24 research outputs found

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    漏 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment鈥檚 theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Feedback of channel state information in multi-antenna systems based on quantization of channel Gram matrices

    Get PDF
    This dissertation deals with the proper design of efficient feedback strategies for Multiple-Input Multiple-Output (MIMO) communication systems. MIMO systems outperform single antenna systems in terms of achievable throughput and are more resilient to noise and interference, which are becoming the limiting factors in the current and future communications. Apart from the clear performance advantages, MIMO systems introduce an additional complexity factor, since they require knowledge of the propagation channel in order to be able to adapt the transmission to the propagation channel鈥檚 characteristics and achieve optimum performance. This channel knowledge, also known as Channel State Information (CSI), is estimated at the receiver and sent to the transmitter through a limited feedback link. In this dissertation, first, the minimum channel information necessary at the transmitter for the optimum precoding design is identified. This minimum information for the optimum design of the system corresponds to the channel Gram matrix. It is essential for the design of optimized systems to avoid the transmission of redundant feedback information. Following this idea, a quantization algorithm that exploits the differential geometry of the set of Gram matrices and the correlation in time present in most propagation channels is developed in order to greatly improve the feedback performance. This scheme is applied first to single-user MIMO communications, then to some particular multiuser scenarios, and finally it is extended to general multiuser broadcast communications. To conclude, the feedback link sizing is studied. An analysis of the tradeoff between size of the forward link and size of the feedback link isformulated and the radio resource allocation problem, in terms of transmission energy, time, and bandwidth of the forward and feedback links is presented.En un mundo cada vez m谩s interconectado, donde hay una clara tendencia hacia un mayor n煤mero de comunicaciones inal谩mbricas simult谩neas (comunicaciones M2M: Machine to Machine, redes de sensores, etc.) y en el que las necesidades de capacidad de transmisi贸n de los enlaces de comunicaciones aumentan de manera vertiginosa (audio, video, contenidos multimedia, alta definici贸n, etc.) el problema de la interferencia se convierte en uno de los factores limitadores de los enlaces junto con los desvanecimientos del nivel de se帽al y las p茅rdidas de propagaci贸n. Por este motivo los sistemas que emplean m煤ltiples antenas tanto en la transmisi贸n como en la recepci贸n (los llamados sistemas MIMO: Multiple-Input Multiple-Output) se presentan como una de las soluciones m谩s interesantes para satisfacer los crecientes requisitos de capacidad y comportamiento relativo a interferencias. Los sistemas MIMO permiten obtener un mejor rendimiento en t茅rminos de tasa de transmisi贸n de informaci贸n y a su vez son m谩s robustos frente a ruido e interferencias en el canal. Esto significa que pueden usarse para aumentar la capacidad de los enlaces de comunicaciones actuales o para reducir dr谩sticamente el consumo energ茅tico manteniendo las mismas prestaciones. Por otro lado, adem谩s de estas claras ventajas, los sistemas MIMO introducen un punto de complejidad adicional puesto que para aprovechar al m谩ximo las posibilidades de estos sistemas es necesario tener conocimiento de la informaci贸n de estado del canal (CSI: Channel State Information) tanto en el transmisor como en el receptor. Esta CSI se obtiene mediante estimaci贸n de canal en el receptor y posteriormente se env铆a al transmisor a trav茅s de un canal de realimentaci贸n. Esta tesis trata sobre el dise帽o del canal de realimentaci贸n para la transmisi贸n de CSI, que es un elemento fundamental de los sistemas de comunicaciones del presente y del futuro. Las t茅cnicas de transmisi贸n que consideran activamente el efecto de la interferencia y el ruido requieren adaptarse al canal y, para ello, la realimentaci贸n de CSI es necesaria. En esta tesis se identifica, en primer lugar, la m铆nima informaci贸n sobre el estado del canal necesaria para implementar un dise帽o 贸ptimo en el transmisor, con el fin de evitar transmitir informaci贸n redundante y obtener as铆 un sistema m谩s eficiente. Esta informaci贸n es la matriz de Gram del canal MIMO. Seguidamente, se desarrolla un algoritmo de cuantificaci贸n adaptado a la geometr铆a diferencial del conjunto que contiene la informaci贸n a cuantificar y que adem谩s aprovecha la correlaci贸n temporal existente en los canales de propagaci贸n inal谩mbricos. Este algoritmo se implementa y eval煤a primero en comunicaciones MIMO punto a punto entre dos usuarios, despu茅s se implementa para algunos casos particulares con m煤ltiples usuarios, y finalmente se ampl铆a para el caso general de sistemas broadcast multi-usuario. Adicionalmente, esta tesis tambi茅n estudia y optimiza el dimensionamiento del canal de realimentaci贸n en funci贸n de la cantidad de recursos radio disponibles, en t茅rminos de ancho de banda, tiempo y potencia de transmisi贸n. Para ello presenta el problema de la distribuci贸n 贸ptima de dichos recursos radio entre el enlace de transmisi贸n de datos y el enlace de realimentaci贸n para transmisi贸n de informaci贸n sobre estado del canal como un problema de optimizaci贸n

    Linear Transmit-Receive Strategies for Multi-user MIMO Wireless Communications

    Get PDF
    Die Notwendigkeit zur Unterdrueckung von Interferenzen auf der einen Seite und zur Ausnutzung der durch Mehrfachzugriffsverfahren erzielbaren Gewinne auf der anderen Seite rueckte die raeumlichen Mehrfachzugriffsverfahren (Space Division Multiple Access, SDMA) in den Fokus der Forschung. Ein Vertreter der raeumlichen Mehrfachzugriffsverfahren, die lineare Vorkodierung, fand aufgrund steigender Anzahl an Nutzern und Antennen in heutigen und zukuenftigen Mobilkommunikationssystemen besondere Beachtung, da diese Verfahren das Design von Algorithmen zur Vorcodierung vereinfachen. Aus diesem Grund leistet diese Dissertation einen Beitrag zur Entwicklung linearer Sende- und Empfangstechniken fuer MIMO-Technologie mit mehreren Nutzern. Zunaechst stellen wir ein Framework zur Approximation des Datendurchsatzes in Broadcast-MIMO-Kanaelen mit mehreren Nutzern vor. In diesem Framework nehmen wir das lineare Vorkodierverfahren regularisierte Blockdiagonalisierung (RBD) an. Durch den Vergleich von Dirty Paper Coding (DPC) und linearen Vorkodieralgorithmen (z.B. Zero Forcing (ZF) und Blockdiagonalisierung (BD)) ist es uns moeglich, untere und obere Schranken fuer den Unterschied bezueglich Datenraten und bezueglich Leistung zwischen beiden anzugeben. Im Weiteren entwickeln wir einen Algorithmus fuer koordiniertes Beamforming (Coordinated Beamforming, CBF), dessen Loesung sich in geschlossener Form angeben laesst. Dieser CBF-Algorithmus basiert auf der SeDJoCo-Transformation und loest bisher vorhandene Probleme im Bereich CBF. Im Anschluss schlagen wir einen iterativen CBF-Algorithmus namens FlexCoBF (flexible coordinated beamforming) fuer MIMO-Broadcast-Kanaele mit mehreren Nutzern vor. Im Vergleich mit bis dato existierenden iterativen CBF-Algorithmen kann als vielversprechendster Vorteil die freie Wahl der linearen Sende- und Empfangsstrategie herausgestellt werden. Das heisst, jede existierende Methode der linearen Vorkodierung kann als Sendestrategie genutzt werden, waehrend die Strategie zum Empfangsbeamforming frei aus MRC oder MMSE gewaehlt werden darf. Im Hinblick auf Szenarien, in denen Mobilfunkzellen in Clustern zusammengefasst sind, erweitern wir FlexCoBF noch weiter. Hier wurde das Konzept der koordinierten Mehrpunktverbindung (Coordinated Multipoint (CoMP) transmission) integriert. Zuletzt stellen wir drei Moeglichkeiten vor, Kanalzustandsinformationen (Channel State Information, CSI) unter verschiedenen Kanalumstaenden zu erlangen. Die Qualitaet der Kanalzustandsinformationen hat einen starken Einfluss auf die Guete des Uebertragungssystems. Die durch unsere neuen Algorithmen erzielten Verbesserungen haben wir mittels numerischer Simulationen von Summenraten und Bitfehlerraten belegt.In order to combat interference and exploit large multiplexing gains of the multi-antenna systems, a particular interest in spatial division multiple access (SDMA) techniques has emerged. Linear precoding techniques, as one of the SDMA strategies, have obtained more attention due to the fact that an increasing number of users and antennas involved into the existing and future mobile communication systems requires a simplification of the precoding design. Therefore, this thesis contributes to the design of linear transmit and receive strategies for multi-user MIMO broadcast channels in a single cell and clustered multiple cells. First, we present a throughput approximation framework for multi-user MIMO broadcast channels employing regularized block diagonalization (RBD) linear precoding. Comparing dirty paper coding (DPC) and linear precoding algorithms (e.g., zero forcing (ZF) and block diagonalization (BD)), we further quantify lower and upper bounds of the rate and power offset between them as a function of the system parameters such as the number of users and antennas. Next, we develop a novel closed-form coordinated beamforming (CBF) algorithm (i.e., SeDJoCo based closed-form CBF) to solve the existing open problem of CBF. Our new algorithm can support a MIMO system with an arbitrary number of users and transmit antennas. Moreover, the application of our new algorithm is not only for CBF, but also for blind source separation (BSS), since the same mathematical model has been used in BSS application.Then, we further propose a new iterative CBF algorithm (i.e., flexible coordinated beamforming (FlexCoBF)) for multi-user MIMO broadcast channels. Compared to the existing iterative CBF algorithms, the most promising advantage of our new algorithm is that it provides freedom in the choice of the linear transmit and receive beamforming strategies, i.e., any existing linear precoding method can be chosen as the transmit strategy and the receive beamforming strategy can be flexibly chosen from MRC or MMSE receivers. Considering clustered multiple cell scenarios, we extend the FlexCoBF algorithm further and introduce the concept of the coordinated multipoint (CoMP) transmission. Finally, we present three strategies for channel state information (CSI) acquisition regarding various channel conditions and channel estimation strategies. The CSI knowledge is required at the base station in order to implement SDMA techniques. The quality of the obtained CSI heavily affects the system performance. The performance enhancement achieved by our new strategies has been demonstrated by numerical simulation results in terms of the system sum rate and the bit error rate

    Optimising Cooperative Spectrum Sensing in Cognitive Radio Networks Using Interference Alignment and Space-Time Coding

    Get PDF
    In this thesis, the process of optimizing Cooperative Spectrum Sensing in Cognitive Radio has been investigated in fast-fading environments where simulation results have shown that its performance is limited by the Probability of Reporting Errors. By proposing a transmit diversity scheme using Differential space-time block codes (D-STBC) where channel state information (CSI) is not required and regarding multiple pairs of Cognitive Radios (CR鈥檚) with single antennas as a virtual MIMO antenna arrays in multiple clusters, Differential space-time coding is applied for the purpose of decision reporting over Rayleigh channels. Both Hard and Soft combination schemes were investigated at the fusion center to reveal performance advantages for Hard combination schemes due to their minimal bandwidth requirements and simplistic implementation. The simulations results show that this optimization process achieves full transmit diversity, albeit with slight performance degradation in terms of power with improvements in performance when compared to conventional Cooperative Spectrum Sensing over non-ideal reporting channels. Further research carried out in this thesis shows performance deficits of Cooperative Spectrum Sensing due to interference on sensing channels of Cognitive Radio. Interference Alignment (IA) being a revolutionary wireless transmission strategy that reduces the impact of interference seems well suited as a strategy that can be used to optimize the performance of Cooperative Spectrum Sensing. The idea of IA is to coordinate multiple transmitters so that their mutual interference aligns at their receivers, facilitating simple interference cancellation techniques. Since its inception, research efforts have primarily been focused on verifying IA鈥檚 ability to achieve the maximum degrees of freedom (an approximation of sum capacity), developing algorithms for determining alignment solutions and designing transmission strategies that relax the need for perfect alignment but yield better performance. With the increased deployment of wireless services, CR鈥檚 ability to opportunistically sense and access the unused licensed frequency spectrum, without causing harmful interference to the licensed users becomes increasingly diminished, making the concept of introducing IA in CR a very attractive proposition. For a multiuser multiple-input鈥搈ultiple-output (MIMO) overlay CR network, a space-time opportunistic IA (ST-OIA) technique has been proposed that allows spectrum sharing between a single primary user (PU) and multiple secondary users (SU) while ensuring zero interference to the PUs. With local CSI available at both the transmitters and receivers of SUs, the PU employs a space-time WF (STWF) algorithm to optimize its transmission and in the process, frees up unused eigenmodes that can be exploited by the SU. STWF achieves higher performance than other WF algorithms at low to moderate signal-to-noise ratio (SNR) regimes, which makes it ideal for implementation in CR networks. The SUs align their transmitted signals in such a way their interference impairs only the PU鈥檚 unused eigenmodes. For the multiple SUs to further exploit the benefits of Cooperative Spectrum Sensing, it was shown in this thesis that IA would only work when a set of conditions were met. The first condition ensures that the SUs satisfy a zero interference constraint at the PU鈥檚 receiver by designing their post-processing matrices such that they are orthogonal to the received signal from the PU link. The second condition ensures a zero interference constraint at both the PU and SUs receivers i.e. the constraint ensures that no interference from the SU transmitters is present at the output of the post-processing matrices of its unintended receivers. The third condition caters for the multiple SUs scenario to ensure interference from multiple SUs are aligned along unused eigenmodes. The SU system is assumed to employ a time division multiple access (TDMA) system such that the Principle of Reciprocity is employed towards optimizing the SUs transmission rates. Since aligning multiple SU transmissions at the PU is always limited by availability of spatial dimensions as well as typical user loads, the third condition proposes a user selection algorithm by the fusion centre (FC), where the SUs are grouped into clusters based on their numbers (i.e. two SUs per cluster) and their proximity to the FC, so that they can be aligned at each PU-Rx. This converts the cognitive IA problem into an unconstrained standard IA problem for a general cognitive system. Given the fact that the optimal power allocation algorithms used to optimize the SUs transmission rates turns out to be an optimal beamformer with multiple eigenbeams, this work initially proposes combining the diversity gain property of STBC, the zero-forcing function of IA and beamforming to optimize the SUs transmission rates. However, this solution requires availability of CSI, and to eliminate the need for this, this work then combines the D-STBC scheme with optimal IA precoders (consisting of beamforming and zero-forcing) to maximize the SUs data rates

    An Overview of Physical Layer Security with Finite-Alphabet Signaling

    Get PDF
    Providing secure communications over the physical layer with the objective of achieving perfect secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step towards a practical implementation of physical layer security. With this motivation, this article reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and we discuss some open problems and directions for future research.Comment: Submitted to IEEE Communications Surveys & Tutorials (1st Revision

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Temperature aware power optimization for multicore floating-point units

    Full text link

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    An Overview of Physical Layer Security with Finite Alphabet Signaling

    Get PDF
    Providing secure communications over the physical layer with the objective of achieving secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step towards a practical implementation of physical layer security. With this motivation, this article reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and discuss some open problems and directions for future research
    corecore