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Abstract

The increase in both automation and precision in the analysis of geological materials

has had significant impact upon forensic investigations in the last 10 years. There is

however, a fundamental philosophical difference between forensic and geological

enquiry. This paper presents the results of forensic geoscientific investigations of

three cases of wildlife crime. Two cases involve the analysis of soils recovered after

incidents of illegal badger baiting in the United Kingdom. The third case involves the

illegal importation of Eleonora’s Falcon (Falco eleonorae) into the United Kingdom

from the Mediterranean. All three cases utilise the analysis of soils by a variety of

physical, chemical and biological techniques. These involve mineral and grain size

analyses, cation and anion compositions, pH, organic content and pollen analysis.

The independent analysis undertaken by specialists in each of these three main fields

conclude firstly, that there is a significant similarity between sediments taken at the

crime site at both badger setts and with sediments recovered from various spades,

shovels and clothing belonging to suspects and secondly, that the soils analysed

associated with the removal of the falcon eggs in the Mediterranean contained

characteristics similar in many respects to the soils of the breeding areas of Falco

eleonorae on the cliffs of Mallorca. The use of these independent techniques in

wildlife crime detection has great potential given the ubiquitous nature of soils and

sediments found in association with wildlife sites.

Key words: Forensic Geoscience; Eleonora’s Falcon, Badger Baiting; soil and

sediment; pollen; quartz
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1. Introduction

Forensic geoscience is a rapidly developing branch of criminal investigation utilising

the analysis of rocks, sediments and soils by studying the physical, chemical and

biological components of a sample. The rapid development of analytical techniques,

machinery and to some extent automation, enables very detailed characteristics of a

sediment to be identified from large numbers of samples. Soils and sediments are

now routinely analysed to compare crime sites with items belonging to a suspect and

their vehicles.

The increased detection capabilities of analytical techniques enables at least parts per

million of a chemical, or individual sediment grains, which are nanomicrons in size,

to be identified. The early work of Edmond Locard [1], where he implied that ‘every

contact leaves a trace’, is now more pertinent than ever before.

This paper provides three examples of the application of some forensic geoscience

techniques in the investigation of wildlife crime. Two cases involving badger-baiting

and one case of illegal importation into the United Kingdom of an endangered species

of bird, are presented showing how complementary analytical techniques were

employed to compare samples taken from the scenes of the crime with those taken

from belongings of suspects (see also [2]). The interpretation of the results are

included, mindful of the philosophical and practical restraints that should be

employed in such analyses.
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2. The Philosophy and Nature of Forensic Geoscience

In order to provide accurate forensic geoscientific interpretations from the analysis of

sediments and soil, it is important to recognise the difference between geological and

forensic procedures. A plethora of techniques can be found to analyse the physical,

chemical and biological components that make up sediments and soils. Whilst many

of these techniques provide a very accurate, experimentally reproducible series of

data, they imply an advantage of the capability of being automatically analysed in

large batches. The primary aim of geological analysis is often that of

palaeoenvironmental and geological reconstruction. The area of investigation can

range from microscopic to global in scale. Forensic investigation involves the

comparison of samples taken from a crime scene with those samples recovered from a

person or their belongings. Sometimes the forensic aim is that of determining the

provenance of material. The forensic geoscience rationale is to exclude a sample

from a comparator sample by means of their physical, chemical or biological

characteristics [3] [4]. It is very rare in forensic geology to be able to ‘match’ two

samples; a physical fit of two broken rocks is indeed an unusual occurrence. By their

very nature soils and sediment vary not only within a spatially restricted site, but they

may also contain similar characteristics to soils and sediments from other sites. This

does not stop some practitioners from attempting to find matches between samples [5]

[6], or at least to strive to find similarities [7].

When samples are analysed, the resultant interpretation may be to exclude, not match

samples. Analysis may provide descriptive qualities of the soil or sediment which

may, or may not, be diagnostic. If two samples possess similar descriptive attributes
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in any number of physical, chemical or biological characteristics, they may well have

derived from one common source, but equally they could have derived from separate

sources of similar characteristics. Therefore, it is very important when interpreting

the results of soil and sediment analyses that due care is given to the exclusion of

samples and that the samples which show very similar characteristics are viewed in

the context of the distinctiveness or rarity of their particular attributes. Kirk ([8] p2)

stated ‘physical evidence can not be wrong; it can not perjure itself; it can not be

wholly absent. Only in its interpretation can there be error’.

There is a further difference between geological and forensic analyses which is

necessitated by the relative quantities of material typically available. Geological

analyses often involve quite large amounts of material whereas forensic analysis is

often undertaken, particularly from anthropogenic sources, on only trace amounts of

soil or sediment. Thus the whole gambit of procedures and techniques highlighted by

Palenik (as presented by Murray and Tedrow [9]) cannot usually be fulfilled.

It is abundantly clear that wherever possible a range of independent techniques are

required before meaningful interpretation of results can be provided. (The cases

presented in this paper utilise biological and pollen techniques together with physical

and chemical attributes of the soil and sediments with particular reference to

mineralogy). However, the use of certain tests that are used widely in geological

analysis do have inherent problems for forensic enquiry. Analytical techniques which

require the homogenisation of a sample prior to analysis can prove very problematic

for the forensic scientist [10]. Standard chemical analysis techniques which require

the reduction of a sample to a solution will inevitably homogenise the whole sample.
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Thus, the interpretation of atomic absorption spectrophotometry (AAS) and

inductively coupled plasma spectrometry (ICP) analysis, whilst potentially capable of

distinguishing between comparison samples, is unable to determine whether an

observed analytical difference is caused by mixing of sediment or contamination that

has occurred prior or subsequent to the forensic event. False-positive or false-

negative associations or exclusions can not be checked and interpretation will

inevitably be compromised. Similar homogenisation occurs when samples are

automatically colour graded (e.g. using a spectrophotometer) following the

pulverisation of a deposit into a uniform pellet. Once again, contamination or mixing

can not be taken into account and so meaningful comparison is once again

compromised. Finally, similar problematic interpretations may occur following grain

size analysis, although as will be seen in this paper, given sufficient care, results can

prove illuminating.

3. Case Studies

3.1 Suspected badger (Meles meles) baiting identified by comparison of

material taken from two spades with material from the crime scene

3.1.1 Mineralogy, grain size and quartz grain surface texture analysis

The physical characteristics of two soil samples taken from the badger sett site

(surface and depth) were compared to the material taken from two spades (spade 1

and spade 2; figure 1). Munsell colour analysis indicated that all four samples were

designated 2.5YR 4/6, which approximates a reddish colour and is one of the

categories of the 80 or more recognised by the Munsell system of classification. Of
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course, colour can only work as an exclusionary and descriptive technique, since the

homogenisation required to prepare the sample would inevitably fail to identify

mixing and contamination around a forensic incident. Thus, false-positive or negative

associations can not be tested for falsehood [10].

Chemical appraisals of the pH and conductivity of the soil samples together with AAS

and Dionex analysis to identify cation and anion concentrations of the most common

elemental types were undertaken. Results are presented in figures 2 and 3. Given the

general variability even within one soil type, the variances identified from comparison

between the two spades and the two site samples suggested that the samples could not

be excluded from having derived from the same or similar source. Indeed, the range

analysed was broadly the same with only a small variance between comparator

samples such as would be found in the natural fluctuation within one soil type. It is

important to note that this simple analysis can not exclude the two spade samples and

the site samples from having derived from the same or similar source.

The four samples were analysed by binocular microscopy to obtain a broad indication

of the presence of detrital minerals and other debris. All samples showed

assemblages of quartz, rounded iron rich nodules, small agglomerates of reddish clay

and light coloured root fibres, together with small amounts of wood and organic

debris (see figure 4). The limited sand-sized soil content was striking as the samples

were remarkably lacking in the normal detrital mineral assemblages. No further

binocular analysis was undertaken.
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Grain size analysis was undertaken on the two samples taken from the badger sett and

soil recovered from the two spades. The analysis by laser granulometry showed that

the grain size distribution curves were very similar to each other, with the exception

of the sample analysed from the front of spade 2 (see figure 5). The discrimination of

one subsample from a source sample could be explained with reference to

contamination by materials previously deposited on the spade. The technique has no

means of differentiating such contamination, and as such is often used purely as a

descriptive mechanism and usually only as an exclusionary tool. Similarities can be

noted; no more than that.

Finally, analysis was undertaken to investigate the surface grain textures of individual

quartz particles. A substantial literature has been built up in international journals

relating the textures of individual grains of quartz, viewed often under high

magnification by a scanning electron microscope [11]. In geological investigations,

forty or more textures have been identified and all can be attributed to geological

processes and conditions. Such detail enables samples to be compared and exclusions

to be identified. This generally ubiquitous mineral, found in most soils, contains grain

types (these are an amalgam of suites of grain surface features) that can vary

dramatically from site to site. Bull and Morgan [12] identify that there are only a very

discrete number of quartz grain types found in each sample, taken across England (n =

c.1000 from which a database was constructed) and that it is possible to compare

comparator grains to sample grains, and if the quartz grain types were different, then

they could be excluded from having derived from the same source.
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Samples taken from both the surface and at depth at the badger sett site, contain three

main types of quartz grain textural groupings. This combination of groups is not

found in any of the thousand sample locations in England. One particular grain

texture found on the grains taken from both the surface and depth samples at the

badger sett is distinctive, being found on only 1.93% of the 30,000 quartz grains in the

database. This grain type; an elongated euhedral overgrowth with terminations is

pictured in figures 6, 7, 8 and 9. This makes a very significant marker grain and is

found from soil samples taken from both the front and back of the spades. Indeed, all

the samples from the two spades contain the same three grain type assemblage as

found at the badger sett.

It could be reasonably expected that in employing the above techniques, samples of

soil taken from the two spades would be able to be excluded from the source samples

taken from the badger sett, if significant differences had been found. The techniques

employed contained techniques not dependent on each other (colour, conductivity,

pH, and chemical content could reasonably be argued to have some dependent

characteristics, although these are independent of quartz grain surface texture analysis

and to some extent grain size analysis) and in conclusion they can not exclude the

samples from having derived from the same location. Indeed, the similarities in

analysis in all samples in this case is noted and considered to be very significant.

3.1.2 Palynology

Palynological analysis was undertaken on soil samples taken from the two spades

(spade 1 and spade 2; figure 1) and from two areas of a badger sett which had been

dug in order to access the animal. The results were obtained following standard
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methods, laboratory sampling, identification and counting following that of Bennett et

al. [13], Moore et al. [14] and Stace [15]. No attempt was made to differentiate taxa if

there was any room for doubt in identification, many taxa were identified only to

family or generic level. The standard published keys and modern reference materials

outlined in the references above and by Edwards [16] and Anderson [17] were

utilised. The percentage results for each of the four samples are presented in figure

10, and the data are arranged according to various groups: fungal/algal remains;

trees/shrubs/climbers; spore producers; and herbs.

If a spade has dug into a soil, there will be both shallow and deeper soil represented

on the blade and it is important therefore, to have some knowledge of the

palynological nature of the soils in the upper and lower levels of the profile. In most

instances, soil formation (pedogenesis) is a dynamic process and organic materials are

constantly added and decomposed. Depth may be equated with age and as such the

amount of decay or corrosion of organic material such as pollen grains and spores is

largely a function of their residence time within the soil. The longer they have been

present, the more likely they are to be decomposed and difficult to identify.

It is important to note that some palynomorphs are relatively resistant to

decomposition whilst others are very vulnerable. Thus, deeper soils tend to have

palynological profiles somewhat biased towards robust taxa and higher numbers of

decayed and unidentified palynomorphs would be expected. Surface and shallow

soils have palynological profiles which are more representative of extant vegetation at

any location. Figure 10 shows that the numbers of unidentified palynomorphs are

highest in the site sample taken at depth and this reflects their residence time within
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the soil. The percentage for corroded and decayed pollen and spores was 32.1% of

the total count compared to only 1.6% in the surface soil. This result is what is to be

expected; the shallow sample had larger numbers of easily identified palynomorph

taxa and a lower number of corroded and unidentified ones than the deep sample.

When the proportions of the various taxa are reviewed from the two soil samples from

the sett, it can be seen that there were much higher values of Alnus (alder), Quercus

(oak), Tilia (lime) and Caluuna (common heather) in the lower soil than the upper.

These taxa are robust and tend to be recognisable after relatively long residence times

in the soil. Most other taxa had lower percentages in the lower sample and this is a

function of decomposition. It must also be remembered that vegetation can change

with time so that a deep soil will be more representative of vegetation that might be

different from that present at the site today.

Although one sample was taken deep within the soil profile and the other from nearer

the surface there was sufficiently close similarity to recognise that they were from the

same soil profile (figure 10). The similarity between these two controls was also

confirmed by the background debris and character of the fungal remains as well as the

pollen and plant spore assemblages. There is little doubt that the profile represents a

largely open habitat but that deciduous trees and shrubs and Pinus were growing in

the catchment.

Figure 10 also demonstrates the close similarity between the pollen assemblages

recovered from soils taken from the two spades. They have very similar ranges of
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palynomorphs, indeed, approximately 66% were in common and the proportions of

most taxa were within a similar range.

It must be remembered that soil is a complex matrix and that there will be a certain

degree of spatial heterogeneity in palynomorph distribution. An identical ‘match’

could never be expected, either between the two spades or the spades and the site

samples. There were for example, traces of Picea (spruce), Salix (willow), Tilia

(lime) in the soils from the sett that were not found on the spades. When so few

pollen grains of these taxa were present in the original soil, it is not surprising that

some failed to be transferred to the spades. The spades might have been used for

other work so that mixed assemblages (contamination) might be present. A garden

plant such as Ligustrum/Syringa (privet/lilac) was found on spade 1 but not on spade

2, and again this is not surprising because as they are insect pollinated their pollen is

relatively rare in soils, even in close proximity of the parent plant.

Overall, the taxa found on the spades bear closest resemblance to those taken from the

upper soil of the badger sett, although many of the taxa present from the soil taken at

depth in the badger sett were also found on the spades.

In conclusion, if the sett were not the source of the soil then to achieve the

palynological profile observed on the spades, there must be a place offering identical

conditions. Such similar sites, the existence of which is theoretically possible, has yet

to be encountered by the authors.
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3.2 The illegal importation into the UK of Eleonora’s Falcon (Falco

Eleonorae)

A man was detained in southern England being in possession of two young falcons

(Falco Eleonorae). Subsequent searching of his house revealed a bag containing

various items of climbing kit, including a ‘new’ rope which was dirty only over the

initial length of 19.9m. The rest of the rope was clean and looked brand new since it

contained paper labels which were fresh and not worn by use. The dirty rope was

washed to retrieve soil particles and the mixture was concentrated by centrifuge for

analysis. The soil was markedly red in colour. This sample was compared with four

samples taken from locations on the island of Mallorca, where it was known that these

birds bred in the wild.

Binocular microscope analysis of the soil taken from the rope was found to contain

plant debris, limestone and calcite particles, shell fragments and quartz grains together

with a fine matrix of red soil. Scanning electron microscopy of the same soil material

derived from the rope revealed two main types of quartz grain surface texture

assemblages (see the case above for background details). The quartz grains showed

some grains which were very blocky and angular and seemed to have derived from

the in situ breakdown of a larger quartz conglomerate pebble deposits. There was

also a distinctive quartz grain with well formed euhedral plates, some edges of which
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showed no edge abrasion whatsoever (this implies near source provenance of the

material from a diagenetic sandstone lens).

The soil from the rope provided an unusual bi-modal grain size distribution with a

median size of 8.5 microns, a clay fraction of 14.7% and a silt fraction of over 83%.

Chemical analysis (AAS and dionex) of the same soil indicated that the fine grain

material originated from limestone redzina type soil with large amounts of sodium

chloride. Allied to this chemical analysis was pollen identification which identified

the presence of pine, fir, oak, grass and pistachio. Furthermore, SEM analysis also

identified the presence of micritic calcite grains and a large number of diatom

fragments. Since the pollen assemblage contained palynomorphs not found within a

British context, overseas origins of the material taken from the rope could be sought.

Soil samples were subsequently collected in four sites in Mallorca in areas known to

be the type of habitat that Falco Eleonorae would find suitable as a breeding area.

All four samples were subjected to the same analytical tests to include binocular

microscopy, scanning electron microscopy of quartz grain surface textures, grain size

analysis, basic cation and anion chemical analysis and pollen analysis.

All four samples contained the same general materials identified from the material

taken from the climbing rope, whereas scanning electron microscopy of the quartz

grain surface textures was able to exclude two of the samples as having been the

source of the soil found on the rope. Grain size analysis, although somewhat of a

descriptive technique, was able in this case to identify that the statistical parameters of

the grains found in one of the two remaining samples were so different to that of the
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characteristics of the soil taken from the rope that it was extremely unlikely that they

both derived from the same source.

It was therefore, possible to exclude the soil from three potential breeding sites in

Mallorca as having been the source of the soil recovered from the rope. It was not

possible to exclude the remaining site sample as having been the source of the soil

from the rope. This evidence contributed towards a guilty verdict and the first

custodial sentence imposed for such a crime committed in Britain.

3.3 Suspected badger (Meles meles) baiting identified by comparison of

materials taken from boots and spades

A man was arrested in a suspected case of badger-baiting close to a badger sett that

had been dug up. Two spades were seized from his vehicle, as were the boots that he

was wearing, which were caked in mud. A soil sample was taken from the badger sett

to compare with the soil recovered from the boots and spades.

The sample from the badger sett was taken from a very disturbed site, so in the

laboratory, ten subsamples were taken from this bulk sample (of approximately 1kg).

This was to account for any within sample variance that may have existed through the

different horizons of the soil profile that had been incorporated into the original bulk

sample. Each spade was divided into 20 specific areas and a soil sample taken from

each point. The boots were treated in a similar manner and it was possible to take 10

samples from the right boot and 14 from the left boot.
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A series of physical and chemical analytical techniques, were undertaken to compare

the soil samples taken from each exhibit and the soil taken from the badger sett site.

Using the Munsell colour classification system, samples from the sett, boots and

spades were designated colour codes, and these were all found to be within a very

similar range. The pH values of these samples were again all within a similar range,

with the possible exception of spade 1. A measure of the dissolved solids in distilled

water was also undertaken by way of measuring the conductivity of these soil

samples. The soil samples from the sett and spades had similar readings in the range

215-220S, while the soil samples taken from the boots had higher conductivity

values. All of these results are presented in summary form in figure 11.

Binocular microscopy of all the soil samples revealed a very distinctive assemblage of

particle mineralogy and petrology as shown in figure 12. The assemblages found in

each sample are similar to each other, and are noteworthy due to the small number of

constituents present. These assemblages are of very local origin and their presence in

all of the samples analysed can be deemed significant. It is not possible to exclude

the soil taken from the spades or the boots as having derived from the same source as

the soil sample from the badger sett. In addition, a number of black and white hairs

were found in some of the samples taken from spade 2 and from both boots. These

were subsequently examined by binocular microscopy, and found to be elliptical in

cross-section, black and white in colour, and in some instances to have black and

white bands. These were identified as badger hair (Meles meles) ([18] [19] [20]).
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Simple chemical analysis was undertaken on the samples using AAS and Dionex as

outlined in the previous case. The results are presented in summary form in figure 13.

As found previously, the range analysed was broadly the same for all samples with

only a small variance between comparator samples such as would be found in the

natural fluctuation within one soil type. Again, this simple analysis can not exclude

the two spade samples or the boots and the site samples from having derived from the

same or similar source.

There was sufficient sample to undertake particle size analysis (using a CILAS 920

laser granulometer) on all 10 samples from the badger sett site sample, 11 from spade

1, 10 from spade 2, 3 from the right boot and 1 from the left boot. Results are

presented in figure 14. The analysis of the sett site samples provided two distinctive

grain size distribution curves. One set of distribution curves produced from analysis

of the soil from spade 1 revealed a curve similar to one of the curves from the sett site

soil samples, while the samples analysed from spade 2 produced the two distinctive

curves produced by the sett site soil samples (in-depth discussion of these results can

be found in Morgan and Bull [10]). The materials analysed from the boots, whilst

having some broad similarities to the grain size curves produced from the soil samples

taken from the sett site, can be excluded from having derived exclusively from the

same source as the materials at the sett site. It would appear that there was some

‘contamination’ or mixing of soils from different sources on the boots. This

admixture is not surprising due to the nature of footwear and highlights the necessity

for great care to be taken in the interpretation of results produced from techniques that

require homogenisation of the sample prior to analysis.
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Finally, scanning electron microscopy of the soil samples was undertaken to assess

the quartz grain surface textures (see section 3.1 for technique overview). Samples

taken from the badger sett site proved to be predominantly quartz which were

comprised of three main quartz grain textural groupings [12]. This combination of

textural groupings is not found in any of the thousand sample locations found in the

paper above and so can be excluded as having derived from any previously sampled

source in Britain.

The predominant quartz grain textural group comprised quartz sand grains with

evidence of diagenetic sandstone origins with subsequent late grain indentors caused

by free grain collision, probably in a low energy sub-aqueous environment (such as a

river) (see figure 15). Together with this predominant grain type were quartz grains

which contained small authigenic euhedral quartz overgrowths produced during

diagenesis of the original porous host sandstone (figure 16). A third grain type

comprised a high relief angular grain with large conchoidal fractures and breakage

blocks which exhibited only slight chemical edge rounding (possibly caused by

pedogenic agencies). Although not the remit of this forensic investigation, it could be

supposed that in a geological provenance reconstruction all three samples may be

considered to have derived from an initial parent rock in the vicinity of the badger

sett. Similar tripartite textural suites were found on quartz grains taken from soil

samples obtained from both the right and left boots. It is not possible to exclude the

quartz grains studied in this analysis from having derived from a similar or the same

source.
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It could reasonably be expected that in employing all of the above techniques, that

samples could be excluded from the badger sett site if significant differences had been

found. The techniques employed in this case did not involve variables that were

dependent upon each other and therefore the similarities in analysis of all samples in

this case is noted and the samples can not be excluded from having derived from the

same or similar source.

4. Conclusions

This paper presents the results of the investigation of three different wildlife crimes

using geoforensic analysis. A number of important points have arisen from these

simple cases that need to be viewed within the context of the philosophical framework

outlined at the beginning of this paper.

1. There is a fundamental difference between the philosophical approach in

geomorphological and geological analysis and that of the more Bayesian

attitude necessarily adopted in geoforensic analysis. This approach is

fundamentally lacking in some of the more recent cases published in the

literature.

2. Care must be taken in choosing the analytical techniques, which may be

appropriate for geological investigations, but must be used with extreme

caution in forensic applications. Of course as many techniques as possible

should be employed, but this is often determined by the quantity of sample

rather than the philosophy of requirement. If techniques employed compared

variables which are to lesser or greater extent dependent upon other variables
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which are also analysed, then extreme caution should be exercised. This is not

always the case. An allied problem in forensic analysis is that of the

contamination of a comparator sample before or after the forensic event. If

analysis, no matter how detailed, complex and data producing requires that the

sample be homogenised (by grinding or solution or both), then the associated

results, be they positive or negative, can not be tested using these techniques

and thus the authenticity of any association is gravely compromised.

3. Simple analytical techniques can separate out samples providing exclusions

almost as efficiently as some of the more detailed high powered analytical

techniques. Machine sophistication is not proportional to significance of

association or exclusion.

4. There is no substitute for visual inspection and visual guiding of analytical

methods. Automation of analyses does not result in inaccurate results, just the

possibility of inaccurate interpretation. There is no room for untested

assumptions and interpretations in forensic geoscience.

5. Acknowledgements

The authors would like to acknowledge discussion and comments with Guy Shorrock,

RSPB, Chris Jackson, Geoff Calvert and Matthew Morgan. RM acknowledges

financial support from the Bruce, Julia and Mortimer May Senior Scholarship at

Hertford College Oxford.



21

6. References

[1]Locard, E. Analyses of dust traces parts I, II and III. American Journal of Police
Science 1 (1930) 276-298, 401-418 and 496-514.

[2]Shorrock, G. Wildlife Crime: a guide to the use of forensic and specialist
techiniques in the investigation of wildlife crime. 88pp (www.defra.gov.uk) 2005

[3]Walls, H.J. Forensic Science. London: Sweet and Maxwell, 1968, p22.

[4]Bull, P. A., Morgan, R. M., Wilson, H. E. and Dunkerley, S. Multi-technique
comparison of source and primary transfer soil samples: an experimental
investigation’ by D Croft and K Pye. A Comment. Science and Justice 44(3) (2004)
173-176

[5]Pye, K and Croft, D. J. Forensic Geoscience: introduction and overview. In
Forensic Geoscience: Principles, Techniques and Applications. Geological Society,
London, Special Publications, 232 (2004) 1-5.

[6]Pye, K. Forensic Examination of rocks, sediments, soils and dusts using scanning
electron microscopy and X-ray chemical microanalysis. In Forensic Geoscience:
Principles, Techniques and Applications. Geological Society, London, Special
Publications, 232 (2004) 103-122.

[7]Blott, S. J., Croft, D. J., Pye, K., Saye, S. E. and Wilson, H. E. Particle size
analysis by laser diffraction. In Forensic Geoscience: Principles, Techniques and
Applications. Geological Society, London, Special Publications, 232(2004) 63-73.

[8]Kirk, P. L. Crime Investigation (2nd ed) New York: Wiley. 1974, p2

[9]Murray, R. C. and Tedrow, J. C. F. Forensic Geology. Prentice-Hall, Inc, 1992.

[10]Morgan, R. M. and Bull, P. A. The use of particle size analysis of sediments and
soils in forensic enquiry. Science and Justice in press

[11]Bull, P. A., Whalley, W. B. and Magee, A. W. An annotated bibliography of
environmental reconstruction by SEM 1962-1985. BGRG Tech. Bull.,35 (1985)

[12]Bull. P. A. and Morgan, R. M. Sediment Fingerprints: A forensic technique using
quartz sand grains. Science and Justice, in press

[13] Bennett K.D., Whittington G. & Edwards K.J. Recent plant nomenclatural
changes and pollen morphology in the British Isles. Quaternary Newsletter 73 (1994)
1-6: Quaternary Research Association.

[14] Moore P.D., Webb J.A. & Collinson M.E. An illustrated guide to pollen
analysis. 2nd Ed. Blackwell Scientific, Oxford, 1991.

[15] Stace C. New Flora of the British Isles. Cambridge University Press. Cambridge,
1991.



22

[16]Edwards K.J. The cereal pollen record and early agriculture. In: The Beginnings
of Agriculture: Milles A., Williams D. & Gardner N. (Eds): Symposia of the
Association for Environmental Archaeology 8: BAR International Series 496 (1989)
113-135.

[17]Anderson S. The identification of wild grasses and cereal pollen. Danmarks
Geologiske Undersogelse Arbog 1978: 69-92.

[18]Brunner, H. Identification of Mammal Hair. Inkata Press Melbourne. 1975

[19]Hicks, J. W. Microscopy of Hairs: A Practical Guide and Manual. Federal
Bureau of Investigation, Washington, DC, 1977.

[20]Houck, M. M. Hair Bibliography for the Forensic Scientist. Forensic Science
Communications Volume 4 Number 1 (2002) (accessed May 2005
http://www.fbi.gov/hq/lab/fsc/backissu/jan2002/houck.htm)



23

List of Figures

Figure 1 photograph of spade 1 (top) and spade 2 (bottom) clearly showing adhering

soil

Figure 2 Summary results of initial tests undertaken on soil samples.

Figure 3 Summary results of AAS and Dionex chemical analysis undertaken on soil

samples

Figure 4 Summary of mineralogical composition of soil samples

Figure 5 Grain size distribution curves for the soil samples analysed from (left-right

top row) the site surface, the site at depth, (left-right middle row) spade 1 back, spade

1 front, (left-right bottom row) spade 2 back and spade 2 front

Figure 6 SEM photograph of distinctive quartz grain exhibiting elongated euhedral

overgrowths with terminations

Figure 7 SEM photograph close up of the distinctive quartz grain exhibiting elongated

euhedral overgrowths with terminations

Figure 8 SEM photograph of distinctive quartz grain from site at surface soil sample

exhibiting elongated euhedral overgrowths with terminations

Figure 9 SEM photograph of distinctive quartz grain taken from spade 1 soil sample

exhibiting elongated euhedral overgrowths with terminations

Figure 10 Pollen assemblage diagram for soil taken from spade 1 and 2, the site at

surface and the site at depth

Figure 11 Summary results from initial analytical tests on soil samples taken from

each exhibit

Figure 12 Mineralogical composition of soil samples taken from each exhibit



24

Figure 13 Simple AAS and Dionex chemical analysis derived from soil taken from

each exhibit

Figure 14 Grain size distribution curves derived from analysis of sample from (left-

right top row) site 1, site 2, (left-right middle row) left boot composite, right boot

composite, (left-right bottom row) right boot 1 and right boot 2.

Figure 15 SEM photo of predominant quartz grain, with diagenetic sandstone origins

and late grain indentors.

Figure 16 SEM photo of grain containing small authigenic euhedral quartz
overgrowths produced during diagenesis of the original porous host sandstone



25

Sample Colour Conductivity (S) pH

Site at surface 2.5YR 4/6 154.6 6.2

Site at depth 2.5YR 4/6 151.9 6.0

Spade 1 front 2.5YR 4/6 206.0 6.7

Spade 1 back 2.5YR 4/6 218.0 7.1

Spade 2 front 2.5YR 4/6 212.0 6.6

Spade 2 back 2.5YR 4/6 217 .0 7.0

Figure 2 Summary results of initial tests undertaken on soil samples.

Sample %Organic

Content

CaCO3

content

Mg Ca Fe Mn Cu Pb Na K Cl SO4 NO3

Site at depth 13.33 nil 0.20 0.4 6.4 0.5 0.0 0.0 1.8 2.6 3.78 1.26 0.82

Spade 1 front 20.00 nil 0.60 0.3 7.2 0.5 0.0 0.0 1.8 2.9 1.79 1.12 0.81

Spade 1 back 6.67 nil 0.50 0.3 7.7 0.3 0.0 0.0 1.8 2.4 1.50 1.09 0.72

Spade 2 front 13.33 nil 0.35 0.4 6.3 0.4 0.0 0.0 2.1 3.1 1.78 1.35 0.00

Spade 2 back 13.33 nil 0.35 0.3 6.4 0.5 0.0 0.0 2.2 2.7 2.35 1.43 0.91

Figure 3 Summary results of AAS and Dionex chemical analysis undertaken on soil

samples.
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Figure 4 Summary of mineralogical composition of soil samples

Sample Colour Conductivity (S) pH

Badger sett site 10 YR 3/4 220 7.0

Right boot 10 YR 3/2 496 7.4

Left boot 10 YR 3/2 390 7.4

Spade 1 10 YR 3/2 215 5.8

Spade 2 10 YR 3/4 225 7.1

Figure 11 Summary results from initial analytical tests on soil samples taken from

each exhibit

Sample Quartz Fe

Nodule

Root

fibres/debris

Black

hair/fibre

Cement

fragment

Site at surface X X X

Site at depth X X X

Spade 1 front X X X

Spade 1 back X X X

Spade 2 front X X X X X

Spade 2 back X X X
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Sample Quartz Schist Quartzite Fe

Nodule

Meta-

Igneous

Mica Calcite Badger

hair

Plant

Debris

Flint/

Chert

Site X X X X X X X X

Left Boot X X X X X X X X X X

Right Boot X X X X X X X X X X

Spade 1 X X X X X X X X

Spade 2 X X X X X X X X X

Figure 12 Mineralogical composition of soil samples taken from each exhibit

Sample Mg Ca Fe Mn Cu Pb Na K Cl NO2 PO4 SO4 NO3

Badger sett site 3.41 0.96 19.1 0.7 0.01 0.05 1.43 3.16 1.70 0.0 0.0 0.90 6.35

Right boot 2.60 78.4 8.5 0.6 0.00 0.10 1.10 1.60 1.90 0.0 0.1 0.80 0.60

Left boot 3.40 72.2 10.4 0.7 0.00 0.00 0.90 3.30 1.80 0.0 0.0 1.10 0.70

Spade 1 8.97 0.5 48.0 1.1 0.03 0.03 1.60 4.37 1.61 0.0 0.0 0.78 0.96

Spade 2 3.70 0.9 15.0 0.9 0.00 0.00 0.40 3.70 1.00 0.0 0.0 0.60 0.60

Figure 13 Summary results of simple AAS and Dionex chemical analysis derived

from soil taken from each exhibit


