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Abstract –This paper presents the design steps and implementation of a W-band ultra-wideband 

LNA for both automotive and imaging applications. Three amplifiers based on common-emitter 

topology with different configurations are manufactured using IHP 0.13µm SiGe BiCMOS 

300/500 GHz (ft/fmax) SG13G2 technology. A three-stage, single-ended structure is proposed for 

ultra-wideband imaging purposes. As the results are analyzed, this 0.2mm2 LNA can operate in a 

25GHz of measured 3dB-bandwidth in W-band with 21dB peak gain and 4.9dB average noise 

figure using 1.5V supply voltage. It consumes 50mW of power in the edge operation conditions 

and the output 1dB compression point is found as -4dBm. To the authors’ knowledge, this chip 

achieves one of the best overall performances compared to other W-band LNAs. 

 

Keywords: Automotive radar, Imaging applications,  SiGe BiCMOS 0.13µm, W-band Low Noise 

Amplifier 
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1. Introduction 

 

The advancements in SiGe technology has paved the way to high level of integration with 

high speed, low-cost and high temperature resolution for mm-wave ICs [1, 2]. However, this 

technology still suffers from increased noise and higher power consumption compared with 

GaAs, InGaAs and InP [3-6] (see Table I). In recent years, there has been significant efforts on 

designing integrated on-chip W-band active phased array systems and TR (transmit / receive) 

modules for commercial, military, space and medical purposes requiring high speed data 

communication. One such area is the use of these radars in automotive applications [7-9]; such as 

blind side detection and cruise control mechanisms, collision avoidance/mitigation systems and 

automated driving units. In addition to automotive applications, other safety / security related 

field exist in imaging applications [10, 11]; such as concealed weapon-detection, security 

screening and video enhancement of low-visibility scenes. Considering the wide range and 

importance of application fields, high quality and low cost transceiver units are required. 

Therefore LNAs are one of the quality determining components in this case due to their gain, 

ability of operation in multiple frequencies and noise figure performances in these units. 

 

In this work, measurement results of the fabricated LNA structures to be used in W-band 

automotive and imaging applications are presented. The chips are built using a low-cost SiGe 

BiCMOS process providing a high-level of integration. The steps until designing a wideband 

amplifier are clearly explained by comparing fabricated chips. Finally a three-stage single-ended 

ultra-wideband W-band HBT-based LNA is proposed and measurement results are discussed. 
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2. Design Procedure 

 

There are various topologies with related trade-offs that can be used in LNA design; such 

as common base/gate, common emitter/source, shunt-series, cascode structures, and so on. 

Working in the mm-wave frequencies does not allow designs to have high gain and also causes 

an increase in the NFmin (minimum noise figure) because of operation close to ft. The gain-noise 

figure trade-off is basically what determines the topology, as well as the design complexity and 

supply voltage. Taking these into account, common-emitter topology, which is the most used 

driving circuit, is utilized in presented designs. While providing comparable gain and very low 

noise, its low output impedance can overcome matching networks with low quality factor [1]. 

Another advantage is that supply voltages will be much lower since a single transistor is fed. In 

order to increase the gain further, cascode and cascade architectures are selected and discussion 

of the results of different configurations is shared. Although the cascaded structure has more 

insertion loss due to increased number of inductors at each stage, the configuration allows a 

simple design with relatively high gain and low noise if the first stage has enough gain to reduce 

the noise of latter stages. Cascode structure, on the other hand, allows increased isolation and 

removes Miller parasitic, however supply voltages and noise figure will be much higher. The 

simplified schematics of the designed amplifiers are shown in Fig. 1. 
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Fig.1. Schematic designs of 1 stage cascade structure (LNA1), 2 stage cascade structure (LNA2), 

3 stage single ended structure (LNA3) 

 

Page 4 of 15

John Wiley & Sons

Microwave and Optical Technology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

It is explicit that a single stage, single-ended amplifier (the core, single BJT) will have the 

lowest noise figure, but gain will not be enough for most applications. Therefore, cascode 

architecture (LNA1) should be manipulated to increase the overall gain while compromising on 

overall noise performance. For wideband applications, the number of stages should be increased 

therefore increasing the complexity and noise figure of design. In this configuration (LNA2), a 

single-ended stage is followed by a second cascode. However, it is expected to have much higher 

noise figure since the gain of first stage is not high enough to lower the noise contribution of the 

second cascode stage. As a result, a three stage single-ended structure (LNA3) will resolve the 

noise figure issue, providing relatively high gain and having a wideband performance. Noise 

contribution of the latter stages are negligible compared to LNA2, which yields a careful 

optimization on the first stage according to the lowest possible noise figure and, on the latter 

stages, optimization to highest gain. Moreover, owing to having no cascode parts, supply owing 

to having no cascode parts, supply voltages will be much lower. Adding another stage provides a 

wider bandwidth with a higher gain, but contradicts with the amplifier stability. In order to make 

the circuit unconditionally stable for the band of interest again, gain should be reduced. However, 

instead of using a 4 stage amplifier, a less-complex 3 stage design achieves almost the same 

specifications. Note that using an ultra-wideband LNA will decrease the noise equivalent 

temperature difference, NETD, given by 

���� =
����

√
�
      (1) 

where Tsys is the noise temperature of the system, B is the bandwidth and τ is the integration time 

[1]. As the bandwidth is increased by using a wide band LNA, more sensitive temperatures can 

be measured in imaging applications. Moreover, in order to enable all automotive radar functions, 

systems should have the ability of clear separation amongst the objects which requires higher 
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resolution and the low noise using SiGe technology will reduce NETD further. Therefore LNA 

design with increased bandwidth and low noise figure is necessary for both applications that 

attracts IC researchers. 

 

Fig. 2. BJT performance graphics to find the optimum bias point of transistor. Noise Figure, Gain 

& Collector Current with respect to changing Collector-Emitter Voltage (VCE: 1V-2V) and Base 

Current (IB: 10µA-50µA) at 77 GHz of operation frequency 

 

To find the optimum bias point of a common-emitter stage, Fig. 2 is drawn. In this figure, 

the changes in noise figure and associated power gain (input matched to optimum noise figure 

and then output conjugately matched for minimum reflection) are highlighted with changing 

collector-emitter voltage (VCE) for some different base currents (IB). By using this data for LNA3, 
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where the same design procedure applies to LNA1 and LNA2, an optimum point of 17µA of IB at 

1.5 V of VCE is found which corresponds to 2.4dB of NF, 10dB of gain and 7.5mA of collector 

current approximately. This optimum point is also utilized for latter stages since the gain and 

noise figure performances are satisfying. 

 

After finding the optimum bias points and placing the bias circuits, input and output 

matching networks are designed accordingly to extract the expected noise figure and gain. L-type 

and Π-type matching networks, including the pad capacitances, are used in input, output and 

inter-stage matching as shown in Fig. 1. For the inductors, simple microstrip transmission lines 

are designed whose lengths are altering between 100µm and 155µm with fixed 3µm width for all 

LNA designs. As a result, the microstrip lines correspond to inductor values ranging from 55pH 

to 95pH with quality factor of 20 and parasitic resistances of 1.4Ω to 2.3Ω. The transmission 

lines are drawn in the upper most metal layer in a 7-layer technology [12] to lower the insertion 

loss and to be able to derive the maximum current without damaging the lines (3µm-thick 

TopMetal2). Additionally, ground shields are used below the inductors to enhance the quality 

factor performance by removing the substrate parasitic. Also, MIM (metal-insulator-metal) 

capacitors are placed for RF ground, DC blocks and in matching circuits. These foundry provided 

capacitors have high quality factors and are placed between TopMetal1 and Metal5 with a 

dielectric thickness of 40nm and relative permittivity of 6.75. For the upper and lower plates, 

150nm thick special MIM layers and Metal5 layer are used. GSG pad capacitances of about 15fF 

are also included in the schematic level designs. 

 

Considering all these design procedures, full EM simulations are performed in Agilent ADS 

software and the designed LNAs were manufactured at IHP-Microelectronics by using SiGe 
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BiCMOS 0.13µm SG13G2 technology. The fabricated LNA chips can be seen in Fig. 3. They 

occupy approximately 400µm X 500µm of area (0.18mm2, 0.21mm2 and 0.2mm2 from LNA1 to 

LNA3). 

 

    

 

Fig. 3. Fabricated chip photos. TopLeft: 1 stage cascade structure (LNA1), TopRight: 2 stage 

cascade structure (LNA2), Bottom: 3 stage single-ended structure (LNA3) 
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3. Measurement Results 

 

Measurements are conducted in the SUNUM labs (Sabanci University Nanotechnology 

Research and Application Center) using a PNA 5245A Network Analyzer. 

The edge operation conditions are as follows. LNA1 which is composed of a single cascode 

stage derives 5.2mA of current in total and consumes 10.64mW of power. On the other hand, 

LNA2 which has a cascode structure only on the second stage, consumes 60mW by drawing 

28.6mA. Finally, LNA3 is formed by cascading three single-ended parts and absorbs 50.55mW 

with 33mA. In Figs. 4-5-6, measured (straight lines) and simulated (dashed lines) S-parameter 

performances of the LNAs are highlighted. LNA1 has 17dB peak gain at 80GHz from a single 

stage (see Fig. 4). 

 

Fig. 4. Measured & Simulated (dashed) performance parameters of LNA1 

 

In the 82-85GHz band, input and output return losses are both below 10dB with 16.5dB 

gain and 30dB isolation. The measured 3dB-bandwidth is 11GHz. From the simulations, average 
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noise figure in this band is found to be 5.1dB and gain performance is parallel to measurement 

results. However a 3GHz of frequency shift is observed at both input and output ports.  

 

Fig. 5. Measured & Simulated (dashed) performance parameters of LNA2 

 

On the other hand, at 76GHz, 25dB of gain can be extracted from LNA2 with well-matched 

input below 20dB and simulated noise figure of about 7.5dB (Fig. 5). The noise figure can be 

decreased with the lowered bias voltage as these figures represent the performances in the edge 

operating conditions. 

 

As stated in the previous sections, the ultra-wide band performance is attained from LNA3 

with a flat over 15dB gain throughout the entire W-band, with 21dB peak, as shown in Fig. 6. 

Input and output are well matched below 10dB in a minimum-25GHz bandwidth between 75-

110GHz. The available setup allows measurements between 75-110GHz, however in the 

simulations, 3dB bandwidth is found as 35GHz, covering the entire V-band & W-band. Noise 

figure is also very low for such high frequencies, which is 4.9dB on average in simulations, 
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where isolation is more than 40dB. For the schematic design in which only lumped components 

are used for an overall look at the very first design steps, noise figure is tried to be matched in 

first stage without much compromise in gain, return loss and bandwidth. Considering the selected 

bias points and these constraints, minimum noise figure is found near 70 GHz. However in full 

layout simulations, this frequency shifted to 60 GHz being 4dB and, at 77 GHz, noise figure is 

simulated as 4.45dB. From the simulations it is seen that the measured results almost overlaps the 

simulation results in gain and return loss performances. 

 

 

Fig. 6. Measured & Simulated (dashed) performance parameters of LNA3 

 

In Fig. 7, input and output power handling performances extracted from the simulations of 

each are presented. From the results, it is seen that LNA1, LNA2 and LNA3 have output 1dB 

compression points of -6dBm, -10dBm and -4dBm. Furthermore LNA3 has a 5.5dBm of OIP3 

(output third order intercept point) from two-tone intermodulation simulations. 
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Fig. 7. Simulated Input/Output 1dB compression point of LNAs and IIP3 / OIP3 point of LNA3 

 

In Table I, some of the state-of-the-art LNAs (mostly SiGe technology for a proper 

comparison including some other technologies) operating in W-band are shown. According to the 

results of proposed LNA3, highest bandwidth and gain with low noise figure are extracted while 

input and output return losses are better than 10dB for the whole frequency band which implies 

that LNA3 could be used as a complete amplifier, not requiring any off-chip matching networks. 
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TABLE I 
COMPARISON OF STATE-OF-THE-ART W-BAND LOW NOISE AMPLIFIERS 

Ref Technology Used Arch. 
fo 

(GHz) 
Gain 
(dB) 

NF 
(dB) 

RL (dB) < 
10dB 

3dB BW 
(GHz) 

Power 
(mW) 

OP1dB 
(dBm) 

[1] 
0.13µm 

SiGe 
BiCMOS 

4stage SE-
CE 

85-89 19 8 94-98 GHz 
17 (80-

97) 
25 -3 

[2] 
0.13µm 

SiGe 
BiCMOS 

2stage C-
CE 

110 20 4 
100-115 

GHz 
20 (100-

120) 
17 -4 ** 

[3] 
90nm SiGe 
BiCMOS 

4stage SE-
CE 

90 19 5.1 
S11 not 

well 
30 (75-

105) 
43 -3 

[4] 
70nm GaAs 

mHEMT 
4stage SE-

CS 
80-95 25 2.7 ** 

S11 not 
well 

35 (70-
105) 

35 2 ** 

[5] 
50nm 

InGaAs 
mHEMT 

3stage SE-
CS 

57-110 
16.4-
23.2 

2.1-2.8 75-90 GHz NG 0.9 -1.4 

[6] 
0.1µm InP 

HEMT 
3stage 94 19.4 2.5 

S11 not 
well 

35 (67-
102) 

18 NG 

[10] 
0.18µm 

SiGe 
BiCMOS 

2stage C-
CE 

77 14.5 6.9 76-85 GHz 
14.5 (69-

83.5) 
37 3.1 

[11] 
65nm 

CMOS 
5stage SE-

CS 
90 27 6.8 S22 NG 10 36 NG 

This 
Work 

0.13µm 
SiGe 

BiCMOS 

3stage SE-
CE 

77 21 4.5 ** 
75-100 
GHz 

> 25 (75-
100) 

50 -4 ** 

C: cascode, SE: single-ended, CE: common-emitter, CS: common-source, NG: Not Given, 
**
: simulated.  

For the return loss, a common frequency band is extracted where both input and output return losses are better than 

10dB. 

 

 

 

4. Conclusion 

 

This paper presents the results of fabricated W-band LNA chips that were built using the 

SiGe BiCMOS 0.13µm SG13G2 technology of IHP Microelectronics. The chips are designed 

based on common-emitter topology with cascode, single-ended and multi-stage configurations. 

Among these chips, the three stage, single-ended HBT-based amplifier offers an ultra-wideband 

operation to be utilized in W-band automotive and imaging applications. To the best of the 
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authors’ knowledge, this design achieves one of the best overall performances compared to other 

W-band LNAs (see Table I). 
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