28,136 research outputs found

    Early Cenozoic denudation of central west Britain in response to transient and permanent uplift above a mantle plume

    Get PDF
    Upwelling mantle plumes beneath continental crust are predicted to produce difficult to quantify, modest uplift and denudation. The contribution of permanent and transient components to the uplift is also difficult to distinguish. A pulse of denudation in Britain in the Early Paleogene has been linked, although with some controversy, with the arrival of the proto-Iceland mantle plume. In this contribution we show that combining apatite and zircon (U-Th-Sm)/He and apatite fission track analyses from central west Britain with numerical modeling clearly identifies a pulse of early Cenozoic denudation. The data indicate that rock uplift and denudation were centered on the northern East Irish Sea Basin and 1.0–2.4 km of rocks were removed during the latest Cretaceous-early Paleogene. Uplift and erosion appears to have started a few million years before the earliest magmatism in the region. The regional denudation pattern mirrors the distribution of low-density magmatic rocks that has been imaged in the deep crust. However, the injection of the underplating melt is not enough to account for the total denudation. An additional regional uplift of at least 300 m is required, which is consistent with a transient thermal effect from the hot mantle plume. The rapid exhumation event ceased by ~40 Ma and the data do not require significant Neogene exhumation

    The North Atlantic marine reservoir effect in the early Holocene: implications for defining and understanding MRE values

    Get PDF
    The marine reservoir effect (MRE) is a <sup>14</sup>C age offset between the oceanic and atmospheric carbon reservoirs. The MRE is neither spatially nor temporally constant and values may deviate significantly from the global model average provided by the Marine04 curve. Such a deviation is calculated as a ©R value and modern (pre-bomb) values show considerable spatial variations. There is also considerable evidence for temporal variability linked to paleoenvironmental changes identified in paleoclimatic proxy records. Seven new ©R values are presented for the North Atlantic, relating to the period c. 8430 3890 cal. BP (c. 6480 1940 BC). These were obtained from <sup>14</sup>C analysis of multiple samples of terrestrial and marine material derived from seven individual archaeological deposits from Mainland Scotland, the Outer Hebrides and the Orkney Isles. The ©R values vary between 143 ± 20 14C yr and ‑100 ± 15 <sup>14</sup>C yr with the positive values all occurring in the earlier period (8430 5060 cal. BP), and the negative values all coming from later deposits (4820 3890 cal. BP). The nature of MRE values and the potential for spatial and temporal variation in values is the subject of current research interest and these data are placed in the context of (i) other estimates for UK coastal waters and (ii) important questions concerning current approaches to quantifying the MRE

    Marine radiocarbon reservoir effects for the Mesolithic and Medieval Periods in the Western Isles of Scotland

    Get PDF
    This article presents new values for the Scottish marine radiocarbon reservoir effect (MRE) during the Mesolithic at 4540–4240 BC (6490–6190 BP) and the Medieval period at AD 1460–1630 (490–320 BP). The results give a ΔR of –126±39 14C yr for the Mesolithic and of –130±36 14C yr for the Medieval. We recalculate previously published MRE values for the earlier Holocene in this region, at 6480–6290 BC (8430–8180 BP). Here, MRE values are slightly elevated, with a ΔR of 64±41 14C yr, possibly relating to the 8.2ka BP cold event. New values for the Mesolithic and Medieval indicate lower MRE values, broadly consistent with an existing data set of 37 mid- to late Holocene assessments for Scottish waters, indicating stable ocean conditions. We compare the intercept and probability density function (PDF) methods for assessing ΔR. The ΔR values are indistinguishable, but confidence intervals are slightly larger with the PDF method. We therefore apply this more conservative method to calculate ΔR. The MRE values presented fill important gaps in understanding Scottish marine 14C dynamics, providing confidence when calibrating material from critical periods in Scotland’s prehistory, particularly the Mesolithic, when the use of marine resources by coastal populations was high

    The origin of beach sediments on the North Queensland coast

    Get PDF
    Petrographic and granulometric analyses of North Queensland beach sediments indicate their affinity with sediments delivered to the coast by rivers, and it is shown that the beaches are largely derived from fluvial sediment reworked, sorted and distributed by the dominant south-easterly waves in coastal waters. Beach sediments are generally quartzose, with subordinate felspars and admixtures of coralline sediment near fringing reefs and lithic material near river mouths and rocky shore sectors. The prevailing northerly drift of shore sediment is reduced, and locally reversed, on sectors sheltered from the dominant south-easterly waves by headlands, reefs and islands. Variations in beach sediment are related to wave conditions, distance from river-mouth sources, and patterns of drift. Four Mile Beach, near Port Douglas, is identified as anomalous in its morphological and sedimentological characteristics. It has been cut off from former sources of sediment, both fluvial and longshore, as a result of reef extension around the mouth of Mowbray River, and is now essentially a relict beach system attaining sedimentological maturity

    Spatial variation in the MRE throughout the Scottish Post-Roman to late Medieval period: North Sea values (500-1350 BP)

    Get PDF
    The marine radiocarbon reservoir effect (MRE) occurs as a spatially and temporally dependent variable owing to localized changes in oceanic water composition. This study investigates ΔR values (deviations from the global average MRE whose ΔR = 0) during the period 500–1350 BP for the east coast of Scotland, where a complex estuarine system exists that drains into the semi-enclosed North Sea basin. Due to the availability of suitable archaeological samples, the data set has a distinct Medieval focus that spans the area from Aberdeen in the north to East Lothian in the south. Many of the ΔR values are not significantly different from 0 (the global average), but there are occasional excursions to negative values (max –172 ± 20) indicating the presence of younger water. These values show greater variability compared to other published data for this general region, suggesting that considerable care must be taken when dating marine derived samples from archaeological sites on the east coast of Scotland

    The role of forensic geoscience in wildlife crime detection

    Get PDF
    The increase in both automation and precision in the analysis of geological materials has had significant impact upon forensic investigations in the last 10 years. There is however, a fundamental philosophical difference between forensic and geological enquiry. This paper presents the results of forensic geoscientific investigations of three cases of wildlife crime. Two cases involve the analysis of soils recovered after incidents of illegal badger baiting in the United Kingdom. The third case involves the illegal importation of Eleonora's Falcon (Falco eleonorae) into the United Kingdom from the Mediterranean. All three cases utilise the analysis of soils by a variety of physical, chemical and biological techniques. These involve mineral and grain size analyses, cation and anion compositions, pH, organic content and pollen analysis.The independent analysis undertaken by specialists in each of these three main fields conclude firstly, that there is a significant similarity between sediments taken at the crime site at both badger setts and with sediments recovered from various spades, shovels and clothing belonging to suspects and secondly, that the soils analysed associated with the removal of the falcon eggs in the Mediterranean contained characteristics similar in many respects to the soils of the breeding areas of E eleonorae on the cliffs of Mallorca. The use of these independent techniques in wildlife crime detection has great potential given the ubiquitous nature of soils and sediments found in association with wildlife sites. (c) 2006 Elsevier Ireland Ltd. All rights reserved

    Measuring plume-related exhumation of the British Isles in Early Cenozoic times

    Get PDF
    Mantle plumes have been proposed to exert a first-order control on the morphology of Earth's surface. However, there is little consensus on the lifespan of the convectively supported topography. Here, we focus on the Cenozoic uplift and exhumation history of the British Isles. While uplift in the absence of major regional tectonic activity has long been documented, the causative mechanism is highly controversial, and direct exhumation estimates are hindered by the near-complete absence of onshore post-Cretaceous sediments (outside Northern Ireland) and the truncated stratigraphic record of many offshore basins. Two main hypotheses have been developed by previous studies: epeirogenic exhumation driven by the proto-Iceland plume, or multiple phases of Cenozoic compression driven by far-field stresses. Here, we present a new thermochronological dataset comprising 43 apatite fission track (AFT) and 102 (U–Th–Sm)/He (AHe) dates from the onshore British Isles. Inverse modelling of vertical sample profiles allows us to define well-constrained regional cooling histories. Crucially, during the Paleocene, the thermal history models show that a rapid exhumation pulse (1–2.5 km) occurred, focused on the Irish Sea. Exhumation is greatest in the north of the Irish Sea region, and decreases in intensity to the south and west. The spatial pattern of Paleocene exhumation is in agreement with the extent of magmatic underplating inferred from geophysical studies, and the timing of uplift and exhumation is synchronous with emplacement of the plume-related British and Irish Paleogene Igneous Province (BIPIP). Prior to the Paleocene exhumation pulse, the Mesozoic onshore exhumation pulse is mainly linked to the uplift and erosion of the hinterland during the complex and long-lived rifting history of the neighbouring offshore basins. The extent of Neogene exhumation is difficult to constrain due to the poor sensitivity of the AHe and AFT systems at low temperatures. We conclude that the Cenozoic topographic evolution of the British Isles is the result of plume-driven uplift and exhumation, with inversion under compressive stress playing a secondary role

    Knowing what we count : a comment on Guo

    Get PDF
    Guo (2011) points to problems arising from different approaches to estimating the proportions of floras that are native or alien, specifically those across and within various regions. This results in inconsistency of numbers reported from internal administrative units by underestimating the numbers of species that are alien to the region and overestimating native species richness. Resulting species numbers and proportions for smaller units within large countries, or whole continents, can be seriously biased if only species alien to the larger unit as a whole are considered alien, while all other species are considered native
    • 

    corecore