295 research outputs found

    Design and Analysis of a Discrete, PCB-Level Low-Power, Microwave Cross-Coupled Differential LC Voltage-Controlled Oscillator

    Get PDF
    Radio Frequency (RF) and Microwave devices are typically implemented in Integrated Circuit (IC) form to minimize parasitics, increase precision and tolerances, and minimize size. Although IC fabrication for students and independent engineers is cost-prohibitive, an abundance of low-cost, easily accessible printed circuit board (PCB) and electronic component manufacturers allows affordable PCB fabrication. While nearly all microwave voltage-controlled oscillator (VCO) designs are IC-based, this study presents a discrete PCB-level cross-coupled, differential LC VCO to demonstrate this more affordable and accessible approach. This thesis presents a 65 mW, discrete component VCO PCB with industry-comparable RF performance. A phase noise of -103.7 dBc/Hz is simulated at a 100 kHz offset from a 4.05 GHz carrier. This VCO achieves a 532 MHz (13.25%) tuning bandwidth. A figure of merit, FOMP, [1] value of -177.7 dB (includes phase noise and power consumption) is calculated at 4.05 GHz. This surpasses the performance of an industry standard VCO (HMC430LPx, Analog Devices), -176.5 dB, and four other commercially available VCOs. Furthermore, this study presents novel discrete design implementations to minimize both power consumption and capacitive loading effects, while optimizing phase noise. Finally, this project serves as a reference for analyzing and implementing low-level, complex RF and Microwave circuits on a PCB accessible to all students and independent engineers

    Design and Analysis of Low-power Millimeter-Wave SiGe BiCMOS Circuits with Application to Network Measurement Systems

    Get PDF
    Interest in millimeter (mm-) wave frequencies covering the spectrum of 30-300 GHz has been steadily increasing. Advantages such as larger absolute bandwidth and smaller form-factor have made this frequency region attractive for numerous applications, including high-speed wireless communication, sensing, material science, health, automotive radar, and space exploration. Continuous development of silicon-germanium heterojunction bipolar transistor (SiGe HBT) and associated BiCMOS technology has achieved transistors with fT/fmax of 505/720 GHz and integration with 55 nm CMOS. Such accomplishment and predictions of beyond THz performance have made SiGe BiCMOS technology the most competitive candidate for addressing the aforementioned applications. Especially for mobile applications, a critical demand for future mm-wave applications will be low DC power consumption (Pdc), which requires a substantial reduction of supply voltage and current. Conventionally, reducing the supply voltage will lead to HBTs operating close to or in the saturation region, which is typically avoided in mm-wave circuits due to expectated performance degradation and often inaccurate models. However, due to only moderate speed reduction at the forward-biased base-collector voltage (VBC) up to 0.5 V and the accuracy of the compact model HICUM/L2 also in saturation, low-power mm-wave circuits with SiGe HBTs operating in saturation offer intriguing benefits, which have been explored in this thesis based on 130 nm SiGe BiCMOS technologies: • Different low-power mm-wave circuit blocks are discussed in detail, including low-noise amplifiers (LNAs), down-conversion mixers, and various frequency multipliers covering a wide frequency range from V-band (50-75 GHz) to G-band (140-220 GHz). • Aiming at realizing a better trade-off between Pdc and RF performance, a drastic decrease in supply voltage is realized with forward-biased VBC, forcing transistors of the circuits to operate in saturation. • Discussions contain the theoretical analysis of the key figure of merits (FoMs), topology and bias selection, device sizing, and performance enhancement techniques. • A 173-207 GHz low-power amplifier with 23 dB gain and 3.2 mW Pdc, and a 72-108 GHz low-power tunable amplifier with 10-23 dB gain and 4-21 mW Pdc were designed. • A 97 GHz low-power down-conversion mixer was presented with 9.6 dB conversion gain (CG) and 12 mW Pdc. • For multipliers, a 56-66 GHz low-power frequency quadrupler with -3.6 dB peak CG and 12 mW Pdc, and a 172-201 GHz low-power frequency tripler with -4 dB peak CG and 10.5 mW Pdc were realized. By cascading these two circuits, also a 176-193 GHz low-power ×12 multiplier was designed, achieving -11 dBm output power with only 26 mW Pdc. • An integrated 190 GHz low-power receiver was designed as one receiving channel of a G-band frequency extender specifically for a VNA-based measurement system. Another goal of this receiver is to explore the lowest possible Pdc while keeping its highly competitive RF performance for general applications requiring a wide LO tuning range. Apart from the low-power design method of circuit blocks, the careful analysis and distribution of the receiver FoMs are also applied for further reduction of the overall Pdc. Along this line, this receiver achieved a peak CG of 49 dB with a 14 dB tunning range, consuming only 29 mW static Pdc for the core part and 171 mW overall Pdc, including the LO chain. • All designs presented in this thesis were fabricated and characterized on-wafer. Thanks to the accurate compact model HICUM/L2, first-pass access was achieved for all circuits, and simulation results show excellent agreement with measurements. • Compared with recently published work, most of the designs in this thesis show extremely low Pdc with highly competitive key FoMs regarding gain, bandwidth, and noise figure. • The observed excellent measurement-simulation agreement enables the sensitivity analysis of each design for obtaining a deeper insight into the impact of transistor-related physical effects on critical circuit performance parameters. Such studies provide meaningful feedback for process improvement and modeling development.:Table of Contents Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of symbols and acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Technology 7 2.1 Fabrication Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 SiGe HBT performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 B11HFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 SG13G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.4 SG13D7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Commonly Used Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Grounded-sidewall-shielded microstrip line . . . . . . . . . . . . . . . . . . 12 2.2.2 Zero-impedance Transmission Line . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3.1 Active Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3.2 Passive Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Low-power Low-noise Amplifiers 25 3.1 173-207 GHz Ultra-low-power Amplifier . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Topology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Bias Dependency of the Small-signal Performance . . . . . . . . . . . . . 27 3.1.2.1 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.2.2 Bias vs Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.2.3 Bias vs Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.2.4 Bias vs Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.3 Bias selection and Device sizing . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3.1 Bias Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3.2 Device Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.4 Performance Enhancement Technologies . . . . . . . . . . . . . . . . . . . 41 3.1.4.1 Gm-boosting Inductors . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.4.2 Stability Enhancement . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.4.3 Noise Improvement . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.5 Circuit Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.5.1 Layout Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.5.2 Inductors Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.5.3 Dual-band Matching Network . . . . . . . . . . . . . . . . . . . 48 3.1.5.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 72-108 GHz Low-Power Tunable Amplifier . . . . . . . . . . . . . . . . . . . . . . 55 3.2.1 Configuration, Sizing, and Bias Tuning Range . . . . . . . . . . . . . . . . 55 3.2.2 Regional Matching Network . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2.1 Impedance Variation . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2.2 Regional Matching Network Design . . . . . . . . . . . . . . . . 60 3.2.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Low-power Down-conversion Mixers 73 4.1 97 GHz Low-power Down-conversion Mixer . . . . . . . . . . . . . . . . . . . . . 74 4.1.1 Mixer Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1.1 Mixer Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1.2 Bias Selection and Device Sizing . . . . . . . . . . . . . . . . . . 77 4.1.1.3 Mixer Implementation . . . . . . . . . . . . . . . . . . . . . . . . 79 4.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.2.1 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 Low-power Multipliers 87 5.1 General Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 56-66 GHz Low-power Frequency Quadrupler . . . . . . . . . . . . . . . . . . . . 89 5.3 172-201 GHz Low-power Frequency Tripler . . . . . . . . . . . . . . . . . . . . . 93 5.4 176-193 GHz Low-power ×12 Frequency Multiplier . . . . . . . . . . . . . . . . . 96 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6 Low-power Receivers 101 6.1 Receiver Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 LO Chain (×12) Integrated 190 GHz Low-Power Receiver . . . . . . . . . . . . . 104 6.2.1 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.2 Low-power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.3.1 LNA and LO DA . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.3.2 Tunable Mixer and IF BA . . . . . . . . . . . . . . . . . . . . . 111 6.2.3.3 65 GHz (V-band) Quadrupler . . . . . . . . . . . . . . . . . . . 116 6.2.3.4 G-band Tripler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.2.4 Receiver Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.5 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7 Conclusions 133 7.1 Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Bibliography 135 List of Figures 149 List of Tables 157 A Derivation of the Gm 159 A.1 Gm of standard cascode stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 A.2 Gm of cascode stage with Lcas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 A.3 Gm of cascode stage with Lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 B Derivation of Yin in the stability analysis 163 C Derivation of Zin and Zout 165 C.1 Zin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.2 Zout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D Derivation of the cascaded oP1dB 169 E Table of element values for the designed circuits 17

    5-GHz SiGe HBT monolithic radio transceiver with tunable filtering

    Full text link

    A 216–256 GHz fully differential frequency multiplier-by-8 chain with 0 dBm output power

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.This work presents a fully differential wideband and low power 240 GHz multiplier-by-8 chain, manufactured in IHP's 130 nm SiGe:C BiCMOS technology with fT/fmax = 300/500 GHz. A single ended 30 GHz input signal is multiplied by 8 using Gilbert cell-based quadrupler and doubler, and then amplified with a wideband differential 3-stage cascode amplifier. To achieve wide bandwidth and optimize for power consumption, the power budget has been designed in order to operate the frequency multipliers and the output amplifier in saturation. With this architecture the presented circuit achieves a 3 dB bandwidth of 40 GHz, meaning a relative 3 dB bandwidth of 17%, and a peak saturated output power of 0 dBm. Harmonic rejections better than 25 dB were measured for the 5th, 6th, and 7th harmonics. It dissipates 255 mW from 3 V supply which results in drain efficiency of 0.4%, while occupying 1.2 mm2. With these characteristics the presented circuit suits very well as a frequency multiplier chain for driving balanced mixers in 240 GHz transceivers for radar, communication, and sensing applications.DFG, 255715243, SPP 1857: Elektromagnetische Sensoren für Life Sciences (ESSENCE

    Monolithic Microwave Integrated Circuits for Wideband SAR System

    Get PDF

    SiGe-based broadband and high suppression frequency doubler ICs for wireless communications

    Get PDF
    制度:新 ; 報告番号:甲3419号 ; 学位の種類:博士(工学) ; 授与年月日:2011/9/15 ; 早大学位記番号:新574

    SiGe BiCMOS front-end circuits for X-Band phased arrays

    Get PDF
    The current Transmit/Receive (T/R) modules have typically been implemented using GaAs- and InP-based discrete monolithic microwave integrated circuits (MMIC) to meet the high performance requirement of the present X-Band phased arrays. However their cost, size, weight, power consumption and complexity restrict phased array technology only to certain military and satellite applications which can tolerate these limitations. Therefore, next generation X-Band phased array radar systems aim to use low cost, silicon-based fully integrated T/R modules. For this purpose, this thesis explores the design of T/R module front-end building blocks based on new approaches and techniques which can pave the way for implementation of fully integrated X-Band phased arrays in low-cost SiGe BiCMOS process. The design of a series-shunt CMOS T/R switch with the highest IP1dB, compared to other reported works in the literature is presented. The design focuses on the techniques, primarily, to achieve higher power handling capability (IP1dB), along with higher isolation and better insertion loss of the T/R switch. Also, a new T/R switch was implemented using shunt NMOS transistors and slow-wave quarter wavelength transmission lines. It presents the utilization of slow-wave transmissions lines in T/R switches for the first time in any BiCMOS technology to the date. A fully integrated DC to 20 GHz SPDT switch based on series-shunt topology was demonstrated. The resistive body oating and on-chip impedance transformation networks (ITN) were used to improve power handling of the switch. An X-Band high performance low noise ampli er (LNA) was implemented in 0.25 μm SiGe BiCMOS process. The LNA consists of inductively degenerated two cascode stages with high speed SiGe HBT devices to achieve low noise gure (NF), high gain and good matching at the input and output, simultaneously. The performance parameters of the LNA collectively constitute the best Figure-of-Merit value reported in similar technologies, to the best of author's knowledge. Furthermore, a switched LNA was implemented SiGe BiCMOS process for the first time at X-Band. The resistive body floating technique was incorporated in switched LNA design, for the first time, to improve the linearity of the circuit further in bypass mode. Finally, a complete T/R module with a state-of-the-art performance was implemented using the individually designed blocks. The simulations results of the T/R module is presented in the dissertation. The state-of-the-art performances of the presented building blocks and the complete module are attributed to the unique design methodologies and techniques

    An ultra-wideband SiGe BiCMOS LNA for w-band applications

    Get PDF
    This article presents the design steps and implementation of a W-band ultra-wideband low noise amplifier (LNA) for both automotive and imaging applications. Three amplifiers based on common-emitter topology with different configurations are manufactured using IHP 0.13 mu m SiGe BiCMOS 300/500 GHz (f(t)/f(max)) SG13G2 technology. A three-stage single-ended structure is proposed for ultra-wideband imaging purposes. As the results are analyzed, this 0.2 mm(2) LNA can operate in a 25 GHz of measured 3-dB bandwidth in W-band with 21 dB peak gain and 4.9 dB average noise figure using 1.5 V supply voltage. It consumes 50 mW of power in the edge operation conditions and the output 1 dB compression point is found as -4 dBm. To the authors' knowledge, this chip achieves one of the best overall performances compared to other W-band LNAs

    An x-band 6-bit active phase shifter

    Get PDF
    This paper presents a 6-bit active phase shifter using a new vector-sum method for X-band (8-12 GHz) phased arrays in 0.13 mu m SiGe BiCMOS process. An RC filter is used to generate two orthogonal vectors which are then fed into four VGAs, two using the common-base and two using the common-emitter topology. This generates 4 vectors of 0 degrees, 90 degrees, 180 degrees and 270 degrees which are scaled and added by varying the gains of the VGAs to generate any phase between 0-360 degrees. The gains of the VGAs are adjusted with analog voltage control using the current-steering method. The outputs of the VGAs are connected together with a common load in order to add the vectors in current-domain. The phase shifter achieves < 5.6 degrees RMS phase error over 8-12 GHz and < 3.1 degrees RMS phase error over 9-11 GHz. The phase shifter has a power consumption of 16.6 mW from a 2V supply. The chip size is 850 mu m x 532 mu m including the probing pads. These performance parameters are comparable with the state of the art of the technology in literature

    A fully integrated low-power SiGe power amplifier for biomedical applications

    Get PDF
    In this work, a full-integrated very-low power SiGe Power Amplifier (PA) is realized using the IHP (Innovations for High Performance), 0.25μm-SiGe process. The behaviour of the amplifiers has been optimized for the 2.1-2.4 GHz frequency band for a higher 1-dB compression point and high efficiency at a lower supply voltage. The PA delivers an output power of 3.75 mW and 1.25 mW for 2V and 1V, respectively. The PA measurements yielded the following parameters; gain of 13 dB, 1-dB compression point of 5.7 dBm, and Power-Added-Efficiency of 30% for 2V supply voltage. The PA circuit can go down to 1V of supply voltage with a gain of 10 dB, 1-dB compression point of 1 dBm, and Power-Added-Efficiency of 20%. For both supply voltages, the input and the output of the circuit give good reflection performance. With this performance, the PA circuit may be used for low-power biomedical implanted transceiver systems
    corecore