1,568 research outputs found

    A Breezing Proof of the KMW Bound

    Full text link
    In their seminal paper from 2004, Kuhn, Moscibroda, and Wattenhofer (KMW) proved a hardness result for several fundamental graph problems in the LOCAL model: For any (randomized) algorithm, there are input graphs with nn nodes and maximum degree Δ\Delta on which Ω(min⁥{log⁥n/log⁥log⁥n,log⁡Δ/log⁥log⁡Δ})\Omega(\min\{\sqrt{\log n/\log \log n},\log \Delta/\log \log \Delta\}) (expected) communication rounds are required to obtain polylogarithmic approximations to a minimum vertex cover, minimum dominating set, or maximum matching. Via reduction, this hardness extends to symmetry breaking tasks like finding maximal independent sets or maximal matchings. Today, more than 1515 years later, there is still no proof of this result that is easy on the reader. Setting out to change this, in this work, we provide a fully self-contained and simple\mathit{simple} proof of the KMW lower bound. The key argument is algorithmic, and it relies on an invariant that can be readily verified from the generation rules of the lower bound graphs.Comment: 21 pages, 6 figure

    A model for configuration spaces of points

    Full text link
    The configuration space of points on a DD-dimensional smooth framed manifold may be compactified so as to admit a right action over the framed little DD-disks operad. We construct a real combinatorial model for these modules, for compact smooth manifolds without boundary

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials
    • 

    corecore