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Abstract 

The aim in reservoir management is to control field operations to maximize both the 

short and long term recovery of hydrocarbons. This often comprises continuous 

optimization based on reservoir simulation models when the significant unknown 

parameters have been updated by history matching where they are conditioned to all 

available data. However, history matching of what is usually a high dimensional 

problem requires expensive computer and commercial software resources. Many models 

are generated, particularly if there are interactions between the properties that update 

and their effects on the misfit that measures the difference between model predictions to 

observed data.   

In this work, a novel  'divide and conquer' approach is developed to the seismic history 

matching method which efficiently searches for the best values of uncertain parameters 

such as barrier transmissibilities, net:gross, and permeability by matching well and 4D 

seismic predictions to observed data. The ‘divide’ is carried by applying a second order 

polynomial regression analysis to identify independent sub-volumes of the parameters 

hyperspace. These are then ‘conquered’ by searching separately but simultaneously with 

an adapted version of the quasi-global stochastic neighbourhood algorithm.  

This 'divide and conquer' approach is applied to the seismic history matching of the 

Schiehallion field, located on the UK continental shelf.  The field model, supplied by 

the operator, contained a large number of barriers that affect flow at different times 

during production, and their transmissibilities were largely unknown. There was also 

some uncertainty in the petrophysical parameters that controlled permeability and 

net:gross. Application of the method was accomplished because it is found that the 

misfit function could be successfully represented as sub-misfits each dependent on 

changes in a smaller number of parameters which then could be searched separately but 

simultaneously. Ultimately, the number of models required to find a good match 

reduced by an order of magnitude. Experimental design was used to contribute to the 

efficiency and the ‘divide and conquer’ approach was also able to separate the misfit on 

a spatial basis by using time-lapse seismic data in the misfit. The method has effectively 

gained a greater insight into the reservoir behaviour and has been able to predict flow 

more accurately with a very efficient 'divide and conquer' approach.  
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th
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2
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CHAPTER 1 An Introduction to ‘Divide and Conquer’ of 

Unknowns for Faster Convergence in Seismic History 

Matching 

 

 

1.1 Introduction  

Despite a weak global economy, in a time when energy demand was down by about two 

percent on recent years, the world still appears to be consuming all the oil and gas that 

can be produced.  The quest for oil and gas continues worldwide, but based on the most 

depletion analysis, the peak supply is likely to be passed within 10 years (ASPO 

international 2011).  The age of easy energy is over and oil and gas reservoirs are harder 

and more expensive to exploit than ever before.  These realities drive the increase in oil 

price and encourage more effort to make new discoveries and enhanced production to 

recover more reserves from known reservoirs.   

 

Further, the conditions in which oil and gas fields are now being discovered are much 

more unconventional, complex, and challenging.  Also, currently developed fields are 

becoming depleted and therefore more marginal and less manageable.  Unless there is a 

way to continuously monitor and take correct decisions on an optimal basis, it is hard to 

justify continuing to produce fields for economically, even with the continued soaring 

price of oil.   

 

In many oil and gas assets, model based predictions are used to help with field 

management and can provide a large number of feasible production profiles.  Then 

computer assisted methods should be used to analyse the possibilities and optimise the 

planning faster and more effectively than more traditional methods.  Real time (closed-

loop) reservoir management is a means to meet the business objectives by regularly 

optimising the performance of oil and gas fields.  It is an integrated approach in all 

aspects including reserves, production, net present value (NPV), rate of return (ROR), 

capital and operation and maintenance costs, and health and safety and environment.  
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The entire approach is a long-term and focused on the overall life periods of the assets 

as shown in Figure 1.1 

 

 

 

Figure 1.1: Reservoir optimization focuses on the overall life of the assets. Through time, oil 

and gas fields go through four basis stages: Exploration, Appraisal, Development and 

production.  Objectives change as fields mature impacting expenditures, development and 

production strategies.  Innovation in reservoir management techniques can help optimize 

production, enhancing the value of assets at every stage (after Eide et al. 2002). 

 

 

The core of closed-loop reservoir management (see Figure 1.2) begins with modelling 

the physics via a mathematical representation of the reservoir system.  Then, continuous 

data gathering, data assimilation, and updating of the reservoir simulation model are 

essential components.  The data are gathered during the exploration and appraisal phase; 

and also by monitoring when the field goes on production.  The elements of closed-loop 

control are: 

 

i) history-matching reservoir models with production data,  

ii) optimization of the production strategy for next couple of years, 

iii)  implementation of the production strategy,  

iv)  collection of output data, and 

v)  re-optimization production strategy in short time intervals.   
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Consequently, ‘history matching’ is a crucial stage in the reservoir management which 

entails building the comprehensives static reservoir model and calibrating the model 

using dynamic data.  

 

A major challenge of this thesis is focused on this stage and in particular to improve the 

process of reservoir history matching while the valuable information obtained from well 

and time-lapse seismic data is integrated.  This study explores enhanced techniques that are 

needed to accelerate the routine field application of 4D seismic history matching.  

 

Manual history matching is a conventional option, but it is a trial-and-error task that can 

be time consuming and difficult because reservoir models are complex, with many 

unknown parameters which may be highly interlinked.  Automatic history matching, 

however, potentially saves significant amounts of man power, although it does not 

eliminate the complexity of the process regarding the number of unknowns and 

requirement for reservoir engineering skills.  History matching is an inversion technique 

and its application is well developed and may be accomplished by coupling a reservoir 

simulator with an optimization routine.  In such circumstances an objective function that 

quantifies numerical differences between observed data and simulation responses are 

evaluated.  The minimum of the objective function is found and the optimal reservoir 

models are estimated.  These models should give more reliable forecasts for reservoir 

behaviour and thus are used for a range of decision makings regarding optimal 

operational decisions and control conditions.  Consequently, increased oil recovery and 

revenue should be achieved (Figure 1.2).  

 

Time-lapse (4D) seismic technology is now mature in the field of reservoir geophysics 

and engineering. 4D seismic maps are derived from repeated acquisition of 3D seismic 

data over time intervals and facilitate fluid movement monitoring in the reservoir.  

Seismic data are sensitive to static properties such as net:gross and porosity as well as 

dynamic properties such as fluid saturation and pore pressure.  4D seismic data may be 

used qualitatively to identify the time varying position of fluid fronts and to implicitly 

infer the reservoir characteristics that control the flow of fluids in the subsurface.  Also, 

4D seismic data may be used as a quantitative tool in ‘seismic history matching’ 

through the use of a petro-elastic modelling linked to a reservoir simulation.  Thus it is a 

fundamental element of reservoir management.   
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Figure 1.2: Reservoir data assimilation, model updating, manual and automatic history 

matching. The inversion process of history matching helps provided the closed-loop reservoir 

management scheme with better models with which decisions about optimal operational 

scenarios can be made.  

 

 

The reservoir simulator uses a spatial grid, and the history matching process then 

adjusts the reservoir model properties such as permeability and porosity in grid cells of 

the simulation model to best fit the production and seismic data.  Conventionally a large 

number of reservoir parameters have to be retrieved, and in particular for large scale 

models, there may be more than hundreds of such unknown parameter.  Optimization 

methods, which are used in as a tool in history matching, are based on sampling 

algorithms that explore/exploit the parameter space to find models that fit the observed 

data.  They require a large numbers of samplings, and thus simulation runs, to converge 

to the best fitting model or models. This is not only time consuming but software 

license costs are considerable.  The number of simulations required increases if we do 

not know the link between the unknown parameters that are adjusted.  There is a 

significant demand for efficient and fast approaches that can reduce the order of the 

required modelling and thus accelerate the process of such high dimensional history 

matching problems.   
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In this thesis we aim to use a technique which converts a full order high dimensional 

history matching problem into a set of low-dimensional subspaces, thus reducing the 

number of parameters samples that are required to be evaluated by the optimisation 

procedures. We propose an approach which is based on a proper orthogonal 

decomposition and identification of the unknowns that are not coupled. We call this 

‘divide and conquer’ approach.  This is an efficient technique and consists of following 

major phases: 

 

 Breaking the problem into several sub-problems that are similar to the original 

problem but smaller in size.  

 Solve the sub-problem recursively (successively or in parallel but 

independently). 

 Combine these solutions of the sub-problems to create a solution to the original 

problem. 

 

The research of this thesis is thus devoted to develop such an approach.  The key 

contribution of ‘divide and conquer’ is to establish a speed up in the convergence rate of 

history matching while at the same time delivering high quality results.  Here, this has 

been implemented in the context of Seismic History Matching (SHM).   

 

In this chapter we start with an overview for reservoir simulation and history matching 

and several related aspects.  Then the objective and the motivation of this thesis are 

expanded.  After that an idea for ‘divide and conquer’ approach is presented. We finish 

with an outline of the content of the following chapters of thesis.  

 

 

1.2 Reservoir Simulation and History Matching 

The reservoir simulator is an essential tool in closed-loop management of oil and gas 

reservoirs.  By using a simulator, history and forecasting of reservoirs can be analysed.  

The reservoir simulation formulation is based on several fundamentals, including:  

 

 The physical fundamentals of conservation of mass in a control volume 

 Darcy's law of fluid flow through porous media and Equations of state for 

prediction the thermodynamic behaviour of fluids  

 Capillary pressure and relative permeability relationships  
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 Multiple fluid phases that may exist in the porous rocks  

 

By applying these fundamentals a set of partial differential diffusivity equations 

governing the fluid flow of various phases of oil, gas, and water in the porous media are 

then derived.  These equations are difficult to solve analytically, so the finite-difference 

approximate form both in time and space are used (e.g. Aziz and Settari 1979). 

Accordingly, the reservoir volume is discretised to a great number of grid cells in space, 

which is called a reservoir model. Grid cells should capture the interpreted 

heterogeneity in the reservoir by being populated with reservoir rock petro-physical 

properties such as porosity and permeability, and so on.  Hence, the reservoir models 

are built based on the geological setting and the properties that are acquired through 

core, wireline logging, and well measurements.  These properties are sparsely sampled 

in the reservoir (i.e. at the well locations only) and reflect the quality of the rock in a 

small region such as the well drainage area and the connected regions.  Thus they are 

very sparse relative to the great number of grid blocks that constitute a geo-model or 

simulation model (e.g.10
6
-10

8
 cells).   

 

One of the real challenges therefore is that insufficient information is obtainable from 

the reservoir between the wells.  Fortunately, 3D seismic imaging can play at important 

role in understanding of the reservoir characteristics, volumetrically.  The 3D signature 

interpretations assist in mapping petro-physical properties (i.e. lithology, pore volume, 

and net:gross) of the subsurface and enhance the reservoir descriptions. These data 

provide useful information when building the reservoir model nevertheless they do not 

delineate the fluids dynamics in a reservoir. 

 

As a result of production activities, pressure in the reservoir changes and at the same 

time the fluid saturation changes in the pores of the rocks.  From one single seismic 

survey, one is not able to differentiate between features caused by static properties and 

those caused by dynamic behaviour.  Contrasting seismic surveys acquired at different 

times, however, may eliminate the impact of static details, and enable extraction of 

information about the changes in the reservoir dynamic properties induced by 

production. 4D seismic monitoring can capture oil depletion by various phenomena 

through the life cycles of the field, i.e. from development to plateau and finally up to 

secondary and tertiary recovery scenarios, that is:  
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 In primary production, mainly the effect of change in pore pressure due to 

pressure draw down, gas evolution and compaction of geomechanically active 

fields can be understood. 

 

 In a field under water flooding and in mature fields when secondary recovery 

schemes are implemented, water saturation and pore pressure changes can be 

detected. 

  

 In tertiary recovery practice in more mature fields often the results of the 

thermal and saturation changes due to steam injection, in-situ combustion, hot 

water injection, compaction etc. can be inferred. 

 

All these changes in pore pressure, pore volume and fluid saturation have an impact on 

geophysical properties such as rock and fluid and rock compressibility.  For example in 

the Nelson field a trough/peak 4D signature was observed in the far offset of 

conventional differences (Redondo-Lopez et al. 2002, MacBeth et al. 2002), Figure 1.3 

shows such a 4D signature difference map over six years of production (1990-2000).  

4D seismic maps can enhance the understanding of saturation patterns and general flow, 

thus we are able to determine critical areas that need more attention and adjustment in 

reservoir models. If time-lapse (4D) seismic data are available, they are utilized in 

conditioning of the reservoir properties of models through history matching. 

 

In Figure 1.3, the trough corresponds to the moved Oil-Water Contact (OWC) and the 

peak corresponds with the original OWC (Redondo-Lopez et al. 2002). The trough/peak 

signature was mapped for use in the prediction of moved oil-water contact in the 

reservoir simulation history matching. The result facilitated identification of sweep, 

along with visualisation of areas of unswept oil, highlighting infill opportunities.  Early 

outcomes from infill drilling validated the method and indicated the potential economic 

benefits of 4D seismic technologies (McInally et.al. 2003). 
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Figure 1.3: A conventional far-offset difference map (1990-2000) that shows the typical 

trough (red)-peak (blue) 4D signature in the Nelson field (after McInally et al. 2003). 

 

 

Direct measurements of reservoir properties are limited (i.e. petro-physical data are only 

measured at well locations), contamination with noise (i.e. 3D seismic data), and are 

measured at different scales. Therefore reservoir properties such as porosity and 

permeability are usually unknown or poorly defined in the static geo-cellular fine scale 

model.  A model that is only conditioned to such data is less likely to replicate the 

reservoir production history and thus is less reliable when used for forecasting purposes.  

The reservoir parameters could be better estimated using indirect measurement, such as 

well production and 4D seismic data. A more geologically sound and accurately 

characterized model which reproduces the past reservoir performance more precisely, 

will make more reliable prediction. History matching as further conditioning, 

constraints the reservoir model through assimilation of all available static and dynamic 

data, and is essential to forecast a confident and optimal production scenario. 

 

Production and seismic datasets are often used separately in history matching with the 

supposition that since the data are of different spatial and temporal scales, each is 

suitable for calibrating a particular set of parameters.  Nevertheless, the models updated 

using well production data, often could not reasonably predict the seismic dataset, and 

vice versa.  However, combined use of production and seismic data put more constraints 

on the reservoir model and result in more realistic estimates of model parameters.  

Various case studies have illustrated the success of integration of 4D seismic 

monitoring and production data in estimation of the reservoir properties mostly 

permeability, net:gross and particularly flow barriers (Huang et al. 1997, Landrø 2001, 

Meadows 2001, Gosselin et al. 2003, Mezghani et al. 2004, Dong and Oliver 2005, 
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Stephen et al. 2006, Roggero et al. 2007, Jakobsen et al. 2007, Walker and Lane 2007, 

Dong and Oliver 2008, and Castro et al. 2009).   

 

4D reservoir history matching studies have derived more reliable models that could 

assess the path of fluids movements and the phase-front progress, identify bypassed 

volumes in the un-swept reservoir compartments, evaluate drilling risks that are evolved 

over the life of fields, and estimate remaining reserves with fewer associated 

uncertainties. Ultimately, they have optimised the recoverable oil and gas from 

reservoirs yielding more profits. Although it is not easy to quantify exactly, the 

economic impact of such methods appears to have been considerable.  As an example, 

the estimated savings for Gullfaks are more than $1billion (Helland et al. 2008).  

Overall there has been a 6% reduction in drilling costs and additional reserves have 

increased by 5%. An extrapolated assessment by BP towards the end of 2022 has 

concluded that the use of 4D imaging across their fields would result in an additional 

sum of 66 MM stb reserves, taking the total to 95 MMstb of reserves (Figure 1.4).  

These statistics are dominated by 4D activity carried out in the North Sea only, and such 

rewards are consistently and substantially in excess of the produced volumes originally 

anticipated (Marsh 2004).  Currently, the North Sea accounts for more than 80% of the 

global 4D market in terms of survey expenditures, however, because of such 

economical benefits further 4D practice may take up continuously (Evans 2008). 

 

 

                   

Figure 1.4: Production increment assigned to the use of 4D seismic practice in North Sea 

fields (after Marsh 2004). 
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Developments in 4D technology have stimulated the advances in the seismic acquisition 

capabilities in recent years, which have led to improved 4D data quality (Figure 1.5), 

and a reduction in the time period between surveys.  In return, there is continued desire 

for the development of more efficient quantitative 4D seismic interpretations to identify 

the fine-scale information content of the 4D signatures, than is currently available in the 

reservoir seismic history matching practices. 

 

 

 

Figure 1.5: Quality of 4D seismic data is improving, this leads to an ever increasing ability to 

extract reservoir fine-scale details that can then used to improve the simulation model via 

integrated seismic history matching process (after MacBeth et al. 2008).  

 

 

1.3 Requirements for History Matching 

The requirements for carrying out the process of history matching include consolidation 

of the various sources of data into a reservoir mode which are divided into several types 

as described in following paragraphs. 

 

Static Data: typically, the reservoir fine scale geo-cellular models are created with 

static data from various sources (see Figure 1.6).  A pre-production static model is built 

based on the geological setting of the reservoir and by integration of 3D seismic data, 

core lab data, well log measurements, and sedimentary models using appropriate 

geostatistical techniques.  These static data are measured at different scales.  3D seismic 
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acquisitions offer high resolution areally with low vertical resolution, while well logs 

are often extremely sparse spatially but may have some high resolutions measurements, 

usually vertically. In geophysical measurements the data are grouped in bins which 

typically measure about 25 metres, while in the geo-modelling cell dimensions may be 

between 25 to 100 metres, and typically for the upscaled numerical simulation, the grid 

size suits around 100 to 200 metres horizontally, and several metres vertically.   

 

 

       

Figure 1.6: A static model is constructed based on geological settings and several sources of 

data. Then it is upscaled for simulation purposes (after Eastwood 2009). 

 

 

Upscaling of the Static Model: this is a common practice to reduce the computational 

time of simulation runs.  However, this process introduces approximation and extra 

uncertainties in the model properties which propagate to the simulation predictions.  

Upscaling increases in the cell dimension (and reductions the number of cells) and 

results in a loss of resolution of geological information. Upscaling procedure is complex 

because the upscaled cells should represent the flow (rate and pressure) effects enforced 

by the finer scale cells.   

 

Unknown parameters: there are numerous unknown rock properties in the static 

reservoir model that are candidates to be updated in history matching.  The three main 
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properties that have considerable spatial variability consist of:  net:gross, porosity and 

permeability.  These properties are typically correlated.  There is also a large number of 

other uncertain parameters that are not necessarily directly related to the spatial grid 

cells. Examples include fault transmissibility multipliers, fluid properties (e.g. 

viscosities and densities), rock-fluid parameters (e.g. relative permeability and capillary 

pressure), aquifer size and strength, rock compressibility, water-oil contact, gas-oil contact 

and etc.  However, the degrees of uncertainty in these data are different.  For example for 

the lab data such as fluid properties, rock compressibility, elastic moduli of rock, relative 

permeability, and capillary pressure, the uncertainty is usually less than other data though 

there are issues of representivity. 

 

Dynamic Data: in general this includes those data that are related to fluid displacement 

and the field production activity.  They include well and repeat surveys of seismic data.  

Although the well data are limited to a few spatial locations, they provide information 

continuous in time that is more useful for short-term characterization of regions near the 

wells. Seismic surveys, conversely, are spatially spread over entire reservoir but are 

infrequent in time.  They present better information about changes in the saturation and 

pressure maps in later time. 

 

Well production data include oil, water and gas production rates, water-oil ratio (WOR), 

gas-oil ratios (GOR), water-gas ratios (WGR), bottom hole static and flowing pressure 

(BHP and FBHP). These types of well data are typically acquired with accuracy 

between 1-20%.  Also, water and gas arrival times and fluid saturations from core data 

and RFT and transient well test measurements can be used in history matching (Mattax 

and Dalton 1990).  As a practice sometimes the simulation model draws an initial part 

of well history data leaving the remaining portion of well production information to test 

the history matching methods during subsequent forecasting. 

 

4D seismic data include various seismic acquisitions that measure P-wave velocity, 

reflectivity, amplitude, two-way-travel time in the time domain; and impedance or 

pseudo impedance which is in the depth domain.  The use of time lapse data in history 

matching assumes that there is a practical basis for comparison of observed and 

simulated seismic data. However, geophysicists and reservoir engineer draw various 

attributes of the reservoir, i.e. they work in different domains of time or depth.  

Simulation models predict the reservoir pressure and fluid saturations (or impedance) in 
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the depth domain. However, the changes in pore pressure and saturation (and also 

temperature) due to production result in changes in seismic velocities and impedance, 

which is measured by seismic amplitude in the two-way time domain.  There are other 

domains in which we can compare observed and simulated data including seismic 

impedance (or pseudo impedance) and pressure/saturation domains (see Figure 1.7). 

 

 

 

Figure 1.7: The various domains for comparison of measured and simulated seismic data 

Red circle identify the domain that has been used in this work (after MacBeth 2007). 

 

 

Reservoir rock-physics properties link seismic and reservoir properties, and seismic 

properties can be estimated from simulated pressure and saturation using a petro-elastic 

modelling. Since rock property data is always limited, this calculation carries 

uncertainties which come from petro-elastic and seismic modelling. This approach is 

moderately time intensive for convolution methods approximately equivalent to the 

simulation time, but too time consuming and with more accurate full wave simulation.  

Likewise, seismic data can be converted to impedance and then by an inversion the 

changes in pressure and saturation may be quantified albeit with more uncertainty.  
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There are uncertainties which come from the seismic inversion utilized to estimate the 

pressure and saturation attributes either from the petro-elastic model or else from 

calibration issues via empirical inversion. Therefore, complications exist in comparing 

in each domain. All methods for this purpose rely on the accuracy of an underlying 

velocity model which requires fine-tuning. 

 

Identifying the best domain for the seismic comparison is an active research area. We 

sought to avoid both the forward modelling to generate synthetic seismic traces and also the 

seismic inversion to estimate the pressure and saturation, since both may add uncertainty.  

To reach a balance between time and accuracy we considered the impedance domain as the 

best place for comparing real and simulated data (Stephen et al. 2006).  In this study, 

impedance data are simulated, and we therefore required observed impedance data or an 

equivalent attribute. Coloured inversion seismic data was used to get observed pseudo 

impedance for 4D seismic history matching of the Schiehallion field in this work.  

Previously, pseudo impedance data were also used (Stephen et al. 2005, Stephen 2006, 

Stephen and Macbeth 2006, and Stephen and Macbeth 2008).  

 

Many studies in seismic history matching have chosen the impedance domain since 

simulation of impedance is reasonably straightforward and is not very time consuming 

relatively (Bentley 1998, Gosselin et al. 2001, Waggoner et al. 2002, Gosselin et al. 

2003, Mezghani et al. 2004, Dong and Oliver 2005, Emerick et al. 2007, Skjervheim et 

al. 2007, Roggero et al. 2007).  Other domains have also have been studied, for 

example, saturation and pressure domain (Risso 2007, Machado 2009, De Souza et al. 

2010), full amplitude time and seismic attribute domain (Huang et al. 1999, Parr et al. 

2000, Aggio and Burns 2001, Lygren et al. 2003, Dadashpour et al. 2007, 

Leeuwenburgh 2008) and phase shifted amplitude (pseudo impedance) (Stephen et al. 

2007, Edris 2008, Kazemi et al. 2010).   

 

Seismic history matching has been applied in a number of field studies (Ditzhuijzen 

2001, Litvak 2004, Stephen et al. 2007, Evensen et al. 2007, Roggero et al. 2007, 

Rwechungura 2010).  It has also been performed using synthetic reservoirs cases 

(Castro et al. 2005, Stephen 2007, Jin et al. 2008, Echeverría 2009, Fahimuddin 2010, 

Leeuwenburgh et al. 2010, Trani et al. 2011).  The benefit in synthetic studies is that the 

effect of 4D seismic signal/noise ratio in the final results could be investigated and the 

degree of success of 4D history matching could be evaluated.  Additionally, in such 

http://www.citeulike.org/author/Leeuwenburgh:O
http://www.citeulike.org/author/Leeuwenburgh:O
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cases the size of the simulation model is usually small making it easier to parameterize 

the reservoir. 

 

SHM Synopsis: the general approach for automatic seismic history matching is outlined 

in Figure 1.8. At each iteration simulation predict well behaviour and grid cell pressures 

and saturations.  These dynamic attributes are used to calculate synthetic impedance of 

each grid block of the simulator using a petro-elastic model (PEM) based on the 

Gassmann (1951) equation and using MacBeth (2004) correlation for stress sensitivity.  

The simulated seismic properties are calculated at times corresponding to the 4D 

monitor surveys and are then upscaled vertically and downscaled horizontally at the 

geophysical model scale (seismic bin size) to estimate acoustic impedance. Observed 

and synthetic data are compared by computing a misfit function which includes both 

production and 4D seismic data.  An optimization routine is used to minimize the misfit 

objective function and update the reservoir parameters to find the best matched model. 

 

 

        

Figure 1.8: Depiction of the Seismic History Matching (SHM) process (Stephen et al. 2006). 

 

Updating Algorithms: are an essential element of the automatic (computer aided) history 

matching methods. We refer to routines which seek to minimize or maximise some function 

that depends on some controlling parameters. We exclude details of the function.  Gradient-

based optimization methods such as Gauss-Newton, Levenberg-Marquardt, steepest 

descent, and others are usually quite efficient in converging to a local minimum of the 
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objective function.  In general, the objective function is likely to have many minima.  Only 

those minima that give a sufficiently good match to the data are of interest.  The aim of 

global optimisation methods is to track down the global minimum of the objective function 

and find multiple matching models instead of one single model.   

 

Well-known stochastic global methods are simulated annealing, neighbourhood algorithm 

and genetic algorithms.  In such derivative-free optimisation methods only the rank of the 

models with respect to the objective function are used to drive the searches. Thus the 

CPU intensive mathematical calculation of the sensitivities and second derivative of the 

objective function are avoided. However they require many simulations to converge.  The 

Neighbourhood Algorithm (NA) (Sambridge 1999) is a direct search quasi-global 

algorithm and is used in this thesis to sample the parameter space in the SHM 

workflow. The NA performance, like all stochastic optimisation methods, relies on 

generating an ensemble of models to be generated initially and also many models are 

produced during the search. The advantage is that the routine is amenable to parallel 

processing. 

 

 

1.4 Objective of this thesis 

It is a fact that oil and gas reservoir systems are too complex to be modelled accurately 

because: i) that we do not know all the parameters that are involved in affecting flow 

behaviour in the reservoir, and ii) even if we know the parameters the relationship 

between these parameters may be very complex.  As a result history matching is usually 

a high dimensional and non-linear inverse problem. It is classified as being a problem 

that is ill-posed and underdetermined and one which suffers from a large number of 

unknowns, also known as the ‘curse of dimensionality’. The number of unknowns is 

enormous particularly relative to the available data.  The unknowns usually include the 

various properties of a large number of reservoir model grid blocks (such as 

permeability, net:gross, etc. Currently, research efforts are focused on dealing with the 

complexity of the history matching process in many academic and industrial centres.  It 

remains the case that further developments are needed especially for the purposes of: 

 

i) Providing a means for reducing the number of the unknown.  

 

ii) Identifying the link between the reservoir parameter unknowns.  
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iii) Simplifying the history matching problem. 

 

One response to these demands is the employment of the ‘divide and conquer’ approach 

which is a new initiative that is proposed in this thesis.  The incentives associated with 

developing this approach is fast convergence time, low computation cost and a 

capability to acquire qualified results at the same time, in the seismic history matching 

analysis. It is a development of the existing Seismic History Matching (SHM) procedure 

(Stephen et al. 2006) which is used here and has also been successfully applied to both 

synthetic and realistic field studies previously.   

 

Tackling the limitation caused by the great number of unknown parameters is very 

much necessary when using any type of optimisation routine, particularly when using 

stochastic methods. It is also important when using gradient-base algorithms.  

Overcoming this limitation reduces the iterations in history matching applications and 

thus the number of simulation runs required to obtain a solution. Thus an obvious 

saving in computational (CPU) time can be made which is important given the cost of 

using commercial simulators, e.g. Eclipse100 software (Eclipse Manual 2007).  

Commonly, the rough cost of using such simulators is £50-100K for the price of a 

license, and about £1K per day for fee of running and maintenance, which would be 

around £30K for one month (http://www.egpet.net, vbulletin 2011). 

 

From qualitative analyses of applications of history matching procedures it is 

recognizable that individual well performance and time-lapsed (4D) seismic predictions 

are directly linked to the changes in particular localities in the reservoir, e.g. the area 

around an injector well.  Indeed in many similar cases, especially when there are many 

updated parameters (i.e. high dimensional cases) it may be the case that groups of 

parameters may be changed independently to improve the history matching results.  In 

such cases history matching can be split into a number of more simplified problems that 

could be handled more efficiently.   

 

The method developed in this research initially seeks to determine whether we can 

ignore the interaction between the parameters that we wish to update in order to divide 

the entire parameter space of the problem into several sub-volumes of lower 

dimensions. Then, the sub-volumes of parameters are searched independently but 
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simultaneously, i.e. in parallel, more efficiently and in a shorter time.  We therefore get 

an improvement in the convergence of SHM.  We call this approach ‘Divide and 

Conquer’ and it is a novel initiative. 

 

 

1.5 Motivation of the thesis 

The number of models required to find an optimal solution (or several if there are 

multiple minima)  using stochastic search routines, e.g. Neighbourhood Algorithm (NA) 

increases exponential as the parameter space of the problem grows in dimension, i.e. 2
nd

 

where nd is the number of parameters. This is particularly the case if we assume that 

there are interactions between the parameters to be updated. When the interactions 

between various parameters are negligible, however, and the parameter space is 

searched as if it is fully coupled, over-sampling may occur.  In fact many wasted models 

will be generated in the course of inversion processes which bring no new information.   

 

In Figure 1.9 we illustrate the concern of oversampling with a simple two dimensional 

(2D) model (used as an example).  When the response surface is non-orthogonal (Figure 

1.9a), the function cannot be split into sub-functions and so the parameters have to be 

sampled all-together during the each search.  However, if the function is orthogonal, it 

can be represented as a summation of two separate functions, each independent of the 

other (Figure 1.9b); then the problem of finding the global minimum of the surface is 

much simpler. We can sample along each parameter space of each sub-function 

independently but simultaneously, i.e. in parallel.  We can also sample along the path of 

constant values for one parameter, and find the minimum of the other parameter and 

vice versa, i.e. in serial.   
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Figure 1.9: Schematic of misfit surfaces that are a) non-orthogonal and b) orthogonal. When 

searching for a global minimum of a non-orthogonal function, parameters need to be 

sampled all-together.  In the case of an orthogonal function parameters can be searched 

individually in parallel. 

 

 

We now illustrate the problem further with a high dimensional example.  We consider a 

fourteen-dimensional (14D) quadratic response function in the form of: 
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In reality the function consists of seven pairs of mutually interacting parameters and 

could be split into seven two-dimensional (7×2D) sub-functions, as below: 
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We consider solving the problem by splitting up the search in different components of 

the sub-volumes using NA (see x-axis of Figure 1.10 for these cases).  First the entire 

14D parameter space is searched using the NA.  A parallelized version of NA is used to 

search the decoupled parameter sub-volumes individually but simultaneously. For 

example we consider a (12D +2D) problem so that only one 2D sub-function is used 

and the remainder is regarded as one 12D sub-function. As the degree of function 

decomposition increases from the first case up to last case (7x2D) the number of 

function evaluations decreases exponentially, see Figure 1.10.  The results illustrate the 

driving initiative behind dividing the parameter space to several non-interacting sub-

domains and shows the degree to which we may speed up convergence.  

 

 

          

Figure 1.10: The number of required function evolutions to converge to a minimum declines 

exponentially by increasing the function decomposition. 

 

 

1.6 Overview of ‘Divide and Conquer’ the unknowns 

To perform the ‘divide and conquer’ approach (Figure 1.11) we take advantage of a 

numerical or analytical representation of the misfit function. To begin with, for a 

sufficient number of parameter combinations and the misfit values are evaluated.  Then 

Response Surface Modelling (RSM), also known as proxy models, is used.  A proxy 

model is used to assign and fit the misfit values of the set of initial models to a multi-

dimensional second order polynomial including full parameter interaction. By 

interrogating the interaction terms that appear in the polynomial, the interdependency 
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between parameters and therefore the state of orthogonality in parameter space is 

identified.  Then the misfit objective function is decomposed to sub-misfits along with 

its sub-volume. 

 

An adapted version of the NA routine searches these sub-domains in parallel in order to 

modify the parameters.  Alternatively the decoupled sub-domains could be searched in 

series.  The results of individual searches are integrated and passed to the next iteration 

of the SHM loop. In Figure 1.8 the decoupling process is shown relative to the main 

SHM loop.  We can carry out this step with every iteration but so far once is enough 

following the run of the initial models (for more description on the method see Chapter 

3, and for applications of the method see Chapter 4, 5,6 and Sedighi and Stephen 2009 

and 2010). 

 

 

 

Figure 1.11: Analysis used in decomposition of the misfit and subsequent parallel searching 

of the sub-domains.  The larger loop indicates the steps involved in analysis of the results of 

the first pass of the smaller loop of original SHM workflow. 

 

 

Stochastic inversion routines such as NA usually require a large number of initial 

models to effectively sample the parameter space to start with, particularly since quasi-

random sampling is used.  In order to reduce the number of initial models, an approach 
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of integrating Experimental Design (ED) techniques with the ‘divide and conquer’ 

method is implemented.  These designs play an important role in complicated design 

problems, because in addition to the main effect and interaction, they can be used to 

determine the second order non-linear effects.   

 

Here, experimental design techniques are enabled to sample the parameter space more 

efficiently to build the proxy to the objective function with sufficient accuracy. The 

number of initial simulation runs is also reduced significantly compared to a typical full 

inversion using NA. When this innovative step is combined with the ‘divide and 

conquer’ approach, we obtained dramatic speed up in the total convergence rate.  The 

approach has been successfully applied to several high dimensional seismic history 

matching studies of the Schiehallion field. In these studies, the transmissibilities of 

various barriers are the dominant parameters and for a number of cases, the local 

properties of permeability and net:gross are also updated. The number of models 

required to reach a corresponding solution by performing the ‘divide and conquer’ 

method combined with experimental designs is ten times smaller compared to the many 

models involved in the full inversion using NA.  

 

 

1.7 Closing Review and Content of the thesis 

This chapter comprised a brief overview to the topic of close-loop reservoir 

management and the major role of the history matching in reservoir optimisation.  Then, 

we presented an introduction to the ‘divide and conquer’ approach which has been 

developed during this research.  A brief explanation on how this method is developed 

and an example of how it may improve the convergence rate of seismic history 

matching was provided.  The rest of the chapters of this thesis are as follows. 

 

Chapter 2: Time-lapsed seismic (4D) methods and the main challenges of 4D seismic 

practices are discussed.  The basics concepts supporting this research work are given.  A 

description of inversion theory and history matching in reservoir management is 

specified. The definition of the objective function and the non-linearity, ill-posedness 

non-uniqueness, and curse of dimensionality are discussed.  The importance of analysis 

and identifying model errors in the final residuals as well as errors in data are presented.  

Various parameterization techniques, inversion algorithms, and probabilistic approaches 

using Bayes theorem for handling uncertainty of reservoir outcomes are defined.  The 
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essence of petroelastic modelling and the Gassmann equation are described. The 

proposed method of this research is based on utilizing two techniques of Response 

Surface Modelling (RSM) and Experimental Design (ED), they are discussed. 

 

Chapter 3: The integration of well production data and 4D seismic data for the purpose 

of better reservoir model characterization are outlined.  A description of the Seismic 

History Matching (SHM) approach used in this thesis is provided.  The approach of 

‘divide and conquer’ of the parameter space in the SHM work flow is established.  

Methods of Parallel-SHM and Serial-SHM are explained.  The approach of combining 

experimental designs and ‘divide and conquer’ is presented. 

 

Chapter 4: The aim of this chapter is to show the application of the method of ‘divide 

and conquer’.  The method is applied to a seismic history matching case study of the 

Schiehallion field where the uncertain reservoir model parameters include the 

transmissibility of 10 barriers.  The results acquired by the ‘divide and conquer’ method 

are then compared against the results obtained by full inversion seismic history 

matching application to the same problem.  

 

Chapter 5: The application of the approach of integrating experimental design 

techniques with the ‘divide and conquer’ method is presented.  This method has faster 

convergence and is applied to the same 10-dimensional seismic history matching of the 

Schiehallion field (example of Chapter 4). Also the method is applied to an 18-

dimensional case study where the parameters to be updated include transmissibility 

multiplier of barriers, and net:gross, horizontal permeability, and vertical permeability 

multiplier of two groups of pilot points. 

 

Chapter 6: The approach of the spatial decomposition of misfit objective functions by 

‘divide and conquer’ of the seismic territories is demonstrated.  This method identifies 

the spatial components of the misfit function which depend only on a smaller number of 

the elements of total updating parameters.  Again the method is applied to the same 10-

dimensional case study of Chapter 4 and 5. 

 

Chapter 7: The thesis closing phase includes a summary, recommendations for further 

work and conclusion. 
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CHAPTER 2 Basic Concepts and Supporting Materials 

 

 

Introduction 

In this chapter the fundamental concepts and background material are presented upon 

which the research in this thesis is built.  First, a description of the principles of time-

lapse seismic analysis and challenges are presented.  Then, beginning with an overview 

on inversion theory, history matching in the context of reservoir characterization is 

described. The mathematical expression of the objective function which is the mismatch 

between simulated and observed data is discussed. The circumstances in history 

matching that lead to nonlinearity, high degree of freedom, ill-posedness, non-

uniqueness are all explained. The existence of errors in models and in the data, the curse 

of dimensionality, and the requisite for reservoir parameterization are also discussed.  

 

Subsequently, a brief review of gradient-based and non-derivative inversion routines is 

provided.  Application of Bayesian theory and the likelihood function are reviewed.  A 

description of petro-elastic modelling is given.  The method of ‘divide and conquer’ of 

the unknowns makes use of Response Surface Modelling (RSM) and Experimental 

Design (ED) techniques which they are discussed in the last section.  

 

 

2.1 Time-lapse (4D) Seismic 

Time-lapse (4D) seismic imaging plays an important role in subsurface monitoring of 

petroleum reservoirs (e.g. Harris et al. 1995, Rickett and Lumley 2001). This is 

primarily due to the flow induced seismic changes that occur in the reservoir by 

production (Wynn 2003).  The 4D seismic difference signals are obtained from repeated 

3D seismic surveys over the time of reservoir production, and now analysis of such data 

is a well developed and understood field (Yilmaz 2001). 

 

Normally, the subsurface seismic attribute map could be represented as A(x,y,z), where 

(x,y,z) is a co-ordinate and A is a derived seismic attribute such as amplitude, 
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compression and shear wave reflectivity and impedance. These attributes are estimated 

from acquiring and processing a single 3D seismic survey which is comprised of the 

coupled effects from the background geology along with the fluids and the pressure of 

the reservoir rock. The estimation and interpretation of this information at location 

(x,y,z) of a single survey can be inferred as seismic reservoir characterization which 

depends on properties such as net thickness (τ), lithology (L), porosity (φ), pressure (P) 

and fluid saturations (S) (Nur 1989, Wang et al. 1991, Batzle and Wang 1992): 

 

)X(A)S,P,,L,,z,y,x(AA       (2.1) 

 

Where: X is a vector representing reservoir properties. The net thickness (τ), the 

lithology (L), and the porosity (φ) remain the same after a certain period of production 

and injection. Of course the reservoir pressure and fluid saturations change. By 

differencing a series of seismic attributes, it is often assumed that A(X) removes the 

static geologic contribution, and isolates time varying seismic characterization.   

 

The gradient of A with respect to S and P depends mainly on the change in petro-elastic 

properties of the rock due to the change of fluid distribution and the pressure change 

around the production or injection wells.  Implicitly, therefore, the gradient of A with 

respect to S and P is principally linked to the reservoir characteristics such as porosity, 

net:gross, permeability and transmissibility. It is deemed that 4D seismic data is 

potentially a much less ambiguous task than reservoir characterization using 3D seismic 

data then because the effects of geology and fluid flow may be decoupled by comparing 

time varying seismic sets. 

 

At present, time-lapse seismic data is applied with the objectives of monitoring 

saturation and pressure changes, reservoir compaction detection, and moreover fine-

tuning of the reservoir model through seismic history matching. For example, 4D 

seismic surveys from the North Sea Gullfaks field (Figure 2.1) were used to monitor the 

replacement of oil by water in the reservoir which is understandable when the baseline 

survey 1985 (Figure 2.1a) and the monitor survey 1995 (Figure 2.1a) are compared.   
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Figure 2.1: The changes in seismic reflection amplitude between the two surveys in a) 1985, 

and b) 1999 due to production, and also the interpretation of the reservoir condition in c) 

1985, and d) 1999.  The difference in the signal strength at the top of the reservoir is related 

to a decrease in oil saturation and change of the oil-water-contact (OWC).  The strong 

seismic response from the oil-water-contact in 1985 has also been dimmed by oil production.  

In the seismic maps disappearance of red and yellow colours from 1985 to 1999 represent a 

reduction in acoustic impedance (after Traine 2002). 

 

 

One of the first 4D seismic acquisition applications consisted of seismic surveys before 

and after a steam injection at the Athabasca tar sands reservoir (Pullin et al. 1987).  By 

comparing time shift and amplitude attenuation difference of the two surveys, swept and 

un-swept zones were mapped.  After that, the 4D seismic technique was assessed for 

monitoring of small-scales fluid flow local to the wells in the Duri field (Jenkins et al. 

1997, Lumley 2001).  The primary objectives for the time-lapse seismic acquired on the 

Foinaven field (Cooper et al. 1999) were to map fluid movements to identify by-passed 

oil areas.  The results qualitatively agreed with the later performance of the reservoir.  

4D seismic surveys on the Meren field (Lumley et al. 1999) were used to identify 

pathways of injected water, sealing faults, and compartments that may have by-passed 

oil.  For the Bay Marchand field (Behrens et al. 2002) time-lapse seismic surveys were 

a) c) 

b) d) 
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used to monitor water influx, identify the by-passed oil, and provide a qualitative 

comparison of the quality of data before and after cross equalization, which is important 

in 4D data processing. There are other references that have discussed the success of 

time-lapse seismic in monitoring of hydrocarbon movement in reservoirs during 

production in the literature (e.g. Ross et al. 1996, Hughes 1998, Burkhart et al. 2000, 

Rickett and Lumley 2001, Waggoner et al. 2002, Gouveia et al. 2004, Lumley 2004, 

Dong and Oliver 2005, Leeuwenburgh et al. 2008). These analyses have helped in well 

planning, injection and production strategies revised drainage strategy; and thus has 

added extra value to hydrocarbon assets.   

 

4D seismic interpretation is best applied when the acquisition geometry, the collecting 

technology, and processing do not change from survey to survey (Lumley et al. 1994), 

thus we can effectively disregard the source of seismic noise.  Also 4D practices can be 

executed in fields where rock is compressible and porous and there is a sufficient 

compressibility contrast and large saturation and pore pressure changes between 

monitor surveys (Lumley et al. 1997). There remain numerous challenges in 4D seismic 

activities which are reviewed in the following section.  

 

 

2.1.1 Time-laps Seismic Challenges 

Feasibility: while 4D seismic studies have been very successful, they have been 

feasible when the sensitivity of seismic signal to changes in reservoir condition was 

adequate. Large reliable 4D seismic contrasts can occur where there are free-gas 

saturation changes, injected steam, and gas or CO2 injection (Shyeh et al. 1999).  Oil-

water systems are harder to monitor if the reservoirs are under-saturated and are of very 

stiff, cemented and low porosity rock compared to the more easily tracked volatile oils 

in soft and high porous sands.  In general when the rock matrix is compressible (e.g. 

unconsolidated sand) and there is a large compressibility contrast between the fluids 

(e.g. water and gas), there would be a large 4D seismic signal that could be detectable, 

(see Figure 2.2).  Conversely, stiff rocks and/or similarly compressible fluids produce a 

weak 4D signal. Highly compressible rock and very large fluid compressibility contrasts 

produce strong but complex nonlinear signals which could not be interpreted easily for 

4D seismic response (Fanchi 1999, Lumley 2001).  
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Figure 2.2: Schematic of 4D seismic sensitivity to porous rock frame compressibility and fluid 

compressibility contrast.  The 4D seismic non-repeatable noise envelope is shown in pink, i.e. 

when the noise in dominant relative to signal.  Stiff rocks and fluids of similar compressibility 

produce weak 4D signals (lower left quadrant), that are masked with noise in measurements 

and are not detectable.  Soft rocks and large fluid compressibility contrasts produce strong 

but complex nonlinear 4D seismic responses (top right quadrant), which are most easily 

interpretable.  Moderate combinations of rock and fluid compressibility produce a sweet spot 

of both good 4D seismic delectability and interpretability in the center of the matrix with 

controllable amount of noise (after Lumley 2009). 

 

 

Non-repeatability in 4D seismic images: the challenges in seismic acquisitions, as 

with any measurement, are that they are always contaminated with errors or noise.  The 

ability to detect a 4D signal depends both on the magnitude of the signal and on the 

noise level in the data.  In practice, 4D seismic data record time shifts (amplitude vs. 

time changes) in reservoir properties due to production, as well as non-repeatable noise 

from external variables.  External variables include a) uncontrolled ground motion noise 

interference with seismic signals, b) ambient noise such as tide, temperature for marine 

and weathered zones for land, and whether it is coherent or random, c) electrical 

recording noise due to use of different equipment between surveys, d) inconsistency in 

source-receivers geometry, and e) incorrect geophone and hydrophone positioning.  The 

changes in external variables are what lead to the ‘non-repeatability noise’ of 4D 

seismic acquisitions.   
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Then the aim of seismic processing is to alter the seismic data in order to suppress the 

noise and enhance signal and migrate seismic events to the appropriate location in the 

subsurface space.  Seismic processing facilitates better interpretation because subsurface 

structures and reflection geometries become more apparent.  Processing of raw seismic 

data involves several steps typically including analysis of velocities and frequencies, 

static corrections, deconvolution, normal moveout, dip moveout, stacking, and 

migration, which can be performed before or after stacking (for more on seismic 

processing details see Yilmaz 1991).   

 

There may be differences due to previous survey processing that may mask the changes 

in the dynamic reservoir properties or may convey discrepancies in the sections, 

including differences in the velocity model and processing parameters and algorithms, 

which induce uncertainty in identifying the dip move-outs and should be minimized and 

removed as well.  Also, incorrect binning occurs when the stacked data bins are not of 

the same offset ranges, and when the number of seismic trace contributions to each 

offset bin is not consistent between surveys.  There are effects of diffracted energy by 

sea state conditions and inter-beds (multiple reflections).  Multiples are seismic energy 

that has been reflected more than once. Multiples are considered noise on seismic 

records and are attenuated to improve signal to noise ratio by determining a set of filter 

functions, however they are difficult to remove and therefore may lead to a major 

source of poor time-lapse data quality.   

 

There are a number of manifestations of non-repeatable noise when seismic data are 

processed, which commonly comprise variable amplitude gain, frequency content, static 

shifts, and waveform phase changes, and also event positioning between the multiple 

vintages of data sets.  Despite efforts to circumvent non-repeatability and retain exact 

acquisition conditions (installing permanent receiver sensor e.g. in Foinaven and Vahall 

field), discrepancies still remain in the sections of the survey profiles that should not 

experience any change in geological and dynamic conditions and hence no change in 

seismic reflectivity. These types of subsurface ambiguities that could not easily be 

interpreted are called geological noise (Waal and Calvert 2003, Calvert 2005, Lacombe 

et al. 2011, Helgerud et al. 2011).  

 

A common way to quantify non-repeatable noise is to compute the energy (e.g. 

amplitude) of the difference data compared to the energy of each individual data series 

http://www.glossary.oilfield.slb.com/Display.cfm?Term=seismic
http://www.glossary.oilfield.slb.com/Display.cfm?Term=signal
http://www.glossary.oilfield.slb.com/Display.cfm?Term=migrate
http://www.glossary.oilfield.slb.com/Display.cfm?Term=reflection
http://www.glossary.oilfield.slb.com/Display.cfm?Term=deconvolution
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with the Normalized Root-Mean-Square (NRMS) differences.  The metric is defined so 

that in a perfectly repeatable condition NRMS=0, if the two data sets consist of random 

uncorrelated noise NRMS=1.41, and if the data sets were identical but polarity-reversed 

NRMS=2. With current 4D seismic acquisition and processing NRMS of 0.4-0.6 are 

considered good quality and NRMS less than 0.2 are considered excellent (Lumley 

2009).  Generally ‘cross-equalization’ studies are aimed to tackle these non-repeatable 

noise sources. 

 

Cross-equalization of 4D seismic images: the aforementioned effects lead the need for 

the post-acquisition issue of ‘cross-equalization’ processing which transforms one 

seismic section to be comparable with the others (Ross et al. 1996).  The content of the 

different surveys are scaled through analysing repeated signals (trace by trace) in sub-

cubes located away from the reservoir area that are not affected by depletion. Cross-

equalization of post-stack seismic datasets typically includes the following generic 

elements (for more details see Rickett and Lumley 2001):  

 

 survey realignment to a common grid (re-binning), including spatial and 

temporal re-registration to correct the effects of geometry errors, differential 

statics time shifts, or different velocity functions used.  

 bandwidth and phase equalization to compensate for different source wavelets, 

for example.  

 amplitude balancing to scale the data to the same amplitude (or energy) level. 

 

A common approach in processing of 4D seismic data sets is suppression of the noise 

due to non-repeatability through application of a variety of filters to the data sets, in pre-

stack or post-stack volumes.  Unfortunately, in some instances filters are unstable and 

are a strong function of the filter design criteria. It is very easy to unconsciously 

overmatch the data sets both within and outside the design window, thus overlook 

important time-lapse signals, or to under-match the data or drive the filter to instability 

and hence lead to artificial time-lapse signals in the data.  Different cross-equalization 

techniques have been successfully applied in recent years to estimate and remove time 

shifts between time-lapse images (Bertrand et al. 2005, Aarre 2006).  Most of these 

cross-equalization procedures are based on conventional Wiener Filter methods.   
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Wiener Filter: this filter minimizes the energy of the differences between traces of 

successive 4D surveys in a least-squares sense.  These traces are from a region within 

the reservoir volume in which production effects are minimal.  In the time domain, 

filtering could be carried out using a convolution operator (*).  In that case the filtered 

signal, ŝ[t], can be represented as the convolution that amounts to passing measured 

signal, x[t], through a filter whose impulse response is, h[t], as below: 

 

]t[ŝ]t[x*]t[h         (2.2) 

 

To solve Equation 2.2 in practice the seismic recorded signals are broken down into 

their different frequency components by Fourier transform.  This allows the frequency 

filter design to be performed more concisely to remove spurious noise (for more details 

see Recipes, Press et al. 2007).  

 

Frequency of 4D Survey Repetitions: another aspect that influences whether times-

lapse signals can be detected relies on the frequency of the repetition of surveys are 

repeated, which is related to the rate of fluids produced from the reservoir (Landrø et al. 

1999, Arts et al. 2004).  Typically, the time intervals between successive acquisitions 

are in the order of one or two years.  Such a strategy works well for some time-lapse 

projects but not for all applications. For instance, in fields with many years of 

production left, or those with complicated reservoir characteristics it is more effective to 

carry out frequent surveys, typically at intervals of less than one year.  For some 

reservoirs even earlier detection of the changes in the reservoir condition is very 

important (Kristiansen et al 2009). Then, the seismic surveys could be taken from 

intervals of a few months.  Examples of such cases are: 

 

 in high-pressure reservoirs where production is associated with compaction 

(Hawkins 2007), that can result in the subsidence at the seabed such as in chalk 

reservoirs of Central Graben in North Sea, e.g. Ekofisk field, and Elgin field with 

500 bar pressure drop over its production life. 

 

 in sequestered CO2 reservoirs (Benson 2006) where continuous site monitoring 

is necessary for both tracking the migration of CO2, and for environmental 
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licensing required for the purpose of the early possible leakage detection, e.g. in 

the Sleipner, Weyburn, and Salah geological sequestration projects. 

 

Recently, permanently installed Ocean Bottom Seismic (OBS) is a cost efficient 

alternative to conventional repeated survey in such reservoirs. For example, success 

with Life of Field Seismic (LoFS) systems have been demonstrated on the Valhall field 

of a highly porous but low permeability chalk (Van Gestel et al. 2009), and the Clair 

field and the Chirag-Azeri fields (Foster et al. 2008).  These technologies have not been 

widely adopted on a larger scale however mostly due to cost and environmental 

complications.  

 

Discrimination of Saturation and Pressure Effects: Quantitative estimates of 

saturation and pressure changes is required in accurate rock physic modelling in order to 

derive and calibrate attributes such as impedance and reflectivity.  Changes in additional 

dynamic reservoir properties, such as temperature, fluid viscosity, stress-induced 

porosity, fractures, etc., complicate this analysis of discrimination of saturation and 

pressure changes further (Watts et al. 1996).  In some fields, the seismic sensitivity to 

stress changes is much greater than the sensitivity to saturation changes, while it is 

conversely true for some other fields.  Most importantly there is always some coupled 

outcome of changes (Landrø et al. 2001). For example, in an aquifer-drive reservoir, the 

pressure drops due to production and an increase in the net effective pressure will result 

while the oil saturation decreases. Both effects will increase the P-wave velocities and 

impedances so that the two effects strengthen each other.  In a water-flood reservoir, the 

oil saturation decreases but the pressure may increase near the injector and there would 

be a decrease in the net effective pressure.  In this case, saturation and pressure compete 

with each other, partially, or even totally and may cancel the effects of each other on 

seismic properties (Wang 1997), this phenomenon is shown in Figure 2.3. 

 

Techniques for the separation of saturation and pressure effects are conventionally 

dependent to angle-dependent reflectivity and amplitude variation with offset (AVO) 

attributes. AVO quantities are calculated from seismic amplitude versus source-receiver 

separation. Using offset data, the relative strength of saturation and pressure effects are 

understood from a semi-empirical approach (Tura and Lumley 1999) or using rock 

physic models (Landrø 2001). For example, Lumley at al. (2003) presented a 4D 

seismic inversion method while two seismic attributes: i) near and far offset/angle 
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amplitudes, and ii) pre-stack-inverted P- and S- impedance data were cross-plotted 

against each other.  Leeuwenburgh et al. (2008) used two-way seismic travel time 

surveys to invert and provided (depth-averaged) estimates of pressure and saturation. 

Trani et al. (2011) proposed a method using different combinations of 4D attributes 

based on four correlations: two expressing changes in pre-stack AVO attributes (zero-

offset and gradient reflectivities), and two expressing post-stack time-shifts of
 
P- and S- 

waves.  Rocks saturated with compressible fluids show higher P-wave velocities (VP) 

and impedances; however S-wave velocities (VS) and impedances are much less 

affected by pore fluids because fluids have no rigidity (resistance to shear stress).  Such 

VP and Vp/VS dependencies on pore fluid are the basis for saturation effect 

discrimination. These approaches work well when physical properties, i.e. shale volume 

and porosity, within the reservoir are relatively uniform. 

 

                           

Figure 2.3: Change in acoustic velocity following changes in pressure and saturation due to 

production and injection in the reservoir close to a injector well.  P-wave velocity increases 

primarily due to pressure drop in the reservoir (depletion).  Then by water injection acoustic 

velocity decreases since there is a lift in pressure.  When the water saturation increases due to 

arrival of the water front, initially the effect of pressure is cancelled, there is a coupled effect 

of saturation and pressure changes on acoustic velocity.  

 

 

2.2 Overview of Inversion Theory 

Most petroleum engineering applications deal with a subsurface that is not easily 

accessible and the properties controlling theses physical behaviours are numerous.  For 

example some properties such as permeability require fine resolution in space, and 
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others such as fluid saturation and pressure change in time.  In such conditions inversion 

is the only practical approach to integrate all available information (Figure 2.4). 

 

 

                        

Figure 2.4: Forward problem versus inverse problem. Forward problem estimates observed 

data, d, using simulation model, s, that depends on model parameters, θ, however, in the 

inverse problem the focus is on finding model parameters, θ, given observed data d. 

 

 

According to Jackson (1972) inversion is the ‘interpretation of inaccurate, insufficient 

and inconsistent data’.  For given data the inversion procedure seeks to define a model 

for a physical system which agrees most with the observation (e.g. Line and Treitel 

1984).  Seismologists initially extended the formulation of inverse problems for data 

processing and interpretation (Mosegaard and Tarantola 2002).  The practical principle 

of inverse problems relies on the objective function, which measures the difference 

between modelled and observed data, and identification its minimum value.  This was 

of prime concern to earth scientists. Tarantola and Valette (1982) generalized this 

concept for non-linear inversion in two influential papers introducing the idea of a 

Gaussian approach for parameter estimation.  

 

Applications of inverse theory in the petroleum industry are in two major areas.  In 

geophysics, ‘inversion of seismic data in oil and gas fields’ is carried out, while in 

reservoir engineering ‘inversion of reservoir history data’ is performed.  The purpose of 

inversion of seismic data is to recover the subsurface elastic properties (e.g. velocity and 

acoustic impedance).  Many algorithms for this purpose have been developed (Tarantola 

1984, Russell 1988).  For example, Oldenburg et al. (1983) discussed the deterministic 
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inversion for impedance, while Cao et al. (1989) illustrated an inversion method to 

estimate velocity and impedance simultaneously.  Landrø (2001) proposed a method to 

express the changes in amplitude as a function of variation of reservoir pressure and 

saturation.  Ouair and Strønen (2006) proposed a global inversion method where all 4D 

vintages are inverted simultaneously.  

 

Figure 2.5, illustrates the application of forward and inverse formulations to seismic 

modelling, with the convolution and deconvolution methods. Each layer in the earth 

model is characterized by its acoustic velocity or impedance, which can be computed at 

wells from logs of P-wave and S-wave velocity along with bulk density. The normal 

incidence reflectivity, R, of a layer interface is a function of the impedance contrast 

between the layers on each side. Convolutional forward modelling combines the 

sequence of reflectivity coefficients with a seismic pulse represented by the wavelet to 

generate synthetic traces.  The problem is often that there is not a good model of either 

the earth or the seismic source wavelet. Surface seismic data may be available, though, 

and they are used to infer each thickness of layers and impedance or velocity. The 

inverse approach then extracts the signature of the pulse from seismic traces through 

deconvolution to deliver the inverted normal incidence reflectivity series, R, from which 

the acoustic impedances of each layer can be computed. The synthetic traces are usually 

inverted to fit the real traces.  

 

 

 

Figure 2.5: A schematic that depicts the application of forward (convolution) and inverse 

problems (deconvolution) in seismic modeling of the impedances (ρV) of reservoir layers.  
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2.2.1 Inversion Process of History Matching 

A more geologically defined and accurately characterised reservoir simulation model 

can reproduce the reservoir performance more precisely.  Such a model would utilize a 

tool to forecast the performance of a reservoir as accurately as possible.  More reliable 

predictions are then obtainable for decision making in the reservoir management to 

optimise the recovery from the oil and gas accumulations.  

 

The classical manual history matching approach is a trial and error method based on the 

experiences and skills of reservoir engineer.  The reservoir simulator is run many times 

with different values of model parameters until a satisfactory match to history data is 

achieved.  This process is time consuming and inefficient.  In contrast, automatic 

history matching is usually an efficient process.  Using an optimization algorithm the 

uncertain reservoir parameters are perturbed in order to minimize an ‘objective 

function’ that measures the mismatch between simulated and observed data (Figure 

2.6).   

 

 

 

 

Figure 2.6: Automatic history matching process which minimize differences between 

observed data, d, and the simulation model responses, s, by updating the model parameters, 

θ*. Initially, model parameters θo are characterised based on sparse and inconsistent data, 

the anticipation is to find the true reservoir model θ. 
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Automatic history matching processes were first used fifty years ago (Jahns 1966, 

Jacquard and Jain 1965, Chen et al. 1974), and has mostly progressed in the nineties 

(e.g. Deutsch and Journel 1992, Bissell et al. 1994, Datta-Gupta et al. 1995, Sen et al. 

1995, Reynolds et al. 1996, Oliver 1996, Landa and Horne 1997, Roggero and Hu 

1998). In spite of numerous improvements in optimization routines and their 

applications, history matching demands intensive computation. Automatic history 

matching can be formulated in the framework of statistics, which provides a 

probabilistic justification for using a specific estimator such as least squares as the best 

misfit. Then through calculation of maximum likelihood and Bayesian theory, the 

uncertainty in prediction of the reservoir performance could be estimated (Romero et al. 

2000, Arenas et al. 2001, Christie et al. 2002, Caers 2003, Li et al. 2003, Gao and 

Reynolds 2004, Gu and Oliver 2005, Stephen et al. 2006, Roggero et al. 2007, Ballester 

and Carter 2007, Leeuwenburgh 2008; 2010). 

 

 

2.2.2 Time-lapse Seismic Incorporated in History Matching  

Nowadays, time-lapse seismic are used as additional data in history matching leading to 

improved simulation models and then better reservoir prediction and management are 

achieved (e.g. Stephen et al. 2006).  An objective function is defined to quantify the 

differences between simulated production and 4D seismic attributes (provided by a 

petro-elastic model) and real production and seismic data using appropriate weighting 

factors.  An iterative optimisation algorithm is usually used to minimize this objective 

function by updating the reservoir model parameters. 

 

Several studies have used different approaches to integrating time-lapse seismic and 

production data in updating the reservoir model.  Huang et al. (1997) and Waggoner 

(2002) used time-lapse seismic amplitude data and the finite perturbation method to 

calculate required derivatives in the inversion process and updating simulation model.  

Tura and Lumley (1999), Landrø (2001), Meadows (2001) Arenas et al. (2001), and 

Waggoner et al. (2002) estimated the changes in reservoir model saturation and pressure 

directly from time-lapse seismic data and used P-wave velocity differences.  Ditzhuijzen 

et al. (2001) matched production and seismic data when parameterized geometrical 

objects (size, orientation and transmissibility of faults and baffles).  Phan and Horne 

(2002) used water saturation changes interpreted from time-lapse seismic to adjust 

channel orientation and deviation of the centre line from maximum continuity.  Bogan 



Chapter 2: Background Materials and Basic Concepts 

38 

et al. (2003) used multiple time-lapse attributes, including velocity, impedance, and 

amplitude in a GOM (Gulf of Mexico) field to estimate fluid flow barriers, facies 

parameters, and variogram structures. Gosselin et al. (2003) deduced pressure and 

saturation changes from production and time-lapse seismic data and used Gradzones (a 

gradient based optimization) in reservoir parameterization.   

 

Mezghani et al. (2004) used time-lapse acoustic impedance derived from pre-stack data 

to predict petrophysical properties using non-linear optimization based on derivatives 

with respect to the parameterization.  Similarly Dong and Oliver (2005) related seismic 

impedance and production data to porosity and permeability and matched them using 

the adjoint and the LBFGS method.  Dong et al. (2006) used the ensemble Kalman filter 

(EnKF) to match of production and time-lapse seismic impedance data and to improve 

estimation of porosity field. Walker (2006) used seismic data integration in 

characterising reservoir models using Genetic Algorithm.  Leeuwenburgh et al. (2008) 

used two-way seismic travel times to the top and bottom of the reservoir. 

 

Roggero et al. (2007) interpreted seismic data to constrain the reservoir model and 

update the fine scale geo-statistical parameters using the gradual deformation method.  

Dadashpour et al. (2008) calibrated porosity and permeability properties to estimate 

pressure and saturation changes from time-lapse seismic data by formulation of a 

nonlinear Gauss–Newton inversion scheme.  Leeuwenburgh et al. (2010) showed the 

distribution of reservoir fluids and rock properties (porosity and permeability) can be 

better extracted from seismic amplitude data by combination of two inversion steps of 

both 3D and 4D data using two ensemble-based methods of the Kalman Filter and the 

randomized maximum. Trani et al. (2011) found the importance of the porosity in 

inversion of the changes in saturation and pressure from 4D seismic AVO and time-shift 

of compressional and shear waves.  

 

As a rule, history matching is a challenging task, finding a minimum of a misfit function 

does not necessarily denote the true values of the reservoir parameters.  One model that 

fits the observations best may not be the best one for the prediction forecasts.  

Sometimes a model with parameters close to the base case might lead to a good forecast 

for the true case although the production match to history is bad (Tavassoli et al. 2004). 

This situation arises because there may be a number of different (multiple) solutions to 

the history matching problem due to the fact that there is very limited information about 
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the actual details of the reservoir properties. Geological information may be highly 

conceptual and
 
non-specific which may not describe the reservoir at all possible

 
scales.  

Measured data at core, well logs, 3D/4D seismic surveys,
 
well test and production 

records, however are specific.  These data measure
 
the properties at different scales.  For 

example, well data are in centimetre to metre scale at high vertical resolution but only at 

a few well locations, while seismic
 
data provide larger-scale

 
stratigraphic and structural 

information and have higher coverage area (see Figure 2.7).   

 

 

                        

Figure 2.7: Resolution of common data used in reservoir characterisation.  They are from 

core and well log measurements, borehole production and seismic records, and 3D/4D 

seismic images.  The low areal resolution of well data is complemented by the larger areal 

sampling of the seismic data (after CSEG 2011). 

 

 

By integration all these measurements in characterising the reservoir model, the 

variability and the spatial correlation of the actual heterogeneities in the reservoir 

properties may not be represented. That means there are a high number of unknowns in 

history matching problems. Another challenge in data integration is that most current 

approaches are hierarchical.  Fine scale models are used for integrating well-log/core 

and seismic data (geostatistical models) while coarse models are used to integrate 
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mostly production data (simulation models) and once the scale is changed, data 

conditioning, maintained in the previous scale, may be lost.  Therefore, the sufficiency 

of data, the ability to identify the model parameters, and the efficiency of the inversion 

process must be evaluated systematically. A description of the components and 

challenges involved in inversion formulation of the history matching process is 

illustrated in the following sections. 

 

 

2.3 Objective Function in History Matching Process 

A typical measure of the “objective function” also called “error function”, “cost 

function”, and more frequently just “misfit”, is the squared difference between 

simulated and observed historical data known as the L2 or Euclidean norm.  Moreover, 

a weighting covariance matrix is assigned to data which results in the fit of accurate 

data to be improved most, and then the general form or covariance-related norm of the 

objective function (Tarantola 1987) may be expressed as: 

 

n

1i

simobs1
m

Tsimobs
))(sd(C))(sd()(J   i= 1,...,n (2.3) 

 

Where: n is the dimension of simulated and data vector, d
obs

 is the observed data of 4D 

seismic and production/injection (i.e. oil and water rate, and pressure), s
sim

 is their 

corresponding simulated response, and θ is the vector of uncertain model parameters to 

be updated. Cm is the covariance matrix, and stands for correlated random error which is 

calculated for the model and observed data.  It also provides weighting factors to scale 

the data of different type, magnitude and accuracy. 

 

Generally, the objective function is a hyper-surface in a multi-dimensional parameter 

space with a global minimum that occurs for the best estimation of the parameter 

values. For complex physical systems such as reservoir simulation with non-linear 

mathematical formulation, the topography of the objective function away from the 

minimum may exhibit multiple local minima, inflection points, and stationary points 

where the gradient of the function is zero and/or the gradient turns from a positive to a 

negative value or vice versa. Such topology makes it obscure for an optimization 

algorithm to converge towards a global minimum. Figure 2.8 is an example 
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visualization of the objective function for a 2-Dimensional (2D) parameter space.  The 

main characteristics of misfit function are discussed in the following paragraphs. 

 

 

                                  

                    Figure 2.8: Objective function in two-dimensional parameter space. 

 

 

Degrees of Freedom, Ill-posedness and non-uniqueness: properties such as 

permeability are not fully known, they may vary over the reservoir space in a small 

scale (~1 millimetre), much smaller than simulation grid blocks (~100 metres).  Thus 

the actual number of parameters describing this resolution may be infinite, and the 

number of reservoir parameters to be updated is much greater than observed data; 

making the problem under-determined. For practical applications a finite set of 

parameters is used to reduce the number of parameters such as a box of grid blocks, 

zones, etc. (see section 2.6).  However, still a large number of such unknown leads to a 

high degree of freedom.  Forward reservoir modelling is well-conditioned.  However, 

the inverse process of history matching is ill-posed (Tarantola 1987, Omre and 

Tjelmeland 1996).  For a well-posed problem: i) the solution exists, and ii) it is unique, 

and iii) it depends continuously on data (stability) (Hadamard 1902).  In inversion via 

history matching, multiple parameter combinations with misfit close to the minimum of 

the objective function define non-uniqueness.  Uncertainty analysis is appropriate and is 

a common practice which tackles both non-uniqueness and helps reservoirs 

management (see section 2.8).   

 

Curse of Dimensionality: the enormous number of large unknowns characterises the 

‘cures of dimensionality’ in history matching and normally leads to high computation 

time even for problems of moderate dimensions.  This computational time reflects the 
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many misfit evaluations that are needed and increases exponentially with the dimension 

of the problem.  Moreover, in such cases there would be even fewer possibilities to find 

the optimal set of unknown parameters.   

 

Prior information as regularization for the objective function: for the parameters to 

be updated there is usually prior information derived from remote measurements which 

can be included in the formulation of the objective function as a means of regularizing 

the inversion process for further constraint of parameter estimates (Carrera and Neuma 

1986a, Chavent 1991, Neumaier 1998).  Then the formulation of objective function 

would be: 

 

)(C)())(sd(C))(sd()(J o
1T

o

n

1i

simobs1
m

Tsimobs      (2.4) 

 

where θo is the vector of initial parameter information, Cθ is the covariance matrix of 

random error in the prior information measurements.  Inclusion of such ‘regularization’ 

may reduce the ill-posed inverse problem by posing constrain to acceptable solutions.  

However, the prior parameter information must be conceptually consistent with the 

observations of the reservoir response to avoid biased estimation.  For example, if the 

permeability measured at core scale is used as prior information in an inversion of a 

regional flow model the difference in scale (modelling error) may compromise the 

solution (refer to Section 2.5.2).  

 

 

2.3.1 Differentiating Residual Errors in the Objective Function 

Simulation models are simplified numerical representations of reservoirs.  They are also 

imprecise since the input data are measured inaccurate (of incorrect scale) or are sparse 

(insufficient). In general there is a need to focus on all sources of errors including 

representative numerical errors, particularly when the prior parameter information is 

used in the objective function. Generally there are several sources contributing to the 

residual error vector J which can be represented in the form of: 

 

sim
i
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We can split the observed and modelled variables into (e.g. Glimm et al. 2004): 
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where xi
t
 is the true value of the variable (reservoir response), and εi is the error with 

superscripts o, m and p corresponding to the measurement error of the observed data 

(often assumed as a random component in the data), the model error (i.e. due to 

inaccuracies of the model that can not be removed), and the parameter error (due to 

incorrectness of the parameter values and deficiency in model characterisation).   

 

According to this definition, the total residual in the misfit function is the total ‘error 

due to deficiency in parameter characterization’, i
p
, and ‘error in the modelling’, i

sim
, 

and the apparently random component ‘error in the data’, i
obs

, (Figure 2.9). We aim to 

reduce the parameter error to zero by history matching.  It is important to appreciate 

however that it is very difficult to identify the difference between model and data error.  

The inversion procedure will try to reduce the error due to parameter deficiency.  If the 

error in observed data is large the estimated parameter vector may be a biased relative to 

the true parameter value, and the model prediction will not closely reproduce the true 

behaviour. The systematic simulation model errors also need to be accounted for in the 

objective function, so that the final residuals contain random components that can be 

described by posterior error analysis and the uncertainty estimates.   
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Figure 2.9: True, measured, and simulated reservoir output response and definition of 

measurement error, model error and residual in misfit function. 

 

 

2.3.2 Data Error 

Errors in observed data can occur both in time-lapsed seismic and wells measurements.   

 

Noise in 4D Seismic Data: 4D seismic difference data are often contaminated by 

several sources of non-repeatable noise (for more details refer to Section 2.1), those 

errors need to be suppressed before any time-lapse anomalies linked to production can 

be included in the objective function.   

 

Upscaling of 4D Seismic Data: in comparing simulated and observed seismic data, 

lateral downscaling of simulated impedance is often carried out.  An alternative could 

be to upscale the observed seismic data. Here the problem is that there is no cleverly 

defined process. Flow simulation upscaling is based on relationships derived for fine 

scale model behaviour, i.e. obtaining the same pressure drop and flow rate for the coarse 

and the fine scale simulations. However, it is not apparent what an upscaled seismic 

trace would be. Simple averaging is a first approximation but may be incorrect.  Seismic 

data upscaling requires excellent information on seismic processing.   

 

Seismic inversion methods are used to estimate impedance at a geological fine scale 

(laterally and vertically) nowadays. The process can be applied before history matching, 

but due to non-uniqueness it is likely that we end up with an erroneous impedance 

distribution since no constraints from flow are included.  Avansi (2010) assumed a low 

vertical resolution of 4D impedance data and derived pressure and saturation 
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distribution from 4D seismic data at a fine grid seismic scale and then upscaled these to 

a coarse grid simulation model through simple averaging.  It was highlighted that the 

upscaling procedure hampered the history matching in some regions due to the 

information lost in the upscaling technique.   

 

Then Avansi and Schiozer (2011) proposed an upscaling procedure for acoustic 

impedance based on an arithmetic average from a fine geophysical scale to a coarser 

flow simulation scale. The information lost due to the upscaling procedure was 

evaluated through comparison between flux model properties and seismic attributes, at 

each respective scale. They concluded that the technique improved the parameter 

estimation, but the method did not check the other scale issues such as difference in 

seismic measurements and representation in geo-model. Where typical seismic signals 

are obtained from the 25 m cube, we could use a larger bin (50 or 100 m) (re-binning), 

but there are issues linked to sensible processing. 

 

Errors in Well Data: the observed production data have an error component due to the 

constraints of instrumental measuring of pressures and rates; and allotting accurate well 

completion intervals.  For example wellhead-sampling can introduce large uncertainty 

in water-cut data and the method breaks down when excessive GOR (gas-oil ratio) 

production is encountered, such as after gas breakthrough and during gas lift operation 

(Kabir and Young 2004).   

 

 

2.3.3 Errors in the Modelling 

Induced errors in the modelling downweights the value of the predictions in history 

matching. When the errors in the simulation are considered in inversion of history data 

the updated parameters of flow simulation models would be more accurate. The mean 

model error significantly reduces the bias effects while the covariance gives a realistic 

spread from the mean prediction (O’Sullivan and Christie 2006).   

 

Reservoir Simulation Errors 

Numerical dispersion and simulation upscaling: reservoir simulations are discretised 

in time and in rock volume inevitably introduces some errors. Although the errors 

normally reduce when the simulation grid is finer, most simulations are based on 

upscaled models of a fine grid geo-model to circumvent requirements for large 
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computational memory and processing time. When relative permeability and capillary 

pressure curves used in the simulation model are measured at the wrong scale (core 

scale but not simulation scale), numerical dispersion can induce spreading of the 

simulated flood front (Kyte and Berry 1975), i.e. when water enters one face of a grid 

block, it is instantaneously dispersed throughout and the water saturation at the far end 

of the grid block will be the same as at the inlet (see Figure 2.10).  As a result, the water 

front is smeared, causing early breakthrough in the coarse grid model. One remedy to 

tackle this is to upscale from the core plug scale using the data from the SCAL (Special 

Core Analysis) (Barker and Dupouy 1999). Steady-state (Pickup et al. 2000) and 

dynamic (Barker and Dupouy 1999, King et al. 1993) two phase upscaling techniques 

are considered to be more appropriate. Most of the time upscaling of permeability, 

relative permeability, and capillary pressure is difficult, however.   

 

 

      

Figure 2.10: The 1D effect of numerical dispersion explains front flow behaviour for 

different grid scales.  For three fine grid cells the front is close to the actual (analytical 

solution), but for the case of one coarse grid (upscaled of 3 cells) there is a resolution error in 

the front prediction. 

 

 

When there is a strong heterogeneity in the reservoir, the relative permeability and 

capillary pressure curves measured at the core scale could be used to represent the 

effects of sub-simulation scale heterogeneities. Due to the larger upscaled grid block 

sizes, the simulators cannot account for small distances of physical dispersion, and it is 

very difficult to simulate such variations. Consequently, such physical dispersions may 

be captured by numerical dispersions (described above). 

 

Sablok and Aziz (2005) investigated the effect of upscaling and discretisation errors and 

showed that the reservoir predictions obtained from highly upscaled models can be 

significantly errorus. The variability in the results was due to upscaling errors and was 
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not induced by the variability in the ensemble of the geological models alone. Several 

similar publications in literature are those by Higdon et al. (2002), Omre and Lodoen 

(2004), Chen and Durlofsky (2006). Aanonsen and Eydinov (2006) proposed a multi-

scale method for parameter estimation with application to reservoir history. They 

applied large-scale corrections for using fast upscaled models which combined with a 

downscaling procedure and attained better final adjustment of the coarse models to the 

fine-scale model match. The study of Carter (2004) disclosed that in history matching; it 

is important to include a modelling error in the objective function when using numerical 

model with significant modelling error.  

 

Streamline approximation introduces model errors also.  Stephen at al. (2007), Kazemi 

and Stephen (2008) determined the model errors for production rates and time-lapse 

seismic predictions by running random ensembles (50 models) using both finite 

difference and streamline simulators. The mean and standard deviations of all 

production rate errors and the seismic errors were then used in objective function to 

account for modelling error and this improved the history matching results.   

 

Rock Physics Modelling Errors 

Difference in scale: another source of model error arises in seismic attribute simulation 

using petro-elastic modelling (see Section 2.9). Rock physics transforms are based on 

data generated in the laboratory
 
at the scale of centimetres or in the well at the scale of 

metres.  However, they are used at the seismic scale in tens of metres.  The substantial 

discrepancy between these scales may lead
 
to error.  Stephen et al. (2007) calibrated the 

scale dependence of the model errors to reduce this effect.  They showed that the error 

due to scale dependent simulation and subsequent petro-elastic transformation are of 

equal size and produce a non-zero minimum misfit which affects the ability to history 

match to a degree that is equivalent to errors in the observed seismic data.  

 

Scale dependence of phase moduli: Domenico (1976) and Knight et al. (1996) have 

pointed to the scale dependence of the uniform relationship (saturated harmonic 

average) used in calculation of the phase moduli required for petro-elastic modelling.  

This relationship is valid when the pore volume for the reservoir region is completely 

connected hydraulically and freely permits fluid pressure communication into and out of 

adjoining pore spaces. If this relationship is applied to large scales (i.e. large grid cells) 

then the seismic induced pressure wave is not fully equilibrated over the sample 
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volume. To avoid this difficulty the maximum cell size can be estimated using the 

relationship for critical grid length (e.g. Mavko 1998).  This critical length is typically 

of the order of a metre (Knight et al. 1996) at low seismic frequencies.  The fine grid 

cells are usually in this range but coarse cells are not (~100 m). The ‘patchy’ 

relationship for phase moduli (volumetric weighted arithmetic average) is suggested as 

an upper limit for the fluid modulus.  It is used for situations where laminae or beds are 

separated by thin shale barriers or impermeable inter-connected sand bodies and derived 

by applying uniform relationship separately to each region or layer (of thickness less 

than or equal to critical length).  The relationship is applicable independent of the shape, 

size and distribution of each discrete, isolated region of rock, but it requires that fluids 

are segregated in discrete volumetric regions which may not be fully applicable for 

coarse model.  Sengupta and Mavko (1998) showed that seismic velocities upscaled 

from small scale simulations are closer to the uniform saturation case than the patchy 

saturation.   

 

MacBeth and Stephen (2008) also found that the estimates of fluid-bulk moduli 

extracted from seismic data do not correspond to the true (pore-volume weighted) 

average value of saturation used for flow simulations.  This discrepancy arises because 

the seismic waves sample the reservoir geological and saturation heterogeneity 

differently from the fluid flow. They also developed a relationship for turbidite 

reservoirs that connects the true saturation to the effective fluid modulus from seismic 

data via statistical measures of the porosity and saturation variations in the reservoir. 

Saturation variation at the fine vertical scale in reservoir below seismic resolution can 

affect the seismic response; and that the saturation outputs from flow simulators may be 

too smooth vertically to create reasonable synthetic 4D seismic representative of the 

observed seismic response (Doyen 2007).   

 

Sengupta et al. (2007) also showed that the sub-resolution lateral distribution of fluids, 

not captured by flow simulators, can have impact on seismic responses.  Despite the 

good qualitative match between the fluid changes output from the flow simulator and 

the fluid changes estimated from seismic data, the simulator yields smooth saturation 

profiles (so does 4D seismic predictions), which does not quantitatively match the 

observed time-lapse seismic changes.  This is because a proper petro-elastic transform 

of fluid changes to time-lapse seismic prediction requires estimates of fluid changes at 

scales much smaller than the reservoir simulation blocks.  
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Scale dependence of dry rock moduli: Stephen and MacBeth (2006) also identified 

that the core based bulk stress sensitivity, as measured in the laboratory, may over 

predict the 4D seismic behavior in the reservoir for large pore pressure increases unless 

the shale content are accounted. This result is in agreement with the observation that 

stress sensitivity measurements on sandstone core plugs experience the larger stress 

responses in situ caused by internal damage of the rocks during unloading from in situ 

conditions (Nes et al. 2000).   

 

Downscaling simulated seismic properties: the areal interpolation of predicted 

impedances at the simulation scale (~ 100 m × 100 m) down to the seismic scale bins 

(25 m × 25 m) adds to the model error.  Sharp transitions of the fine grid impedances, 

which may be due to saturation changes at the waterfront or at geological variation such 

as at faults, cannot be captured accurately. However if faults or other permeability 

transitions are absent, a pressure dominated seismic response has negligible model error 

(Stephen and MacBeth 2006).  In the literature a proposition to remedy scale dependent 

errors consists of pressure and saturation downscaling from simulation grids in order to 

predict seismic properties at the observed seismic scale.  The downscaling of saturations 

was initially envisaged as a simple mapping. The fine grid blocks included in a given 

coarse reservoir grid block are attributed the same saturation and pressure values as the 

coarse grid block.  This scheme allows a petro-elastic model to be applied at the seismic 

scale and per facies which is considered to be much more rigorous than per reservoir 

unit in the simulation scale (Fornel et al. 2007). However this approach still ignores 

some degree of fine scale geological heterogeneity that are not included in reservoir 

simulations.  Practically, such an approach should respect some additional constraints: i) 

the downscaling process must be consistent with the upscaling method in terms of 

conservation of volumes, ii) non-reservoir facies as well as dead cells in the fine grid 

must be excluded from the saturation effects, and iii) saturation end points assigned to 

facies at the fine scale should be represented to avoid saturation effects under the 

irreducible water saturation, for example (Roggero et al. 2007). 

 

Although downscaling the saturation and pressure is an active research topic, it is a 

complex and ill-posed problem. The average pressure and saturation values of each 

coarse grid block should be re-distributed properly in the underlying fine grid blocks. 

These kinds of techniques are not yet very practical for complex multiphase simulation.  

They lead to a significant increase of computation time in the history matching process.  
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According to Flacone et al. (2004) the downscaling of dynamic properties such as 

transmissibility between cells of a simulation model is not straightforward.  In flow-

based downscaling for more complicated flow patterns, the difficulty ties in selecting 

the coarse grid blocks following a suitable order of downscaling to handle boundary 

conditions.  Castro et al. (2006) and Enchery et al. (2007) proposed a more thorough 

flow-based downscaling to reproduce fine-scale saturation and pressure distributions 

from coarse scale simulations. For each coarse grid block, considering the fine grid 

blocks included in it, they first solve the pressure equation implicitly and then the 

saturation equation explicitly. The boundary conditions are derived from the flow 

simulation performed for the coarse reservoir model to ensure mass conservation for 

each coarse grid block. 

 

Mezghani el al. (2004) deployed the geological scale as the domain to seismic 

predictions. The simulated saturation and pressure with the coarse scale fluid flow 

simulator were downscaled to the fine scale geo-model. They then applied the petro-

elastic modeling at this scale and computed the elastic properties.  However, the method 

added extra uncertainty by downscaling of simulated properties to the uncertainty 

already embedded in the petrophysics to observed seismic scale calibrations (upscaling), 

because well logs are on the centimetres to decimetres scale but seismic data are on 

scale of metres.  Menezes et al. (2006) proposed that the most convenient scale to apply 

petro-elastic modelling is the flow simulation grid, suggesting that methods working at 

the fine scale only reverts the problem from one of upscaling of observed seismic data 

to that more difficult downscaling (and upscaling as well).  Other authors (Annonsen et 

al. 2002, Gosselin et al. 2003) had also proposed to upscale the seismic data and 

incorporate them in the reservoir history matching at the coarse scale. 

 

Vertical upscaling simulated seismic properties: Backus (1962) presents a well-

known method of producing the effective seismic properties for a thinly layered 

medium composed of either isotropic or and anisotropic elastic layers. This method 

applies either to spatially periodic layering or to random layering, and the layer 

thicknesses may also be random. This method is frequently used to calculate the average 

value of p-wave impedance for a column of simulation grid cells as well.  This approach 

is valid (MacBeth 1995) for reservoir beds that are less than one tenth of the seismic 

wavelength thick and reservoirs of around one quarter seismic wavelength thick (a 

typical wavelength is 50 to 100 m) or greater, otherwise there would be model errors 
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relating to upscaling Roggero et al. 2007). In general, the key idea behind any upscaling 

process should keep the saturation and pressure differences (flow responses) equivalent 

in both resolutions. Well logs are also scaled up by averaging the properties over a 

defined wavelength; they shall always be scaled to the seismic bandwidth through a 

proper averaging method.   

 

In this thesis the focus was on developing new method to improve the convergence of 

the history matching process and study the effect of the modelling errors were 

considered beyond this research work, thus they are ignored and are not included in the 

misfit objective function.  

 

 

2.4 Parameterization in the History Matching Process 

The reduction of the number of parameters from infinity (for a continuous system) to a 

finite number is called parameterization (e.g. Yeh 1986). The process presents the 

choice of the parameters and preference of modification representative for the spatial 

distribution of reservoir properties, such as net:gross, and permeability, in the model.  

The success in history matching depends on suitable choice of parameterization and the 

range of parameter values.  An inadequate set of parameters would result in inaccurate 

uncertainty estimations, and introduce bias errors.  A large number of parameters with a 

wide range requires a large computational time, increases the variance errors and 

decrease the stability of the solution. Usually the reservoir parameterization stage is 

subjective.  The type, number, and range of parameters are determined based on petro-

physics, well test, and seismic and geological interpretations and experiences.  Common 

parameterization approaches are demonstrated in the following paragraphs. 

 

Individual Grid Cells: this technique considers the value of properties, such as 

permeability in every grid block to be independent parameters.  The limitations of this 

approach are that it may not keep the knowledge of geological deposition.  There are a 

large number of unknowns and results in a lack of spatial continuity in the reservoir 

model (Floris et al. 2001).  A recent application of this method on a synthetic case was 

studied by Dadashpour et al. (2007) however this method is not suitable for real 

reservoir cases. 
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Zonation or Regions: this technique is a common practice in model construction and 

involves the assumption that reservoirs can be divided into several regions of uniform 

properties, distinguished by a Flow Zone Indicator (FZI) (see Figure 2.11). The benefits 

of using this method is to reduce the number of parameters (Gavalas et al. 1976, 

Makhlouf et al. 1993, Abacioglu et al. 2001, Huang et al. 2001), and it also incorporates 

in some degree the geological knowledge of the reservoir (Le Ravalec-Dupin et al. 

2001, Aanonsen 2005). Appropriate zones account for layers, genetic or hydraulic units 

within layers, impermeable and permeable streaks, and drainage areas of wells. The 

drawback of the method is that it may not be sufficient for describing the actual 

heterogeneities of the properties, and may generate abrupt changes at the borders of 

regions, also some preconceived idea about the regions are not exact. 

 

 

                              

                                        Figure 2.11: Zonation method principal. 

 

 

Pilot Points Method: the pilot point method with kriging (de Marseily G. 1984) was 

developed to modify underground properties to enable continuous spatial variation in 

heterogeneous properties such as permeability between the prefixed locations or groups 

of locations called ‘pilot points’.  The method consists of three stages.  First, the initial 

value for the property at pilot points are obtained by prior geo-statistical realizations 

conditioned to a variogram and the observed fix point values.  Then, the property at 

pilot points is perturbed by the inversion routine. The third stage is to propagate the 

perturbation induced by pilot points to the nearby grid cells in the reservoir model using 

a spatial interpolation scheme such as kriging. 

 

In fact such approaches (Landa and Horne 1997, Bissell et al. 1997, Roggero 1997, 

Arenas et al. 2001, Wen et al. 2002) consist of calibrating an initial kriged reservoir 
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generated from the measurement of that property and create a set of synthetic 

conditional simulation realizations at selected unmeasured locations with pilot points at 

centre (see Figure 2.12), preserving statistical mean, standard deviation, and the spatial 

correlation of the properties. Generally, the pilot points are selected at locations with 

large uncertainties in properties, and the method solves most of the troubles encountered 

by zonation approach. The technique provides a practical tool to be incorporated in 

history matching (Ravalec-Dupin 2007). 

 

 

                     

Figure 2.12: Simulation of one a dimensional case when modifying the initial realization 

(thin curve) using two Pilot Points at locations 150 and 450. The perturbations induced by 

Pilot Points are local. The modified regions for different realizations (thin curves), cantered 

at Pilot Point locations, have radius equal to the correlation length (Ravalec-Dupin and Hu 

2007). 

 

 

Object Based Parameterization: in this approach the permeability or net:gross at each 

simulation grid is a function of a set of implied parameters related to geological features 

of the reservoir, referring to each as an object, such as channels, channel margins, facies 

and etc.  The purpose in object modeling is to preserve the large scale geological entities 

to reduce the dimension of the problem.  For example a channelized reservoir can be 

parameterized with only a few parameters per channel (such as d0, d1 and d2 in Figure 

2.13), which are smaller than the number of grid cells that define the channel size, 

spacing and shape.  An example of this approach is the Boolean methods (Haldorsen 

and Damsleth 1988, Deutsch and Wang 1996, Lantuéjoul 1997).  The advantage of this 
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method is that the shape of objects resembles actual channels. The drawback of the 

method is that objects are notoriously difficult to condition simply since there are many 

parameters and it requires a realistic geological and statistical interpretation of the 

characteristics of the size and shape distribution of the objects (Vargas-Guzmán and Al-

Qassab 2006). 

 

 

           

Figure 2.13: Principal of object base modeling. Channelized reservoir can be parameterized 

with few independent parameters, such as d0, d1 and d2 defining channel sizes, spacing and 

shape. 

 

 

Structural Faults and Barriers or Baffles: the existence of barriers significantly 

influence the depletion performance of reservoirs by inducing flow and pressure 

discontinuities, particularly in compartmentalized and channelized reservoirs (Yielding 

et al. 1999a). The flow barriers can be horizontal, such as shales, impermeable streaks, 

and vertical, such as faults or sub-vertical such as shale drapes. The barrier’s 

distribution, location, thickness and transmissibility are hard to identify correctly from 

well test and log data.  Although, barriers represent the borders of channels or faults 

may be identified in 3D/4D seismic maps. Properties of barriers are a source of 

uncertainty for reserve estimation (Lia et al. 1997) and are often picked as the 

parameters for calibrating reservoir models in history matching (kruijsdijk 2001, 

Stephen 2006, and Edris 2009).  
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Gradual Deformation: this method developed by Hu et al. (2000) and makes possible 

the gradual global transformation of the initial reservoir geo-statistical realization with a 

set of parameters which act as weights (Figure 2.14).  For any value of this parameter 

the process provides a new property distribution. The simplest gradual deformation 

scheme consists of combining two independent Gaussian random functions Y1 and Y2 

with mean yo and identical covariance: 

 

)tsin(]yY[)tcos(]yY[]y)t(Y[ 0201o    (2.9) 

 

where t is a deformation parameter between [0,π/2], cos(t) and sin(t) are the 

combination coefficients making the method depend on only one parameter, t. Such 

combinations provide continuous chains of realizations ensuring that Y(t) is also a 

random Gaussian function with the same mean and the same covariance as Y1 and Y2. 

Instead of using two, it is possible combining several independent realizations which 

provides more flexibility for deforming realizations in history matching (Roggero and 

Hu 1998). Then the number of deformation parameters equals the number of 

complementary realizations added to the starting one.   

 

 

                       

Figure 2.14: An example of a continuous train of realizations for a 2-dimensional continuous 

Gaussian Random Function by gradually deformation, here two realizations at top right and 

bottom left are combined (after Roggero et al. 2005). 

 

 

The advantages of gradual deformation are that the key statistic (i.e. variogram and 

variance) identify the target statistics and the scheme allows for reduction of the number 

of the parameters and thus it is computationally efficient. Its drawback is that it is 

mostly efficient in multi-Gaussian random fields (Le Ravalec-Dupin 2005). 
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The Probability Perturbation Method: this method shares some of the ideas behind 

gradual deformation (Strebelle 2000, Caers 2003 and 2004) and works with Gaussian 

fields and more geologically complex reservoirs where multiple-point statistics are 

required to describe the geology sufficiently. The method exploits the structure of 

sequential simulation algorithms which make use of local conditional probability 

functions. Where gradual deformation perturbs properties at the grid block scale 

directly, this technique perturbs probabilities at the grid block scale.  Then a sequential 

simulation results in a perturbation of the desired field properties.  The method does not 

rely on any assumptions and is suitable therefore, for any kind of geology that can be 

realized by sequential simulation.  Examples of application of this method can be found 

on reservoir flow model calibration studies by Hoffman and Cares (2003), Berrera and 

Srinivasan (2009), and Li and Reynolds (2009). 

 

 

2.5 Classification of Optimization Algorithms 

The inversion procedure of history matching requires an optimization algorithm to 

guide the selection of the best possible updated parameters in order to minimize the 

objective. The optimization routines need to be robust and efficient. They should 

converge to a minimum (providing a reasonable initial guess for reservoir parameters), 

and with a reasonable amount of time and efforts. The optimization algorithms are 

classified according to whether they are gradient-based or gradient-free. If the 

optimization methods are non-random, they are called deterministic, i.e. their outcome 

is 'pre-determined'. A deterministic algorithm, for instance, if given the same input 

information will always produce the same output.  In this context, the gradient-based 

routines are deterministic while non-derivative methods may be deterministic, 

stochastic or probabilistic. All categories are iterative. A comparison of such 

optimization algorithms can be found in a study by Finsterle (2007). 

 

 

2.5.1 Gradient-Based Methods 

These methods update the parameter values in small steps along the search direction 

determined by the gradient of the objective function with respect to the parameter vector 

(Figure 2.15). Various modifications to the basic scheme of these methods are different 

in the choice of the length of step in the search. Examples of such methods include: 

Steepest Descent (Press et al. 1992), Quasi-Newton, and Fletcher-Powell-Davidon 

http://www.investorwords.com/10993/same.html
http://www.businessdictionary.com/definition/input.html
http://www.businessdictionary.com/definition/information.html
http://www.businessdictionary.com/definition/produce.html
http://www.businessdictionary.com/definition/output.html
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(Fletcher 1987).  Also, several other approaches are based on second derivatives and the 

Hessian matrix and perform well for nearly linear least-squares problems. In such 

methods the computational cost for calculating the second derivatives is usually 

compensated by an efficient stepping length. Examples of them are Gauss-Newton, 

Levenberg-Marquardt (Levenberg 1944, Marquardt 1963), and Adjoint Method (Chavent 

et al. 1975). 

 

 

                                                          

                  Figure 2.15: Illustration of gradient-based optimization procedure. 

 

 

Several gradient-based methods used in history matching are based on adjoints to 

calculate the sensitivity coefficients (Anterion et al. 1989, Bissel 1994, Landa and 

Horne 1996, Wu et al. 1999, Li and Petzold 2004), Steepest Descent (Roggero et al. 

2007), Gauss-Newton (Gosselin et al. 2001), and Levenberg-Marquardt (Arenas et al. 

2001) algorithms. The use of all the gradient-based algorithms is efficient if the 

objective function is symmetrically convex, with one global minimum, and continuous.  

In many cases however these assumptions are violated mainly due to the complicated 

topology of the objective function.  Also, these methods are inefficient when there is a 

large number of observed data (e.g. the time-lapse seismic data), then the 

gradient/Hessian matrix of objective function is difficult to calculate, particularly when 

the number of reservoir simulation parameters is large.   

 

These methods result in one solution (model), which may be a local minimum of the 

function, as a result they are also considered as local optimisation algorithms.  In such local 

optimization methods, the solution is usually strongly dependent on the initial model.  

They are capable of handling a certain amount of noise in data as long as large steps can 

be taken to calculate the gradient. Near the solution, the increments to calculate the 

gradients must be small, and the algorithm is then affected by the noise. 

http://en.wikipedia.org/w/index.php?title=Kenneth_Levenberg&action=edit&redlink=1
http://en.wikipedia.org/wiki/Donald_Marquardt
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2.5.2 Non-Derivative Methods 

In such methods the model is evaluated for different parameter combinations, mapping 

out the objective function in the multi-dimensional parameter space, which is explored 

by generated trajectories, until a satisfactory minimum is reached. Because no 

derivatives need to be calculated, they perform well where there is no assumption about 

the topology of objective function. Three types of gradient-free algorithms can be 

categorized as deterministic, stochastic and probabilistic.  

 

Deterministic Methods  

In such methods, the result of optimization is entirely determined by its initial state and 

inputs which is not random or stochastic.  

 

Generalized Pattern Search (GPS): these direct search methods (e.g. Torczon 1997, 

Audet and Dennis 2003) use successive exploration and linear search descent directions 

in a multi-dimensional parameter space. The method is illustrated by application of a 

Coordinate Search algorithm to a simple example composed of a two parameters (x and 

y) in Figure 2.16.  The algorithm starts at the initial point “0”, that is the combination of 

x3 with y10 and it performs the first exploratory search, points labeled “1”.  The point 

with the best value of objective function indicates the direction for the search.  Points 

labeled “2” are the first linear search.  With this best point, the algorithm performs a 

new exploratory search.  The process is repeated until a minimum point labeled as “4” is 

reached (Maschio et al. 2008).   

 

 

                                          

Figure 2.16: Schematic of application of the Generalized Pattern Search (GPS) algorithm in 

finding the minimum of a 2-dimensional objective function (after Maschio et al. 2008). 

http://www.investorwords.com/10043/initial.html
http://www.businessdictionary.com/definition/random.html
http://www.businessdictionary.com/definition/stochastic.html
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Each GPS algorithm has a rule to select the initial point, the mesh coordinates and a 

finite number of points on a mesh and step size (in present example is defined by 

x+Δx). It is this rule that distinguishes the various GPS algorithms such as the 

Generalized Hooke-Jeeves (GJH) (1961) (Figure 2.17) and the Generalized Coordinate 

Search (GCS) (Figure 2.16).  The drawbacks of the GPS methods are: i) they are 

inherently serial because of its search strategy, and cannot benefit from parallel 

distributed computing and thus they are slow, and ii) they have difficulty in finding a 

global minimum, principally for complex objective functions of large amount of data 

such as in 4D seismic surveys if they are contaminated with noise.  Schiozer (1999) and 

Leitão and Schiozer (1999) developed a type of JH direct search method suitable for 

distributing computing applied to the history matching problem. Since then several 

applications of various alternatives of this method can be found in the literature 

(Maschio and Schiozer 2005, Maschio et al. 2008, and Dadashpour et al. 2011). 

 

 

                               

Figure 2.17: Schematic representation of exploratory and pattern searches in Hooke-Jeeves 

direct search method (after Iseber 2009). 

 

Downhill Simplex: this is a method (Nelder and Mead 1965, McKinnon 1999, Press et 

al. 2002) for minimization of a function of n variables and depends on the comparison 

of misfit values at (n + 1) vertices of a general simplex, followed by the replacement of 

the vertex with the worst point, with a point reflected through the centroid of the 

remaining n points.  If this point is better than the best current point, then the simplex 

stretches exponentially out along this line; but if this new point is not better than the 

previous; then it is steps across a valley. The simplex shrinks towards a better point.  

Thus the simplex adapts itself to the local landscape, and contracts onto the final 

minimum. This evaluation-only method does not require any gradient calculations and 

is therefore simpler but can be extremely slow and inefficient.  The method was applied 

http://en.wikipedia.org/wiki/Centroid
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to history matching (Zabalza et al. 2000) and has been combined with stochastic 

methods for well placement problems (Badru and Kabir 2003, Guyaguler et al. 2002, 

Bittencourt and Horne 1997). 

 

Stochastic Methods 

Stochastic methods are considered as global optimizers, although this is not always the 

case. They require numerous simulations and considerable amounts of computational 

power, compared to deterministic algorithms. However, due to the rapid advances in 

computation speed and memory, stochastic algorithms have received more attention 

recently. They have the advantage of generating a range of different probable models 

that can then be used to quantify the uncertainty in the reservoir forecasts. Therefore, 

they are more suitable for non-unique history matching problems.  

 

Simulated Annealing (SA): this method (Kirkpatrick et al. 1983, Mosegaard and 

Vestergaard 1991, Sen and Stoffa 1991) replicates the annealing procedure in 

metallurgy, which involves the heating and controlled cooling of a material to increase 

the size of its crystals. The atoms move from their initial positions and wander 

randomly through the states of higher energy by heat.  Then, they obtain more chance of 

finding configurations with lower internal energy than their initial state by slow cooling.  

SA has the advantage that there is a chance of escaping local minima, but it requires 

many forward models and therefore is computationally prohibitive. SA has been 

employed a number of the history matching studies (Sen et al. 1992, Portellaand and 

Prais 1999). Jin et al. (2009) proposed the combination of very fast Simulated 

Annealing method with pilot-point parameterization for solving the 4D seismic history 

of a synthetic case, however when they compared that with Particle Swarm and 

Neighbourhood Algorithm (Jin et al. 2011), they found that the method requires 

comparatively more iterations to converge due to the sequential nature of the method. 

 

Particle Swarm Optimization (PSO): the idea of this algorithm was originally derived 

from modelling social behaviour, in particular modelling the flight of a flock of birds 

(Kennedy and Eberhart 2001). Here the “particles” which make up the population, move 

in the search direction with a velocity that is determined relating to the experience (of 

the objective function) of each individual particle and the population.  In essence each 

individual particle memorizes the best position it has encountered and uses this together 

with the memory of the best position of its population. Hence changes in the particles 
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trajectory are made from these influences in each iteration. Position updates are then 

made from the new calculated velocity.  The resulting effect of these interactions is that 

particles move towards a solution while still searching the surrounding localities.   

 

Ideally, the PSO optimizer has good exploration ability while still being able to refine 

searches and has the ability to escape from local minima (Kathrada 2009).  Fernández et 

al. (2009) showed the application of PSO to seismic history matching to update the 

geological facies model to match production and 4D seismic data.  The results show that 

PSO performed much better than other global methods and was as fast as other local 

optimization techniques used. PSO allows estimation uncertainty for the model 

parameters like all stochastic methods and it requires reasonably fast forward modelling.  

As a more recently developed global optimization technique, it has been examined in a 

number of history matching cases (Mohamed et al. 2010, Abdollahzadeh et al. 2011, 

Reynolds et al. 2011).   

 

Evolutionary Algorithm (EA): is a term for all optimization routines that are inspired by 

evolutionary mechanisms.  They are similar in their basic principles but have differences.  

The main concept in Evolutionary Algorithms is the use of ensembles in generating parent-

to-child sequences (Goldberg 1989). Various examples of such algorithms are Genetic 

Programming, Evolutionary Programming, Evolution Strategy and Neuro-evolution.  These 

algorithms are especially useful in cases where gradient of the objective function is difficult 

to evaluate or when other algorithms fail because of significant non-linearity or 

discontinuities in search space.  They are also amenable to parallel computing.  The most 

popular type of EA is the Genetic Algorithm (GA).   

 

Genetic Algorithm (GA): the initial insight of the GA algorithms developed by 

Holland in the early 1970s (Fogel et al. 1966, Holland 1975, Sambridge and 

Drijkoningen 1992, Sen and Stoffa 1995). The algorithm is based on biological 

principles of evolution, or “survival of the fittest”.  GA is a population search method 

and starts with an initial population whose members are called “chromosomes”. The 

chromosome consists of a fixed number of variables (binary or real codes) which are 

called genes. In order to evaluate and rank chromosomes in a population, a fitness 

function is defined.  The probability survival of a chromosome (individual) is related to 

the fitness of the individual divided by the sum of the fitness of all individuals in the 
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population. Three operators are used in the GA: selection, crossover and mutation (see 

Figure 2.18).   

 

 

                  

           Figure 2.18: Schematic representation of the main Genetic Algorithm operators. 

 

 

The selection operator chooses an intermediate population from the current one with the 

highest fitness to be used by crossover and mutation operators. Crossover combines two 

or more chromosomes (parents) by randomly picking a gene value from parents (with 

some pre-defined probability) to reproduce new off-spring, with the hope that one of 

them collect all good features that exist in the parents.  Mutation randomly alters one (or 

more) gene to a new value in a chromosome based on a Gaussian distribution around 

the original value (with some small pre-defined probability). Mutation aims to achieve 

some stochastic variability of chromosomes in order to get a quicker convergence but 

also to escape local minima. The initial population size, crossover and mutation rates 

play major roles in the performance of GA. They control the premature convergence of 

GA by two effects of lack of diversity in the population and disproportionate 

exploitation/exploration (Herrera et al. 1995).   

 

Many investigations of various parameter choices for optimal selection, crossover and 

mutation of chromosomes via various string structures have been carried out and used 

(for more details see Pott el al. 1994). In order to accelerate the inversion process of 

history matching, various Genetic Algorithms have been applied to such studies (Carter 

and Ballester 2004, Walker et al. 2006, Erbas and Christie 2007, Maschio et al. 2008).  

Genetic Algorithms have been also used in the Top-Down Reservoir Modelling 
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(TDRM) approach developed by BP in tuning many parameters together while history 

matching to the well and 4D seismic data  (TDRM is an integrated workflow and its 

philosophy is “to start investigations with the simplest possible model and simulator 

appropriate for the business decision”) (Williams et al. 2004).   

 

Neighbourhood Algorithm (NA): is a quasi-stochastic search routine originally 

developed to solve geophysical inversion problems (see Sambridge 1999; 2002). The 

algorithm makes use of geometrical constructs known as voronoi polygons to direct the 

search and sampling of the parameter space. The voronoi polygons (i.e. the 

neighbourhoods) represent the volumes closest to the points that define models in a high 

dimensional parameter space. Sampling for new parameter values is carried out by 

assuming that better models may be found somewhere in the neighbourhoods of the best 

models found so far.  An example of utilizing the voronoi cells within NA to find the 

minimum of a 2D synthetic misfit surface (Figure 2.19a) is depicted in Figure 2.19.  

The NA workflow is outlined in Figure 2.19b, and the steps of the routine are: 

 

a) Firstly an initial ensemble of ni models is usually generated randomly in the 

search space. For each model the forward problem (the flow and seismic 

simulation) is solved, the relevant misfit value, M, is obtained and the voronoi 

polygons are established, see Figure 2.19c. 

 

b) In the second step, the nr models having the lowest misfit values among the 

previously generated models are determined, see Figure 2.19d.   

 

c) Then, ns new models are placed throughout the nr voronoi cells selected at the 

previous step by sampling from a uniform probability across each of the cells. 

That means that ns/nr models are placed in each voronoi cell in the set of nr 

models that were selected and the misfits for the new models are obtained, see 

Figure 2.19e. 

 

d) The algorithm returns to step (b) and the process is repeated. In each iteration 

the voronoi cells are more refined and progressively concentrated in the regions 

where the fit is high, see Figure 2.19f.    
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e) The process continues until it reaches the user-defined number of total iterations.  

Thus a total of N=ni+( ns x iteration no.) models is generated by the algorithm.  

 

 

 

Figure 2.19: a) Neighbourhood Algorithm workflow for searching the parameter space, b) a 

synthetic 2D misfit surface with blue indicating small misfit values and yellow high misfit 

values, c) a number (ten) of initial models are sampled in the parameter space of the problem 

and their voronoi cells are constructed to indicate the neighbourhoods, d) the two best models 

with smallest misfit are identified, dark purple indicate highest probability cells, e) new 

models are distributed randomly in the neighbourhoods of these two best models, e.g. five per 

voronoi cell, and the new misfits are calculated,  f) the process is repeated a number of times, 

each time the voronoi cells are more refined and concentrated in the regions of low misfit, 

and eventually the misfit is reduced (modified after Sambridge 1999 and Erbas 2006). 

 

b) 
a) 

c) 

d) 
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For the NA to have a good initial sample, Sambridge (2001) recommends that the initial 

models ni should be equal to 2
nd

, where nd is the number of unknown parameters in the 

optimization problem. The required number of initial models is therefore large, 

particularly in high-dimensional problems. The convergence performance of the 

algorithm depends on ns, nr, and the ratio of ns/nr as tuning parameters.  They control 

the explorative and exploitative behaviours of the algorithm respectively.  Exploration 

is a feature by which an algorithm searches in the parameter space without considering 

what it has ‘learned’ from previous sampling. Conversely, exploitation makes use of 

previous sampling. Setting NA parameters for greater exploration, i.e. small ns to nr 

ratio, increases the chance of finding the global minimum compared with less 

explorative NA runs. Setting NA parameters for greater exploitation, i.e. high ns to nr 

ratio could result in trapping in a local minimum although convergence is faster. At 

each stage of the exploitation and the sampling procedure, selective sampling of the 

good data-fit regions is achieved by exploiting information about all the previously 

generated models.  Figure 2.20 shows the result of searching for the minima of a 

synthetic 2D misfit surface (Nicotra et al. 2006).  In this example there are five minima 

(indicated by the green crosses) and the equation representing the misfit is the Branin 

function. The voronoi cells are coloured by the associated model objective function 

value.  Figure 2.20 compares a case of strong exploitative behaviour to an explorative 

one under the same number of models generated per iteration (ns = 60). When NA is set 

for strong exploitation (ns/nr = 15), it concentrates the search only around 2 over 5 

minima (Figure 2.20a) by thickening the same voronoi cells, when set for exploration 

(ns/nr = 1), it is able to locate all global minima (Figure 2.20b). 

 

From the standpoint of optimization, the rule of thumb is that the more explorative an 

algorithm is, the less likely it will fall into local minima, but the less efficient it will be 

at converging to a solution.  Examples of other methods that lie at the extremes would 

be a uniform random search, which is completely explorative, and a Newton-type 

descent algorithm which is purely exploitative. Clearly, the most appropriate technique 

will depend on the nature of the problem and any pre-knowledge of the shape of the 

misfit function. For smoothly varying, near quadratic-like objective functions we would 

prefer an exploitative approach, such as a gradient method which allows rapid 

convergence. For highly nonlinear problems with multiple minima/maxima in the 

objective function a combination of exploration and exploitation would probably suit 
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best. However, controlling the trade-off between the two properties is often quite 

difficult, as is deciding in advance which approach is best suited to a particular problem 

where the shape of the misfit surface is unknown. 

 

 

 

Figure 2.20: 2D voronoi cells coloured by the associated model objective function value 

obtained for a search of the 2D Branin Equation. From a) case (ns = 60 and nr = 4) to b) case 

(ns = 60 and nr = 60), they show shift of NA from exploitative to explorative behaviour (ns/nr = 

15 to 1). Green crosses indicate global minima positions (after Nicotra et al. 2006). 

 

 

Nicotra et al. (2006) observed that for problems with high dimensional parameter space 

and a complicated misfit surface, generation of quite a large number of initial models, ni 

=  2
nd

, and then the use of exploitative tuning with ns/nr  = 2 or 4 and resulted in a good 

performance of the NA, i.e. this strategy would make it possible to reduce considerably 

the total number of models generated to reach a threshold convergence.  For problems 

with a simpler response surface, the number of models can be reduced further. 

 

The advantages of the NA are: i) the simplicity of its two-parameter tuning scheme in 

contrast to the more complicated tuning mechanisms of other methods, such as 

Simulated Annealing and Genetic Algorithms, and ii) in NA, similar to evolutionary 

algorithms, the selective sampling of good data-fit regions is achieved by exploiting 

information about all previously generated models thus enabling convergence to 

solution (Sambridge 1999a).  NA has been used for reservoir history matching (Subbey 
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et al. 2002, Christie, et al. 2002; 2006, Suzuki and Caers 2006, Erbas 2006, Stephen et 

al. 2006, Kazemi and Stephen 2008; 2009, Edris and Stephen 2008; 2009, Sedighi and 

Stephen 2009; 2010). Wathelet (2008) proposed that the NA tuning parameters (ns and 

nr) be tuned on the road to the convergence to improve the exploitation. The key point 

is that one can increase convergence by decreasing nr compared to ns to target the 

voronoi cells whose misfits are lowest but inevitably this surrenders exploration.  

Arwini and Stephen (2010 and 2011) on the other hand showed that by combining the 

NA and response surface modelling during exploitation, the NA convergence rate could 

significantly be improved by replacing uniform sampling in each voronoi cell with a 

biased sample based on a proxy model. This approach obtained better exploitation 

without sacrificing exploration. NA is used in this thesis as the optimization routine for 

minimization of the misfit function in the seismic history matching and updating the 

reservoir model parameters. Here, the random samples within a voronoi cell follow the 

original one as the procedure described by Sambridge (1999). 

 

General applicability of the NA to history matching methods: the neighbourhood 

algorithm has been applied to several field history matching problems using a variety of 

parameterization approaches and has performed well with various complexities in the 

reservoirs. It has also been used with several data types (seismic and production data).  

For example Edris et al. (2008; 2009) performed synthetic seismic history matching 

case studies using the NA routine and pilot points with kriging as the parameterization 

scheme to update the field permeability distributions and obtained a good representation 

of the true model even though the starting model consisted of a different realization.  In 

field applications, however, it is generally hard to identify whether or not a poor match 

at the end of history matching is due to the poor performance of the optimization 

routine, incompleteness of the parameterization scheme, poorly estimated uncertainty in 

the observed data or strong modelling errors in particular.  

 

However there are many examples of successful applications of NA in real reservoir 

history matching problems of different degrees of complexity. An example of such a 

history matching case is the Nelson field where NA routine was integrated with 

streamline simulation and parameterization via pilot points and kriging to identify 

update three reservoir properties including: net:gross, horizontal, and vertical 

permeability of various geo-bodies in the model (Stephen et al. 2007, Kazemi and 

Stephen 2010; 2011).  Also in history matching studies on the Schiehallion field, NA 
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was used to update reservoir parameters such as permeability, barrier transmissibilities 

and net:gross and good matches to the 4D seismic data (Stephen 2006, Edris 2009) were 

obtained along with production data. Another example is Teal South in the Gulf of 

Mexico where BP’s Top Down Reservoir Modelling (TDRM) was applied based on 

using NA, and the method was very successful (Subbey et al. 2002, Skinner et.al. 2004). 

In several case studies on this field the key unknowns were the geostatistical simulation 

parameters (channel directions, channel dimensions, variagram ranges). Additionally, 

end points of relative permeability curves, dependencies of compressibility factors and 

permeability on effective stress, transmissibility multipliers across faults, water-oil 

contact, and porosity multiplier of the aquifer were considered as uncertain parameters 

and updated in other history matching case studies of the field (Litval et al. 2004).  NA 

was used in a case study of the Rigel field where flowing bottom-hole pressures and 

water cut history data were matched while varying the fault transmissibilities (Nicotra et 

al. 2005).  

 

Typically a large number of models are required by NA both for the initial ensemble 

and in the search for minima of the misfit function. It has been claimed that in cases 

where multiple minima exist, each initial random population may lead to convergence 

to distinct solutions (Erbas 2007) if the ensemble is too small. This effect is more severe 

in high dimensional problems (e.g. updated grid cells properties) and also in a wide 

range of model parameters.  One way to tackle this is to apply NA several times, each 

time with a different initialisation within the predefined bounds of each parameter or, 

alternatively, use different bounds of each parameter and thus different initialisation 

models. The identification of these multiple solutions is essential to reveal the different 

minima of the objective function landscape, which in turn is important in the reservoir 

uncertainty assessments (for more details on  identifying different optimal regions of the 

parameter space from an ensemble of acceptable models see Sambridge 2001; 2003). 

 

NA algorithms may also be unsuitable where the reservoir properties are defined in a 

strongly stochastic manner, e.g. through Sequential Gaussian Simulation (SGS). In 

general, the NA is more suitable where the user correctly makes assumptions that the 

dependence of the misfit on the parameters is not very erratic or random.  That is, there 

are not too many minima and the misfit is smoothly varying with parameter changes. 

However, if these assumptions are not valid, the impact will be that the convergence 

rate will be very slow.  An example of this is the study carried out by Carter et al. 
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(2003) and Carter (2004) using a synthetic reservoir model and a Genetic Algorithm as 

an optimization routine.  Only three parameters were changed during history matching 

including the throw of a fault and permeability of two facies which made up layers in 

the model. The resulting misfit was deterministic but very complex.   

 

Similar degrees of suitability of NA are expected for the 'divide and conquer' approach 

proposed in this thesis including Parallel-SHM and Serial-SHM applications as long as 

we are able to resolve the independent parameter sub-volumes.  However properties 

such as relative permeability may not be straightforward. In such cases it is difficult to 

decouple the effect of a global property (relative permeability) and more local parameter 

effects (e.g. barriers) that may exist. Regional relative permeability could be used more 

effectively using spatial decomposition method, however. 

 

Stopping criteria of optimization routine: a general stopping criteria may follow the 

following process at the end of calculating misfits: 

 

1. We first check if the misfit value has dropped below some threshold below which 

would consider that we are over-fitting to the noise, i.e. M<M
noise

 (1+δ) (where M is 

the misfit and δ is some small number much less than unity and indicates that we do 

not wish M
noise

 exactly). For example, the misfit for a perfect model would be 

(Equation 2.3), M=N, where N is number of data in the misfit function.  Here we 

ignore the model error, and the data contain uncorrelated Gaussian errors (for more 

details see Appendix B). If this is the case it means that we obtain an acceptable 

match. Then either: 

a) We may check if there could be alternative solutions for the problem by:  

i. Restarting the search elsewhere in parameter domain to find new 

solutions or 

ii. Restarting by selecting new parameterization to find alternative 

solutions 

b) Else stop 

 

2. Otherwise we may check that no further reduction in the misfit value would be 

obtained by continuing, e.g. ∆M/M< a threshold (indicating convergence).  If this is 

the case then: 
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a) If we do not accept this solution, we consider searching for alternative 

solutions in the parameter space where we: 

i. Restart with new misfit weights for various data types (e.g. observed 

seismic or production data) thus varying the importance of the data or 

ii. Restart with a search restricted elsewhere in the parameter space or 

iii. Restart with new parameterization 

b) Else stop 

 

3. Else if we cannot afford more iterations (considering limitations of a deadline for 

completion of the job, or limitations on CPU time and software license costs) then 

stop 

 

4. Else continue another iteration 

 

Such stopping criteria fulfil the need to terminate the history matching loop perhaps 

trading a reasonable history matching result against avoiding using unnecessary 

computing time.  For many field cases, the data are difficult to match and there is 

usually a deadline for completion of history matching and limitation for simulation 

licenses and CPU cost. Normally, when the optimization process has reached 

convergence (hopefully to a good solution), we should terminate the process because 

further optimization steps may lead to over-sampling, perhaps over-fitting to noise in 

the data, and wastes resources.  The matching criteria often become “as good as one can 

get it in the time that one has”. The real question is then whether or not we have 

converged to the best model or not.  Then if we have it is there another better model out 

there. If we have not converged, what should we do? Should we revise the importance 

of the misfits, consider alternative parameters or use a different parameterization? As 

such we can then think of history matching as a set of nested iterative loops and the key 

question is when we terminate one loop when we should complete all. These questions 

are still a topic of research and are recommended as future work. 

 

We may consider some straightforward comparisons (of misfits) that offer appropriate 

stopping criteria. These include using the rate of change of the reduction in the 

minimum misfit over the iteration, or one may consider that a misfit threshold may be 

used as stopping criteria. However, more importantly, even though a mismatch is 

calculated, it is usually inappropriate to specify some misfit tolerance when we are not 
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acquainted with the contribution of the model and data errors and appropriate weights of 

different data types. This is usually explored  by engineers changing the weights of 

various data types used in the misfit function in an 'ad hoc' way when they do not 

achieved the desired outcomes in the history matching. It happens particularly if the 

match to one observed dataset (e.g. seismic data) is acceptable but the other (e.g. 

production data) is not.  Often a moderate match to various types of data is deemed to 

be more acceptable.  

 

In this thesis, we by set a termination criterion using a predefined number of iteration 

(models); this is takes into account the limited availability of computational resources 

and in the absence of an overall convergence towards the minimum misfit. The 

Neighbourhood Algorithm (NA) usually exhibits rapid progress at the beginning and 

flattens out at the end indicating convergence to a minimum misfit. If we reach a point 

where we consider that the quality of match will not improve we do not continue with 

further iterations. In this work we do not consider alternative parameters or 

parameterization schemes or variations to the misfit weighting as we are mainly 

interested in the performance of the inner most history matching loop.   

 

Quasi-Random samples used in NA: the initial ensemble of ni models generated in 

NA are part of a Sobol sequence (Sobol 1967), a common quasi-random sequence.  

Other quasi-random sequences include the Halton sequence and the Hammersley 

sequence (Niederreitere 1988).  Mathematically, these sequences are defined as having 

low-discrepancy. Discrepancy refers to the difference between the actual number of 

samples in a given volume (of multidimensional space) and the number of samples that 

should be there assuming a uniform distribution.   

 

Quasi-random sequences should not be confused with pseudo-random sequences which 

are entirely different.  Pseudo-random sequences are computer-generated sequences that 

behave as if they were truly random, even though produced by deterministic algorithms.  

An early computer-based Pseudo-random generator suggested by Neumann (1951).  In 

Figure 2.21 comparison of the visual uniformity of the sequences is shown.  The 

pseudo-random sequence exhibits clustering of points and there are regions with no 

points at all, but the Sobol quasi-random sequence appear to cover the area more 

uniformly. 

 

http://en.wikipedia.org/wiki/John_von_Neumann
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Figure 2.21: Pseudo-random compared to Sobol Quasi-random sequence. They were created 

by generating 1000 samples in a 16-dimensional space, and then plotting the 4
th

 dimensional 

component of each point against its 5
th

 dimensional component (after Levy 2002). 

 

 

Probabilistic Methods  

Two famous algorithms in this category are Ensemble Kalman Filter algorithms and 

Monte Carlo method.   

 

Ensemble Kalman Filter (EnKF): is an extension of the traditional Kalman filter 

(Kalman 1960) and was first introduced by Evensen 1994 as a sequential data 

assimilation approach for history matching studies; i.e. new data are accounted for when 

they arrive (Burgers et al. 1998). The algorithm begins with the generation of an 

ensemble of initial models, typically 50 to 100, consistent with prior knowledge of the 

initial state (pressure and saturation and other input data such as well production 

history) and probability distribution. These models are advanced to the time of the next 

observation or some time period using a simulator. The covariance of the model 

variables (such as permeability, net:gross, etc) is estimated directly from the ensemble 

of states. The model updating step of EnKF follows within a probabilistic Bayesian 

framework. Property distributions are sampled using the so called Kalman gain to 

modify the grid cell properties including the dynamic state (e.g. saturation and 

pressure).  This process is then continued for the next period of history. The formulation 

of EnKF involves the minimisation of an objective function and statistical minimisation 

in the ensemble space.  It provides an approximate solution while sequentially updating 

multiple models to capture the probability densities in the parameter map. It is 

necessary for ensuring that adjustments to the current model parameters do not destroy 

the match at the previous step.   

 

Pseudo-random Quasi-randomPseudo-random Quasi-random
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Recently EnKF has been widely applied to history matching studies (Neavdal et al. 

2003, Liu and Oliver 2005, Dong et al. 2006, Evensen et al. 2007, Leeuwenburgh et al. 

2008; 2010).  EnKF supposed to allows for simultaneous estimation of a large number 

of poorly known parameters for each grid cell since it utilizes cross-covariances 

between measurements and model parameters estimated from the ensemble.  

Skjervheim et al. (2005) examined EnKF for handling of large amount of 4D seismic 

data together to well data and found the method recursive with little additional cost.  

 

For practical field applications, however, the ensemble size needs to be small for 

computational efficiency. This leads to poor approximations of the cross-covariance 

matrix, resulting in a loss of geological realism.  Specifically, the updated parameters 

tend to become scattered with a loss of connectivities of extreme values such as high 

permeability channels and low permeability barriers. This is one of the limitations of 

EnKF, which could lead to the loss of ensemble variability, referred to as “ensemble 

collapse” (Gu and Oliver 2005, Lorenc 2009, Zhang and Oliver 2010).   

 

Another limitation of the EnKF is that its computations are based on first- and second-

order moments (mean and variance), and there are difficult problems to handle, for 

example when representing a bimodal channel facies distribution (Wang et al. 2009) 

and property fields associated with non-Gaussian permeability distribution (Haugen et 

al. 2008). Unfortunately, using EnKF the geostatistical correlations between model 

parameters are not maintained (Sarma et al. 2006), i.e. it tends to transform multi-modal 

permeability distributions to a more normal distribution over a sequence of many 

updates.  These transformations lead to a loss of structure in the permeability field.  The 

effect of filter divergence is such that the distribution produced by the filter drifts away 

from the truth. Filter divergence normally occurs because the posterior probability 

distribution becomes too narrow and the observations have gradually diminishing 

impact on the Kalman gain.  It then tends to find local rather than global minima. 

 

Aanonsen et al. (2009) stated that EnKF is more suitable when there is a small amount 

of observed data and thus not suitable for use in 4D seismic history matching.  When 

there is a weak match between prediction and observed data, the problem could be due 

to the state of the reservoir at the current time or from the time of the first survey.  It is 

not straightforward then to go back in time in order to carry out “Kalman smoothing” 
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which is the process where new changes to the model are propagated backwards in time 

to older seismic survey predictions. 

 

Monte Carlo (MC): is a purely probabilistic workflow for solving inverse problems.  

MC methods consist of two parts, the sampling method and the optimization method.  

The sampling scheme of MC is based on generating a population reservoir models with 

reasonable statistical characteristics of a random variable. The random models will be 

generated from a specific probability distribution. Thousands of possible outcomes of 

models will be generated then. The optimization routine of MC is based on random 

walks. This means that the algorithm will move around a marker in multi-dimensional 

space in order to find the lower misfit (Mosegaard and Sambridge 2002). 

 

Probabilistic Approach of History Matching and Uncertainty Analysis  

These approaches incorporate all quantifiable sources of uncertainties that arise in 

reservoirs from static and dynamic data as well as the simulation model when seeking 

solution of the inverse problem. All models generated during inversion iterations are 

used for further analysis to identify the most probable parameter values.  In so doing, 

the probability distribution of the updated parameters is continuously extended by new 

information using Bayes formulation and the principle of estimating the maximum 

likelihood. They are then re-sampled as part of uncertainty analysis using Markov Chain 

Monte Carlo (MCMC) methods to determine probability distributions of the reservoir 

outcomes, i.e. saturation and pressure, well data, and also for uncertainty analysis of 

reservoir performance predictions (Sambridge 1999b, Oliver et. al. 1996).  If a sufficient 

number of models are generated, this MCMC re-sampling can continue without further 

reservoir simulation in uncertainty analysis of history matching results.  The models 

generated equivalent to running an order of magnitude or more additional models.  

 

Bayes Theorem: is used for combining the probabilistic prior information with the 

information contained in the misfit to observed data in order to update the prior 

distribution which is then the posterior probability distribution given the data. The 

posterior distribution of parameters, p(θ
posterior

 d
obs

), thus is just the conditional 

Probability Density Function (PDF) of d
obs

 for given estimated parameters θ posterior:  
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)d(p/)(p).d(p)d(p
obspriorpriorobsobsposterior

   (2.10) 

 

p(d
obs

) is difficult to establish and is most often to be assumed Gaussian and effectively 

as a normalisation factor.   

 

)(p.)d(p)d(p
prior

n

1i

priorobsobs      (2.11) 

 

For a uniform probability distribution of parameters given by upper and lower bounds, 

the prior distribution, p(θ
prior

), also can be expressed as a constant value normalized to 

one.  Then the posterior distribution is simplified: 

 

)d(p)d(p
priorobsobsposterior      (2.12) 

 

Gaussian Maximum Likelihood: is defined theoretically for a normal Gaussian 

distribution with zero mean, constant variance, and values from zero to infinity. The 

probability function of observed data (given the vector of prior parameter) can be 

expressed as the likelihood function of the objective function. Typically it is assumed, 

that the model error is negligible in the residuals of misfit function and the error of 

observed data has normal Gaussian distribution. As a result, p(d
obs

 θ
prior

) is also 

commonly labeled as the Gaussian likelihood function which is exponential and is given 

by: 

 

))(J
2

1
exp()(L)d(p)d(p

priorobsobsposterior
  (2.13) 

 

with J(θ) being the misfit or objective function (Equation 2.3 or 2.4).  The likelihood of 

a model, L(θ) is a measure of how likely a parameter vector θ reproduces the observed 

data, d
obs

, in other words, it quantifies the degree to which the observed data support a 

given hypothesis regarding the model parameters. 
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2.6 Petro-Elastic Modelling 

Petro-Elastic models for fluid and stress dependency in rocks are necessary for 

quantifying and analysing time-lapse seismic signatures during reservoir depletion and 

injection. Qualitatively, seismic impedance is the ability of passage of an acoustic wave.  

High impedance indicates the reservoir rock is hard to compress and low impedance 

shows that rock is soft. Amplitude is another seismic attribute depending on 

reflectivities at layer boundaries and is also used in seismic history matching.  However, 

since it hinges on interfaces rather than layers which relate to impedance, it is preferred 

in 3D seismic interpretation of geological structure, while impedance is more favored in 

4D seismic simulation calculation using the reservoir simulator pressure and saturation 

output which requires rock-physics properties at each grid block to be obtained (Dong 

and Oliver 2003).  The acoustic impedance, Ip, is a function of two porosity-dependent 

properties and is given by: 

 

pbp VI          (2.14) 

 

Where ρb is bulk density and Vp is compression (P-wave) velocity.  The P-wave velocity 

and S-wave velocity, VS, are given by: 

 

b
p

3

4

V          (2.15) 

 

b
SV          (2.16) 

 

where κ is the bulk modulus and is of large value for stiff rocks.  The shear modulus, μ, 

is the coefficient between shear strain and shear stress of elastic rock.  The velocity of 

acoustic waves in fluid filled porous rock is mainly sensitive to pressure, and depends 

on pore volume. It varies with heterogeneity in mineral composition, rock matrix 

texture and cementation, fluids types and saturations in the pores (Vernik 1994, Avseth 

2000), and exhibits frequency and scale dependent dispersion (Mukerji 1995, Rio et al. 

1996). Pore shape also significantly influences seismic velocity (Tsuji and Iturrino 
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2008b), and existence of thin cracks or voids with small pore volume can considerably 

decrease the velocities (Kuster and Toksoz 1974).  

 

Compression (P-wave) and Shear (S-wave) velocities in porous rock are replicated 

through models that are either theoretical or determined empirically from laboratory and 

field observations (Hertz-Mindlin 1949, Han 1986, Wang and Nur 1992; 2000, Mavko 

et al. 1998, Shapiro and Troyan 2002, Macbeth 2004).  

 

Early Empirical Models: were used to estimate the velocity in dry pore rock, these 

models (Han et al. 1986, Krief at al. 1990) follow the assumption that the first 

derivatives of the velocity with respect to porosity and/or pressure exists. They fulfill 

the requirements of gradient-based techniques to solve the seismic inverse problems, 

but imply in practice that the reservoir volume/layer consists of the uniform rock type 

and the mineral, textural, and pore geometry effects are not important. They are not 

accurate models and generally as an alternative, empirical models are now often derived 

for estimation of the bulk modulus of the dry porous rock. 

 

Substitution of fluids (i.e. water, oil, and gas) by change in fluid saturation changes the 

acoustic properties of rock frame. Figure 2.22a shows the variation in acoustic velocity 

with effective pressure for different fluids measured in a Berea sandstone core sample.  

There is an apparent decrease in velocity as the fluid changes from water, to oil and gas, 

particularly for effective pressures below ~700 bars (~10300 psi).  This is because water 

is less compressible than air so that substitution of water by air increases the bulk 

modulus of the system.  For oil-saturated rock this effect is similar but smaller since oil 

is more compressible and has lower density than water.   
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Figure 2.22: a) change in P-wave velocity with effective pressure as a function of different 

fluid types (after Cheng 2009), and b) the change in P- and S-velocities and Poisson’s ratio as 

function of water saturation (after Skopec and Ross 1994).  

 

 

The bulk-volume deformation produced by a passing seismic wave results in a pore-

volume change and causes a pressure increase in pores filling with water or oil that are 

less compressible than air. This pressure increase stiffens the rock frame and causes an 

increase in bulk modulus. Shear deformation, however, does not produce a significant 

pore-volume change, and consequently different fluids show negligible if any affect on 

shear modulus.  Fluid-saturation effect mainly correlates to a change in bulk modulus.   

 

Figure 2.22b shows the increase in the P-velocity and Poisson’s ratio and Shear-wave 

velocity as a function of water saturation measured on a sandstone core with minor clay.  

Poisson’s ratio is the ratio of transverse contraction to longitudinal extension strain in 

the direction of the stretching force and demonstrates greater change with respect to 

increase in water saturation. Poisson's ratio depends on the P-wave to S-wave velocity 

ratio. Generally, increasing water saturation in a rock increases Poisson’s ratio, and also 

increase Vp/Vs and thus Vp (see Figure 2.22b). 

 

We require a need for a petro-elastic model to account for the changes in both fluid 

saturations and pressure in estimating the velocity and thus simulation of seismic 

impedances. In this thesis, the Gassmann equation (1951) captures the saturation effects 

and stress dependency of the rock is captured in an empirical relationship (MacBeth 

2004). 
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Stress dependency  

Bulk and Shear modulus of dry rock frame properties, κdry and μdry: will vary 

significantly with stress, and also stress history and stress path.  It is usually assumed 

that the stress-dependence of the elastic moduli is the result of the compression of grain 

contacts, and the closure of microcracks that may present in the rock frame.  Estimation 

of the bulk and shear muduli of the dry frame of rocks is usually deficient.  They are 

obtained by combination of core measurement, well logs or empirical equations (Guerin 

2000, Wang 2001, Smith et al. 2003, and MacBeth 2004). Core measurements are 

expensive and samples are sparse, nevertheless dense core sampling usually shows there 

is a lot of variability in the elastic properties even in a seemingly homogeneous 

reservoir. Consolidated rocks often break up during coring, and hence the stress 

sensitivity is likely to be over-predicted in the lab relative to the in-situ conditions 

(Furre et al. 2009).   

 

Besides, for unconsolidated sands, acquisition of friable core samples is not often 

feasible. Core measurements are typically done at ultrasonic frequencies and require the 

cores to be completely dry to avoid dispersion effects. Well measurements may 

originate in the hydrocarbon saturated interval of the reservoir where the sonic and 

density logs are affected by invasion of mud filtrate resulting in inaccurate in-situ log 

data.  Well measurements may be taken from the brine-saturated interval; the advantage 

is that the mud invasion is largely avoided, although the rock matrix may be different 

from the oil-saturated section in terms of porosity, clay content, or cementation.  

Therefore, no matter how VP, and VS are collected, errors are introduced and propagate 

to fluid replacement modelling (Engelmark 2002).  

 

Hertz-Mindlin’s theory: in the literature physical models for predicting pressure 

sensitivity in unconsolidated dry sediments are based on granular contact models of 

Hertz-Mindlin (Mindlin 1949). The porosity at which a granular composite ends to be a 

suspension and becomes grain-supported is called the critical porosity.  Dvorkin and 

Nur (1996) supposed that at critical porosity, the effective elastic moduli of the dry-

mineral frame can be calculated using Hertz-Mindlin’s contact theory, for porosities 

smaller than the critical porosity, the modified Hashin and Shtrikman (1963) lower 

bound, and for porosities larger than the critical porosity the modified Hashin and 

Shtrikman upper bound can be used.   
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A
 
comparison of the empirical results to theoretical Hertz-Mindlin effective-medium 

models demonstrates that the theoretical models predict a lower pressure exponent for 

the bulk modulus and
 
velocities (e.g. V p

~1/6
) than is generally observed (e.g. V

p
~1/4

) in the data.  This discrepancy is attributed to the inability of the
 
models to account 

for decreases in the amount of slip
 
or grain rotation occurring at grain-to-grain contacts 

with increasing pressure (Zimmer et al. 2007). Therefore in this thesis, using empirical 

relationships are proffered where it is needed. Section 3.2.2 of Chapter 3 depicts the stress 

sensitivity correlation used in the SHM workflow of this thesis which is based on 

calculating the rock dry bulk modulus using MacBeth (2004). 

 

Saturation Dependency 

Gassmann model for bulk moduli of saturated rock: is a porosity dependent, well 

known, and frequently used relationship (Gassmann 1959). This theoretical model 

derives the bulk modulus of a fluid saturated porous rock via the modulus of three 

elements: i) the bulk of the dry frame, ii) the mineral constituents in the rock matrix, 

and iii) the fluids in the pores (Figure 2.23) as below: 

 

mfl

2
r
dry

r
sat

)1(
        (2.17) 

 

where )1( m
r
dry , φ is porosity, κ is the bulk modulus, and subscripts fl, dry 

and m stand for fluid, dry-rock frame and mineral, respectively, and r refers to sand or 

shale.  
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Figure 2.23: In the Gassmann equation (Equation 2.21) a cube of saturated porous rock is 

characterized by three components: the rock matrix, the pore fluids, and the dry rock frame. 

 

 

The Gassmann formulation is based on several assumptions: i) rocks properties are 

homogeneous and isotropic, ii) pores in rocks are well connected, iii) wave frequency is 

low enough to achieve equilibrium, iv) viscosities of the fluids are negligible, and v) no 

chemical effects is between fluids and rock (Smith et al. 2003, Wang 2001).  Most of 

these assumptions are generally satisfied for low frequency conditions, which is usually 

true in seismic exploration due to the attenuation of high-frequency wave components.  

However, reduction in the accuracy of predictions by the Gassmann equation are 

expected if the rocks consist of different minerals with strong contrasts in their elastic 

properties or there are noticeable mineral heterogeneous alignments, the pores are 

anisotropic in their shapes, or the  rock has very low porosity. Up to here, we know how 

we could obtain κdry, else we need to know how to calculate κfl and κm.  

 

Bulk modulus of rock matrix or grain, κm: the presence of various clays in reservoir 

rocks can s affect the evaluation bulk modulus of rock matrix.  If there are considerable 

clays in reservoir formation then bulk modulus of rock matrix is usually calculated by 

averaging the modulli of different mineral constituents and their fraction in rocks.  

Voigt (1929) proposed an arithmetic average resulting from applying iso-strain 

boundary conditions.  Reuss (1928) suggested the harmonic average resulting from iso-

stress boundary conditions. For instances when the reservoir rocks mainly consist of 

sand and clay, it can be calculated using the mean of arithmetic and harmonic averages 

of moduli of constituents (Mavko et al. 1998):  
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where s and c stand for sand and clay, and f is the shaliness or fraction of clay.  P- and 

S-wave muduli for common pure minerals are available in the literature.  Variations in 

the bulk moduli of sand, clay and shaliness do not cause substantial deviations in 

prediction of seismic impedance change compared to changes caused by fluid saturation 

variation according to a study carried out by Dong and Oliver (2002).  In this study also 

we considered that there is negligible clay in the rock matrix. 

 

Bulk modulus of fluids, κfl: Batzle and Wang (1992) proposed empirical relations to 

compute the velocity and by extension the bulk and shear moduli of common fluids in 

petroleum reservoirs. The bulk modulus of the fluid mixture depends on the details of 

the small-scale fluid distribution (Mavko and Mukerji 1998). If the fluids are mixed 

uniformly, which happens usually at a very fine scale, then harmonic average 

(Domenico 1976) based on Reuss’ model or iso-stress condition is used.  If the fluids 

are “patchy”, at a scale smaller than the seismic wave length but larger than the scale at 

which the pore scale fluids can equilibrate pressures through local flow, then the 

effective fluid bulk modulus is larger. This upper limit is the saturation weighted 

arithmetic average based on Voigt’s model or iso-strain condition.  Therefore, the bulk 

modulus of the fluid is a saturation-weighted average of the bulk modulus of the 

individual components (Mavko and Nolen-Hoeksema 1994, Marion et al. 1995) and is 

calculated through one of the following relationships: 

 

g

g

o

o

w

w

fl

SSS1
   harmonic average  (2.19) 

 

ggoowwfl .S.S.S    arithmetic average  (2.20) 

 

where S is saturation and w, o, g refer to water, oil and gas, respectively, and 

Sw+So+Sg=1.0.  

 

The choice of averaging method makes a non-trivial difference in the application of the 

Gassmann equation. Using the harmonic average leads to smaller bulk modulus values 
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are of more influence.  Then any small amount of gas causes the estimation of the fluid 

bulk modulus to be small (usually the magnitude of κg is two orders of magnitude 

smaller than κo and κw). The arithmetic average is influenced by the larger bulk modulus 

and an increase in water saturation results in the fluid bulk modulus estimates to be 

large. The selection of averaging method depends on the fluid distribution and the 

frequency of the seismic waves under consideration. For seismic data obtained over 

undisturbed reservoirs the assumption of the uniform fluid distribution is usually 

deployed and the harmonic average is used.   

 

When fluid displacement has taken place through water flooding or when ex-solution of 

gas has occurred, some patchiness of fluid distributions is expected. Then the arithmetic 

average is used.  In fact the bed and intra-bed heterogeneity at the geological scale 

provides the fluid fluctuation and initial water saturation is probably non-uniform.  For 

example, it is known that connate water saturation varies with rock pore-scale properties 

and hence, lithofacies (Morrow and Melrose 1991).  Indeed, initial water saturation can 

typically vary from about 0.70 down to 0.05, depending on the heterogeneity of rocks.  

Moreover, water saturation evolution over production time also depends on the initial 

saturation distribution and the pore-scale attributes.  Then appropriate bulk modulus of 

the fluid mixture falls between the iso-stress and iso-strain bounds. 

 

Shear modulus, μ: an empirical equation for estimating the shear modulus of pure sand 

as a function of porosity initially was derived by Murphy et al. (1993), and then 

modified by Ramammorthy et al. (1995) to account for the percentage of shaliness of 

the rock.  Usually it is assumed that the shear modulus is unaffected by fluid saturations. 

 

Bulk density, ρb: the bulk density of a saturated rock is related to the rock porosity and 

fluid saturations and is the volumetric average of the constituent densities:  

 

drywwggoob )1()SSS(     (2.21) 

 

Where S is saturation, ρ is density, φ is porosity, and w, o, g and dry refer to water, oil, 

gas and dry rock, respectively. Dry bulk density, ρdry, usually measured on core samples 

(dried at 230 °F) is the weight of the reservoir dry rock per unit volume (lb/cuft).  

Variation in bulk density is attributable to the relative proportion and specific gravity of 
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minerals, the porosity of the rock, and the degree of in situ compaction condition.  Such 

data are necessary and are needed to be accurate and correct (i.e. for the amount of clay 

content and in situ compaction).  Otherwise they introduce uncertainty in the modelling 

results. 

 

 

2.7 Response Surface Modelling 

The basic reason for applying response surface modelling (also referred to as 

approximation, surrogate, proxy, and metamodel) is to construct a simplified 

approximation of the complex and computationally expensive simulation to facilitate 

design optimization, design space exploration and reliability analysis (Sacks et al. 1989, 

Kleijnen et al. 1995, Anderson and Whitcomb 2005).  Response surface modelling has 

been used in history matching studies in the past to simplify problem mainly: i) through 

identifying parameters which are not significant and reduce the dimension of problem, 

ii) by finding interaction between parameters, and ultimately, and iii) when it is used to 

optimize production and investigation of the p10–p50–p90 uncertainty envelopes in the 

reservoir performance forecasts (see Figure 2.24).   

 

In such approaches first an initial of sample of reservoir models is obtained to determine 

the sensitivity of parameters to simulator outputs and to identify the significant 

parameters. Next, the proxy models of numerical simulator responses, e.g. initial oil in 

place and oil recovery, are constructed as a function of significant parameters. The 

proxies may then be used many times as an input in a Monte Carlo-Bayes practice for 

estimating the probability distribution of the responses and uncertainty analysis 

(Fishman 1996, Guyaguler and Horne 2000, White and Royer 2003, Badru and Kabir 

2003, Peng and Gupta 2004, Li and Fridmann 2005, Yeten et al. 2007, Yu et al. 2008, 

Scheidt and Caers 2009). Due to the high computational efficiency of proxy-models 

extensive sampling then can be achieved. 

 

 

 

http://en.wikipedia.org/wiki/Soil_compaction
http://www.hindawi.com/34906263.html
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Figure 2.24: Application of response surface modelling in the sensitivity analysis of 

parameters and uncertainty analysis of reservoir model predictions. 

 

 

There are several reported applications of proxy response surfaces to the misfit function.  

For example, Zabalza et al. (2000) used a second order polynomial. Then the 

minimization of this response surface was performed by applying the simplex method 

and the best parameter domain was identified. Yemen et al. (2005) used response 

surfaces based on kriging interpolation as a proxy to the misfit function to rank and 

screen the parameters, and then accelerated the convergence while applying a Genetic 

Algorithm on the misfit proxy. Roggero et al. (2007) proposed a global adaptive 

learning method based on building a proxy model of the objective function using 

kriging, and also improving the approximation model in the process of searching for the 

minimum using a Steepest Descent routine. Slottle and Smørgøv (2009) constructed 

individual polynomial proxy models for the outputs of the simulator that were then 

entered into a global objective function while each was influenced only by a limited 

subset of total parameters.  For each simulator response one set of the optimal kriging 

correlation lengths of the parameters was determined at each iteration and then a genetic 

algorithm searched them for a global minimum of the objective function.   

 

In all circumstances, the proxy models need to be adequately representative of the 

simulator key outputs.  In the method of this thesis, i.e. ‘divide and conquer’, we also 
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get use of polynomial response surface modelling in the seismic history matching.  

However, the aim is to use them just for identifying the independent groups of 

interacting parameters, thus more of the variability of the systems are preserved while 

are considerably simplifying the inversion problem of history matching.   

 

In the literature various response surface models have been used (e.g. polynomials, 

kriging, radial basis functions and neural networks).  They should be used for different 

optimization roles. Therefore, criteria must be established for distinguishing goodness 

or weakness of each according to their applications (Barton 2006).  More important 

criteria to identify performance of response surface models in optimization are: i) 

approximation fidelity, ii) computational cost, and iii) globality. Fundamentally, in 

order to increase the fidelity of the proxy model, more complicated templates of models 

must be used.  This in turn requires that the number of experimental simulation runs, 

and therefore computation cost be increased. Globality means that there is a wider 

variable design space with guaranteed fidelity of the proxy model.  In order to increase 

the globality, computational cost increases. When approximation fidelity is taken as a 

constraint, there is a trade-off relationship between globality and computational cost as 

shown in Figure 2.25.  

 

 

                         

Figure 2.25: Computational cost against globality in response surface modelling (after Fujita 

and Kounoe 2005). 
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Various response surface models have distinctive features.  For instance, quadratic 

polynomials are typical surfaces with low computation cost but with less globality.  The 

kriging method typically can approximate nonlinear systems with higher fidelity, but is 

only suitable for less noisy physical systems. In non-noisy computer simulation, kriging 

has the advantage of giving predicted values exactly equal to the simulated output 

values (Sacks et al. 1989, Simpson et al. 2001). However to have the same fidelity as 

polynomials, they need many simulation runs. Other sophisticated response surfaces 

that are superior in globality and are of good fidelity include neural network, Radial 

Basis Function (RBF), and the Cubic Splines. They are based on piecewise local 

approximation and require a relatively large number of sample points. Good modeling 

practice implies we aim to find the simplest metamodel that captures the essential 

characteristics of the system in minimum computational cost (Myers 1999, Montgomery 

2000).  

 

Several types of response surface models have been used in history matching studies, 

for example Cullick et al. (2006) utilized an Artificial Neural Network (ANN) as a 

proxy.  They found the results of history matching with proxy model are acceptable if 

an initial dataset of sufficient size can be used.  Osterloh (2008) used a kriging model.  

Peng and Gupta (2004) compared kriging and polynomial for predicting uncertainty in 

Hydrocarbons Initially in Place (HCIP) and found no significant difference between 

results in each case.  Li et al. (2005) proposed thin plate splines as proxy. 

 

Simpler metamodels are easier to justify when they only require a small number of 

models to be constructed, yet interpreting the results may be tricky because several 

system characteristics are overlooked. Some systems exhibit highly nonlinear output 

requiring a more complicated template or may be impossible to predict by most proxy 

techniques, and may lead to a conclusion that a large stochastic component is required.  

In many instances, polynomial response surfaces show high fidelity with less 

computational cost, especially quadratic polynomials that are the simplest and mostly 

used in optimization and inversion fields.  Higher-order polynomials of third and fourth 

order may result in higher quality models but need too many simulation experiments 

compared to other methods. Fortunately, engineering processes that require a third-order 

model are very rare.  The quadratic RSM is advantageous since is very flexible and can 

take on a wide variety of functional forms, it is easy to estimate the coefficients of the 
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polynomial using the least squares regressions, and there is considerable practical 

experience of them (Narayanan 1999).  

 

 

2.8 Experimental Design (ED) 

The workflow proposed in this thesis is also combined with Experimental Design.  

Experimental designs have been used in history matching by several studies (White et 

al. 2003, Castellini et al. 2004, Peake et al. 2005, Sedighi and Stephen 2009; 2010, 

Arwini and Stephen 2010; 2011, Wolff 2010). They are techniques usually used to 

determine the optimum number and combination of experiments that will yield the most 

information from system behaviour (Box et al. 1978, Myers et al. 2000, Montgomery 

2000).   

 

In ED each factor or input variable is set to two or more levels.  Then the term design 

denotes a matrix with a column of samples of factors, usually in coded levels, and each 

row represents a particular combination of levels for all factors used in the experiment.  

Converting the original factor levels to normalized coded values (-1, 0, and +1, i.e. 

minimum, middle, and maximum, respectively) avoids distortion of effects meaning 

that after normalization of the factors, the coefficients of the polynomial directly 

indicate the significance of effects and thus provide insight into the system.  A design 

may be orthogonal in the coded factor but not in the original factor (Bettonvil and 

Kleijnen 1990).  

 

There is no a unique plan for using the design experiments in engineering problems (see 

Kleijnen 2005).  Then, because the same problem may be addressed through different 

designs, several quality attributes should be identified, including i) the number of 

experiment runs, ii) the efficiency of having minimal standard errors for the estimated 

metamodel coefficients for a limited number of design points, and iii) bias protection by 

sampling not only at the edges of the hypercube that defines the factors region, but also 

in the interior, and iv) orthogonality to allow each effect in the response model to be 

evaluated independently of all the others, especially in screening and decoupling of 

effects.   

 

The selection of designs depend on the metamodel that the user tentatively assumes, and 

the restricting fact that complicated metamodels require more simulation runs.  
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Generally in response surface modeling, the user is prone to make simplifying 

assumptions and starting from left of the plan shown in Figure 2.26, which is likely to 

reduce the initial data collection effort. Alternatively, one can start from complex 

response surfaces at the upper right of this figure if little is known about the nature of 

the response (Kleijnen et al. 2005).   

 

 

  

Figure 2.26: General guides for experimental design selection for response surface modelling 

based on the number of factors and the complexity of proxy models (after Kleijnen et al. 

2005).  For more details on the various experimental designs and resolutions (R) presented in 

this figure, see Montgomery (2000). 

 

 

Proxy models combined with design of experiment are widely used for sensitivity 

analysis in history matching. One-parameter-at-a-time scenarios are used for linear 

sensitivity analyses and quadratic experimental designs are used to determine 

correlation and higher order effects. Yeten et al. (2005) studied different experimental 

designs and found that polynomial, kriging and splines proxies along with space filling 

designs are proficient to predict uncertainties in the field performance. The study by 

Peng and Gupta (2004) on different experimental designs in conjunction with kriging 
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and polynomial models concluded that no significant difference in utilizing kriging over 

polynomial and in using Latin hypercube design over conventional designs. 

 

There are always challenges for creating proxy models of a high fidelity which to a 

certain extent may be related to the sampling strategies.  In reservoir simulation we are 

dealing with highly non-linear output. Therefore, the design experiments uniformly 

distributed over the uncertainty domain may not be sufficient for construction of an 

adequate proxy. To overcome this limitation several techniques have been proposed.  Li 

and Friedman (2005) proposed an iterative improvement of thin-plate splines proxy 

quality. Wang (2003) used an iterative reduction of the design space to improve the 

minimization procedure with a proxy model.  In this method, part of the design space 

with high values of the objective function was discarded at every iteration and new 

sampling points were proposed on the reduced design space.  Jones et al. (1998) 

proposed an approach of proxy improvement. For a kriging proxy, the error of the 

prediction was included into a an objective function so that the uncertainty of the proxy 

estimate was taken into account and used in an optimization algorithm to improve the 

fidelity of the proxy model.  Queipo et al. (2000) modified this approach by integrating 

an artificial neural network as a proxy model.  Slotte and Smorgrav (2008) also included 

the kriging variance into an objective function. These approaches lead to iterative 

improvement of proxy models but through extra sampling points. 

 

 

2.9 Closing Review  

Time-lapse (4D) seismic technology has been introduced to monitor the reservoir during 

production at different times, since changes in the reservoir pressure and saturation can 

be detected via changes in compressibility of porous rocks. Incorporating the 4D 

seismic in the reservoir history matching procedure is based on the integration of a 

reliable petro-elastic model (PEM) with a dynamic flow simulator along with an 

iterative optimisation method to adjust the reservoir parameters.  Ultimately we acquire 

a more reliable model for forecasts of reservoir performance.  The essential elements 

and the challenges involved this integrated process were address in this chapter. 

 

Inverse theory is commonly formulated to find a model for a physical system that 

agrees most with a given observation dataset. Reservoir history matching is a non-linear 

optimization problem which involves the minimization of an objective function that 
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measures misfit between observed and simulated data.  Because of a large amount of 

unknowns in the simulation model, the minimization of the objective function is of high 

degree of freedom and is without unique solution, and thus suffers ‘curse of 

dimensionality’. One remedy for this is reservoir parameterization. Also, prior 

parameter information can be included as regularization in the misfit function to make 

the problem well-posed. 

  

There are several sources of errors in a 4D workflow comprising simulation errors, 

errors due to insufficient model characterization, and measurement errors. The 

numerical model errors are a result of model approximation or due to upscaling.  Also, 

there are errors due to the different scales at which petro-elastic modeling is applied 

compared to observations. The parameter deficiency errors are the result of not 

capturing the reservoir heterogeneity or due to incomplete and incorrect choice of 

geological features description.  The aim is to reduce the effect of such errors by finding 

the best solution of history matching. 

 

Manual history matching is time consuming. However, by application of optimisation 

algorithms the process may be completed in a reasonable time. Optimization routines 

are either gradient-based or gradient-free. Stochastic gradient-free methods are more 

likely to find a global minimum while the gradient-based methods may be trapped to a 

local minimum. Minimization of the objective function leads to maximum likelihood 

estimates. Then using Bayesian theory the posterior probability distribution of 

parameters can be evaluated for use in reservoir uncertainty studies. 

 

A petro-elastic model links the elastic parameters which govern wave propagation in the 

rock and the reservoir saturation and pressure changes governed by fluid flow in the 

reservoir. Gassmann’s equation is usually takes account of fluid substitution in pore 

rocks.  Bulk of dry rock moduli may vary significantly with stress. Typically, prediction 

of pressure effects of unconsolidated dry sediments is based on granular contact models 

of Hertz-Mindlin theory. 

 

Response Surface Modelling and Experimental Design techniques play a very important 

role in parameter space exploration, problem simplification, and are capable of bridging 

the gap between slower inversion algorithms and make real time reservoir optimization 

possible. Second order polynomial proxy models show high fidelity with less 
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computational cost, which are the simplest and mostly used in combination to the 

optimization routines.   

 

Up to now we have looked into the general backgrounds, in next chapter the concepts 

entailed to the Seismic History Matching (SHM) method and the approach of 'divide 

and conquer' which have been developed in this research work are expanded.  
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CHAPTER 3 The Method of ‘Divide and Conquer’ 

Unknowns in Seismic History Matching (SHM) Workflow 

 

 

Introduction 

The procedure of incorporating time-lapse data in history matching and the particular 

workflow of Seismic History Matching (SHM) used in this thesis are introduced.  In 

recent times, there have been innovations in many aspects in the SHM procedure.  

Several of them include: a) minimizing model errors due to differences between seismic 

scale resolution and simulation grid size, b) reducing noise levels in the seismic data 

when it is notable relative to the magnitude of the seismic signal, c) investigation of the 

impact of successively updating parameters by adding new data to observed dataset, d) 

investigating various ways to optimally identify the areas in the reservoir that need to be 

updated, e) speeds up of the rate of convergence by using sensitivities so that we  bias 

sampling towards better models and improve the exploitation phase in the optimization 

routine used for parameter sampling, i.e. Neighbourhood Algorithm, f) normalisation of 

observed time-lapse seismic data with associated variants to be prepared for using in 

mismatch computation.  They are described in the next sections of this chapter.   

 

The basic concepts supporting the development of the approach of ‘divide and conquer’, 

which is based on dividing the parameter space to sub-volumes and decomposition of 

the misfit function, are then extended.  The core of the ‘divide and conquer’ approach 

uses a proxy model to understand how updated parameters interact in the objective 

function.  This approach is an improvement to the usual SHM practice which effectively 

increases the convergence rate through two search methods.  We called them Parallel-

SHM and Serial-SHM.  In the Parallel-SHM, we use a parallel version of NA to search 

all of the sub-volumes simultaneously and find the minimum of related sub-misfits of 

each sub-volume. In the Serial-SHM, one sub-volume is searched for the minimum 

misfit at a time and the associated parameters are updated with each application of the 

NA. 
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The ‘divide and conquer’ approach would be more attractive if we could find a more 

efficient means of sampling the parameter space for the purposes of: i) constructing the 

proxy model, and ii) identifying the ensemble of models needed to start a stochastic 

search routine (i.e. NA).  Experimental Design (ED) is an obvious candidate for this 

aim.  The approach of the ‘divide and conquer’ is combined with several ED techniques 

and is set up for the Parallel-SHM method.   

 

 

3.1The Seismic History Matching (SHM) Method applied in this Thesis 

The Seismic History Matching (SHM) method used in this thesis follows an iterative 

process and could be classified as a multi-dimensional quasi-global inversion approach.  

The basic objectives of this procedure are: i) to improve the reservoir characterisation 

by adding additional constraints given by the 4D seismic data, ii) to identify the fluid 

flow directional patterns in the reservoir, and iii) to quantify the model predictions and 

uncertainties using updated statistics (i.e. mean and standard deviation) of the reservoir 

parameters obtained after inversion.  Each iteration in the SHM workflow involves the 

following elements (see Figure 3.1 for illustration):  

 

 Parameterization schemes: for adjusting model properties, we may use i) 

multipliers to update the flow barrier transmissibilities, ii) multipliers to rock-

physic parameters, and iii) pilot points with kriging to update net:gross and 

permeability, and iv) a zonal approach (Stephen et al. 2006). 

 

 Petro Elastic Modelling (PEM): which converts the reservoir simulation model 

outputs including pressure and saturation to seismic response, i.e. impedance, 

based on Gassmann (1959) fluid substitution relationship along with an 

empirical representation of the stress (MacBeth 2004) dependency of the pore 

rock.   

 

 An objective function: following the idea of Tarantola (1987) we use a global 

misfit function using a L2 norm expression. It measures the closeness of 

observed reservoir production and seismic data to the equivalent outputs by 

reservoir flow simulation.  Since both observed and simulated data deviate from 

the true responses by errors, the objective function includes the relevant 

variances to capture the noise in the data and model.   
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 Parameter Space Exploration: carried out through application of a quasi-

global search routine of Neighbourhood Algorithm (NA) to minimize objective 

function.  NA can be tuned either for more ‘model exploitation’ or more ‘model 

exploration’ promptly (Sambridge 1999).  Therefore it makes sensible use of all 

information obtained in every iterative of sampling parameter space.   

 

 Uncertainty Analysis: in a complete Bayesian framework, the misfits provide 

the conditional likelihood of each model for the given data, which are then used 

to update prior model probabilities and to estimate the posterior probability 

density of model parameters.  

 

 

 

Figure 3.1: Schematic of the iterative automatic Seismic History Matching (SHM) process 

(Stephen et al. 2006).  In this loop, a reasonable set of parameters in the reservoir model are 

chosen to be updated. Then forward reservoir simulation and Petrol-Elastic Modelling 

(PEM) are run to calculate the production and seismic responses of the reservoir model.  The 

value of the objective function is computed and an optimization routine (e.g. Neighbourhood 

Algorithm) is applied to decide a perturbation to the set of parameters that hopefully results 

in a smaller misfit in the next iteration.   

 

 

Starting with the prior Probability Density Function (PDF) of model parameters, the 

maximum the posterior PDF estimate of the model parameters is sought (such as 

porosity, permeability, fault transmissibility) by minimizing the objective function. The 
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prior (PDF) of models are usually estimated.  Then for all models, we can calculate an 

updated probability in proportion to the degree they honour the history data. The history 

data include available production and 4D seismic data on the reservoir. Once a 

sufficient number of such models is available, these probabilities may be re-sampled 

using Markov Chain Monte Carlo methods (proposed by Sambridge 1999b) to draw 

conclusions about the posterior statistics of the model parameters.  The posterior 

probabilities may be re-sampled and used as weights to determine the distribution 

statistics of saturation or pressure in each cell of reservoir model. Moreover, the 

variability in long term well and field flow predictions may be determined, instead of 

predicting only one future performance.   

 

 

3.1.1 Petro-Elastic Modeling in SHM  

The elastic moduli are calculated to reflect the changes of the fluid and the effective 

pressure in the rock pores, along with temperature.  Due to the change in elastic moduli, 

the rock becomes more or less resistant to wave-induced deformations. Therefore, 

seismic velocities and impedances experience an increase or decrease in magnitude.  In 

SHM, a Petro-Elastic Model (PEM) converts changes in fluid saturations and pressures 

from the simulations into predicted acoustic impedances for each column of simulation 

grid cells. The approach deployed here uses the Gassmann (1959) equation for fluid 

substitution (refer to Section 2.9 of Chapter 2), and calculates the rock dry bulk modulus 

using the MacBeth (2004) empirical correlation for the stress sensitivity: 

 

)P/Pexp(1
r

eff
r

r
infr

dry       (3.1) 

 

Where, the superscript r identifies rock type (sand or shale), қinf represent the dry bulk 

modulus at Standard Temperature and Pressure, Ek is the excess compliance present in 

the rock as a result of geological or mechanical processes, and Pқ is the stress 

sensitivity, respectively.  These parameters are determined from lab measurements or by 

history matching (Stephen and MacBeth 2006b). Peff is the difference between the 

overburden pressure and the pore pressure.  Here, we assume that the effective stress 

equals the differential.  The shear modulus, μ
r
, has the same form of Equation 3.1 with 
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equivalent parameters. It is assumed for shale to consists of dry frame only and the 

shear modulus is unaffected by saturation. 

 

The value of P-wave velocity for each cell is obtained from the harmonic average of the 

sand and shale values, weighted by their relevant fractional volumes (net:gross).  This is 

a valid practice for vertical wave propagation in a layered model (Backus 1962).  Using 

this, the acoustic impedance, I, for a column of cells in the simulation model is 

calculated as below: 
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Where: ρ is the bulk density of the cell obtained by averaging the densities of the rock 

frame and the fluid densities (see Equation 2.26 of Chapter 2). The brackets, < >, 

indicate a vertical volume weighted average over the reservoir interval, Mm, Msand and 

Mshale are p-wave moduli for sand-shale mixture, sand, and shale, respectively.  This 

approach is suitable for reservoir beds that are less than one tenth of the seismic 

wavelength thick, and to reservoir units of around one quarter wavelength thick, a 

typical wavelength is 50 to 100 m (MacBeth 1995).  For the case study in this thesis 

(Schiehallion field), the reservoir units are around 25 m thick, equivalent to one quarter 

of a wavelength in many places, and the predicted impedance typically represents a cell 

of approximately 100 m × 100 m × 6 m. 
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3.1.2 Scale Dependence in SHM 

For the calculation of the misfit we require that the observed and predicted seismic data 

represent the same volume.  The observed seismic data are usually obtained on a set of 

points on the bins defined by the acquisition inline and crossline areal coordinates with 

a separation of 25 m, while the wavelet samples 25 m vertically.  The predicted seismic 

properties grids are typically coarser horizontally but they are finer vertically. The 

predicted seismic impedance is calculated on a grid that is typically of the size 100 m × 

100 m × 6 m, which is the scale of reservoir simulation model (for our case study).  

Vertical upscaling and horizontal downscaling is usually needed (see Figure 3.2).  Using 

the upscaling method (see previous section) of Backus (1962), the predicted seismic 

grids are calculated at the vertical scale of the observed seismic data (25 m).  At this 

point, the thickness is equivalent but the areas are different and needed to be amended. 

 

 

                

Figure 3.2: Illustration of how we convert the simulation to seismic scale.  In SHM, we start 

upscaling by simulated seismic properties vertically during the PEM calculation, and then 

downscale predicted seismic to observed seismic bin horizontally. 

 

 

The seismic and model grids are independent and the latter is aligned at approximately 

45 degrees to the former (see Figure 3.3). The predicted seismic impedance, are 

downscaled horizontally onto the observed seismic bins in order to maximize the spatial 

information about the spatial correlation of the observed dataset and to be able to 

compute seismic misfits appropriately. This process is accomplished through inverse 

distance weighted interpolation using the Barnes (1964) method. The interpolated 

impedance, I
int

 is calculated as below: 
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IJ
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Where: 

 

)rrexp(w ijIJijIJ        (3.7) 

 

I and J are x and y indices for the simulation grid, i and j are the equivalent for the finer 

seismic grid cell, IIJ are obtained from Equation 3.2.  Vector ‘r’ is the position of a 

simulation cell centre, and ß=0.05 (m
-1

) gives the best result, minimizing the 

representative error.  

 

 

                               

Figure 3.3: Comparison of the seismic and simulation grids SHM.  Blue lines indicate the 

simulation cells and large blue symbols the location at which the impedances are predicted.  

Equation 3.6 and 3.7 are used to interpolate the impedances to obtain values at the small red 

symbols, i.e. where the observed seismic is measured.  Solid blue and red arrows indicate the 

principal directions of the simulation axes and seismic grids respectively (after Stephen et al. 

2006). 
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There are other options that can be used to make the simulated and observed seismic 

impedance data of the same resolution with the intention of comparing them against 

each other, which are not preferred choices in the SHM workflow.  They may be 

outlined as following: 

 

 Building the simulation model at the seismic scale where we can compare real 

and simulated seismic impedance.  The drawback for this choice is that geo-

models do not usually get built according to the seismic grid and simulations in 

this scale would be very slow. 

 

 Simulate on the geo-model scale may be an alternative, however it would be 

very slow process despite some speed up compared to simulation on a the 

seismic scale.  Also, there is a high degree of uncertainty introduced when 

mapping (upscaling or cross-scaling) simulated seismic predictions at the geo-

model scale to the observed seismic scale for misfit calculation (e.g. Roggero et 

al. 2007). 

 

 Downscaling properties of the simulation model scale to the seismic impedance 

scale can be considered.  Then various properties can be downscaled and also 

various downscaling techniques may be used, for example:  

 Downscaling saturation and pressure to the seismic impedance scale may 

be attempted, but it is not straight forward.  A simulator based inversion 

process is needed.  The advantage though is that the fine scale 

representation of the static properties is captured (see Castro 2007).  

 Interpolating saturation and pressure output of the simulation model 

(scale) and producing maps in the seismic impedance scale, then the fluid 

properties are not properly conditioned to the flow but in some 

conditions may be no less accurate.  

 

 Kriging may be an option in interpolating of simulation seismic data (i.e. 

downscaling to observed seismic scale), however this is a complex technique.  

kriging requires defining some relationships between the unknown data at 

various locations and some known data nearby which in reality are estimated 

from the coarse scale simulation.  
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3.1.3 Observed Seismic Data in SHM 

The seismic data set used in this thesis consisted of two P-wave seismic volumes: 

migrated stack and coloured inversion stack from the Schiehallion field.  For example, 

the former (Phase I) dataset were cross-equalised and calibrated then transformed by a 

combination of phase rotation and filtering to give the coloured inversion stack (for a 

definition see Lancaster and Whitcombe 2000). Time to depth conversion was 

implemented and the location of the reservoir horizon was provided.  Then a map of 

Root Mean Square (RMS) amplitudes was generated from the Migrated Stack by 

integrating the signal over a suitable time window (Leach et al. 1999).  Then a second 

attribute, the 'Sum of Negative Values', was obtained by summing the negative 

amplitude in the coloured inversion stack from the picked reservoir horizon over a 

suitable time window.  Figure 3.4 and Figure 3.5 shows examples of such attribute data 

from the Schiehallion field.  Following the recommendations and information provided 

by the operator, this attribute has been used as a pseudo-impedance to detect pressure 

and saturation effects via the time-lapse maps to be compared to simulated 4D seismic 

predictions.  For more details on the latter time (Phase II) 4D seismic attributes used in 

this thesis see Chapter 5. 

 

                          

Figure 3.4: Coloured inversion schematic is showing (a) a P-wave impedance profile with a 

thickness of 24 m (Schiehallion field), (b) the zero angle seismic stacks, and (c) the coloured 

inversion stack.  The reservoir is located between the two zero crossings for the case of the 

coloured inversion stack and the shape of the wavelet is similar to that of the impedance 

profile (Soldo 2005). 



Chapter 3: ‘Divide and Conquer’ method in Seismic History Matching workflow 

 
102 

                              

Figure 3.5: Coloured inversion product for the full offset migrated stack (from the 

Schiehallion field). The green and red lines indicate top and bottom of the reservoir sand 

(Edris et al. 2008). 

 

 

The seismic property predictions consist of acoustic impedances while observed data 

are relative measures.  Thus the observed data sets are normalised prior to comparison.  

This normalization step is based on the assumption that the effect of changing pressure 

and saturation induces an equivalent relative change in the reflectivities and impedance 

throughout the reservoir.  For each domain, the surveys are normalised by subtracting 

the mean of the baseline survey, γ
0 

and dividing by the standard deviation, σ
0
, 

respectively, and thereby scaling to the range induced by varying static rock properties, 

as below: 

 

0
A

0
A)y,x,t(A

)y,x,t(a        (3.8) 

 

Where: A and a are the raw and normalized attributes at monitor time t.  Predicted 

impedances can now be compared quantitatively against the observed equivalent 

seismic attribute without the need for a full inversion. 

 

 

3.1.4 Challenges Investigated in the SHM Workflow 

So far in this thesis many aspects of the SHM process have been discussed.  An ad hoc 

process of temporal decomposition of the misfit function was carried out (Edris et al. 

2008; 2009; Edris 2009). The appropriate seismic data assimilation was identified by 
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investigating the impact of successively updating the model parameters (such as the 

transmissibility of faults).  The observed seismic data were added in incremental stages 

so that short simulations were run initially in the history matching process.  For the next 

stage the model and the span of the parameters were modified based on the initial 

results.  The approach was compared to a single history match where all data was used.  

The best results were found when early data were used in short time simulations first as 

the optimum parameter values were learned.  Later data were added for fine tuning and 

reducing the forecasting uncertainty or to explore new parameters.  This incremental 

approach may be compared to the Ensemble Kalman Filter where the latest production 

data can be assimilated without re-running the simulator from the initial conditions.   

 

Production measurements and seismograms contain data errors from a number of 

sources (see Chapter 2).  Although it is not an easy task, to capture the impact of errors 

in observed data we need to assess them and include a data covariance matrix in the 

misfit objective function (Equation 2.6 of Chapter 2).  For identifying the noise in the 

observation data, band-pass filtering was used for both seismic and production data 

which was then used to determine the data covariances (Stephen et al. 2006). The 

seismic data covariance was calculated for spatial correlation in the direction of the 

inlines and crosslines to give two matrices to the misfit.  The behaviour of the 

covariance as a function of lag was previously observed by Gosselin et al. (2003).  In 

practice, random sampling of a subset of inlines and crosslines can speed up the 

calculation of covariance matrix (for full details see Soldo 2005). Otherwise, calculation 

of the seismic misfit could take as long as the flow simulation. Then either the 

numerical representation of the matrices or a fitted exponential model (e.g. Deutsch 

1992) could be used. Alternatively if the correlation is low, a diagonal matrix of the 

standard deviation of the noise can be assumed (Stephen et al. 2006).  

 

Initially a least square filter (i.e. Yilmaz 1987) was used (Soldo 2005) to measure the 

data error in the production data and to calculate the covariance for each data component.  

The problem was that this method could not detect the low frequency signal properly 

and there was no indication for the right frequency level to stop the filtering.  Then the 

continuous wavelet transform (Daubechies 1988, Walnut 2003) was used (Edris et al. 

2008; 2009). This method was originally based on multi-resolution filtration 

(decomposition) by time-scaling and time-shifting often called the mother wavelet through 

visual assessment and the experience of the analyst.  However, once again excessive 
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filtering or decomposition may tend to smear valuable information. In SHM, the 

available pressure data was related to the changes in the production profile, such as oil 

rate for the wells and key points where the changes in pressure appeared unnatural were 

identified to define the truth signal from the noise.  This was then used as reference to 

define the right noise level.  Aggrey (2007) has also presented a similar approach in high 

density data to filter out the non-signal components from the observed data for pressure 

measurements recorded from some smart wells in the North Sea. 

 

In addition to data errors, model errors arise because of simplifications made in the 

simulation process (e.g. Christie et al. 2005), mainly by reservoir model discretisation 

and upscaling.  This applies to both flow simulation and the conversion of simulation 

results into predicted seismic data (e.g. Stephen et al. 2005).  Simulation model errors 

may be evaluated and determined by fine scale simulation of representative models and 

subsequent interpolation for other models as described by O’Sullivan (2004) and 

Christie et al. (2005).  Also, seismic scale model errors were assessed through fine to 

coarse model comparison (Stephen 2007, Edris and Stephen 2008).  Initially history 

matching to coarse scale seismic data was carried out using coarse scale simulation 

models as the base model.  Then, history matching to the fine scale seismic data was 

considered.  This time, when a coarse model was used as the base case, the model error 

dominates and comparison of the results showed that the residual error is much smaller 

if there are no scale errors. The scale dependent errors dominate history matching 

however and can prevent a good model being found in some cases.  Aanonsen and 

Eydinov (2006) also utilized large-scale corrections combined with a downscaling 

procedure and provided a better initial model for the final adjustment on the fine scale.  

They showed that there was an improvement in the quality of the solution when 

compared to history matching directly on the fine scale.  

 

History matching is an iterative time consuming task involving many simulation runs. 

While upscaling (e.g. Christie and Blunt 2001) was used to coarsen and speed up 

simulation model runs, an additional (factor 10) speed up can be obtained by using the 

streamline method in place of finite difference methods. Streamlines are fast because 

the pressure is assumed to be constant over several months, but they suffer from one 

major limitation. The streamline theory assumes tracer-like flow through fixed lines in 

the reservoir over time thus leading to increased numerical effects and approximations 

which thus introduce model errors. This theory is very physically powerful for matching 



Chapter 3: ‘Divide and Conquer’ method in Seismic History Matching workflow 

 
105 

history of periods of primary production where compressibility is unimportant and also 

for estimating advanced water breakthrough at wells, i.e. viscous dominant flow 

(Agarwal 2003). The study of Carter (2004) disclosed that in history matching; it is 

important to include a modelling error term in the objective function when using 

numerical models with significant modelling error. The model errors for production 

rates and time-lapse seismic predictions were determined by running random ensembles 

(50 models) using both finite difference and streamline simulators. The mean and 

standard deviations of all production rate errors and the seismic errors were then used in 

the objective function account for modelling error, ignoring correlation of the model 

errors (Stephen et al. 2007, Kazemi and Stephen 2008).   

 

An appropriate parameter updating schemes were examined through two proposed 

approaches which were regional-based and global-based. In the first, one variable 

(permeability or net:gross) was updated at a time albeit at separate locations using 

groups of pilot points. In the second, parameters were updated simultaneously but 

changes were restricted to a certain region each time until all selected regions were 

updated. The second approach resulted in a lower production misfit for most of the 

wells although more models were required (Kazemi and Stephen 2009). In this case 

there were strong dependencies within regions but not between, and the approach was 

valid. We consider this to be an ad hoc divide and conquer approach which reuses the 

analysis of this thesis approach. 

 

To improve the convergence rate in the history matching, a method that combines a 

proxy model of misfit and a global stochastic search routine (i.e. NA) was developed 

(Arwini and Stephen 2010). The proxy model optimally directed the choice of new 

models during a random search by increasing the chance of finding new best models.  

This maximised the breadth of search offered from the stochastic approaches with rapid 

convergence associated with gradient type methods.The approach also used 

experimental design in the initial parameter search but also to derive a proxy model of 

the misfit and updating of the proxy model periodically during the search and thus 

improved the convergence rate further (Arwini and Stephen 2011). Castellini at el. 

(2005) used a similar idea to use high quality proxies of the objective function to 

accelerate the search for the solution.  An efficient experimental design stage was also 

adopted for the selection of key parameters while an optimization routine involving a 
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Genetic Algorithm. The method was able to filter out a significant number of 

unnecessary and expensive objective function evaluations and simulations. 

 

 

3.2 ‘Divide and Conquer’ Method as a Development to SHM Workflow 

In this thesis a ‘divide and conquer’ method is presented to improve the convergence to 

in seismic history matching.  This method is a development to the conventional SHM 

workflow and is based on identifying the orthogonal sub-volumes of the parameter 

space by decomposing the objective function to partially separated sub-functions 

(Sedighi and Stephen 2009; 2010).  In the method, the objective functions for each sub-

domain are minimized in parallel or in turn.  The details of this method are explained in 

the following sections.  Initial numerical results show that using partial separability can 

dramatically reduce the number of function evaluations needed to minimize a misfit 

function allowing problems with very many parameters to be solved. 

 

 

3.2.1 Dividing the Parameter space and Decomposition of the Misfit Function  

The ‘divide and conquer’ approach initially provides a numerical or analytical 

representation of the misfit objective function (Equation 2.6 of Chapter 2) so that the 

parameter groups can be divided and their sub-misfit functions can be identified as 

shown below: 

 

)...(j...)...(j)...(jj)(J nmkq1p2p11

k

1i

i   (3. 9) 

 

Where θ is parameter vector, and ji (i from 1 to k) represents the objective functions of 

independent parameter sub-volumes (i.e. θm to θn) of lower dimension.  Indices p, q, m 

and n are sub-misfit parameter counters, and n could be at most equal to the total 

number of parameters, nd. This decomposition is achieved with the assistance of 

response surface modelling which are described in the following sections. 

 

 

3.2.2 Assigning a Response Surface to the Objective Function 

A response surface model, also called a proxy model, is a representation of a real 

system or its simulation model. A proxy model becomes very useful when the direct 
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evaluation of the system or simulation model is either impossible or too expensive and 

time consuming (for more details see Section 2.10 of Chapter 2).  In most engineering 

optimization applications, including history matching, response surface models are 

usually constructed with polynomial regression techniques.  Interpolation methods such 

as kriging, thin spline and neural network are also used. Polynomial regression is 

straight forward to implement, and the constructed surface is accurate if the problem is 

not strongly non-linear and when the parameter space is not too extensive.  Interpolation 

methods have the advantage of honouring all the training data and also handle scattered 

data. They tend to smooth out some changes in the response surface, however, including 

noise and under-fitting. More complex proxy models (e.g. artificial neural networks) 

may provide an accurate proxy to the data, but the required number of training and 

testing points is often very large and therefore, they offer limited compensation when 

we desire to save computing time.   

 

The ‘divide and conquer’ method takes advantage of a polynomial regression in the 

form of a multi-dimensional second order function with linear, quadratic and interacting 

terms for parameters to assigned a surface to objective function.  Higher order terms are 

assumed to be small or lost in the system noise. Mathematically this equation is 

represented as:  
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where a0, ai, bi, and bij are the coefficients of the polynomial equation and represent the 

constant, linear, second order, and parameter interaction terms.  Indices i and j are 

parameter counters, and nd is the number of parameters.  In practice the above equation 

utilizes the normalized sampled parameters to avoid distortion effects.  In the SHM 

workflow we also tend to sample the parameters on a log10 scale and hence the 

parameters are represented in this form. Therefore, a linear scaling transformation is 

applied on parameter values to map them onto the domain of [-1,1], on a log10.scale.  

This linear transform is then: 
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2

max
i

min
imid

i    i =1, 2, ..., nd    (3.12) 

 

where θ’ is the normalized parameter vector, and θi
min

, θi
mid

, and θi
max

 are the minimum, 

middle and maximum of the range of the i
th

 element of parameter vector θ, respectively.  

The singular value decomposition technique with least square regression method (Rao 

1973, Paige 1985, Montgomery 2000, Press et al. 2007) is used to derive the 

coefficients and to construct the polynomial misfit from a number of experimental 

simulations where the full misfits are calculated from Equation 2.3 or 2.4 of Chapter 2 

. 

Typically, the coefficients of the response surface are derived using the initial ensemble 

of the models used in the neighbourhood algorithm run (in the full SHM inversion of 

the problem) but we may do so at any time during the NA execution. After the 

coefficients of the polynomial misfit (Equation 3.10) are computed, the negligible 

coefficients are identified.  First the interacting coefficients are ranked from smallest to 

largest, then starting with the smallest, they are discarded, each in turn, from the 

polynomial. They are set to zero in f(θ) (i.e. Equation 3.10). As this is done, the 

correlation factor, R
2
, between the calculated misfit values by the polynomial model and 

the true misfit values (calculated J(θ) by Equation 2.2) is measured.   

 

When the R
2
 drops below 0.95, the process of discarding the insignificant coefficients is 

stopped and a threshold is established as the smallest interacting coefficient in the 

polynomial. Then by interrogating the remaining interaction terms, the independent 

groups of the parameters that can be searched separately are characterized.  Figure 3.6 

illustrates the sequential steps involved in the parameter space decoupling and misfit 

function decomposition.  
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Figure 3.6: The sequential steps involved in the misfit function decomposition and 

decoupling the parameter space. 

 

 

Separated parameter groups are defined in the following way: starting with parameter 1 

as the focus (e.g. P1 in Figure 3.7), and considering it as the first element of 'Group 

One', then initially there are two types of parameters: i) those that do not explicitly 

interact with parameter 1 (with b1i smaller than the threshold), and ii) those that interact 

directly with parameter 1 (with b1i larger than the threshold), which are placed in this 

group, (e.g. 'Group One' consist of P1 P7 P8 in Figure 3.7).  However, the interrogation 

of this group is not yet complete.  If any element (parameter) of this group other than 

parameter 1, has interaction with one of the parameters outside the group, that 

parameter is then moved into this group (i.e. b1i is small but b1j and bij are large), (e.g. 

now P2 and P6 are added to 'Group One' in Figure 3.7). Thereby, parameters interacting 

implicitly with parameter 1 are captured as well, (e.g. eventually 'Group One' consists of 

P1 P7 P8 P2 P6 in Figure 3.7).  This step finishes when all interactions are found and no 

more parameters could be moved into this group.  
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Figure 3.7: The way that interactions between parameters are found when the individual 

parameter groups are decoupled (as an example for 10 parameters P1 to P10). Apart from the 

directly interacting parameters, the parameters that interact implicitly (in red circles) are 

combined in one group. 

 

 

The same procedure is repeated iteratively to identify additional groups but each time 

starting with one of the parameters that is still outside of a group.  The subdivided 

parameter groups are thus found and are then considered to be mutually interacting 

within but independent of others.  The resulting groups then form the sub-volumes of 

the problem parameter space, based on which the misfit function is then decomposed to 

the sub-misfits, accordingly.  

 

 

3.2.3 Parallel-SHM Method 

Once the independent sub-volumes of parameters are identified NA can be used to 

search them to find the minimum of the misfit.  Here, all parameters are updated 

simultaneously but the sub-volumes are modified based on the misfit as it is 

decomposed.  Because actual misfits of sub-volumes cannot be calculated, the misfits 

are estimated using Equation 3.9 to determine the fraction of the total calculated misfit 

that should be used for each sub-domain, i.e. each ji in Equation 3.9. The 

Neighbourhood Algorithm was adapted appropriately to parallelise the search of sub-

spaces separately but simultaneously, and thus to update the full parameter vector, θ, 

during each iteration.  The updated parameters are passed to the original SHM workflow 

for all remaining steps.  Figure 3.8 summarizes the Parallel-SHM workflow.  The core 
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loop inside the large rectangle in the schematic shows the SHM loop, the small boxes at 

the top show additional analyses of dividing the parameter space and decomposition of 

the misfit, and subsequent parallel searching of the parameter sub-spaces. 

 

 

               

Figure 3.8: The core loop inside the large blue rectangle shows the SHM process.  The red 

rectangles show additional analyses used in decomposition of the misfit and subsequent 

parallel search of the parameter sub-volumes, i.e. Parallel-SHM method. 

 

 

3.2.4 Serial-SHM Method 

In the Serial-SHM approach a parameter sub-volume is searched one at a time such that 

only part of θ is updated with each application of the NA while all other parameters are 

fixed, as demonstrated in Figure 3.9.  The search is started by updating the parameters 

of sub-volumes in rank of the size of the dimension, i.e. higher dimensional first.  Then 

it continues to update the parameters in rank of the importance as determined by the 

effects on the total misfit response, i.e. most important ones first (if sub-volumes are of 

identical dimensions).  Parameters that are not changed are set to the base case.  At the 

end of each sub-volume search, the best parameters obtained for that group are adjusted 

in the model and the search starts for the next sub-volumes.  When all sub-volumes are 
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searched converge to a minimum misfit value is achieved with smaller number of misfit 

evaluations and reservoir simulation runs compared to the Full-SHM approach.  

 

 

 

Figure 3.9: In a Serial-SHM method each parameter sub-volume is searched in turn.  When 

one is searched the parameters of the others are fixed, initially at the base case or starting 

value but once updated the new values are used.   

 

 

Requirement of re-initialization of the ensemble of models by Serial-SHM  

The advantage of the Serial-SHM compared to the Parallel-SHM is that the component 

misfit of each parameter sub-volume is computed based on the exact misfit function, 

which is more accurate.  On the other hand, the Parallel-SHM inherently involves fewer 

simulations because multiple parameter groups are updated simultaneously instead of in 

series. Each serial search step in the Serial-SHM method consists of a conventional 

application of the NA to a smaller dimensional history matching problem. Also, the 

initialization is inefficient because we need an ensemble consistent with the dimension 

of that particular problem. This ensemble must be different from the models used to 

construct the misfit proxy and then decouple the parameter sub-volumes.  However, in 

the Parallel-SHM, the same models that are used to construct the misfit proxy are used 

for initialization of sub-volume searches. This is possible because the component misfits 
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of each orthogonal sub-volume are calculated using the misfit proxy (as happens in the 

following iterations). Thus the parallel search is more attractive. This property is 

expanded more through the following example. In a case where we have a 2D history 

matching problem, where we have determined orthogonality via the regression equation, 

then we can write the misfit, as: 

  

       (3.13) 

 

Where f is misfit proxy, j1 and j2 are the misfits of parameters θ1 and θ2.  The proxy 

model may be derived from random sampling of the quadratic-like surface in Figure 

3.10, using the models indicated by the red symbols, for example.  In Parallel-SHM, 

subsequent iterations use the proxy equation to split misfits by parameter group. Thus 

the initial models, whose misfits consist of j1 and j2 can be used. However, in the Serial-

SHM method, each search stage consists of a usual application of the NA routine to a 

1D dimensional sub-volume (i.e. θ1 or θ2).  Since the initial models (red symbols on 

Figure 3.10) have the misfits j1 and j2 calculated then we either use the parallel approach 

of separating the misfits via the proxy, which is less accurate, or we have to choose 

separate models and calculate the misfits again.  

 

In Serial-SHM, we first search the sub-volume θ1 and begin with a set of initial models 

(and compute their exact misfits with j2 the same for each model in this case, e.g. yellow 

symbols on θ1 axis of Figure 3.10) which are sampled only from this sub-volume.  

Subsequently, we search the sub-volume θ2 (and compute their exact misfits with j1 

fixed, e.g. yellow symbols on θ2 axis of Figure 3.10) while we use the initialisation 

models sampled only from this sub-volume. It is the variation of j2 when sampling θ1 in 

the red symbols that means these models cannot be used to initialize Serial-SHM. The 

above discussion can be easily extended to multiple dimensions. 

 

 



Chapter 3: ‘Divide and Conquer’ method in Seismic History Matching workflow 

 
114 

                                 

Figure 3.10: Example misfit surface of a 2D history matching case, where with orthogonality 

of parameters, red symbols indicate the initial models used to generate the proxy model and 

the subsequent Parallel-SHM search. Yellow symbols indicate the initialization of the Serial-

SHM method. 

 

The parallel approach necessitates a more accurate proxy model; otherwise, there is a 

possibility of not finding the minimum misfit, so the approach is not without constraint.  

The second order nature of the polynomial proxy can be expanded with additional, 

higher order terms or multiple interactions if the correlation to the true misfits is not 

high enough. The drawback here though is that more models are then required to 

determine the coefficient of the proxy model. The advantage of Serial-SHM approach 

over the Parallel-SHM is that it always (in each iteration) samples the parameter sub-

domains based on evaluation of an exact sub-misfit.  Conversely, some bias may occur 

as the approach is forced to start with some parameters set to the base case model and 

CPU time is effectively wasted as those parameters are unmodified. Therefore, this 

approach is used as a verification of the final results of application of the Parallel-SHM 

method.   

 

Both approaches are based on ‘divide and conquer’ of the unknowns and are not 

restricted to the choice of inversion routine (i.e. NA).  The strength of the approaches is 

that they reduce the number of models that are similar in terms of misfit response and 

efficiencies can be gained if other inversion methods are used.  Stochastic approaches 

such as Genetic Algorithms or Simulated Annealing would all be made more efficient 

by splitting the parameter space.  Similar benefits using deterministic methods could be 

achieved also.  Gradient based methods require calculations of sensitivity coefficients, 

usually one per parameter is needed, and the computational requirement rises non-

θ1

θ 2
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linearly with the dimension of the problem.  Solution of an adjoint equation or 

numerical calculation of gradients would be faster when sub-volumes of the parameter 

space are searched separately, and therefore the decoupling approach may provide some 

reduction in the workload.  

 

The ‘divide and conquer’ approach is particularly useful for amalgamating the local 

effects of particular parameters on the time lapse seismic and well response.  This is 

complimentary to the localization approaches used with the EnKF (e.g. Skjervheim et 

al. 2007, Chen and Oliver 2009), where more heuristic approximations are used. A 

similar approach could be adapted using the Parallel SHM method.  The misfit of 

various wells and seismic data could be grouped spatially and then associated sub-

volumes of the parameter space could be searched separately in parallel or in serial 

modes.  For this purpose some knowledge of the localization is needed and appropriate 

spatial relationships are required. It may be more appropriate to use the method as 

shown here as it will find the spatial relationships implicitly. 

 

 

3.2.5 Reducing the Number of Initial Models in the Parallel-SHM using 

Experimental Design 

In the ‘divide and conquer’ approach, the initial ensemble of the models used in the full 

SHM inversion is utilized to derive the coefficients of the response surface. 

Initialisation of the quasi-global stochastic search routines such as the NA relies on 

quite a large ensemble of models.  Typically the NA method requires 2
nd 

models, where 

nd is the number of updating parameters (Sambridge 2000b).  In Parallel-SHM there 

may be no need for so many models.  However in the ‘divide and conquer’ approach we 

require an initial set of sample for constructing the proxy of the misfit function.  

Experimental designs samples the parameter space in a prearranged and efficient way 

and we need a smaller number of samples to provide information on the function 

dependency on the parameters (Box and Draper 1987, Myers 1999, Montgomery. 

2000). We also use experimental design techniques with the ‘divide and conquer’ 

method. 

 

The designs are conventional quadratic (second-order) in nature.  Among these designs, 

the Central Composite design is often used.  This is an embedded two level factorial or 

fractional factorial design with center points that are augmented with a group of 'star 
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points' in the centre of design space that allow estimation of curvature.  The three-level 

full factorial design is another alternative second-order design used when the region is 

cuboidal, but it involves a very larger number of design points, typically 3
nd

.  When the 

number of parameters is high and thus is unaffordable. The Box-Behnken design is an 

important substitute to Central Composite design and is formed by combining two-level 

factorial designs with incomplete block designs.  The Box-Behnken design reduces the 

number of required experiments by confounding higher order interactions. This 

reduction becomes more significant as the number of factors increases.  The computer 

aided D-optimal design is another option and principally useful when the parameter 

space is irregular, i.e. when there are restrictions on the parameter space for some 

combinations of sample size.  D-optimal designs are also more efficient than fractional 

factorial designs with respect to estimating model parameters for a specified number of 

runs.  All these designs require only a few more experiments than two-level designs 

which involve in 2
nd

 sampling points, and allow construction of more versatile and 

accurate models (see Sacks et al. 1989, Stienburg and Hunter 1984) (for more 

information on experimental designs refer to Section 2.11 of Chapter 2 and Appendix 

A).  

 

The response surface model that is deployed in the ‘divide and conquer’ method is a 

multi-dimensional second order polynomial (see Equation 3.2). In the quadratic 

polynomial the number of coefficients grows with increasing number of the updated 

parameters or dimension of the problem.  The number of coefficients is calculated using 

the relation of: 1+2.nd+(nd.(nd-1))/2, where nd is the number of parameters.  Similarly, 

in constructing the quadratic proxy model using experimental design, the required 

number of models increases rapidly when the number of the parameters increases as 

illustrated in Figure 3.11. However by using experimental design methods in high 

dimensional cases the required number of models is affordable, i.e. 772 models for a 20-

dimensions by the Box-Behnken design.  In fact the number of required models is small 

especially in comparison to what is required in conventional use of the NA, which is 2
nd

 

using quasi-random sampling.  
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Figure 3.11:  Minimum coefficients in the polynomial (Coeff-Minimum) and the number of 

models required as a function of increasing of the dimensionality of the problem using 

various experimental designs; Central Composite Design (CCD), Box-Behenken Design 

(BBD), and D-optima (D-opt).  For depiction of the designs see Appendix A. 

 

It is anticipated that by using conventional quadratic experimental designs, the proxy 

model of the misfit could be obtained with enough accuracy.  Then other typical stages 

of ‘divide and conquer’ could be carried out as before giving an order of magnitude 

saving over random sampling.  In Particular, when experimental designs are combined 

with the Parallel-SHM, the convergence to solution would be accomplished very 

quickly. The method is attractive for high dimensional problems involving many 

simulation runs. 

 

 

3.2.6 Computer codes used to perform the various SHM methods of this thesis  

In order to perform various methods of seismic history matching in this thesis that have 

been described in previous sections of this chapter several programs have been used. 

Reference of the authors of these computer codes are summarized in Table 3.1. 
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Table 3-1: Computer codes required to perform the various SHM methods of this thesis. 

Routines Authored by : 

Neighbourihood Algorithm  Malcolm Sambridge 

Instructions on obtaining the latest version are available 

at http://rses.anu.edu.au/ malcolm/na/na.html. 

(for more details refer to: Sambridge, 1999a;1999b)  

SHM including: 

parameterization, seismic 

and reservoir simulation 

control, and 

misfit calculation 

Karl Stephen 

Contact: karl.stephen@pet.hw.ac.uk 

(for more details refer to:  

Stephen et al., 2006 and 'Seismic History Matching 

Project Code Documentation') 

multidimensional 

regression 

singular value 

decomposition  

Press et al.  

Numerical Recipes in FORTRAN, the Art of Scientific 

Computing, 2002 

parameter space division 

and misfit decomposition 

Farzaneh Sedighi 

Contact: farzaneh.sedighi@pet.hw.ac.uk 

experimental design library Farzaneh Sedighi 

Using: Matlab7.0.1 Statistical Toolbox and Design-

Expert 8.0.3 softwares (for more details see Appendix A 

and Help Manual of Matlab program) 

parallelising 

Neighbourihood Algorithm 

Karl Stephen 

Contact: karl.stephen@pet.hw.ac.uk 
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3.2.7 Progression of the ‘Divide and Conquer’ Approach  

Reduction of the number of simulation runs based on independent objective functions in 

the automatic history matching process has been examined by Maschio and Schiozer 

(2008) in a different way. They first defined several low dimensional independent 

objective functions each related to a well in the reservoir instead of a combined 

objective function. Then horizontal and vertical permeability parameters associated to 

each well were updated in a serial fashion. Sensitivity analyses showed that the 

parameters associated to each well influenced the misfit of other wells by less than ten 

per cent influence.  The problem was then treated as a set of independent problems, one 

for each well.  However, these criteria seemed to be unsuccessful in the total field 

production history matching.  In our approach we are able to determine more effectively 

how the parameter sub-spaces can be identified, retaining parameter interactions where 

necessary.   

 

Ding et al. (2010), and Ding and McKee (2011) proposed a similar method and have 

also demonstrated that in history matching, the objective function could be separated 

into local components related to the wells and/or the seismic zones where a local 

component generally depends on a smaller number of principal parameters. They 

explained that the partial separability of the objective function helped with computation 

of derivatives with a smaller number of reservoir simulations for the gradient-based 

optimization methods. However, we deem that the number of parameters may not be 

small even in regional or well level history matching.  In order to simplify the problem, 

it is always important to investigate the possibility of separability of the parameter 

space.   

 

Many reservoir engineering studies have reported the application of the response 

surface modelling for various purposes: i) uncertainty analysis of reservoir performance 

(Friedmann et al. 2003), ii) well scheme optimization (Zabalza et al. 2000, Landa et al. 

2003), and iii) history matching (Edie et al. 1994, White et al. 2003).  In such studies 

response surfaces are usually constructed with polynomial regression techniques (Chu 

1990, Egeland et al. 1992, Damsleth et al. 1992, Jourdan and Zabalza-Mezghani 2004).  

In these circumstances, the proxy models are used as a representative of the simulator 

key outputs. In the methods of this thesis however the aim is identification of the 

individual groups of interacting parameters. In one sense we are setting our sights lower 

but on the other hand, we retain more of the variability of the system while still 
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significantly simplifying the inversion problem. In that way the method is more flexible.  

Besides, the set of problems where parameters can be removed from the system is 

probably a subset of those where a separation of groups can be found.  Apart from that 

the approaches we use potentially allow us to remove unimportant parameters if 

possible. 

 

The concept of ‘divide and conquer’ has been developed primarily from various 

industrial design problems especially where the co-evolutionary routines are applied 

with a great degree of success to high dimension optimization.  Potter (1995) suggested 

that even more gain from co-evolutionary methods attained in high dimension problems 

which lied in the ability to apply divide-and-conquer strategies.  That is, the variables in 

the original problem were decomposed into a number of subsets. Subsequently basis 

functions that handle each subset of variables independently were evolved and 

optimized simultaneously to locate the optima of the original problem.  Since this type 

of evolutionary search was based on divide-and-conquer paradigm it was possible to 

circumvent the ‘curse of dimensionality’.   

 

Ong et al. (2002) proposed a surrogate-assisted co-evolutionary procedure using a 

Genetic Algorithm (GA) in a parallel mode. The method was based on dividing 

variables among multiple basis functions constructed using Radial Base Function (RBF) 

approximation.  The method was conducted initially on a series of 20-variable functions 

having many local minima but only one global minimum and for various degrees of 

variable interactions. The approach converged close to the global minimum 

significantly quicker in comparison to the standard GA.  An undesirable result was that 

strong interactions between the variables could lead to significant degradation of the 

convergence result (Potter 1997).   

 

Egorov et al. (2002) utilized an algorithm which was based on approximation of the 

objective function and involved identification of non-linear dependencies of the 

variables. Also each iteration included a corrective construction of the approximate 

function and compared that to the real simulation. Then Pierret (2005) applied 

analogous technique which combined the use of GA and the radial basis function 

interpolation. From one perspective, the method of ‘divide and conquer’ of this thesis 

benefits in a similar way to deal with the complications that exist in solving a high 

dimensional history matching problems. 
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Arwini and Stephen (2010) verified that the proxy model was of limited use to replace 

the prediction close to minima; the location of minima was different in the proxy model 

compared to what was obtained by conventional use of the NA routine.  Zubarev (2009) 

also concluded that the proxy models are successful for estimating objective function 

values for test datasets; however they failed to predict that the global minimum could be 

found by a stochastic algorithm. Our aim in this study is that we should not use the 

proxy model explicitly because, in our case, such an approach would lead to bias close 

to the global minimum in the misfit.  For this reason we cannot search the proxy space 

directly.  Instead we use it as a guide in the identification of decoupled parameter 

groups and also in the calculation part of the misfit related to the divided groups. We 

barely avoid unnecessary sampling in the inversion process and thus would speed up 

history matching.  

 

We will show that the ‘divide and conquer’ approach is very successful when applied to 

the several high dimensional seismic history matching studies of the Schiehallion field 

where transmissibility of barriers are the dominant parameters along with permeability 

and net:gross. The entire parameter space of these cases could be decoupled into sub-

volumes of lower dimensions and faster convergence in history matching process was 

achieved and the required number of models was smaller relative to the full SHM 

method. 

 

 

3.3 Closing Review  

The process of Seismic History Matching (SHM) of this thesis is an effort to merging 

the benefits of both production and 4D information to improve estimates of the reservoir 

model parameters.  The SHM method and several challenges of this process which have 

been investigated were discussed.  A major challenge is that the computational cost of 

history matching is high if a large number of parameters are updated and especially 

when it is assumed that they are interacting.  The method of ‘divide and conquer’ of the 

unknowns is a new approach for efficient sampling of parameter space based on 

identification of insignificant interactions between model parameters and subdivision of 

the decoupled parameter space thus to make the problem straightforward.  The proposed 

‘divide and conquer’ method is an innovation to the usual SHM practice.  
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Basic concepts supporting the development of the method was explained in this chapter.  

In this approach first a numerical or analytical representation of a high dimensional 

misfit function is expanded so that it can be split into sub-misfit functions of fewer 

independent parameters. Two search methods of the parameter sub-domains including 

Parallel-SHM and Serial-SHM were then established. Also, in order to reduce the 

number of required ensemble models, an approach of integrating experimental design 

techniques with the Parallel-SHM method was described. 
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CHAPTER 4 Application of ‘Divide and Conquer’ Method to 

Seismic History Matching of Schiehallion Field 

 

 

Introduction 

This chapter represents the application of the ‘divide and conquer’ method to the 

Schiehallion field. Seismic History Matching (SHM) using the Neighbourhood 

Algorithm (NA) has been applied to the Schiehallion field (Stephen et al. 2006, Stephen 

and MacBeth 2008, Edris et al. 2008) previously. These studies showed that in the 

Schiehallion field, the transmissibility of flow barriers affects the fluid movement 

across the reservoir in a non-local manner. In such circumstances a group of the 

parameters updated during history matching may have a non-coupled impact (relative to 

other parameters groups) on the misfit objective function. Therefore, in this thesis it is 

sought to determine whether one can ignore interactions between certain reservoir 

model parameters in order to divide the parameter space into several lower dimensional 

sub-volumes. History matching would then be much more efficient leading to 

convergence by saving simulation runs and computation time. 

 

This chapter is therefore laid out to show first the parameter sub-volume identification, 

following by the application of the parallel version of the NA routine for searching the 

decoupled sub-volumes.  This method is called "Parallel-SHM".  Also the NA approach 

is used to search each sub-volume sequentially, which is called the "Serial-SHM" 

method. Both techniques are compared against the usual SHM procedure which is 

referred to as "Full-SHM" since decomposition is not used and full interaction is 

assumed (see Chapter 3 for methods).  It is shown that the Parallel-SHM can be applied 

to a 10-dimensional case of the Schiehallion field. The chapter begins with a case using 

the Schiehallion model to match the observed data from the field and proceed also with 

a synthetic case of this field. A simpler synthetic model is used to show an example of 

limitations of the method.  
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It is revealed that convergence was achieved very quickly requiring 30 per cent of the 

total number of models required for a Full-SHM. Application of the Serial-SHM 

improved convergence by using 40 per cent of the number of models required for Full-

SHM. However this approach required about one and half times more models compared 

to the parallel method. The ‘divide and conquer’ approach is certainly very useful for 

history matching problems of many unknowns. 

 

 

4.1 Schiehallion Field 

The Schiehallion field is situated on the UK Continental Shelf (UKCS), to the west of 

Shetland.  The Schiehallion Paleocene turbidite reservoir sands lie at a depth of 1800–

2064 m.  The Schiehallion depositional environment is interpreted as a submarine slope 

channel system, with structural dip of 2–3° to the northwest, crossed by a series of east–

west faults dividing the field into four structural segments, labeled 1 to 4 as shown on 

Figure 4.1a.  About two hundred of such faults and barriers were mapped from seismic 

data across the whole Schiehallion field (Macdonald et al. 2004) (see Figure 4.1b).  

They are shown on the reservoir Full Field Model (provided by operator) as in Figure 

4.1c.  Most of the mapped oil in place is contained in Segment 1 and Segment 4 (see 

Figure 4.1c and d). The degree of connectivity across the faults between these two 

segments is uncertain on a production timescale. However, in 1996, wells drilled in 

Segment 1 encountered depletion whereas wells in Segment 4 were not depleted, 

suggesting that the connectivity between the two segments is limited. More details on 

the Schiehallion field can be found in the works by Leach et al. 1999, Macdonald et al. 

2004, Fletcher et al. 2005, Soldo 2004, Miranda 2007, and Edris 2009.   

 

To reduce the CPU time and the number of variables that may need to be varied for 

such a large model in this study, we needed to focus on a smaller independent reservoir 

sector of the FFM. Thus, the reservoir of sand layer of the area of Segment 4 was 

extracted and selected for Seismic History Matching and verifying the application of 

'Divide and Conquer' method of this thesis. 
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Figure 4.1: Schiehallion field top-view picture showing: a) the segments, b) the faults and 

barriers, c) the location of the extracted Segment 4 in the Full Field Model, and d) the 

reservoir simulation model of Segment.  

 

 

4.1.1 Segment 4 Characteristics 

Segment 4 is enclosed on three sides by faults and pinches out on the fourth side (see 

Figure 4.1c and d).  At initial conditions the oil in the segment had the density in the 

range of 55.37-57.32 lb/cf and with the high viscosity ranging from 1.5-4.5 centipoise.  

The initial reservoir pressure was 2907 psia at a datum depth of 6365 ft TVDss, which 

is close to reservoir oil bubble point and the typical values for the gas-oil ratio (GOR) 

are 342 scf/bbl.  Reservoir quality varies in character from thinly interbedded sands to 

substantial sands (Lancaster et al. 2000), which are of better quality.  The porosity of 

Segment 4 sands lies between 27-29% while permeability varies from 10 to 2000 mD.  

It has been estimated that gas has come out of solution in some areas of the reservoir 

particularly early on in the field life.  Sub-vertical water injectors were employed in the 

reservoir to prevent significant gas breakout via reservoir pressure maintenance, and to 

deliver reservoir sweep.  However, the effective use of the water flood demands a high 

level of connectivity between injectors and producers in the reservoir. This is a 
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significant issue in a reservoir that is inherently heterogeneous.  The segment has been 

producing since August 1998 and has continued up to the present.  However in this 

thesis, the focus is on the history period up to 2004.  In the reservoir a total of eleven 

wells, six injectors and five producers, were completed in the sandstone sequence in this 

period and several seismic surveys have been acquired on the field (preproduction 

baselines in 1993 and 1996, as well as monitor surveys in 1999, 2000, 2002, and 2004).  

 

In this chapter the period of history matching considered ran from the start of 

production in August 1998 up to August 2000.  For this period, the 4D seismic data was 

obtained from the baseline seismic acquired in 1993, while monitor surveys were 

acquired after one and two years of production, i.e. in early September 1999 and in late 

August 2000. The seismic dataset measured the P-waves of seismic volumes. The 

process of cross-equalization, calibration and transformation of migrated stack was 

performed by the operators and by a combination of phase rotation and filtering the 

coloured inversion stack was derived.  By time-to-depth conversion, the location of the 

reservoir horizons were provided by the operator also and used to generate maps of 

Root Mean Square (RMS) attributes from the migrated stack by integrating the signal 

over a suitable time window.  Then, the pre-production RMS attributes were mapped to 

net:gross (NTG), given the almost uniform porosity of the sand (Stephen et al. 2006).  

4D seismic data were obtained using differences of the RMS attributes of the migrated 

stack. These attributes were used as a pseudo-impedance to detect pressure and 

saturation effects via the time-lapse seismic map of differences between the surveys as 

shown in Figure 4.2b.  The attribute maps are normalised to the baseline by subtracting 

the mean and dividing by its standard deviation (refer to Equation 3.8 of Chapter 3), to 

gain a comparable change in magnitude and signs between surveys. 

 

Based on seismic attribute analysis, the producers were drilled in the core of the 

reservoir channels where high pay properties were expected. The injectors were not 

placed in the same channels in order to avoid early water breakthrough and so maximize 

sweep.  In the history period from 1998 to 2000, in total 6 wells including 3 horizontal 

producers and 3 near-vertical injectors, have been active in Segment 4.  They are named 

in Table 4.1. The locations of the wells are shown in the 4D seismic map of 1993-1999 

in Figure 4.2b. Initially the reservoir management strategy was mainly aimed at gas 

supervision and pressure maintenance to prevent gas releasing from oil. The oil 

production and water injection data of active wells are shown in Figures 4.2a and 4.2c.  
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(a)     (b)    (c) 

 

 

Figure 4.2: Observed data for the history period from 1998 to 2000 which include: a) 

production rates, b) maps of change in pseudo-impedance, and c) injection rates.  The 4D 

signatures are normalised by subtracting the mean of the pre-production map (1993) and 

dividing by its standard deviation, and differences are presented in this scale.  The colour bar 

is the same for all maps and is in units of the standard deviation.  Changes in acoustic 

impedance indicate a pressure up signal around injector I2 in the first year, map 1993-1999.  

Injection stopped at that time and negligible net change is shown over two years, map of 

1993-2000.  The drop in pressure is seen between years 1 and 2, map of 1999-2000.  Red 

indicates pressure up or gas exsolving which is a drop in impedance in map of 1993-1999, 

while blue indicates draw down or water injection which is an increase in impedance in map 

1999-2000.  
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Table 4-1: List of active wells in Segment 4 for the history period starting from August 1998 

up to August 2000 (see Figure 4.2 for location of wells). 

Well 

Name Type Active since 

P1  Producer August 1998 

P2  Producer August 1998 

P3  Producer July 1999 

I1  Injector August 1998 

I2  Injector November 1998 

I3  Injector July 1999 

 

 

In the sector the reservoir rocks are acoustically softer than the overlying shale.  The 

contrast increases if something occurs to make the rocks softer, i.e. impedance 

decreases.  When the reservoir pressure decreases the gas comes out from solution.  On 

the other hand a compressible fluid into the pore space introduced by the gas free from 

solution causes an increase in the pore pressure (nearby) and consequently reduces the 

net effective stress on the rock frame.  That makes the matrix softer and significantly 

reduces the overall fluid hardness. A reverse process leads to the opposite effect because 

of resolution of gas and an increase in pressure.  A hardening effect occurs for reservoir 

rocks due to water injection because the compressibility of the hydrocarbon is higher 

than the water, but when water injection leads to significant increase in the pore 

pressure of reservoir sand, then the rocks become softer and the acoustic impedance will 

decrease (Marsh 2004).  Therefore, an increase in the reservoir pressure results in the 

opposite effect compared to the increase in the water saturation by water injection.  In 

Schiehallion, an increase in pressure of 500 psi could reduce the change of the acoustic 

impedance due to water replacement by half of the change from water alone.  Also an 

increase in reservoir pressure of 1000 psi or more could completely mask the change in 

acoustic impedance due to water flood (Floricich 2006). 

 

We can see from Figure 4.2b that there is a clear relationship between the well activities 

and the seismic response and reservoir behaviour.  For example the main signal in the 

4D seismic maps (difference in pseudo-impedance) is because of the injector I2 which 

is enclosed by flow barriers and baffles.  In Figure 4.2b, in the first year, the softening 
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around injector I2 in the 4D signature map of 1993-1999, which is due to the activity of 

well pressuring up and injecting water.  Then in the second year, the injector I2 is 

switched off and the reservoir pressure relaxes back to the equilibrium (Saxby 2001). 

Hardening occurs therefore around the injector, which is observable in the 4D signature 

seismic map of 1999-2000.  The region around the injector I2 is important however as 

an infill well was added nearby in December 2001 and the injector turned out to be 

surrounded by barriers.  The aim in this chapter is to match this strong seismic anomaly 

along with the injection rate for the well while we are adjusting the transmissibility of 

the barriers.   

 

In the 4D signature maps of Figure 4.2b, there is also a less obvious signal for injector 

I1 and a quite small signal for injector I3.  We see also some of the effects of two years 

of production near producers P1, P2 and P3.  A slight increase in the velocities due to 

injector activities indicates that the reservoir sand sequence has more sensitivity to 

changes in pressure than changes in the fluid saturation. Moreover, there are two 

anomalies which cannot be explained in terms of production activities whose magnitude 

are comparable with the time-lapse seismic signal around injector I2.  The anomaly 

close to producer P3 possibly may be caused by some shadowing production effect in 

the upper sandstones sequence (Soldo 2005). That is production from the upper 

sequence may be the origin of the 4D signature in the area, since depletion generates a 

release of gas that could create a shadow detectable in time-lapse seismic interpretation.  

Picking the horizons incorrectly may also cause the same effects (for more details see 

Castagna et al. 2003, Al-Maskeri et al. 2003, Soldo 2005).  Also the anomaly 

observable to the northeast of the 4D signature map is related to well activity in 

Segment 1. This anomaly is located beyond the sealing fault that separates Segment 4 

from the Segment 1 and no activity would be simulated to the north of this fault.  As a 

consequence these effects can not be captured during this thesis. 

 

By visual interpretation of maps of 4D seismic differences (Figure 4.2b), it has been 

recognized that there is clearly a high degree of compartmentalisation and 

heterogeneity, perhaps due to a combination of faulting and channelization in the 

reservoir (for more details, see Stephen et al. 2006).  In particular the main 4D seismic 

anomaly around the injector I2 data have assisted in locally identifying the existence of 

a number of barriers and faults that affect the sweep efficiency of the area.  Figure 4.3 

illustrates the location of identified barriers and baffles (10 barriers labeled ‘a’ to ‘j’).   
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Figure 4.3: The transmissibility of 10 barriers around the injector I2 that were updated to 

improve the prediction of the seismic anomaly around that well in the seismic history 

matching in this study. 

 

 

These barriers in the region close to injector I2 have resulted in poor well performance 

(Leach et al. 1999).  Although, the barrier transmissibilities may be estimated from the 

geological model properties using the Shale Gouge Ratio (Manzocchi et al. 1999), they 

are inevitably highly uncertain or sometimes unknown because relationships between 

observed barrier permeabilities and shale content show order-of magnitude variations.  

Estimated transmissibilities are therefore useful starting points for history matching 

particularly when time-lapse seismic data are available. 

 

 

4.1.2 Segment 4 Simulation Model 

The Full Field Model (FFM) of the Schiehallion reservoir was constructed by the field 

operator using typical approaches where facies objects and static flow properties such as 

porosity and permeability were distributed stochastically. The Segment 4 reservoir 

model was extracted from the FFM and was then upscaled vertically by a factor of 4 

giving 8 layers of sand and reducing the simulation run time.  For history up to 2000, 

each Segment 4 simulation takes around 34 minutes while the upscaled simulation 

model takes around 8 minutes on 3.4 GHz processor. If we include six years of 

production up to 2004, then the simulation time will be about 140 minutes but only 

twenty minutes for the upscaled model.  The upscaled Segment 4 model consisted of 

146 × 44 × 8 grid cells.  In total the model consisted of 51392 active cells typically 

measuring 100 × 100 × 6 m.  The segment was four cells thick vertically in many parts, 

but to the East side of the model, it extended to eight cells in the aquifer.   
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In the model, the wells were completed in the sandstone sequence in the interval 

corresponding to the FFM model and the well controls were set to oil rate for producers 

and water rate for injectors.  The barriers and baffles have been represented vertically, 

in a simulation k-direction, and by discretising areally, so that they stair-step through 

the simulation grid at the top of the reservoir.  In the base case, the transmissibility 

multipliers of 10 barriers (Figure 4.3) that we updated were set to 0.001.  Although, it is 

risky to justify a barrier addition without cross checking 3D seismic for any evidence, a 

new barrier was added to satisfy the 4D seismic signatures in the reservoir model (for 

more details refer to Edris 2009). This barrier (labeled ‘i’ in Figure 4.3) reduces the 

seismic misfit of the base case model and the existence of that barrier has been 

confirmed by the field operator.   

 

In the following SHM application, the reservoir history period that we focused on ran 

from 1
st
 August 1998 up to the 27

th
 August 2000.  The base case simulation of Segment 

4 was run for this period (two years) and the oil production and water injection of wells 

was predicted.  A petro-elastic transform (for more details see Chapter 2 and 3) was 

used to convert the outputs (saturation and pressure) of the simulation run to predicted 

seismic properties (for the parameters used in petro-elastic modelling, see Stephen et al. 

2006c, Edris 2009).  Maps of acoustic impedance were predicted pre-production, and at 

the time of the monitor seismic surveys in August 1999 and August 2000.  Figure 4.4 

shows the base reservoir simulation model predictions of the pressure, water saturation 

and gas saturation for the initial pre-production conditions and for 2000.  The base 

model well and 4D seismic maps predictions are shown in Figures 4.5. and 4.6, 

respectively.  

 

We can see that for most of the wells the history data (up to 2000) were well matched in 

the base case model but not for the injector I2 (see Figure 4.5). Besides, in the predicted 

seismic maps 1993-1999 and 1999-2000 (see Figure 4.6); we can see that the base 

simulation model allowed pressure leakage to extend in some distance from the injector 

I2.  Thus the match to 4D seismic data was not attained.  

 

 

   



Chapter 5: Divide and Conquering combined with Experimental Design 

132 

   

  a)      b)  

 

Figure 4.4: Pressure, water and gas saturation from the base case simulation model for: a) 

the initial pre-production conditions, and b) after two years production in 2000. 
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Figure 4.5: The base case simulation model predictions compared to well history data. 

 

 

                    

Figure 4.6: The base case simulation model predictions for 4D seismic maps of differences in 

impedance. 
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4.2 Application of the ‘Divide and Conquer’ Approach 

Application of Seismic History Matching to the Segment 4 of the Schiehallion field has 

been presented previously (see Stephen et al. 2006, Stephen and MacBeth 2008, Edris et 

al. 2008).  In this thesis the effectiveness of the ‘divide and conquer’ approach including 

Parallel-SHM and Serial-SHM methods, is investigated. Also the methods are compared 

against Full-SHM method of previous work.  

 

To perform history matching, it was necessary to define a parameter space.  In this case, 

we selected 10 barriers around the injector I2 (see Figure 4.3) as the most important 

parameters.  The barriers consisted of a combination of faults and near vertical (on this 

scale) shale drapes.  All were therefore modelled as transmissibility multipliers using 

the simulator's "Faults" keyword (Eclipse 100 Manual 2007) for pragmatism. The 

transmissibility multipliers of the barriers were modified by a second modifier 

parameter.  The limits of these modifiers are listed in Table 4.2, and they were sampled 

on a log10 scale in history matching process, i.e. if the modifier parameter is 0.0 (on 

log10 scale), then there is no change from the base case model.  We used this scale so 

that there is equal likelihood of sampling for reduced transmissibility than increasing it 

for a modifier range of 0.1 to 10.   

 

 

Table 4-2: Ranges and mid value of parameters on a log10 scale.  The base case is represented 

by a modifying factor of 1 on the linear scale (i.e. zero on the log10 scale). 

 

            * The barriers are shown in Figure 4.3 

 

modifier of barrier* Min. Mid. Max. 

a -2 -0.5 1 

b -2 -0.5 1 

c -2 -0.5 1 

d -2 -0.5 1 

e 1 0.5 2 

f 0 1.5 3 

g -1 0.5 2 

h 0 1.5 3 

i -2 -0.5 1 

j -1 0.5 2 
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The limits of the multiplier values of barriers were assumed while the maximum values 

were chosen to be three orders of magnitude higher than their minimum values (on 

linear scale).  Since the prior uncertainties of transmissibility multipliers of barriers are 

unknown, their parameter probability was assumed to be of a uniform distribution 

within the limits which means that in a Bayesian framework the prior parameter term 

(refer to Equation 2.4 of Chapter 2) can be ignored.  

 

Initially, we investigated how the barriers control the mismatch between predicted and 

observed well data.  For producers the misfit of ‘oil rate’ and for injectors the misfit of 

‘water rate’ were calculated for a number of models (1024) while we perturbed the 

modifiers of the barriers using quasi-random sampling. We identified that since the 

active production and injection wells in the reservoir, and hence in the simulation 

model, are located remotely from the injector I2, their mean misfits and the variation of 

the misfits are not large (see Table 4.3).  The mean misfit value and the variation of the 

misfit for producers P2 and injector I3 was zero. These values were also small for 

produces P1 and P3, and injector I3.  Thus, the data of these wells were not included in 

the misfit evaluation of history matching in this chapter. The injector I2 switches to 

pressure control, however, when the compartment pressures up too much, and thus it 

would be a source of misfit for injector I2 which could be zero, otherwise.  Hence, in 

addition to the 4D seismic data, the injection rate was also included in the misfit 

evaluation in a case.   

 

 

Table 4-3: Sensitivity of oil production and water injection rate of misfit of wells to parameter 

perturbations.  

Well 

mean misfit and variation in the 

misfit of producers and injectors*  

Mean Standard deviation 

P1 221 0.2 

P2 0.2 1.4E-16 

P3 117 3.6 

I1 0.0 0.0 

I2 23988 53.2 

I3 558 2.7 

*1024 models were used in the calculation of mean and standard deviation of misfits. 
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Therefore, in this study two misfit scenarios were considered: a) the ‘total 4D seismic 

data only’ was used; i.e. the changes of impedance over the first, second and first two 

years of production against the equivalent time differences in the observed 4D seismic 

attribute were compared in history matching, and b) the ‘4D seismic plus injector data’ 

where the injector misfit was also calculated.  In the case of integrating of both seismic 

and injector data, the total misfit is calculated as: 

 

PST J).W1(J.WJ        (4.1) 

 

Where JT, JS and JP are total, seismic and injector objective functions, respectively, and 

are calculated using Equation 2.3 (refer to Chapter 2), and W is the weighting factor 

between seismic and injector misfits. Choosing the proper weighting factor is not a 

straight forward task.  This factor should be investigated in relation to the accuracy of 

the data.  In this thesis, equal weights were considered for seismic and injector data.  

They were considered to be similar to the previous study (Edris 2009), so the total 

misfit was: 

 

PST JJJ
        

(4.2) 

 

During history matching, once the flow simulation model results were obtained, using 

the saturation and pressure outputs at initial reservoir condition and at the time steps 

corresponding to the time of seismic monitors, the seismic impedances for each Colum 

of simulation cells were predicted. The simulated impedances were calculated through 

petro-elastic modelling (see Chapter 2) and using the elastic parameters of reservoir 

rock.  Then vertical upscaling (Backus 1962) and areal downscaling (Equations 3.2 and 

3.6, Chapter 3) were applied to map the simulated impedances into the observed grid 

cells (seismic bins), and to bridge the gap between the simulated and observed seismic 

scales. After this step we were able to compare simulated and observed impedances. 

The aim of ‘divide and conquer’ is to establish a speed up in the convergence rate of 

history matching and we principally focused on examining this new developed 

approach. In the case studies of this thesis, the modelling errors are ignored and thus are 

not included in the misfit objective function.  
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In the misfit calculation we need to include a covariance matrix due to correlated 

random error in the observed data.  The covariance matrix provides weighting factors to 

scale observations of different type, according to data.  The seismic data error for the 

Schiehallion has been studied previously (Soldo 2005, Edris 2009).  In that study the 

pseudo-impedance attributes of each individual survey and their corresponding 

differences were analysed assuming that the covariance behavior can be represented as a 

function of a semi-variogram lag distance between traces in the two main seismic 

acquisition directions of inline and crossline (see Figure 4.7).  The analyses concluded 

that at the simulation grid scale, the seismic covariance matrix could be represented as 

σI, where σ is the standard deviation of estimated noise of each map, and I is the 

identity matrix (for more details see Soldo 2005). A similar approach has been 

examined by Gosselin et al. (2003).  Also, in this thesis, it was assume that there is the 

same level of data error in Phase II seismic data. 

 

 

 

Figure 4.7: Covariance functions for seismic data error: a) in the inline direction, and b) in 

the crossline direction.  The stationary state is reached at a distance corresponding to lag = 5 

(62.5 m) which is smaller than simulation grid scale (100 m) (after Soldo 2005). 

 

 

The covariance of the production data was also represented as a function of time lag in 

Figure 4.8. This Figure (as it is presented in the original reference, Edris 2009) do not 

show the zero lag information, although what is more important here is the structure of 

the changing of the covariance data error (i.e. vertical-axis on Figure 4.8) with time lag 

(horizontal-axis on Figure 4.8), which is showing  production/injection rate 

Lag [distance]
Lag [distance]
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measurements contain uncorrelated errors. In fact, the covariance function demonstrated 

no evidence of correlation trend over time, and exhibited an irregular fluctuating and did 

not reach to a stationary. Yet if we interpreted a correlation for up to one lag, i.e. one 

week (see Figure 4.8), since the time steps in the reservoir production/injection data is 

one week, the data error was concluded to be uncorrelated (for more details see Edris 

2009).  Consequently, for both seismic and injector data, uncorrelated Gaussian errors 

were deployed.  

 

 

             

  Figure 4.8: Covariance function for data error in the production and injection rates is 

shown for 400 lag where each time lag corresponding to one week. 

 

 

The standard deviation of observed production/injection data was evaluated using the 

wavelet decomposition filter (for details see Edris 2009).  The whole observed data set, 

which included the bottomhole pressure and GOR (Gas oil ratio), was used to define the 

right level of noise extraction and to characterise the truth signal.  Subsequently the 

statistics of standard deviation of production data error was evaluated.  Also, the power 

spectrum decomposition was used to filter the noise from raw seismic attributes (RMS 

amplitude).  Then by inspecting the power spectrum of the raw and noise-free seismic 

data the standard deviation of each seismic map (observed pseudo-impedance) was 

estimated (for details see Soldo 2005). The standard deviations of relevant data are 

presented in Table 4.4.  They were included as the weights specified as the inverse of 

the square of the standard deviation of the ‘noise in the data’ within their equivalent 

misfit calculation.  
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         Table 4-4: The data error of water rate of injector I2 and 4D seismic data. 

Data Standard Deviation 

Injector I2 63.2 

4D Seismic 1999-1993 2.89 

4D Seismic 2000-1993 3.36 

4D Seismic 2000-1999 3.19 

 

 

A prior sensitivity analysis was conducted in order to evaluate the influence of the 

transmissibility modifiers in the misfit function through a ‘one parameter change at a 

time’ investigation. The parameter values were varied in the interval of [-3,3] in log10 

scale.  Some parameters showed more influence on the misfit than others.  For both 

scenarios mentioned earlier the sensitivity of the misfit to parameter changes are shown 

in Figure 4.9.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Divide and Conquering combined with Experimental Design 

140 

     a) Sensitivity analysis for the total seismic misfit  

          

               b) Sensitivity analysis for injector misfit 

           

                       c) Sensitivity analysis for the total seismic plus injector I2 misfit 

          

                        

Figure 4.9: Sensitivity analysis of: a) total seismic misfit, b) injector misfit, and c) seismic 

plus well misfit.  Transmissibility modifier of barriers on log10 scale (x-axis).  The circle 

marks the base model misfit value. 
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The effect of the most dominant parameters on the misfit was non-linear.  Also, the 

injector I2 misfit dominated the sensitivity of total misfit to parameter changes.  This is 

because the range of the injector misfit was much higher than the misfit of the 4D 

seismic data. The seismic and injector misfits displayed negligible variation with 

respect to the change of parameters in the interval of [-3,0].  This is because in the base 

case simulation the transmissibilities of the barriers were already low such that a drop in 

transmissibility has no effect on flow in the reservoir model.  

 

Moreover, for the transmissibility modifier of barriers ‘c’ and ‘h’, when they were the 

only perturbed parameters in the interval of [0,3], both 4D seismic and injector misfits 

exhibited little change, if any at all.  At this stage in the analysis we regarded that there 

may be interaction of these parameters with other barriers that may show up later.  

Change to transmissibility of barriers ‘a’, ‘f’, ‘and ‘j’ resulted in similar outcomes for 

both seismic and injector misfits, although the seismic misfit showed more sensitivity.  

Seismic and injector misfits consistently declined when the transmissibility modifier of 

barriers ‘b’, ‘d’ and ‘i’ were increased (from 0.0 to 1.5).  However, these barriers result 

in opposing consequences for seismic and injector misfits when they allowed further 

pressure communication as the log10 of transmissibility multiplier increased (from 1.5 to 

3). The seismic misfit increased but injector misfit decreased. This suggests the 

possibility of the existence of the multiple minima of the misfit function.  The seismic 

misfit showed strongest sensitivity to barrier ‘e’ and medium sensitivity to the change to 

barrier ‘g’, while the sensitivity of injector misfit was small. 

 

We then performed Full-SHM method. We used 1024 (ni) models that we previously 

generated (in analysis of misfit of wells). These models were populated in the 10-

dimensional parameter space of the problem (Figure 4.4), using Quasi-random (QR) 

sampling (for more details refer to Section 2.5 of Chapter 2).  At each subsequent 

iteration, 96 (ns) models were created in the vicinity of the best 48 models (nr) of all 

models available from previous iterations.  Thus two models (ns/nr = 2) were generated 

in each voronoi cell of the parameter space where the best models were located.  The 

process was iterated 30 times.  In current case studies a predefined number of iteration 

(models) was set based on making an allowance for the limited availability of 

computational resources and having an overall convergence towards the minimum 

misfit as termination criteria. The Neighbourhood Algorithm (NA) usually exhibits 

rapid evolution toward minimum at the beginning and then flattens out at the end 
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indicating that the convergence to a minimum misfit is reached. When we continually 

manually checked the results and if we reached a point where we reasoned that the 

quality of match would not improve if we continue for further iterations. More 

automatic termination criteria could be considered as a future work in the SHM 

workflow (for more details see Section 2.5.2 for stopping criteria).  

  

The initial models (ni) were used to calculate the coefficients of the regression proxy 

model of misfit functions (see Equation 3.10 of Chapter 3). Separate regression models 

of the misfits were generated for each of the two misfit scenarios i) where the ‘ total 4D 

seismic misfit only’ was used, and ii) ‘4D seismic plus the injector misfit’ were used.  

The coefficients of the polynomials were estimated using least square regression and 

singular value decomposition techniques. The regression models had a correlation 

coefficient, R
2
, of 0.976 and 0.967 for the above two scenarios, respectively, when they 

were compared to true misfits as shown in Figurer 4.10.  In both cases only about 10% 

of the coefficients of the misfit polynomial were significant as illustrated in Figure 4.11.  

The other 90% of coefficients were very small and they were not related to any valid 

effect in the misfit function.  

 

 

Figure 4.10: Comparison of misfits predicted by the polynomial response surface against the 

true misfit values where we used: a) the ‘total 4D seismic misfit only’, and b) the ‘seismic plus 

injector misfit’.  On the plots dark blue symbols show the misfit of models used to generate 

the misfit polynomial and the pink symbols represent all test models generated in the 

subsequent Full-SHM for Segment 4. The blue and green crosses represent models generated 

in the first and last iteration of the Full-SHM process. 
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        a) total seismic misfit only       b) seismic plus well misfit  

     

Figure 4.11: The probability distribution of coefficients in the polynomial misfit shows that 

only 10% of the coefficients of the misfit polynomial are significant. 

 

 

The reliability of the regression proxy was verified through prediction of the test models 

and by calculating a mean absolute error, D, which may be considered to be the 

deviation from reality.  D is the average of differences between estimated misfits by 

polynomial and true misfits and is calculated using the L1 norm as follows: 

100
)(J

)(f)(J

n

1
D

i

n

1i

       i=1 to number of models (n)    (4.1)  

 

Where: f( ) is the estimated misfit by multidimensional polynomial regression, J( ) is 

the true misfit,  is the vector of parameters (here log10 of the transmissibility modifier 

of the 10 barriers), and n is the number of test points.  During validation, the test models 

were obtained from an ensemble generated in the Full-SHM work flow.  Three subsets 

of test points were considered as shown in Figure 4.8 and consisting of: i) all models of 

30 iterations, ii) models in the first iteration, and iii) models in the last iteration (each 

iteration contains 96 models). These test models are therefore different from the training 

models used in building the misfit polynomial.   

 

Table 4.5 outlines the mean absolute error calculated considering different combinations 

of test datasets and for: a) ‘the total 4D seismic misfit only’ scenario, and b) the 

‘seismic plus injector misfit’ scenario. The error was larger when considering the 
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seismic with well misfit compared to the seismic misfit only scenario.  This might be 

because of the noise in the injector data.  The errors did not change significantly when 

iterating to the last 96 models in the ‘seismic misfit only’ case. However there was 

significant increase of error when iterating to the last iteration in the ‘seismic plus 

injector misfit’ case. This signifies that when injector data are combined with 4D 

seismic data the characteristic of the shape of the misfit surface alters especially when 

converging towards a minimum. The comparisons between predicted and true misfits 

for these test models are shown in Figure 4.8.   

 

 

Table 4-5: The mean absolute error, D (Equation 4.1) calculated considering different 

combination test datasets and for: a) the seismic misfit only scenario, and b) the seismic and 

injector well misfit scenario. 

 

Test Dataset 

Standard Error (D) 

Seismic misfit only 

scenario 

Seismic and injector 

misfit scenario 

All (2880) points 1.0% 5.2% 

First iteration(96) points 0.83% 2.7% 

Last iteration(96) points 1.1% 6.8% 

 

 

The Pareto plots of the significant effects on the misfit polynomial for the ‘total 4D 

seismic only misfit’ and for the ‘seismic and injector misfits’ scenarios are shown in 

Figure 4.12 and Figure 4.13. In these figures the most significant coefficients of the 

polynomial misfits are shown for those effects that capture 95% of the total true misfit 

behaviour. These effects are presented for total seismic misfit, for injector misfit and for 

each individual 4D seismic maps of 1993-1999, 1993-2000, and 1999-2000. The misfits 

are separable in this way because they are additive. 
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  ‘total 4D seismic misfit only’ scenario         

 

                    a) total Misfit                                            b) 1993-1999  

 

 

 

 

 

 

                    c) 1993-2000                                                d) 1999-2000  

 

Figure 4.12: Pareto charts of significant effects from the regression polynomial of the total 

seismic misfits as well as for each time step between monitors for the scenario of the ‘total 

seismic only misfit’.  Each letter on the plots refers to the transmissibility modifier of a 

barrier as shown in the legend.  The single character shows a linear effect, squared letter 

indicates quadratic effect, and cross product of two letters (e.g. e×g) represents interaction 

effects. 
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 ‘seismic plus injector misfit’ scenario 

                       a) total misfit                                         b) injector misfit 

 

Figure 4.13: Similar plots (as of Figure 4.12) but for significant coefficients from the 

regression polynomials for a) the ‘total 4D seismic plus injector misfit’ and for b) injector 

only misfit. 

 

 

Transmissibility of the barriers ‘e’, ‘i’, ‘g’, ‘f’ and ‘d’ (ranked by significance) were 

found to have major effects on controlling the total 4D seismic misfit surface in the 

‘seismic only misfit’ scenario.  Also there was a significant interaction between the two 

transmissibility modifiers of barriers ‘e’ and ‘g’. These parameters had influential 

effects on each of the individual time differences of seismic surveys including: 1993-

1999, 1993-2000, and 1999-2000. The transmissibility of other barriers including ‘a’ 

and ‘b’ also played an influential role in the later seismic survey as they were 

observable in the 1999-2000 plot. They may turn out to be more significant due to 

interference of: i) the producer P1 activity which is located to the east of the barrier ‘b’ 

and had an increase in production rate in year two (1999), and ii) the injector I3 which is 

placed to the south-east of barrier ‘a’ and was active from year two (1999). The 

parameters most influential in the injector misfit were transmissibility of barriers ‘i’, 

‘b’, ‘d’, ‘j’, ‘a’ (in their order of significance) and interaction between ‘c’ and ‘i’.  When 

the seismic misfit is combined with the 4D seismic misfits, barriers ‘e’ and ‘g’ also 

came to the fore (see Figure 4.11). It seems that the positions of the previously 

mentioned barriers strongly control the extent of pressure propagation in the horizontal 

directions relatively close to the injector.  Barriers ‘e’ and ‘g’ effects on the other hand 

are less-localized.  
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In both scenarios, the derived misfit proxy models were quadratic with simple 

polynomial structure, so we considered applying direct differentiation to find the zero 

gradient locations on these surfaces.  However, we found that the misfit proxy models 

are concave downwards with a maximum in some parameters, i.e. for the parameters 

with negative quadratic coefficients in the polynomials (see Figure 4.12a and 4.13a).  

Therefore, the application of the direct gradient approaches was not practical. 

 

Next, the terms with insignificant coefficients were discarded as the deterioration of the 

correlation between polynomial and true misfits was measured, (see Figure 4.14).  We 

considered that 95% correlation between true misfits and misfits predicted by regression 

model to be adequate, but also a significant reduction in R
2
 could be observed after we 

dropped below that number.  Thus a threshold for decoupling parameters was acquired.  

Following this interacting parameter groups could be separated out by considering just 

those parameters with interactions above the derived threshold (see Chapter 3).  

 

Based on the analysis of interactions, we obtained 9 decoupled sub-volumes in the 

parameter space for both scenarios under study as shown in Table 4.6. For the 4D 

seismic misfit, barriers ‘e’ and ‘g’ were coupled while the rest were separate. The 

combined 4D seismic and injection misfit was dependent on coupling between barriers 

‘c’ and ‘i’, and the rest were uncoupled. The magnitude of the coefficient of the 

interacting term of ‘e × g’ for the ‘seismic only misfit’ case was ‘1650’; which was 15% 

of the largest coefficient in the polynomial. The magnitude of the coefficient for 

interacting term of ‘c × i’ in the misfit polynomial for the ‘seismic and well misfit’ case 

was ‘3710’, it was also 15% of the largest coefficient in the polynomial, so both effects 

were of similar strength in the polynomials. 

 

 

Table 4-6: Decoupled parameter sub-volumes. 

Scenario 
number of 

sub-spaces 

decoupled parameters in separated 

parentheses 

total 4D Seismic 

misfit only 
9 (e g)   (a)   (b)   (c)   (d)   (f)   (h)   (i)   (j) 

Seismic and 

injection misfit 
9 (c i)   (a)   (b)   (d)  (e)  (f)   (g)   (h)   (j) 
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                                      a) ‘total seismic misfit only’ scenario 

                   

                                       b) ‘seismic plus injector misfit’ scenario 

                    

Figure 4.14: Correlation coefficient (R
2
) comparing the true total misfit against the 

regression model predictions as the interacting coefficients are discarded the in order of 

increasing size (i.e. rank, the smallest first), for: a) the ‘total seismic misfit only’ scenario, 

and b) the ‘seismic plus injector misfit’ scenario. 

 

 

In the base case model, the transmissibility of barriers was set to ‘0.001’ such that the 

pressure around the injector I2 increases too much locally.  Then in order to improve the 

match of the major seismic anomaly around the injector, the barriers needed to be 

opened.  There were negative effects (coefficients with negative sign) in the polynomial 

misfits of both scenarios.  These effects implied a need to increase transmissibility.  For 

the scenario of ‘total 4D seismic misfit only’ the barriers ‘e’ and ‘g’ were the most 
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from injector I2.  However the interaction between these barriers gave us an idea that 

there was an optimal role for each of these barriers. 

 

For the ‘seismic plus injector misfit’ scenario, the mismatch of injector prediction also 

suggested that the barriers should be opened with strongest prominence for barrier ‘i’.  

It appeared that the regions close to and beyond the barrier ‘i’ would provide a channel 

for injected water and therefore for pressure propagation from injector I2.  If this barrier 

was opened the injector rate mismatch would be zero, however the seismic data match 

would deteriorate.  It seems that barrier ‘c’ was coupled to barrier ‘i’ to encompass the 

optimal transmissibility of these barriers for simultaneous match of the injector and 

seismic data. 

 

4.3 Applications of Parallel-SHM and Serial-SHM Methods 

The convergence to the minimum of misfit value, using the Full-SHM method was 

achieved, see Figures 4.15 and 4.16.  We used the same 1024 models which previously 

were used to derive the misfit regression equation, as the initial models (ni) required for 

using NA.  During the search for the minimum, 2880 models were evaluated including 

96 (ns) models at each subsequent iteration (for 30 iterations, and with nr = 48).  Again 

the same 1024 models were utilized, but this time to initialise the parallel search.  When 

the parallel version of the neighbourhood algorithm was applied to search the parameter 

sub-volumes a similar result to the Full-SHM approach was achieved but using a much 

smaller number of model evaluations.  This time we also used ns = 96 and nr = 48 (to be 

comparable with the Full-SHM method) but the number of required iterations was just 

2.  Then only 192 models were called for convergence compared to 2880 models used 

in the Full-SHM (see Figure 4.15a and b for the two misfit scenarios). 

 

After dividing the parameter space we at most needed to deal with a 2D problem when 

searching parameters in parallel. Accordingly, the tuning parameters for the 

neighborhood algorithm can be set for such situation.  Another run of the Parallel-SHM 

was carried out with ns = 8 and nr = 4 for 2 iterations.  The same result was obtained but 

this time with much smaller number of model evaluations of 16 models. The 

convergence of this case is illustrated in Figure 4.15a.   

 

Using the Serial-SHM, the parameters are searched in order of decreasing importance as 

determined from the coefficients and their effects on the correlation of the regression 



Chapter 5: Divide and Conquering combined with Experimental Design 

150 

equation predictions against the true misfits.  The 2D sub-volume containing barriers ‘e’ 

and ‘g’ was searched first, and then the other eight 1D volumes were searched in turn.  

The NA tuning parameters were set for ni = 32, ns = 16 and nr = 8 for 2D sub-volume, 

and ni = 16, ns = 8, and nr = 4 for 1D sub-volumes, and the process was carried out with 

10 and 5 iterations for the 2D and 1D sub-volumes, respectively.  Convergence was 

achieved in 552 models which is one sixth of the number of models required for the 

Full-SHM approach.  In Figure 4.16 the serial convergence is shown together with Full-

SHM convergence results.  Nevertheless, this result was not as attractive as the Parallel-

SHM approaches which was accomplished with a 70% speedup of the convergence rate 

(if we count over initial models).  In the Serial-SHM method when the nieghbourhood 

algorithm was applied to sub-volumes sequentially, each time the parameter was 

searched, there was a need to initialise with the appropriate sampling consistent with the 

dimension of the sub-volumes. This was not required for the Parallel-SHM method 

which starts searching with the same initial models used to obtain the misfit regression 

model.  

 

In Figure 4.17 convergence of the 10 parameters towards the best solution using the 

Parallel-SHM approach is compared with that of the Full-SHM. The Parallel-SHM 

resulted in a much faster convergence. In Figure 4.18 the evolution of models in 

convergence of the Serial-SHM method are shown but only for each serial application 

of neighbourhood algorithm (i.e. where that parameter was changed). 

 

Figure 4.17a shows that for the Full-SHM method to converge we required 2000 models 

at least (more than 20 search iterations using NA) to obtain the convergence of 

transmissibility multipliers of barriers ‘f’ and ‘b’ in the ‘seismic only misfit’ scenario, 

and  for the barriers ‘a’, ‘d’, ‘g’ and ‘j’ in the ‘seismic plus well misfit’, see Figure 

4.17a.  The model parameter evolution showed a potential bi-modal solution for barrier 

‘b’ until convergence to solution is reached, i.e. where the minimum misfit does not 

improve any more in the ‘seismic only misfit’ scenario (Figure 4.17a). Further, the 

barriers ‘d’ and ‘j’ in the ‘seismic only misfit’ scenario, and the barriers ‘c’, ‘f’ and ‘h’ 

in the ‘seismic plus well misfit’ scenario were very much non-convergent using Full-the 

SHM method. However, using Parallel-SHM and Serial-SHM there was apparent 

convergence after the first iteration of each search routine (Figure 4.17 and 4.18). 
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a) ‘total 4D seismic misfit only’ scenario 

    

 

 

  b) ‘seismic plus injector misfit’ scenario  

 

Figure 4.15: Comparison of misfit convergence of the Parallel-SHM approach to the Full–

SHM: a) ‘total 4D seismic misfit only’ scenario, for two cases of using 'ns = 96, nr = 48' and 

'ns = 8, nr = 4', and b) ‘seismic plus injector misfit’ scenario.  The solid line indicates the base 

case simulation misfit.  The dark blue symbols represent the evolution of the models during 

converge to minimum misfit using the Full-SHM method, and pink symbols show the models 

for Parallel-SHM method (plus the initial models- also used in Full-SHM).  Green symbols 

(marked in red circle) show Parallel-SHM result for the case with 'ns = 8, nr = 4'. 
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                              a) ‘total 4D seismic misfit only’ scenario 

 

 

 

                                            b) ‘seismic plus injector misfit’ scenario  

 

 

Figure 4.16: Convergence to the solution by applying serial ‘one sub-volume at a time’ or 

Serial-SHM for: a) the ‘total 4D seismic misfit only’ scenario, and b) the ‘seismic plus 

injector misfit’ scenario.  The solid line indicates the base case simulation model misfit.  Each 

coloured symbol is related to a sub-volume search as specified in the legend. 
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                                          a) ‘total 4D seismic misfit only’ scenario 

 

                                        b) ‘seismic plus injector misfit’ scenario 

 

Figure 4.17: Convergence of the parameters by Parallel-SHM (pink symbols) and Full-SHM 

(dark blue symbols) for: a) the ‘total 4D seismic only misfit’, and b) the ‘seismic plus injector 

misfits’ scenarios.  The x-axis is the model index and y-axis is log10 of the modifier applied to 

barrier transmissibility. 
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a) ‘total 4D seismic only misfit’ scenario 

 

 

 

 b) ‘seismic plus injector misfit’ scenario 

 

Figure 4.18: Convergence of the parameters when the Serial-SHM is applied to the two 

scenarios of: a) the ‘total seismic misfit only’, and b) the ‘seismic plus well misfits’.  We only 

show the models as the parameters are modified.  The x-axis is the model index and y-axis is 

log10 of the modifier applied to barrier transmissibility. 
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4.4 Comparison of Final Model Results 

Maps of predicted change in impedance for the best models obtained by the three 

different approaches (Full-SHM, Parallel-SHM and Serial-SHM) are compared to 

corresponding maps of observed data and those of the base model in Figure 4.19.  These 

comparisons are for the two scenarios of: a) the ‘total 4D seismic data only in misfit’, 

and b) ‘the seismic and injector in misfit’.  The Parallel-SHM and Serial SHM results 

were very close to those obtained by Full-SHM method. In Figure 4.19, since the 

resulting match of seismic maps was the same for the two scenarios of ‘total 4D seismic 

misfit only’; and ‘seismic plus injector misfit’ merely the results of former one are 

illustrated.  The match of the signal around injector I2 is improved noticeably in all 

methods. 

 

 

       

Figure 4.19: Comparison of predicted seismic maps by best model obtained by various 

methods to observed data and base model predictions.  This figure shows the results for the 

‘total 4D seismic misfit only’ scenario but the scenario that used the injection rate misfit as 

well gave the same results. 
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Comparison of the injector I2 history to the predictions by the base model and by the 

best models acquired by various methods is shown in Figure 4.20.  The match of the 

injector I2 using full, parallel and serial approaches is improved relative to the base case 

model. For parallel and serial approaches there was even slightly more improvement 

compared to the Full-SHM approach.  However a complete match to the injector was 

not achieved by any of the approaches. This result reveals that for reducing the 

mismatch of injector I2, it is necessary to acquire insight to both the ability of flow 

across barriers and the capacity of injection in the reservoir sand (i.e. petro-physical 

properties) of the area where the well is located.  We have investigated this in the next 

chapter. 

 

 

a) ‘total seismic misfit only’ scenario 

 

                                             b) ‘seismic plus injector misfit’ scenario 

 

Figure 4.20: Comparison of predicted well data by the best model obtained by various 

methods of Parallel-SHM, Serial-SHM, and Full-SHM to observed well history and base 

model prediction for the two scenarios of: a) ‘total 4D seismic misfit only’, and b) ‘Seismic 

plus well misfit’.   
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For the producer P3, we also obtained small improvements in the match by various 

SHM methods relative to the base model (see Figure 4.20).  The match of the history 

data of other wells was attained in the base model and remained unchanged by the best 

models prediction, thus they are not shown. The results obtained by the new approaches 

show a similar quality to the Full-SHM method, but it has been achieved in a smaller 

number of flow simulations. Improvements to the water injection rates were also 

obtained.  Comparison of the parameter values of the best models achieved by the three 

approaches is shown in Figure 4.21. The standard deviation of the best parameter values 

was estimated based on the variation of parameter values in the 10 best models obtained 

by each of the three various methods; they are displayed as error bars on Figure 4.21.   

 

For most parameters of the transmissibility modifier, the results were consistent 

although there are some exceptions.  Barriers ‘a’, ‘b’, ‘e’, ‘g’, ‘i’ and ‘j’ are consistent 

and close to the injector I2 and control the build up of the pressure and thus the shape of 

the seismic anomaly around the injector.  The other parameters can be improved around 

the best parameter value of these barriers, and have mostly competing effects on the 

observed data variables (seismic and well data).   

 

Barriers ‘c’ has negligible influence on the seismic misfit response, but has an 

interaction effect with barrier ‘i’ for injector I2 misfit.  Barrier ‘f’ has negligible 

influence on the injector misfit but has opposing significant effects on seismic misfits of 

1993-1999 and 1999-2000, also it has an interaction effect with barrier ‘i’ on seismic 

misfit of 1993-1999.  Barrier ‘h’ does not have significant effects on either seismic or 

injector misfits.  Barrier ‘d’ has linear and quadratic influences on both the injector 

misfit and the seismic misfit (see Figures 4.12 and 4.13).  These barriers ‘d’ and ‘h’ 

have consistent effects on the seismic and  injector misfits but they were changed to the 

most largest degree along with  when different combinations of changes to the other 

parameters, particularly for barriers ‘c’ and ‘f’.  

 

Consequently, we concluded that for the current history matching exercise multiple 

solutions may exist or at least there are saddle points such that there is no unique 

minimum for the misfit function. The transmissibility multipliers were updated for 

barriers ‘d’, ‘j’, ‘h’, ‘c’, and ‘f’ also were estimated with higher uncertainty using the 

Full-SHM method (see the error bars in Figure 4.21).  This also supports the conclusion 
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that there may be multiple combinations of the parameters which provide a good match 

to observed field behaviour. 

 

 

   a) ‘total 4D seismic misfit only’ scenario 

                   

 

   b) ‘seismic plus injector misfit’ scenario 

                    

Figure 4.21: Comparison of the parameter values for the best models obtained by various 

methods for the two misfit scenarios: a) the ‘total 4D seismic misfit only’, and b) the ‘seismic 

plus injector misfits’.  The error bars of parameter values are calculated from of the 10 best 

models generated by various methods of SHM. 
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Further investigations on the quality of results obtained by the Full-SHM, Parallel-

SHM, and Serial-SHM approaches were carried out through sensitivity analysis. The 

best models of each method were modified via ‘one parameter change at a time’.  In 

Figure 4.22, we can see that the sensitivity of the misfit surfaces is small for further 

perturbation around the best models for most transmissibility multipliers (notice the 

range of y-axis of plots). The seismic misfit increases sharply if the transmissibility of 

barrier ‘e’ is reduced and the injector misfit increases when barrier ‘i’ and ‘b’ are closed 

relative to best model.  They are the most important parameters and have converged to 

identical results by the various methods and in both misfit scenarios.   

 

The sensitivity analysis of the updated parameters (see Figure 4.22) indicates that many 

optimal parameter values have been found at the boundaries of their defined search 

domain (i.e. the range of parameters allowed for sampling).  This wider domain was 

chosen initially for history matching based on preliminary analysis and also where the 

sensitivity of the seismic and injector misfits were examined through one at the time 

parameter changes (see Figure 4.9). In these studies, the log10 of the multipliers were 

varied in the range [-3,3]. The feasible domain for the neighbourhood algorithm was 

then chosen span three orders of magnitude. The ultimate sensitivity analysis on the 

updated parameters (see Figure 4.22), however, indicated that many optimal parameter 

values lay at the boundaries of this domain. This may be because seismic and 

production misfits are pulling the parameters in opposite directions for several reasons: 

 The weightings were calculated for seismic and injector misfits and these could be 

incorrect.   

o For seismic data, the errors were estimated by assuming that high spatial 

frequency components of the data are noise which was found to be 

uncorrelated. However there could be lower frequency or correlated, e.g. 

from multiples, band pass filtering, etc., that induced errors in the 4D 

seismic data. 

 

o For the injector misfit the appropriate relative weight is not known, and there 

is a possibility that the injection rate was less accurate than assumed. 

(a

) 
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 There may be parameters missing from the history matching process. If the seismic 

and production misfits draw in opposite directions then that could be a sign that 

some other parameters needs to be modified. 

 

 There may be uncertainty in scaling of the 4D signals. Normalization to baseline 

should capture geological imprints but other 4D related parameters (e.g. stress 

sensitivity) may be incorrectly calibrated or otherwise normalized.  

 

 The bounds of the parameter values were restricted based on the preliminarily 

analysis that was considered compelling for the purpose of obtaining good quality 

results for the history matching application. There are always the possibilities of 

having solution/solutions in some other places in the parameter space (e.g. wider 

parameter space or restricted to other bounds) which are not included in the history 

matching process. 

 

 However it is most likely that some combinations of all the above explain the 

observed trend. 
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    a) ‘total 4D seismic misfit only’ scenario 

 

    

 b) ‘seismic plus injector misfit’ scenario 

 

 

Figure 4.22: Sensitivity analysis for the best models obtained by various methods for: a) the 

‘total 4D seismic only misfit’, and b) the ‘seismic plus injector misfits’ scenarios.  Each 

parameter is varied one at a time.  Filled symbols indicate the best value found from SHM 

methods. 
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Tables 4.7 compares the simulation models and CPU time required by each of the 

various methods for two misfit scenarios. 

 

 

Table 4-7: Summary of simulation data for each of the methods in the two misfit case. 

Misfit Scenario 
Method of 

SHM 

Number of models 

excluding 

initialisation* 

CPU excluding 

initialisation (days)** 

‘total 4D seismic 

misfit only’  

Full- 2880 16.0 

Parallel- 192 1.07 

Serial- 552 3.07 

‘seismic plus 

injector 

misfit’  

Full- 2880 16.0 

Parallel- 192 1.07 

Serial- 552 3.07 

*1024 models were used to initialise the study during which both misfits were recorded taking 

5.7 days of CPU to compute.  These were then used for all remaining studies.  

**Each model takes around 8 minutes on a 3.4 GHz processor. 

 

 

The initialization models were not counted at this stage of evaluating the performance 

of methods against each other; as they are common to all models.  It is often found that 

such a large set of initial models is necessary for the NA approach. The degree of 

speedup is quite large and could be increased further, though we opted for similar 

preference to the full inversion initial ensemble (ni = 1024 in NA) for the two new 

methods; and similar explorative and exploitative options (ns = 96 and ns = 48 in NA) 

for Parallel-SHM. We examined a second option (i.e. ns = 8, and nr = 4) for the Parallel-

SHM which is not used in the comparison of the performance of methods, though this is 

more representative, however this case gave similar history match results as the first 

case.   
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Table 4-8: Comparison of the performance of the various search methods in the two misfit 

scenarios. 

*The seismic map contains noise plus several anomalies that we do not attempt to match, one 

outside of the area of simulation and one large one within (see "shadowing" discussion in 

Section 4.2.1). Therefore only the misfit in the area immediately around the injector indicated 

by the box in Figure 4.6 is considered. 

 

 

Table 4.8 compares the performance of the three methods in the two misfit scenarios.  

The minimum seismic misfit achieved and the reductions in the seismic misfit by 

various methods are very close.  Nevertheless there is a further drop in the injector 

misfit by new methods compared to the Full-SHM, which has propagated into the 

evaluation of the total misfits in both of the ‘total 4D seismic misfit only’ and ‘seismic 

plus injector misfit’ scenarios, particularly for seismic ‘plus injector misfit’ scenario 

(see Table 4.8).  

 

Two regions of misfit were considered for the seismic data in order to compare the 

different methods against each other.  First, the seismic misfit was calculated for the 

entire area of the reservoir model during history matching, and this was used during the 

whole process.  However, this region actually contains two further anomalies that we 

Misfit 

scenario 

Method 

of SHM 

Drop in 

full 

seismic 

misfit 

(%) 

Drop in 

seismic 

misfit for 

area 

around 

injector 

(%)* 

Drop in 

injector 

rate 

misfit 

(%) 

Drop in 

total 

seismic 

and 

injector 

rate misfit 

(%) 

Drop in 

seismic 

misfit of 

area around 

injector and 

injector rate 

misfit (%)* 

‘4D 

seismic 

misfit 

only’  

Full- 4.6 19.6 31.5 12.5 28.6 

Parallel- 4.4 18.7 41.5 15.3 35.9 

Serial- 4.7 19.5 40 15.0 32.7 

‘Seismic 

plus 

injector 

misfit’  

Full- 4.4 19.1 38.4 14.4 33.7 

Parallel- 4.3 18.7 41.7 15.3 36.1 

Serial- 4.6 18.9 42 15.6 36.3 
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did not try to match (refer to Section 4.1.1).  The total reduction of misfit for the entire 

area of the reservoir therefore appears to be quite small. Thus a region around the 

injector I2 was considered (similar to the box in Figure 4.3), where the percentages of 

misfit drop was quite large.  Although the injection rate misfit is significantly reduced 

by using all of the SHM methods, a perfect match was not obtained however.  Even in 

the case of ‘seismic plus injector misfit’ scenario almost similar result to the ‘total 4D 

seismic misfit only’ scenario was obtained. It appears that some other geo-cellular 

properties such as net:gross and permeability may need to be updated for adjustment of 

injector rate (see Section 5.4 of Chapter 5). 

 

Considering only the misfit of the region around the injector I2 lead to almost similar 

conclusions about the performance of the methods against each other, compared to the 

case when the entire reservoir is incorporated.  This is because the perturbation of the 

transmissibility multiplier of barriers dominantly affects the misfit of the area around 

the injector.  The NA approach is based on misfit ranking and the regions that are not 

perturbed would equate to a constant addition term to the misfit of all models in the 

inversion process.  

 

It should also be remembered that there is some noise or "data error" due to the amount 

of contributed data in the misfit computation. Here the noise contributes to 

approximately sixty per cent of the misfit over the whole region while for the region 

around the injector it is only twenty per cent.  The "data error" contribution was 

estimated with the assumptions that there is no model error due to insufficient 

parameterisation and the variance of the model error is zero.  Also it was assumed that 

the noise in the data is uncorrelated random Gaussian with zero mean.  For more 

detailed of calculation on "data error" contribution see Appendix B. 

 

  

4.5 Application of the Parallel-SHM to a synthetic Schiehallion case 

Application of the 'divide and conquer' approach was validated for the Parallel-SHM 

and Full-SHM methods using a synthetic Schiehallion case study similar to the first 

experiments detailed in Section 4.2. The aim was to determine that the method works 

under conditions where the answer is known, there is no data or model error and the 

solution exists in the search space. The first 10 dimensional case (including the 

transmissibility of barriers as uncertain parameters, see Figure 4.3) was rerun with the 
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total 4D seismic and injector misfit used.  For this purpose synthetic 4D acoustic 

impedance maps were derived from the best model obtained in the equivalent real data 

case study and these were used as observed data. The base case model for seismic 

history matching was the same as before (see Section 4.2 for the details of the base case 

description).   

 

The cross-plot of seismic versus injector misfits for 1024 models (ni models used later 

on) for both real and synthetic cases is shown in Figure 4.23. The scales of the misfits 

were different. In the real case there were more observed seismic data, i.e. typically 

64 measurements for each simulation cell and we used these in the misfit. However, in 

the synthetic case, seismic data were estimated on the simulation grid. In addition, the 

synthetic truth is much closer to the base case prediction, which also reduces the misfit 

(of both seismic and injector). Finally, in the real case not all regions of the 4D map 

were addressed so there was a constant misfit we did not attempt to reduce. We assumed 

that similar levels of data uncertainty should be applied. Accordingly, to adjust previous 

figures, a weight factor of value 0.828 was derived and applied to the injector misfit in 

this study to preserve the relative degree of variation of the seismic and injector misfits 

as occurred with the real data. This ensured that the ratio of the range of seismic misfit 

to the range of injector misfit in Figure 4.23a was the same as equivalent properties in 

Figure 4.23b. These weights were used in the following history matching runs. 

 

 

                                            a)                                             b)  

            

Figure 4.23: Cross-plot of seismic versus injector misfits for 1024 for: a) real and b) synthetic 

Schiehallion case studies prior to misfit weight adjustments.  
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The NA parameters were also set as before for both Full- and Parallel-SHM (i.e. ni = 

1024, ns = 96 and nr = 48). First Full-SHM method was performed. Then using the 

initial, ni, 1024 models the proxy to the misfit function was constructed. The correlation 

between proxy misfits and the true misfits were very good, it was R² = 0.97. The Pareto 

plots of the significant effects on the misfit polynomials are shown in Figure 4.24.  The 

most significant coefficients of the polynomial misfits were similar to the previous 

result of Figure 4.12.  Then the parameter decoupling and misfit decomposition were 

carried out. Based on these analyses, 9 decoupled sub-volumes in the parameter space 

were identified; they are shown in Table 4.9.  Again results were similar to the previous 

real case (refer to Table 4.6).  Barriers ‘e’ and ‘g’ were interacting parameters while the 

rest were separate parameters.   

 

  

                       a) total misfit                                         b) injector misfit 

 

Figure 4.24: Pareto charts of significant effects from the regression polynomial of the misfit 

for the synthetic case (legends are similar to Figure 4.12 for: a) total misfit and b) injector 

misfit).  

 

Table 4-9: Decoupled parameter sub-volumes. 
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 For Full-SHM, 5760 models were evaluated during the search (i.e. 60 iterations).   

Parallel-SHM only required 5 iterations generating 480 models in total. Figure 4.25 

shows convergence towards zero misfits using these methods.  Figure 4.26 also shows 

convergence of the 10 parameters towards the true solution by Parallel-SHM which is 

compared to Full-SHM.  These figures reveal that Parallel-SHM obtained an improved 

convergence and confirms the efficiency of the method.  

 

        

 

Figure 4.25: Misfit evolution as models are generated by Parallel-SHM compared to Full-

SHM. 

 

 

Figure 4.26: Convergence of the parameters by Parallel-SHM (blue symbols) and Full-SHM 

(dark red symbols). The x-axis is the model index and y-axis is log10 of the modifier applied to 

barrier transmissibility. 
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Maps of predicted change in 4D impedance maps and the injector rate for the best 

models obtained by Full-SHM and Parallel-SHM are compared to the corresponding 

truth (synthetic) and to the base model predictions in Figure 4.27 and 4.28.  The results 

were very close to the true parameter values. 

 

 

Figure 4.27: Comparison of predicted 4D impedance maps data for the base case, truth case 

and best models obtained by Parallel- and Full-SHM. 

 

                            

Figure 4.28: Comparison of prediction of injector I2 data for the base case, truth case and 

best models obtained by Parallel- and Full-SHM. 
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Comparison of the parameter values of the best models achieved by the methods is 

shown in Figure 4.29. The standard deviations of the parameter values were estimated 

based on the variation of their values in the 10 best models obtained by each method; 

they are represented as error bars on Figure 4.29. The standard deviations are an 

approximation of the true uncertainty based on a conjecture that if we use more models 

we over-predict the error estimates while fewer models will under sample the variation. 

The proper measure of uncertainty of parameter estimates would be the weighted by 

likelihood, i.e.  L= (exp(-M/2)), where M is the misfit value and L is likelihood for each 

model. This analysis was not carried for this research work (refer to Equation 2.13). 

Although the error bars (Figure 4.29) are an approximation of the uncertainty of the 

estimated parameter values, we found that the resulting transmissibility multipliers 

appear to have higher uncertainty using the Full-SHM method, see the error bars. This 

is because greater convergence has been obtained by the Parallel-SHM method. The 

results of this synthetic case study show that for most parameters of the transmissibility 

modifier, the results were consistent with truth case parameter values. However, barrier 

‘c’ did not converge to the truth value, but this parameter did not have a strong 

influence on the misfit response (see Figure 4.24) and is changing to some degree 

without affecting the quality of history matching results. Moreover, the path to 

convergence for parameter values for important barriers ‘a’, ‘b’ and ‘j’ were also slow 

and all of these were  suggestive of a saddle point, a flat point or perhaps a local 

minimum, particularly for barrier ‘j‘. 

 

              

Figure 4.29: Comparison of the parameter values for the best models obtained by Full-SHM 

and Parallel-SHM to the truth case parameter values. The error bars of parameter values are 

calculated from of the standard deviation of the 10 best models obtained by each method. 
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4.6 Limitation of the ‘Divide and Conquer’ approach 

The present approach is not without limitation.  The second order nature of the misfit 

polynomial response surface can be expanded with additional, higher order terms or 

multiple interactions if the correlation to the true misfit is not high enough. The 

drawback here though is that more models are then required to determine the 

polynomial coefficients and parameter values.   

 

In addition the general shape of the misfit may follow a more complex structure.  In a 

seismic history matching synthetic study (the model used by Stephen 2007), 

permeabilities were modified using the pilot point approach by selection of six 

permeability multipliers at various locations in the reservoir model, see Figure 4.30.  

These parameters are labeled from 1 to 6 in this figure.  In the base simulation model 

which was also considered to be the truth, the value of each multiplier was 1.0 (i.e. the 

parameters were 0.0 in log10 scale).   

 

                                  

Figure 4.30: Seismic history matching of a synthetic reservoir where 6 Pilot Points of 

transmissibility multiplier of permeability are perturbed across the reservoir.  

 

 

For this synthetic model, the ‘divide and conquer’ method was applied to the case when 

only seismic data was used in computing the misfit function.  Although the method of 

‘divide and conquer’ worked well when the parameters were changed in an interval [0, 

1] and [-1, 0] (in log10 scale), it failed when the parameter space was increased and was 

sampled in [-1,1] space. The results of regression analysis showed that none of the 

second and third order forms of the polynomial could fit the misfit surface in the 

parameter interval [-1,1] and having enough correlation factor (i.e. 95% value). We 
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identified that the shape of the misfit function was quite different on either side of the 

base model in the interval [-1,1], see Figure 4.31.   

 

 

 

Figure 4.31: Sensitivity of misfit to parameters in the interval of [-1,1] (in log10 scale).  The 

permeability multipliers of 6 pilot points were changed in the base case model in three ways: 

a) one parameter at a time, b) two parameters at a time, and c) all parameters are changed 

but of similar values. 

 

 

We concluded that no unique function could adequately define the misfit surface and 

the parameters were strongly coupled in the interval [-1,1].  In other words, the misfit 

surface was very asymmetrical and could not be represented well enough by the 
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correlation between the true misfit and the regression equation (quadratic polynomial) 

was only that 0.8% (see Figure 4.32a).  Also a technique of transformation of 

parameters to new domains including natural log, powers of 0.5, 1.5, 2.5, and 

exponentials did not improve the fitted misfit proxy in this interval.  Conversely, when 

the parameters were perturbed in the interval [0,1] the regressed quadratic polynomial 

misfit was achieved with high correlation factor, R
2 
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results were obtained for the interval [-1,0], only the results of analysis for interval [0,1] 

are presented here and in following paragraphs.  

 

 

          

Figure 4.32: Comparison of misfits predicted by polynomial versus the true misfit values 

when the parameters perturbed: a) in the interval of [-1,1], and b) in the interval of [0,1].  

Parameter intervals are in log10 scale. 

 

 

For decoupling parameters in the case of parameter interval [-1,1], we then considered a 

50% threshold for the correlation between the true misfits and the misfits predicted by 

the proxy.  While for the case where the sample interval was [0,1], a 95% correlation 

was used as a threshold as before.  Based on the analysis of the remaining interactions 

coefficients for both cases, the sub-volumes of the parameter space were identified as 

shown in Table 4.9.  Based on these thresholds, there were  decoupled sub-volumes for 

the case [-1,1], and we obtained 3 parameter sub-volumes for the case [0,1].  When the 

parallel NA routine was applied, for the case [-1,1],we found out that the Parallel-SHM 

approach did not work.  It was as we anticipated because in this case the interactions 

between the parameters were very strong, and by using a 50% correlation to set the 

threshold we practically ignored the effect of interaction of parameter 1 with the other 

parameters during the search for solution of the problem.  The method did not converge 

to the minimum misfit (see Figure 4.33a).  Also, since the Parallel-SHM method 

actually uses the proxy misfit for guiding the search of the parameter sub-volumes, the 

wrong solution was found as evidenced by convergence to a misfit that was not a 

minimum.  As such the parameters did not reach to the expected values i.e. '0.0', of the 

truth model (particularly for parameter 1 and 2) (see Figure 4.34a).   

R² = 0.804

0

1.25

2.5

0 1.25 2.5

p
o

ly
n

o
m

a
il
 M

is
fi

t

True Misfit

Parameter perturbation [-1,1]

R² = 0.999

0

0.7

1.4

0 0.7 1.4

p
o

ly
n

o
m

a
il
 M

is
fi

t

True Misfit

Parameter perturbation [0,1]

b) a) 



Chapter 5: Divide and Conquering combined with Experimental Design 

173 

Table 4-10: Decoupled sub-volumes in the interval of [-1,1] and [0,1], in log10 scale. 

Case: 

Parameters 

interval 

Threshold 

number of decoupled 

parameter sub-

spaces 

decoupled parameters in 

separated parentheses 

[-1,1] R
2
 ≥ 0.50 2 (1)     (2 3 4 5 6) 

[0,1] R
2
 ≥ 0.95 3 (1 2)     (3 4)     (5 6) 

 

 

          a) parameter interval [-1,1] 

                    

         

 

         b) parameter interval [0,1] 

                     

Figure 4.33: Comparison between the misfit convergence of Parallel-SHM and Full-SHM 

methods for the synthetic example of Figure 4.23.  The parameters perturbed in the interval: 

a)[-1,1] and b) )[0,1] in log10 scale. 
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    a) parameter interval [-1,1] 

      

      

 

    b) parameter interval [0,1] 

      

      

4.34: Comparison between the parameter convergence of Parallel-SHM and Full–SHM 

methods for the synthetic example of Figure 4.23.  The parameters perturbed in the interval: 

a) [-1,1] and b) [0,1] in log10 scale. 
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sub-volumes and comparing the obtained coefficients with the coefficients of the misfit 

proxy constructed for whole parameters space. If we obtain the same values for 

coefficients (within the confidence interval) the decoupling of parameter space should 

be correct. 

 

Nevertheless, for the case [0,1] the method succeeded through application of Parallel-

SHM (see Figure 4.33b).  The parameters converged to the value of true model.  Also, 

there was 65% improvement in the convergence toward minimum misfit relative to 

Full-SHM method (see Figure 4.33b). Therefore, in the application of the ‘divide and 

conquer’ approach, the correlation between true misfits and polynomial misfits should 

be quite good, e.g. 95%. Multiple minima may also be ignored by the regression 

equation but again the correlation coefficient may show this effect, the regions of the 

parameter space that may show large divergence from the proxy model can be explored.  

Generally, there is every reason to believe that the ‘divide and conquer’ approach is 

very promising and may be extended to other inversion schemes including the Genetic 

Algorithm or even gradient based methods.  The expectation is that any method may be 

improved if it is over-searching of the parameter space when parameter interactions are 

low.  

 

In the application of the method in this thesis, the misfit quadratic proxy model itself 

points to a simple a misfit response with simple structure.  We may opt for a direct 

solution to find the zero gradient locations on the surface.  However, we find that the 

misfit proxy model can be concave downwards with a maximum in some parameters 

(e.g. for the parameters with negative quadratic coefficient in the polynomial misfit).  

We also search on a limited range of parameters which may not contain the zero 

gradient location.  There may be multiple minina and they may lie at the extrema.  This 

makes this application of the direct gradient based approaches somewhat more 

awkward.  

 

  

4.7 Discussion  

A high dimensional problem must be solved in inversion of seismic history matching.  

Most techniques including the SHM procedure which use stochastic routines such as 

NA have not always been practical for such high dimensional applications. They need 

too many flow simulations.  In the ‘divide and conquer’ approach, decoupled sub-
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volumes of the parameter space are identified and searched separately more efficiently. 

The method avoids sampling many unnecessary models that bring no information about 

misfit surface in the search of the parameter space. The studies presented reveal that 

including the training dataset (needed in dividing the parameter space), convergence can 

be achieved requiring 30 per cent of the number of the models required for a full history 

matching run. If the training models are discounted, only 7 per cent of models are 

required.  Using the Serial-SHM, one sub-volume was searched at a time approach, still 

the convergence can be obtained using 40 percent of the full SHM set of models but 

require nearly three times as many models compared to the parallel approach if the 

training data set are excluded.  

 

In the Full-SHM approach, the large set of initial models is essential when using the 

NA; it is common in most stochastic search routines.  It would make the deconvolution 

method more attractive if one can find a more efficient means of sampling the parameter 

space initially in order to construct the misfit response surface for the purpose of misfit 

decomposition and parameter space decoupling to sub-domains. Experimental design 

methods are an obvious candidate for this aim and they have been explored and the 

results of the study are presented in the next chapter of this thesis.  

 

The decoupling approach is particularly useful for amalgamating the local effects of 

particular parameters on the time-lapse seismic data and well responses. This is 

complimentary to the localization approaches used with the Ensemble Kalman, EnKF 

(e.g. Skjervheim et al. 2007, Chen et al. 2009) where more heuristic approximations are 

used. We could adopt a similar approach using the ‘divide and conquer’ approach.  The 

misfit of various wells and seismic data could be grouped spatially and then associated 

sub-volumes of the parameter space could be searched separately.  For this some 

knowledge of the localization is required and appropriate spatial relationships are 

needed.  It may be more appropriate to use present method as shown here as it will find 

the spatial relationships implicitly. The possibility of localized effects of parameters has 

been investigated and an approach for spatial decomposition has been invented as part 

of research work of this thesis (for details see Chapter 6). 
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4.8 Conclusions 

In this chapter the details of application of the ‘divide and conquer’ approach for 

efficient solution of the history matching problem was presented. It is given that one 

could identify the decoupled sub-volumes of the parameters and search them separately 

more efficiently. The ‘divide and conquer’ method circumvents the redundant sampling 

in the search of the parameter space for the minimum misfit.  The results subsequently 

revealed that the convergence of the history matching can be improved significantly in 

particular using parallel search method and also by serial search of parameter sub-

volumes.  The conclusions may be summarized in the following points. 

 

 A successful approach for decoupling the parameter sub-spaces and misfit 

decomposition in high dimensional seismic history matching problems was 

demonstrated. 

 Separate sub-volumes of the parameters as well as dominant parameters were 

identified in an effective way. 

 The ‘divide and conquer’ method was applied to history matching of observed 

data from the Schiehallion field with similar improvements in efficiency of the 

process. 

 Further demonstration was carried out using a synthetic case based on the 

Schiehallion field with great success and leading to saving a great amount of 

computational cost. 

 Convergence was improved by 70 per cent using parallel search of decoupled 

sub-domains, but by nearly 60 per cent using the serial search. 
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CHAPTER 5 Improved Convergence in Seismic History 

Matching Combining Experimental Design with a ‘Divide 

and Conquer’ Approach 

 

 

Introduction 

In previous chapter the successful application of the ‘divide and conquer’ method was 

presented.  The method was based on identification of insignificant interactions between 

model parameters and subdivision of the parameter space.  This was performed using 

the information obtained by analysis of the ensemble of initial models that the search 

routine begins with. However, initialization of stochastic inversion routines such as 

Neighbourhood Algorithm (NA) relies on a large number of models to effectively 

sample the parameter space, particularly if pseudo- or quasi-random sampling are used 

which is usually the case for these methods. In this chapter, in order to reduce the 

number of initial models an approach of integrating experimental design techniques 

with the ‘divide and conquer’ method are adopted. Conventional quadratic experimental 

designs that are commonly used in the modelling of the objective functions of multi-

dimensional optimization problems are employed for this purpose and the method are 

examined on history matching of Schiehallion field.   

 

In this chapter, through the application of method, first we have shown using 

experimental designs; the number of initial ensemble of simulations runs required in 

seismic history matching could be reduced by about 85% for a 10-dimensional SHM 

case of the Schiehallion field (the same real case study from Chapter 4).  Moreover, 

when this new initialization step are combined with Parallel-SHM to search the 

decoupled parameter sub-spaces of the problem, there are 91% speed up in the 

convergence rate of the SHM process.  

 

The new method is also applied to a case of 18-dimensional seismic history matching of 

the Schiehallion field.  Normally the inversion of such case requires too many models to 

be completed using any stochastic minimization routine.  For this case the results of 
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application of combining experimental design with ‘divide and conquer’ are also 

accomplished very promising and are attained with an affordable number of simulation 

runs, 741 model using a parallel search and 1557 models using a serial search, 

compared to full inversion using Neighbourhood Algorithm (NA) which  practically 

needs many more models.  

 

The major achievement in this chapter is thus additional improvement in convergence of 

history matching problems. We conclude experimental designs perform efficiently to 

train a proxy to misfit, which can then be used to decouple the parameter sub-volumes, 

giving an order of magnitude saving in simulation rums.  The approach of ‘experimental 

design combined with divide and conquer’ is a practical way to be used in particular for 

high dimensional SHM cases. 

 

 

5.1 Experimental Designs Combined with the Parallel-SHM  

The basic idea behind using Experimental Designs (ED) method is to vary multiple 

parameters at the same time so that maximum inference can be attained with minimum 

cost. Once the appropriate design is established and the corresponding experiments 

(simulations) are performed, the results can be investigated by fitting them to the 

response surface.  Central Composite Design (CCD), Box-Behnken Design (BBD), and 

D-optimal (D-opt) are quadratic designs that assume no lack of fit.  They are variance-

based designs which are generated in such a way that the random variation would be 

minimized.  For more details on experimental design see Chapter 2 and Appendix A.  A 

comparison of the designs used here is presented below. 

 

 

5.1.1: Overview of Different Design Strategies Used 

Central Composite design is an efficient way of providing sufficient amounts of 

information to test the fitness of a model in a minimum number of required runs.  It is 

partitioned into two subsets of model samples; the first subset estimates linear and two-

factor interaction effects while the second subset estimates curvature effects. In this 

study, to reduce number of experiments, resolution R(V) applied to experimental design 

(for details see the Matlab scripts “CCDESIGN.m”). In resolution R(V), the main 

effects are aliased (also known as confounding) with 4-parameter interactions, and 2-

parameter interactions are aliased with 3-parameter interactions (for more details about 
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aliasing the parameters and resolution of the sampling in CCD design refer to Mason 

2003). The Box-Behnken design has three levels per factor with no points at the vertices 

of the cube defined by the ranges of the factors.  Therefore in contrast to the CCD 

design, the feature of BBD design is that it is "corner free".  Because it is an exact 

quadratic design, at least one of the factors is at its midpoint in all experiments.  BBD 

design should be considered to be used when there is no interest in predicting behaviour 

in the corners of the design space of a quadratic surface.  Such designs are especially 

useful when it is desirable to avoid extreme points due to engineering considerations or 

limitations.   

 

For irregularly shaped domains, or when the number of experiments to be performed 

does not fit any of the standard designs (due to limitation of the sample size), it is 

common to numerically determine the best set of sampling points using the popular D-

optimality search criterion.  Typically, a candidate set of models (samples) is generated, 

on a grid of the parameter space.  Then an optimal subset with a given number of 

samples is searched to maximize the determinant of the matrix used for solving the least 

squares formulation of the regression method (for least square regression see Numerical 

Recipes, Press 1992). This optimal criterion minimizes the volume of uncertainty 

around the vector of estimated coefficients of the regressed model.  To be similar to 

other variance-based criteria, the optimization algorithms used to construct the D-

optimal designs place most of the selected points on the boundary of the parameter 

region albeit irregularly.  In contrast, this is always the case in the CCD design.  In D-

optimal design, one measure of the quality of the design is the size of the relative 

variance of the coefficients which is lower than other designs.   

 

Quasi-Random (QR) sampling seeks to randomly place the data points on the parameter 

space. Nevertheless the relative ratio of the sampling points in the boundary of the 

parameter region relative to the total design samples is still less than that it is in the 

CCD design. For BBD, D-opt and QR sampling, the consequence of these 

characteristics is higher uncertainty of prediction near the vertices compared to the CCD 

design.   

 

In the CCD design only a small numbers of centre runs are added to the first-order 

design to detect the existence of curvature and to better resolve the response surface 

around the quadratic effects.  Further, the orthogonality property is preserved, but the 
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design is not variance optimal anymore. In other words, the variance of regression 

coefficients is no longer minimized on a per observation basis.  However it has better 

outcome in the prediction of other design sampling points. 

 

 

5.2 Application to the 10-dimensional SHM Case in the Schiehallion 

Field 

The details of the application of the ‘divide and conquer’ approach to a 10-dimensional 

case study of seismic history matching of the Schiehallion field, for the ‘total 4D 

seismic misfit only’ scenario, were given in Chapter 4.  There, 1024 of samples were 

generated to initialize the full inversion process and these were used to construct the 

misfit polynomial proxy. The models were primarily based on Quasi-Random (QR) 

sampling.  Here, the three sampling designs of Central Composite (CCD), Box-Behnken 

(BBD), and D-optimal (D-opt) were used to sample the parameter space of the same 

problem. The CCD and BBD designs required 149 and 161 model evaluations to sample 

the 10-dimensional parameter space efficiently, respectively.  For a user-defined D-opt 

design 150 models were drawn.  In this application, to follow the above sampling 

strategies, the reservoir simulation models were run to calculate the misfit values where 

only the 4D seismic data were used in the objective function (see Equation 2.1 of 

Chapter 2).  Based on these data the misfit regression polynomials were constructed for 

use of each of the three designs. 

 

The misfit predictions by polynomials were compared to the true misfit values from the 

objective function. The correlation, R
2
, between the misfits recalculated by regression 

models and the true misfits, was 0.998, 0.991 and 0.996 for CCD, BBD, and D-opt 

cases, respectively.  Figure 5.1, shows the cross plots of the misfits re-calculated by 

polynomial versus true misfit values for the three cases. They were compared with 

corresponding cross plot when quasi-random sampling was used in the full inversion 

process of the problem.  All results were consistent.  
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Figure 5.1: Cross plots of polynomial misfits against true misfit for different experimental 

designs.  The number of sampling models (points) used to construct the proxy model by each 

design method is shown in the plots.  

 

 

We then verified whether or not the proxy model equation actually has a statistical 

significance.  In other words, we tested whether the relationship we derived when 

setting up each of the quadratic polynomial models has any meaning in the specified 
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particular experimental design to predict the misfits of all the other designs.  The cross 

plots of the prediction of design polynomials against all other design datasets are shown 
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2
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The exception was for the correlation of the predictions of the CCD data points using 

the misfit equations obtained by other sampling designs, for which the correlations, R
2
, 

was about 80%.  It was due to the dissimilarity of the sampling scheme of the CCD 

design compared to BBD and D-optimal designs and also QR sampling (refer to 

previous section). 
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Figure 5.2: Correlation between the misfit predictions of each polynomial model (by row) and 

using the data points of the other designs (by column).  The analysis is applied for each of the 

proxies obtained by CCD, BBD, D-opt and QR sampling strategies. 
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The prediction variance is a diagnostic tool for evaluating and comparing the response 

surface designs and validating the polynomial misfits using different experimental 

designs.  The average relative prediction errors were calculated in each case.  They were 

computed as the mean of the sum of the relative differences between the predicted 

misfits by the polynomials and the true misfits (see Equation 4.1 of Chapter 4).  The 

results are presented in Table 5.1.  They are of small values and are between 0.6% and 

1.9%. Because of the random characteristic of Quasi-Random sampling, the average 

relative prediction errors of these data points by all misfit polynomials are smaller, 

while for designed samplings, especially for systemised D-optimal design they are of 

higher values. 

 

 

Table 5-1: Average relative prediction errors by polynomial misfits for models from other 

experimental designs 

Constructed Misfit 

Polynomial based 

on Experimental 

Design of: 

Average Relative Prediction Error 

(%) 

Prediction for models from: 

CCD BBD D-opt QR 

CCD - 0.92 1.89 0.92 

BBD  1.83 - 1.92 0.98 

D-opt 1.47 0.58 - 0.6 

QR*  0.72 1.61 1.68 - 

      *QR is Quasi-Random Sampling. 

 

 

Similar to Chapter 4, the regression models were further validated by testing different 

sets of data points obtained in the Full-SHM inversion of the example (for details see 

Chapter 4).  They consisted of: i) the first 96 models, ii) the total set of 2980 models, 

and ii) the final 96 models.  These models were different from the trainee models used 

to build the misfit polynomials.  For all cases the mean relative errors were calculated.  

They were of small values; i.e. around 1% for first 96 test points, less than 1.5 % for all 

2980 test points, and at most 2 % for last 96 test points (see Figure 5.3). 
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Figure 5.3: Mean relative error of predictions by polynomial misfits for test data points in 

different cases of using experimental designs compared to using Quasi-Random sampling.  
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positive effect. There is an anti-correlated interaction, i.e. as one effects goes up the 

other goes down to have the same effect.  

 

 

          

Figure 5.4: Comparison of the significant effects (coefficients) in the misfit polynomials 

obtained by various experimental designs. The error bars are based on 95% confidence 

interval obtained for each coefficient prediction (for more details see Montgomery 2000).  
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interacting parameter groups were decoupled. We sought out links between the 

parameters and subdivide accordingly, e.g. if we found that Parameter 1 interacts with 

Parameter 2 and Parameter 2 with Parameter 3 but with no other parameters, this 

defined a 3D sub-volume.  Table 5.2 shows the decoupled parameter sub-domains 

obtained using different designs.  The results are identical and are the same as the 

previous result presented in Chapter 4 where the initial models were generated using 

QR sampling.  

 

 

Table 5-2: Decoupled parameter sub-volumes. 

Design method 
Number of 

sub-volumes 

Decoupled parameter sub-volumes in 

parentheses 

QR*- 1024 models 

CCD- 149 models 

BBD- 161 models 

D-opt- 150 models 

9 

 

( e g)  (a)  (b)  (c)  (d)  (f)  (h)  (i)  (j) 

 

* Quasi-random sampling 

 

 

The parallel version of the NA routine was used once more.  The NA tuning parameters 

were set as before (see Chapter 4).  That is, we used ns = 96 and nr = 48.  Thus two 

models (ns/nr = 2) were generated in the vicinity of the space of the best models (nr) in 

each NA search, for which there were two iterations (it=2).  In each case, the design 

models used to construct the polynomial misfits were also used.  They were deployed as 

initial models (ni) for applying the parallel NA routine. As a result of using 

experimental designs the number of initial simulation runs was reduced dramatically. 

 

When the parameter sub-domains were searched using this ‘Parallel-SHM combined 

with experimental design’ method, 91% speed up in the full inversion process of SHM 

process was obtained.  Figure 5.5 shows the misfit evolution using various experimental 

designs in comparison to the Parallel-SHM (of Chapter 4 with QR sampling) and the 

Full-SHM methods.  Figure 5.6 illustrates the convergence of parameters toward the 

best model by these methods. In Table 5.3 comparison of the simulation and 

performance of various methods are summarized.   
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Figure 5.5: Misfit evolution by the ‘Parallel-SHM combined with experimental design’ 

method compared to Parallel-SHM and Full–SHM process for various designs: a) CCD, b) 

BBD, and c) D-opt designs.  
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    a) Parallel-SHM combined with CCD 

 

 

    b) Parallel-SHM combined with BBD 

 

 

    c) Parallel-SHM combined with D-opt  

 

Figure 5.6: Convergence of the parameters toward best models using ‘Parallel-SHM 

combined with experimental design’ in various cases: a) CCD, b) BBD, and c) D-opt designs. 
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Table 5-3: Summary of simulation performance for various SHM approaches.  

Method 

Initial 

models 

sampling 

method 

Number of 

initial 

models* 

CPU for 

initial 

models 

(days) 

Number of 

models after 

initial 

models 

CPU after 

initial 

models 

(days) 

Total CPU 

(days) 

Full-

SHM 
QR 1024 5.69 2880 16.0 21.7 

Parallel-

SHM 

QR 1024 5.69 192 1.07 6.76 

CCD 149 0.83 192 1.07 1.90 

BBD 161 0.89 192 1.07 1.96 

D-opt 150 0.83 192 1.07 1.90 

*Simulation run of each model takes around 8 minutes on a 3.4 GHz processor. 

 

 

Updated parameters values for the best matched model obtained by various methods are 

compared in Figure 5.7.  For the most significant parameters the results are consistent.  

The exceptions are mainly for barriers ‘c’ and ‘d’ in the case of Full-SHM method, and 

for barrier ‘f’ in various cases.  We concluded that either a saddle point or multiple 

minima exist in the solution because of the variation in the best values we obtained for 

significant parameters such as barriers ‘h’ and ‘j’. The results signify the non-

uniqueness of history matching problems. Multiple best models were obtained by 

various methods probably because of the existence of multiple minima in the misfit 

surface of the problem.  It is common that the use of different inversion routines leads to 

various minima, thus inconsistent updated parameter may be obtained especially for less 

dominant parameters. In our case, the best model predictions for seismic maps by 

different approaches are very similar however.  They are compared with the observed 

seismic maps in Figure 5.8. 
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Figure 5.7: The best value obtained for parameter values, with error bars calculated based on 

10 best models acquired in each method. 

 

 

 

 

Figure 5.8: Match for seismic predictions of differences in acoustic impedance maps obtained 

by various approaches is compared to observed data. 
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5.3 Application to the 18-dimensional case 

Simultaneous updating of several parameters that control changes to permeabilities, 

transmissibility of barriers and the petro-elastic transform parameters was carried out 

using the SHM method previously (Stephen et al. 2006).  Here, we have applied the 

‘Parallel-SHM combined with CCD design’ method on a large dimensional example 

that includes simultaneous updating of the transmissibility of barriers as well as 

permeability and net:gross.  In this case, 18 parameters were considered for updating 

which is too large for the Full-SHM application. Also a longer history period for 

reservoir production and 4D seismic data was considered which increased simulation 

time (each model run took twenty minutes).   

 

The case study included the previous 10 transmissibility multiplier of barriers ‘a’ to ‘j’ 

plus transmissibility multipliers of 2 new barriers (‘k’ and ‘l’) that have impact on the 

later history data (i.e. history added from 2000 up to 2004).  In addition, 6 more new 

parameters that take account of two multipliers of net:gross (NTG), two multipliers of 

horizontal permeability (PermH) and two multipliers of vertical permeability (PermZ) 

were included.  They were perturbed by two groups of pilot points (see Section 2.6 of 

Chapter 2 for more details on the pilot point method).  In each group several individual 

pilot points were changed to control the petro-physical properties locally in the area 

with high seismic mismatch particularly where there are strong seismic anomalies 

around the injectors I2 and I5.  Figure 5.9 illustrates the position of the new barriers (‘k’ 

and ‘l’), and the two groups of pilot points on the Schiehallion Segment 4 reservoir 

model.  The individual pilot points of the two grouped pilot points are also shown in 

Figure 5.9.  

 

 

              

   Figure 5.9: Parameters updated in the18-dimensional SHM case of Schiehallion field. 
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The pilot points were placed with equal spacing on a grid that is coarser than the 

reservoir grid cell, referred to as the pilot point grid (see Figure 5.10).  Multipliers of the 

net:gross, horizontal permeability and vertical permeability were applied to the pilot 

points and changes to the properties of the neighbouring grids (area around the injector 

I2) were made through application of kriging.  For this case the parameters describing 

the pilot point and kriging method are shown in Table 5.4 (for more description on these 

parameters, see KT3D code in the GSLIB manual).  

 

 

Table 5-4: Parameters describing the applied techniques of pilot point and kriging. 

Pilot point grid separation in x direction 2 

Pilot point grid separation in y direction 3 

Layers modified 1-8 

Minimum horizontal range for the kriging variogram* 2 

Maximum horizontal range for the kriging variogram 3 

minimum data used for kriging 4 

maximum data used for kriging 8 

search radii in x, y and z directions 50 

angles capturing geometric anisotropy x, y and z directions 0.0 

*The ranges are measured in the grid cell.  It is best to set the range of the variogram equal to 

the size of the pilot point separation. 

 

 

As in the previous 10-dimensional example, the transmissibility multiplier of each 

barrier was modified by a second controlling modifier.  For barriers ‘a’ to ‘j’, they were 

changed in the same intervals as for the previous 10-dimensional SHM example (see 

Table 4.2). The lower and upper bound as well as mid values (in log10 scale) for the new 

parameters/multipliers that were added to current SHM example are listed in Table 5.5.  

Similar to the previous example, in the base model, the value of multipliers are 0.0 in 

log10 scale (or 1.0 in linear scale). 
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Table 5-5: Ranges and mid values of the modifiers to transmissibility expressed on a log10 

scale.  The base case is represented by a modifying factor of 1 (or zero on the log10 scale).  

Parameter*                                     Range 

Multipliers Min. Mid. Max. 

k -1 1 3 

l -3 -1 1 

NTG 1 -0.3 0.0 0.3 

NTG 2 -0.3 0.0 0.3 

PermH 1 -0.15 0.0 -0.15 

PermH 2 -0.15 0.0 -0.15 

PermZ 1 -0.15 0.0 -0.15 

PermZ 2 -0.15 0.0 -0.15 

                * The barriers and groups of pilot points are shown in Figure 5.9 

 

 

In this example, the history matching began in 1998 and continued up to the end of 

2004.  During this period a total of eleven wells (including 6 producers and 5 injectors) 

were active in the reservoir.  The producer’s oil and injector’s water rate history data are 

shown in Figure 5.10.  In addition to the preceding observed seismic dataset (refer to 

Section 4.2 of Chapter 4), additional 4D seismic data have been used.  Therefore, there 

are 6 seismic surveys consisting two acquired pre-production surveys of 1993 and 1996 

as well as four monitor surveys which captured in 1999, 2000, 2002 and 2004.  We refer 

to these two datasets as ‘Phases I’ and ‘Phase II’, by the difference in their acquisition 

and processing used. The Phase I dataset was collected for three seismic surveys of 

1993 as baseline and 1999 and 2000 as monitors and the remainder are Phase II.  For 

these data the process of cross-equalisation, calibration and transformation of Migrated 

Stack was performed by a combination of phase rotation and filtering, to produce the 

Coloured Inversion Stack.  Time-to-depth conversion and the location of the reservoir 

horizon was provided by the operators and used to generate a map of Root Mean Square 

(RMS) amplitudes from the Migrated Stack by integrating the signal over a suitable 

time window (Leach et al. 1999).  Then for Phase I data, a second attribute, the Sum of 

Negative Values, was obtained by summing the negative amplitude in the Coloured 

Inversion stack from the picked horizon to 20 ms below. This was used as pseudo-

impedance.  However, Phase II 4D seismic data which consisted of 1996 as of the 
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baseline, and 2002 and 2004 as monitors.  4D attributes was obtained using the RMS 

amplitudes of the coloured inversion stack.  This was obtained by integrating the signal 

from 5 ms above the picked horizon to 25 ms below, and was also considered as 

pseudo-impedance. Both Phase I and Phase II dataset 4D attributes were used as a 

difference in pseudo-impedance to detect pressure and saturation effects via the time-

lapse maps, these data are shown in Figure 5.11.   

 

The noise in the seismic data was analysed previously (Soldo 2005).  It was identified 

that for the Phase I dataset the errors were not correlated in space (on the simulation 

grid scale) and could be represented by the standard deviation of data for each 4D 

monitor map.  For Phase II seismic data, it was assumed that the same level of data error 

was present (Edris 2009).  The normalization of Phase I data was made by Stephen et al. 

(2006), the same procedure was used again (refer to Equation 3.8 of Chapter 3).  That is, 

for both datasets the 4D attribute maps were normalised to the baseline by subtracting 

the mean and dividing by its standard deviation, to gain a comparable change in 

magnitude and signs between surveys.  As it is observable from Figures 5.10 and 5.11, 

there is a relationship between the well activities and the seismic response.  The main 

signal in Phase I seismic data is due to the injector I2, whereas for injector I1 and I3 

there are less obvious signals.  For the Phase I dataset, the major seismic anomaly is as a 

feature of softening in the first year of production (map 93-99 in Figure 5.12) that 

occurs around injector I2, followed by hardening  for the next year when the well is 

switched off (map 93-00 in Figure 5.11). 

 

For Phase II data the main signal in the maps were observed around the injector I5 

(maps 96-04 and 02-04 in Figure 5.11), and there is a pronounced effect of softening 

due to recognizable pressure increase around the well.  As the production continues, the 

responses of producers P1 and P5 become stronger; however for injectors I1 and I3, 

which are constantly injecting water into the reservoir, still there is no clear response.  

Around producer P2 a signal is observable probably due to the effect of the gas coming 

out of the solution. By simple visual interpretation, it is understandable that there is 

clearly a high degree of compartmentalisation and heterogeneity, perhaps due to a 

combination of faulting and channelised structures in the reservoir, which is 

recognizable by 4D differencing (for more details, see Stephen et al. 2005 and Edris et 

al. 2008). 
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Figure 5.10: Producers oil rates and injectors water rates history data for the active wells in 

the period of 1998 to 2004. 

 

 

 

Figure 5.11: Available 4D seismic history data (baselines and monitor surveys), for the period 

starting from 1998 up to 2004.  Maps in the figure show the differences in pseudo-impedance 

for two datasets of: i) Phase I comprised 1993 as a baseline for 1999 and 2000 monitors, and 

ii) Phase II comprised 1996 as a baseline for 2002 and 2004 monitors.  Prior to differencing 

the attributes, each survey was normalized by subtracting the mean for corresponding 

baseline and dividing by its standard deviation (Stephen et al. 2005). 
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Figure 5.12 shows the base reservoir simulation predictions of the pressure, water 

saturation, and gas saturation for 2002 and 2004 conditions. For the initial pre-

production and conditions at 2000, see Figure 4.4 of Chapter 4.  The base model well 

data predictions are shown in Figure 5.13 for the producers and in Figure 5.14 for the 

injectors. For the majority of producers (except producer P4 and P5) and most the 

injectors (except injector I2), their historical rates are predicted quite well by the 

reservoir base case model.   

 

 

  a)      b) 

 

 

Figure 5.12: Pressure, water and gas saturation from the base case simulation model for: a) 

2002, and b) 2004.  For the initial pre-production and conditions at 2000, see Figure 4.4 of 

Chapter 4. 
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Figure 5.13: Comparison of historical data oil production rates of producers to the 

predictions for wells by the base case model.  
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Figure 5.14: Comparison of historical water injection rates of injectors to the predictions for 

wells by the base case model.  
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producer P5 and injector I2 had high values of mean misfit.  For well P5 the variation of 

the misfits is not high (relative to its mean), because the well is positioned in a location 

far from the multipliers.   

 

 

Table 5-6: Sensitivity of misfit of oil production rates and injection rates of wells to parameter 

perturbation (549 models were used in calculating mean and standard deviation of well 

misfits). 

Well 

Mean misfit and variation of the misfits of 

producers and injectors 

Mean Standard deviation 

P1 8902 50 

P2 21 0.0 

P3 4275 62 

P4 12433 322 

P5 50971 1221 

I1 0.0 0.0 

I2 21009 552 

I3 6699 29 

I4 0.0 0.0 

I5 18090 921 

I6 0.0 0.0 

 

 

On the other hand, the base case predictions of 4D seismic data did not sufficiently 

resemble the observed seismic data. Comparison between observed and base case 4D 

seismic data is demonstrated for Phase I and Phase II datasets in Figure 5.15.   
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Figure 5.15: Comparison of observed and the base model predictions for Phase I and Phase 

II 4D seismic data (attribute maps of difference in impedance).  The colour bar is the same 

for all the images and is in units of the 1993 standard deviation for Phase I and 1996 for 

Phase II.  The 4D maps are in old-new which gives positive values (red colour) corresponding 

to the increase in pore pressure and thus decrease in the effective pressure.  A positive value 

may also represent decrease in the water saturation or increase in the gas saturation.  

Negative values (blue colour) may be due to opposite effects, i.e. decrease in the pore pressure 

or increase in the water saturation.  The misfit value of each time interval is shown in the 

predicted 4D seismic map.  
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are mostly affected by the performance of the injector I2 (detectable in the observed 

seismic difference map 93-99 and 99-00) and the injector I5 (recognizable in the 

observed seismic difference map 96-04 and 02-04) in Figure 5.15.  Other anomalies in 
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the Phase I data were not addressed.  In Phase II, there was a smaller number.  An initial 

investigation revealed that the misfit of injector I2 was sensitive to both the petro-

physical properties around this well and the flow barriers close to the well.  

Nevertheless, the misfit of injector I5 is only sensitive to fluid flow properties of the 

barriers in the regions close to the well. Therefore, as part of the history matching 

process we attempted to adjust the transmissibility of the flow barriers around the two 

injectors and the net:gross and permeability around the injector I2.  Since the injector I5 

history data have already been reasonably matched in the base case model, they were 

not included as variables in the misfit function.  Consequently, the ‘misfit of the injector 

I2 together with the sum of the all 4D seismic misfit data’ was regarded in this history 

matching study.   

 

In the application of SHM using the ‘divide and conquer’ approach the parameter space 

was sampled (in log10 scale) utilizing a Central Composite Design (CCD) for an 18-

factor case (the same models used in analyzing the well mean misfits and variation of 

misfits, previously). Generally, for a quadratic response the CCD involves slightly 

fewer simulations relative to the BBD for some number of design factors including an 

18-factor one. When D-optimal designs are constructed for problems consisting more 

than 15 factors would require a lot of CPU time and are not used here.  Moreover, the 

three CCD, BBD and D-optimal schemes achieved quite similar results in predicting the 

quadratic polynomial misfit coefficients previously.  Therefore, only CCD was used for 

the current 18-dimensional case.  

 

Based on the ensemble of models generated by CCD (549 models) and their 

corresponding misfits, the proxy regression model to the misfit was created.  The misfits 

were recalculated by polynomial.  There was a correlation coefficient, R
2
, of 0.999 

when they compared to true misfit values, see Figurer 5.16a. Figure 5.16b shows the 

cumulative probability distribution of derived coefficients in the proxy polynomial 

misfit. In the polynomial misfit 90% of coefficient values (including many of two 

parameter interaction terms) were close to zero and therefore had negligible effect on 

the misfit response surface.  
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   a)     b) 

 

Figure 5.16: a) Misfits predicted by polynomial response surface against the true misfit and, 

b) Probability distribution of coefficients in the polynomial misfit. 

 

 

The Pareto plots of the significant effects, which define up to 95% correlation between 

true and proxy misfits, are shown in Figure 5.17 (for the total the injector and 4D 

seismic misfit). It is apparent that the net:gross, horizontal permeability and the 

transmissibility of the two recently added barriers (‘k’ and ‘l’) have major effects on 

controlling the injector I2 and 4D seismic misfits.  Furthermore, there was an interaction 

effect between the transmissibility multipliers of two barriers (‘l’ and ‘k’) and the 

(net:gross and horizontal permeability) multipliers of the grouped pilot points that are 

closer to injector I2.   

 

Figures 5.18 illustrates the Pareto charts of the significant effects of the injector I2 

misfit and Figure 5.19 shows the misfit of each individual 4D seismic data misfit.  The 

displayed effects in these plots capture 90% of the correlation between the true misfits 

and their corresponding polynomial misfits. For the injector I2 misfit (Figure 5.18), it 

was recognized that net:gross and horizontal permeability of the sand around this well 

affects the volume injected and the resulting pressure propagation in the region. They 

therefore contributed as the most significant effects. These properties are major 

parameters that need to be updated to get a match of the dynamic well data as well as 

the 4D seismic data through history matching.  Otherwise the injector I2 match would 

not be achieved.  Besides, the transmissibility of barrier ‘i’ had a significant effect on 
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the injector I2 misfit.  This result is consistent with what was obtained in the previous 

10-dimensional example (refer to Figures 4.12 and 4.13 of Chapter 4), for the ‘total 4D 

seismic misfit only’ and ‘seismic plus injector misfit’ scenarios. This result indicates 

that the transmissibility of barrier ‘i’ is locally the most important parameter in 

controlling the pressure propagation to the left of the injector I2 and thus has major role 

in order to attain the match of the shape of the seismic anomaly and the well 

simultaneously.  

 

 

             Coefficients for the proxy of 

        Total seismic and injector I2 misfit 

              

Figure 5.17: Significant effects in the total misfit response surface.  Single symbols show 

linear effects, symbols to the power of two represent quadratic effects, and cross products 

represent interacting effects. 
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    Coefficients for the proxy of 

         Injector I2 misfit 

           

Figure 5.18: Significant effects on the injector I2 misfit response surface.  Symbols as 

described in Figure 5.17. 

 

 

We now compare the effect of adding extra parameters relative to the 10-dimensional 

case study. The plots of the significant effects of the 4D seismic misfits of each 
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(see Figure 5.19a) and 1996-2002 (Figure 5.18d) 4D misfits are of smaller values 

compared to the other time intervals.  This indicates that the misfits of these time frames 

are less affected by the updated parameters.   
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barriers in comparison to 10-dimensional case, Figure 4.13b of Chapter 4.   
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From Figure 5.19b one could recognize that for the 1993-2000 4D seismic data the net-

to gross is as important as the barriers ‘e’, ‘i’ and ‘g’, but the effect of transmissibility of 

barrier ‘e’ was reduced (compared to the 10-dimensional case, Figure 4.13c).  Also the 

effect of barrier ‘i’ appears dominant over the effect of barrier ‘g’ now.  In Figure 5.19c, 

for the 1999-2000) 4D seismic misfit, the net:gross, permeability and transmissibility of 

barrier ‘k’ were added to the influential effects. Meanwhile, the effect of transmissibility 

of barriers ‘g’ and ‘a’ was reduced compared to the 10-dimensional case (Figure 4.13d) 

as a result, the effects of the barriers were similar but the order of the influence of them 

was changed.  

 

In the plots relating to the 1996-2002 4D seismic data (Figure 5.19d), the net:gross 

around the injector I2 and two new barriers were not influential.  This was because at 

this time the seismic anomaly around the injector I2 had disappeared.  This meant that 

there was a need for pressure propagation which was controlled by the ability of flow 

within the areas close to the injector I2. Therefore the effect of transmissibility of 

barriers and horizontal permeability, including parameters: ‘h’, ‘PermH1’, ‘PermH2’ 

‘g’, ‘b’, ‘f’, and ‘d’, became dominant. As a result the effect of net:gross was 

suppressed. Moreover, the transmissibility of barriers ‘k’ and ‘l’ had no influence at this 

time, since injector I5 is active from 2003.   

 

Figures 5.19e and 5.19f demonstrate the significant effects for the late time seismic 

misfits 1996-2004 and 2002-2004 which include the linear, quadratic and interaction 

effects of transmissibility of barriers ‘k’ and ‘l’.  They were quite close to the injector I5 

which had been active since 2003.  The variation of these parameters would enable the 

match of the history of the injector I5 and would help the match to the shape of the 

seismic anomaly around this well. 
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Figure 5.19: Significant effects in the seismic misfit response surface for various times.  

Symbols as described in Figures 5.17. 
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The interaction terms with insignificant coefficients were abandoned in the polynomial 

misfit proxy and only the coefficients giving 95% correlation between polynomial and 

true misfits were kept (see Figure 5.20).  It was performed by measuring the correlation 

coefficient, (R
2
) between the true misfits against the regression model predictions as the 

interacting coefficients were discarded in their order of increasing size (i.e. rank, the 

smallest first).   

 

Then by analyzing the retained interaction coefficients in the polynomial misfit, the 

groups of non-interacting parameters were determined. As a result, the independent 

parameter sub-spaces were decoupled. Accordingly, the misfit function was 

decomposed into the sub-misfits.  There were 16 decoupled sub-volumes as shown in 

Table 5.5.  

 

 

     

Figure 5.20: Deterioration of correlation factor (R
2
) as we discarded interacting coefficients 

in order of increasing size (i.e. rank of their importance, smallest first). 
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Table 5-7: Decoupled parameter sub-volumes.  

number 

of sub-volumes 
decoupled parameters in separated parentheses* 

16 
(k, l)     (NTG1, PermH1)     (NTG2)     (i)     (b)     (d)     (PermH2)      

(e)     (a)     (j)     (g)     (f)     (h)     (c)     (PermZ1)     (PermZ2) 

*They are ordered based on the size of coefficients in the polynomial proxy of the misfit, 

smallest first. 

 

 

The Parallel-SHM and Serial-SHM approaches were applied to search the parameter 

sub-volumes. As mentioned before, 549 models were used to derive the proxy model.  

These models were also used to initialize NA, i.e. provide the ensemble of initial 

models for the parallel search.  In the parallel search we considered two cases.  In the 

first instance the NA routine tuning parameters were set as ns = 96, nr = 48, and the 

routine was ran for 2 iterations (in total 192 models).  Therefore, 741 models in total 

were ran to find the minimum misfit using the Parallel-SHM method (see Figure 5.21a).  

In the second instance we set the NA routine parameters for ns = 16, nr = 8, and the 

number of iterations was equal to 2 again (in total 32 models).  We used these settings 

since following division of the parameter space eventually the largest sub-volume was a 

2D one when searching in parallel.  Then we effectively obtained the same result but in 

a fewer model calls of 581 in total (see Figure 5.21a). 

 

Using the Serial-SHM, the parameter sub-spaces were searched in turn.  In each serial 

search we needed to sample the ensemble of initial models consistent with the 

dimension size of that particular sub-volume. These models were different from the 

models that were used to construct the misfit proxy and also used in the parallel search 

of NA for initializing the sub-volume searches. First the higher dimensional sub-

volumes were searched.  Subsequently, for those sub-volumes with identical dimension, 

the search was followed in order of their importance which was determined based on 

their coefficients in the polynomial misfit model. The 2D sub-volume of transmissibility 

of barriers (‘k’ and ‘l’) and pilot point parameters (ntg1 and permh1) were searched 

using the NA routine with: ni = 32, ns = 16, nr = 8, and was run for 5 iterations.  For the 
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rest of the 14 sub-spaces, each of 1D, the NA parameters were set to: ni = 16, ns = 8, nr 

= 4, and run for 5 iterations.   

 

These NA parameters were set based on the fact that in practice for low-dimensional 

problems the potential exists to be trapped in a local minimum of the objective function, 

because the constructed voronoi cells are isolated (see Section 2.5 of Chapter 2 for more 

description on voronoi cells and NA routine). So the algorithm should be tuned for 

larger ns, and also should be starting with extra initial ensemble of models, ni (refer to 

Sambridge 2001). Searching the sub-volumes of the parameter spaces in the serial mode 

meant that convergence could be obtained in only 1008 model calls.  When they were 

added to the 549 models required for decoupling the parameter sub-spaces, a total of 

1557 models was required (see Figure 5.21b).  

 

Seismic maps of difference in impedance predicted by the best models using the parallel 

and serial search approaches are compared to maps of observed data in Figure 5.22.  

The misfit value of each individual seismic map is also shown in maps.  These misfit 

values, for corresponding time difference maps were close and at most there was a 1.6% 

difference for the map of time difference 1999-2000, which is still very small.  From 

comparison of these maps it was also noticeable that there were great improvements in 

the match of the shape of the two main anomalies around the injector I2 and injector I5 

by parallel and serial methods relative to the base case (for the 4D seismic map 

predictions by the base case model, see Figure 5.15). 

 

 

5.4 Results 

Significant improvement in the match of history data of injector I2 rates by using either 

parallel or serial methods was obtained.  Although the misfit of the producers P4 and P5 

were not included in the inversion process, the match of the history data of these wells 

were also been improved.  The history match of other wells was attained in the base 

model and remained unchanged by the best model predictions.  For the wells with 

improved match, the comparison of the well history data to the predictions of the base 

and the best models using the Parallel-SHM and Serial-SHM approaches are displayed 

in Figure 5.23.   
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a) Parallel-SHM 

 

 

 

b) Serial-SHM 

 

Figure 5.21: Misfit convergence using technique of ‘Central Composite Design combined 

with: a) Parallel-SHM for two cases ns = 96, nr = 48 and ns = 16, nr = 8, and b) Serial-SHM.  

The dark blue markers are the 549 samples used in decoupling parameter sub-spaces and 

also in initialization (initial ensemble of models) of parallel search.  The solid line indicates 

the base case model misfit. 
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Figure 5.22: Maps of change in impedance predicted by the best models obtained by the 

parallel and serial search approaches compared to the equivalent observed data.  The misfit 

value of each individual seismic map is shown in each map.   
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Figure 5.23: Comparison of history data to the predictions from the base model and the best 

models obtained by the parallel and serial methods. 
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Tables 5.8 and 5.9 summarises the simulation data and the comparison of the 

performance of the two parallel and serial approaches.  The simulation information 

(Tables 5.8) confirm that whereas the Full-SHM approach is difficult to apply in 

practice, the number of model calls and the CPU time required for the 18-dimensional 

case are affordable reasonably if we use ‘divide and conquer’ approaches.   

 

A large drop in injector I2 and the 4D seismic misfits was attained by Parallel- and 

Serial SHM applications (Tables 5.9). The seismic maps contain noise plus several 

anomalies that we did not intend to match (e.g. they are outside the simulation region 

etc.).  However in the present study we sought to match the 4D seismic anomalies in the 

area immediately around the updated parameters.  Although the decrease in the entire 

reservoir seismic misfits was computed, to determine the effect of SHM, the regions 

adjacent to the injectors I2 and I5 were considered also.  

 

 

Table 5-8: The simulation and computer time requirements for an 18-dimentional case of 

Schiehallion using the Parallel-SHM and Serial-SHM approaches. 

Search choice 

Initialization of 

decoupled sub-

spaces 

 

After initialisation 

 

Total 

number 

of 

models 

required 

CPU 

(days)* 

number 

of 

models 

required 

CPU 

(days)* 

number 

of 

models 

required 

CPU 

(days)* 

Parallel- 

ns = 96, nr = 48 
549 7.63 192 2.76 741 10.29 

Parallel- 

ns = 16, nr = 8 
549 7.63 32 0.46 581 8.07 

Serial- 549 7.63 1008 14.0 1557 21.63 

*Each model takes around 20 minutes on a 3.4 GHz processor. 
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Table 5-9: Performance of the two search methods. 

* The misfit in the area immediately around the updated parameters and strong seismic 

anomalies were considered.  They are marked in Figure 5.9 and are observable in the 4D 

seismic maps of Figure 5.22.  They are around the injector I2 in Phase I and around injector 

I5 in Phase II 4D seismic data.  

** Similar results obtained by both the Parallel-SHM cases: i) ns = 96, nr = 48 and ii) ns = 16, 

nr = 8. 

 

 

The updated parameter values of the best models achieved by the parallel and serial 

searches are shown in Figure 5.24.  For most parameters the results are consistent and 

quite close.  The exceptions are mainly for barriers ‘g’, and ‘l’ which provide the 

pressure communication between the two regions of strong seismic anomalies.  It seems 

that when the barrier ‘g’ is of high transmissibility (several orders of magnitude larger 

in size) then the barrier ‘l’ should be less transmissible to adjust the pressure 

communication between these regions and their immediate surroundings.  Because of 

the stochastic nature of search algorithm, they may approach various solution minima of 

objective function in the parameter space of the problem.  In fact the various updated 

parameter values for the best models were obtained by the different methods indicate 

the non-uniqueness of the current history matching problem.  

 

 

 

 

Method of 

SHM 

Drop in 

total 4D 

seismic 

misfit 

(%) 

Drop in 

injector 

rate misfit 

(%) 

Drop in sum 

of total 

seismic and 

injector rate 

misfit (%) 

Drop in total 

seismic misfit 

of area 

around strong 

anomalies 

(%)* 

Drop in sum of 

seismic misfit of 

area around 

strong 

anomalies and 

injector rate 

misfit (%)
*
 

Parallel-
**

 4.5 84.5 21.0 19.8 55.0 

Serial- 4.0 91.8 22.3 19.3 59.5 
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Figure 5.24: The updated parameter values achieved in the best models obtained using the 

parallel and serial search. The error bars are calculated based on 10 best models acquired in 

each method. 

 

 

5.5 Conclusions 

Stochastic inversion routines such as Neighbourhood Algorithm (NA) require a large 

ensemble of initial models to effectively sample the parameter space.  In this chapter we 

adopted an approach of integrating experimental design techniques with 'divide and 

conquer' and gained more improvement in the convergence of history matching 

procedure. Through application of this approach we were able to reduce the number of 

required initial simulations to about 15% of what was required for a conventional full 

inversion using NA. When this initialization step was combined with Parallel-SHM  to 

find the minimum misfit we obtained more gain, and 91 per cent speed up in the 

convergence for the history matching of a 10-dimensional case of the Schiehallion field 

was achieved. The method of ‘combining experimental design with divide and conquer’ 

was also applied to a problem of 18-dimensional SHM of the Schiehallion filed. Such 

case usually requires too many simulations and in practice may not be completed using 

any stochastic search routine. The convergence of this example also was reached very 

fast and efficiently with an affordable number of simulation runs.  While we attained the 

objective of handling even higher dimensional history matching problems, the other 

important conclusions were summarized in the following paragraphs.  
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 Experimental design is a useful way to train proxy models to misfit function 

giving an order of magnitude saving over random sampling. 

 Using ‘experimental design combined with a divide and conquer‘ method; 

convergence can be obtained very quickly in the history matching. 

 Results of the approach are independent of experimental design methods used, 

and better understanding of the reservoir parameter effects on misfit response 

can be obtained. 

 ‘Experimental design combined with divide and conquer’ approach is especially 

very attractive to the SHM cases of large number of reservoir unknown 

parameters that are involving many simulation runs. 
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CHAPTER 6 ‘Divide and Conquer’ Approach to Spatial 

Decomposition of the Seismic Misfit  

 

 

Introduction 

In this chapter the approach of the ‘divide and conquer’ method to spatial 

decomposition of the misfit function to identify seismic territories is extended.  

Reservoir simulations contain sets of ‘grid blocks’ in the reservoir rock volume.  The 

sets may be grouped parametrically but also by the effect that their properties have on 

local response variables and history matching misfits. This fact motivates us to find a 

way to identify such structure in the models and could lead to spatial decomposition of 

the misfit function to simplify the problem and then reduce computational cost. The 

approach presented in the following sections is based on the above initiative. This 

method also uses a polynomial response surface to help identifying the separable sub-

domains and uses the neighbourhood algorithm in finding the minimum of sub-domains 

misfits.   

 

For a number of SHM cases such as the Nelson reservoir (see Kazemi and Stephen 

2008) and the Schiehallion field (Stephen et al. 2006, Stephen and MacBeth 2008, Edris 

et al. 2008) it was revealed that parameter modifications could be made in a very local 

manner.  In Nelson, changes in the properties of net:gross, horizontal permeability, and 

vertical permeability of a region influence the 4D seismic map in a limited area.  In the 

Schiehallion field the major seismic anomaly around the injectors are affected 

particularly by transmissibility of nearby surrounding faults and barriers (refer to 

Chapter 4 and 5 case studies).  The spatial decomposition approach finds components of 

the objective function which depend only on a smaller number of the elements of the 

vector of updated parameters in reservoir sub-domains.  Then each spatial sub-misfit 

function is treated individually, along with updating the parameters on which it 

depends.   

 



Chapter 6: Spatial decomposition misfit by ‘divide and conquer seismic territories’ 

219 

This method is called ‘divide and conquer to identify seismic territories’ and it relies on 

the experimental design and response surface modelling techniques (discussed in earlier 

chapters) to analyse dominant parameters and, to decompose the misfit spatially, and to 

define the separable sub-domains. The method also deploys the neighbourhood 

algorithm in find the minimum of the spatial sub-domain misfits.  The major advantage 

of this method is that the true misfits are used instead of misfits from the proxy models 

in the inversion of local misfits. The seismic maps are divided into several separate 

regions consistent with a set of flow barriers, and the modifiers to the barrier 

transmissibilities are linked to variations in the seismic misfit.  In the following sections 

the details of spatial decomposition method are described.  It has been revealed that 

many simulation runs would be saved in the SHM process through illustration of the 

application of this new approach.  

 

 

6.1 ‘Divide and Conquer’ of Spatial Domains  

The criteria for sub-region decomposition should simultaneously take into consideration 

the spatial characteristics of the reservoir features and their separability. Often 

reservoirs are composed of several different sedimentary classifications and facies, of 

different petrophysical properties (i.e. net:gross, porosity, permeability) which affect 

their flow behavior and divided the reservoir to various sub-regions. Sometimes 

reservoirs are heavily faulted and there are many flow barriers dividing the reservoir to 

sub-regions. One way of decomposing the sub-regions would be to capture distinct 

differences induced by these features.  In this thesis, the spatial subdivisions were based 

on the geology and structure of the reservoir and picking out the pressure discontinuities 

in the heavily faulted Schiehallion reservoir.  

 

Reservoir region decomposition has been implemented before through the delineation 

of least correlated, most sensitive sub-regions by Zhang et al. (2001).  They stated that 

on extreme occasions while one is dealing with a multi-scale complicated reservoir 

simulation of millions of grid blocks, the history matching may be described simply for 

domains distinguished by the parameters correlated in space.  Correlation of parameters 

does not occur over large distance even when the reservoirs are geologically very 

complex with many faults and flow barriers.  
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Srinivasan et al. (2004) introduced domain delineation which utilizes streamline density 

(in streamline simulators). That is the regions whose streamlines were dense, were 

recognized by sensitivity analysis from the parameter perturbations and by adjustment 

of the reservoir model to attain a good history match.  Bryant et al. (2005) offered a 

basis for decomposing the flow simulation for increasing the effectiveness of a 

parameter perturbation scheme.  First they considered a set of permeability perturbation 

parameters for a given reservoir.  Each parameter was applied to a particular sub-region 

in the reservoir which was non-overlapping with other domains.  They used a sensitivity 

analysis to determine the influence of the value of permeability at any given location 

upon the production data using Principal Component Analysis (PCA), and identified 

domain sensitivity and least correlation.  They increased the effectiveness of the history 

matching in terms of computational time.   

 

The optimal choice of identifying the sub-regions must satisfy two conditions.  First, the 

parameters, in the sub-regions that we wish to modify (such as barrier transmissibilities 

or permeability multipliers) should have the greatest influence on the performance of 

any associated injection and production wells.  Second, the sub-regions should exhibit 

the least possible correlation with one another.  There are several methods for obtaining 

sensitivity matrices. For example, the Hessian matrix calculated internally by a flow 

simulator and a covariance matrix calculated using a suite of realizations (Yadav et al. 

2007).   

 

As an alternative, Principal Component Analysis (PCA) of sensitivity matrices could 

readily identify the regions meeting both the above conditions (Kim et al. 2008).  

However, calculation of sensitivities is computationally costly and it restricts the 

approach of domain delineation to some specific simulators.  To tackle this problem, a 

technique of evaluating sensitivities from a set of equi-probable initial realizations was 

deployed by Bryant et al. (2006).  Sensitivities were calculated only at a few locations 

and were interpolated to remaining locations in the reservoir.   

 

In this chapter we have derived a new and less costly approach based on the domain of 

seismic territories using response surface modelling.  Proxy models are used to identify 

the sensitivity of sub-regions to parameters and correlation between sub-regions.  

Consequently, partial separability of domains is determined, and also the parameters 

that affect the seismic misfit locally are identified. This means that the ‘divide and 
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conquer’ approach can be implemented spatially as well as in the parameter domain.  

We found that our method is successful in terms of representing fluid flow connectivity, 

and even more effective in terms of computational time and simplicity to implement. 

 

 

6.1.1 Spatial Decomposition of the Misfit Function 

Initially several sub-regions of the reservoir model are identified based on the reservoir 

structural and geological features. We mainly use flow barriers that mostly affect the 

simulation performance and its predictions of seismic anomalies.  The parameter space 

of the history matching problem is sampled to create an ensemble of initial models; and 

simulation models are run. The misfit of each region is labeled and calculated separately 

instead of merely computing one lump sum for the misfit.  

 

A misfit regression model in the form of a quadratic polynomial is created for the misfit 

of each region. The sensitivity of the misfit of each sub-region to each parameter is 

determined and the significant effects on the misfit response surface of individual 

regions are identified.  Then the criteria of spatial decomposition are applied.  Below we 

outline the steps involved in the decoupling of the regions: 

 

 First we identify the sub-region with highest sensitivity to parameter 

perturbations (which as a rule is the sub-region with highest misfit value). This 

is implemented through comparison of the size of the coefficients of the misfit 

polynomials of the sub-regions. 

 

 For this sub-region we only keep the significant effects (the coefficients) in the 

polynomial misfit (which delineate 95% correlation between the true misfit and 

the misfit recalculated by polynomial misfit) and reject the other insignificant 

coefficients for this sub-region.   

 

 We identify the smallest effect (coefficient) among the significant effects of the 

polynomial misfit of this sub-region and exploit that as a threshold to find the 

first group of coupled sub-region (i.e. spatial domain). 

 

 Regions that have effects larger than the threshold for at least one of the similar 

significant effects of the most sensitive sub-region are coupled. Thus we classify 
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the first of grouped sub-regions which we call the first ‘domain’.  However there 

are still other sub-regions which are not linked to this domain.  

  

 Then among the remaining sub-regions we detect the one with the most 

sensitivity to the parameter changes.  The same process (as described for the first 

the domain) is used to resolve the sub-regions that are coupled to this one.  Thus 

we identify the second domain. 

 

 The procedure is repeated several times until all Domains are decoupled. 

 

 

6.2 Application to Segment 4 of the Schiehallion Field 

In Chapters 4 and 5, the details of a 10-dimensional case of seismic history matching of 

the Schiehallion field were explained. For that case we showed that for the active 

production and injection wells, their mean misfits and the variation of their misfits are 

small (see Table 4.3). This is because they are located remotely from the injector I2.  In 

Chapter 4, we showed that for the injector I2 a perfect match was not obtained even 

when the ‘seismic plus injector misfit’ scenario was considered in the inversion process, 

and a similar result to the scenario of ‘total 4D seismic misfit only’ was obtained for 

injector I2. Here, we intend to show the feasibility of the approach of ‘spatial 

decomposition of the seismic misfit’ through the application of the method to the same 

10-dimensional example.  The method was applied to the scenario when ‘total 4D 

seismic misfit only’ is used. 

 

First the separate sub-regions were postulated (Figure 6.1), then the correctness of the 

decoupled sub-regions was evaluated, and finally those sub-regions that should not be 

separated at all were grouped to have the grouped sub-domains. In the Schiehallion 

reservoir the area around the injector I2 with the strongest 4D seismic anomaly was 

divided into twelve (12) sub-regions.  In Figure 6.1 these sub-regions are labelled (from 

A1 to A12). Each of these sub-regions are surrounded by several flow barriers (12 

barriers named ‘a’ to ‘l’) as they are illustrated in Figure 6.1. 
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Figure 6.1: Sub-regions around the injector I2 and the change in the normalized misfit 

across the area in the vicinity of the injector.  Dark purple colour indicates high misfit and 

light purple colour indicates low misfit value. 

 

 

The component misfit of each sub-region in the base case simulation model of the 

reservoir was calculated and compared in Figure 6.2. Besides, the normalized misfit of 

each sub-region was computed by dividing the component misfit of each sub-region by 

the number of its constituting grid blocks.  They are compared on Figure 6.2  

 

 

 

 

 

 

 

 

 

j
f

a

e

c

d

b
i

g

Injector I2

h

low

high

Updated parameters: transmissibility of barriers

A1 A2
A3

A4

A5

A6

A7

A9 A10
A11

A8
A12

j

b

d

h
c

a
f

e

g

i

Injector I2

k l

K l



Chapter 6: Spatial decomposition misfit by ‘divide and conquer seismic territories’ 

224 

  a)  

 

  b)  

 

Figure 6.2: a) the component misfit of each sub-region in the base case reservoir model, and 

b) the normalized misfit of each sub-region calculated by dividing the component misfit by 

the number of its constituting grid blocks of each sub-region. 

 

 

Using the Central Composite Design, to sample the 10-dimensional parameter space of 

the problem 149 models were required.  Thus, the Schiehallion simulation model was 

run for that number of cases to calculate the misfit of the sub-regions.  Using the Central 

Composite Design, to sample the 10-dimensional parameter space of the problem 149 

models were required. Then for each of the 12 sub-regions a quadratic polynomial 

misfit (Equation 3.1) was constructed.  Maps of the influence of the effects on the misfit 

for the area around the injector were determined based on the relative contrast of the 

coefficients in the polynomial misfits acquired for the separated sub-regions.  Figure 6.3 
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shows several examples of such maps for linear effects of transmissibility of barriers 

‘d’, ‘e’ and ‘f’, and Figure 6.4 shows examples of such maps for quadratic effect of 

transmissibility of barriers ‘e’, ‘g’ and ‘i’. 

 

 

                                            Linear effect of parameters 

 

         

 

         

 

         

Figure 6.3: Example maps of the linear effect of three parameters on the misfits of areas 

around the injector I2.  They were normalized, i.e. the value of 1.0 was assigned to maximum 

effect (shown in darkest colours) while the minimum effect acquires the value of 0.0 (shown 

in lightest colours).  The area picked at the bottom right of the maps confirms that the misfit 

of regions far from the injector I2 and barriers showed no sensitivity to the parameter 

variations. 
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                                       Quadratic effects of parameters 

 

         

 

         

 

        

 

Figure 6.4: As Figure 6.3 but for the quadratic effect of three parameters on the misfits of 

areas around the injector I2.   

 

 

The sensitivity of the misfit of a sub-region to the parameter variation, Ψs, may be 

determined through the absolute sum of the derivatives of the misfit polynomial of a 

sub-region, fs, with respect to all the parameters, as below:  
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dn

1i i

s
s

)(f
   i= 1,..., nd      (6.1) 

 

That is, for each sub-region we have (see Equation 3.10 for polynomial model): 

 

dn

1i

dn

ij

jij

dn

1i

ii

dn

1i

is .b.b2a      (6.2) 

 

where nd is the number of updated parameters. We utilize the normalized sampled 

parameters to construct the misfit polynomials (to avoid distortion), i.e. all parameter 

values are mapped onto the domain of [-1,1] (on a log10.scale). When the parameters 

give the same value in the polynomial misfits of the sub-regions, then the absolute sum 

of these coefficients can be used as an intuitive approach to compare the sensitivity of 

sub-regions against each other.  Then for each sub-region we compute: 

 

dn

1i

1dn

1i

dn

1ij

iji

dn

1i

is bb2a      (6.3) 

 

The region with the highest value of ‘absolute sum of the linear and quadratic 

coefficients’ was considered as the region with most sensitivity. The region with the 

smallest value of the ‘absolute sum of the coefficients’ was considered as the least 

sensitive region. Figure 6.5 demonstrates the change in the sensitivity of misfits to the 

parameter perturbations for the areas around the injector I2. Consequently, the sub-

region with highest sensitivity was identified, i.e. sub-region A1.  It is an important sub-

region since we started the process of spatial decomposition by identifying the sub-

regions that were coupled to this one.  This sub-region is displayed in darkest colour in 

Figure 6.5.   
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Figure 6.5: Change in the sensitivity of the misfit of sub-regions to the parameters 

perturbation.  Dark brown colour indicates high sensitivity and light brown indicates low 

sensitivity sub-regions. 

 

 

From the coefficients of the polynomials, the significant effects on the component misfit 

of each sub-region were determined. Figure 6.6 illustrates the Pareto charts of 

influential effects for the misfits of the sub-regions.  For each sub-region these effects 

define 95% of correlation between true misfits and the corresponding misfits re-

calculated by the regression polynomial.  The correlations between the true misfits and 

the full polynomial misfits were higher, for example for the sub-region A1, there was 

99.7% correlation between the true misfits and the misfits recalculated by the 

polynomial.   

 

The dominant coefficients of the polynomial were only used in the decoupling process 

of the seismic territories. For sub-region A1, the misfit was mostly influenced by the 

linear and quadratic effects of the transmissibility of the barriers ‘a’, ‘b’, ‘d’, ‘g’, and ‘i’ 

(see, Figure 6.6a). The coefficient of the smallest absolute effect of the misfit 

polynomial of this sub-region was marked out.  It had the absolute value of ‘956’ and 

was found for the linear effect of the transmissibility of barrier ‘a’. It was used as a 

threshold (see Figure 6.6a), such that for any other sub-region, they are concluded to be 

coupled to this sub-region, if: i) they had any effects equal to or larger than this 

threshold, and ii) at least one of them were identical to the significant effect of the 

polynomial misfit of sub-region.  In this way the first group of coupled sub-regions was 

identified to consist of four sub-regions: A1, A2, A4, and A5 (called first domain).  

They were as shown in Figure 6.7b, c and d.  
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The same procedure was repeated for the remaining, as yet uncoupled sub-regions, to 

determine the remaining domains.  It means that among the remaining sub-regions the 

one most sensitive to the parameters perturbation was identified, i.e. sub-region A6.  

The significant effects of this sub-region only consisted of the linear and quadratic 

effects of the transmissibility of barrier ‘f’. The coefficient of the smallest absolute 

effect was for the quadratic effect of barrier ‘f’ and had the absolute value of ‘1458’.  It 

was used as a second iteration threshold. However, the remaining sub-regions did not 

have any similar significant effect of ‘f’, equal to or higher than this threshold.  

Therefore no sub-region was considered coupled with it.  It was considered as the 

second spatial domain, see Figure 6.6e. 

 

Of the rest of the sub-regions the next most sensitive was sub-region A7. The 

coefficient of the smallest effect was found for the linear effect of transmissibility of 

barrier ‘h’ and had the absolute value of ‘144’.  It was employed as a third threshold.  

The polynomial misfit of sub-regions A3, A8, A9, A11, and A12 had at least one 

similar effect to one of the effects of sub-region A7 larger than this threshold.  

Therefore, these sub-regions were considered to be coupled.  They comprised the third 

domain, see Figure 6.6f-k.  We completed the process of dividing the seismic territories.  

The misfit of sub-region A10 had negligible sensitivities to parameter changes (see the 

range of x-axis for coefficients in Figure 6.6l). This gave reason to ignore this sub-

region in the SHM procedure.  Moreover, the transmissibility of barrier ‘c’ displayed 

negligible effect on the misfit of all sub-regions.  Hence, it was not used in the 

parameters updated for any of the domains.  

 

In Figure 6.7 the decoupled spatial domains along with the parameters that affect their 

misfit are illustrated. As a result of the spatial decomposition of the misfit, the 10-

dimensional SHM problem was divided into three simpler ones of lower dimensions.  

They consisted of: i) one 6-dimensional (6D), ii) one 1-dimensional (1D), and iii) one 2-

dimensional (2D). 
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e)       f) 
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i)       j) 

 

 

 

k)       l) 

 

Figure 6.6: Pareto charts of the influential effects of the misfit of the sub-regions.  They 

represent the coefficients in the polynomial misfit obtained for each sub-region.  Single 

letters on plots show linear effects, letters to the power of two show quadratic effects, and 

product of letters are interacting effects.  In this figure the threshold coefficients that were 

used in investigation of the coupled sub-regions in the three iterations (explained in text) are 

marked in their relevant plots.  Also the coefficients larger than the threshold are highlighted 

by segregating arrows in the plots.  Moreover, the red rectangle on the x-axis of plot (l) 

highlights the negligible sensitivity of this sub-region to parameter changes.  
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Figure 6.7: The decoupled domains and the parameters that affect their misfit. 

 

 

The Neighbourhood Algorithm (NA) was then applied and the parameter space of each 

of decoupled region was searched separately, it meant that Full-SHM was applied on 

three lower dimensional problems of (6D), (1D) and (2D), instead of one (10D) case, 

thus fewer models ware required to obtain convergence to the minimum misfit.  For the 

first (6D) spatially decoupled domain the NA tuning parameter was set to be as ni = 

128, ns = 64, nr = 32 and it = 5, and in total 448 model was performed.  For the second 

(1D) decoupled domain the NA parameters was set as ni = 8, ns = 4, nr = 2 and it = 5 

which resulted in 28 model calls.  Finally for the third (2D) decoupled domain the NA 

parameters were put as ni = 16, ns = 8, nr = 4, and it = 5, and there were 56 runs of the 

simulation model. Therefore, in total only 685 models were deployed with application 

of the ‘divide and conquer’ method, while application of Full-SHM method required 

3096 models in finding the minimum misfit. 

 

Moreover, the parameter space of (6D) problems by itself can be decoupled to: one (2D) 

and four (1D) sub-volumes (the knowledge gained by the results of Chapter 4 and 5).  
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Consequently, in another approach instead of using the Full-SHM application to the 

(6D) spatially decoupled domain, the Parallel-SHM was applied, and further saving in 

model runs were made. That meant that the first full inversion of (6D) was 

implemented, and next Parallel-SHM used to search the one (2D) and four (1D) 

parameter spaces separately but simultaneously.  These approaches are compared in 

Figure 6.8a.  Figure 6.8 shows the misfit convergence of three spatially decoupled 

regions.  For (1D) and (2D) spatial decomposed domains only Full-SHM was deployed, 

see Figure 6.8b and c. 

 

 

                                

 

       

Figure 6.8: Convergence of misfit to minimum for: 6D, 1D and 2D spatially decoupled 

domains. 

 

 

6.3 Results 

Table 6.1 summarizes the number of models required for searching the spatially 

decomposed parameter space with Parallel-SHM’. The latter approach only required 

374 model evaluations.  The 78% and 88% speed-up in seismic history matching of this 

problem were achieved using these methods, respectively.  
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Table 6-1: Summary of number of models required in searching the parameter space by 

using spatial decomposition approaches. 

 

 

Predictions of 4D seismic maps by the best model obtained by the ‘divide and conquer’ 

approach are compared to the prediction by the Full-SHM method in Figure 6.9. They 

are consistent. Updated parameter values for the best model (with minimum misfit) 

acquired by the various approaches are compared in Figure 6.10. Also the standard 

deviations of the updated parameters were calculated based on the best 10 models 

(Figure 6.9). The results for the best updated parameter values are consistent; the 

exceptions are mainly for the parameters with negligible influence on the misfit 

response which is the transmissibility of barrier ‘c’.  In addition, for barriers ‘b’, ‘d’ and 

‘f’, there are a few discrepancies by various methods.  These results may signify the 

non-uniqueness of this history matching problem and the existence of the multiple 

solutions that have been obtained using NA as a stochastic search method.  It also may 

indicate that the reservoir flow behaviour of this example is a complex and non-linear 

system such that the topography of the misfit objective function away from the 

minimum may exhibit many multiple local minima.  Also there may be stationary points 

in the surface of misfit function, where the gradient of the function with respect to the 

parameters is zero, in particular for barriers ‘b’, ‘c’, ‘d’, and ‘f’.   

Number of  required models 

initialization 

CCD 

searching parameter spaces of decomposed regions 

1
st
 

decomposed domain (6D) 

2
nd

  

decomposed 

domain of 

(1D) 

3
rd

  

decomposed 

domain of 

(2D) 
Full-SHM Parallel-SHM total 

149 448 _ 28 56 685 

149 _ 141 28 56 378 

Number of  required models used by Full-SHM (no decomposition) 3904 
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Figure 6.9: Comparison between the maps of seismic predictions for difference in acoustic 

impedance obtained by spatial decomposition and those obtained by Full-SHM method. 

 

 

       

Figure 6.10: Comparison of the best parameter values obtained by various approaches. The 

error bars are calculated based on 10 best models acquired in each method. 
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6.4 Discussion 

The proposed technique in this chapter uses data partitioning, or sensitivity analysis, to 

reduce the number of simulations.  The misfit objective function can be separated as the 

sum of local components related to wells or seismic territories. The parameter 

sensitivities are different for each component.  A local component might depend only 

on a few influential parameters.  Therefore, fewer simulations are used to calculate the 

minimum misfit for a local component. In this approach, full independence of sub-

regions or components with respect to the parameters is not required, but for significant 

parameters. The proposed technique was tested on the case study example of this thesis, 

i.e. Schiehallion field including 10 updated parameters, and showed the efficiency of the 

approach. 

 

Generally, the information offered by 4D seismic data is considered to prompt such a 

local decomposition approach. 4D seismic data bring flexibility in the choice of local 

components for spatial division of the problem, and provide information about the 

parameters to be perturbed.  In this application, the sub-regions were initially defined 

manually based on the position of flow barriers.  However, they were still implicitly 

mapped via seismic data.  

 

The method demonstrated here is not restricted to the spatial division based on only the 

seismic zones.  It can be applied in history matching to separate the problem into other 

local components such as wells and.  Then as a rule a local component would depend on 

a smaller number of parameters. The approach may alleviate the problem of multiple 

solutions when using a stochastic search routine which is as result of presuming full 

interactions between parameters and local components of the objective function  

 

For very large fields, it is difficult and even unfeasible to use conventional optimization 

methods in history matching.  The method shown here enables history matching of large 

fields.  It is particularly attractive where a large number of local parameters exist.  One 

point in this approach is that it splits the objective function based on the sensitivity of its 

local components to parameters. To apply this approach to a wider range of history 

matching problems, an automatic procedure is required in determining the sensitivity of 

the local objective functions. This could be considered as future work for further 

improvement of the method.  
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The supposition of this method is that the regions of related geological attributes and 

relatively similar properties which are inter-connected hydraulically are also 

amalgamated to show similar sensitivity to changes in the variables and the resulting 

production and 4D seismic responses.  In this context this method seems more sensible 

geologically in comparison to the parameter de-convolution and numerical 

decomposition of the objective function of the methods proposed in Chapter 4.  

However, this method involves more analysis to derive the sensitivity of the regions.  

Also, the method involves more simulation runs than the misfit decomposition method 

particularly when the degree of parameters convolution is low as it was in the case study 

of this thesis.  

 

Production and seismic attributes are affected in a complex way by reservoir properties 

such as lithology, porosity, fluid saturation, layer thickness, permeability, etc; it is 

possible that different combinations of these variables generate the same production and 

seismic responses. The excellent feature with this method is that this non-uniqueness 

does cause less difficulty since the different geologic regions are spatially separated.   

 

 

6.5 Conclusions 

The spatial decomposition method appears more sensible geologically. The history 

match results obtained by this method were similar to those acquired by parallel and 

serial methods and also Full-SHM.  Although the method requires more simulation runs 

than the Parallel-SHM and Serial-SHM, on the other hand we were able to use properly 

calculated misfits, not the proxy misfit. It is very appropriate method to be applied to  

large reservoir history matching of many unknowns where flow performance of various 

regions in the reservoir do not effect by all the updated parameters but a few of them.  

In such cases there would be a great amount of computer cost by applying spatial 

decomposition method. The major conclusions of this chapter are as following. 

 

 A local misfit function component might depend only on a few influential 

parameters. 

 

 The spatial decomposition of misfit could be achieved; while full independence of 

sub-regions or misfit components with respect to the parameters is not required, but 

for significant parameters. 
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 Spatial misfit decomposition is a promising approach to tackle high dimensional 

SHM problems and segregate them to simpler ones.  Successful application of this 

method to a 10-dimensional SHM case of Schiehallion field was shown. 

 

 Integration of misfit decomposition and spatial decomposition approaches leads to 

even faster convergence in SHM workflow. 
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CHAPTER 7        

 Summary, Recommendations and Conclusions  

 

 

7.1 Summary 

In automatic SHM, stochastic optimization routines such as the Neighbourhood 

Algorithm (NA) are used to guide modifications of the model parameters by 

minimization of an objective function which quantifies the misfit between observed and 

predicted data.  The computational and financial cost for convergence to a minimum is 

high. This cost increases exponentially with the dimensionality of the problem 

particularly if it is assumed that there is interaction between updated reservoir 

parameters. However, when there are non-interacting groups of parameters and we 

solve the problem as being fully coupled, a great number of models would be sampled 

in the inversion process that brings no information about the misfit surface.  This leads 

to waste of simulations.  History matching often shows that the interactions between the 

updated parameters in misfit function do not always occur however.  In fact, in such 

instances the parameter hyper-volume of the problem can be divided into independent 

sub-volumes; then a more efficient search can be performed by applying any 

optimization routine to each of the sub-volumes separately in parallel or in serial.  The 

aim of this study was to develop an approach to make the optimization part of history 

matching more efficient thus to reduce the number of simulations. 

 

We offer a ‘divide and conquer’ approach that has been developed based on identifying 

the parameter space sub-volumes. The proposed approach is a development of the 

existing SHM procedure (Stephen et al. 2006). The development of parameter space 

decomposition converts the search for the solution of a multidimensional problem into 

the search for a solution of couple of problems of reduced dimensionality.  This 

dramatically reduces the hyper-volume of the search space and thus the required number 

of function evaluation and simulation runs.   
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This ‘divide and conquer’ approach uses response surface modelling. We employ 

simulations from initialization of the full inversion using the NA algorithm.  We begin 

by using singular value decomposition techniques with least squares regression and 

obtain the multi-dimensional polynomial proxy representation of the misfit function.  

Next, we eliminate the insignificant interaction terms, successively from the polynomial 

from the smallest up to a coefficient threshold. Parameters are then grouped or separated 

depending on whether interaction coefficients are above or below the threshold, 

respectively. The sub-domains of the misfit are identified and the misfit then is 

decomposed, accordingly.   

 

Several methods were proposed based on the ‘divide and conquer’ approach in this 

study.  They resulted in significant speed up of the convergence rate in the history 

matching process. When we searched the independent sub-volumes in parallel, the 

method was called Parallel-SHM.  This method contrasts against a method where the 

sub-volumes are searched in serial, called Serial-SHM, and also against the application 

of conventional full inversion, called Full-SHM method.  In Full-SHM the problem was 

solved assuming all the updated parameters are coupled. We successfully applied the 

Parallel-SHM method to a 10-dimensional SHM case of the Schiehallion field.  The 

results revealed that the convergence can be achieved requiring 30 per cent of the total 

number of models required for a Full-SHM run. Using the Serial-SHM, still the 

convergence can be obtained using 40 per cent of the full SHM set of models but 

required nearly one and half times more models compared to the parallel approach.  

 

Stochastic inversion routines such as NA require a large ensemble of models to 

effectively sample the parameter space for initialization and to decompose the misfit, 

particularly if quasi-random sampling is used.  In order to reduce the number of initial 

models, we also adopted an approach of integrating experimental design techniques 

with the method of Parallel-SHM.  We considered conventional quadratic experimental 

designs that are commonly used in modelling of objective functions of multi-

dimensional optimization problems including Central Composite, Box-Behnken, and D-

optimal Designs. We were able to reduce the number of initial simulations to about 15% 

of initial models required for a full inversion. When this initialization step was 

combined with Parallel-SHM to search the sub-parameter space and find the minimum 

misfit, then we obtained a 91 per cent speed up in the convergence for the 10-

dimensional case study of the Schiehallion field (Sedighi and Stephen 2010).  
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The method of ‘combining experimental design with divide and conquer’ was also 

applied to an 18-dimensional seismic history matching problem of the Schiehallion 

filed. Such a high dimensional case usually requires too many simulations and in 

practice, may not be completed using any stochastic search routine.  The results in this 

example also were achieved efficiently with an affordable number of simulation runs. 

 

Another method was presented based on spatial decomposition of the misfit function.  

The global objective function was decomposed into the sum of a number of local 

objective functions. Each local objective function measured the misfit on a separated 

domain and was related to a lower number of parameters, selected from among the 

parameters that had a significant impact on the seismic misfit of the region.  The local 

coupled sub-regions were determined based on common significant parameter effects.  

The minimum of the local objective functions were estimated by means of a parameter 

perturbation technique using NA. Finally, the parameters calibrated based on spatial 

decomposition of the objective function, were integrated to build up the best history 

matched reservoir models.  The method of ‘spatial decomposition’ of the misfit was 

also applied to the 10-dimensional case study of the Schiehallion field.  We found that 

there were three independent domains in the area of the reservoir which we sought to 

match seismically.  The method required fewer model evaluations relative to full 

inversion.  A 78 per cent speed-up in the seismic history matching of this problem was 

achieved. 

 

The ‘divide and conquer’ method makes use of a regression equation to derive a proxy 

response surface for the misfit function.  This approach has been assessed several times 

in history matching studies previously. For example, Castellini et al. (2005) used a 

response surface model based on kriging interpolation as a proxy to the misfit function 

to rank and screen the number of parameters, and accelerating convergence to the 

minimum misfit while a Genetic Algorithm was applied directly on the kriged misfit 

proxy instead of on true misfit function.  Zabalza et al. (2000) used response surface 

methods to model the objective function as a second order polynomial.  Then instead of 

applying the inversion routines on the true misfit function, identification of the best 

parameter domain was performed by the minimization of the response surface of the 

objective function using the simplex method.  In this study however, we could not use 

the proxy model explicitly because it would lead to bias close to the global minimum in 

the misfit surface due to inaccuracies of the proxy model.  Instead it was used as a guide 



 Chapter 7: Summary, Recommendations and Conclusions 

243 

in the identification of non-interacting or nearly non-orthogonal parameter groups and 

also in the calculation of misfits for those groups.  

 

Multivariate analyses have been used in history matching studies in the past.  They were 

used mainly to identify parameters which were not significant and reduce the dimension 

of the history matching problem.  In this study, similar methods are used with the aim of 

identifying groups of non-interacting parameters.  In one sense the sights are set lower 

but on the other hand, it retains more of the variability of the system while still 

significantly simplifying the inversion problem.  In this way the method is more 

flexible. Besides, the set of problems where parameters can be removed from the system 

is probably a subset of those where a separation of parameter groups can be found.   

 

Reduction of the number of simulation runs in the automatic history matching process 

based on independent objective functions has been examined before by Maschio and 

Schiozer (2008). They first defined several low dimensional independent objective 

functions each related to a well in the reservoir instead of a combined objective 

function.  Then horizontal and vertical permeability parameters associated to each well 

were updated in a serial fashion. Sensitivity analyses showed that the parameters 

associated to each well influenced the misfit of other wells by less than ten per cent 

influence.  The problem was then treated as a set of independent problems, one for each 

well.  However, these criteria seemed to be unsuccessful in total field production history 

matching.  In our approach we are able to determine more effectively how the parameter 

sub-spaces can be identified, retaining parameter interactions where necessary. 

 

The limitation for dividing the parameter space was revealed through the application of 

the method to a synthetic field. In this model the parameters controlling permeability 

multipliers of pilot points was found to be strongly interacting. The response surface 

assigned to the objective function was strongly asymmetrical about the truth case (as the 

base model), and we considered a wide sample volume of parameters.  Provided we just 

perturbed properties to one side of the truth case, we obtained a very good result and we 

could divide the parameter space to a few numbers of sub-volumes.  This was a very 

artificial scenario however as we would expect to have to sample below and above the 

base case. On the other hand the method may be applicable when the parameters are 

perturbed in smaller intervals. 
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In the application of the method (to the Schiehallion field), the misfit quadratic proxy 

itself recounts a simple structure.  We may choose to use a direct method to solve for 

the points on the surface misfit that have zero gradients with respect to parameters.  

However, we learned that the misfit proxy can be concave with a maximum in several 

parameters. We may also search on a limited range of parameters which may not 

contain the zero gradient points on the misfit surface.  There may be multiple minina 

and they may lie at the extrema.  These conditions make the application of the direct 

gradient based approaches to some extent more difficult to use.   

 

The spatial decomposition method appears more sensible geologically in comparison to 

the dividing the parameter space by numerical decomposition of the misfit objective 

function.  Although, the history match results obtained by this method were similar to 

the method of decoupling parametrically, it involved more analysis to derive the 

sensitivity of the subsequent decoupled domains. Also, the method requires more 

simulation runs than the misfit decomposition approach particularly when the degree of 

inter-dependency of the updated parameter effects is low.  On the other hand, we were 

able to use properly calculated misfits, not the proxy misfit. 

 

The application of spatial decomposition method to update properties such as relative 

permeability in a channelized turbidite
 
reservoir with many flow barriers may not be 

straightforward.  In such cases it is difficult to decouple the effect of a global property 

(relative permeability) and more local parameter effects (barriers) that may exist.  

Finding a consistent global parameter (being a coarse scale property) that could be 

conditioned to history data and could capture the entire channel flow characteristic 

should be carried out using a more global approach. Regional relative permeability 

could be used more effectively using spatial decomposition method, however. 

 

 

7.2 Recommendations 

In this study, the parameter space has been separated into several sub-volumes so that 

they can then be sampled separately but simultaneously using the Neighbourhood 

Algorithm.  The approach is not limited to the choice of inversion method.  The strength 

of the approach is that it reduces the number of models that are similar in terms of misfit 

response and efficiencies can be gained if other inversion methods are used. An 

equivalent increase in efficiency using stochastic approaches such as Genetic 
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Algorithms or Simulated Annealing could all be made more efficient by splitting the 

parameter space. The initiative of combining those algorithms with the parallel and 

serial search approaches should be considered in the future work. 

 

The benefit of ‘divide and conquer’ to deterministic methods is similar.  Gradient based 

methods require calculations of sensitivity coefficients. Usually one per parameter is 

needed and the computational requirement grows non-linearly with the dimension of the 

problem.  Solution of an adjoint equation or numerical calculation of gradients would be 

faster if sub-volumes of the parameter space could be treated separately.  The proposed 

method may provide some reduction in workload, therefore. When decoupling the 

parameter space some efficiency may also be gained by ensuring that new models 

obtained by estimation are generated in appropriate locations of the parameter space and 

unnecessary models are ignored.  Investigating the gains of the integration of gradient 

based routines and present ‘divide and conquer’ approach could be deemed as one of the 

future studies as well. 

 

The decoupling approach is particularly useful for amalgamating the local effects of 

particular parameters on the time-lapse seismic data and well responses.  This is 

complimentary to the localization approaches used with the Ensemble Kalman (EnKF) 

(e.g. Skjervheim et al. 2007, Chen and Oliver 2009) where more heuristic 

approximations are used.  The misfit of various wells and seismic data could be grouped 

spatially and then associated sub-volumes of the parameter space could be searched 

separately.  However, some knowledge of the localization is required and appropriate 

spatial relationships are needed.  This should be investigated in future studies.   

 

Typically, it is attractive to use direct search methods such as steepest descent or 

gradient based methods to minimize the misfit proxy models.  However, even if we 

detect a good fit between the true and quadratic regression equation misfits initially, we 

cannot tell if the form of the misfit surface is quadratic close to the minimum.  We also 

have no information regarding the existence of the minima.  From this point of view, it 

would be dangerous to assume from the initial analysis that the true misfit surface is 

fully quadratic.  We deem therefore that there is benefit in just using the proxy of misfit 

to decouple the independent parameter space and combine that with the global search 

schemes.  In fact in the Schiehallion case, the location of the minma is different in the 

regression equation.  It is therefore possible that we lose the benefit of the direct use of 
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misfit proxy model and they could even work against us by directing the search in the 

wrong direction. One option may be updating the regression equation. We may consider 

to fit the regression model when the correlation deteriorates as we progress in the search 

process. Then in particularly we can interrogate as we converge toward a global 

minima, and see if in the true misfit the coupling effects of parameters diverges from the 

initial state.  This progress could be considered also as one of the future studies. 

 

The limitation of the spatial decomposition method is that we initially split the local 

components of the misfit function intuitively, and we then establish the emerge by 

investigating the inter-connections of the sub-regions.  In order to apply the method to a 

wider range of history matching cases, it is required that the sensitivity of the local 

objective functions be determined in a more automatic way, e.g. using the Principal 

Component Analysis (PCA) approach.  This could be considered as a future work for 

further improvement of the method.  

 

 

7.3 Conclusions 

  A ‘divide and conquer’ approach was used for decoupling the parameter space in 

high dimensional seismic history matching problems.  The separate sub-volumes of 

the parameter space as well as dominant parameters were then identified.   

 

 The sub-volumes of smaller dimension were searched very efficiently especially in 

parallel and also in serial search attempts.  These search methods successfully 

improved the convergence rate of history matching process and reduced the number 

of simulation runs.  

 

 When we could decompose the parameter space using any of the ‘divide and 

conquer’ methods, the quality of history matching results was equivalent to the case 

when the entire parameter space was searched during the inversion of the process 

but with reduced CPU cost. 

 

 Combining experimental design with a ‘divide and conquer’ method result in 

convergence being acquired with significantly fewer number of model calls in the 

history matching procedure.  Such an approach is then especially attractive of higher 

dimensional cases involving many simulation runs. 
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 A local misfit function component might depend only on a smaller number of 

updated parameters in history matching.  Then spatial decomposition of the misfit is 

a promising approach particularly to tackle high dimensional problems and separate 

them into simpler ones each linked to a local domain. 
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