroff]. 



 

 42

 

3. UAV Helicopter Control System 
The overall application of this project is towards automatic, persistent wide-area 

surveillance. The complete envisioned solution would include optimally placed video 
cameras using networked automatic intruder detection and localization software, remote 
ground control system (GCS) software, and an interceptor/tracker UAV helicopter 
system. Previous work by this author has focused on finding the optimal camera 
placements. Here, the focus will be on the design of a complete R/C helicopter control 
system for the interceptor/tracker UAV helicopter, including a central ground control 
system software package. 
 The system block diagram for the complete persistent surveillance system can be 
seen in Figure 22. The face detection and localization presented later in this chapter 
yields the estimated location of a subject within the guarded perimeter. By following 
these estimated positions, or waypoints, the subject can be initially intercepted and 
tracked by the UAV helicopter. Thus, an end goal of this project is the development of a 
helicopter UAV control system towards waypoint-following. 
 This type of flight control system can be broken into three coarse components: (1) 
system modeling and dynamics characterization, (2) feedback-loop flight stabilization, 
and (3) waypoint-following. The first concern will be the system modeling of the IRIS 
electric helicopter towards stabilized hovering. Afterwards, the waypoint-following can 
be implemented as a controlled translation while maintaining a stable hover. 
 
 

 
Figure 22. Persistent surveillance system block diagram. 

 



 

 43

 This chapter will first cover sensor placement planning techniques along with a 
simple, associated method of optimally-placing an interceptor within the area. Next, the 
helicopter’s PID-based flight control system will be described in detail. 

3.1 Sensor Planning 
Complete surveillance and monitoring of large outdoor areas requires significant 

manpower, equipment, planning, and the constant vigilance of its guards. Ideally, we 
would like to replace the individual human responsibilities with automated solutions – 
minimizing both risk and cost if possible. This section describes a multi-camera system 
combined with a mobile unmanned air vehicle (UAV) designed to autonomously perform 
wide-area reconnaissance and intruder tracking in indoor/outdoor environments. This 
automated solution allows for better overall monitoring with less human involvement. 

While a detailed model of real-world environments would produce the most 
accurate results, three-dimensional modeling is very computationally expensive and data-
intensive. Therefore, real-world environments are approximated by their two-dimensional 
floor plans and layouts. Furthermore, the floor plans themselves can be interpreted as 
polygons composed of ordered sets of n vertices. These simplifications allow for complex 
visibility and coverage algorithms to be feasible within reasonable time constraints. 

This section will begin by describing two algorithms developed by the author 
while exploring sensor placement planning. These two algorithms serve as simple 
methods of generating visibility polygons given a room layout and a viewing point. 
However, all final experiments are performed with an implemented version of Erdem and 
Sclaroff’s Radial Sweep algorithm.  

Next, edge intersection, unique points, and outliers will be examined over two 
sections. These are problematic issues that can cause errors and crashes in visibility 
polygon generation.  

Camera modeling techniques for both fixed and PTZ cameras comprise the next 
two sections, with some variations depending on the application. Afterwards, a method 
for best-mask searching is described along with its variable constraints. Next, shortest-
path placement of an interceptor is examined and a solution proposed. Finally, the 
implementation of a simple OpenCV-based intruder detection and localization system is 
described. 

3.1.1 Vertex Visibility Polygons from Room Layout 
Before implementation of Erdem and Sclaroff’s Radial Sweep, an attempt was 

made to write an original vertex visibility polygon algorithm based on sweeping the 
polygon. This algorithm focuses on finding the visibility polygons for every vertex in the 
layout polygon instead of an arbitrary point within the polygon. The final goal is to 
combine the vertex visibility polygon results with the vertex guard results from the Art 
Gallery solution and achieve a complete coverage map with fewer cameras. 

Essentially, the algorithm tries to connect visible line segments with “shadow” 
projections onto edges behind these segments. Each time a projection is found, the 
algorithm then “slides” along that intersected edge to the next visible vertex. Ideally, non-
visible target vertices are skipped over. Exceptions occur when an edge is intersected 



 

 44

between a target vertex and the main vertex. The algorithm details for each case are 
explained below. 

For each vertex, the algorithm traverses to each other vertex on the perimeter of 
the polygon in counter-clockwise order, beginning and ending with the main vertex, v(i). 
Each time the algorithm travels to a target vertex, CV, it checks for intersections with the 
edge created between the main vertex and the target vertex, and all other edges in the 
polygon. Successful intersections are inserted into an ascending sorted list, SL, based on 
radius from the main vertex.  

If no intersections are found, then the target vertex must be directly visible from 
the main vertex. Thus, we can simply push the target vertex onto the visibility polygon 
list, PV, and set CV to the next vertex on the perimeter (moving in counter-clockwise 
order). This is the simplest case. 

On the other hand, if an intersection is found that is closer to the main vertex than 
the target vertex, then the target vertex is changed to the start vertex of the closest 
intersected edge, and a flag is set. This flag will be used to determine the outcome of the 
next case of the algorithm, when the closest intersection is farther away than the target 
vertex. 

If all intersections are at a greater distance than the target vertex, then that vertex 
must be directly visible from the main vertex as well. The next visible point should be a 
“shadow” projection onto an edge behind the target vertex. For most cases, the target 
vertex and the top of the sorted list (the closest intersection) are both pushed (in that 
order) onto the visibility polygon list. Also, the target vertex “slides” to the end vertex of 
the intersected edge, which will be tested for intersections in the next iteration of the 
algorithm. 

However, if the last iteration of the algorithm set a flag, then the two points 
(target vertex and edge/shadow intersection) are pushed in reverse order (implying the 
shadow/edge intersection comes before the target vertex in counter-clockwise order). 
Furthermore, we set CV to the next vertex on the perimeter from the target vertex. 

A complete traversal of the polygon perimeter is signaled by arrival back at the 
main vertex, and should net the visibility polygon. One caveat to note: this algorithm was 
designed and coded on-the-fly, and is sure to have several bugs. Some polygons prove 
too difficult for the algorithm to converge, and other real-world problems, such as 
collinear vertices separated by gaps, often confuse the intersection algorithm and cause 
malfunction. However, adequate results were obtained and used to calculate a complete 
coverage map for multiple simple polygons, presented in the Results section of this 
paper.  

The pseudo code for the VertexVisibilityPolygons algorithm is presented below. 
The insert function with only two arguments, insert(item, list), used in this 
implementation has two special modifications from normal list insertion functions. First, 
the function automatically inserts the item into the ascending sorted list at the correct 
position. Secondly, the function returns the position at which it inserted the item. When 
three arguments are specified, insert(item, position, list), the item is inserted at the 
specified position as normal. 

 



 

 45

 

Algorithm  VertexVisibilityPolygons(v, n) 
Input x- and y-coordinates of the n vertices, vi, i = 1, 2, …, n, of polygon, P. 
Output Vertex visibility polygons, PV(i), for i = 1, 2, …, n   
for i = 1 to n 
    CV � next(i) 
    flag � false 
    while CV ≠ v(i) 
        SL � NULL 
        SVL � NULL 
        PV(i) � NULL 
        visEdge � edge(v(i), CV) 
        for j = 1 to n 
            testEdge � edge(v(j), v(next(j))) 
            k � intersect(visEdge, testEdge) 
            if k ≠ NULL 
                pos � insert(k, SL) 
                insert(v(j), pos, SVL) 
            endif 
        endfor      
        if SL ≠ NULL   
            k � head(SL) 
            s � head(SVL) 
            if distance(k, v(i)) ≥ distance(CV, 
v(i)) 
                if not(flag) 

                    push(CV, PV(i)) 
                    push(k, PV(i)) 
                    CV � next(s) 
                else 
                    push(k, PV(i)) 
                    push(CV, PV(i)) 
                    CV � next(CV) 
                endif 
                flag � false  
            else 
                CV � s 
                flag � true 
            endif 
        else 
            push(CV, PV(i)) 
            CV � next(CV) 
        endif 
    endwhile 
endfor 
return PV 

3.1.2 Vertex Visibility Polygons from Visibility Graph 
When the vertex visibility graph is already known, finding the vertex visibility 

polygons becomes an easier task. Since a working visibility graph algorithm was 
implemented for the shortest-path section of this paper, a second visibility algorithm was 
created to calculate visibility polygons directly from the visibility graph.  

This algorithm works in a similar fashion to the one in the previous section by 
traversing each of the vertices in counter-clockwise order around the polygon. However, 
advantage is taken of a priori knowledge of the visibility graph. This information is used 
to narrow down a list of candidate edges with which each target vertex could possibly 
intersect. Furthermore, only the visible vertices need be considered as target vertex 
candidates, not all vertices of the polygon. Also, in the trivial case of a completely-visible 
point, it’s immediately known that the visibility polygon is equal to the entire polygon.  

In essence, the visibility problem narrows down to a single case where 
intersections are farther away than the target vertex (since the target vertices are known to 
be visible). Therefore, we traverse the vertices in order around the perimeter and search 
for “gaps.” A gap is simply a non-visible vertex, or set of vertices, between two visible 
vertices. Once a gap is found, we intersect the two visible target vertices with all edges 



 

 46

contained within the gap. The closest intersections for each target vertex (if any are 
found) are then included in the visibility polygon, PV, as shadow projections onto back 
edges. Either one or both of the surrounding valid target vertices will project onto the 
back edges.  

In summary, this algorithm performs the following operations (presented at a 
high-level): 
 

1. Initial visible polygon is given by all visible vertices connected in order. 
2. Find any gaps in the visible vertices (immediate neighbors not connected in the 

visible polygon).  
3. Fill each gap by intersecting the two visible nodes defining the gap with the edges 

contained within the gap. 
4. Add closest intersected edge for each visible node to visible polygon. 

 
A sample polygon is shown in Figure 23 with colored lines depicting important 

features. The polygon perimeter is colored in blue. The visibility polygon for the 
reference point (the leftmost vertex) is colored red. The visibility graph has green lines 
drawn between the reference point and visible vertices, which are also circled in green. 
Finally, the gaps between visible vertices are connected with yellow lines. In this 
example, both of the center visible nodes (connected by green lines) sit on opposite edges 
of the same gap and both project onto an edge behind. Conversely, the other two gaps 
only have one visible vertex (those adjacent to the reference vertex) projected onto an 
edge behind. 

Note that this algorithm is still less efficient than the Radial Sweep proposed by 
Erdem and Sclaroff [5], which will be discussed in the next section. However, using the 
polar angles and radii of the vertices in the gap to narrow the list of edge-intersection 
candidates should produce similar efficiency. The full pseudo code for the intersection 
algorithm, ck = findClosestIntersection(edge, edgeList), used in the visibility algorithm is 
presented first, followed by the full visibility algorithm, PV = 
VisibilityPolygonsFromGraph(p, v, n). Note that the intersect function tests each 
candidate edge against the half-line emanating from point, p, with slope equal to that of 
refEdge.  

 
 

 
Figure 23. Visibility polygon example. 

 



 

 47

3.1.3 Edge Intersection 
Even the perfectly-defined algorithm stated in text and pseudo code might not 

transfer easily into a programming language. Several issues with these algorithms in 
practice came up along the way, and will be discussed below. 

The intersect function proved to be difficult to implement since no details were 
given on its method. The distance of an edge from x is directly related to the angle of 
intersection. In general, the distance decreases as the angle increases between the start 
vertex of the edge and the closest point. The distance increases as the angle increases 
between the closest point and the end vertex of the candidate edge.  The closest point on 
the candidate edge occurs when the intersecting edge is perpendicular to it. The non-
linearity of the distance as a function of intersecting angle makes edge distance difficult 
to estimate without calculating the intersection point. For the purposes of the experiment, 
multiple methods of maintaining the sorted edge list were implemented: distance to the 
start vertex (given), distance to the end vertex (given), and averaging the distances to the 
start and end vertices. In general, none proved superior for solving difficult “spiral” 
polygons. The problem of sorting the edge list accurately remains open in this paper. 

The many implementations of a versatile visibility algorithm discussed in this 
chapter shared many common elements, particularly the heavy-use of edge intersection. 
Edge intersection is the heart of visibility altogether. This task that’s extremely easy for 
the human eye to accomplish is fraught with difficulty when assigned to a computer. A 
few practical issues with intersection are mentioned here for relavence. 

The foremost problem is rounding-error. Nothing is more frustrating to an 
implementation author than receiving an intersection back at (x, y) = (8.275E-14, 2.435E-
14) and having comparisons to (x, y) = (0, 0) fail. Solving these frequent rounding error 
problems is easiest by setting a minimum tolerance value. Instead of testing for exact 
equality, the points are tested for distance less than the tolerance.  

Occasionally, parallel lines are checked for intersection which, obviously, fails 
and can crash the implementation. Coincident lines can also frequently cause program 
crashes. This is another variation of rounding-error, but more difficult to troubleshoot.  

When a visible “shadow” falls exactly along an existing edge, the intersection 
frequently occurs at a vertex. While this occurrence is obvious to the human eye, the 
algorithm calculates the intersection manually at the vertex coordinates – sometimes 
creating an extra non-unique visibility vertex with some rounding error. These need to be 
manually checked against existing vertices at each step, or filtered out during the final 
“clean-up” pass at the end. 

T-intersections can sometimes prove problematic. These occur when a shadow 
falls in the center of an existing edge. However, the calculated intersection point (with 
rounding error) can be erroneously interpreted further on as not coincident between the 
edge’s endpoints. If the rounding error puts the new vertex outside the polygon, further 
sweeps around the polygon can fail and crash the implementation. 

This section is only a brief mention of observed edge intersection problems 
generally caused by rounding error. 



 

 48

3.1.4 Filtering Unique Points and Outliers from the Visibility Polygon 
For the implementation of Erdem & Sclaroff’s Radial Sweep algorithm [5], the 

removal of collinear vertices was not included. Instead, all pushed points were saved and 
post-processed for coherency. Two problems typically occur with the algorithm that can 
cause potential errors when using the visibility polygon in further calculations: repeated 
points and outliers. However, the removal of repeated points can fix both problems – if 
done carefully. 
 First, since each vertex can listed in the edge list, Q, twice, and parts of the 
algorithm that push a vertex and its shadow push two vertices at once, a single unique 
edge point can sometimes be listed in the visibility polygon two, three, or even four times 
– typically in a row. Removing these repeated points from the visibility polygon data 
structure reduces the unnecessary complexity and redundancy. Additionally, these points 
might have a small amount of rounding-error if calculated as an intersection; therefore, 
the points must be compared carefully within a given tolerance. 

  
Algorithm  ck = findClosestIntersection(refEdge, edgeList) 
Input Reference edge, refEdge, and list of potential intersecting edges, edgeList. 
Output Closest intersection, ck, of refEdge and the edgeList. 
ck � INFINITY 
while not( empty(edgeList) ) 
    canEdge � pop(edgeList) 
    k � intersect(refEdge, canEdge) 
    if radius(k) < radius(ck) 
        ck � k 
    endif 
endwhile 
return ck 
 

Second, nonsensical outliers sometimes crop up in the algorithm in practice. 
These outliers occur due either to an unfound bug in the implementation or possibly due 
to the problems of maintaining the sorted list, SL, without calculating edge intersections 
at each step. Currently, a definitive answer to their existence has not been found. 
However, a post-processing outlier solution can be included in the phase where the 
visibility polygon data structure is made unique.  

The duplicate point- and outlier-removal algorithm begins by checking for 
duplicate points to the first point of PV at the beginning and end of the list and adjusting 
the list’s size so these points are ignored in future calculations.  Essentially, index i is set 
to the index of the last duplicate point at the beginning of the list. Index n is set to the 
first duplicate point at the end of the list. The list is then clipped to the portion between 
indices i and n. 
Next, for each point, pi, i ≤ n, in the list, PV, we check all points, pj, j = i+1, i+2, …, n, 
that follow it in the list for duplicates. If a duplicate is found at index j, we clip all points 
between indices i and j from the list by setting i = j. The first part of this algorithm, 
analyzing the list for duplicates to the first point, p1, takes linear time. The second part 



 

 49

outer loop takes linear time (n – d, where n is the length of PV and d the number of 
duplicate points of p1 that were removed). The second part inner loop operates on the 
portion of the list from index i+1 to n-d, taking logarithmic time. The total complexity is 
O(n + n log n), or O(n log n). Since the original Erdem and Sclaroff Radial Sweep 
algorithm also takes O(n log n) time [5], there is no increase in overall complexity. 
 
Algorithm  PV = VisibilityPolygonsFromGraph(p, v, n) 
Input Point, p, and the x- and y-coordinates of the n vertices, vi, i = 1, 2, …, n, of 

polygon, P. 
Output Vertex visibility polygon, PV, for point, p. 
VIS � VertexVisibility(p, v, n) 
PV � NULL 
GEL � NULL 
SV � head(v) 
GSV � NULL 
while not( VIS(SV) ) 
    SV � next(SV) 
end 
CV � SV 
while CV ≠ SV 
    if VIS(CV) 
        if GEL ≠ NULL 
            e � edge(p, GSV) 
            k �findClosestIntersection(e, GEL) 
            if k ≠ NULL 
                push(k, PV) 
            end 
            e � edge(p, CV) 

            k �findClosestIntersection(e, GEL) 
            if k ≠ NULL 
                push(k, PV) 
            end 
            GEL � NULL 
        endif 
        push(CV, PV) 
    else 
        if GEL = NULL 
            GSV � CV 
        endif 
        e � edge(CV, next(CV)) 
        push(e, GEL) 
    endif 
    CV � next(CV) 
endwhile 
return PV 

3.1.5 Fixed Camera Modeling 
 For modeling the two primary camera types, an approach based on “probability of 
detection” was used. Here, a positive detection of an object at point x indicates that the 
camera is in the proper orientation and foveation to view point x and meet minimum 
spatial resolution requirements. For fixed cameras, the viewing frustum is fixed at a 
specific orientation and field of view (or spatial resolution). However, PTZ cameras can 
change orientation and field of view while online, leading to the concept of “probability 
of detection.” 

As stated in the definition of a detection, the probability of detection is simply the 
probability of the camera being in a valid orientation and lens foveation to meet spatial 
resolution requirements at each point x. This probability falls off with radial distance 
from the camera and also angular distance from the original orientation.  
 Fixed camera modeling is very simple for the most part. For the 2-D layout, the 
camera mask is a binary combination of three lesser masks: (1) visibility mask, (2) field 
of view mask, and (3) spatial resolution mask.  



 

 50

The visibility polygon is calculated by Radial Sweep and discretized using an 
inpolygon() function to form the visibility mask. For calculating field of view and spatial 
resolution masks, the polar coordinates of the room must be calculated relative to the test 
point. Then, using the test orientation for reference, all points within half of the 
maximum field of view on each side of the reference orientation are within the field of 
view mask. 
 The spatial resolution uses the polar radius relative to the test point. Using the 
static field of view for reference, the maximum radius visible to the camera with spatial 
resolution greater than or equal to the minimum allowable spatial resolution can be 
calculated. All points within the calculated radius are part of the spatial resolution mask. 
See Figure 24 [Erdem & Sclaroff, 2005] for an overview of visibility masks. 
 
Algorithm  unique(PV, n) 
Input Visibility polygon list, PV, with n elements 
Output Unique visibility polygon list, VP, with outliers removed 
VP � NULL 
i � 1 
for j = 2 to n/2 
    if PV(j) = PV(1) 
        i � j 
    endif 
endfor 
for j = n/2 to n 
    if PV(j) = PV(1) 
        n � j-1 
        break 

    endif 
endfor 
while i ≤ n 
    push(PV(i), VP) 
    for j = i+1 to n 
        if PV(i) =  PV(j) 
            i �j 
        endif 
    endfor 
endwhile 
return VP 

 
 

 
Figure 24. Calculating Visibility for a 2-D Room with Spatial Resolution Consideraiton: (a) typical area 

with camera point; (b) visibility mask; (c) maximum spatial recognition radius; and (d) field of view. 

  



 

 51

Two other considerations can also come into play, depending on the system goals. 
The first is camera tilt. If the cameras are always assumed to be facing straight out at face 
level, the 3-D room can be interpreted simply as a 2-D plane at the mounted height. 
However, many real-world situations call for the cameras to be placed higher. In these 
cases, the camera’s 3-D viewing frustum can be projected onto the ground plane (at 
height, h) and the radius and spatial resolution masks can be calculated using the new 
projected view.  

Figure 25 depicts simple diagrams of camera tilt and projection. The total 
coverage for each point in the room can be calculated as follows: 

 
1. Simple 3-D projection of image plane onto the floor plane. 
2. Visibility based on vertical and horizontal fields of view, tilt angle, and height 

from floor. 
3. Probability of coverage based on spatial resolution (linear). 

 
Secondly, the minimum spatial resolution might not be a hard limit as depicted 

above. In this case, the camera mask is not binary – instead, it can be interpreted as a 
“probability of coverage,” where the values range from 0 to 1 depending on the 
probability that an intruder will be detected using the given location and camera 
parameters. This concept will be explored further in the PTZ camera modeling.  

For fixed cameras, “probability of coverage” could simply mean the extension of 
the coverage past the previous hard limit at the minimum spatial resolution radius. The 
probability of detection remains one (or true) up to the hard limit, at which point it drops 
off according to some function of the radius as it approaches infinity. Good candidates 
for this function are linearly-decreasing or exponential.  

The resulting equations are presented as Equation 1. Here, the mounting height 
and tilt angles are constant and pre-determined. Camera parameters such as maximum 
field of view (βFOV) also play a part in determining the maximum viewable range to meet 
spatial recognition requirements. 

 

Equation 1. Calculating Coverage for a Tilted Fixed Camera 

( )





















⋅
≤∧







 ≤∧≤≤∈

+=

==








 −=






 +=

≤≤−−=
==

FOV

FOV
fn

f
f

n
n

TILT
TILTf

TILT
TILTn

BIS

TILT

SR

p
rxrxv

Hrr

r
x

r
x

HrHr

constconstH

β
βφ

φφ

βϕβϕ

πφπθθφ
ϕ

'
2

''

'

cos
',

cos
'

2
tan,

2
tan

,

,

22

 



 

 52

 
(a) 

 
(b) 

Figure 25. Accounting for tilt when modeling fixed cameras: (a) side view, and (b) overhead view. 

  

3.1.6 Pan-Tilt-Zoom (PTZ) Camera Modeling 
 For pan-tilt-zoom cameras, probability of coverage comes in to play in the 
majority of placements. Two methods of PTZ camera modeling are presented below for 
two different scenarios. In the first, the PTZ camera is assumed to pan back and forth at a 
constant rate over the entire viewing range. Since cameras are assumed to be mounted on 
walls only, the viewing range is always the edge angle at the test point. In the second 
case, the camera is allowed to pan/tilt to random positions according to a Gaussian 
probability distribution. The unpredictable behavior of the camera makes it much more 
difficult for an intruder to slip past. 

For the simpler case of constant panning, a few considerations must first be made. 
The first is the radius of the farthest point within the visibility mask. Knowing this 
distance, the minimum field of view can be calculated. Furthermore, knowing the total 
viewing angle of the visibility mask and using the calculated minimum field of view as 
the viewable portion at any given time, the pan ranges and final probability of coverage 
can be calculated. 

 

Equation 2. Simple PTZ Modeling 

2
,

2
2

,

2
,

),min(

,

,min

Cover
FOV

Cover

FOV

Cover

PanCWPanCCW
PAN

Cover
PanCWFOVPanCW

Cover
PanCCWFOVPanCCW

FOVPANEDGESCover

BIS

FOVFOVFOVFOV

p

SRr

p

θθφ
θ
θ

θ
θθ

θθθφθ

θθθφθ

θββθ
πφπθθφ

βθαθ

<±=
−

=

−≥−=

≤+=

+=
≤≤−−=

≤≤








⋅
=

 



 

 53

 
The probability that each point will be visible at any given time can be calculated as 

follows: 
 
1. Find minimum zoom to view each point at minimum spatial resolution 

requirement. 
2. Find pan/tilt ranges around point using calculated zooms. 
3. Calculate probability of being in a valid P·Z for each point. 
 

 For the second case of a random orientation camera, the process is very similar. 
However, a Gaussian distribution is applied instead of the linear mapping of the 
probability distribution within the edge angle. The center position is preferred and is 
therefore the mean of the distribution. The standard deviation of the distribution is 
adjusted to encompass the entire edge angle range 99.7% of the time (three standard 
deviations). A similar process can be applied to both pan and tilt ranges, depending on 
the application.  

The probability that each point will be visible at any given time can be calculated 
as follows: 

 
1. Find minimum zoom to view each point at minimum spatial resolution 

requirement. 
2. Find pan/tilt ranges around point using calculated zooms. 
3. Calculate probability of being in a valid P·T·Z for each point. 

 
Furthermore, a two-step detection system can instead be assumed. In this case, the 

first step is motion detection through optic flow. Detected motion causes the PTZ camera 
to foveate on the location (increasing spatial resolution). Object detection can then be 
performed on the higher resolution images. For this system, the cameras are allowed to 
remain at the maximum field of view that would still allow for adequate motion 
detection. However, the total coverage encompasses all pan-tilt-zoom combinations that 
meet minimum spatial resolution requirements. 
 

Equation 3. Zoom Terms for Probability-based PTZ Camera Modeling 

FOV

FOVFOV
FOV

FOVFOV
FOVFOVFOV

FOVFOVFOVFOV

erfp

SRr

p

σ
µθ

θθσβµ

βθαθ

2
1

3

)min()max(
,

,

−+=

−==

≤≤
⋅

=

 

 



 

 54

Equation 4. Pan Terms for Probability-based PTZ Camera Modeling 






















 −−







 −=

−==

−≥−=

≤+=

=
≤≤−−=

PAN

PANPanCW

PAN

PANPanCCW
PAN

FOVPanMax
PANBISPAN

PanMax
PanCWFOVPanCW

PanMax
PanCCWFOVPanCCW

PANEDGESPanMax

BIS

erferfp
σ

µθ
σ

µθ

θθσθµ

θθθφθ

θθθφθ

ββθ
πφπθθφ

222

1

3

)min(
,

2
,

2
,

),min(

,

 

 

Equation 5. Tilt Terms for Probability-based PTZ Camera Modeling 






















 −
−







 −=

−==

−≥−=

≤+=








=

≤≤






=

=














=

PAN

TILTTiltUp

PAN

TILTTiltDown
TILT

FOVTiltMax
PANTILT

TiltMax
TiltUpFOVTiltUp

TiltMax
TiltDownFOVTiltDown

TILTTiltMax

FOV
FOV

erferfp

const

r

H

constH

σ
µϕ

σ
µϕ

ϕϕσµ

ϕϕϕϕϕ

ϕϕϕϕϕ

βπϕ

πϕϕ

θϕ

222

1

3

)min(
,

2
,

2
,

,
2

min

2
0,arctan

,
2

arctan
4

3
tan2

 

3.1.7 Best Mask Combination Searching 
 First the visibility masks are calculated, followed by several camera masks for 
each test point (corresponding to different camera types and orientations). Next, the entire 
mask set can be searched for the best combination that yields optimized characteristics 
according to the input constraints.  

The (typically) foremost important constraint is coverage. Usually only a 
minimum percent coverage amount is specified, such as 90%. A point is “covered” if it 
lies within at least one camera mask within the solution set. The sum of the covered 



 

 55

points divided by the sum of all in-polygon points yields the coverage. Once the coverage 
requirements are met, optimization attempts to minimize other characteristics.  
 The second constraint typically to be minimized is cost. Cost can be interpreted as 
a monetary amount, a flat-rate per camera (minimizing the number of cameras), 
bandwidth usage per camera, etc. The typical optimization goal of sensor planning is cost 
minimization and coverage maximization.  
 Probability of detection is another important search constraint. Each point in each 
camera mask is assigned a probability of being covered at any given time according to 
camera modeling. In the solution mask set, the overall probability of coverage for each 
point can be analyzed for feasibility. The probability can be thresholded to determine if a 
point is covered. The probability can be combined at each point for multiple cameras, 
yielding an overall probability that at least one camera can “see” the point at any given 
time. Or, the probabilities can simply be added over the entire solution mask to determine 
overall coverage. However, including probability of coverage requires a slightly different 
algorithm with much higher storage requirements and computational complexity (floating 
point versus binary operations).   
 Worst-case foveation time (WCFT) is simply a measure of a given camera mask’s 
ability to foveate on any given point at any given time. Actually, two worst-case 
situations can be examined. In the first, the camera’s starting orientation is always at the 
default (typically, the edge bisector). The worst case foveation time is simply the time to 
pan to the farthest edge. In the second case, the camera can be in any starting orientation. 
The worst-case time here is generally the time to pan from one edge to the other. 
Basically, it allows a hard-limit on how fast an intruder can move through the scene and 
still be detected. Limiting the WCFT to zero essentially disallows panning completely.  
 

• Each node in the search tree is dynamically generated and comprised of 
o Set of m masks, where m equals the depth of the node 
o Binary union (OR) of all masks in the set 
o Total cost of all masks, C 
o Worst-case foveation time, max(T) 

• Minimum Coverage, S 
o S=0: Any minimized coverage is valid. 
o S>0: Limit minimum coverage for a valid solution 

• Maximum Cost, C 
o C<0: Ignore cost during search 
o C>0: Limit cost for a valid solution 
o C→∞: Any minimized cost is valid 

• Maximum Foveation Time, T 
o T<0: Ignore foveation time during search 
o T=0: Foveation time must be zero (fixed cameras only) 
o T>0: Limit foveation time to T seconds. 
o T→∞: Any minimized foveation time is valid. 

• Probability of Coverage, P 
o P=0: Any probability of coverage is valid. 



 

 56

o P>0: Coverage probability must be greater than threshold, P. 
o P=1: Must have 100% probability (fixed cameras only). 

 
 Branch-and-bound searching is a textbook method for making an optimized set of 
choices and is particularly useful for combinatorial problems. Essentially, the solution 
space is searched exhaustively while unpromising avenues are pruned. The 
implementation used here is fairly generic. All possible combinations of masks are 
explored in a breadth-first manner. Avenues that don’t meet constraints (cost is higher or 
coverage is lower than the best set found so far) are pruned from the search tree.  

Algorithm pseudo code is below. For sensor planning, the inputs would include a 
set of visibility masks and associated costs and the desired coverage. The output would 
include the minimized cost to meet coverage requirements and the corresponding camera 
mask subset. 

3.1.8 Shortest-Path Interceptor Placement 
 A sub-problem of sensor planning for the purposes of this automatic surveillance 
system utilizing an interceptor robot is finding the best location for the robot to be 
located. Thus, the time to intercept an intruder at any entry point is minimized. Here, the 
maximum allowable time-to-intercept and speed of the robot are given. Thus, the 
maximum radius of interception can be calculated.  
 
Algorithm  bfs(v, depth) 
Input Vertices, v,  constraints, costs, and max depth 
Output Optimized vertices combination to meet constraints 
Initial Call 

maxDepth := length(v) 
for depth := 1, 2, …, maxDepth 

bfs(v, depth) 
Simplified Algorithm 

 bfs(v, depth) 
if process(v) meets min. reqs. OR depth = 0 

maxDepth := depth 
return 

mark v as visited 
for all vertices i adjacent to v not visited 

bfs(i, depth-1) 
 

Shortest-path calculation is an extension of visibility combined with graph-
searching. Once the vertex visibility graph is obtained for a polygon, edges are drawn 
between all visible nodes with weight equal to Euclidean distance. Finding the shortest 
path between a single vertex and all other vertices on the perimeter is then simply a 
matter of applying Dijkstra’s greedy algorithm [Dijkstra, 1959]. 

In an automatic surveillance system where a robot is available for intruder 
interception, one important task is determining the best location to place the robot within 
the monitored area. Assuming the robot intercepts intruders by traveling to or gaining line 



 

 57

of sight on the point of intrusion, the goal is to minimize the distance to all points on the 
perimeter. In the case of a star convex polygon (having a point or points in the interior 
that are visible from any point on the perimeter), we can place the robot at a star convex 
point and achieve Euclidean distance to all points on the boundary. However, few real-
world areas will be star convex. Therefore, this experiment calculated the shortest paths 
between all vertices using the weighted visibility graph (obtained using the algorithm in 
section 4.1) and Dijkstra’s algorithm. Furthermore, the centroid of the polygon was tested 
for viability as the best placement for the robot in cases where the centroid lies within the 
polygon.  

The results of the shortest path calculation will be used throughout this section in 
an attempt to find the best placement for one or more robots within the monitored area. 
The centroid is the center of mass for a polygon. In essence, the centroid is the X-Y 
balance point for an object in the real-world. Informally, it can be considered the 
“average” of all points within the object. The centroid of a polygon with N vertices can 
be calculated using simple equations. The equations are implemented in the centroid 
algorithm. 

 

Equation 6. Centroid of a Polygon 

∑
−

=
++ −=

1

0
11 )(

2

1 N

i
iiii yxyxA   

∑
−

=
+++ −+=

1

0
111 ))((

6

1 N

i
iiiiiix yxyxxx

A
c   

∑
−

=
+++ −+=

1

0
111 ))((

6

1 N

i
iiiiiiy yxyxyy

A
c   

 
Algorithm  p = centroid(PV) 
Input Polygon, PV 
Output Centroid, p, of the polygon, PV 
n = size(PV) 
A = 0 
cx = 0 
cy = 0 
for i = 1 to n 
    m = (PV(i)�x) * (next(PV(i))�y) – (next(PV(i))�x) * (PV(i)�y) 
    A = A + m 
    cx = cx + ((PV(i)�x) + (next(PV(i))�x)) * m 
    cy = cy + ((PV(i)�y) + (next(PV(i))�y)) * m 
endfor 
A = A / 2 
cx = cx / (6 * A) 
cy = cy / (6 * A) 
p = point(cx, cy) 
return p 



 

 58

 

Figure 26. Shortest paths from the centroid of a polygon (IRIS West). 

 
 

The centroid formulas were used in experimentation to find the centroid of the 
entire polygon, and also the visible and vertex-visibility polygons. With the centroid's 
natural “average” distance to the perimeter and visibility greater than or equal to any 
other point on the perimeter (and most points within), it provides an interesting candidate 
point for final placement. Pseudo code for centroid calculation is also presented below. 
 The robot is not allowed to move directly to the intruder upon detection. Instead, 
the shortest-path route determined by the interior of the polygon must be used. 
Otherwise, the centroid of the polygon would provide the natural best location for a robot 
able to move through walls.  
 Calculation of the shortest-path can be performed using Dijkstra’s algorithm  
[Dijkstra, 1959] on the weighted graph. The weighted graph is simply the visibility graph 
of all test points and the Euclidean distance between them.  
 Because a discrete H x W layout of the room was created for sensor planning, 
digital image processing can be applied to the layout with interesting effects. Specifically, 
morphological operations can be applied to assist in finding the best placement for an 
interceptor robot. Since many morphological operations require binary images anyway, 
the discrete layout is well-suited to these methods. 

 Finding the skeleton of the layout image is essentially finding the medial axis. 
The boundary is shrunk inwards at a constant rate until collapsed into lines. For images, 
this process is the iterative application of the skeletonization formula. Or, the image can 
be collapsed down to a single point, known as “shrinking.” Both provide interesting test 
points for the shortest-path interceptor placement. In the continuous domain, finding the 
skeleton is less computationally expensive overall. The Voronoi diagram of the polygon 
produces the straight skeleton. Once the straight skeleton is found, samples can be taken 
and used for test points. Figure 27 depicts a simple interception mask around an obstacle. 
 



 

 59

 

Figure 27. Calculating the intercept mask around an obstacle. 

The process for constructing shortest-path masks can be viewed graphically. This 
process is much like finding camera masks with 360º field of view where the interception 
radius is equivalent to the spatial recognition radius. However, for interception, the 
vehicle can follow corners around the interior boundary.  

 
1. Calculate the Voronoi diagram, or straight skeleton, of the (bounded) polygon. 
2. Sample all intersections and a few points along the line segments. 
3. Construct the shortest-path masks for these test points. 
4. Perform the branch and bound searching to find the best placement(s). 
 
In Figure 27, the vehicle has an interception radius, r, to the edge of the green outer 

circle. However, the obstacle must be avoided. By simply pre-calculating the visibility 
masks (blue circles) from all vertices and using Dijkstra’s shortest-path algorithm at each 
test point, the total interception mask simply becomes the union of all visibility masks 
within radius, r, of the test point, including the test point’s own visibility mask. 
Therefore, the shortest-path masks algorithm can be summarized in 6 steps. 

 
1. Pre-calculate the visibility polygons and masks for all interior vertices of the 

area polygon.  
2. Pre-calculate the shortest-paths between all vertices using Dijkstra’s 

algorithm. 
3. For each test point, calculate the visibility polygon and mask. 
4. Limit the test point’s visibility mask to radius, r, and store in the interception 

mask set. 
5. Calculate the shortest-paths to all area vertices using Dijkstra’s algorithm. 
6. For each vertex, v, within radius, r, limit the vertex’s visibility mask to radius, 

r – rv (where rv is the distance traveled from the test point to vertex, v), and 
union the resulting mask with the interception mask set. 



 

 60

3.1.9 Object/Face Recognition and Tracking 
The face localization experiments deal with detecting and estimating the location 

of a person within a known area. These experiments were performed in conjunction with 
the larger project of camera placement planning with automatic intruder detection and a 
UAV helicopter interceptor/tracker. In essence, the system consists of three parts: (1) a 
face detection algorithm, (2) location estimation using uncalibrated camera field-of-view 
and average face-width, and (3) final Kalman location estimation. 

Testing the sensor planning and interceptor placement algorithms in the real world 
requires one more component: intruder detection and localization. For the purposes of 
this experiment, the face of a human intruder is the target object. In order to maximize the 
probability of face recognition, the cameras are placed at eye level (as assumed in the 
sensor planning). While overhead cameras would provide much better localization to the 
2-D ground plane, they also provide very poor facial recognition results. Figure 28 
depicts the overall system. The system algorithm is listed below. 
 

1. Capture an image frame from live video web camera 
2. Apply face detector to image and return bounding rectangles of faces within the 

image 
3. Use simple projective transform to estimate distance (r) and angle (θ) with respect 

to the camera. Convert polar coordinates to (x, y) pair.  
4. Perform Kalman update to better estimate position. 
5. Perform Kalman predict to estimate next position. 
6. Loop to 1st step. 

 
 

 

Figure 28. Object/face detection and localization block diagram. 

 



 

 61

 Face recognition was performed using Intel OpenCV. The object descriptor 
implemented was initially proposed by Paul Viola [Viola01] and later refined by Rainer 
Lienhart [Lienhart02]. The classifier is a “cascade of boosted classifiers working with 
haar-like features.”  

For testing of frontal face detection, a trained classifier cascade included with the 
OpenCV was used, “haarcascade_frontalface_alt2.xml.” This particular detector is a tree-
based 20x20 gentle AdaBoost frontal face detector, also created by Rainer Lienhart. 
Thus, the minimum required (ideal) spatial resolution is 20 pixels horizontally and 
vertically for sensor planning. 

Localization from a camera on the perimeter mounted at approximate eye-level to 
a subject can be estimated from the camera’s current field of view and the width of the 
detected face (in pixels) within the captured images. Instead of relying on lens calibration 
to provide a good estimate of the target’s location, a very coarse estimate will be 
provided and improved through Kalman filtering.  
 Because the maximum fields of view for the camera, βFOVh (horizontal) and βFOVh 
(vertical), are already known from sensor planning, those values will be used in 
determining the location of the detected face within the X-Y plane. Using simple 
geometry and an estimate of average face width, Fw, the polar coordinates can be 
determined with respect to the camera axis. The detection rectangle within an image, I, is 
defined as R. Subscripts w and h refer to width and height, respectively. The subscript c 
refers to the object’s center. The equations for determining the estimated polar 
coordinates of the detected face are listed below. 
 

Equation 7. Face localization from detection rectangle. 









−=









=



















+=

+=

2

1

2
sin2

2
tan

3

4
arctan

2

2

w

c
FOVh

h

w

h

FOVvh

w

FOVhw
h

w
xc

I

R

F
r

I

R

I

R

R
RR

βθ

θ

ββθ

 

 
 The localization estimate can be greatly improved through the use of Kalman 
filtering – provided that several frames of the detected face are available. For position 
estimation, we only need a four-state Kalman filter: x-position, y-position, x-velocity, 
and y-velocity. No controls are included in the system. Thus, the equations and Kalman 
matrices can be summarized below. 
 



 

 62

Equation 8. Kalman Predict 

x = Fx + Bu  (Predicted State) 
P = FPFT + Q  (Predicted Estimate Covariance)  
 

Equation 9. Kalman Update 

y = z – Hx  (Innovation or Measurement Residual) 
S = HPHT + R  (Innovation or Residual Covariance) 
K  = PHTS-1  (Optimal Kalman Gain) 
x = x + Ky   (Updated State Estimate) 
P = (I – KH )P  (Updated Estimate Covariance) 
 

Equation 10. Kalman Matrices 









=



















=

=









=









=

=
=
=



















∆
∆

=



















=

0

0
0

0

22

44

,

10000

01000

00100

00010

,

,
0010

0001

,

,0

,0

,1.0

,

1000

0100

010

001

,

m

m

x

m

m

x

y

x
x

P

IR

H

y

x
z

B

u

IQ

t

t

F

y

x

y

x

x

&

&

 



 

 63

3.2 Proportional-Integral-Derivative (PID) Control System 
 PID feedback loops provide the primary automatic control of the helicopter. The 
primary advantage of PID control is its low complexity and robust behavior for real-time 
operation. The core control system is comprised of two primary loops: an inner-loop PID 
attitude controller, and an outer-loop PID guidance controller (waypoint navigation). 
Additionally, various methods of PID tuning and tweaking towards the UAV helicopter 
application will be examined in this section. Next, the controls/servo mixing required to 
translate PID outputs into raw servo commands will follow. The section will conclude 
with descriptions of the two final control systems and their corresponding hardware 
configurations. 

3.2.1 Hardware 
 The hardware components of the UAV helicopter flight control system include 
the helicopter itself, standard R/C components, onboard orientation sensors, and servo 
controllers. 
 The IRIS helicopter is designed and manufactured by Miniature Aircraft, USA. 
The model is a .90 size XCell ION-X2 [Miniature Aircraft, 2007] electric helicopter. 
However, the stock rotor head assembly has been replaced with the manufacturer’s 
similar Tempest 3D model [Miniature Aircraft, 2007]. The main rotor blades are SAB 
810-mm S-cambered (art. 0231) [SAB Composites, 2007].  
 The electric motor speed controller is a schulze future-40.160WK [schulze 
electronik, 2007]. The motor itself is a Köhler actro Compact self-cooling brushless DC 
[actro, 2007]. Swash-plate servos are all JR DS8311 digital servos with a JR R649 PCM 
9-channel receiver (part of the complete JR XP9303 Heli package [JR Radios, 2007]). 
However, the high-speed tail servo, actuated through the gyro, is a Futaba S9254. The 
gyro itself is a Futaba GY401 Angular Vector Control System (AVCS) rate gyro (PI 
control) [Futaba, 2007]. Finally, the transmitter used is a JR XP9303 9-channel 
PPM/PCM programmable model. Figure 29 depicts the helicopter system. 
 
 

 
(a) 

 
(b) 

Figure 29. (a) Stock Xcell ION-X Electric Helicopter, and (b) JR XP9303 Transmitter. 

 
 



 

 64

 The FMA Co-Pilot CPD4 [FMA Direct Co-Pilot, 2007] is a flight stabilization 
system based on infrared signatures. Essentially, before lift-off, the infrared signature of 
the ground and the sky are calibrated into the CPD4 unit. Once in air, the CPD4 
constantly monitors its position between the earth and the sky. If the transmitter control 
sticks are centered at any time, the CPD4 automatically levels the helicopter according to 
the infrared signatures (making sure the sky is directly up and the earth is directly down).  
 Control of the helicopter is made by hooking the unit in series from the 
helicopter’s receiver to the two swash-plate servos. Thus, the unit behaves similar to a 
gyroscope – except in the vertical pitch axes rather than for yaw.  
 Unfortunately, the original purchased unit was found to be incompatible with our 
helicopter. The IRIS helicopter uses a more complicated 120º Cyclic/Collective Pitch 
Mixing (CCPM) [Heli Hobby, 2007] swashplate-configuration. Instead of using one 
servo to pitch the swashplate left or right, and one servo to pitch it forward and 
backwards, the CCPM configuration uses three servos positioned 120º apart from one 
another. One servo is situated in the front of the helicopter, with the others to the sides 
and behind the swashplate. Thus, moving the swashplate in a given direction requires 
mixing the right amount of movement of each servo.  
 Since the CPD4 only supported traditional two-servo configurations, it was not 
applicable to the project. The unit was returned to the manufacturer for a refund of the 
purchase price ($99.95), to be used towards the purchase of a newer, compatible model. 
Figure 30 depicts the Co-Pilot systems [FMA Direct Co-Pilot, 2007]. 

Instead of the standard receiver included in the JR package, the FMA Co-Pilot 
FS8 is used. Along with the included vertical and horizontal infrared sensors (six in all), 
the unit is capable of estimating orientation in real-time based on the thermal signatures 
of the earth and sky. Using this information, the helicopter’s attitude can be automatically 
leveled with respect to the ground plane. However, the unit only takes control with the 
cyclic pitch (right stick on the transmitter) is released by the pilot. This behavior allows 
for full control of the helicopter with assistance only when needed.  

 
 

 
(a) 

 
(b) 

Figure 30. FMA Co-Pilot System: (a) CPD4 and (b) FS8 package [FMA Direct Co-Pilot, 2007]. 

 



 

 65

    
Presumably, the Co-Pilot simply uses a PI/D control loop with the infrared sensor 

readings as feedbac. However, this only works properly outdoors at a safe distance from 
buildings, trees, etc. Otherwise, the infrared signatures of surrounding objects interfere 
with the attitude estimation. Moreover, the unit must be carefully calibrated to the 
maximum servo throws, directions, and sensor mounting orientations. The sensors must 
also be recalibrated before each flight and in the event of weather changes. 
 The Co-Pilot has two additional features that prove useful in research. First, the 
real-time control, servos, and orientation data can be read from the transmit pins attached 
to the receiver. This data is transmitted in digital serial/RS-232 format, compatible with a 
standard PC. Thus, the onboard flight computer can read and log this data in real time 
using the FMA Viewer software. Secondly, proprietary digital signal recognition (DSR) 
technology guarantees less interference from neighboring frequencies, and failsafe servo 
positions can be programmed into the Co-Pilot for instances where transmitter 
communication is lost. Overall, the Co-Pilot provides a researcher with increased ease of 
flight along with an easy means of logging flight data for experimental use. 
 The Xsens MT9-B [Xsens MT9, 2007] inertial measurement unit (IMU) is a 
complete small form factor system with 3-axis accelerometers, gyroscopes, 
magnetometers, and a single temperature sensor. Using proprietary sensor fusion 
techniques built into the unit, the unit transmits real-time filtered orientation along with 
calibrated and raw sensor readings via serial/RS-232. The system specifications can be 
seen in Table 4. 
 

  

Table 4. Xsens MT9-B Specifications 

  
rate of 

turn acceleration 
magnetic 

field temperature 
Unit  [deg/s] [m/s/s] [mGauss] [°C] 
Dimensions  3 3 3 - 
Full Scale (units) +/- 900 +/- 20 +/- 750 -55…+125 
Linearity (% of FS) 0.1 0.2 1 <1 
Bias stability Compensated     
 (units 1σ) 5 0.02 0.5 - 
 Uncompensated     
 (units per °C) 1 0.02 - - 
Scale factor Compensated     
stability (% 1σ) - 0.05 0.5 - 
 Uncompensated     
 (% per °C) 0.15 0.03 0.5 - 
Noise (units RMS) 0.7 0.01 4.5 0.0625 
Alignment error (deg) 0.1 0.1 0.1 - 
Bandwidth (Hz) 50 30 10 -  

 



 

 66

 The attitude-heading reference system (AHRS) is primarily self-contained within 
the Xsens MT9-B IMU. However, later in this section, the operation of a typical AHRS 
based on accelerometers, gyroscopes, and magnetometers will be examined. The 
behavior of the AHRS has a large impact on the inner-loop attitude control described 
later in the next section on PID control. Essentially, the AHRS estimates the orientation 
of the helicopter.  

The Xsens MT9-B uses a proprietary, undocumented sensor fusion algorithm for 
estimating the orientation of the IMU [Xsens Technical Documentation, 2004]. This 
algorithm uses measurements of gravity and earth’s magnetic field to compensate for the 
drift caused by integrating the rate-of-turn measurements. Unfortunately, situations exist 
that can cause this algorithm to perform poorly or fail altogether. 

One of these situations, learned through experimentation, is high vibration. In the 
experiments section of this paper, one section will focus on obtaining the best orientation 
estimate from the MT9-B by adjusting both mounting methods and sensor fusion 
algorithm parameters. 
 Two parameters can be specified for the sensor fusion algorithm: filter gain (or 
accelerometer/magnetometer “crossover” frequency) and magnetometer weighting. 
Typically, both are set to values of 1.0 (frequency in Hz and unit-less gain, respectively). 
The filter gain basically determines the frequency “crossover” between relying on 
accelerometer/magnetometer (gravity/earth’s magnetic field) data and gyroscope (rate-of-
turn) data. Low-frequency data, below 1.0 Hz, is considered stable enough for 
compensation of the rate-of-turn integration. High-frequency data, above 1.0 Hz, is 
preferred for the gyroscopes – since anything below this threshold is more than likely 
bias error. Much about the Xsens MT9-B will be learned later during the control system’s 
flight-testing experiments phase. 

In order to mount equipment and increase the flight safety of the helicopter, 
oversized landing skids were attached to the standard gear. The gear is designed in two 
pieces – an upper component mounting cage and lower training skids. Both share the 
same ¼” aluminum bar design. Two identical legs are simply crossed to create the 
complete training gear. Figure 31 depicts the training gear design. 
 
 

 
 

Figure 31. (a) Side view of single training gear leg with upper cage leg mounted above; 
and (b) Overhead view of complete training gear assembled. 



 

 67

 
 Two distinctly different servo control schemes were used in this project. Both 
have distinct advantages and disadvantages. The Endurance R/C PCTx [Endurance R/C, 
2007] excels in controlled experimentation where the helicopter is tethered and safety is 
the primary concern; however, it is not a practical final setup for free-flight. The Pololu 
16-servo Controller [Pololu, 2007] directly controls the servos at a high-resolution. 
However, this requires replacing the standard R/C components and using a PC, instead. 
While this is an eventual goal, replacing the standard R/C components prevents manual 
piloting during testing.  

The Pololu USB 16-servo controller has several significant advantages over other 
methods, including its ease of use and interfacing, different programming modes, dual 
USB and UART interface, and ability to control up to 16 servos. An image of the servo 
controller, with callouts, is shown below. The controller can be interfaced from Windows 
XP using the mini-B USB port, or from any UART interface using the pins along the left 
edge. Additionally, the servo controller requires an external power source dedicated to 
the servo power lines. With unconnected servo power lines, the controller only sends a 
control signal on the signal line to each servo.  

The Endurance R/C PCTx was purchased directly from the company for around 
$50 USD. The unit connects to a standard PC via USB and communicates with an R/C 
transmitter through its trainer port. This gives cheap, reliable PC control of any standard 
R/C vehicle without tearing down its manual control system. The PCTx supports up to 
nine channels. Additionally, the PCTx has a 50Hz refresh rate, independent servo control, 
adjustable pulse width, and C++, C#, and VB.NET software API's available. 

The primary advantage of using the PCTx is the ability to move most components 
off-board during flight-testing. Furthermore, the system is easier to transition between 
manual and automatic control. Finally, the pilot can act as a near-instant failsafe in the 
result of flight computer error. These advantages add up to a system that is far superior to 
the Pololu version for testing purposes, albeit not as practical for a final system design. 
Figure 32 depicts the two servo controllers.  

 
 

 

 

Figure 32. Servo controllers: (a) Pololu USB 16-servo controller and (b) Endurance R/C PCTx connected. 

 



 

 68

3.2.2 PID Control Theory 
 PID controllers are used in many industrial applications that require feedback 
control of a non-linear process. A beginning overview of PID control can be found in 
[Sellers, 2002]. The traditional PID controller diagram is depicted in Figure 33. 

As shown in the figure, a PID controller is comprised of three equations based on 
the error signal: proportional, integral, and derivative. Proportional control provides 
direct linear response to the current error present in the feedback. Integral control 
removes the steady-state error present in the system. Finally, the derivative control 
responds to the error’s rate of change in the system to decrease overshoot. The core PID 
equations are listed below for both continuous and discrete controllers. 
 Different applications can call for one, two, or all three parts of the PID 
controller. For many applications, only the PI parts suffice. This arrangement provides 
adequate proportional response to feedback error while removing steady-state error. 
However, some applications need extra protection against overshoot and require a full 
PID setup. 
 For the purposes of a helicopter control system, it is ideal (if not required) to use 
all three parts of the PID. The I reset term corrects slow orientation drift while the D term 
guarantees fast corrections that could otherwise prove disastrous. 
 

Equation 11. Core PID Control 

[ ]

[ ] [ ])2()1(2)()()1()()1()(

)1()()()()(

)()()(

)()(

0
0

0

0

−+−−++−−+−=

+−−++=

+++=

−=

∑

∫

=

kekekeKkeKkekeKkuku

ukekeKieKkeKku

u
dt

de
KdeKteKtu

txrte

dip

d

k

i
ip

t

dip ττ
 

 
 

 
Figure 33. Traditional PID controller. 

 



 

 69

3.2.3 Position, Altitude, and Attitude Control  
With knowledge of PID basics at hand, the UAV helicopter control system can be 

further examined. Here, the inclusion of the orientation estimate described in the previous 
section of this chapter acts as feedback to the PID loops. This section will focus on the 
PID control block comprised of three different loops: attitude, 2D position, and altitude.  

The outer-loop guidance controller focuses on the translation of the helicopter 
from points A to B, or simply waypoint navigation. Thus, the destination waypoint 
determines the PID setpoint position. Additionally, because the desired flight behavior is 
a steady, stable hover between waypoints, the translation velocity should be minimized. 
Minimal velocity is achieved by setting the position-derivative setpoint to zero. The final 
guidance PID output is fed to the attitude controller for further use. 
 The inner-loop attitude control simply focuses on maintaining an attitude 
command or setpoint. For hovering, this setpoint is typically level (or slightly tilted to 
account for tail rotor thrust, fuselage imbalance, etc.). For waypoint navigation, the 
helicopter’s attitude must be tilted in the direction of the desired heading. Thus, the 
guidance PID output is used as the attitude controller setpoint. In essence, the guidance 
controller outputs the approximate helicopter orientation needed to navigate to a 
destination waypoint, and the attitude controller maintains this orientation. Again, the 
helicopter should maintain a steady, stable hover. Therefore, the angular rate should be 
minimized by setting the orientation-derivative setpoint to zero. Finally, the generic 
helicopter commands (roll and pitch) are outputted by the attitude controller. Figure 34 
depicts the guidance and attitude PID loops. 
 
 
 

 
Figure 34. Two-step PID flight controller. 

 



 

 70

Controlling the altitude of the helicopter is just as important as controlling the 
attitude. A system hovering at perfectly-level orientation will still crash if the altitude is 
uncontrolled. Thus, a high-rate loop to monitor and control the altitude is a high priority 
for design. Unfortunately, the non-linear behavior of a helicopter’s rotors – particularly 
when near the ground due to downwash – makes stable altitude control while adjusting 
attitude very difficult indeed. The design of an altitude controller follows the same simple 
PID design as that of the guidance controller: the desired altitude is used as the setpoint 
while the altitude-derivative is minimized. However, in this system, the altitude is 
manually-managed for maximum safety. Therefore, an altitude PID was not 
implemented. 

The velocity form of the PID equations are used here for two reasons. First, the 
velocity form calculates the control as a change – preferable for a helicopter control 
system implementation. Secondly, the velocity form can rely entirely on orientation data. 
While the gyroscopes gives instantaneous change-in-orientation data, it can sometimes 
conflict with the much slower orientation data. The result is a much more finicky control 
system in practice. Therefore, by using only the constant (hopefully less noisy) 
orientation data, a better control system should result. 
  The basic attitude control system used onboard the test helicopter is shown 
in Figure 35 and the equations listed below. 
 

Equation 12. Implemented PID Attitude Control using Orientation Estimate 

[ ] [ ]
[ ] [ ])2()1(2)()()1()()1()(

)2()1(2)()()1()()1()(

)()(

)()(

−+−−++−−+−=

−+−−++−−+−=
−=

−=

kekekeKkeKkekeKkuku

kekekeKkeKkekeKkuku

krke

krke

dip

dip

θθθθθθθθθ

ϕϕϕϕϕϕϕϕϕϕ

θθ

ϕϕ

θθ

ϕ

θ
ϕ

 

 
 
 

 
Figure 35. Simple PID Control System for Helicopter Attitude Control. 

 



 

 71

3.2.4 PID Tuning Techniques 
 Tuning the helicopter control to behave stably in any feasible system state is of 
paramount importance. Thus, the PID control must provide adequate speed of response to 
correct orientation before the system slips into an unrecoverable state. Additionally, the 
control must prevent the system from entering a state of oscillation (particularly 
increasingly unstable oscillation). This unstable state can be caused by too much 
overshoot by the control, oscillating around the set point in ever increasing magnitude. In 
this case, the helicopter will almost certainly crash very quickly.  
 A method of modeling the helicopter (plant) is required for accurate tuning of the 
PID loops for attitude and position control. Unfortunately, such a model is difficult to 
estimate without knowledge of the intrinsic parameters of the helicopter, such as 
moments of inertia, blade characteristics, aerodynamics of the fuselage and rotors, servo 
dynamics, etc. 

Other methods are available for improving the real-world operation of a PID 
control system, such as bounding and dead-zones. Bounding is a non-linear operation 
employed by nearly every PID system to prevent transition into an unsafe control zone. 
For the UAV helicopter, bounding provides a finer amount of control on how much the 
system is allowed to correct itself at each time step. Ideally, this bounding will prevent 
unnecessary oscillation and increase stability; however, these advantages come at the cost 
of slowing the system response. 
 A dead-zone is not always used for PID systems, but can be an effective 
technique for minimizing control changes and stabilizing the system response. 
Essentially, a dead-zone prevents control changes below a certain threshold. Small, 
probably unnecessary, changes are filtered-out and the system is left in its current control 
state. For the UAV helicopter, most orientation close to level provide adequately for 
hovering in place. Thus, a dead-zone can be created a few degrees around level for better 
stabilization; however, this method again comes at the cost of slower system response. 
 While in a stable hover, the helicopter’s orientation might not be perfectly level as 
expected (i.e., roll and pitch not zero). This roll/pitch error can be caused by a few 
effects, such as imperfect IMU mounting relative to the body frame, constantly-applied 
roll angle to compensate for tail rotor force, imbalanced center of gravity due to 
equipment mounting, etc. In any case, the PID loops must compensate for these effects in 
order to operate efficiently. 
 Near-optimal, “good” setpoints can be found using empirical data from manually-
controlled flights. The orientation data is first recorded during several phases of stable 
hovers. Afterwards, the data files are parsed and processed statistically. The mean 
roll/pitch values of each hover session give estimates of the optimal setpoints. The 
variances and standard deviations of the hover sessions give an estimate of the setpoint 
quality. The weighted-mean of these setpoints can then be found, giving “good” roll/pitch 
values for a stable hover. 

3.2.5 Controls/Servo Mixing 
When flying a standard R/C helicopter, the transmitter itself handles all of the 

mixing to translate the four stick commands (elevator, aileron, throttle, and yaw) into 



 

 72

servo commands. Unfortunately, much of this had to be reengineered in order to move 
the control system to a PC – regardless of which servo control scheme was used. Three 
types of mixing were considered when re-engineering the control system: (1) 
throttle/collective-pitch mixing, (2) aileron mixing, and (3) elevator mixing. 

The data for mixing was obtained primarily through empirical data in order to 
obtain the exact values used by the standard R/C hardware for the IRIS helicopter. Once 
obtained, piece-wise linear approximations could be easily made and used for on-the-fly 
control/servo mixing.  

During flight-testing of the automatic PC control system, the model repeatedly 
exhibited undesirable response (i.e., pitching hard backwards when the model was close 
to level). Initially, this bad behavior was chalked-up to poor IMU data. However, even as 
the IMU accuracy increased and reported closer-to-correct orientations, the control 
system continued to incorrectly pitch the helicopter. To troubleshoot this behavior, the 
system response was re-evaluated using static tilt testing. 

The static tilt tests seemed to work fine when the PC control system was given 
full control over the servos. Yet, repeating the test while limiting the PC control to only 
Aileron/Elevator through the transmitter gave different results. Namely, the swash-plate 
response was much lower relative to the tilt angle, and some orientations seemed to 
perform better than others. Initially efforts to correct the response focused on the PID 
loop. The allowable PC control servo throws were increased, and the PID gains were all 
incrementally increased. However, the flight-testing continued to fail with all settings. 
Thus, the transmitter behavior while limiting slave control was further investigated by 
examining input data from the slave PC and output data from the R/C transmitter to the 
servos. (Note: the output data from the transmitter is essentially “raw” servo data. The 
R/C receiver merely decodes the PPM signal and sends it directly to the servos). Figure 
36 depicts the interfaces used to check the transmitter data from the PCTx. 

Through experimentation, it was shown that the XP9303 transmitter in master 
mode simply transmits the PPM signal directly from the trainer port while the trainer 
switch is held. Thus, the slave must calculate all CCPM, trims, etc. and forward the 
positions to the master. This behavior called for the CCPM and trim settings to be 
reverse-engineered from the transmitter inputs/outputs. Afterwards, all input positions 
were observed to produce identical outputs to the transmitter. 

 
 

 
(a) 

 
 

(b) 

Figure 36. Trouble-shooting the "Double Servo Mixing:" (a) PCTx control applet, (b) XP9303 Monitor . 

 



 

 73

However, during flight-testing, the slave is only given limited control over the 
model for maximum safety. The master R/C transmitter, controlled by a human pilot, has 
full control over the Throttle and Rudder at all times. Control of the Aileron and Elevator 
can be given to the slave by holding the trainer switch on the transmitter. Unfortunately, 
all flight tests with limited slave control seemed to fail. Initial observations seemed to 
implicate the spotty IMU performance. However, further tests showed incorrect control 
system response even when the IMU seemed to be performing stably. Furthermore, the 
static tilt tests showed significantly different control system response between full and 
limited slave control. 

After some initial observations of the slave and master output data, the author 
discovered that the XP9303 transmitter assumes different input schemes on the trainer 
port when using full or limited slave control. When limiting the slave’s control on the 
XP9303, the master uses its programmed CCPM and trim settings. Therefore, the slave is 
only responsible for sending generic throttle, rudder, aileron, and elevator commands 
encoded as PPM. Essentially, these are non-CCPM helicopter servo positions for a zero-
trimmed model.  

3.2.6 Flight Data Collection 
 The flight data collection system sought to collect both inertial and control data 
during carefully controlled manual flights for later analysis. By analyzing the real data, it 
was hoped to achieve a better-tuned control system. Many sessions of data were captured. 
Unfortunately, many of the first data batches suffered from the severe IMU drift that also 
plagued the Kalman filtering experiments. 

 The data collection system consisted of three primary parts: the onboard laptop 
PC, the Xsens inertial measurement unit (IMU), and the FMA Co-Pilot receiver. The 
laptop logged the helicopter orientation, calibrated sensor values, raw sensor values, 
transmitter controls sent, servo positions, and infrared-estimated orientation.  

 The FMA Co-Pilot receiver outputs current state data via an external RS232 
connection on the “T” pins. The FMA “FS Viewer” software reads this data from the 
PC's COM port in real-time and records it to an easily parsable text file. For these 
experiments, only the logged servo position data was considered. 

 The Xsens IMU outputs estimated orientation (quaternions, Euler angles, or 
Direct Cosine Matrix), calibrated sensor values, and raw binary sensor data. The internal 
sensors include gyroscopes, accelerometers, magnetometers, and a temperature sensor. 

3.2.7 Control System Hardware Implementation 
The PC control system combines the hardware with the algorithms. The system is 

the real-world implementation of the helicopter control system using a standard PC and 
COTS parts.  
 The initial control system discards much of the original R/C hardware in favor of 
direct servo control. In order to maintain a failsafe in the event of software failure, the 
throttle (channel 1) and tail control (channels 4/5) are always controlled by the human 



 

 74

pilot through the standard transmitter. However, the blade cyclic and collective pitches 
are both controlled directly by the PC.  
 The Co-Pilot receiver can log both infrared orientation and control data in real-
time, transmitting the data over standard serial RS-232. Thus, flight data can be saved 
and examined in later experiements. 

The Pololu 16-servo controller is a USB or UART device capable of generating 
sixteen individual PPM signals on sixteen sets of three-pin connectors. When using the 
supplied driver, the Pololu appears as a serial COM device in Windows XP. Data can be 
sent to the Pololu by simply writing to its COM port in any programming language.  
 The Endurance R/C PCTx adds more flexibility and safety to the original control 
system. The necessity of keeping all hardware onboard is removed by pushing all control 
data directly through the R/C transmitter. Furthermore, the pilot can instantly transfer 
control between himself and the PC at any time. Thus, a software failure should 
(theoretically) never lead to a crash. Additionally, the pilot can raise the helicopter to a 
safe altitude before control is transferred to the PC and transfer control instantly back in 
the event of a flight emergency.  

Most standard R/C transmitters have a Trainer port and switch for instructing new 
pilots. When used in the normal fashion, the instructor’s transmitter is setup as the Master 
and the student’s as the Slave. Holding the Trainer switch on the Master transmitter 
allows the student limited or full control of model. On the JR9309 transmitter, the student 
can control any or all of the (1) Throttle, (2) Aileron, (3) Elevator, and (4) Rudder. For 
most experiments while  tethered, the student, in this case the PC, will control only the 
Aileron and Elevator.  
 The data sent from the Slave transmitter to the Master is simply encoded as 
standard PPM. When transmitting multiple channels on a PPM signal, a long sync pulse 
is sent followed by a HIGH pulse for each channel separated by (usually) fixed-length 
LOW intervals. The standard transmit rate is 50-Hz, or a full frame update every 20-ms.  
The individual channel pulse lengths contain the servo position, where 1500-ms denotes 
neutral, 1000-ms a 45° offset in one direction, and 2000ms a 45-° offset in the other. 
 Since only standard PPM is being sent, the Slave signal can be emulated using a 
microcontroller with a timer module. However, for ease of implementation, the pre-
programmed Endurance R/C PCTx was purchased to remove the cost of developing the 
hardware in-house. 
 The PCTx connects to the P/C via a USB port, and appears as a Human Interface 
Device (HID) in Windows XP. Simple C# and C++ APIs are included with the PCTx for 
integration into custom projects. The PCTx outputs a PPM signal on a Mono phone plug 
for connection to the R/C transmitter. 
 Software communication with the PCTx is more primitive than with the Pololu 
servo controller. Only ten bytes total are sent per  frame: one sync ZERO byte and nine 
bytes of channel data. The Pololu, on the other hand, requires a minimum of five bytes 
per servo for seven bit resolution and six bytes for fourteen bit (the most-significant bit of 
every non-sync byte must always be zero). The additional bytes allow for better out-of-
sync error catching and servo resolution. However, the PC (in these experiments) controls 
only three of the nine channels. Thus, the data transmission overhead of the Pololu is 
only 80% more (one eighteen byte packet versus one ten byte packet per frame). 



 

 75

Therefore, the PCTx is at the disadvantage of having significantly lower servo 
resolution. Through experimentation, the PCTx was found to have a servo resolution of 
roughly 8-ms, compared to the Pololu’s 0.5-ms. However, for most applications this 
should serve well enough. 

The software algorithm for collecting orientation data and outputting servo 
commands can be summarized in six steps: 

 

 
Finally, the two hardware setups based on different servo control methods 

described in this section are summarized in the following figure. Figure 37 (a) depicts the 
Pololu-based hardware setup and Figure 37 (b) depicts the version based on the 
Endurance R/C PCTx. 

3.3 Summary and Conclusions 
This chapter has described the theory of a sensor/interceptor placement planning 

system and an accompanying UAV helicopter flight control system (FCS). These 
components are part of a automatic wide-area surveillance system utilizing perimeter 
camera emplacements for intruder detection. In the complete system, a detected intruder 
by the perimeter cameras signals a helicopter to investigate at that location. Thus, the 
sensor placement planning calculates the shortest-path to that intruder’s estimated 
location and uploads the waypoint path to the helicopter-interceptor. The UAV helicopter 
then navigates to the initial location, attempts to detect and track the intruder, and 
generates and navigates to waypoints for following until the intruder is apprehended.  

Here, only the hovering sub-system is implemented for the UAV helicopter. 
Further work to extend the control system to waypoint navigation was beyond the scope 
of this thesis.The next section will cover the experiments conducted involving the UAV 
helicopter flight control system. 

1) Poll IMU for new calibrated sensor and orientation data. If new data found, go to 
Step 2. Else, continue polling. 

2) Send orientation estimate to attitude-PID loop and process. Gains and set-points 
are pre-determined and static. Output compensating Elevator and Aileron 
commands to hover the helicopter. If PC has limited control (Aileron/Elevator 
only), go to Step 4. 

3) Calculate swash-plate servo mixing using piece-wise formulas. 
4) Convert and round aileron/elevator commands (or servo-mixes) to integer format 

for the servo controller. For the Pololu, the proper range lies between 500-5000 
(0.25-sec to 2.5-sec). For the PCTx, the proper range lies between 73-217 (0.45-
sec to 2.1-sec). 

5) Send the servo controller values to the manufacturer’s C++ serial/HID-wrapper 
module. 

6) For the PCTx, hold the Trainer switch to allow PC control. The Pololu 
configuration does not allow manual control through the transmitter. 



 

 76

 

 
(a) 
 

 
(b) 

Figure 37. Old and new hardware setups: (a) Pololu 16-servo controller-based hardware setup and (b) 
Endurance R/C PCTx-based hardware setup. 

 
  

 

 



 

 77

4. Experiments 
 The overall wide-area surveillance system can be broken into several different 
components, each with individual experiments. This section will describe those 
experiments and corresponding results. First, the sensor placement planning experiments 
are detailed, followed by helicopter flight control system experiments. Within sensor 
placement planning, individual experiments for optimal camera placement planning, 
shortest-path interceptor placement planning, and automatic, video-based object/face 
recognition and tracking are covered. The flight control system experiments include 
controls/servo mixing, improving the IMU orientation estimate, and finally full flight 
testing.  

4.1 Sensor Placement Planning Experiments 
These rounds of experiments dealt with the automatic monitoring of a given area 

defined in 2-D by simple polygons. First, the optimal camera placements are found to 
maximize total coverage while meeting cost constraints. Next, the shortest-path 
placement can be found for the interceptor helicopter. This resulting location is the 
“home base” of the helicopter within a room to minimize time-to-intercept of any 
detected intruder. Finally, a proof-of-concept experiment for automatic object detection 
and tracking is demonstrated. In this experiment, an intruder is recognized and tracked 
via video and a filtered location estimate is the output.  

4.1.1 Optimal Camera Placement Planning 
The sensor planning experiments begin with an area to be monitored. This area is 

defined by a simple polygon perimeter and any number of simple polygon holes within 
the perimeter. Additionally, the user inputs a set of solution constraints as defined in 
previous sections.  

The experiments were performed in MATLAB. To find each of the following 
results plots, several processing steps must be completed. First, a set of “good” test points 
are generated on the boundaries of the test area. Next, the visibility polygons are 
calculated for each of these test points. A grid overlay is put over the test area, and the 
visibility polygons are translated into how much of the grid they encompass. Multiple 
polygons can then be easily combined with simple AND/OR operations.  

Next, the camera modeling is performed. Each available camera is tested at each 
test point in up to three orientations (centered and along each attached edge). PTZ 
cameras are given optimal field of view and panning parameters to maximize coverage. 
The resulting mask set is then fed into a branch and bound algorithm with constraints, 
and the optimal mask set can be found from there. 

Four plots are generated to demonstrate the sensor planning working on a simple 
room. First, the minimum field of view for recognition requirements is plotted for each 
potential camera placement within the room. The ‘hottest’ areas near the cameras allow 
for recognition even with a field of view up to π or 180°. Secondly, the total camera 
coverage plot shows the amount of overlap present at each point within the room. Camera 
overlap provides redundancy and theoretically increases the chance of detection, but also 



 

 78

increases the overall cost and decreases placement efficiency. Thirdly, the solution 
coverage that meets input requirements is plotted. This camera placement maximizes 
coverage while minimizing cost. Finally, the overlap in the solution is plotted to analyze 
placement redundancy. Four test areas are demonstrated here based on real-world 
environments. 

All experiments are performed using a real-world derived set of test cameras. 
These test cameras are allowed a few parameters relevant to sensor placement planning: 
frame resolution in (pixels), PTZ (true/false), cost ($), field of view (min/max in 
degrees), and pan/tilt range (max in degrees). The first camera was fixed, cost $600, and 
had min/max fields of view of 27° and 67°, respectively. The second camera was a PTZ, 
cost $600, had min/max fields of view of 44° and 140°, respectively, and a max pan 
range of 140°. The third camera was fixed, cost $900, and had min/max fields of view of 
36° and 75°, respectively. Finally, the last camera was a PTZ, cost $1500, had min/max 
fields of view of 1.73° and 55.8°, respectively, and max pan range of 360°. All cameras 
used here had 640-pixel horizontal resolution image frames.  

This first experiment (Figure 38) is based around an actual room within Ferris 
Hall on the UTK campus where many IRIS students work. The area is modeled empty as 
a very simple polygon that could be adequately covered with a single camera.Here, the 
search constraints include a minimum coverage of 90% at a minimized cost. The results 
place a single $600 fixed camera at (-15, 10) with a 67° field of view and a rotation of -
5°. The objection detection coverage is 92.5% at spatial recognition of 5 pixels/face.  

 
 

 
(a) 

 
(c) 

 
(b) 

 
(d) 

Figure 38. Ferris Hall, Room 209. (a) Minimum FoV for SR Requirements, (b) Visibility Polygons 
Coverage, (c) Solution Camera Coverage, and (d) Solution Camera Overlap. 

 



 

 79

The second experiment uses the IRIS West indoor helicopter testing area. This 
area has a car lift in the Southwest corner (denoted by a hole), and two cars parked 
against the opposite wall. Figure 39 includes a few pictures of the area. The car lift 
pictured in Figure 39(a) is denoted by the small hole in the lower left of the area. The cars 
in the far rear of Figure 39(c) are denoted by the concave peninsula in the lower right. 

This area is the primary testing facility for the helicopter interceptor experiments 
detailed later in this chapter. This step seeks to find optimal camera placements within 
the area towards a complete two-step surveillance system. Moreover, the area provides a 
real-world testing center for the helicopter in conjunction with object/face recognition 
and tracking. 

The results for this experiment use three camera placements: one $600 fixed and 
two $600 PTZ cameras. The first fixed camera at (15, 115) has a 90° field of view and 
rotation of -45°. The second PTZ camera at (15, 40) has a 140° field of view, a rotation of 
45°, and a 130° pan range. The third PTZ camera at (15, 20) has a 140° field of view, -
45° rotation, and 130° pan range. The total detection coverage is 93.88% at minimum 
spatial recognition of 5 pixels/face with 30.98% camera overlap. 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g)  

Figure 39. IRIS West Indoor Helicopter Testing Area: (a-c) snapshots; (d) Minimum FoV for SR 
Requirements; (e) Visibility Polygons Coverage; (f) Solution Camera Coverage; and (g) Solution Camera 

Overlap. 



 

 80

The third experiment used a theoretical typical room layout comprised off one 
center pillar hole and a half-wall. The area was derived from a sample figure used in 
[Erdem and Sclaroff, 2005]. Therefore, this area provides a solid test of the Radial Sweep 
algorithm implementation in conjunction with the camera modeling process. As can be 
seen in Figure 40, twenty-four test points are generated along the perimeter of the area. 
While many of these points cover a large portion of the area, the half-wall provides an 
interesting problem of occluding most of the lower-right section. Furthermore, placing a 
camera in this lower-right section provides only a small increase in coverage compared to 
other locations.  

To achieve >90% coverage, two camera placements comprised the solution set. 
The first $600 fixed camera at (0, 0) has a 67° field of view and 45° rotation. The second 
$600 PTZ cameras at (20, 0) has a 44° field of view, 90° rotation, and 136° pan range. 
The total detection coverage is 92.6% at minimum spatial recognition 5 pixels/face with 
42.3% camera overlap. 

These results achieve the coverage goal, but also possess a high amount of 
overlap. While overlap provides redundancy and the potential for reliable camera hand-
off (passing an intruder between cameras), it is also wasteful in terms of coverage 
potential. Unfortunately, in order to meet minimum spatial resolution requirements for 
detection, the field of view was kept narrower than maximum available. This restriction 
led to the addition of the second camera (placed in the lower-center) that covers a small 
portion of the lower-right of the area and overlaps much of the central area with the first 
camera. 

 
 

   
(a)                                                 (b) 

   
(c)                                                 (d) 

Figure 40. Typical Room Layout 1. (a) Minimum FoV for SR Requirements, (b) Visibility Polygons 
Coverage, (c) Solution Camera Coverage, and (d) Solution Camera Overlap. 



 

 81

The final experiment dealt with the entire IRIS West facility. The layout can be 
seen in the floor plans shown in Figure 41. The solution includes three camera 
placements totaling $1,800. The first $600 fixed camera at (0, 0) has a 67° field of view 
and 57° rotation. The second $600 fixed camera at (20, 60) has a 140° field of view and 
70° rotation. Finally, the third $600 fixed camera at (60, 200) has a 90° field of view and 
225° rotation. Actually, these three cameras are actually PTZ cameras modeled as fixed. 
The total detection coverage is 90.95% without minimum spatial recognition 
requirements and 9.79% camera overlap. Figure 41 depicts this experiment. 

4.1.2 Shortest-Path Interceptor Placement Planning 
The next round of experiments focused on optimal interceptor placement. In 

essence, the same rooms from the previous sensor planning experiments are re-examined 
to find optimal placement of a UAV helicopter interceptor within the perimeter. Thus, 
when combined with the placed cameras, a complete surveillance-interception system is 
created. Figure 42 depicts these experiments. 

First, the theoretical typical room layout was processed. This room is a rather 
ordinary are with a center island pillar and a half-wall. Here, each interceptor is given a 
maximum radius of 20 units. This maximum radius is due to a time constraint (maximum 
range within some time T). All distances are calculated using shortest-paths around 
obstacles. Coverage >90% was achieved using two interceptors for this area. 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 41. IRIS West Full. (a) Minimum FoV for SR Requirements, (b) Visibility Polygons Coverage, (c) 
Solution Camera Coverage, and (d) Solution Camera Overlap. 

 



 

 82

 
(a) 

 
(b) 

 
(c) 

Figure 42. Voronoi Diagram (red lines), Sampled Test Points (pink circles), and Final Interceptor 
Placements (red squares) for (a) Typical Room Layout #1; and (b) Ferris Hall, Room 209; and (c) IRIS 

West Indoor Helicopter Testing Area. 

 
The next experiment uses the simple Ferris Hall Room 209 layout. Again, each 

interceptor is given a maximum radius of 20 units. The simple solution uses one 
interceptor placed along the center of the Voronoi skeleton. It’s interesting to note that 
the centroid point of this room has 100% visibility of the area – making it the optimal 
solution for this particular layout. However, the chosen solution based on Voronoi 
skeleton and shortest-patch mask searching also yields 100% coverage. 

Third, the IRIS West Indoor Helicopter Testing Area is processed for optimal 
interceptor placement. Each interceptor was given a maximum radius of 20. However, 
this layout required four cameras to provide >90% coverage within the radius (time) 
constraint. The vertical scale is much larger than the horizontal, giving this plot an 
unfortunate distorted effect. For example, the lower-left hole is actually a square. 

4.1.3 Object/Face Detection & Localization 
 These experiments were conducted as part of the sensor placement planning for 
persistent surveillance using perimeter camera emplacements; thus, the data is captured 
from the viewpoint of a perimeter, fixed video camera. These proof-of-concept 
experiments use inexpensive web-cameras in conjunction with free, open-source imaging 
software (Intel OpenCV) to accomplish the goal of automatic intruder detection and 
localization. 



 

 83

 Unfortunately, face detection (even the relatively optimized methods used here) 
requires a great deal of processor power. The fastest monitoring rate attained was around 
4-Hz, using 250-ms processing time per frame. Figure 43 (a) includes some processed 
frames captured during a typical experiment. 

Because the face detection uses so much processing power, including full camera 
calibration for an optimal localization estimate was not practical. However, future work 
on this project should include experiments using calibrated cameras. For now, a simple 
geometry-based algorithm estimates the location of a detected object/face within the 
scene using only the known field-of-view of the camera lens. The algorithm then yields 
the polar coordinates of the object/face relative to the camera.  

Since the object/face localization needs only be a rough estimate – a general 
search area for the UAV helicopter to intercept – the simple algorithm should suffice. 
However, there are circumstances where very bad estimates will occur. Fortunately, a 
simple Kalman filter on the position and velocity states of the intruder should improve 
performance significantly. Figure 43 (b) shows the typical output with measured data, 
Kalman predicted data, and Kalman updated data. Figure 43 (c) shows how this data can 
be Kalman smoothed, forward- and reverse-Kalman filtered, for even better results. 

The overall face detection and localization results were encouraging towards 
further experimentation. Future work would focus on improving the initial estimate. 

  
 

 
(a) 

 
(b) 

  
(c) 

Figure 43. Face detection and localization demo: (a) snapshots, (b) Real-time measured localization 
estimate (green) versus Kalman filtered (red), and (c) Kalman-smoothed localization estimate. 

 



 

 84

4.2 Flight Control System Experiments 

4.2.1 Servo Mixing 
One of the first steps in the design of the PC control system involved the reverse-

engineering of the transmitter servo-mixing. The original design called for direct control 
of the helicopter’s servos through a generic USB servo controller. Later, a custom 
interface unit was purchased that allowed commands to be sent from the PC to the R/C 
transmitter directly. For testing purposes, this new setup proved optimal. However, for 
either case, the PC needed to output raw servo positions. Thus, after calculating the 
desired aileron and elevator commands, the PC also had to calculate the actual mixed 
servo positions.  

The helicopter’s servo mixing is based on Cyclic-Collective Pitch Mixing 
(CCPM). However, the exact pitch curves used by the transmitter were custom-tuned for 
the IRIS helicopter. Therefore, the servo mixing was reverse-engineered from the 
transmitter input/outputs. To accomplish this task, the manual inputs were set at each 
minimum/maximum position and the receiver position-pulse modulation (PPM) output 
was recorded. The collected data is summarized in Table 5 and Figure 44. 

While this data could instead be derived from the trim and pitch curve settings 
stored within the transmitter, the above method allowed for exact knowledge of servo 
positions for each input combination. With the neutral and min/max positions for each 
servo, simple formulas were derived for the calculation of servo mixing given any 
throttle, aileron, and elevator input. These formulas are presented below. 

 

Equation 13. Servo-Mixing 

mixailmixelevmixpitchch

mixelevmixpitchch

mixailmixelevmixpitchch

elevmixelev

ailmixail

thrthr

thrthr
mixpitch

thr

thrthr
ch

___14166

_2_16643

___17022

1204.2_

2408.4_

50,38*36.5

50,7.3
_

50,1910

50,2.20900
1

−++=
⋅+−=

−−−=
−⋅=

−⋅=




>−
≤⋅

=





>
≤⋅+

=

 

 
Initial flight testing began with all equipment mounted within the safety gear’s 

cage attached below the helicopter. The hardware included the Xsens MT9-B IMU, 
Pololu 16-servo controller controlling swash-plate servos (2,3,6), a laptop processing 
inertial data and generating PID-based controls, and a servo controller. While testing, the 
pilot had full control of the throttle (motor speed) and the tail servo.  



 

 85

Table 5. Reverse-Engineering the Transmitter Servo Mixing 

Inputs Channels Change from Neutral 
 1 2 3 6 2 (Adj) 3 (Adj) 6 (Adj) 

Center 900 1700 1663 1414    
Left 900 1945 1662 1655 243 -2 239 

Center 900 1703 1663 1417    

Right 900 1466 1663 1177 -236 -1 -239 
Center 900 1702 1663 1414    

Down 900 1823 1423 1297 121 -241 -119 
Center 900 1704 1663 1416    

Up 900 1582 1904 1536 -120 240 120 
Center 900 1702 1665 1417    

Up-Left  900 1820 1906 1777 118 242 361 
Center 900 1703 1664 1417    

Down-Left 900 2066 1420 1537 364 -244 121 
Center 900 1703 1663 1415    

Down-Right 900 1584 1419 1050 -118 -245 -366 
Center 900 1701 1662 1413    

Up-Right 900 1340 1906 1296 -362 242 -120 
Center 900 1702 1666 1417    

Half-Throttle  1910 1516 1476 1599 -186 -188 183 

Full-Throttle  1910 1249 1208 1867 -453 -456 451 
Center 900 1702 1664 1416     

 

 

S e r v o M i x i ng

0

500

1000

1500

2000

2500

I nput  P os i t i on

One

Two

Thr ee

Six

 
Figure 44. Servo Mixing Receiver Outputs at Each Input Position. 

 



 

 86

 
During flight testing, the computer controls the swash-plate completely, including 

the ability to change the collective pitch (which determines how much force the blades 
push downwards). The collective pitch was fixed at the 50% throttle setting. Here, the 
helicopter pulls hard-left the entire time the blade is spinning, making it unsafe to leave 
the ground. Only video data was used for verification and inertial/control data was not 
logged. 

The PID gains were tweaked and a dead-zone was implemented to attempt to fix 
the unnecessary hard-left compensation. Again, the helicopter repeated the same 
tendency to pull hard left when the blades were spinning at full speed. Only video data 
was used for verification and inertial/control data was not logged. 

Testing then moved to a new hardware setup using the purchased Endurance R/C 
PCTx. Most of the hardware can be moved offboard while testing using this 
configuration. The Pololu servo controller is replaced with the PCTx, allowing all 
commands to be sent through the main R/C transmitter. The Xsens IMU is connected 
directly to the PC over a long RS-232 serial cable. The cabling runs down the length of 
the safety gear. The battery for the Xsens IMU is also removed and an AC-DC power 
supply is used instead. The laptop sits beside the transmitter, connected by the USB 
PCTx. Here, the PC only directly controls the Aileron and Elevator.  

(A note here: the PCTx invariably locks up if the transmitter antenna is extended.  
There seems to be no workaround. The antenna was damaged in the helicopter crash and 
will eventually need replacement for outdoor flights with the PCTx). 

An attempted flight was made using the new hardware. The vibrations of the 
helicopter shake the receiver battery free from the canopy near the end of the recorded 
flight video! (Just before liftoff under manual control). Very luckily, the motor controller 
automatically powers down the motors when it loses the signal from the receiver. 

A second flight attempt was made with the new hardware. The helicopter is manually 
flown until stable on its skids. The Trainer switch is then held briefly, allowing the PC to 
control the helicopter. The helicopter immediately bucks hard left again, and manual 
control is resumed while the rotor spins down. Automatic control seems to be failing. The 
previous and current flight data must be analyzed to find the problem. 

A recurring problem with IMU data was found and documented on video. The laptop 
display is recorded on the left side of the video displaying a wire-frame of the IMU 
orientation in real-time. The right side of the video shows the helicopter while being 
manually flown. As can be clearly seen on the wireframe, the IMU drifts a bit as soon as 
the rotors start to spin up. Some of the heading error could be due to the magnetic field 
generated by the motor. As the motor reaches full speed, the wire-frame spins nearly 
completely upside down, while the helicopter is clearly level to the ground. 

Initial conclusions were drawn from these rounds of testing and solution paths were 
theorized. First, the IMU data becomes near-useless under the full-throttle vibrations of 
the helicopter.  

 
• Solution #1: Remount the IMU in a different location to decrease the vibration 

noise, move the IMU farther away from the magnetic field generated by the 



 

 87

motor, and also shield the IMU from the downwash generated by the main rotor 
blades. 

• Solution #2: Attempt to tune some of the IMU settings to better cope with the 
extreme vibration noise.  

o One hypothesis is that the accelerometer data is being preferred over the 
rate-of-turn data in the sensor fusion algorithm. Since the helicopter is 
generating a large amount of force on itself while lifting the safety gear, 
the accelerometer data is skewed badly. 

o The magnetic interference caused by the motor might be corrupting the 
magnetometer readings, which might need to be weighted very small 
compared to the other two sensors (accelerometers and gyroscopes). 

• Solution #3: Capture more flight data without the burden of the safety gear and 
while lifted far enough off the ground to eliminate downwash effects. This should 
give the best possible readings from the IMU. 

• Solution #4: Rewrite the sensor fusion algorithm on calibrated sensor data 
(Kalman filter the IMU sensors). This strategy could generate better or worse 
results depending on how well the helicopter vibration noise is modeled. The 
main benefit is the addition of control data for the filter.  

4.2.2 Improving the IMU Orientation Estimate 
The “crossover” frequency of the MT9-B essentially determines what sensors are 

used with certain frequency data. High-frequency data will be preferred by the 
gyroscopes, while low-frequency data will be preferred by the accelerometers and 
magnetometers. The default frequency cut-off between these two is at 1.0-Hz. High-
frequency data seen by the accelerometers is most likely noise, not actually forces on the 
IMU, and should be filtered.  

One theory for the cause of the IMU error involved the upward thrusting force of the 
helicopter. Because of this constant force on the IMU while remaining rather motionless, 
it was postulated that the IMU might be mistaken some of this force for gravity. This 
situation could have been exacerbated by the straining of the helicopter against it tethers 
while lifting off. Figure 45 depicts an experiment where the MT9-B sensor crossover 
frequency was lowered to a minimal value (0.01 Hz), hopefully to eliminate the 
orientation error. Unfortunately, the error remained in this test. 

A second theory proposed that EMI could be corrupting the readings of the 
magnetometers, and possibly the other sensors as well. The MT9-B offers the ability to 
weight the magnetometer readings against those of the accelerometers, and two more  
flight experiments were attempted while adjusting this weighting. First, the 
magnetometers were removed from the MT9-B sensor fusion and the tethered, powered 
flight test was repeated. (magnetometer weighting set to zero). As seen in Figure 46, the 
IMU orientation error occurred anyway. In fact, the sensor performance was much worse 
than before, and did not correct itself when the helicopter touched-down. This avenue of 
experimentation was quickly abandoned. 

 



 

 88

 

 
Figure 45. Adjusting the MT9-B crossover frequency. (Exp. X11). 

 

 

 
Figure 46. Magnetometer weighting set to zero. (Exp. X9). 



 

 89

  Furthermore, as can be seen from the magnetometer plots presented later 
throughout this section, the magnetometer readings stay nearly constant across the entire 
flight duration with only a small amount of noise. Most small deviations probably 
represent actual heading changes while hovering the helicopter.  

The magnetometer data could even be used solely to handle orientation 
estimation. However, this method would not be very accurate (particularly indoors). Yet, 
in reality, the goal is to simply hover the helicopter in place. Therefore, giving the 
magnetometer data extra weight could stabilize the filter’s overall output and lead to 
better performance.  

Therefore, since it seemed the magnetometers were performing well, the 
magnetometer weighting was set to 5.0 for a powered flight test. The results can be seen 
in Figure 47. Here, the orientation estimate seemed much more resilient to drift – at first. 
Unfortunately, eventually the orientation estimate still drifted incorrectly to one side. 
However, when the helicopter touched-down, the sensor corrected itself. 

These magnetometer tests did not correct the problem, but did give confidence 
that EMI from the motor was not affecting the normal sensor operation. Increasing the 
magnetometer weighting would have a severely adverse affect on the orientation 
estimate, otherwise. Ruling out EMI corruption was one further step in correcting the 
orientation estimation problems. 

The next step is to investigate IMU mounting and vibration isolation. The original 
mounting location on the rear swashplate servo provides several natural advantages. First, 
the mounting surface is perfectly level. Secondly, the surface is perfectly aligned with the 
helicopter body frame. Thus, mounting the IMU in-line with the helicopter’s frame is 
exceptionally easy. Finally, the location is close to the helicopter natural center of 
gravity. Unfortunately, this location failed to produce stable results.  

A decision was made to remount the IMU to the tail boom. This new location is 
farther away from the constantly-moving swashplate, servos, and main rotor shaft. 
However, the IMU is also farther away from the helicopter’s center of gravity. The IMU 
was mounted in a simple fashion. First, a double layer of sticky foam-tape applied to the 
mounting location. Next, the IMU is mounted on the tape, and a cable-tie is latched 
around the IMU and tail-boom.  

Thus, the IMU mounting has a few natural disadvantages. The mounting surface 
is not level and prone to IMU wobble. The IMU can be mounted along the lateral axis 
with some degree of accuracy, but not the longitudinal axis. Finally, the location can be 
jarred with significant vibration noise if the tail boom wing guard bounces.  

A flight test was performed with the new mounting location. Unfortunately, the 
IMU drift did not significantly improve. These results are depicted in Figure 48. 

Nevertheless, the tail boom still theoretically seemed to be the preferred position 
for mounting. Many other resarch projects have used the tail boom as the mounting 
location successfully. Thus, the vibration noise must be causing more problems than 
originally estimated. 

 
 
 
 



 

 90

 

 
Figure 47. Magnetometer weighting set to 5.0. (Exp. X12). 

 

  

 
Figure 48. MT9-B mounted on the tail boom. (Exp. X14). 

 



 

 91

 
Finally, the assumption that the vibration padding isolation was sufficient was 

reevaluated. Regardless of software tuning and mounting location, the IMU was 
providing unreliable data. Therefore, large blocks of soft, open-cell foam replaced the 
foam tape attaching the MT9-B to the helicopter. This foam was sandwiched around the 
sensor. The primary fear with this setup is mounting error (i.e., IMU orientation offset 
from the helicopter frame) and over-isolation of the IMU itself – potentially leading to 
lagged orientation changes from the IMU.  

The first experiment with the new padding also moved the IMU to the training 
gear cage (originally built to hold a laptop PC). The results can be seen in Figure 49. 
While this setup definitely provided robust results, it was quickly realized that the 
orientation of the training gear might not always be close enough to that of the helicopter 
body to provide a meaningful overall orientation estimate. In other words, the IMU was 
found to be over-isolated from the helicopter orientation. The training gear orientation 
typically changes very slowly over the course of a flight test, providing little insight into 
the actual helicopter orientation. Thus, the IMU was returned to the helicopter tail-boom 
and sandwiched in foam, again.  

 
 

 

 
Figure 49. MT9-B mounted on the training gear with foam padding. (Exp. X17). 

 



 

 92

Results for the powered flight test with the IMU padded on the tail-boom can be 
seen in Figure 50. Here, after the large spike always present during take-off, the IMU 
settles down into normal operation. The orientation differs by only ±10° from zero – a 
large improvement from previous results. Since the actual orientation of the helicopter 
while manually flown stays within this same tight range around zero, the estimate seems 
to be accurate. 

This result signifies a significant improvement in IMU orientation estimate. In 
fact, the results are good enough to warrant further experimentation into automatic flight 
testing. While the accelerometer and gyroscope data remains noisy much of the time, the 
IMU itself seems to be filtering a reasonably accurate orientation estimate from the data. 
The remounting on the tail-boom increased this noise level, but also allowed for much 
better estimation of the actual helicopter frame orientation. At this point, it is unknown 
whether the orientation estimate will provide sufficient accuracy to maintain an automatic 
hover with the helicopter control system. However, the data itself is much more 
promising with this latest foam-padded remount of the IMU. 

Further work focused on flight-testing the helicopter using the implemented 
software control system.  
 
 

 

 
Figure 50. MT9-B mounted on the tail-boom with foam padding. (Exp. X19). 

 



 

 93

4.2.3 Flight Testing 
With significantly improved data from the IMU, the real flight-testing could 

resume. A few static tilt-test experiments were performed to test out the hardware and 
data-logging software. After showing promising results (i.e., actuating the helicopter 
swash-plate in a compensating direction relative to the tilt), flight testing began. 
 The first flight test with the foam-padded IMU performed very well. The pilot 
manually started the helicopter and brought the rotors to speed on the ground. Once the 
helicopter stabilized, the pilot raised it into the air in a hover. When the pilot relinquished 
control to the PC control system, the helicopter remained hovering in place. The 
helicopter was allowed to hover automatically for a few seconds before the pilot regained 
control and manually landed the helicopter. However, this experiment was not repeatable 
under the same conditions and using the same process. These experiments are depicted in 
Figure 51. 
 Because the control system did not readily repeat an automatic hovering success, 
troubleshooting and tuning of the control system began. These experiments are contained 
within the remainder of this section. 
 Further tilt-testing followed to troubleshoot the control system. During these tests, 
the PC was allowed full control over the helicopter servos. However, under automatic 
flight tests, the PC only controls the aileron and elevator. The human pilot always 
controls the throttle and tail during flights for safety. These full-control tests showed 
acceptable results to manual tilting of the helicopter by actuating the swash-plate in the 
compensating (opposite) direction.  
 A flight test was next performed with the current software build. Unfortunately, 
this test failed to produce acceptable hovering results. The PC control system continued 
to pull hard to the side when given control.  
 
 
 

 

(a) 
 

(b) 

Figure 51. Early flight tests: (a) success and (b) failed follow-up. (Exp. 4/7). 

 



 

 94

 Another tilt test was performed to re-evaluate the control system performance. 
However, the results remained identical to the previous two tilt tests using this system 
build (positive). Poor IMU data must be causing the flight tests to fail. 
 At this point, the IMU was re-mounted with additional foam completely 
surrounding it and the tail boom – promising maximum isolation from vibration noise. A 
manual flight test was then performed to evaluate the IMU data quality. Here, the results 
were very promising towards future automatic flight testing. The pitch and yaw data 
varied very little over the course of the manual test. This experiment is depicted in Figure 
52 (a). 
 The next step was thus a return to automatic flight testing. Here, and with the 
previous tilt test, the PID gains were set as follows: Ki = 2.0, Kp = 4.0, and Kd = 1.0. 
Furthermore, the PID was allowed to use ±40% of maximum servo throw. The limit on 
servo throw allows for higher PID gains and quicker response without a chance of 
binding the servos. Furthermore, it’s unlikely a stable hover will ever require a correction 
of more than 40% in either direction.  
 This automatic flight test failed to maintain a stable hover when given control. 
Again, the helicopter immediately pulled hard to the side. The results are shown in Figure 
52 (b). 

At this point, barring recurring bad data from the IMU, it was thought that the 
software implementation must have a bug. Another tilt test followed to again check for 
correct servo directions (the IMU had been remounted in a reversed position). Next, the 
source code was changed to also log PID data along with orientation. A manual flight test 
followed to examine the generated PID outputs relative to the actual helicopter 
orientation during a normal hover. Given the level of noise present in the IMU data, the 
PID outputs seemed reasonable. 
 
 

 

(a) 
 

(b) 

Figure 52. (a) Evaluating pitch and yaw data (Exp. 9) and (b) Adjusting the PID gians to 4-1-1 did not 
improve flight results (Exp. 10). 

 
  



 

 95

A problem with the swash-plate actuation was noticed during further tilt-testing. 
Namely, the swash-plate was not using its full range, even when given min/max 
commands. Furthermore, the swash-plate behavior seemed to worsen as its collective-
pitch increased (determined by the throttle stick position). Therefore, the source code was 
examined in an attempt to troubleshoot this problem. 

Because the PCTx is a one-way system (i.e., the PC can transmit controls to the 
transmitter, but the PC does not know what commands the transmitter is sending to the 
receiver), the software “throttle” position must be set to a default value. While the actual 
throttle control is always maintained by the human pilot, the throttle position sent by the 
PC is used for the swash-plate collective-pitch mixing. The code originally set the default 
throttle position at zero – a potential cause of the strange swash-plate behavior under PC 
control. Thus, the default throttle position was increased to fifty-percent, or neutral. 

A recorded tilt test showed improved swash-plate actuation while using the 
increased default software throttle position. Unfortunately, the swash-plate still did not 
seem perfectly-actuated in response to the manual tilting. However, the decision to 
continue with an automatic flight test was made. Flight tests provide a better opportunity 
to observe the actual orientation changes of the helicopter in response to swash-plate 
changes, rather than merely observing the swash-plate itself during a static test. 

Thus, a semi-successful automatic flight was made using the updated throttle 
code. The flight data is shown in Figure 53 (a). Once the helicopter was manually flown 
into a stable hover, the PC control system was allowed to take over for a few seconds. 
The flight behavior was similar to the first successful flight test. However, post-
examination of the flight logs show a severe amount of IMU drift within the orientation 
data. In fact, the control system was providing max compensation during much of the 
flight. The flight was successful with poor data. 

Unfortunately, the two further flight tests failed to produce similar positive 
results. In both of these flight tests, the helicopter immediately pulled backwards when 
given PC control. In the first test, the data shows significant IMU roll drift around +20°. 
This amount is less than the previous experiment, but more than should be present in a 
level hover. The pitch readings varied between –5° and +10° -- not unreasonable, but still 
more than should be present. The data from these flight tests is shown in Figure 53 (b,c). 

The second repeat of the flight test provided similar results. The helicopter control 
system immediately pulls the helicopter backwards when given control. Here, the roll 
data possesses the same average around +20°, but the pitch estimate average is more 
realistic between -13° and -3°. The data itself should not be causing the control system 
error. In fact, the pitch compensation generated by the control system called for a forward 
pitch, not backward. It seemed there was a problem somewhere in the control system 
implementation causing incorrect swash-plate actuation.  

Furthermore, when looking at the orientation data, the roll average was farther 
from zero during a hover than expected. Thus, an examination of the collected orientation 
data was made in the hopes of improving the control system PID setpoints. 

 
 

 



 

 96

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 53. (a) Semi-successful flight test over short duration; (b) follow-up tilted backwards when given 
control; and (c) continued tilting backwards when given control. (Exps. 15-17). 

 
  



 

 97

The next phase of testing focused on remounting the IMU yet again and also 
better adjusting the setpoints. The recurring behavior of pulling hard backwards during 
automatic flight could be chalked up to poorly-specified setpoints. Because the IMU is 
mounted on a circular tube, its orientation is not perfectly level relative to the helicopter 
frame. Furthermore, the setpoint specification of zero for perfectly neutral might not be 
the optimal position in a stable hover.  

The IMU was returned to its original position atop the rear-most swash-plate 
servo (directly behind the swash-plate itself). This provided a precisely level mounting 
surface relative to the helicopter frame. Furthermore, previously recorded flight data was 
parsed and analyzed for optimal setpoints. A table of collected data and some statistical 
results is shown in Table 6. At this point in experimentation, the data indicated a setpoint 
of 6.6 for roll and 0.4 for pitch. 

Unfortunately, these changes did not fix the immediate lurch backwards when 
switching to automatic control. Two flight tests were performed using this new setup that 
did not yield improved results (shown in Figure 54). Both of these experiments showed 
the same problem when relinquishing control to the automatic control system: a large 
spike in the orientation as the helicopter lurched. Unfortunately, very little information 
can be gleaned from the data logs resulting from these two experiments. The control 
system’s severe reaction when given control indicates a fundamental problem within the 
implementation. The odd behavior of the swash-plate during tilt testing was recalled and 
pursued further as a potential culprit.  

A suspicion began to arise that the transmitter was not generating correct servo 
commands given PC inputs. While all previous tilt tests produced seemingly good results, 
the flight tests invariably failed. The difference between these two situations was the 
amount of control given to the PC. In the tilt tests, the PC was typically allowed full 
control over the helicopter servos (including throttle, and tail). Full control was given to 
test the collective-pitch mixing quality calculated by the PC. However, when performing 
actual flight tests, the human pilot always maintained control over the throttle and tail 
servo for safety and smooth transitions between manual/automatic control. To achieve 
limited control, the R/C transmitter was setup in Trainer mode to allow MASTER control 
of THR/RUDD and SLAVE control of AIL/ELE.  

However, upon close examination of the swash-plate actuation under full and 
limited control, the results were invariably different – even though the control inputs 
generated by the PC were identical! The only course of action was to examine the exact 
servo outputs generated by the transmitter given PC inputs. Then, new formulas could be 
derived to produce correct swash-plate action under limited control. 

This new data analysis task was rather tedious to say the least. Luckily, the 
answer was found early with a simple realization, but without examining the exact PPM 
outputs generated by the transmitter. The transmitter has a built-in monitoring display of 
current servo positions. The servos are presented in a simple gauge format with neutral at 
center and tick marks at 25% intervals. Given a valid PPM frame from the PC (i.e., servo 
positions properly mixed), the servo monitor should exactly match the servo inputs. 
Under full control, the inputs/outputs matched precisely. However, under limited control 
the servo monitor showed completely different servo positions in many cases! 

 



 

 98

 

Table 6. Finding Optimal Setpoints 

FLIGHT  Phi 0.5  Theta 0.5 
# Mean Var ThrMean Mean Var ThrMean 

xsens40 6.5749 1.2028  0.1999 1.3896  
xsens39 6.6242 1.8615  0.66 1.2404  

23 12.4105 388.66 11.6134 0.6534 8.5364 0.6441 
24 10.6431 102.6343 9.9831 0.6861 5.0055 0.6591 
25 13.3601 248.6122 12.7071 0.817 8.0782 0.783 
26 10.2563 273.1216 9.5524 -0.0921 9.5923 -0.0701 
27 10.273 52.9112 10.1677 0.5981 3.7649 0.598 
28 14.3923 130.182 14.4634 -0.2282 4.4367 -0.2419 
29 12.9364 36.1044 13.0866 1.0786 5.4904 1.057 
30 17.3928 41.0228 17.6787 2.6297 4.5844 2.6738 
31 19.0567 75.048 19.627 1.5154 18.2588 1.4492 
32 10.7165 115.6384 10.9082 2.5885 9.3809 2.5816 
33 10.6547 37.2822 10.7221 1.8708 5.8369 1.8701 
34 16.6841 122.1712 17.0857 0.5817 8.3857 0.5741 

 12.28397  13.13295 0.968493  1.048167  
 
 

  
(a) 

  
(b) 

Figure 54. (a) Unsuccessful automatic flight test with IMU moved to rear servo and setpoints adjusted; and 
(b) repeat with remounted IMU and adjusted setpoints. (Exps. 18-19). 

 
  



 

 99

 While undocumented in the user manuals, the transmitter assumes different input 
schemes between limited and full SLAVE control. It is unknown whether this behavior is 
a feature or bug. In any case, under limited control the transmitter assumes the PPM 
signal from the SLAVE is completely unmixed and untrimmed. Therefore, while nine 
channels of PPM data are sent, the transmitter only uses four to control the helicopter: 
throttle, aileron, elevator, and rudder (default channels 1-4). The other channels are 
ignored.  

In fact, the transmitter essentially behaves as if the PPM channels are raw stick 
inputs rather than servo data. Thus, half-stick (neutral) is represented as 1500-ms, min-
stick as 1000-ms, and max-stick as 2000-ms. While this scheme greatly simplifies the PC 
control system calculations by removing the necessity for software servo mixing, it also 
provided a severe troubleshooting headache.  

After removing the servo mixing from the source code and sending simple 
aileron/elevator commands instead, the system was ready for more testing. Three tilt tests 
followed to verify correct directions and swash-plate actuation. Additionally, the 
maximum throw of the swash-plate servos was reduced to ±25%. The removal of the 
erroneous servo mixing code allowed for full-range motion of the swash-plate again, 
requiring a tighter limit on maximum throw. Finally, the setpoints were also returned to 
zero.  

The time had come to return to automatic flight testing. Three troublesome flights 
began this round of testing. These experiments are depicted in Figure 55. However, based 
on the logged orientation data for the latter two tests, it seemed to be partly the unreliable 
IMU producing poor data under high-vibration again.  

In the first flight test, the orientation data seemed reasonable given previous flight 
data. The roll averaged around +10° while pitch averaged around 0°. However, the flight 
did not automatically hover successfully. Post-examination of the flight logs shows far 
too much roll compensation given the rather small +10° error. In fact, the control system 
pushed the roll to the safety limit much of the flight. Here, the problem can most likely be 
attributed to poor PID loop tuning and the removal of the calculated setpoints. A setpoint 
of zero for roll seems to be incorrect in a stable hover.  

The next two flight tests both showed much spikier data than the first test. Several 
factors were more than likely contributing to the spiky data. First, the PID control system 
is obviously over-compensating and keeping the roll/pitch at the limit erroneously. 
Secondly, the helicopter pilot might be having more difficulty putting the helicopter in a 
stable hover, here. With the helicopter not in an optimal position before the control 
system is given control, the chances are less likely that it will maintain the hover. Finally, 
the IMU could be generating worse data than before. Sometimes, the IMU will perform 
very poorly when the manual take-off is rougher than usual. Furthermore, the IMU will 
take much longer (if ever) to settle into normal operation.  
 Given the roll average around +10°, the new setpoints of zero were obviously not 
going to be successful. Correcting the setpoints is the first step towards improving the 
control system performance. Next, the PID tuning and limits needs to be evaluated 
towards better operation. While fast response is desirable, constant over-compensation 
can cause disastrous results with a vehicle such as a helicopter. 



 

 100

 

 
(a) 

 
(b) 

 
(c) 

Figure 55. (a) First flight test after removing software servo mixing; (b) repeat of flight test indicating 
possible bad data from IMU; and (c) third test flight after removing servo mixing. (Exps. 23-25). 

 



 

 101

 Returning to the calculated “good” setpoints improved the next two automatic 
flight tests. These tests are shown in Figure 56. The first flight test provided adequate 
hovering results when given control, while the second test failed to maintain the hover 
after a few seconds. Both tests show a roll/pitch averages very near the setpoints and 
much more stable orientation data. However, the second test does appear to possess 
slightly noisier data, particularly when comparing the PID outputs between the two flight 
tests. Also, the huge spike during take-off is very obvious here.  

While closing in on repeatable automatic flights, the system was far from reliable. 
At this point, the return to a focus on optimal PID parameters was possible. The 
implemented PID loop uses only the estimated orientation data supplied by the IMU. 
While it is possible to include gyroscope data (change in orientation), the orientation was 
deemed much more reliable and less noisy. With this arrangement, the setpoints less the 
orientation represent the integral error terms. The proportional term represents the change 
in orientation (current orientation less previous orientation). Finally, the derivative term 
represents the second-derivative of orientation. Of these three terms, the current 
orientation is most important for a stable hover. 

 
  

   
(a) 

   
(b) 

Figure 56. (a) Successful flight test with adjusted setpoints to statistically-determined values; and (b) repeat 
of flight test with degraded performance. (Exps. 26-27). 

 



 

 102

 For the next flight test, all gain parameters were toned down. The system was 
simply behaving too erratically with high gains and the corrected servo mixing. The gains 
were adjusted as follows: Ki = 0.5, Kp = 1.0, and Kd = 0.25. The maximum throw 
remained at ±25%. This gain configuration puts the most weight on the proportional gain 
term, or the rate of change in orientation. Since maintaining the orientation is the top 
priority, and orientation errors worsen exponentially over time, leveling the orientation as 
quickly as possible is imperative to a successful flight test. The other two terms were 
lowered proportionally. 

The automatic flight test seemed to succeed using these new values, but 
improvement was still needed. Here, the pitch behaves very well – varying merely 
between -4° and 6° over the course of the flight. The roll also remained steady throughout 
the flight (after the initial take-off spike), but average closer to +15°. The roll average is 
more than likely too far from the designated setpoint to provide adequate and reliable 
automatic hovering here. However, this behavior is probably the fault of the IMU not 
settling down after take-off. The results of this experiment are shown in Figure 57. 

The next test adjusted the PID gain parameters as follows: Ki = 1.0, Kp = 0.5, and 
Kd = 0.25. The increased gain on the most stable and relevant parameter (integral error or 
simply orientation) seemed a logical choice. Here, the goal is to correct orientation errors 
quickly through the integral gain term or reset. This method has the advantage of working 
on real orientation data instead of estimated derivative data from multiple data points. 
The hope is to rigorously hold the orientation at the setpoints. 

However, the automatic flight test did not perform as well as hoped. Yet, the test 
still managed to semi-successfully hold the helicopter in a stable hover when control was 
relinquished. Post-examination of the data showed similar results to the previous flight 
test. However, the pitch varied a bit more erratically than before – spiking as much as –
10° and +10°. The roll remains a good amount above zero as in previous experiments. 
The results of this experiment are shown in Figure 58. 
 A further flight test followed using this software build without repeated success. 
Based on the quality of the data, the IMU, and the helicopter flight behavior, the setpoints 
still seemed like they could use some adjustment. The results of this experiment are not 
included here for redundancy. The table of mean/variance of the flight data was updated 
and re-examined to find better setpoints. 

Next, the roll setpoint was adjusted to 12.0 and the pitch to 1.0. These new 
setpoints were based on a much larger dataset comprised of fourteen different flights. 
However, the presence of heavy-noise periods and completely static periods (i.e., before 
taking-off and after landing) must have skewed the data somewhat. The next flight test 
was not successful using these new values (Figure 59). 
 These three flight tests led to some initial conclusions. First, the lowered PID 
gains improved the flight results but did not instantaneously stabilize the flight 
performance. Good setpoints must exist for the helicopter in a stable hover, but these 
setpoints seem to depend much on the initial hovering position reached by the pilot and 
the amount of noise accrued by the IMU during take-off. Further experimentation will 
examine the PID parameters in detail. 



 

 103

 

 

Figure 57. Flight test with adjusted PID gains: success (Exp. 28). 

 

 
Figure 58. Semi-successful flight test after adjusting PID gains (Exp. 29). 

 

 

Figure 59. Adjusted setpoints to compensate for IMU drift. (Exp. 32). 

 



 

 104

The new setpoints were not consistently improving flight results. Therefore, the 
original “good” setpoints were returned to use. These setpoints were determined from 
only two manual flight tests, but both tests were very stable hovers. 

Returning the setpoints to the previous 6.6 roll and 0.43 pitch led to a semi-
successful flight test. A repeat of the flight test was also semi-successful. In both of these 
flight tests, the helicopter hovered for the duration of the automatic flight. However, the 
hovering quality degraded over time, and the pilot had to renew manual control. The 
results of these flight tests are shown in Figure 60.  

As can be seen from the data logs, the hovering was stable for the majority of the 
flight (after take-off spikes). Furthermore, observing this same data shows the helicopter 
holding a position not exactly at the setpoints. This behavior is most obvious in the roll 
terms. While the setpoint is 6.6, the actual flight positions seems to waver around 10.0 (or 
higher in the repeat flight test). 

While the flight tests were becoming increasingly successful, the search for 
optimal PID parameters was still underway. The setpoints still seemed a bit off for a 
stable hovering position. Thus, after simple inspection of the data log files, the setpoints 
were adjusted to 10.0 roll and 1.0 pitch. These numbers were taken from simple visual 
estimation of the data plots over time. The remaining PID parameters were left the same 
to test these setpoints alone.  

Again, the automatic flight test was successful, but with degrading performance 
over time. The results of this flight test can be seen in Figure 61 (a). These setpoint 
changes were making subtle modifications to the flight behavior, but the overall results 
were not approaching stability. Therefore, the gain parameters were re-examined and 
adjusted again to help cope with the amount of noise present in the system during flight 
testing.  

The theoretical goal of automatic hovering is maintaining a level flight (zero 
integral error) while holding the helicopter “still” (zero angular velocity). Thus, reacting 
quickly to compensate for angular velocity (proportional term) is an important part of 
automatic hovering. Thus, the proportional gain was increased again to attempt to 
stabilize the hovering consistently. 

In the next experiment, the PID parameters were set to, Ki = 0.25, Kp = 1.0, and 
Kd = 0.25. This experiment is essentially a repeat of  previous one, but using the new 
human-estimated setpoints of 10.0/1.0. The hope is that less gain will be needed on 
orientation at any given time due to the setpoints being closer to true hovering position.  

These parameter changes increase the sensitivity to angular velocity while 
decreasing the rate that the orientation is leveled-out. This flight test produced the same 
level of semi-successful but slowly-degrading results as previous tests. Flight test results 
can be seen in Figure 61 (b). 

The initial results based on this round of experimentation show that the flight 
behavior is staying consistent in most cases. The parameter changes are having small 
impacts on the overall system performance. However, the system is hovering itself for 
short durations given a good starting position by the pilot. Some fundamental issues are 
holding back significant progress and will be tackled in the next round of experiments. 

 
 



 

 105

 
(a) 

 
(b) 

Figure 60. (a) Semi-successful flight test with returned setpoints to statistically-determined values; and (b) 
successful repeat of flight test. (Exps. 33-34). 

 

 
(a) 

 
(b) 

Figure 61. (a) Setpoints gains adjusted again to 6.6/0.43: no flight improvement seen (Exp. 35), and (b) PID 
gains adjusted to increase P term: results degrade over time (Exp. 36). 

 



 

 106

Adjusting the PID parameters was not making enough impact on improving the 
flight quality. Furthermore, with the system bogged down with the weight of the safety 
gear and tethering, flight performance is severely handicapped. The helicopter flying in 
open-air without safety gear is nimble and fast. However, the weight of the safety gear 
not only requires full throttle just to manage lift-off, but also creates incredibly sluggish 
response to controls. Unfortunately, this is a necessary evil to allow for automatic flight-
testing without serious risk to the helicopter or pilot.  

However, some optimization was made to improve the overall flight performance. 
First, the source code was heavily optimized in many aspects. The servo controller 
interface code was simplified greatly (possible now that software servo mixing was 
unnecessary). All calculations for servo mixing were set to activate only when a 
FULL_CONTROL switch is set. The main loop now required far fewer calculations 
before sending the PID output to the servo controller. 

Secondly, the training gear was slimmed down quite a bit. The center mounting 
cage was removed completely. Not only does this remove excess weight, but also moves 
the long legs of the safety gear much closer to the helicopter center of gravity. The 
increase in responsiveness during a flight is instantly noticeable. However, there is an 
added risk to the helicopter’s tail rotor since only a flimsy carbon-fiber wing protects it 
now.  

These changes led to much more sensitive and responsive automatic flight tests. 
However, the system was also very difficult to manually control now. Simply taking-off 
and putting the system in a controlled manual hover was challenging for the 
inexperienced pilot. Three flight tests were performed using this optimized setup with 
moderate success. The results of these flight tests can be seen in Figure 62. 

Only one final flight test was performed on the helicopter control system. To 
better isolate and verify the PID control quality over the helicopter, the transmitter was 
setup to allow only automatic aileron control. The pilot maintained control of the elevator 
at all times. This arrangement provided a much better environment for examining the 
control system response. While the pilot kept the pitch level, the control system 
maintained the roll successfully. The results of this flight test can be seen in Figure 63. 

A final summary table was created using each logged data set. The mean 
orientation values and variance over the duration of the flight are recorded in the table. 
Mean values close to the setpoints (or zero) with low variance generally denote more 
successful flight tests. However, some deviations in the data might be the result of pilot 
error during manual flight. The flight data is summarized in Table 7. 

From these experiments, the conclusion can only be that the system can work 
successfully under ideal conditions. Unfortunately, the second conclusion is that the 
chosen commercial-off-the-shelf inertial measurement unit (Xsens MT9-B) is simply 
inadequate for the high-frequency, high-speed application of a helicopter control system. 
The orientation data suffers from severe estimation errors that can lead to unreliable 
flight performance. However, when the system the system can hover itself given a 
“good” starting position by the human pilot. 

 



 

 107

 

 
(a) 

 
(b) 

 
(c) 

Figure 62. (a) Flight test after source code optimized and training gear removed; (b) repeat, manual control 
is very difficult with the removal of the training gear lower tier; and (c) another repeat of the flight test 

without significant improvement. (Exps. 37-39). 

 

 
Figure 63. Manual elevator control with automatic aileron control: successful. (Exp. 40). 

 



 

 108

Table 7. Flight Test Data Summary 

 
Log Endpoints Phi Theta 

# Take-Off Landing Mean Var Mean Var 
4 20  5.6841 28.4877 2.4978 14.7797 
7 15  2.289 52.5553 1.1433 14.7528 
9 20  -0.613 5.0026 -7.3556 1.3108 
10 5  4.7307 20.3411 -7.5548 2.2033 
12 65  5.2661 2.1097 -8.1343 1.064 
15 10  36.3852 299.7846 -15.6766 9.1812 
16 20 55 18.8856 4.4358 0.3482 16.4929 
17 28 50 15.2465 10.0514 -4.6647 2.9428 
18 105  49.1307 1437.9 -1.9184 118.4598 
19 55  32.8066 1105.7 6.9946 38.2923 
23 90 120 9.0791 9.238 0.2632 2.1569 
24 70  12.9111 44.6673 0.9786 5.6038 
25 35  16.7137 270.2846 1.0193 10.0979 
26 115 138 6.8238 1.0384 -0.5622 2.743 
27 22 115 10.114 10.9932 0.6004 3.4925 
28 60 100 13.9602 6.219 0.2804 4.7914 
29 85 140 12.3982 7.6001 1.467 4.3911 
30 45 90 18.172 14.3369 2.8902 3.4523 
31 35 65 20.7161 44.8039 3.0226 7.173 
32 130 160 7.122 5.0088 2.163 2.3724 
33 20 70 9.626 7.6372 1.536 2.1718 
34 20 35 14.8508 13.6522 1.1042 7.2841 
35 97 113 3.7306 5.3131 1.1783 4.1213 
36 22 38 5.0645 2.7509 -1.0951 8.4 
37 85 169 5.7126 4.9155 -0.8797 1.6371 
38 20 60 5.7566 6.5115 -1.1133 4.9279 
39 20 60 6.8948 8.2681 1.2821 8.5819 
40 15 40 11.0748 12.7096 3.2342 6.8549  



 

 109

5. Conclusions 

5.1 Summary 
Chapter one introduced the need for a mobile wide-area surveillance platform 

towards intruder detection and tracking. A sensor/interceptor placement planning system 
was proposed to accomplish this task. Next, the advantages of a miniature UAV 
helicopter were described for this application – namely, complete 3D positioning 
capabilities. The introduction went on to propose a control system for an autonomous 
surveillance UAV helicopter. 

Chapter two comprises the literature survey performed before undertaking the 
research objectives. This section sought to survey some of the most complete multi-robot 
and multi-agent control systems currently implemented, with particular focus on 
unmanned aerial vehicle (UAV) platforms due to their natural aptitude of wide-area 
surveillance. Most likely the best system surveyed, in terms of completeness, was the 
COMETS system, which sought to create a coordinated multi-UAV system capable of 
detecting forest fires. However, the design of the system was open enough to allow 
expansion into many other applications. Unfortunately, the consideration of ground 
vehicles was not included in the COMETS program.  

Next, current UAV helicopter systems were surveyed and described briefly. 
Additionally, a survey of commercial autopilots developed specifically for miniature 
UAVs was included. This autopilot survey concluded with a best-purchase suggestion at 
the time of writing. 

The sensor placement planning literature survey essentially describes the root of 
the research, the Art Gallery Problem, and then extends into the notion of visibility – 
used heavily during the sensor placement planning presented here.  

Because of the desirability of commercial off-the-shelf (COTS) parts, R/C 
vehicles make an excellent target mobility platform. However, control interfaces are 
generally primitive and lack any sort of telemetry.  

Chapter three describes the design of the sensor placement planning system and 
the UAV helicopter control system in several parts. The sensor placement planning 
system is comprised of Erdem and Sclaroff’s Radial Sweep algorithm for visibility 
polygon generation, fixed/PTZ camera modeling, a basic branch-and-bound search, and a 
shortest-path interceptor placement based on Voronoi diagrams and Dijkstra’s algorithm. 

The UAV helicopter control system is based on the proportional-integral-
derivative control algorithm. The PID design was proposed as the best method for 
controlling the helicopter swash-plate. An inner loop PID for attitude control and an outer 
loop PID for position control (similar to a receding horizon controller) comprise the 
navigation system. The next section describes the complete control system 
implementation using a standard notebook PC and commercial off-the-shelf (COTS) 
hardware. Two similar setups were tested. The first, more practical approach maintained 
the bulk of the hardware onboard the helicopter and used a USB-based servo controller 
instead of the R/C receiver. The second, more robust approach moved the PC off-board 
and sent all commands through the standard R/C transmitter/receiver pair. Both setups 



 

 110

had distinct advantages and disadvantages for both experimentation and real-world 
applications. 

5.2 Future Work 
Future work on the sensor placement planning would include optimization of the 

code for more complex areas and an extension to a patrolling mobile interceptor. 
Eventual work could also lead to 3-D modeling of areas for more realistic simulation. 

The UAV helicopter-interceptor waypoint-navigation control system is not yet 
complete. Future work includes implementation of more robust hardware, a better sensor 
fusion algorithm, further integration of imaging techniques, and extension to full 
waypoint-navigation. Additionally, work on an adaptive, neurak-etwork-based PID 
controller should be continued to improve the helicopter response under different flight 
conditions.  

5.3 Final Conclusions 
A sensor placement planning system and UAV helicopter control system were 

proposed and presented here. The sensor placement planning system is able to optimize 
coverage versus total cost given an area, constraints, and a list of available sensor 
parameters (field of view, pan/tilt angles, cost, etc.). The system can process an area 
quickly using Erdem & Sclaroff’s efficient Radial Sweep algorithm and breadth-first best 
mask searching. Additionally, an interceptor can be placed within the same area to 
minimize interception time to any point on the perimeter using the same visibility 
techniques in conjunction with Dijkstra’s algorithm and the area’s Voronoi diagram. . 
Additionally, a face-detection and localization system was developed to test the sensor 
placement planning results on real-world areas. Therefore, the real-world implementation 
of this system requires only the interceptor helicopter system to be complete. 

The UAV helicopter control system is able to hover with limited success given a 
good starting hover position from the human pilot. Unfortunately, due to spiky 
orientation data during take-off, the control system is unable to automatically take-off. 
The final conclusion is that the chosen inertial measurement unit is critical to the design 
of a helicopter control system. Here, the IMU produced inconsistent results leading to 
non-repeatability of some experiments. While the system can hover the helicopter under 
ideal conditions, the hardware-sofware setup is non-optimal for a robust helicopter 
control system.  



 

 111

References 



 

 112

“9303 Heli Adv R649 & 4-8311 Digital Servos,” JR Radios (Horizon Hobby), Retrieved 
June 2008. <http://jrradios.com/Products/Default.aspx?ProdID=JRP9252**>. 
 
“Collective Pitch and CCPM,” Heli Hobby, Retrieved June 2008. 
<http://www.helihobby.com/html/collective_pitch_and_ccpm.html>. 
 
 “Co-Pilot Flight Stabilization System,” FMA Direct, Retrieved June 2008. 
<http://fmadirect.com/detail.htm?item=1489&section=20>. 
 
“Die originalen brushless Außenläufermotoren,” actro Die originalen brushless 
Außenläufermotoren!, Retrieved June 2008. <http://www.actro.de/de/allg/index.html>. 
 
“FS8CPI – P.C. Ready,” FMA Direct, Retrieved August 2007. 
<http://fmadirect.com/detail.htm?item=1770&section=29>. 
 
“Futaba GY401 Gyro w/S9254 Digital Servo,” Futaba (Hobbico), Retrieved  June 2008. 
<http://www.gpdealera.com/cgi-bin/wgainf100p.pgm?I=FUTM0808>. 
 
 “future-universal: the universal controllers and speed governors for the brushless and 
sensorless generation of motors,” schulze elektronik gmbh, Retrieved June 2008. 
<http://www.schulze-elektronik-gmbh.de/index_uk.htm>. 
 
“HC12 Overview,” Freescale Semiconductor, Retrieved June 2008. 
<http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=0162462LcRC5dj
>. 
 
 “JAUS Domain Model (DM)”, Joint Architecture for Unmanned Systems (JAUS), 
Version 3.2, Retrieved August 2005. 
<http://www.jauswg.org/baseline/Domain%20Model%20v3.2%2010Mar05.doc>. 
 
“JAUS,” Joint Architecture for Unmanned Systems (JAUS), Retrieved June 2008. 
<http://www.jauswg.org/>. 
 
 “JAUS Reference Architecture (RA)”, Version 3.2, Joint Architecture for Unmanned 
Systems (JAUS), Retrieved August 2005. 
<http://www.jauswg.org/baseline/refarch.html>. 
 
“JAUS Tutorial Presentation”, Joint Architecture for Unmanned Systems (JAUS), 
Retrieved June 2008. <http://www.jauswg.org/JAUStutorial.ppt>. 
 
“Kit #1023 - Fury Tempest 3D,” Miniature Aircraft USA, Retrieved August 2007. 
<http://www.miniatureaircraftusa.com/support/kit_drawings.asp?kit='1023>. 
 
“MAIN ROTOR BLADES FOR BIG HELICOPTERS,” SAB Composites, June 2008. 
<http://www.sab-compositi.it/english/mainRotor.htm>. 



 

 113

 
 “Nomadio Sensor 2”. Nomadio R/C. Retrieved August 2005. 
<http://www.nomadio.net/default.asp?ilevel1=2>.  
 
 “Pololu USB 16-servo Controller,” Pololu Robotics and Electronics, Retrieved June 
2008. <http://www.pololu.com/products/pololu/0390/>. 
 
“Spektrum RC DX3 Manual”, Horizon Hobby, Retrieved August 2005. 
<http://www.spektrumrc.com/Media/PDF/dx3manual-english.pdf>. 
 
“STARMAC Gallery,” Stanford Testbed of Autonomous Rotorcraft for Multi-Agent 
Control. Retrieved July 2008. <http://hybrid.stanford.edu/starmac/gallery>. 
 
 “The JAUS Tutorial,” Joint Architecture for Unmanned Systems, Retrieved June 2008. 
<http://www.jauswg.org/JAUStutorial.ppt>. 
 
XCell Ion-X2 Kit Details,” Miniature Aircraft USA, Retrieved August 2007. 
<http://www.miniatureaircraftusa.com/helicopterkits/1024_Ionx/1024_kit_details.as
p>. 
 
Accardo, D.; Esposito, F.; Moccia , A.; “Low-cost avionics for autonomous navigation 
software/hardware testing”, Aerospace Conference, 2004. Proceedings.  2004 IEEE, 
Volume 5,  6-13 March 2004. 
 
Agent Oriented Software Pty. Ltd. (AOS), P.O Box 639, Carlton South, Victoria  3053. 
JACK Intelligent Agents: JACK Manual, 4.1 edition, April 2003.   “http://www.agent-
software.com/shared/resources/index.html” 
 
Andrew Lucas, First Flight True Autonomy at Last. Agent-Oriented Software  Press 
Release, July 2004. 
 
Banks, C., “Helicopter Dynamic Stability,” Retrieved June 2007. 
<http://www.aerojockey.com/papers/helicopter/report.html>. 
 
Berg, M.; Kreveld, M.; Overmars, M.; Schwarzkopf, O.; Computational Geometry, 
Springer, 2000. 
 
Berkeley Aerobot Team (BEAR), U.C. Berkeley, Retrieved October 2005. 
<http://robotics.eecs.berkeley.edu/bear>. 
 
Buskey, G.; Wyeth, G.; Roberts, J.; “Autonomous helicopter hover using an artificial 
neural network”, Robotics and Automation, 2001. Proceedings 2001  ICRA. IEEE 
International Conference on Volume 2,  2001 Page(s):1635 - 1640  vol.2. 
 



 

 114

Bradski, G.R., Computer vision face tracking as a component of a perceptual user 
interface. In Workshop on Applications of Computer Vision, pages 214–219, Princeton, 
NJ, Oct. 1998. 
 
Chang-Sun Yoo; Iee-Ki Ahn; “Low cost GPS/INS sensor fusion system for UAV 
navigation”, Digital Avionics Systems Conference, 2003. DASC '03. The 22nd, Volume 
2,  12-16 Oct. 2003 Page(s):8.A.1 - 8.1-9 vol.2. 
 
Erdem, U.M. and Sclaroff, S., “Automated camera layout to satisfy task-specific and 
floor plan-specific coverage requirements.” Computer Vision and Image Understanding, 
2006, vol. 103 (3), pp. 156-169. 
 
de Castro, E. and Morandi, C., "Registration of Translated and Rotated Images Using 
Finite Fourier Transforms", IEEE Transactions on pattern analysis and machine 
intelligence, Sept. 1987. 
 
de Sousa, J.B.; Girard, A.R.; Hedrick, J.K.; “Elemental maneuvers and  coordination 
structures for unmanned air vehicles”, Decision and Control, 2004.  CDC. 43rd 
IEEE Conference, Volume 1,  14-17 Dec. 2004 Page(s):608 - 613  Vol.1. 
 
Dijkstra, E.W., “A note on two problems in connexion with graphs. In Numerische 
Mathematik,” 1 (1959), S. 269–271.  
 
Endurance R/C, “Products – PCTx,” Retrieved July 2008. <http://www.endurance-
rc.com/pctx.html>. 
 
Fregene, K.; Madhavan, R.; Kennedy, D.; “Coordinated control of multiple terrain 
mapping UGVs”, Robotics and Automation, 2004. Proceedings. ICRA '04. 2004  IEEE 
International Conference,  Apr 26-May 1, 2004 Page(s):4210 - 4215 Vol.4. 
 
Fregene, K.; Kennedy, D.C.; Wang, D.W.L.; “Toward a systems- and control-oriented 
agent framework”, Systems, Man and Cybernetics, Part B, IEEE  Transactions, Volume 
35,  Issue 5,  Oct. 2005 Page(s):999 – 1012 
 
Fregene, K.; Kennedy, D.; David Wang; “Multi-vehicle pursuit-evasion: an agent- based 
framework”, Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International 
Conference, Volume 2,  14-19 Sept. 2003 Page(s):2707 - 2713 vol.2. 
 
Fregene, K., “Distributed Intelligent Control of Hybrid Multiagent 
Systems”, Ph.D. thesis, University of Waterloo, Ontario, Canada, 2002. 
 
Fregene, K.; Kennedy, D.; Wang, D.; “On the Stability of Coordinated Multiagent 
Systems with Degraded Communication”, American Control Conference, Volume 2, 4-6 
June 2003 Page(s): 1038- 1043 Vol. 2. 
 



 

 115

Fregene, K.; Kennedy, D.; Wang, D.; “HICA: A Framework for Distributed Multiagent 
Control,” in IASTED Int. Conf. on Intelligent Systems and Control  2001, pp. 187-192 
 
Gancet, J. and Lacroix, S.; “Embedding heterogeneous levels of decisional autonomy in 
multi-robot systems”, 7th International Symposium on Distributed  Autonomous Robotic 
Systems, Toulouse (France), June 2004. 
 
Gancet, J.; Hattenberger, G.; Alami, R.; Lacroix, S.; “Task Planning and Control for a 
multi-UAV system: architecture and algorithms”, IEEE International  Conference on 
Intelligent Robots and Systems, Edmonton (Canada). 
 
González, A.; Béjar, M.; Mahtani, R.; Ollero, A.;"Control and stability analysis of 
autonomous helicopters", International Symposium on Robotics and Applications 
(ISORA), World Automation Congress (WAC 2004), Seville (Spain), June 28 - July 1, 
2004. 
 
Hoffmann, G.; Rajnarayan, D.G.; Waslander, S.L.; Dostal, D.; Jang, J.S.; Tomlin,  C.J.; 
“The Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC)”, 
Digital Avionics Systems Conference, 2004. DASC 04. The 23rd,  Volume 2,  24-28 Oct. 
2004 Page(s):12.E.4 - 121-10 Vol.2. 
 
Horizon Hobby, Inc., 4105 Fieldstone Road, Champaign, IL 61822 “Spektrum RC DX3 
Manual”, Retrieved June 2006. <http://www.spektrumrc.com/Media/PDF/dx3manual-
english.pdf>. 
 
Hudson, T., “autopilot: UAV command and control,” SourceForge.net, Retrieved June, 
2008. <http://sourceforge.net/projects/autopilot/>. 
 
Jang, J.S., “Nonlinear control using discrete-time dynamic inversion under input 
saturation: Theory and Experiment on the Stanford DragonFly UAVs”, PhD  thesis, 
Stanford University, 2003. 
 
Jones, E.D.; Roberts, R.S.; Hsia, T.C.S.; “STOMP: a software architecture for the  design 
and simulation of UAV-based sensor networks”, Robotics and Automation,  2003. 
Proceedings. ICRA '03. IEEE International Conference, Volume 3,  14-19  Sept. 2003 
Page(s):3321 - 3326 vol.3. 
 
Kahn, A.D.; Foch, R.J.; “Attitude command attitude hold and stability  augmentation 
systems for a small-scale helicopter UAV”, Digital Avionics  Systems Conference, 
2003. DASC '03. The 22nd, Volume 2,  12-16 Oct. 2003  Page(s):8.A.4 - 81-10 vol.2. 
 
Kalman, R., "A New Approach to Linear Filtering and Prediction Problems," 
Transactions of the ASME - Journal of Basic Engineering Vol. 82: pp. 35-45 (1960). 
 



 

 116

Kanade, T.; Amidi, O.; Ke, Q.; “Real-time and 3D vision for autonomous small  and 
micro air vehicles”, Decision and Control, 2004. CDC. 43rd IEEE  Conference,  14-17 
Dec. 2004 Page(s):1655 - 1662 Vol.2. 
 
Karray, F.; Basir, O.; Song, I.; Li, H.; “A framework for coordinated control of  multi-
agent systems”, Intelligent Control, 2004. Proceedings of the 2004 IEEE  International 
Symposium, 2004 Page(s):156 – 161 
 
Karim, S.; Heinze, C.; Dunn, S.; “Agent-based mission management for a UAV”, 
Intelligent Sensors, Sensor Networks and Information Processing Conference,  2004. 
Proceedings of the 2004 14-17 Dec. 2004 Page(s):481 – 486. 
 
Katwal, S., “Range Sensor Brick for Modular Robotics (project in lieu of thesis)”, 
Retrieved June 2008. 
<http://imaging.utk.edu/publications/papers/dissertation/skatwal_project.pdf>. 
 
Kent, C. and Roberts, R., “Cooperation and path planning for unmanned air vehicles”, 
Lawrence Livermore National Laboratory: Technical Report UCRL- JC-149915, 
September 2002. 
 
Koo, T.J.; “Hierarchical system architecture for multi-agent multi-modal  systems”, 
Decision and Control, 2001. Proceedings of the 40th IEEE Conference,  Volume 2,  4-
7 Dec. 2001 Page(s):1509 - 1514 vol.2. 
 
Kooshesh, A.A. and Moret, B.E., “Three-Coloring the Vertices of a Triangulated Simple 
Polygon,” Pattern Recognition, vol. 25, no. 4, pp. 443, 1992. 
 
Krishnamurthy, K.; Ward, D.T.; “Intelligent systems for autonomous aircraft”, Systems, 
Man, and Cybernetics, 2000 IEEE International Conference, Volume 4,  8-11 Oct. 
2000 Page(s):2369 - 2374 vol.4. 
 
Krishnamurthy, K.; Ward, D.T.; “Intelligent systems for autonomous aircraft”, Systems, 
Man, and Cybernetics, 2000 IEEE International Conference, 8-11 Oct.  2000 
Page(s):2369 - 2374 vol.4. 
 
Lee, S.J.; Kim, S.P.; Kim, T.S.; Kim, H.K.; Lee, H.C.; “Development of autonomous 
flight control system for 50m unmanned airship”, Intelligent Sensors, Sensor Networks 
and Information Processing Conference, 2004. Proceedings of the 2004, 14-17 Dec. 2004 
Page(s):457 – 461 
 
Lemaire, T.; Alami, R.; Lacroix, S.; “A distributed tasks allocation scheme in  multi-
UAV context”, Robotics and Automation, 2004. Proceedings. ICRA '04.  2004 IEEE 
International Conference, Volume 4,  Apr 26-May 1, 2004 Page(s):3622 - 3627 Vol.4. 
 



 

 117

Lucas, B.D. and Kanade, T., An iterative image registration technique with an application 
to stereo vision. Proceedings of Imaging understanding workshop, 1981, pp 121—130. 
 
Mahmoud, F.A.A., “Constructing & Simulating a Mathematical Model of Longitudinal 
Helicopter Flight Dynamics,” Part of “Helicopter Control Design” on the MATLAB 
Central File Exchange, 2005, Retrieved June 2007. 
<http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=9222
&objectType=file>. 
 
Masar, I. and Gerke, M. “DSP-Based Control of Mobile Robots”, The European DSP 
Education and Research Symposium EDERS-2004, Birmingham, UK, November  2004. 
 
Masar, I. and Gabler, R., “An Integrated Environment for the Modeling, Simulation, and 
Rapid Design of Control Algorithms for Mobile Robots”, MATLAB Digest, September 
2005, Retrieved March 2006. 
<http://www.mathworks.com/company/newsletters/digest/2005/sept/mobile_robots.html
>. 
 
Merino, L.; Caballero, F.; Martínez-de Dios, J.R.; Ollero, A.; “Cooperative Fire 
Detection using Unmanned Aerial Vehicles”, Proceedings of the 2005 IEEE, IEEE 
International Conference on Robotics and Automation, Barcelona (Spain), April 2005. 
 
Naik, N., “Design, Development and Characterization of a Thermal Sensor Brick System 
for Modular Robotics,” Retrieved June 2008. 
<http://imaging.utk.edu/publications/papers/dissertation/2006-aug-thesis-naik.pdf>. 
 
Naik, N., “Infrared Imaging Sensor Brick for Modular Robotics (project in lieu of 
thesis),” Retrieved June 2008.  
<http://imaging.utk.edu/publications/papers/dissertation/nnaik_project.pdf>. 
 
Nakanishi, H.; Inoue, K.; “Robust control system design by use of neural  networks and 
its application to UAV flight control”, Neural Networks, 2004.  Proceedings. 2004 
IEEE International Joint Conference on Volume 3,  25-29 July 2004 Page(s):1769 - 1774 
vol.3 
 
Ollero, A.; Lacroix, S.; Merino, L.; Gancet, J.; Wiklund, J.; Remuss, V.; Perez,  I.V.; 
Gutierrez, L.G.; Viegas, D.X.; Benitez, M.A.G.; Mallet, A.; Alami, R.; Chatila, R.; 
Hommel, G.; Lechuga, F.J.C.; Arrue, B.C.; Ferruz, J.; Martinez-De Dios, J.R.; Caballero, 
F.; “Multiple eyes in the skies: architecture and perception  issues in the COMETS 
unmanned air vehicles project”, Robotics & Automation Magazine, IEEE, Volume 12,  
Issue 2,  June 2005 Page(s):46 – 57. 
 
Ollero, A.; Ferruz, J.; Caballero, F.; Hurtado, S.; Merino, L.; “Motion compensation and 
object detection for autonomous helicopter visual navigation in the COMETS system”, 



 

 118

Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International 
Conference, Volume 1,  2004 Page(s):19 - 24 Vol.1. 
 
O’Rourke, J., Art Gallery Theorems and Algorithms, Oxford, New York, 1987. 
 
Padfield, Gareth D. Helicopter Flight Dynamics: The Theory  and Application of Flying 
Qualities and Simulation Modeling, AIAA Education Series, 1996. 
 
Page, D.L.; Koshchan, A.F.; Chen, C.; Jackson, M.; Chang, C.; Abidi, M.A.; 
"Modular Sensor 'Bricks' and Unmanned Systems for Persistent Large Area 
Surveillance," EP&R and R&RS Topical Meeting, American Nuclear Society, pp. 
137-144, Albuquerque, New Mexico, March 9-12, 2008. 
 
Poduri, A., “Video Sensor Brick for Modular Robotics (project in lieu of thesis),” 
Retrieved June 2008. 
<http://imaging.utk.edu/publications/papers/dissertation/apoduri_project.pdf>. 
 
Rathinam, S.; Zennaro, M.; Mak, T.; Sengupta, R.; “An architecture for UAV team 
control”, Proc. IFAC Conference on Intelligence Autonomous Vehicles in  Portugal, July 
2004. 
 
Rathinam, S.; Sengupta, R.;  “A safe flight algorithm for unmanned aerial  vehicles”, 
Aerospace Conference, 2004. Proceedings. 2004 IEEE Volume 5, 6-13 March 2004. 
 
Roberts, J.M.; Corke, P.I.; Buskey, G.; “Low-cost flight control system for a small 
autonomous helicopter”, Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE 
International Conference,  14-19 Sept. 2003 Page(s):546 - 551 vol.1. 
 
Rubin, I.; Behzad, A.; Huei-Jiun Ju; Zhang, R.; Huang, X.; Liu, Y.; Khalaf, R.;  “Ad 
hoc wireless networks with mobile backbones”, Personal, Indoor and Mobile  Radio 
Communications, 2004. PIMRC 2004. 15th IEEE International  Symposium, Volume 
1,  5-8 Sept. 2004 Page(s):566 - 573 Vol.1. 
 
Saphyroon, A.; Jarah, M.A.; Al-Ali, A.; Hadi, M.; “Design and implementation of a low 
cost UAV controller”, Industrial Technology, 2004. IEEE ICIT '04. 2004  IEEE 
International Conference on Volume 3,  Dec. 8-10, 2004 Page(s):1394 – 1397. 
 
Sasiadek, J.Z.; Hartana, P.; “Sensor fusion for navigation of an autonomous unmanned 
aerial vehicle”, Robotics and Automation, 2004. Proceedings. ICRA  '04. 2004 
IEEE International Conference on Volume 4,  Apr 26-May 1, 2004 Page(s):4029 - 4034 
Vol.4. 
 
Sellers, D., “An Overview of Proportional plus Integral plus Derivative Control and 
Suggestions for Its Successful Application and Implementation,” 
<http://www.peci.org/library/PECI_ControlOverview1_1002.pdf>. 



 

 119

 
Shoham, Y. and Tennenholtz, M., “On social laws for artificial agent societies: off-line 
design.”, Artificial Intelligence, vol. 74, no. 1-2, pp. 231-252, 1995. 
 
Sinopoli, B.; Micheli, M.; Donato, G.; Koo, T.J.; “Vision based navigation for an 
unmanned aerial vehicle”, Robotics and Automation, 2001. Proceedings 2001  ICRA. 
IEEE International Conference, 2001 Page(s):1757 - 1764 vol.2. 
 
Sousa, J.; Simsek, T.; Varaiya, P.; “Task planning and execution for UAV teams”, 
Decision and Control, 2004. CDC. 43rd IEEE Conference,  14-17 Dec. 2004 
Page(s):3804 - 3810 Vol.4. 
 
Teo, R.; Jung Soon Jang; Tomlin, C.J.; “Automated multiple UAV flight - the Stanford 
DragonFly UAV Program”, Decision and Control, 2004. CDC. 43rd  IEEE 
Conference, Volume 4,  14-17 Dec. 2004 Page(s):4268 - 4273 Vol.4. 
 
Timofeev, A.V.; Kolushev, F.A.; Bogdanov, A.A.; “Hybrid algorithms of multi- agent 
control of mobile robots”, Neural Networks, 1999. IJCNN '99. International  Joint 
Conference,  10-16 July 1999 Page(s):4115 - 4118 vol.6. 
 
Xsens Motion Technologies, “MT9 Inertial 3D Motion Tracker,” Retrieved June 2008. 
<http://www.xsens.com/download/MT9_brochure.pdf>. 
 
Xsens Motion Technologies, “MT9-B Technical Documentation” MT9 SDK, Retrieved 
June 2008.  
<http://www.xsens.com/index.php?mainmenu=support&submenu=downloads&subs
ubmenu=legacy>. 
 
Yang Hui; Cheng Xhiping; Xu Shanjia; Wan Shisong; “An unmanned air vehicle  (UAV) 
GPS location and navigation system”, Microwave and Millimeter Wave  Technology 
Proceedings, 1998. ICMMT '98. 1998 International Conference on18- 20 Aug. 1998 
Page(s):472 – 475. 
 
Zhiqiang Wu; Kumar, H.; Davari, A.; “Performance evaluation of OFDM  transmission 
in UAV wireless communication”, System Theory, 2005. SSST '05.  Proceedings of 
the Thirty-Seventh Southeastern Symposium, 20-22 March 2005 Page(s):6 – 10. 
 
Ziegler, J.G. and Nichols, N.B., “Optimum settings for automatic controllers,” Trans. 
ASME, 1942. 
 



 

 120

Vita 
 

Marcus James Jackson was born Smyrna, Tennessee on April 7th, 1982. His 
family moved to Murfreesboro, Tennessee where Marcus attended Homer Pittard 
Campus School through the sixth grade. He next attended Central Middle School for two 
years, followed by Oakland High School. He graduated Valedictorian in 2001.  
 

Marcus began attending Tennessee Technological University in Cookeville, 
Tennessee in August 2001. Marcus was an active member and officer of the Sigma Phi 
Epsilon fraternity. In the Summer of 2004, he attended the Sigma Phi Epsilon national 
conclave in San Antonio, Texas as the chapter alternate delegate. He received his B.S. 
Computer Engineering from Tennessee Tech in May 2005, graduating Summa Cum 
Laude. While working on his undergraduate degree, Marcus interned at Consolidated 
Utility District in Murfreesboro for one Summer. 

 
Marcus began working as a graduate research assistant for the Imaging, Robotics, 

and Intelligent Systems (IRIS) laboratory at the University of Tennessee, Knoxville, in 
August 2005. He will be graduating with an M.S. Electrical Engineering in August, 2008.  

 
After graduation, Marcus will return to Murfreesboro to pursue a career in 

computer engineering in the Nashville area. 


	Wide-Area Surveillance System using a UAV Helicopter Interceptor and Sensor Placement Planning Techniques
	Recommended Citation

	thesis_mjj_final_su08

