
Research Reports from the Communications Research Laboratory
at Ilmenau University of Technology

Bin Song

Linear Transmit-Receive Strategies

for Multi-user MIMO

Wireless Communications



2



Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität Ilmenau

Linear Transmit-Receive Strategies

for Multi-user MIMO

Wireless Communications

February 17, 2014

Bin Song
geboren am 01.12.1977 in China

Dissertation zur Erlangung des
akademischen Grades Doktor-Ingenieur (Dr.-Ing)



Anfertigung im: Fachgebiet Nachrichtentechnik

Institut für Informationstechnik

Fakultät für Elektrotechnik und Informationstechnik

Gutachter: Univ.-Prof. Dr.-Ing. Martin Haardt

Univ.-Prof. Dr.-Ing. Gerald Schuller

Prof. Rodrigo C. de Lamare

Vorgelegt am: 05.12.2013

Verteidigt am: 29.01.2014

urn:nbn:de:gbv:ilm1-2014000027

4



Acknowledgments

This thesis is a result of my research works during my Ph.D. study. It would not have been

possible without the help and support from the kind people around me.

Firstly, I would like to express my greatest gratitude to Prof. Martin Haardt for his supervi-

sion and guidance. His constant encouragement, valuable suggestions, and fruitful discussions

help me to be productive and have significantly influenced the contents of this thesis. I was very

lucky and really enjoyed to work with him in a free and open-minded working environment.

I am grateful to Prof. Dr. Rodrigo de Lamare and Prof. Gerald Schuller for taking the time

to be the reviewers of my thesis. The comments and discussions have effectively improved the

quality of the thesis and are also very valuable for my future works.

In addition, a deep appreciation to Prof. Arie Yeredor for our fruitful collaboration on

closed-form coordinated beamforming design presented in Chapter 4 of this thesis. Without

his perceptive comments, professional ideas, and great patience, our collaboration work would

not have been successful.

Many thanks to all of my colleagues for building lovely working environments. I appreciate

every help from you and every talk we had. Special thanks goes to Veljko Stankovic and

Florian Roemer, who introduced me linear precoding techniques when I started my work at

Communications Research Laboratory, for sharing their bright ideas, skills and knowledge, for

helping me to solve difficult technical problems when help was really needed. I would also like

to thank Martin Fuchs-Lautensack, Martin Weis, Dominik Schulz, Yao Cheng, Nuan Song,

Jens Steinwandt, Bilal Zafar, Jianshu Zhang, Mike Wolf, Jianhui Li, Peng Li and Keke Zu

for fruitful technical discussions and personal talks and for being good friends. Additionally,

special thanks to Wolfgang Erdtmann and our secretary Ms. Christina Patotschka for being

always available for the problems of computer and organization.

I wish to thank my parents for their endless love and support throughout my life, for sharing

my sadness and happiness, and for helping me out of the setbacks. Finally, I would like to give

my deepest appreciation to my husband and my little boy. Every moment of care, hug, and

smile is the source of my energy. Thank you for coming into my life and making it colorful

and meaningful.

5



Acknowledgments

6



Abstract

The ever growing demand for reliable high data rates, enlarged coverage, and spectral efficiency

in the existing third generation (3G) and fourth generation (4G) of mobile communication

systems and future systems, has inspired intensive research efforts in the field of multi-user

multiple-input multiple-output (MIMO) communications. In order to combat interference and

exploit large multiplexing gains of the multi-antenna systems, a particular interest in spatial

division multiple access (SDMA) techniques has emerged. Linear precoding techniques, as

one of the SDMA strategies, have obtained more attention due to the fact that an increasing

number of users and antennas involved into the existing and future mobile communication

systems requires a simplification of the precoding design. Therefore, this thesis contributes to

the design of linear transmit and receive strategies for multi-user MIMO broadcast channels

in a single cell and clustered multiple cells. We efficiently solve some open problems in the

existing linear transmission strategies and further enhance some existing algorithms.

First, we present a throughput approximation framework for multi-user MIMO broadcast

channels employing regularized block diagonalization (RBD) linear precoding. Comparing

dirty paper coding (DPC, which can achieve the capacity of multi-user MIMO broadcast

channels) and linear precoding algorithms (e.g., zero forcing (ZF) and block diagonalization

(BD)), we further quantify lower and upper bounds of the rate and power offset between them

as a function of the system parameters such as the number of users and antennas. These

analytical results are useful from the system design perspective.

Next, we develop a novel closed-form coordinated beamforming (CBF) algorithm (i.e., se-

quentially drilled joint congruence (SeDJoCo) transformation based closed-form CBF) to solve

the existing open problem of CBF. To the best of our knowledge, with the exception of our

new algorithm, so far only one algorithm has been proposed as a closed-form CBF which can

only support a MIMO system with two users and two transmit antennas. In contrast, our new

algorithm solves this problem and can support a MIMO system with an arbitrary number of

users and transmit antennas. Moreover, the application of our new algorithm is not only for

CBF, but also for blind source separation (BSS), since the same mathematical model has been

used in BSS application.

Then, we further propose a new iterative CBF algorithm (i.e., flexible coordinated beam-

forming (FlexCoBF)) for multi-user MIMO broadcast channels. Compared to the existing

iterative CBF algorithms, the most promising advantage of our new algorithm is that it pro-
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Abstract

vides freedom in the choice of the linear transmit and receive beamforming strategies, i.e.,

any existing linear precoding method can be chosen as the transmit strategy and the receive

beamforming strategy can be flexibly chosen from maximum ratio combing (MRC) or min-

imum mean square error (MMSE) receivers. In other words, FlexCoBF algorithm does not

require special designs of the transmit-receive beamforming vectors in contrast to the exist-

ing iterative CBF algorithms. Considering clustered multiple cell scenarios, we extend the

FlexCoBF algorithm further and introduce the concept of the coordinated multipoint (CoMP)

transmission which is one hot topic in fourth generation (4G) and fifth generation (5G) system

design. Our objective is to efficiently reduce the inter-cluster and intra-cluster interference and

enhance the performance of the cluster edge users in terms of users’ throughput.

Finally, we present three strategies for channel state information (CSI) acquisition regarding

various channel conditions and channel estimation strategies such as the time-varying corre-

lated channel model, the finite rate feedback channel, and blind channel estimation techniques.

The CSI knowledge is required at the base station in order to implement SDMA techniques.

The quality of the obtained CSI heavily affects the system performance. The performance

enhancement achieved by our new strategies has been demonstrated by numerical simulation

results in terms of the system sum rate and the bit error rate.
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Zusammenfassung

Die stetig wachsende Nachfrage nach zuverlässig hohen Durchsätzen, größeren Reichweiten und

verbesserten spektralen Effizienzen in Mobilkommunikationssystemen der dritten und vierten

Generation war der Auslöser für starke Forschungsanstrengungen im Bereich von Mehrnutzer-

Systemen mit ,,Multiple-Input Multiple-Output”-Technik (MIMO-Technik). Die Notwendig-

keit zur Unterdrückung von Interferenzen auf der einen Seite und zur Ausnutzung der durch

Mehrfachzugriffsverfahren erzielbaren Gewinne auf der anderen Seite rückte die räumlichen

Mehrfachzugriffsverfahren (Space Division Multiple Access, SDMA) in den Fokus der For-

schung. Ein Vertreter der räumlichen Mehrfachzugriffsverfahren, die lineare Vorkodierung,

fand aufgrund steigender Anzahl an Nutzern und Antennen in heutigen und zukünftigen Mo-

bilkommunikationssystemen besondere Beachtung, da diese Verfahren das Design von Algo-

rithmen zur Vorcodierung vereinfachen. Aus diesem Grund leistet diese Dissertation einen

Beitrag zur Entwicklung linearer Sende- und Empfangstechniken für MIMO-Technologie mit

mehreren Nutzern. Die vorliegende Arbeit konzentriert sich dabei auf den Fall der Broadcast-

Kanäle in einzelnen Mobilkommunikationszellen oder in Clustern derselben. In diesem Zu-

sammenhang stellen wir effiziente Ansätze vor, die offene Probleme in aktuellen linearen

Übertragungsverfahren lösen. Weiterhin zeigen wir, wie aktuelle Algorithmen verbessert wer-

den können.

Zunöchst stellen wir ein Framework zur Approximation des Datendurchsatzes in Broadcast-

MIMO-Kanälen mit mehreren Nutzern vor. In diesem Framework nehmen wir das lineare

Vorkodierverfahren regularisierte Blockdiagonalisierung (RBD) an. Durch den Vergleich von

Dirty Paper Coding (DPC, erreicht die Kapazität eines Broadcast-MIMO-Kanals mit mehreren

Nutzern) und linearen Vorkodieralgorithmen (z.B. Zero Forcing (ZF) und Blockdiagonalisie-

rung (BD)) ist es uns möglich, untere und obere Schranken für den Unterschied bezüglich

Datenraten und bezüglich Leistung zwischen beiden anzugeben. Hierbei sind die Schranken

Funktionen der Systemparameter - wie die Anzahl der Nutzer und Antennen. Aus Sicht des

Systemdesigns sind dies nützliche analytischen Ergebnisse.

Im Weiteren entwickeln wir einen Algorithmus für koordiniertes Beamforming (Coordi-

nated Beamforming, CBF), dessen Lösung sich in geschlossener Form angeben lässt. Die-

ser CBF-Algorithmus basiert auf der SeDJoCo-Transformation ,,Sequentially Drilled Joint

Congruence”-Transformation) und löst bisher vorhandene Probleme im Bereich CBF. Nach

Wissen der Autoren gibt es - mit Ausnahme unseres neuen Algorithmus - nur ein einziges
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Zusammenfassung

CBF-Verfahren mit geschlossener Lösung. Dieses unterstützt jedoch nur MIMO-Systeme mit

zwei Nutzern und zwei Sendeantennen. Demgegenüber lässt unser neues Verfahren eine belie-

biger Anzahl von Nutzern und Sendeantennen zu. Außerdem ist unser neues Verfahren nicht

auf CBF als Anwendung beschränkt, da dasselbe mathematische Modell auch in der blinden

Trennung von Quellen (Blind Source Separation, BSS) auftritt.

Im Anschluss schlagen wir einen iterativen CBF-Algorithmus namens FlexCoBF (flexible

coordinated beamforming) für MIMO-Broadcast-Kanäle mit mehreren Nutzern vor. Im Ver-

gleich mit bis dato existierenden iterativen CBF-Algorithmen kann als vielversprechendster

Vorteil die freie Wahl der linearen Sende- und Empfangsstrategie herausgestellt werden. Das

heißt, jede existierende Methode der linearen Vorkodierung kann als Sendestrategie genutzt

werden, während die Strategie zum Empfangsbeamforming frei aus Maximum Ratio Com-

bining (MRC) oder der Methode der kleinsten, mittleren Fehlerquadrate (Minimum Mean

Square Error, MMSE) gewählt werden darf. Mit anderen Worten: FlexCoBF setzt keine spe-

zielle Form des Sende-Empfangs-Beamformingvektors voraus, wie es bei bisherigen iterativen

CBF-Algorithmen der Fall ist. Im Hinblick auf Szenarien, in denen Mobilfunkzellen in Clustern

zusammengefasst sind, erweitern wir FlexCoBF noch weiter. Hier wurde das in Mobilfunknet-

zen der dritten und vierten Generation viel diskutierte Konzept der koordinierten Mehrpunkt-

verbindung (Coordinated Multipoint (CoMP) transmission) integriert. Unser Ziel ist es, die

Kommunikation innerhalb und zwischen den Clustern auf möglichst effiziente Weise zu verrin-

gern und gleichzeitig den Datendurchsatz für Nutzer an den Zellrändern zu verbessern.

Zuletzt stellen wir drei Möglichkeiten vor, Kanalzustandsinformationen (Channel State In-

formation, CSI) unter verschiedenen Kanalumständen zu erlangen. Mögliche Umstände sind

der zeitvariante, korrelierte Kanal, der Kanal mit endlichem Durchsatz im Rückkanal sowie

der Einsatz blinder Kanalschätzalgorithmen. Kanalzustandsinformationen an der Basisstation

sind Voraussetzung, um SDMA-Techniken einsetzen zu können. Die Qualität der Kanalzu-

standsinformationen hat einen starken Einfluss auf die Güte des Übertragungssystems. Die

durch unsere neuen Algorithmen erzielten Verbesserungen haben wir mittels numerischer Si-

mulationen von Summenraten und Bitfehlerraten belegt.
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1. Introduction

1.1. Background and Motivations

During the past several decades, mobile communications have experienced a promising evolu-

tion from analog systems of the first-generation (1G) to digital systems of the fourth-generation

(4G) as shown in Figure 1.1. 1G and the second-generation (2G) cellular systems have been

1G
- Analog System

- Circuit Switched

2G
- Digital System

- GSM

3G
- Packet Switched

- IMT-2000

Mobility

1 Gbps64 kbps2.4 kbps

Office

Pedestrian

Vehicle

1980s 1990s 2000s 2010s 2020s

Peak Data Rate14 Mbps 50 Gbps

- IP Based Mobility

4G

- Broadband Wireless

5G
- IP Based Mobility

- High data rate

- Low latency

Figure 1.1.: Generations of mobile communications and their keywords.

mainly used for voice applications and supporting circuit-switched type services. The data

rates of the users on the air interface are limited to less than several tens of kilobits per second

(kbps). The International Mobile Telecommunications-2000 (IMT-2000) has been introduced

in the beginning of the 21st century as third-generation (3G) cellular systems, which can pro-

vide 2 megabits per second (Mbps) and 384 kbps minimum data rates in indoor and vehicular

environments, respectively. The applications of 3G systems have been found in wireless voice

telephony, mobile internet access, fixed wireless internet access, video calls, and mobile TV.

The first 4G system has been deployed since 2006 in South Korea. 4G systems have been

specified to support all-internet protocol (IP) based communication which means all data and

signaling will be transferred via IP on the network layer. The conceivable applications of 4G

systems are found in IP telephony, mobile web access, gaming services, high-definition mobile

TV, video conferencing and so on. The minimum data rate target ranges from 2 to 20 Mbps.
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1. Introduction

The fifth-generation (5G) systems do not exist yet, but this generation is expected to allow

higher data rates than 4G systems. The minimum data rate target ranges from 20 to 100

Mbps. It is obvious that the growth of the number of subscribers and the involved communi-

cation terminals presents huge challenges for the future generations. For example, 4G systems

are expected to fulfill the following requirements [OYN00, FZJJ06]:

1. Peak data rates for high mobility (e.g., mobile access) must approximate 100 Mbps and

for low mobility (e.g., local wireless access) must approximate 1 Gbps.

2. Possibility to dynamically share and utilize the network resources to support more si-

multaneous users per cell

3. Wide coverage area and seamless roaming among different systems

4. High capacity, peak link spectral efficiency of up to 15 bit/s/Hz on the downlink and

6.75 bit/s/Hz on the uplink

5. The cost per bit has to be kept low.

6. Wireless quality of service (QoS) control (e.g., latency, jitter and packet loss) to offer

high quality of service and support various applications

Regarding the demand for reliable high data rates, the data rate growth in previous wireless

communication systems (e.g., a single-input single-output (SISO) system) has been primarily

achieved by using more base stations (BS) and spectrum. However, this growth is constrained

by the limited transmit power and the limited frequency bandwidth. In 4G systems, the

data rate growth is achieved by strongly increasing the spectral efficiency per BS, which is

supported by the coordinated multipoint (CoMP) concept or multiple-input multiple-output

(MIMO) techniques [MRS+12].

CoMP approaches were firstly proposed in [BMWT00, SZ01, And05] where multiple BSs

jointly transmit to multiple terminals and the intercell interference is effectively avoided to

obtain large gains in spectral efficiency. These examples are cases of multi-cell joint signal

processing. However, CoMP can also refer to the schemes with limited cooperation between

BSs, for example coordinated beamforming where the intercell interferences at the edge users

(i.e., users allocated around the cell border) are avoided rather than accepting them as noise

via limited cooperation between BSs. The details can be found in Section 4.4. Compared to

other options which can support the increasing data demand, such as using more spectrum,

increasing the degree of sectorization, and using more base stations or introducing relays and
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micro/femto cells, CoMP approaches require a fairly small change of infrastructure, and may

lead to a more homogeneous quality of service (QoS) distribution over the area [MKF06]. For

this reason, CoMP has been identified as a key technology of LTE-Advanced [PDF+08]. CoMP

technology has opend a new path for multi-cell wireless technology development. Meanwhile,

it faces several challenges regarding clustering, synchronization, channel knowledge, efficient

and robust algorithm implementation, and Backhaul [MF11].

MIMO techniques have been proposed as a breakthrough in wireless communication system

design. Pioneering works by van Ette [Ett76], Winters [Win87] and Telatar [Tel95] have

predicted remarkable spectral efficiency and link reliability of the multiple-input multiple-

output (MIMO) technology, which inspired an explosion of research activities associated with

MIMO channels [KS01] and extended multi-user MIMO systems.

Compared to SISO technology, MIMO technology exploits the spatial domain and provides

a number of advantages [BCC+07].

* The sensitivity to fading is reduced due to the spatial diversity gain provided by multiple

independent spatial paths, thereby improving the reliability of the received signals. For

a MIMO channel with MT transmit antennas and MR receive antennas, MT ⋅MR inde-

pendently fading links can be potentially realized. Therefore, a spatial diversity order of

MT ⋅MR is offered.

* The channel capacity is significantly increased due to the spatial multiplexing gain which

is promised by transmitting multiple, independent data streams under a rich scattering

environment. The number of data streams is decided by the minimum of the num-

ber of transmit antennas and the number of receive antennas in a MIMO channel, i.e.,

min(MT,MR). Therefore, capacity scales linearly with min(MT,MR) relative to a SISO

channel.

* The spatial dimension exploited in MIMO systems can help to mitigate the interference

between different data streams or users. For instance, we can use transmit/receive beam-

patterns to direct the signal power towards the desired user and minimize the interference

to other users. Interference reduction improves the quality and coverage of a wireless

communication system.

In general, we cannot achieve all the benefits described above simultaneously [BCC+07]. It

is observed that maximizing one type of gain comes at the price of sacrificing the other. For

example, the coding structure from orthogonal designs [TJC99] achieves the full diversity gain,
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while reducing the achievable spatial multiplexing gain. In order to support maximum data

rate or diversity order, the appropriate linear transmit and receive strategies are necessary.

Many optimal and sub-optimal beamforming algorithms have been proposed for MIMO

broadcast channels. Different optimization criteria are addressed, such as maximum signal-

to-noise ratio (SNR) [LJS03], minimum MSE [SSP01], and maximum information rate [JG01,

JB04]. The channel state information (CSI) is assumed to be known at the transmitter and

helps to increase the data rate, enhance coverage, and reduce the receiver complexity. In some

applications such as Time Division Duplex (TDD) systems, the transmitter can obtain CSI

directly due to the reciprocity principle. In Frequency Division Duplex (FDD) systems, CSI

can be acquired at the transmitter by using feedback from the receiver. When the CSI is

known perfectly at both transmitter and receiver, the MIMO channel (ergodic) capacity is the

maximum mutual information averaged over all channel states.

Multi-user MIMO systems are considered as an enhancement of MIMO system when the

number of users is greater than one. In contrast to single-user MIMO, multi-user MIMO allows

a base station (BS) or an access point (AP) to communicate to multiple users in the same

band simultaneously with the benefit of space division multiple access (SDMA). It is achieved

at the cost of additional hardware like filters and antennas, but does not come at the expense

of additional bandwidth. Using additional processing and the available CSI, the BS/AP can

mitigate or completely eliminate the multi-user interference (MUI).

Multi-user MIMO techniques have been investigated intensely due to several key advantages

over single-user MIMO [GKH+07, SSH04, SPSH04]. For example, because of an overall mul-

tiplexing gain given by the minimum number of base station antennas, MU-MIMO systems

obtain a direct gain in multiple access capacity. Furthermore, this achievable multiplexing gain

can be obtained without the need for multiple antenna terminals, which therefore facilitates

the development of small and cheap terminals.

Multi-user MIMO can be classified into two categories: MIMO multiple access channels

(MIMO MAC) and MIMO broadcast channels (MIMO BC). The MIMO MAC represents

multi-user MIMO uplink channels where multiple terminals transmit to one receiver. The

receiver performs much of the processing. For example, the joint interference cancellation and

SDMA-based uplink user scheduling. The channel state information at the receiver (CSIR)

has to be available at the receiver for the advanced processing, which requires a significant

level of uplink capacity to transmit the dedicated pilots from each terminal. Conversely,

the MIMO BC represents multi-user MIMO downlink channels where a single transmitter

transmits to multiple terminals. The transmit processing is required at the transmitter side

such as precoding and SDMA-based downlink user scheduling. The implementation of the
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transmit processing requires that the transmitter has to know the channel state information

at the transmitter (CSIT) in order to properly serve the spatially multiplexed terminals.

Precoding
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User 2

User K

y1

y2

yK

1

2
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MR1

1
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1

MRK
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Figure 1.2.: Block diagram of multi-user MIMO BC.

We consider a MIMO system with K-users where the base station has MT antennas and

the ith user is equipped with MRi
antennas. Figures 1.2 and 1.3 show the multi-user MIMO

dowlink channels and multi-user MIMO uplink channels, respectively. The capacity becomes a

K-dimensional rate region, where each point is a vector of achievable rates by all the K users

simultaneously. From [CV93, YRBC01, YRC01], the capacity region of a general MAC has

been known for both constant channels and fading channels. Although the characterization

of the general broadcast capacity region is a long standing problem, substantial progress has

been made for the Gaussian MIMO BC channel by the work of Caire and Shamai [CS00] and

the subsequent research by Yu and Cioffi [YC01]. Considering full CSIT, the sum capacity

of the Gaussian MIMO BC by using the idea of dirty paper coding (DPC) [Cos83] has been

found and demonstrated to equal the achievable region of the maximum sum rate of DPC.

In [VJG02], a promising result by Vishwanath shows that the rate region of MIMO BC

obtained by using DPC with the power constraint P is equal to the capacity region of the dual

MIMO MAC where the sum of all individual power constraints is set to P . This MAC-BC

duality is very useful, since it substitutes the non-concave functions of the covariances in the

DPC rate region with the concave functions of the covariance matrices in the dual MAC rate

region.
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Decoding
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Figure 1.3.: Block diagram of multi-user MIMO MAC.

DPC is a technique to pre-subtract the interference at the transmitter to achieve the max-

imum sum rate of the system. The existing DPC schemes are hard to implement in practice

due to the very high complexity at both transmitter and receiver, especially when the num-

ber of users becomes large. For example, general nested lattices [ZSE02, EZ04] are the most

efficient encoding strategies. However, the construction of such lattices for a reasonably high

dimension is not systematic because of the very high coding and decoding complexity. In

addition, performing DPC with imperfect CSI is still challenging. As a simplified version of

DPC, Tomlinson-Harashima precoding (THP) has been proposed. THP is a non-linear pre-

coding technique originally developed for SISO multipath channels, which can be interpreted

as moving the feedback part of the decision-feedback equalization (DFE) to the transmitter.

It is also applied for the pre-equalization of MUI in MIMO systems [CC00], where it performs

spatial pre-equalization instead of temporal pre-equalization for inter-symbol interference (ISI)

channels. Some subsequent works have appeared [FWLH02, JBU04, SH05c], which have pro-

posed different precoding schemes based on THP with improved power efficiency, increased

achievable throughput, or reduced complexity at the receiver. However, the complexity at the

base station is still very high. The main drawbacks of these THP-based non-linear techniques

have been pointed out in [SHGJ06]. They are a higher computational complexity, the required

signaling overhead and their sensitivity to channel estimation errors.

Linear precoding techniques have been proposed for the multi-user MIMO BC by consid-

ering the trade-off between performance and complexity. In general, linear precoding tech-
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niques achieve a reasonable performance with a much lower complexity, and they also have

remarkable flexibility for practical implementation due to the adaptation to various degrees

of CSI, such as instantaneous CSI, long-term statistic of CSI (definition in Section 5.2), or

limited CSI (definition in Section 5.3). Linear precoding techniques can be classified by the

amount of the MUI they allow as zero or non-zero MUI techniques. For example, zero-forcing

(ZF) precoding [VJ98] aims at nulling the MUI with the expense of losing some signal gain.

Minimum mean-square-error (MMSE) precoding [VJ98] has been designed to maximize the

signal-to-interference-plus-noise ratio (SINR) at each user and allows an amount of MUI. ZF

precoding is proposed to support single data stream transmission to each user where each user

is equipped with only one receive antenna. The subsequent work by Spencer et al. [SSH04]

extends it to the case of multiple data streams per user where each user can have multiple

receive antennas. This algorithm is known as block diagonalization (BD) precoding. MMSE

precoding improves the system performance by introducing a certain amount of interference

especially for users equipped with a single antenna. However, it suffers a performance loss

when it attempts to mitigate the interference between two closely spaced antennas when the

user terminal is equipped with more than one receive antenna. The work by Stankovic et al.

[SH04b] has proposed a new algorithm that deals with this problem by successively calculat-

ing the columns of the precoding matrix for each of the receive antennas separately. This

new algorithm is known as successive MMSE (SMMSE) precoding. Although linear precoding

techniques cannot achieve the sum capacity of the MIMO BC in general, with some special

conditions they can achieve the same performance as DPC. The work of Yoo and Goldsmith

in [YG06] has shown that zero-forcing (ZF) precoding can achieve the same asymptotic sum

capacity as that of DPC, when the number of users goes to infinity.

Unfortunately, the application of these linear precoding strategies is constrained by the

dimensionality restriction which states that the total number of receive antennas must be

smaller than or equal to the number of transmit antennas. This condition is not fulfilled in

many scenarios, especially when a large number of users is present. Then, additionally an

efficient user scheduling algorithm [FGH07] or receiver antenna selection [WZZ+05] is needed.

Regularized block diagonalization (RBD) linear precoding [SH08] has been proposed to re-

lease the dimensionality restriction, while achieving an improved sum rate as well as diversity

order compared to BD and ZF. However, the performance of RBD degrades heavily with an

increasing aggregate number of receive antennas [SH09a]. Coordinated beamforming (CBF)

[SSH04, ZHV08, SH08, CMIH08a, CMJH08, SH09b, SRH10b] has been proposed as a powerful

solution to overloaded scenarios (i.e., the total number of receive antennas is larger than the

number of transmit antennas), which jointly optimizes the beamforming vectors at the trans-
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mitter and receiver and allows to transmit a number of data streams that is equal to the number

of transmit antennas. The sum rate performance has been demonstrated to reach the sum ca-

pacity of the MIMO BC. Most of the existing CBF algorithms employ iterative operations to

jointly update the transmit-receive beamforming vectors, but without the consideration of the

convergence behavior. In [SSH04, ZHV08, SH08], the number of iterations is set directly by

hand. To the best of our knowledge, closed-form CBF has only be addressed in [CMJH08] and

our proposal [YSRH12]. The closed-form CBF in [CMJH08] is restricted to a system with two

transmit antennas and two users. In contrast, our method in [YSRH12], named ”sequentially

drilled ”joint congruence (SeDJoCo) transformation based (SeDJoCo-based) CBF, is valid for

an arbitrary number of users and transmit antennas. However, in both of them a single data

stream transmission per user is demonstrated only.

1.2. Scope of the thesis and contributions

The prime focus of the thesis is on the design of a linear transmit-receive strategy. We

provide new schemes that can give proper solutions to some open problems (shown in in-

troduction and motivation of each chapter) in the existing linear transmission techniques or

help to enhance the existing algorithms. Therefore, we consider multi-user MIMO down-

link channels in a single cell and multiple cells. The whole thesis consists of 5 chapters.

The following part provides a brief motivation for the different chapters, the open prob-

lems of the existing solutions, and summarizes the major contributions and the possible

applications. A more detailed introduction for each chapter is found at the beginning of

each chapter. Our publications and patent that are relevant to the thesis can be found in

[SH09a, SH09b, SRH10b, YSRH12, LCZ+12, SRH10c, SHMK09, KTS+10, SRH08, SH09c,

SRH10a, RSS+11, SRH13a, SRH13b, CLZ+13, ZSHdL14a, ZSHdL14b, DCL+13]

Chapter 2: this chapter presents an overview of the fundamentals of MIMO technol-

ogy, which helps to understand the motivations, developments, and applications of the

major contributions in this thesis. It starts with major achievable benefits of MIMO

techniques. Although these benefits cannot be exploited simultaneously, some combina-

tions of the benefits across a wireless system can lead to an improved capacity, enhanced

reliability, and enlarged coverage. Then, the existing MIMO channel models have been

introduced from a physical perspective and an analytical perspective. Several widely

used MIMO channel models are reviewed in details such as Rayleigh fading channels,

spatially correlated Rayleigh fading channels, Ricean fading channels, etc. Furthermore,

the capacity results for single-user MIMO, multi-user MIMO, and multi-cell MIMO have
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been reviewed. These results indicate that the capacity gain obtained from multiple

antennas heavily depends on the available channel information at either transmitter or

receiver [FG98, JG05a], the channel signal-to-noise ratio (SNR), and the spatial channel

correlations [JG05a]. Although there are still many open problems in terms of capacity

of systems with MIMO (shown in Sections 2.4.1.6 and 2.4.2.4), the existing results do

provide an insight into the capacity limits of systems and the implications of the limits

for practical system design. The proofs and notes of Chapter 2 are found in Appendix

B.

Chapter 3: this chapter is focused on the existing well-known linear precoding schemes

(e.g., ZF, BD, and RBD). An overview of them is provided firstly. Since the linear

precoding techniques have a low complexity at the transmitter and the receiver by sac-

rificing an amount of throughput, a throughput loss between the linear precoding and

DPC does exist. It is interesting to quantify the throughput loss with respect to the

system parameters such as the number of receive antennas, the number of transmit an-

tennas and the number of users. The research work associated with this loss has been

done in [JG05b, SCA+06, LJ07]. The authors of [JG05b, SCA+06] have analyzed the

ratio between the achievable sum rates of DPC and BD. A more practical metric has

been proposed in [LJ07], where the absolute rate and power offsets between DPC, BD,

and ZF are studied at high SNRs. However, none of them has mentioned RBD.

RBD was firstly proposed by [SH08] in 2008. It is designed to relax the dimensionality

constraint which restricts the applications of ZF and BD. In other words, RBD can

still be utilized in the situation when the multi-user MIMO system has less transmit

antennas (i.e., MT) than the aggregate number of receive antennas (i.e.,MR, here, MT <
MR), although the performance is degraded compared to the application of RBD in the

situation that the number of transmit antennas is larger than or equal to the total number

of the receive antenna in a multi-user MIMO system (i.e., MT ≥MR). Furthermore, RBD

has an improved throughput and diversity order compared to BD.

Inspired by the previous work in [LJ07], we analyze the performance of the throughput

loss between RBD, DPC, and BD at high SNRs for two cases. In the first case (i.e.,

MT ≥MR), the bounds of the average rate and power offsets between these schemes have

been derived as a function of the system parameters. The achievable multiplexing gain

of RBD is the same as DPC at high SNRs. In the case MT < MR, the approximated

throughput of RBD shows that the achievable multiplexing gain drops to 1 at high SNRs.

The application of RBD is only recommended in the low or medium SNR regime. This
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contribution has been published in [SH09a]. The proofs and notes of Chapter 3 are found

in Appendix C.

Chapter 4: this chapter is devoted to coordinated beamforming techniques. We present

new CBF algorithms which can provide a better sum rate relative to the existing CBF

algorithms with comparable complexity. There are two basis categories for the existing

CBF algorithms (i.e., iterative CBF and closed-form CBF). The closed-form solution of

CBF is more difficult to obtain than the iterative one. Thus, most of the existing CBF

algorithms are iterative. To the best of our knowledge, only the authors in [CMJH08]

have provided a closed-form CBF but only for a two-user two-transmit-antenna system.

It indicates in [CMJH08] that the transmit beamforming vectors f1 and f2 satisfy zero

inter-user interference conditions if they are chosen as the generalized eigenvector pair of

the correlation matrices of the two users (i.e., R1 and R2). In other words, the matrix

F = [f1,f2] can simultaneously diagonalize the correlation matrices R1 and R2 such

that FHR1F and FHR2F are diagonal matrices.

Let us consider the case of K users. There is a matrix F ∈ CMT×K in which the ith

column corresponds to the transmit beamforming vector of user i and a set of matrices{Ri}Ki=1 ∈ CMT×MT which are the correlation matrices of all users. If the matrix F can

jointly minimize the magnitude of the off-diagonal elements on the ith row and the ith

column of the set of correlation matrices {Ri}Ki=1, then, the columns of the matrix F

are chosen as the transmit beamforming vectors of K users which minimize the multi-

user interference. To find such a matrix F , a particular transformation algorithm is

needed. Fortunately, the problems of blind source separation (BSS) and independent

component analysis (ICA) [Yer10] give a hint to find F . Since the generic algorithmic

tool to solve BSS and ICA problems is an approximated joint diagonalization (AJD),

the general framework of AJD considers a set of N square, symmetric, real-valued n×n

matrices {Ci}Ni=1. The goal of AJD is to find a single matrix B which best jointly

diagonalizes the target matrices. Inspired by AJD, we have derived a ”sequentially

drilled ”joint congruence (SeDJoCo) transformation which can be applied to successfully

find the matrix F [SRH10c, YSRH12, SH09b]. The solutions of SeDJoCo have been

proven to exist, but may not be unique. Note that the SeDJoCo transformation can be

used to solve not only the problem of the closed-form CBF but also the problems of BSS

and ICA.

Except for the closed-form CBF, another important contribution is devoted to the itera-

tive CBF. A new iterative CBF [SRH10b, SRH13a] (namely flexible coordinated beam-
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forming (FlexCoBF)) has been designed with a high flexibility on the transmit-receive

beamforming vector design, a sum rate close to the sum capacity of the MIMO broadcast

channel, and efficient stopping criteria to achieve a good convergence. The aims of Flex-

CoBF are to efficiently utilize well-known transmit strategies (e.g., ZF, BD, and RBD)

and receive strategies (e.g., MMSE and MRC), combat some drawbacks in the existing

iterative CBF (e.g., only one data stream per user [CMIH08a] and the manually defined

number of iterations [SSH04, ZHV08, SH08]), and give an insight into the convergence

behavior. We have successfully obtained a patent [DCL+13] which is based on FlexCoBF.

Furthermore, FlexCoBF has been extended to the cellular scenario [SRH13a]. Unlike

some existing beamforming methods which assume the K-user MIMO interference chan-

nel and only consider the cell edge users [CHHT13, CKH09, GMK10, TGR09], the ex-

tended FlexCoBF considers both cell interior users and cell edge users. By introducing

the coordinated multipoint (CoMP) concept which is one of the hot topics for 4G and be-

yond system design [PDF+08], we consider a limited cooperation between base stations to

support the extended FlexCoBF. As a result, both intra-cell and inter-cell interferences

can be efficiently suppressed.

A short summary is given at the end of this chapter. It summarizes the advantages of the

new designed CBF algorithms compared to the existing CBF and also the shortcomings

which should be considered in future work. The contributions associated with this chap-

ter are published in [SH09b, SRH10b, SRH10c, LCZ+12, YSRH12, SRH13a, CLZ+13].

The proofs and notes of Chapter 4 are found in Appendix D.

Chapter 5: since channel state information (CSI) acquisition at the base station is

an important issue for the linear transmit-receive strategy design in multi-user MIMO

broadcast channels, we discuss several CSI acquisition strategies for three different chan-

nel conditions.

Firstly, we consider a time-varying correlated channel model. In this case, the channel

varies too fast to capture the instantaneous CSI (namely short-term CSI), the long-term

CSI based on second-order channel statistics is considered alternatively. The authors in

[SH05b, RFH08] have introduced a method to exploit the long-term CSI for multi-user

linear precoding. However, this method is only efficient for the case that the channels

are weakly correlated or entirely uncorrelated. Therefore, we have proposed a rank-

one approximated long-term CSI (ROLT-CSI) approach [SHMK09] which captures the

channel information by exploiting the knowledge of the estimated spatial correlation per

receive antenna and transmitting then along the dominant eigenmode of the exploited

11
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spatial correlations. Compared to the previous long-term method, ROLT-CSI is more

efficient if the channels are highly spatially correlated (e.g., LOS channels). But even

for uncorrelated channels, the presented ROLT-CSI still achieves some performance gain

relative to the previous long-term CSI method.

Then, we consider a system employing a limited feedback channel to inform the base

station about the CSI. In order to reduce the feedback overhead, the channel matrix is

quantized first at the user side before it is fed back. There are several ways to quan-

tize the channel matrix. A straightforward way is to encode every complex number of

the channel matrix individually, but it is inefficient, since the number of feedback bits

is still high. Alternatively, we quantize every individual channel matrix by looking up

a predefined codebook. Then, only the index of the chosen codeword needs to be fed

back. Most channel quantization schemes for the multi-user MIMO downlink employing

precoding only consider the directions of the channel [Jin06, RJ07], or they quantize

the channel directions and magnitudes separately [KZH08]. We propose a quantization

scheme [SRH08] which stacks the vectors of the channel matrix to maintain the relative

magnitude information for the columns of the channels and further quantizes the stacked

vector. It is well suited for the multi-user MIMO downlink employing RBD precoding or

employing other linear precoding algorithms (e.g., ZF and BD) with power allocation.

Moreover, we have developed an analytic performance analysis for the multi-user MIMO

downlink employing our quantization scheme and RBD precoding. The quality of the

codebook significantly affects the quality of the quantized CSI. Except for the study of

the random vector quantization (RVQ) codebook, we also investigate a new codebook

design (i.e., the dominant eigenvector Linde-Buzo-Gray (DE-LBG) vector quantization

codebook) [SRH08], which is more efficient than the RVQ coodbook by introducing op-

timality criteria and a sequence of channel samples (details are found in Section 5.3.3.4).

As a result, the complexity of the DE-LBG codebook is higher the RVQ codebook.

Finally, we consider blind channel estimation in order to reduce the channel estimation

overhead. Blind channel estimation has already been discussed for several decades and

several blind methods of channel estimation have been proposed for various channel

contexts. The existing methods are classified into the moment-based and the maximum

likelihood (ML) methods. The moment-based methods can be further divided into the

higher order statistical and the second order statistical approaches. Many applications of

the higher order statistical approaches [HN89, PF91, Tug95] do not consider multichannel

models. In such a case it may be necessary to exploit higher order statistics. Since the

publication of [TXK91], second order moment techniques have received considerable

12
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attention. These methods exploit the subspace structures of the observation [TXK91,

MDCM95, Nef04, ZMG02, VS08, MdCDB99, YP03]. Thus, they are often referred to as

subspace-based algorithms. One attractive property of the subspace-based blind channel

estimation methods is that the channel estimates can often be obtained in a closed form

from optimizing a quadratic cost function (as shown in equation (5.76)). On the other

hand, subspace methods may not be robust against modeling errors, especially when the

channel matrix is close to being singular, as they rely on the property that the channel lies

in a unique subspace. Unlike subspace-based methods, the ML methods usually cannot

be obtained in closed form. Their implementations are further complicated [BM86,

Hua96, TVP94]. However, ML methods can be very effective by including the subspace

methods as initialization procedures [TP98].

In the presented subspace-based approaches to blind channel estimation, the measure-

ment data is generally stored in one highly structured vector by a stacking operation.

The structure inherent in the measurement data is thus not considered in the subspace

estimation step. Exploiting the inherent structure of the measurement data often results

in a benefit. Therefore, we introduce the concept of tensors. Tensor-based signal pro-

cessing techniques have become increasingly popular in many different areas of signal

processing due to several fundamental advantages over their matrix-based counterparts

[KB09, dLdMV00a].

* Identifiability:

There is a major difference between matrices and higher-order tensors when rank

properties are considered. For a matrix A ∈ CM×N , the rank of the matrix r is

constrained to r ≤ min(M,N). In contrast, the tensor rank can largely exceed its

dimensions which leads to the advantage that more sources than sensors can be

identified [KB09].

* Uniqueness:

The tensor decompositions are essentially unique up to permutation and scaling,

whereas matrix decompositions are not. For example, the singular value decom-

position (SVD) of a matrix is unique only because of the additional orthogonality

constraints. This property of tensors allows to separate more components compared

to the matrix approach and is very useful for applications such as blind source sep-

aration (BSS) [WJG+10].

* Multilinear rank reduction:

Since the tensor notation preserves the structure of the measurement data, more
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efficient denoising is achieved by low-rank approximations of tensors. This advan-

tage can be used for many applications such as chemometrics [AB03], psychometrics

[CC70], computer vision [VT03], watermarking [AHB07], data mining [STF06], ar-

ray processing [SBG00], and ICA [LC08].

* Improved subspace estimate:

By using the multilinear rank reduction, improved signal subspace estimates can

be achieved. Therefore, multidimensional subspace-based parameter estimation

schemes can lead to a higher accuracy [HRD08]. Some example applications in-

clude R-D harmonic retrieval [Boy08, HRD08], channel modeling [MHS04], surveil-

lance RADAR [JLL09], blind interference cancellation [dLHSN08, dL11], and high-

resolution parameter estimation [dLSNH07, HN95, HTR04].

Considering these advantages, we have designed tensor-based blind channel estimation

algorithms of SIMO and MIMO channels to achieve an enhanced accuracy [SRH10a,

SRH13b]. The contributions presented in this chapter are published in [SHMK09,

KTS+10, SRH08, SH09c, SRH10a, SRH13b, RSS+11]. The proofs and notes of Chapter 5

are found in Appendix E.

Chapter 6: in this final chapter we collect all the contributions from the thesis again

and summarize the future research directions related to the thesis.

There are five appendices to the thesis. Appendix A summarizes the list of acronyms and

the mathematical notation used throughout the thesis. Appendices B, C, D, and E contain

proofs, derivations, and notes of Chapter 2, 3, 4, and 5, respectively. The bibliography is split

into two parts: one part with our own publications and a second part with all other references.
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2. Fundamentals of MIMO wireless communication

2.1. Introduction and Motivation

Fading and interference are the two key challenges faced by wireless communication systems.

Fading influences the reliability of any point-to-point wireless communication (e.g., between a

base station and a user) and interference limits the achievable throughput. MIMO technology,

known as the use of multiple antennas at the transmitter and the receiver in wireless systems,

emerges as a breakthrough for the future wireless communication. It offers a number of benefits

which help to meet the existing challenges such as the potentials for high sectral efficiency,

increased diversity, and interference reduction.
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Figure 2.1.: The block diagram of a equivalent baseband MIMO communication system.

Figure 2.1 shows an example of a MIMO communication system. At the transmitter, the

information bits are generated, encoded, and interleaved. The interleaved codeword is mapped

to data symbols by the digital modulation. These data symbols are thus split into more spatial

data streams. The spatial data streams are mapped to the transmit antennas by the precoding

block. The launched signals propagate through the channel and are finally collected by the

receiver. The receiver reverses the transmit operations to decode the data. Notice that the

placement, the functionality, and the interactions of the blocks can vary due to different system

designs.

15



2. Fundamentals of MIMO wireless communication

MIMO technology has been integrated into Third Generation (3G) cellular systems, 4G

standards (e.g., LTE-Advanced), and broadband fixed/mobile wireless access networks (IEEE

802.16e, also known as WiMax). It will also be included into the future IEEE 802.11n releases.

In this chapter, we review several fundamental concepts in MIMO wireless communications.

This knowledge will help to understand the motivations, developments, and applications of

the major contributions in this thesis. This chapter starts with the overview of the achievable

benefits of MIMO technology in Section 2.2. In Section 2.3 the construction of the wireless

MIMO channels is described. The capacity regions of the single-user MIMO, the multi-user

MIMO, and the multi-cell MIMO systems are discussed in Section 2.4. Finally, a summary is

provided in Section 2.5.

2.2. Benefits of MIMO technology

MIMO technology provides a number of advantages over the conventional single-input single-

output (SISO) technology, which have been traditionally defined as spatial diversity gain,

spatial multiplexing gain, array gain, and interference reduction and avoidance [PNG03].

2.2.1. Spatial diversity gain

Diversity techniques have been proposed to combat the impact of fading. The basic idea of

diversity is to provide the receiver multiple copies of the same transmitted signal in time,

frequency, or space. With these independent copies, the probability that all links experience

a deep fade reduces dramatically. Therefore, the quality and reliability of the reception has

been improved. In general, time and frequency diversity techniques lead to a loss in time and

bandwidth due to the introduction of redundancy. In contrast, spatial diversity is provided

by employing multiple antennas at the transmitter and/or the receiver, thereby no sacrifice of

time and bandwidth occurs.

The diversity gain is defined as the negative slope of the log-log plot of the average error

probability P̄ versus SNR ρ [OC10]

gd
△= −

log(P̄ )
log(ρ) . (2.1)

Note that the spatial diversity gain is usually taken as the asymptotic slope (i.e., ρ → ∞).

For example, in a slow Rayleigh-fading environment with one transmit antenna and n receive

antennas, the transmitted signal is passed through n different paths. If these n paths experience

independent fading, a maximal diversity gain of n can be achieved. In general, for a MIMO
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channel with MT transmit antennas and MR receive antennas, a spatial diversity order of

MTMR is potentially offered.

Compared to a single antenna system, a spatial diversity scheme inherently requires addi-

tional hardware (i.e., antennas) and additional signal processing at the transmitter and/or the

receiver. However, regarding the fact that signal reliability is a key requirement of mobile wire-

less communication systems, employing multiple antennas is an effective method to decrease

the number of failed connections and improve the reception quality.

2.2.2. Spatial multiplexing gain

In MIMO communication systems, multiple independent data streams can be simultane-

ously transmitted from the transmitter employing multiple antennas. By introducing proper

SDMA strategies (e.g., linear precoding) at the transmitter, the receiver can reliably separate

these data streams under favorable channel conditions such as a rich scattering environment.

Thereby, the capacity of the MIMO system is enhanced by a multiplicative factor equal to the

number of data streams. In general, the maximum number of data streams is equal to the

minimum of the number of the transmit antennas and the number of the receive antennas.

If a MIMO system is equipped with MT transmit antennas and MR receive antennas, the

achievable spatial multiplexing gain is min(MT,MR).
Let us denote the transmission rate as R(ρ). Then, the spatial multiplexing gain is defined

as [OC10]

gs
△= lim

ρ→∞

R(ρ)
log2(ρ) . (2.2)

In practice the spatial multiplexing gain can be limited by spatial correlation.

2.2.3. Array gain

Array gain reflects the increase in the receive SNR ρout by using multiple antenna at the

transmitter and/or receiver with respect to the receive SNR ρSISO of the SISO case, which is

defined as [OC10]

ga
△=

ρout

ρSISO
, (2.3)

Array gain can be realized through spatial processing at the transmit antenna array and/or

at the receiver antenna array (e.g., maximal ratio combining (MRC)). With the improved

receive SNR, the coverage and range of a wireless system can therefore be enlarged.
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2.2.4. Interference reduction and avoidance

In wireless communication system, interference is caused by sharing time and frequency re-

sources between multiple users. To utilize MIMO technology, interference can be avoided by

exploiting the additional spatial dimension for user separation. For instance, beamforming

techniques direct signal energy towards the intended user and minimize interference to other

users. Therefore, the achievable system throughput is improved and the coverage of a wireless

system is enlarged as well. Furthermore, the interference power can be effectively reduced by

the array gain, which results in an increased signal to noise plus interference ratio (SINR).

Unfortunately, it is impossible to simultaneously exploit all the benefits described above

for a MIMO system due to the conflicting requirements on the spatial degrees of freedom.

For example, spatial diversity is used to combat fading. However, multiple independent fading

events increase the degrees of freedom available for communications. If the individual transmit-

receive antenna pairs fade independently, the channel matrix can be well conditioned (i.e., very

low or no spatial correlations) with high probability. In this case, independent data streams can

be supported. Thus, spatial multiplexing can be used. In other word, the spatial multiplexing

gain comes at the price of sacrificing diversity. A fundamental trade-off has been derived

between the spatial multiplexing gain and the spatial diversity gain that any multiple antenna

scheme can achieve in the Rayleigh fading channel [ZT03], which is useful for evaluating and

comparing the existing multiple antenna schemes. Despite all that, using some combinations

of the benefits in a wireless system can lead to an improved capacity, an enhanced reliability,

and an enlarged coverage.

2.3. MIMO channel models

Note that radio propagation has a significant impact on the performance of wireless commu-

nication systems. Its impact on future broadband systems is even more important due to

demand for the increased data rates, bandwidth, mobility, adaptivity, etc. Therefore, versatile

and accurate MIMO channel models are required. Furthermore, a profound understanding

of MIMO channels is crucial for an efficient design of algorithms and a selection of proper

signaling strategies in wireless MIMO systems.

The wireless channel is a challenging environment due to the existence of multipaths with

different time-varying delays, attenuations caused by fading, different phases, and directions of

departure and arrival. Furthermore, high mobility results in rapid variations across the time-

dimension and angular spread causes significant variations in the spatial channel responses.

Therefore, a versatile MIMO channel model must accurately track all dimensions of the channel
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responses (e.g., time, frequency, and space) and capture all the basic channel characteristics

which include

* Temporal characteristics (e.g., delay spread and distribution, power delay profile)

* Frequency-domain characteristics (e.g., Doppler shifts, Doppler power spectrum)

* Spatial characteristics (e.g., angle of departure spread and distribution, angle of arrival

spread and distribution, spatial correlations, and power azimuth spectrum)

Considering a MIMO system with MT transmit antennas and MR receive antennas, the

MIMO channel is given by the MR ×MT matrix H with

H(τ, t) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1,1(τ, t) h1,2(τ, t) ⋯ h1,MT
(τ, t)

h2,1(τ, t) h2,2(τ, t) ⋯ h2,MT
(τ, t)

⋮ ⋮ ⋱ ⋮

hMR,1(τ, t) hMR,2(τ, t) ⋯ hMR,MT
(τ, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.4)

where hm,n(τ, t) is the channel impulse response between nth transmit antenna for n =
1, . . . ,MT and mth receive antenna for m = 1, . . . ,MR, which depends on several parameters

such as time, delay, and directions of departure and arrival.

In general, the MIMO channel models can be classified into two different categories: physical

channel models and analytical channel models. The difference and properties of these two

models are briefly described as follows [OC10].

2.3.1. Physical channel models

Physical channel models are mostly used to evaluate the system performance. They specify the

geometrical parameters (e.g., the locations of scatterers and obstacles) and the array configu-

ration. The MIMO channels are thus generated to provide values of the basic characteristics of

the channels (e.g., spatial correlations, multi-path fading, Doppler spread, etc.) as a function

of the defined geometrical parameters and array configuration.

A large number of physical models exists [OC10]. For example, geometry-based models,

using a simplified ray-based approach, are stochastic models of the channel. One-ring models,

two-ring models, combined elliptical-ring models, and elliptical and circular models are popular

geometry-based models as example. In all cases, the channel between any transmit and receive

antennas is generally obtained as [Gol05]

hm,n(τ, t) = L

∑
ℓ=1

cℓe
j2πfD,ℓtδ(τ − τℓ)aR(ΘR,ℓ)aT(ΘT,ℓ), (2.5)
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where

- L is the total number of paths.

- cℓ is the complex scalar amplitude gains of the ℓth path.

- ΘR,ℓ is the direction of arrival of the ℓth path.

- ΘT,ℓ is the direction of departure of the ℓth path.

- aR(ΘR,ℓ) is the array steering vector of the received array as the function of the direction

of arrival (DOA).

- aR(ΘT,ℓ) is the array steering vector of the transmitted array as the function of the

direction of departure (DOD).

- τℓ indicates the time delay of the ℓth path.

- fD,ℓ denotes the Doppler frequency of the ℓth path.

There are several popular physical channel models for comparing the performance of different

system implementations such as

* 3GPP/3GPP2 spatial channel models (SCM): this set of models were released in

September 2003 [rGPPG03] and originally established for the 2 GHz range and 5 MHz

bandwidth 3G networks in urban and suburban macrocells as well as in urban microcells.

The modeling structure is similar to the COST 259 directional channel model [Cor01],

but the major difference is that SCM is defined as a discretized model instead of the

continuous one in COST 259. For example, continuous, large-scale movements of the

mobile terminal is not permitted for SCM. Instead, SCM considers different possible

positions of the mobile terminal within a cell.

* WINNER channel model: this set of models was developed by the Wireless World

Initiative New Radio (WINNER) project. The WINNER channel model-phase I (WIM1)

was firstly described in the deliverable D 5.4 in 2005 [WIN05]. WIM2 referring to phase

II was available in the deliverable D 1.1.2 in 2007 [WIN07]. WIM1 and WIM2 were

proposed for the 5 GHz range and 100 MHz bandwidth in different environments such

as indoor, urban microcells, indoor hotspot, stationary feeder sub-scenarios, urban and

rural macrocells, indoor-to-outdoor, outdoor-to-indoor, moving networks, and bad urban.

The comparisons of SCM and WIM have been evaluated in [NST+07]. The WINNER

channel model has been considered in our publication [KTS+10].
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* IlmProp channel model: it is capable of modeling time variant frequency selective

multi-user MIMO channels [DHS03]. The channel impulse response (CIR) is generated

as a sum of propagation rays. These rays are defined by a three dimensional geometry

which can be defined manually or be retrieved from measurements. We have utilized the

IlmProp in our publication [SHMK09].

2.3.2. Analytical channel models

On the other hand, analytical models are mostly used for the explicit algorithm design. They

provide a mathematical, more abstract representation of the MIMO channel matrix. To this

end, the MIMO channel matrix is expressed as a function of a random fading matrix and

various channel correlations.

2.3.2.1. Rayleigh fading channels

The Rayleigh fading assumption is often used by MIMO system designers due to the fact

that it is realistic when the environment has rich scatterers. The narrowband transmission

between a transmit-receive antenna pair is modeled as a sum of a large number of contributions

which have random and statistically independent phase, directions of departure (DODs), and

directions of arrival (DOAs). If the wide-sense stationary uncorrelated scattering homogeneous

(WSSUSH) Rayleigh fading channels are assumed, each element of the channel matrix H is

thus a zero-mean complex circularly symmetric Gaussian variable. We have

E{hm,n} = 0,

E{∣h2m,n∣} = 1,

E{hm,nh
∗
i,j} = 0, for i ≠m, j ≠ n. (2.6)

In this case, the channel matrix H is denoted as Hw [PNG03]. This so-called independent

identically distributed (i.i.d.) Rayleigh assumption has been extensively used for the designs

of space-time coding, linear precoding, coordinated beamforming, distributed beamforming,

etc. However, it is noticed that the real-world channel sometimes significantly deviates from

this ideal channel model Hw due to a number of reasons:

* Insufficient spacing between antenna elements and/or the placement of scatterers leads

to spatial fading correlation. Channels are not independent anymore.

* Gain imbalance between the various elements of the channel matrix can be created by

the use of multiple polarizations. Channels are no longer identically distributed.
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* The Rayleigh fading channels may become Ricean fading channels due to the presence

of a fixed component (e.g., line-of-sight) in the channel.

2.3.2.2. Spatial correlated Rayleigh fading channels

When the antenna spacings or the angular spreading of the energy at the transmit and/or

the receiver are not large enough, spatial correlations may result. The full spatial correlation

matrix R can be modeled as [PNG03]

R = E{vec(H)vec(H)H}

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ∗1,2 ρ∗1,3 ⋯ ρ∗1,MT⋅MR

ρ1,2 1 ρ∗2,3 ⋯ ρ∗2,MT⋅MR

ρ1,3 ρ2,3 1 ⋯ ρ∗3,MT⋅MR

⋮ ⋮ ⋮ ⋱ ⋮

ρ1,MT⋅MR
ρ2,MT⋅MR

ρ3,MT⋅MR
⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CMT⋅MR×MT⋅MR , (2.7)

where the correlation coefficients 0 ≤ ∣ρk,l∣ ≤ 1 for k, l = 1, . . . ,MT ⋅MR and k ≠ l. The channel

matrix H represents the spatially correlated Rayleigh fading channel which can be constructed

by

vec(H) =R 1

2vec(Hw). (2.8)

Here, the operation vec(H) stacks all elements of the matrix H column by column into a

column vector.

In many applications, a simpler and less general model, known as Kronecker model, is given

by [PNG03]

H =R1/2
r Hw(R1/2

t )H, (2.9)

where Rr ∈ C
MR×MR is the receive correlation matrix and Rt ∈ C

MT×MT is the transmit

correlation matrix. Both Rr and Rt are positive semi-definite matrices. Compared to the

model defined in equation (2.8), the Kronecker model has less degrees of freedom, since the

model defined in equation (2.8) is able to capture any correlation effects between the elements

of H.

2.3.2.3. Ricean fading channels

The Rayleigh assumption typically holds in mobile scenarios. However, there are situations

where the Rayleigh assumption is not suitable due to the fact that a strong coherent component

may exist in real-world cellular networks. This component does not experience any fading
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over time and corresponds to a line-of-sight (LOS) path. In the presence of a LOS component

between the transmitter and the receiver, the MIMO channel may be modeled as a sum of a

fixed component and a fading component [PNG03]

H =

√
K

1 +K
H̄ +

√
1

1 +K
Hw, (2.10)

where the first term on the right-hand-sight (RHS) is the LOS component of the channel

(
√

K
1+K

H̄ = E{H}) and the second term on the RHS is the fading component assuming

uncorrelated fading. The factor K ≥ 0 is the Ricean K-factor of the channel which is defined

as the ratio of the power in the LOS component of the channel to the power in the fading

component. If K = 0 the channel H exhibits pure Rayleigh fading. At the other extreme

K =∞ corresponds to a non-fading channel.

Except for the above introduced analytical channel models, many other analytical channel

models have been established for different applications [OC10] such as dual-polarized channel

models and double-Rayleigh fading models for keyhole channels. In this chapter, we do not

overview them in detail.

2.4. Capacity region of systems with MIMO

MIMO systems provide tremendous capacity gains and high spectral efficiencies [BCC+07],

which has inspired significant activities to develop transmitter and receiver techniques that

realize the capacity benefits and exploit diversity-multiplexing trade-offs. In this section, we

focus on capacities of the single-user MIMO system, the multi-user MIMO system, and the

multi-cell MIMO system in the Shannon theoretic sense. The Shannon capacity of a single-user

time-invariant channel is defined as the maximum data rate at which reliable communication

can be performed under a specific power constraint and without any constraint on the trans-

mitter and receiver complexity. If the channel is time variant, we can define ergodic capacity

and outage capacity. These different definitions are related to what is known about the channel

state information (CSI) or channel distribution information (CDI) at the transmitter and/or

the receiver. When the instantaneous CSI is known perfectly at both transmitter and receiver,

the transmitter can adapt its transmission strategy according to the instantaneous CSI. In

this case, the ergodic capacity is the maximum mutual information averaged over all channel

states. The ergodic capacity is an appropriate capacity metric for fast varying channels and

typically achieved by using an adaptive rate and power policy relative to the channel state

variations. Alternatively, outage capacity is an appropriate capacity metric for slowly varying
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channels and requires a fixed data rate in all non-outage channel states. Consequently, the

average rate associated with the outage capacity is typically smaller than the ergodic capacity.

When the channel varies too fast to capture the instantaneous CSI at the transmitter, only

the receiver has perfect CSI. The transmission strategy is based on the CDI instead of the

CSI. In this case, the transmitter must maintain a fixed-rate transmission strategy optimized

with respect to its CDI. Then, the ergodic capacity defines the rate that can be achieved based

on averaging over all channel states. Alternatively, the transmitter can send at a rate which

cannot be supported by all channel states. In the poor channel states the receiver declares

an outage and the transmitted data are lost. In this case, a percentage outage capacity p is

defined to be the transmission rate that can be supported (100 − p)% of the time.

The calculation of the for general a channel distribution is a hard problem. Almost all

references in this area are focused on three special distribution models described as follows

[GJJV03, BCC+07]. In these three cases, the channel coefficients are modeled as complex

jointly Gaussian random variables.

* Zero-mean spatially white (ZMSW) model: This model typically captures the

long-term average distribution of the channel coefficients. In this model, the channel

mean is zero and the channel covariance is white.

* Channel mean information (CMI) model: This model is applicable for a system

where the feedback delay leads to an imperfect estimate at the transmitter. In this

model, the mean of the channel distribution is non-zero while the covariance is modeled

as being white with a constant scaling factor. The channel mean reflects the outdated

channel measurement and the constant factor indicates the estimation error.

* Channel covariance information (CCI) model: This model deals with the channel

which varies too fast to track its mean. Therefore, the mean of the channel is set to be

zero in this model and the information regarding the relative geometry of the propagation

paths is captured by a non-white covariance matrix.

In single user MIMO (SU MIMO) systems, the achievable capacity is determined and iden-

tical for the uplink and downlink by assuming that the channel impulse responses are the same

on the downlink and the uplink (e.g., TDD system), the channel is known at the transmitter

and the receiver, and the downlink and uplink have the same transmit power. Without CSI at

the transmitter, SU MIMO suffers only a small penalty (i.e., loss) on capacity. In multi-user

MIMO (MU MIMO) systems, the achievable capacities are characterized by capacity regions

of multiple access channels (MAC) on the uplink and broadcast channels (BC) on the down-

link. The downlink and uplink channels are duals of each other under the conditions that the
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channel impulse responses of each user are the same on the downlink and the uplink, the noise

statistics of each receiver on the downlink are the same as those of the receiver on the uplink,

and the sum of the individual power constraints on the uplink is equal to the power constraint

on the downlink. The duality permits us to compute the capacity region of the MIMO BC

much easier from the capacity region of the MIMO MAC, since it is very difficult to compute

the MIMO BC capacity region directly. Without CSI at the transmitter, MU MIMO has a

much larger penalty on the downlink than SU MIMO. For multi-cell MIMO, the analysis of

the capacity is inevitably a hard problem. Some results do exist, but only for simplified inter-

ference models (e.g., treating interference as Gaussian noise) [BCC+07]. Such results cannot

be extended to more general models which do not treat interference as Gaussian noise.

2.4.1. Single-User MIMO Capacity

In this part, we consider the single-user MIMO capacity first, since it is much easier to derive

for a single user than for multiple users and the results have been known for many cases.

Although there are still several open problems in obtaining the SU MIMO capacity under

general assumptions of CSI and CDI which are shown later (see Section 2.4.1.6), for several

interesting cases the solutions are known. In this section we will overview several cases with

special CSI and CDI models. It can be found that the statistical properties of the channel and

the correlation between the antenna elements influence the capacity significantly [BCC+07].

2.4.1.1. System Model

Considering a MIMO system where the transmitter has MT transmit antennas and the receiver

is equipped with MR receive antennas, the channel is represented by a MR ×MT matrix H

with the entries hij denoting the channel gain between the jth transmit antenna and the ith

receive antenna. The received signal y ∈ CMR×1 can be written as

y =Hx +n, (2.11)

where x is the MT ×1 transmitted vector and n indicates the MR ×1 additive white circularly

symmetric complex Gaussian noise vector. The transmitted signal x is subject to a transmit

power constraint PT, i.e., tr(E{xxH}) ≤ PT. The covariance matrix of the noise is normalized

to be the identity matrix (i.e., σ2
n = 1). Furthermore, let us define P̃T = PT

σ2
n
and the signal-to-

noise ratio (SNR) equals 10 log10 P̃T (i.e., SNR = 10 log10 P̃T).
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2.4.1.2. Constant MIMO Channel Capacity with Perfect CSIT and CSIR

When the channel is constant, it is reasonable to assume that the channel matrix H is known

perfectly at the transmitter and the receiver. Thus, the MIMO capacity can be calculated as

[BCC+07]

CSU = max
Q∶ tr(Q)=PT

log2 det(IMR
+HQHH), (2.12)

where the matrix Q ∈ CMT×MT is the positive semi-definite input covariance matrix. The total

transmit power is denoted by PT.

It has been shown in [Tel95] that the capacity is achieved by converting the MIMO channel

into parallel, non-interfering SISO channels through a singular value decomposition (SVD) of

the channel matrix H and by applying water-filling as described below. The channel matrix H

is rewritten as H = UΣV H by SVD, where the matrix U ∈ CMR×MR is unitary and contains

the left singular vectors of H, the unitary matrix V ∈ CMT×MT contains the right singular

vectors of H, and Σ is a matrix of size MR ×MT, and the (i, i)th element of Σ is the singular

values σi of H. Here, we use (i, i) to indicate the diagonal element on the ith row and the

ith column. If the matrix H has exactly r positive singular values (r ≤ min(MR,MT)), the
channel is decomposed into r subchannels by premultiplying the input by Vs ∈ CMT×r (i.e.,

V = [Vs Vn]) and post-multiplying the output by the matrix UH
s ∈ Cr×MR (i.e., U = [Us Un]).

This linear transmit-receive strategy is widely used in practical systems because of its low

complexity and significant performance benefit.

The water-filling algorithm is used as the optimal solution of the power loading over the

parallel channels, which leads to [BCC+07]

Pi = (µ − 1

σ2
i

)
+

, i = 1, . . . , r. (2.13)

The waterfill level µ is chosen such that ∑r
i=1 Pi = PT. Here, (x)+ indicates max(x,0). Then,

the capacity is achieved by defining the covariance matrix Q = VsPV H
s where the matrix

P ∈ Cr×r is equal to diag(P1, . . . , Pr). The resulting capacity is given by

CSU =
r

∑
i=1
( log2(µσ2

i ))+. (2.14)

Proof: see Appendix B.1
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2.4.1.3. Spatially White Fading MIMO Channel Capacity with Perfect CSIT and CSIR

With fading, the ergodic capacity is simply defined as an average of the capacities achieved

with each channel realization. We have [BCC+07]

CSU = EH { max
Q∶ tr(Q)=PT

log2 det(IMR
+HQHH)} . (2.15)

Here, the input covariance matrix Q is changed with each channel realization. If the channel

changes slowly enough to allow the reliable estimation of the channel at the receiver and the

estimated CSI can be promptly fed back to the transmitter, we can assume perfect CSI at both

transmitter and receiver. Then, the capacity for each channel realization can be calculated by

equation (2.14) introduced in the subsection above. Correspondingly, the covariance matrix

Q for each channel realization is chosen according to the water-filling procedure.

2.4.1.4. Spatially White Fading MIMO Channel Capacity with Perfect CSIR and CDIT

Obtaining CSIT can be rather difficult in time-varying channels, as it generally requires either

high-rate feedback from the receiver, or time-division duplex (TDD) operation on a sufficiently

fast scale. Assume that we have perfect CSI at the receiver and a ZMSW channel distribution

information at the transmitter (CDIT). When the transmitter does not know the instantaneous

CSI and only has the knowledge of the fading distribution, it is impossible to align the input

covariance matrix with the eigenmodes of the channel H. In this case, the optimal transmit

strategy is to equally allocate the transmit power in each direction [FG98, Tel95]. The optimum

input covariance matrix is the scaled identity matrix, i.e., Q = PT

MT

IMT
. Thus the ergodic

capacity is given as

CSU = EH {log2 det(IMR
+

P̃T

MT

HHH)} . (2.16)

2.4.1.5. Spatially correlated Fading MIMO Capacity

Although the capacity of spatially correlated MIMO under the CCI model by considering a

general spatial correlation model is still an open problem, several research publications have

studied capacities of spatially correlated fading MIMO under the CCI model by considering

the Kronecker model (shown in equation (2.9)). Here, we like to point out that the work by

Ozcelik et al. [OHW+03] has shown that the Kronecker model may not render the multipath

structure correctly, leading to pessimistic capacity estimates in some cases.

Boche and Jorswieck have shown in [BJ03b, BJ03a] that the ergodic capacity of the cor-

related MISO systems with perfect CSI and without CSI at the transmitter is Schur-concave
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(definition in Appendix B.2), regarding perfect CSI at the receiver. When only covariance

knowledge of the channels is known at the transmitter (i.e., the CCI model) and the receiver

has perfect CSI, the ergodic capacity of the correlated MISO system is Schur-convex (definition

in Appendix B.2) with respect to the correlation properties. Additionally, in the presence of

perfect CSIR, it has been shown in [CTKV02] that the capacity of spatially correlated MIMO

channels still increases linearly with min(MT,MR), but the rate of growth is 10− 20% smaller

compared to the spatially white fading case. It it noticed that the analysis in [CTKV02]

further considers several assumptions on the transmit and receive correlation matrices in the

Kronecker model. For example, the correlation between the fading at two antennas depends

only on the relative and not the absolute positions of the antennas. Now, we come to the ques-

tion: does the correlated fading always decrease the growth of capacity? Actually the results

exploited in [JG05a, BJ03b, BJ03a] have indicated that in the absence of CSIT correlations

can improve capacity, especially for the fast fading channels.

2.4.1.6. Open Problems in Single-User MIMO

The results summarized in the existing publications (e.g., [GJJV03, BCC+07]) give the basis of

the understanding of the SU MIMO channel capacity under special CSI and CDI assumptions.

However, the knowledge of the MIMO capacity with CDI only is still far from complete. In

the following, some of the many open problems have been pointed out as examples [GJJV03,

BCC+07].

- CCI or CMI: Capacity is not known under the CCI model for completely general spatial

correlations, or under the CMI model for an arbitrary channel mean matrix.

- Channel distribution information at the receiver (CDIR): Capacity for almost all cases

with only CDIR are open problems.

- Outage capacity: Due to the fact that the outage capacity is less analytically tractable

compared to the ergodic capacity, most existing results with partial CSI are only for the

ergodic capacity. An abundance of open problems is left for the outage capacity.

2.4.2. Multi-User MIMO Capacity

Instead of a single real number for the channel capacity of the single-user MIMO system, the

capacity of the multi-user MIMO system is a region which is defined as the set of simultaneously

achieved rates. This region denotes the fundamental limit of reliable communications under

certain channel characteristics. The capacity benefit of the multi-user MIMO system is even
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greater than the single user MIMO case due to the increased number of antennas and users.

In this part, we introduce the results for the capacity of the MIMO MAC and MIMO BC

[GJJV03, BCC+07].

2.4.2.1. System Model

We consider a single cellular system where the base station has MT antennas and the ith user

has MRi
antennas. There are K users in this system. We use Hi ∈ CMRi

×MT to indicate the

downlink channel of user i. Accordingly, the expression HT
i ∈ C

MT×MRi denotes the uplink

channel of user i by assuming that the same channel is used for the uplink and downlink.

Considering the MIMO MAC as shown in Figure 1.3, the ith user transmits signal vector

xi ∈ CMRi
×1 to the base station. The received signal at the base station is denoted by y ∈ CMT×1

and given as

y =
K

∑
i=1

HT
i xi +ni, (2.17)

where the noise vector ni ∈ CMT×1 indicates circularly symmetric complex Gaussian noise

with an identity covariance matrix (i.e., σ2
n = 1). Each user is subject to an individual power

constraint Pi, i.e., tr(E{xix
H
i }) ≤ Pi. The total transmit power of all users is assumed to be

∑K
i=1 Pi = PT.

Considering the MIMO BC as shown in Figure 1.2, the transmitted signal from the base

station is denoted as x ∈ CMT×1. The received signal at the ith user yi ∈ CMRi
×1 is given as

yi =Hix +ni. (2.18)

Here, the noise ni ∈ CMRi
×1 is assumed to be circularly symmetric complex Gaussian noise

with an identity covariance matrix (i.e., σ2
n = 1). The base station is subject to a transmit

power constraint PT, i.e., tr(E{xxH}) ≤ PT. Let us define P̃T = PT

σ2
n

and the signal-to-noise

ratio (SNR) equals 10 log10 P̃T (i.e., SNR = 10 log10 P̃T).

2.4.2.2. Capacity Region of the MIMO MAC

In the MIMO MAC, K independent data rates are present. Therefore, the capacity region

is a K-dimensional region. With individual power constraints Pi, i = 1, . . . ,K and successive

decoding, the capacity region is given as [SXLK98]

K

∑
i=1

Ri ≤ max
tr(QiQ

H

i
)≤Pi

log2 det(IMT
+

K

∑
i=1

HT
i QiH

∗

i ). (2.19)
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The boundary of the MIMO MAC capacity region can be achieved by finding optimal co-

variance matrices Qi. Since the MAC capacity region is convex, efficient convex optimization

tools can be employed to solve it [BV04]. The iterative water-filling algorithm proposed in

[YRBC04] is a more efficient numerical algorithm to compute the optimal covariance matri-

ces that maximize the sum capacity, because it decomposes the multi-user problem into a

sequence of single user problems. This method suggests that each user’s covariance matrix is

a water-filling covariance by regarding the interference generated by other users as noise.

For fading MIMO multiple-access channels, the ergodic capacity region with perfect CSIR

and CSIT is equal to the time average of the capacity obtained at each fading instant with a

constant transmit policy. If users’ channel matrices are ZMSW and each user has the same

power constraint, then the optimal covariance matrices are scaled version of the identity matrix,

i.e., Qi = Pi

MR

IMRi
[Tel95]. In this case, the sum rate capacity of the MAC is expressed by

CMAC = EH {log2 det(IMT
+

K

∑
i=1

Pi

MRσ2
n

HT
i H

∗

i )} . (2.20)

Note that this expression is exactly the ergodic capacity of the point-to-point MIMO fading

channels with ∑K
i=1MRi

transmit antennas and MT receive antennas as given in equation

(2.16). This implies that the lack of cooperation between the K transmiting users does not

reduce the capacity under this fading model. The sum rate capacity of the MAC grows as

min(MT,∑K
i=1MRi

) log2(P̃T). Thus, for a system with large number of users, the capacity can

be linearly increased by increasing the number of receive antennas MT at the base station.

This is a key benefit of MIMO in multi-user systems.

2.4.2.3. Capacity Region of the MIMO BC

Unlike the MIMO multiple-access channels, the general expression for the capacity region of

the MIMO BC is still an open question due to the lack of a general theory on the capacity of

non-degraded broadcast channels. However, dirty paper coding (DPC) [CS00, Cos83, YC01]

has been shown as a capacity-achieving tool for MIMO BC and achieves the sum rate capacity

of the MIMO BC.

DPC allows the multi-user interference to be pre-subtracted at the transmitter, but in such

a way that the transmit power is not increased. The transmission strategy under dirty paper

coding is exploited in the code design. The transmitter first chooses a codeword for receiver 1.

Then, the codeword for receiver 2 is picked with full knowledge of the codeword for receiver

1. Therefore, the receiver 2 does not see the interference caused by the codeword intended for
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receiver 1. Similarly, the transmitter chooses codeword for receiver 3 such that receiver 3 does

not see the interference caused by the signals for receivers 1 and 2. To continue this process

for all K receivers, an achievable set of rates is given as [BCC+07]

R
π(i) = log2

det(IMR
+H

π(i)(∑j≥iQπ(i))HH
π(i))

det(IMR
+H

π(i)(∑j>iQπ(i))HH
π(i)) , i = 1,2, . . .K, (2.21)

where π(i) is a permutation of the user indices depending on the encoding order. The dirty

paper region is the convex hull of the union of all such rates vectors over all covariance matrices

Q1, . . . ,QK with sum power constraint PT. Notice that computing such a set of achievable

rates is extremely complex, especially for a large number of antennas at either the transmitter

or the receiver.

2.4.2.3.1. Duality between the MIMO BC and the MIMO MAC

The channel capacities of downlink and uplink may be different due to fundamental differences.

For instance, downlink has a single power constraint associated with the base station, whereas

the uplink has different power constraints associated with each user. Another difference is

that on the downlink there is an additive noise term related to each user, while there is only

one additive noise term related to the base station on the uplink. However, the fact that

the downlink and the uplink channels looks like mirror images of each other implies a duality

between them.

The duality between the scalar Gaussian BC and Gaussian MAC1 was first shown in [JVG01],

which indicates that the capacity region of a scalar Gaussian BC with power PT is equal to the

union of capacity regions of the dual MAC with power (P1, . . . , PK) such that∑K
i=1 Pi = PT. One

key point is that to achieve the same rate vector in the BC and MAC, the decoding order must

in general be reversed. A multiple-antenna extension has been proposed in [VJG03], which

establishes the duality between the DPC region of the MIMO BC and the capacity region

of the MIMO MAC. This duality is very useful from a numerical point of view, because the

rate equations (2.21) are neither a convex nor a concave function of the covariance matrices,

whereas the boundary of the dual MIMO MAC capacity region can be taken as a convex

optimization problem. By applying the duality, the solved optimal MAC covariances can be

transformed to the corresponding optimal BC covariances using the MAC-BC transformations

given in [VJG03].

A simple expression of the capacity region of the MIMO BC can be observed in terms of

1The scalar Gaussian BC and MAC channels defined in the paper are subject to a flat Rayleigh fading
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the sum power MIMO MAC by the duality

CBC(PT;{Hi}Ki=1) = CMAC(P1, . . . , PK ;{HT
i }Ki=1)

= ⋃
tr(QiQ

H

i
)≥0, ∑K

i=1 tr(QiQ
H

i
)≤PT

(K

∑
i=1

Ri ≤ log2 det(IMT
+

K

∑
i=1

HT
i QiH

∗

i )) ,
(2.22)

where the {Qi}Ki=1 are the dual MIMO MAC covariance matrices and ⋃ is a union notation.

Thus, the MIMO BC capacity region can be numerically computed by power convex optimiza-

tion algorithms.

Similar to the MIMO MAC, the sum rate capacity of the MIMO BC with perfect CSIR and

CSIT grows approximately as min(MT,∑K
i=1MRi

) log2(P̃T) when P̃T goes to infinity. In other

words, this MIMO BC has a multiplexing gain of min(MT,∑K
i=1MRi

).
2.4.2.4. Open Problems in Multi-User MIMO

A large number of open problems in multi-user MIMO cases exist. Some of them are listed as

follows [GJJV03, BCC+07].

- BC with CSIR: The BC capacity is only known when both the transmitter and the

receivers have perfect CSI.

- CDIT and CDIR: Due to the fact that perfect CSI is rarely possible, a study of capacity

with CDI at both the transmitters and receivers for both MAC and BC is practical.

- Non-DPC techniques for BC: DPC is a very powerful capacity-achieving scheme, however,

it has prohibitively high complexity for implementation in practice. Thus, non-DPC

multi-user transmissions schemes for BC are more practical.

2.4.3. Multi-cell MIMO capacity

Transmissions in one cell are not limited within this cell due to the fundamental feature of

wireless propagation. Thus, inter-cell interference is introduced between the cells where the

resources (e.g., time, frequency, and space) are shared. In fact the majority of current systems

are interference limited rather than noise limited. As a result, multi-cell environments must

be explicitly considered in order to accurately assess the benefits of MIMO technology.

In the presence of multiple cells, multiple users, multiple antennas, and possibilities of coop-

eration between base stations, the analysis of the information-theoretic capacity of the cellular
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network is inevitably a hard problem. A thorough understanding of it regarding fading and

path loss effects has not been obtained yet. However, such an analysis is required because

it can provide a common benchmark to assess the efficiency of any practical scheme. Some

capacity results do exist, but only for simplified interference models. Such results provide

intuition for the general performance behavior, whereas they are difficult to extend to general

channel models. In this part, we review such analysis results from two categories. One assumes

that the base stations cannot cooperate. The other considers full cooperation between base

stations. Note that the cooperation, considered in this thesis, implies cooperative transmission

and reception which takes place at the physical layer. It is different from the existing coop-

eration in the cellular systems such as GSM which takes place at the networking layer (e.g.,

hand-off).

2.4.3.1. Multi-cell MIMO without cooperation between base stations

If no cooperation is introduced, the channel becomes an interference channel and the system

is interference limited. Unfortunately, the Shannon capacity of the interference channel is still

an open problem in information theory. Even for the interference channel with two transmit-

receive pairs and single transmit and receive antenna, the capacity region is not fully known

[CG87].

In order to get insight into this problem, a Gaussian assumption has been proposed to

treat the inter-cell interference as additive white Gaussian noise. This assumption can be

viewed as a worst-case about the interference. If the structure of the interference is known,

it can presumably help in the decoding of the desired signals. However, with this Gaussian

assumption, the capacities of both uplink and downlink in a cellular environment can be

determined by the analysis of the single-cell case. A lot of efforts have been spent on it

and a lot of promising results have been achieved. For example, the capacity of a single-

antenna cellular system uplink with the Gaussian assumption was obtained in [SW97]. The

capacity of multiple transmit and receive antenna array in cellular system has been studied

in [LT02, MK09, AV11, CDG00]. These capacity results show that an orthogonal multiple

access method (e.g., TDMA, FDMA) is optimal in one cell, if the inter-cell interference is

non-negligible.

2.4.3.2. Multi-cell MIMO with full cooperation between base stations

The full cooperation between base stations can be established via unrestricted backhaul links

(error free and unlimited capacity) to a central processor. If such cooperation is assumed, the

entire cellular system can be viewed as a single cell with a distributed antenna array at the
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base station. It is typically referred as Wyner-type model [Wyn94]. Consequently, capacity

results of a single-cell case can be applied. In fact, the geographical separations of the base

station and the users have impacts on the channel gains in the composite network.

The analysis of the uplink capacity in cellular systems with cooperation was started in the

early works of [Wyn94, HW93]. In both cases, the channels between the users and the base

station are assumed to be AWGN channels and interference takes place only between adjacent

cells. The Wyner model of [Wyn94, HW93] considers cells arranged on a line or in a more

conventional hexagonal model. The per user capacity is derived in both cases. It is shown

that the uplink capacity is achieved by using orthogonal multiple access methods (e.g., TDMA,

FDMA) in each cell.

The downlink channel in cellular systems can be modeled as a MIMO broadcast channel

by considering full cooperation between the base stations. The work in [SZ01] is viewed as a

pioneer in the application of dirty paper coding (DPC) to a cellular system with cooperation

between base stations. A single antenna at each user and each base station is considered

in [SZ01]. Its results show that the capacity of the cellular downlink is enhanced by the

relatively simple application of DPC, and this DPC scheme is asymptotically optimal at high

SNRs. Inspired by [SZ01], a number of other works have also studied the capacity of cellular

downlink channels for either finite or asymptotic regimes [HV04, GHW+11]. Especially, the

authors in [GHW+11] did not utilize the Gaussian assumption, a new analytical co-channel

interference model for MIMO cellular networks has been proposed by considering a Poisson

spatial distribution of interfering transmitters and taking into account fading and shadowing

effects in wireless channels. The downlink average capacity of MIMO cellular networks is

derived based on this new interference model. The duality of the MAC and BC discussed

in Section 2.4.2.3.1 can still be applied to the uplink and downlink of the cellular composite

channels.

Research results show that full cooperating cellular systems can achieve a significantly in-

creased capacity relative to the cellular systems without cooperation. However, the equivalence

between multi-cell MIMO systems and MIMO systems only holds when an ideal backhaul is

assumed. This assumption is very challenging from a practical perspective. Therefore, practi-

cal cooperation schemes must operate with a limited backhaul (i.e., finite capacity and finite

latency). For future mobile wireless communications, the major goal is to find good signal pro-

cessing and coding techniques that can achieve large cooperation gains with the information

about the local channel state and local user data. It is referred as limited cooperation between

base stations. Furthermore, full cooperating MIMO cellular systems involve a large number

of antennas and users, which requires a reduction of the complexity of the current precoding
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and decoding schemes (e.g., optimal precoding and optimal joint decoding).

2.5. Summary and conclusions

In this section, we have provided an overview of the fundamentals of the single user, the

multi-user and the multi-cell MIMO technologies, which helps to understand the motivations,

developments, and applications of the major contributions in this thesis. We have emphasized

the major achievable benefits of MIMO techniques and reviewed the MIMO channel models

from two groups: physical MIMO channel models and analytical MIMO channel models. The

capacity results have been summarized for single-user MIMO channels, multi-user MIMO

channels, and multi-cell MIMO channels. Significant capacity gains can be predicted for these

systems under some assumptions (e.g., perfect CSI). In fact, the capacity gains are highly

dependent on the nature of the CSI, the channel SNR, and the spatial correlation of the

channels. An interesting insight is that with perfect CSI the spatial correlations are found to

increase capacity at low SNRs and decrease capacity at high SNRs [GJJV03, BCC+07].

There are still many open problems in this area. Most capacity regions associated with

multi-user MIMO channels remain unsolved such as the ergodic capacity for the MIMO BC

under perfect receive CSI only. The capacity of MIMO cellular systems is a relatively open

area. One reason is that the Shannon capacity of a cellular system is not well defined and

heavily depends on some conditions (e.g., frequency assumption, propagation models, etc.).

Another reason comes from the unsolved single-cell problems. We can expect that MIMO

technology is likely to remain important and attractive for many years.
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3. Linear precoding techniques for multi-user MIMO

systems

3.1. Introduction and Motivation

Compared to time division multiple access (TDMA) systems, the multi-user MIMO systems

employing space division multiple access (SDMA) can simultaneously serve a group of users

and achieve a linear increase of the sum rate. Some information theoretic results in [CS00,

Cos83, VJG02] have shown that dirty paper coding (DPC) achieves the capacity region of the

Gaussian MIMO broadcast channel and provides the maximum diversity order. The capacity

of the multi-user MIMO multiple access channels can be achieved via an MMSE receiver with

successive interference cancellation [SXLK98]. A more exciting result has been shown by Jindal

and Goldsmith [JG05b] that the sum rate of a multi-user MIMO broadcast channel employing

DPC and a multi-user MIMO uplink utilizing successive interference cancellation are at most

min(MT,K) times larger than the maximum achievable sum rate of a system using TDMA,

where MT is the number of antennas at the base station (BS) and K is the number of users.

This result is valid at all SNR regimes and independent of the number of receive antennas and

the channel gain matrix.

As we have shown in Chapter 2, channel state information at the transmitter (CSIT) helps

to increase the transmission rate and reduce the receiver complexity. In the multi-user MIMO

BC, the base station is able to use the available CSI to reduce or completely eliminate the

multi-user interference (MUI) via linear or non-linear precoding techniques (e.g., DPC or

Tomlinson-Harashima precoding (THP)), which results in a significant capacity gain and a

high spectral efficiency. In the multi-user MIMO MAC, each user terminal has only its own

CSI, and it is impossible to acquire the CSIs of other users. In this case, space-time coding

techniques can be employed at the user terminal to enhance reliability through diversity. The

BS has the possibility to successfully mitigate the MUI by employing successive interference

cancellation.

In this chapter we focus on the multi-user MIMO broadcast channels, since most of solutions

for the downlink can be applied to the uplink in a straightforward way. Moreover, the cost

of the hardware at the base station can be reduced by using the same multi-user MIMO

processing techniques on both the downlink and the uplink. The precoding design for the

multi-user MIMO broadcast channels has been one of the hot topics in the last decade. As
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we have mentioned before, DPC is proposed as a capacity-optimal SDMA strategy to achieve

the sum capacity of a multi-user MIMO downlink system. However, deploying DPC in a

real system is very impractical due to the prohibitively high complexity at both the BS and

the user terminals. Considering the demand for low complexity and low power consumption

at the base station and the users, several sub-optimal linear precoding algorithms have been

proposed such as zero-forcing (ZF) [VJ98], block diagonalization (BD) [SSH04], and regularized

block diagonalization (RBD) [SH08]. Compared to DPC, they have significantly reduced

complexities at the BS, while achieving the same multiplexing gain as DPC. Furthermore,

they have the ability to adapt to various degrees of CSI. However, this low complexity comes

at the price of a throughput loss relative to DPC. Therefore, a profound analytical study about

how much loss does incur is really interesting and useful for the system design. A remarkable

work has been done by Lee and Jindal in [LJ07], where the absolute rate and power offsets

between ZF, BD, and DPC have been studied at high SNRs. In this chapter, we further

consider RBD precoding which has an improved sum rate and diversity order relative to BD

[SH08]. Moreover, RBD has the advantage that it is not constrained by the dimensionality

condition that the aggregate number of receive antennas is not larger than the number of

transmit antennas. We approximate the achievable throughput of an RBD based system

[SH09a]. Compared to DPC and BD based systems, the bounds of the average rate and power

offsets among these strategies are derived as a function of the system parameters (e.g., the

number of users and receive antennas).

This chapter starts with an overview of several sub-optimal linear precoding algorithms

(i.e., ZF, BD, and RBD) in Section 3.2. Then, in Section 3.3 the performance analysis of the

throughput loss between these linear precoding algorithms and DPC at high SNRs is addressed.

Finally, a summary is provided in Section 3.4.

3.2. Previous work on linear precoding techniques

In a multi-user MIMO broadcast channel employing linear precoding technique, the transmit

signal vector x ∈ CMT×1 in equation (2.18) can be rewritten as

x =
K

∑
i=1

Fisi, (3.1)

where si ∈ Cri×1 contains the data symbols for user i and ri represents the number of data

streams intended for the ith user. The matrix Fi ∈ CMT×ri denotes the linear precoding matrix

for user i. There are K users in this system. Then, the received signal yi ∈ CMRi
×1 for user i
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is given by

yi =HiFisi +
K

∑
j=1,j≠i

HiFjsj +ni. (3.2)

Here, the matrixHi ∈ CMRi
×MT is the channel gain matrix for user i and the vector ni ∈ CMRi

×1

represents additive white Gaussian noise (AWGN) with unit variance (i.e., σ2
n = 1). The first

term on the right-hand-side (RHS) of equation (3.2) is the desired signals for the ith user. The

term ∑K
j=1,j≠iHiFjsj indicates the interference caused by the signals intended for the other

users, which should be removed by the linear precoding.

Let us define the combined channel matrix and precoding matrix for all users as H and F ,

respectively. We have

H = [ HT
1 HT

2 . . . HT
K
]T ∈ CMR×MT (3.3)

F = [ F1 F2 . . . FK ] ∈ CMT×r, (3.4)

where the term MR indicates the total number of receive antennas (i.e., MR = ∑K
i=1MRi

) and

r ≤min(MR,MT) indicates the total number of transmitted data streams (i.e., r = ∑K
i=1 ri).

The equivalent combined channel matrix of all users after the precoding is equal to

HF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1F1 H1F2 ⋯ H1FK

H2F1 H2F2 ⋯ H2FK

⋮ ⋮ ⋱ ⋮

HKF1 HKF2 ⋯ HKFK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.5)

where the effective channel of the user i is given by HiFi and the off-diagonal elements HiFj

(j = 1, . . . ,K, j ≠ i) determine the interference caused by the signals intended for the other

users. The linear precoding matrix F can be viewed as attempting to block diagonalize the

product HF . Although the optimal solution is not necessarily perfectly block diagonal, it will

generally be near block diagonal.

3.2.1. Zero Forcing precoding

ZF precoding was investigated extensively in the literatures [PNG03, VJ98], where each user

is equipped with one receive antenna. To this end, we have K =MR.

The precoding matrix F and a scaling factor β can be obtained from the following opti-
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mization [PNG03, VJ98]

{F , β} = arg min
F ,β

E{∥y − s∥22} , s.t ∶ y∣
ni=0,∀i

= s, HF = IK , (3.6)

where the vectors s = [s1, s2, . . . , sK]T ∈ CK×1 and y = [y1, y2, . . . , yK]T ∈ CK×1 denote the

transmit signals and the received signals of all users, respectively. We assume that the complex

data symbols si are independent and identically distributed (i.i.d.) random variables. The

average power of the complex data symbols is set to one (i.e., E{ssH} = IK). The parameter

β is chosen according to the transmit power constraint (i.e., β2tr(F̃E{ssH} F̃H) ≤ PT). Then,

the solution of this optimization problem is a pseudo-inverse of the combined channel matrix

H:

F = βF̃ , (3.7)

where

F̃ =HH(HHH)−1, β =
¿ÁÁÀ PT∥F̃ ∥2

F

. (3.8)

With ZF precoding, the equivalent combined channel of all users (i.e., HF ) is perfectly

diagonalized under the condition MT ≥ K. In this case, the MUI can be entirely removed.

However, ZF precoding has a serious drawback. The design of ZF disregards the noise term

and focuses only on perfectly removing the interference term. It results in a noise enhance-

ment problem [Gol05] which implies that the noise is amplified when the channel has a high

attenuation. In this case, the transmit power is required to be increased in order to maintain

the received SNR.

Compared to DPC, ZF is sub-optimal. A significant performance degradation is introduced

as a penalty. The diversity order and array gain of each data stream is proportional to

MT −MR + 1 [PNG03].

3.2.2. Block Diagonalization Precoding

Block diagonalization (BD) precoding was first proposed in [SSH04], which is designed to

solve either the problem of maximizing the sum rate under a transmit power constraint or to

minimize the total transmit power subject to achieving a desired arbitrary rate for each user.

Compared to ZF precoding, BD approaches the optimal solution at high SNRs and allows

multiple receive antennas at each user. However, BD is also limited by the dimensionality

constraint that the number of transmit antennas has to be equal to or larger than the total

number of receive antennas (i.e., MT ≥MR).
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To eliminate all multi-user interference (MUI), the precoding matrix Fi of BD is found to lie

in the null space of the other users’ channel matrices. Therefore, a multi-user MIMO broadcast

channel is decomposed into multiple parallel independent single-user MIMO channels.

Let us define H̃i as

H̃i = [ HT
1 ⋯ HT

i−1 HT
i+1 ⋯ HT

K
]T ∈ C(MR−MRi

)×MT . (3.9)

The zero MUI constraint forces the matrix Fi to lie in the null space of H̃i. This definition

introduces the dimensionality constraint (i.e., MT ≥ MR) to guarantee that all users can be

accommodated under the zero MUI constraint. Let us assume that the matrix H̃i has the

rank L̃i and compute the singular value decomposition (SVD) of H̃i. We have

H̃i = ŨiΣ̃i [Ṽ (1)i Ṽ
(0)
i ]H . (3.10)

Here, Ṽ
(1)
i ∈ CMT×L̃i holds the first L̃i right singular vectors. Ṽ

(0)
i ∈ CMT×(MT−L̃i) holds the

last MT−L̃i right singular vectors which form an orthogonal basis for the null space of H̃i. The

columns of Ṽ
(0)
i are candidates for the precoding matrix Fi. Then, the effective channel of user

i after the MUI elimination is defined as HiṼ
(0), which has the dimension MRi

× (MT − L̃i).
This effective channel is equivalent to a conventional single-user MIMO channel with MT − L̃i

transmit antennas and MRi
receive antennas. Let us compute SVD of HiṼ

(0)

HiṼ
(0) = UiΣi [V (1)i V

(0)
i ] ∈ CMRi

×(MT−L̃i) (3.11)

and define the rank of the matrix HiṼ
(0) be Li. The product of the first Li right singular

vectors V
(1)∈C(MT−L̃i)×Li

i and Ṽ
(0)
i produces an orthogonal basis of dimension Li and represents

the transmission vectors that maximize the information rate for user i subject to the zero MUI

constraint. Thus, the precoding matrix F for all users can be defined as [SSH04]

F = [ Ṽ
(0)
1 V

(1)
1 Ṽ

(0)
2 V

(1)
2 . . . Ṽ

(0)
K V

(1)
K
]Λ 1

2 , (3.12)

where Λ ∈ Cr×r is a diagonal matrix whose elements λi scale the power transmitted into each

of the columns of F . The optimal power loading coefficients in Λ are found by performing

water-filling on the singular values Σi from all users collected together, while assuming a total

power constraint. The receive beamforming vectors of user i are chosen as Di = UH
i .
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3.2.3. Regularized Block Diagonalization

Precoder design such as ZF and BD assumes zero MUI which imposes a dimensionality con-

straint regarding to the total number of antennas at the BS and the users. When the total

number of receive antennas is larger than the number of antennas at the BS, the solutions

that overcome this dimensionality constraint use either only a subset of antennas or a subset

of eigenmodes [SSH04, TUBN05]. However, an additional control overhead is usually required

to inform the users about the selection. Regularized block diagonalization (RBD) [SH08] was

proposed to release this dimensionality constraint, while using as much as possible of the avail-

able spatial degrees of freedom and minimizing the interference between different users at the

same time.

The RBD precoding matrix is described as [SH08]

F = [ F1 F2 ⋯ FK ] = βFaFb , (3.13)

where

Fa = [ Fa1 Fa2 ⋯ FaK ] ∈ CMT×MR

and

Fb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fb1 0 ⋯ 0

0 Fb2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ FbK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CMR×r.

Here, r ≤min(MR,MT) is the total number of transmitted data streams. The parameter β is

chosen to set the total transmit power to PT.

RBD precoding is performed in two steps. In the first step the precoding matrix Fa is

designed to suppress the MUI by reducing the overlap of the row spaces spanned by the

effective channel matrices of different users (i.e., HiFai , for i = 1, . . . ,K). The equivalent

combined channel matrix of all users after the precoding matrix Fa is equal to

HFa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1Fa1 H1Fa2 ⋯ H1FaK

H2Fa1 H2Fa2 ⋯ H2FaK

⋮ ⋮ ⋱ ⋮

HKFa1 HKFa2 ⋯ HKFaK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.14)

where the ith user’s effective channel is given by HiFai and the interference generated to the

other users is determined by H̃iFai . The matrix H̃i has the same definition as in equation
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(3.9). The Frobenius norm of the matrix H̃iFai is related to the level of the overlap of the

row spaces of the effective channels of different users HiFai , i = 1, . . . ,K. Then, the precoding

matrix Fa results from the following optimization [SH08]

Fa =min
Fa

E{K

∑
i=1
∥H̃iFai∥2F + ∥n∥

2
F

β2
} . (3.15)

Here, the vector n ∈ CMR×1 contains the samples of a zero mean additive white Gaussian noise

at the receive antennas. The noise is assumed to be uncorrelated with the same variance σ2
n.

The solution of the minimization of equation (3.15) results in

Fai = Ṽi(Σ̃2
i +

MRσ
2
n

PT

IMT
)−1/2 ∈ CMT×MT , (3.16)

where Ṽi and Σ̃i are the matrices of the right singular vectors and the diagonal matrix of

the matrix H̃i (i.e., H̃i = ŨiΣ̃iṼ
H
i ), respectively. The precoding matrix Fa forces each user

to transmit on the eigenmodes of the combined channel matrix of all other users with the

power
MRσ2

n

PT

. At high SNRs, each user transmits only in the nullspace of all other users,

which indicates that the off-diagonal block matrices in equation (3.14) converge to zero with

increasing SNR.

In step two the precoding matrix Fb is designed to optimize the system performance by

any specific optimization criterion assuming a set of parallel single user MIMO channels. The

matrix Fbi ∈ C
MT×ri has the form

Fbi = ViDi. (3.17)

Here, the matrix Vi ∈ CMT×MT is the right singular vector matrix of HiFai (i.e., HiFai =
UiΣiV

H
i ) and the matrix Di ∈ CMT×ri is the power loading according to the optimization

criteria proposed in [SH08]. After the generation of the matrices Fa and Fb, the parameter β

is used to set the total transmit power to PT, i.e., β
2 = PT/ ∥FaFb∥2F due to the assumption

E{sisHi } = Iri applying in the RBD design. The receive beamforming vectors of user i are

chosen as UH
i ∈ C

MT×MRi , which is the left singular vector matrix of HiFai .

In Figures 3.1 and 3.2 we compare the achievable throughput of multi-user MIMO systems

employing ZF, BD and RBD precoding. We assume flat fading channels with MT = 4 transmit

antennas. Moreover, 4 users are considered in Figure 3.1, where each user has only one antenna.

Dominant eigenmode transmission is performed in this case. In Figure 3.2, two users are

considered for BD and RBD precoding, where each user is equipped with two receive antennas

and receives two different data streams from the base station. Water-filling is employed to
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allocate the power to the different data streams for all users. It is shown that a throughput

loss relative to DPC exists. Furthermore, it is shown that BD and RBD precoding provide

obviously higher achievable throughput than ZF precoding. RBD precoding outperforms BD

and ZF at low SNRs.
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Figure 3.1.: Achievable throughput for a system with configuration {1,1,1,1} × 4.

3.3. Achievable throughput approximation at high SNRs

This section is devoted to the achievable throughput analysis for the optimal strategy of dirty

paper coding (DPC) and sub-optimal lower complexity linear precoding techniques (e.g., ZF,

BD and RBD). As we have shown in Figures 3.1 and 3.2, linear precodings such as ZF, BD, and

RBD can achieve the same multiplexing gain as DPC, but do incur a throughput loss compared

to DPC. The authors in [JG05b, SCA+06] have analyzed the ratio between the achievable sum

rates of DPC and BD precoding. A more practical metric has been proposed in [LJ07] to study

the absolute rate and power offsets between the DPC, BD and ZF algorithms at high SNRs.

In [LJ07], the achievable throughput of DPC, ZF, and BD is approximated for high SNRs by

introducing a capacity approximation framework which was firstly proposed in [SV01] for the

context of code-division multiple access (CDMA) with random spreading. The details of this

capacity approximation framework are described in the following Section 3.3.2. The rate and
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Figure 3.2.: Achievable throughput for a system with configuration {2,2}× 4, ZF system with
configuration {1,1,1,1} × 4.

power offsets between them are derived as a function of the number of users and the number

of the transmit and receive antennas. Inspired by it, we further approximate the achievable

throughput of an RBD based multi-user MIMO downlink channel at high SNRs in this section

and obtain the bounds of the average rate and power offsets between RBD, BD, and DCP as

a function of the system parameters (e.g., the number of users and the number of the transmit

and receive antennas).

3.3.1. System Model

We consider a multi-user MIMO system with a single base station (BS) and K users, where

the BS is equipped with MT transmit antennas. For notational simplicity, each user has Mr

receive antennas (i.e., MRi
=Mr for ∀i). The aggregate number of receive antennas, denoted

by MR, is equal to K ⋅Mr. The propagation channel between the BS and each user is assumed

to be a spatially uncorrelated Rayleigh fading channel. The received signal of the ith user is

expressed as

yi =Hix +ni (3.18)
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where x ∈ CMT×1 is the transmit signal vector and has the same definition in equation (3.1).

With an average total power limitation PT at the BS, we require that tr(E{xxH}) ≤ PT.

The matrix Hi ∈ CMr×MT is the channel gain matrix for user i and the vector ni ∈ CMr×1

represents additive white Gaussian noise (AWGN) with unit variance (i.e., σ2
n = 1). Here, we

still use H ∈ CMR×MT to indicate the combined channel of all users (defined in equation (3.3)).

Furthermore, we assume that each user has perfect knowledge of its own channel and the BS

has perfect knowledge of all users’ channels. In order to be consistent with the definitions in

Chapter 2, let us define P̃T = PT

σ2
n
and the signal-to-noise ratio (SNR) in dB equals 10 log10 P̃T

(i.e., SNR = 10 log10 P̃T).

3.3.2. Capacity Approximation Framework

The capacity approximation framework used in this section is the same as the framework

in [LJ07]. This capacity approximation framework was firstly proposed in [SV01] for the

context of code-division multiple access (CDMA) with random spreading. Sequentially, this

framework has been utilized to quantify the capacities of single user MIMO at high SNRs for

independent and identically distributed (i.i.d) Rayleigh fading channels and correlated Rayleigh

fading channels in [LTV05]. Furthermore, the authors of [JSO08] have also introduced this

framework to analyze the achievable throughput of TDMA based opportunistic beamforming

at high SNRs.

This capacity approximation framework enables the channel capacity C(P̃T) to be well

approximated at high SNRs as [LJ07]

C(P̃T) = S∞ ⋅ (log2 P̃T − L∞) + o(1) (3.19)

= S∞ ⋅ (SNR
3 dB

− L∞) + o(1) ,
where S∞ = lim

P̃T→∞

ln 2 ⋅ P̃TĊ(P̃T) (3.20)

and L∞ = lim
P̃T→∞

(log2 P̃T −
C(P̃T)
S∞

) . (3.21)

Here, S∞ represents the multiplexing gain (i.e., the asymptotic slope of the spectral efficiency

in bps/Hz per 3 dB) and L∞ refers to the power offset in 3 dB units as shown in Figure 3.3.

We use Ċ(PT) to denote the first derivative of the capacity with respect to PT. Furthermore,

O(1) is a notation which describes the limiting behavior of the capacity. When P̃T →∞, the

term O(1) vanishes. For either multi-user MIMO broadcast channels or point-to-point MIMO

channels, the multiplexing gain S∞ is found to be the minimum of the aggregate number of
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receive antennas and the number of transmit antennas under the assumption of uncorrelated

Rayleigh fading (i.e., S∞ =min(MT,MR)). The rate offset L∞ depends on the fading statistics

and the transmission strategies. In the following sections, we starts with an overview of the

throughput approximations for DPC, ZF, and BD.

C(P̃T)

SNRL∞

S∞

Figure 3.3.: An example of the capacity approximation at high SNRs.

3.3.3. Throughput approximation for DPC

The achievable sum rate of DPC can be expressed from the MIMO BC-MAC duality as1

[VJG03]

CDPC(H, P̃T) = max
∑

K
i=1 tr(Qi)≤PT

log2 ∣IMT
+

K

∑
i=1

HH
i QiHi∣ . (3.22)

There is no known closed-form solution for this capacity. But it has been shown in [Jin05] that

CDPC(H, P̃T) converges to the capacity of a point-to-point MIMO channel with the matrix

H ∈ CMR×MT under the condition MT ≥MR, thus

lim
P̃T→∞

(CDPC(H, P̃T) − log2 ∣IMR
+

P̃T

MR

HHH∣) = 0 , (3.23)

which corresponds to the fact that choosing each of the covariance matrices as Qi = PT

MR

IMR

in (3.22) is asymptotically optimal at high SNRs. As a result, the approximation of the DPC

1In order to simplify the equations, we use ∣ ⋅ ∣ instead of det(⋅) to indicate the determinant of a matrix.
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throughput at high SNRs can be found as [LJ07]

CDPC(H, P̃T) ≅MR log2 P̃T −MR log2MR + log2 ∣HHH∣ . (3.24)

Here, ≅ refers to equivalence in the limit (i.e., the difference between both sides converges to

zero as PT →∞). Applying the approximation framework we get

S∞ = MR , (3.25)

L∞ = log2MR −
1

S∞
log2 ∣HHH∣ . (3.26)

The proof can be found in Appendix C.1.

Note that with DPC and the equal power allocation, the multi-user MIMO broadcast channel

is equivalent to the MT ×MR point-to-point MIMO channel where the CSI is known at the

transmitter and MT ≥MR.

3.3.4. Throughput approximation for ZF

Since zero-forcing (ZF) precoding can totally eliminate the multi-user interference (MUI), the

received signal of user i is given by

yi = hT
i fisi + ni, (3.27)

where the ith user’s channel matrix hi has the dimension MT × 1 and the precoding matrix fi

is a column vector of the dimension MT ×1 . Thus, the ZF based system is converted into MR

parallel channels with the effective channel gi = hT
i fi. The maximum achievable throughput

is obtained by optimizing the power allocation across these parallel channels

CZF(H, P̃T) = max
∑

K
i=1 Pi≤PT

K

∑
i=1

log2(1 + Pi ∣gi∣2). (3.28)

Since the optimal power allocation policy converges to equal power allocation at high SNRs,

we have [LJ07]

CZF(H, P̃T) ≅MR log2 P̃T −MR log2MR + log2
K

∏
i=1
∣gi∣2 . (3.29)

Here, the effective channel norm ∣gi∣2 obeys a chi-square distribution (definition shown in

Appendix C.2) with 2(MT −K + 1) degrees of freedom due to the fact that the ZF precoding

vector for each user is chosen orthogonal to the other users’ channels. Therefore, K −1 degrees
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of freedom are consumed at the BS regarding this orthogonality constraint. Then, the degree

of freedom for the ith user is MT −K + 1 which leads to the chi-squared distributed ∣gi∣2 with

2(MT −K + 1) degrees of freedom. It can be also interpreted as that a ZF-based system is

equivalent to K parallel SISO channels.

Compared to equation (3.24), the approximation of ZF is identical to that for DPC except

for the final term. Let us define the rate offset between the achievable throughput of DPC and

ZF at high SNRs as

∆DPC−ZF(H) = lim
P̃T→∞

[CDPC(H, P̃T) −CZF(H, P̃T)] . (3.30)

Considering equations (3.24) and (3.29), the rate loss incurred by ZF for one channel realization

is

∆DPC−ZF(H) = log2 ∣HHH∣
∏K

i=1 ∣gi∣2 . (3.31)

By averaging over the fading distribution, the average rate offset can be expressed as

∆̄DPC−ZF = E{∆DPC−ZF(H)} , (3.32)

which allows a comparison of the average throughput. Note that under the i.i.d. Rayleigh

fading assumption, the matrix HHH is Wishart distributed (definition shown in Appendix

C.2) with MT degrees of freedom and ∣gi∣2 has a chi-square distribution with 2(MT − K +

1) degree of freedom. Utilizing the expression for the expected log-determinant of Wishart

matrices and chi-squared variables in terms of Euler’s digamma function (definition shown in

Appendix C.2), e.g.,

E{loge detW } = m−1∑
ℓ=0

ϕ(n − ℓ) (3.33)

where the matrix W ∈ Cm×m is a complex Wishart matrix with the degrees of freedom n

(n ≥m), the average rate offset can be computed in closed form as follows.

Theorem 3.3.1. The average rate offset between DPC and ZF in the i.i.d. Rayleigh fading

at high SNRs is given by [LJ07]

∆̄DPC−ZF = (log2 e)K−1∑
i=1

i

MT − i
(bps/Hz). (3.34)

Proof: see [LJ07].

Since the capacity curve has a slope of S∞
3

in units of bps/Hz/dB, the average rate offset
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can easily be translated into an average power offset. Let us define the average power offset

by ∆P̄DPC−ZF and get

∆P̄DPC−ZF =
3∆̄DPC−ZF

S∞
=
3∆̄DPC−ZF

MR

. (3.35)

3.3.5. Throughput approximation for BD

Block diagonalization (BD) is an extension of the zero-forcing precoding for the case that the

users have multiple receive antennas as explained in Section 3.2.2. With BD, the ith user’s

precoding matrix F̃i (i.e., F̃i = Ṽ
(0)
i ) lies in the null space of all other users’ channels (i.e.,

Ṽ
(0)
i in equation (3.10)). Thus, the system is converted into K parallel MIMO channels with

effective channel matrices G
(0)
i = HiF̃i = HiṼ

(0)
i , i = 1,⋯,K. There is no MUI at each user.

The received signal for user i is given by

yi =HiFisi +ni, (3.36)

The achievable throughput of BD-based systems is given by

CBD(H, P̃T) = max
∑

K
i=1 tr{Qi}≤PT

K∑
i=1

log2 ∣IMRi
+G(0)i QiG

(0)H
i ∣ . (3.37)

Since the optimal power allocation policy converges to equal power allocation (i.e., Qi =
PT

MR

IMRi
) at high SNRs, the throughput approximation of BD is performed as [LJ07]

CBD(H, P̃T) ≅MR log2 P̃T −MR log2MR + log2
K∏
i=1
∣G(0)i G

(0)H
i ∣ . (3.38)

Here, the orthogonality constraint consumes (K − 1) ⋅Mr degrees of freedom. Therefore, the

degrees of freedom for the ith user are MT − (K − 1) ⋅Mr, which implies that the Mr ×Mr

matrix G
(0)
i G

(0)H
i has a Wishart distribution with MT −MR +Mr degrees of freedom.

Similar to the analysis for ZF, let us define the rate loss relative to DPC for one channel

realization as

∆DPC−BD(H) = lim
P̃T→∞

[CDPC(H, P̃T) −CBD(H, P̃T)] (3.39)

and the average rate offset over Rayleigh fading as

∆̄DPC−BD = E{∆DPC−BD(H)} , (3.40)

respectively. We reach to the following theorem.
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3.3. Achievable throughput approximation at high SNRs

Theorem 3.3.2. The average rate offset between DPC and BD in the i.i.d. Rayleigh fading

at high SNRs is given by [LJ07]

∆̄DPC−BD = (log2 e)K−1∑
k=0

Mr−1∑
n=0

(K−1)Mr∑
i=kMr+1

1

MT − n − i
(bps/Hz). (3.41)

Proof: see [LJ07].

Consequently, the average power offset can be obtained as

∆P̄DPC−BD =
3∆̄DPC−BD

S∞
=
3∆̄DPC−BD

MR

. (3.42)

With equations (3.34) and (3.41), it is possible to gain more intuition by considering the rate

and power offsets between BD and ZF, where we consider K users with Mr receive antennas

each for BD and KMr users with one antenna each for ZF in order to ensure the same number

of data streams for the both cases. Let us define MT = αKMr where α is an integer and

greater than zero.

Theorem 3.3.3. If α ≥ 1 and Mr > 1 , the average rate offset ∆̄BD−ZF and power offset

∆P̄BD−ZF between BD and ZF in the i.i.d. Rayleigh fading at high SNRs are given by [LJ07]

∆̄BD−ZF = ∆̄DPC−ZF − ∆̄DPC−BD,

= (log2 e)K Mr−1∑
i=1

Mr − i(α − 1)KMr + i
(bps/Hz) (3.43)

(3.44)

and

∆P̄BD−ZF =
3(log2 e)

Mr

Mr−1∑
i=1

Mr − i(α − 1)KMr + i
(dB), (3.45)

respectively.

Proof: see [LJ07].

When α = 1, from equation (3.45) we get

∆P̄BD−ZF =
3(log2 e)

Mr

Mr−1∑
i=1

Mr − i
i
(dB). (3.46)

This expression shows us an important feature that the average power offset ∆P̄BD−ZF only

depends on the number of receive antennas Mr and is independent of the number of transmit
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antennas MT. For example, equation (3.46) indicates that the power advantage of using BD in

the Mr = 2 system is ∆P̄BD−ZF = 2.1640 (dB) relative to performing ZF. This power advantage

is the same for MT = 4, K = 4, and Mr = 1 (i.e., ZF-based system) vs. MT = 4, K = 2, and
Mr = 2 (i.e., BD-based system) as well as for MT = 6 and K = 6,Mr = 1 (i.e., ZF-based system)

vs. K = 3,Mr = 2 (i.e., BD-based system).

Figure 3.4 is shown as an example. The solid lines and dashed lines correspond to the simu-

lated results and the approximated results, respectively. The achievable throughput of DPC is

simulated by applying an algorithm proposed in [JRV+05]. Utilizing Ci = E{log2(1 + SINRi)}
for each user with Gaussian inputs, the achievable throughput of ZF and BD are simulated. For

the MT =KMr case, the average rate offset between BD and ZF increases with the increasing

number of receive antennas.
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Figure 3.4.: Achievable throughputs approximation for DPC, BD and ZF at high SNRs

3.3.6. Throughput approximation for RBD under the condition MT ≥MR

In this subsection, we further study the throughput approximation for regularized block di-

agonalization (RBD) based multi-user MIMO broadcast channels which has been discussed in

our publication [SH09a]. The RBD precoding has been proposed to relax the dimensionality
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3.3. Achievable throughput approximation at high SNRs

constraint that the number of transmit antennas has to be equal to or larger than the total

number of receive antennas, while achieving an improved throughput and an improved diver-

sity order relative to BD [SH08]. Since RBD allows some multi-user interference (MUI), the

received signal yi ∈ CMRi
×1 for user i is given by

yi =HiFisi +
K∑

j=1,j≠i
HiFjsj +ni . (3.47)

With RBD the channel Hi is converted to an equivalent channel H̄i = HiFai which has less

overlap with the other users’ channels. The achievable throughput of RBD based systems is

expressed as

CRBD(H, P̃T) = max
∑

K
i=1 tr(Qi)≤PT

∑K
i=1 log2 ∣IMRi

+ H̄iQiH̄
H
i ∣ , (3.48)

where the covariance matrix Qi is set to be PT

MR

IMT
due to the fact that the optimal power

allocation converges to equal power allocation at high SNRs [LJ07]. Thus, we get

CRBD(H, P̃T) ≅MR log2 P̃T −MR log2MR + log2
K∏
i=1
∣H̄iH̄i

H ∣ (3.49)

and

S∞ = MR , (3.50)

L∞ = log2MR −
1

S∞
log2

K∏
i=1
∣H̄iH̄

H
i ∣ . (3.51)

It is found that RBD can maintain the same multiplexing gain as DPC, but has a different

power offset.

The power offset of RBD can be further quantified. Note that in [SH08] the expression of

Fai is derived under the condition E{sisHi } = IMT
. Taking into account E{sisHi } = PT

MR

IMT
in

our throughput approximation, the expressions (22) and (26) in [SH08] can be easily modified

as

Fa =min
Fa

E{∑K
i=1 ∥H̃iFaisi∥2F + ∥ni∥2F

β2 } and (3.52)

β2 =
PT∑K

i=1 tr(Faisis
H
i FH

ai
) = MR∑K

i=1 tr(FaiF
H
ai
) . (3.53)
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Then using a similar derivation as in [SH08] we get a new expression for Fai as

Fai = Ṽi( P̃T

MR

Σ̃T
i Σ̃i + IMT

)−1/2 . (3.54)

With the help of the above expression, the approximation of ∣H̄iH̄
H
i ∣ can be obtained as

follows

∣H̄iH̄
H
i ∣ = ∣HiṼi( P̃T

MR

Σ̃T
i Σ̃i + IMT

)−1Ṽ H
i HH

i ∣
(1)
= ∣Hi[Ṽ (1)i Ṽ

(0)
i ]( P̃T

MR

Σ̃T
i Σ̃i + IMT

)−1[Ṽ (1)i Ṽ
(0)
i ]HHH

i ∣
(2)
= ∣HiṼ

(1)
i ( P̃T

MR

Λ̃2
i + I(MR−Mr))−1Ṽ (1)Hi HH

i +HiṼ
(0)
i Ṽ

(0)H
i HH

i ∣
(3)
≈ ∣HiṼ

(1)
i ( P̃T

MR

Λ̃2
i )−1Ṽ (1)Hi HH

i +HiṼ
(0)
i Ṽ

(0)H
i HH

i ∣
(4)
= ∣MR

P̃T

G
(1)
i G

(1)H
i +G(0)i G

(0)H
i ∣

(5)
≈ ∣G(0)i G

(0)H
i ∣(1 + MR

P̃T

tr [(G(0)i G
(0)H
i )−1G(1)i G

(1)H
i ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

µi

)

= ∣G(0)i G
(0)H
i ∣(1 + µiMR

P̃T

) , (3.55)

where the definitions of Ṽi and Σ̃i can be found in equation 3.10. At step (1) Ṽi is separated

into Ṽ
(1)
i ∈ C

MT×(MR−Mr) and Ṽ
(0)
i ∈ C

MT×(MT−MR+Mr), which refer to the right singular

vectors corresponding to non-zero singular values and the right singular vectors corresponding

to zero singular values, respectively. At step (2) we use Λ̃i ∈ C(MR−Mr)×(MR−Mr) to represent

the economy-size version of Σ̃i. For large PT, we neglect I(MR−Mr) and reach step (3). Then

we replace HiṼ
(1)
i Λ̃−1i and HiṼ

(0)
i by G

(1)
i and G

(0)
i , respectively. At step (4) the following

property of matrix determinants is utilized

det(A + ǫX) = det(A)(1 + tr(A−1X)ǫ), (3.56)

where A and X are square matrices and ǫ is very small number, which leads to step (5). Due

to the fact that

0 ≤ tr(AB)n ≤ tr(A)ntr(B)n (3.57)

if A and B are positive semi-definite matrices of the same order, the µi defined in equation
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3.3. Achievable throughput approximation at high SNRs

(3.55) can be bounded as

0 ≤ µi ≤ tr((G(0)i G
(0)H
i )−1)tr(G(1)i G

(1)H
i ) . (3.58)

Substituting equation (3.55) into equation (3.51), L∞ can be rewritten as

L∞ = log2MR −
1

MR

log2∏K
i=1 ∣G(0)i G

(0)H
i ∣

−
1

MR

log2∏K
i=1 (1 + µiMR

P̃T
) . (3.59)

As a result, the throughput approximation of RBD at high SNRs can be further expressed as

CRBD(H, P̃T) ≅MR log2 P̃T −MR log2MR + log2∏K
i=1 ∣G(0)i G

(0)H
i ∣ + log2∏K

i=1 (1 + µiMR

P̃T
) .
(3.60)

3.3.6.1. RBD vs. BD

The rate loss between RBD and BD at high SNRs for one channel realization is defined as

∆RBD−BD = lim
P̃T→∞

[CRBD(P̃T) −CBD(P̃T)] . (3.61)

Averaging over the fading distribution, the average rate offset is calculated as

∆̄RBD−BD = E{∆RBD−BD} . (3.62)

Theorem 3.3.4. The average rate offset between RBD and BD in the i.i.d. Rayleigh fading

at high SNRs is upper bounded by

∆̄RBD−BD ≤K log2 (1 + µMR

P̃T

) , (3.63)

where µ = E{µi}, i = 1, . . . ,K, and

⎧⎪⎪⎨⎪⎪⎩
0 ≤ µ ≤ M2

r (MR−Mr)
MT−MR

, for MT >MR

0 ≤ µ ≤ Mr

ξ
− 1

ξ(2Mr−ξ) + 1 , for MT =MR

(3.64)

Here, ξ is a small positive number which should be equal to the average of the largest eigenvalue

of G
(0)
i G

(0)H
i in Rayleigh fading.

Proof: see C.3.
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3.3.6.2. DPC vs. RBD

The rate loss relative to DPC for one channel realization is also defined as

∆DPC−RBD = lim
P̃T→∞

[CDPC(P̃T) −CRBD(P̃T)] . (3.65)

Averaging over the fading distribution, the average rate offset is calculated as

∆̄DPC−RBD = E{∆DPC−RBD} . (3.66)

Theorem 3.3.5. The average rate offset between DPC and RBD in the i.i.d Rayleigh fading

at high SNRs is lower bounded by

∆̄DPC−RBD ≥ log2 e
MR−1∑
m=0

ϕ(MT −m)−K log2(1+ µMR

P̃T

)−K ⋅ log2 eMr−1∑
n=0

ϕ(MT −MR +Mr −n) ,
(3.67)

where ϕ(⋅) denotes the digamma function.

Proof: see C.4.

Using a similar expression as in equation (3.42), the average power offset between DPC and

RBD is calculated by

P̄DPC−RBD =
3∆̄DPC−RBD

S∞
=
3∆̄DPC−RBD

MR

. (3.68)

In Figures 3.5, 3.6, and 3.7, we show the simulation results and approximation results for

RBD. We assume a quasi-static i.i.d. block Rayleigh fading channel. In each block, the channel

is assumed to be constant. The parameter ξ only depends on the equivalent channel G
(0)
i of

each user. For instance, ξ is calculated as 3.53 by numerical experiments for the case MT = 6
and Mr = 2. Then, the parameter µ is bounded by 0 ≤ µ ≤ 0.96. Consequently, the upper

bound of the average rate offset between RBD and BD can be calculated according to the

SNRs. For 30 dB, this upper bound is calculated as 0.026 bps/Hz for µ = 0.96 as an example.

It implies that RBD achieves almost the same throughput as BD at high SNRs. Additionally,

µ can be arbitrarily chosen within its range (e.g., 0 ≤ µ ≤ 0.96). In Figures 3.5 and 3.6 we

choose µ = 0.25 and µ = 0.96, respectively. There is no obvious difference between these two

cases, since µ is really small relative to the observed high SNRs.

3.3.7. Throughput approximation for RBD under the condition MT <MR

Under the condition MT <MR each user’s precoding matrix cannot lie in the null space of all

other users’ channels anymore, since there is no null space left. As a result, ZF and BD cannot
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Figure 3.5.: Achievable throughputs approximation for RBD at high SNRs with MT = 6, K = 3,
Mr = 2 and µ = 0.25

10 15 20 25 30 35

10

20

30

40

50

60

SNR(dB)

T
hr

ou
gh

pu
t(

bp
s/

H
z)

 

 

DPC, K=6, MT=6, Mr=1
DPC, K=6, MT=6, Mr=1, approximation
BD, K=3, MT=6, Mr=2
BD, K=3, MT=6, Mr=2, approximation
RBD, K=3, MT=6, Mr=2
RBD, K=3, MT=6, Mr=2, approximation

8.2 bps/Hz

Figure 3.6.: Achievable throughputs approximation for RBD at high SNRs with MT = 6, K = 3,
Mr = 2 and µ = 0.96
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Figure 3.7.: Achievable throughputs approximation for RBD at high SNRs with MT = 6, K = 2,
Mr = 3 and µ = 0.25

be performed in this case. However, the RBD precoding matrix Fai (i = 1, . . . ,K) does not

only lie in the null space of all other users’ channels (i.e., Ṽ
(0)
i in equation (3.10)), but also in

the space Ṽ
(1)
i in equation (3.10) with a power that is inversely proportional to the singular

values of the all other users’ channels. In this section we study the achievable throughput of

RBD precoding for the case MT <MR and approximate this throughput at high SNRs.

First let us use some results derived in Section 3.3.6, but rewrite the expression for ∣H̄iH̄
H
i ∣

as

∣H̄iH̄
H
i ∣ = ∣HiṼi( P̃T

MR

Σ̃T
i Σ̃i + IMT

)−1Ṽ H
i HH

i ∣
(1)
≈ ∣MR

P̃T

HiṼi(Σ̃T
i Σ̃i)−1Ṽ H

i HH
i ∣

(2)
= ∣MR

P̃T

Hi(H̃H
i H̃i)−1HH

i ∣. (3.69)

In step (1) we neglect IMT
by considering the high SNR regime. Considering the SVD of the

matrix H̃i ∈ C(K−1)Mr×MT (i.e., H̃i = ŨiΣ̃iṼ
H
i ), we reach step (2).

Substituting equation (3.69) into equation (3.49), the achievable throughput of RBD at high
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3.3. Achievable throughput approximation at high SNRs

SNRs can be approximated as

CRBD(H, P̃T) ≅ MR log2 P̃T −MR log2MR + log2
K∏
i=1
∣MR

P̃T

Hi(H̃H
i H̃i)−1HH

i ∣
= MR log2 P̃T −MR log2MR +KE{log2 ∣MR

P̃T

Hi(H̃H
i H̃i)−1HH

i ∣}
= MR log2 P̃T −MR log2MR +KE{log2 (MR

P̃T

)Mr

⋅ ∣Hi(H̃H
i H̃i)−1HH

i ∣}
= MR log2 P̃T −MR log2MR +K log2 (MR

P̃T

)Mr

+KE{log2 ∣Hi(H̃H
i H̃i)−1HH

i ∣}
= KE{log2 ∣Hi(H̃H

i H̃i)−1HH
i ∣}

(1)
= K log2 e

Mr−1∑
n=0
(ϕ(MT − n) −ϕ(MR −MT − n)) (3.70)

At step 1 E{ log2 ∣Hi(H̃H
i H̃i)−1HH

i ∣} is rewritten by applying the property of Wishart matrix

found in Appendix C.2 equation (C.10).

From equation (3.70) and Figure 3.8 we can see that under the condition MT < MR, the

throughput of RBD stays almost constant for high SNRs, which shows that the benefit of

spatial multiplexing is completely lost, i.e., S∞ = 1. In this case (MT < MR), we recommend

that RBD should be performed only for low or medium SNRs.

10 15 20 25 30 35 40 45

20

30

40

50

60

70

80

90

100

SNR(dB)

T
hr

ou
gh

pu
t(

bp
s/

H
z)

 

 

RBD, K = 4, MT = 8, Mr =2
RBD, K = 5, MT = 8, Mr = 2
RBD, K = 5, MT = 8, Mr = 2, approximation

Figure 3.8.: Achievable throughputs approximation for RBD at high SNRs with MT <MR
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3.4. Summary and Conclusions

In this chapter, we have studied the throughput loss between the throughput achieved by

DPC and the throughputs achieved with linear precoding strategies (i.e., ZF, BD, and RBD)

by utilizing an affine approximation at high SNRs. Under the condition that the aggregate

number of receive antennas is not larger than the number of transmit antennas, the average rate

and power offsets between DPC, ZF, and BD in a spatially white Rayleigh fading environment

have been derived in a closed form which depends on the number of transmit and receive

antennas. The average rate and power offsets between DPC, RBD, and BD are bounded by

a simple function of the system parameters (e.g., the number of users and receive antennas).

Sequentially, we consider the condition that the aggregate number of receive antennas is larger

than the number of transmit antennas, where only RBD can be performed. The achievable

throughput of RBD at high SNRs is approximated, which shows that the benefit of spatial

multiplexing is completely lost. In this case, we suggest to utilize RBD only for the low to

medium SNR range. Therefore, we can further conclude that the RBD precoding is not a

good choice for the multi-user MIMO downlink with the antenna configuration MT < MR.

Compared to it, coordinated beamforming (CBF) techniques can be viewed as a good solution

for this case, which will be discussed in detail in the following chapter .
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4. Coordinated beamforming techniques

4.1. Introduction and Motivation

For multi-user MIMO broadcast channels various transmit strategies have been proposed

[Cos83, CC00, VJ98, SSH04, SH08, CMIH08a, CMJH08, SH09b, SRH10b, YSRH12, LCZ+12].

They offer different trade-offs between the sum rate performance and complexity. As we have

shown in Chapter 3, linear precoding techniques represent a promising transmit strategy be-

cause of a lower complexity while being able to achieve the same multiplexing gain as DPC.

Unfortunately, their applications are constrained by the dimensionality restriction which states

that the total number of receive antennas must be smaller than or equal to the number of trans-

mit antennas. This condition is not fulfilled in many scenarios that have been studied recently.

For example, the users across cell borders have to be considered jointly by base stations (BSs)

for coordinated multi-point (CoMP) transmission [PDF+08]. Furthermore, when each user

is equipped with multiple antennas, the BS simultaneously serves as many users as possible,

which corresponds to a large number of receive antennas. Regularized block diagonalization

(RBD) linear precoding has been proposed to relax the dimensionality restriction and has

an improved sum rate as well as diversity order compared to BD and ZF. However, it has

been shown in Chapter 3 that the performance of RBD degrades heavily with an increas-

ing aggregate number of receive antennas. It is possible to apply and improve ZF, BD, and

RBD through eigenmode selection [CHA07] or receive antenna selection [CHM06]. In both

cases, though, the transmitter and the receiver are not jointly optimized. Additionally, some

signaling techniques are required to indicate the selected eigenmodes or receive antennas.

Coordinated beamforming (CBF) algorithms have been proposed to transmit a number of

data streams that is smaller than the total number of receive antennas [SSH04, ZHV08, SH08,

CMIH08a, CMJH08]. The methods in [SSH04, ZHV08, SH08, CMIH08a] employ iterative

operations to jointly update the transmit-receive beamforming vectors. However, the conver-

gence behavior of the iterations is not considered in [SSH04, ZHV08, SH08]. The number of

iterations is set by hand. The coordinated transmission strategy in [CMIH08a] has a lower

complexity, and its sum rate performance is closest to the sum capacity of the MIMO broadcast

channel compared to the other CBF algorithms [SSH04, ZHV08, SH08]. But, only a single

data stream to each user is considered in [CMIH08a] and the receive beamforming strategy is

fixed to maximum ratio combining (MRC) matched filtering. Therefore, it is more attractive
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if an iterative CBF can support both single and multiple data stream transmissions, achieve

a sum rate performance which is not worse than [CMIH08a], and take the convergence behav-

ior into account. Inspired by it, we propose a new iterative CBF named flexible coordinated

beamforming (FlexCoBF) [SRH10b] which possesses several advantages compared to the ex-

isting iterative CBF algorithms (shown in Section 4.4). FlexCoBF has originally been designed

for the multi-user MIMO downlink channel. In our subsequent works, we have extended it

to multi-user multi-cell MIMO systems [SRH13a] and multi-carrier multi-user MIMO systems

[LCZ+12, CLZ+13].

Closed-form expressions for CBF have been proposed in [CMJH08] in order to avoid iter-

atively updating between the transmit and receive beamforming vectors, while achieving the

same sum rate performance as the iterative CBF in [CMIH08a]. However, the algorithm pro-

posed in [CMJH08] is restricted to a system with two transmit antennas and two users. The

transmit beamformers are designed as the generalized eigenvectors of the channel correlation

matrices of the two users when a MRC matched filter is used at each user side. It is an open

problem for closed-form CBF where the number of users is greater than 2. Fortunately, we

have found a solution to solve this problem. Our new algorithm is named SeDJoCo-based

closed-form CBF where the transmit beamforming vectors of an arbitrary number of users are

calculated by a sequentially drilled joint congruence (SeDJoCo) transformation (details are

found in Section 4.3).

In this chapter, we begin by reviewing the existing coordinated beamforming algorithms in

Section 4.2. In Section 4.3, SeDJoCo-based closed-form coordinated beamforming is proposed

for multi-user MIMO broadcast channels with an arbitrary number of users. The new iterative

coordinated beamforming algorithm (i.e., FlexCoBF) for a single cell and its extension to a

cellular scenario are discussed in Section 4.4. Finally, a summary is provided in Section 4.5.

4.2. Previous work on coordinated beamforming techniques

Coordinated beamforming algorithms allow fewer data streams than the number of receive

antennas by jointly optimizing the transmit and receive beamformers [SSH04, ZHV08, SH08,

CMIH08a, CMJH08]. These approaches perform close to the sum capacity of the MIMO

broadcast channel but most of them require an iterative computation for the transmit and

receive beamformers. The convergence of these iterative algorithms cannot be guaranteed.

In this section, we consider a multi-user MIMO broadcast channel with K users as shown

in Figure 4.1. The ith user has MRi
receive antennas and the base station (BS) is equipped

with MT transmit antennas. The total number of receive antennas is indicated by MR (i.e.,
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Figure 4.1.: Block diagram of multi-user MIMO BC employing CBF.

MR = ∑K
i=1MRi

) and we have MR > MT. The channel between the BS and the ith user is

denoted by Hi ∈ CMRi
×MT which is assumed to be quasi-static block-fading. In general, the

received signal of the ith user by applying CBF can be expressed as

yi =WH
i HiFisi +WH

i Hi

K∑
ℓ=1,ℓ≠i

Fℓsℓ +W
H
i ni. (4.1)

Let si ∈ Cri denote the transmitted signal for the ith user. The matrices Fi ∈ CMT×ri and

Wi ∈ CMRi
×ri indicate the transmit and receive beamforming matrix of user i, respectively.

The variable ri denotes the number of data streams to user i. The total number of data streams

for all users is indicated as r (i.e., r = ∑K
i=1 ri < MR). Obviously, with the CBF algorithms

which can only support one data stream per user such as [CMIH08a], we have ri = 1, the

transmit beamforming vector fi ∈ CMT , the receive beamforming vector wi ∈ CMRi , and r =K.

4.2.1. Iterative coordinated beamforming

The coordinated beamforming algorithm in [SSH04], i.e., coordinated BD, was proposed as

a pioneering work. The coordinated BD is an iterative method that uses a reasonable ini-

tialization for the receive beamforming matrices (i.e., Wi, for i = 1, . . . ,K) followed by the
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application of BD. The number of the iteration is set to two. More than one data stream per

user is supported by coordinated BD.

The equivalent multi-user channel He is defined as

He =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WH
1 H1

WH
2 H2

⋮

WH
KHK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Cr×MT , (4.2)

The matrix He has the dimensions that are compatible with the BD algorithm when r ≤MT.

The problem then becomes one of choosing ri and the beamformers Wi for each user.

Obviously, the number of data streams ri allocated to each user should be 1 when K =MT,

assuming that all users are to be accommodated. When K <MT the question is more difficult.

In such a case, the BS can still send only one data stream to each user, but with an increased

gain, or allocate the additional subchannels to some or all users. If the sum rate is the primary

concern, the optimal solution is to give extra subchannels to the stronger users. If power

control is the goal, the more beneficial solution is to give the extra subchannels to the users

with weaker channels.

When the values of ri have been determined, the approach to determine the matrix Wi is to

use the ri dominant left singular vectors of Hi. The coordinated BD algorithm is summarized

as follows

1. For i = 1, . . . ,K: compute the SVD of Hi (i.e., Hi = UiΣiV
H
i ).

2. Determine ri, which is the number of data streams assigned to each user.

3. For i = 1, . . . ,K, let Wi contain the first ri columns of Ui. Then, calculate He.

4. Apply the BD algorithm on the matrix He to calculate the precoding matrix F . Then,

the procedure has ended.

Inspired by the coordinated BD, the authors in [CMIH08a] have proposed a low complexity

iterative coordinated beamforming algorithm which supports one data stream for each user

and uses maximal ratio combining filters as the receive combining vectors. Thus, the ith user’s

receive combining vector wi ∈ CMRi
×1 is given as wi =Hifi where fi ∈ CMT×1 is the transmit

beamforming vector of the user i. In this case, the equivalent multi-user channel matrix He is
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calculated as

He =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wH
1 H1

wH
2 H2

⋮

wH
KHK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CK×MT . (4.3)

The receive combining vectors are initialized to some random vectors. Then, with increasing

iteration index p the following two steps are repeated until a stopping criterion is satisfied.

1. Compute the equivalent multi-user channel matrix H
(p)
e .

H(p)
e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(p−1)H
1 H1

w
(p−1)H
2 H2

⋮

w
(p−1)H
K HK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2. Compute the transmit beamforming vectors for all users

F (p) =H(p)+
e ,

where

F (p) = [f (p)1 , . . . ,f
(p)
K ] .

The notation (⋅)+ indicates the Moore-Penrose pseudo-inverse. The BS repeats this procedure

until the changes in the transmit beamformers are sufficiently small (i.e., ∥f (p+1)i − f (p)i ∥ < ǫ,
where ǫ is an arbitrary small number). It is noted that although the iterative algorithm seems

to converge in most cases, this cannot be guaranteed [CMIH08a].

4.2.2. Closed-form coordinated beamforming

Since the convergence of the iterative coordinated beamforming algorithms cannot be guar-

anteed. The authors in [CMJH08] have proposed a closed-form coordinated beamforming

algorithm which supports a system with 2 users and allows one data stream to each user.

We describe this algorithm for the MT = 2 case. There are two users in the system, where

each user has at least two receive antennas. Utilizing maximal ratio combining matched filters

as the receive beamforming vectors (i.e., wi =Hifi), the received signals at user 1 and user 2

are given by

y1 = wH
1 H1f1s1 +wH

1 H1f2s2 +wH
1 n1, (4.4)
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y2 = wH
2 H2f2s2 +wH

2 H2f1s1 +wH
2 n2, (4.5)

Let us define the sample correlation matrix of user i byRi =HH
i Hi. Then, the above equations

can be rewritten as

y1 = fH
1 R1f1s1 + fH

1 R1f2s2 +wH
1 n1, (4.6)

y2 = fH
2 R2f2s2 + fH

2 R2f1s1 +wH
2 n2, (4.7)

Theorem 4.2.1. [CMJH08] If MT = 2, MRi
≥ 2 for i = 1,2, and R1 and R2 are both invertible,

then the following claim holds. If the transmit beamforming vectors f1 and f2 satisfy the zero

inter-user interference conditions, i.e.,

fH
2 R1f1 = 0 (4.8)

fH
2 R2f1 = 0 (4.9)

then f1,f2 are generalized eigenvectors of (R1,R2) .

Proof: see Appendix D.1.

Theorem 4.2.1 indicates that for MT = 2, the solutions achieving zero inter-user interference

are the generalized eigenvectors of R1 and R2. For the case where the BS and each user

have more than two antennas and the system supports two users, the transmit and receive

beamformers are calculated as follows. First the BS finds all generalized eigenvectors of the

sample correlation matrices R1 and R2. Let V be the set of generalized eigenvectors of R1

and R2. Then, the eigenvector pair that maximizes the sum rate of the system is chosen as

the transmit beamformers, i.e.,

{f1,f2} = arg max
vj ,vk∈{V },vj≠vk

{log2 (1 + P

2σ2
∣H1vj ∣2 ) + log2 (1 + P

2σ2
∣H2vk∣2 )} (4.10)

where P is the total transmit power. In general, if there are n generalized eigenvectors, n(n−1)
computations are required to find the transmit beamformers.

4.3. SeDJoCo transformation based closed-form CBF

As it has been shown in Section 4.2, the closed-form coordinated beamforming proposed in

[CMJH08] is only valid for a system supporting two users. In this section we design a closed-

form coordinated beamforming algorithm for an arbitrary number of users and transmit an-

tennas.
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We consider a multi-user MIMO system with a single base station (BS) and K users, where

the BS is equipped with MT transmit antennas and user i has MRi
receive antennas. The

aggregate number of receive antennas is denoted by MR (i.e., MR = ∑K
i=1MRi

). The number

of transmit antennas is assumed to be equal to the number of users, but smaller than the

aggregate number of receive antennas (i.e., MT = K < MR). An additional discussion on the

parameter setting for MT and K is found in Section 4.3.5. The propagation channel between

the BS and each user is considered as a quasi-static block fading MIMO channel. The matrix

Hi ∈ CMRi
×MT represents the channel between the BS and the ith user and is constant in each

fading block. Let xi denote the transmit signal for the user i and fi ∈ CMT×1 indicate the

unit-norm transmit beamformer of user i. Denoting the receive beamforming vector for user i

by wi ∈ CMRi
×1, and restricting our attention to one data stream per user, the received signal

of the ith user is given by

yi =wH
i Hifisi +wH

i Hi

K∑
ℓ=1
ℓ≠i

fℓsℓ +w
H
i ni , (4.11)

where ni ∈ CMRi
×1 denotes the additive, zero-mean complex-valued white noise vector present

at the ith receiver with unit variance (i.e., σ2
n = 1).

We assume maximum ratio combining (i.e., matched filters) wi =Hifi at the receivers. The

coordinated transmission strategies choose the transmit and receive beamforming vectors such

that each user experiences zero multi-user interference (MUI). This implies that for the ith

user wH
i Hifℓ = 0 for all ℓ ≠ i, which is equivalent to fH

i HH
i Hifℓ = 0 (∀ℓ ≠ i).

If F ∈ CMT×K denotes the combined transmit beamformers for all users and Ri ∈ CMT×MT

denotes the sample correlation matrix of the user i, we have

F = [f1,f2, . . . ,fK] , (4.12)

Ri = HH
i Hi, (4.13)

and FHRiF can be calculated as

FHRiF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fH
1 Rif1 ⋯ fH

1 Rifi ⋯ fH
1 RifK

⋮ ⋱ ⋮ ⋮ ⋮

fH
i Rif1 ⋯ fH

i Rifi ⋯ fH
i RifK

⋮ ⋮ ⋮ ⋱ ⋮

fH
KRif1 ⋯ fH

KRifi ⋯ fH
KRifK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CK×K . (4.14)
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Considering the zero MUI constraint for the ith user, we find that the off-diagonal elements

on the ith row and the ith column of FHRiF must be zero. This indicates that the combined

transmit beamformer F is the matrix which can jointly minimize the magnitude of the off-

diagonal elements on the ith row and the ith column of a set of matrices {Ri}Ki=1. Figure 4.2

gives an example for the five users case where we depict the zero MUI constraint. Obviously,

0 0 0 0

0

0

0

0

0

0 0 0 0

0

0

0

0

0

0 0 0 0

0

0

0

0

0

0 0 0 0

0

0

0

0

0

0 0 0 0

R1 R2 R3 R4 R5

FHR1F FHR2F FHR3F FHR4F FHR5F

Figure 4.2.: An example for the five users case with zero MUI constraint.

for the two transmit antennas and two users case the matrix F is just the diagonalizer that can

simultaneously diagonalize the matrices R1 and R2 . In other word, the transmit beamformers

f1 and f2 in the matrix F are the generalized eigenvectors of (R1,R2). The generalized

eigenvectors can be found by calculating the eigenvalue decomposition of R−11 R2 or R−12 R1.

Similarly, the combined transmit beamformer F for more than two users can be found by

designing a particular transformation which we have first proposed in [YSRH12].

Regarding the problems of blind source separation (BSS) and independent component anal-

ysis (ICA), approximate joint diagonalization (AJD) algorithms are widely used as a generic

tool to solve them. The general framework of AJD considers a set of N (typically more than

two) square, symmetric, real-valued n × n matrices denoted as {Ci}Ni=1. The goal of AJD is

to find a single matrix B (or its inverse A) which best jointly diagonalizes the target matri-

ces in some sense. Inspired by AJD, in [YSRH12] we have derived a “sequentially drilled”

joint congruence (SeDJoCo) transformation which can be applied to calculate the matrix F

directly. The SeDJoCo transformation is a particular form of the classical approximate joint

diagonalization (AJD) problem. However, unlike the problem of general AJD, the basic form

of SeDJoCo considers exactly N = n target matrices C1, . . . ,CN (namely, the number of ma-

trices is equal to their dimension, the relationship between N and the number of users K

discussed in Section 4.3.5), and seeks a matrix B, such that the ith row and the ith column of
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the transformed ith target matrix BCiB
H would be all-zeros, except for the diagonal (i,i)th

element. For each matrix Ci, this structure resembles a square that has been “drilled” along

the ith row and column (considering the elements which have been zeroed-out as “empty”).

Since the index of the “drilled” row and column progresses sequentially with the matrix-index,

we call this congruence transformation “sequentially-drilled” - hence the term SeDJoCo.

4.3.1. Motivation in ML Blind or Semi-Blind Source Separation

Seeking the SeDJoCo transformation is motivated by the closed-form coordinated beamforming

as we have shown above. In fact, another important motivation is encountered in the context

of maximum likelihood (ML) blind (or semi-blind) source separation which we give a short

introduction in the sequel.

Consider the problem of blind (or semi-blind) source separation, in which N statistically in-

dependent, zero-mean wide-sense stationary (and real-valued) source signals s[t] △= [s1[t], . . . , sN [t]]T
(with different spectra) are mixed by an unknown, square invertible (real-valued) mixing-

matrix A, yielding the N mixture signals x[t] △= [x1[t], . . . , xN [t]]T ,
x[t] =As[t] , t = 1,2, . . . , T. (4.15)

When the power spectral densities (PSDs) of the sources h1(ν), . . . , hN(ν) (resp.) are known,

the scenario is called “semi-blind”. When the PSDs are unknown, the scenario is “fully blind”

(see, e.g., [Yer10]). In either case, consider some presumed PSDs (either the true PSDs in a

semi-blind scenario or some “educated guess” in a fully blind scenario) ĥ1(ν), . . . , ĥN(ν), and
denote by φ̂n[t] the Inverse Discrete-Time Fourier Transform (IDTFT, more details are found

in Appendix D.2) of ĥ−1n (ν), namely

φ̂n[t] △= ∫ 1/2

−1/2

1

ĥn(ν) ⋅ ej2πνtdν , n ∈ {1,2, . . . ,N} . (4.16)

It is shown in [PG97] (see also [CJ10], Ch.7) that for ML (in the semi-blind scenario, assuming

Gaussian sources) or Quasi-ML (QML) (in the fully-blind scenario) separation, the likelihood

equations (often also called “estimating equations” in this context) for estimation of A from

x[1], . . . ,x[T ] take the form

T−1

∑
τ=1−T

φ̂n[τ]eTmÂ
−1
R̂[τ]Â−Ten = 0 ∀m ≠ n , m,n ∈ {1,2, . . . ,N} , (4.17)

where the pinning vector en denotes the n-th column of the N ×N identity matrix IN , and
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where R̂[τ] denotes the observations’ empirical (biased) correlation matrix estimate at lag τ ,

R̂[τ] △= 1

T

min(T,T−τ)

∑
t=max(1,1−τ)

x[t]xT [t + τ]. (4.18)

Thus, defining the set of N matrices

Qn
△=

T−1

∑
τ=1−T

φ̂n[τ]R̂[τ] , n = 1,2, . . . ,N (4.19)

and denoting B̂
△= Â

−1
(the ML or QML estimate of the demixing matrix), we observe that

the likelihood equations (4.17) can also take the form

eTm(B̂QnB̂
T )en = 0 ∀m ≠ n , m,n ∈ {1,2, . . . ,N} , (4.20)

which implies that for each n ∈ {1,2, . . . ,N}, all off-diagonal elements in the n-th column

of the transformed matrix B̂QnB̂
T

should be zeros. It is straightforward to show that a

“symmetrized” version of R̂[τ] (a result of averaging R̂[τ] with R̂
T [τ]) can also be used in

(4.17), in which case the resulting matrices Qn would also be symmetric, and the form (4.20)

would imply that all off-diagonal elements in both the n-th column and n-th row of B̂QnB̂
T

must be all-zeros (for each n ∈ {1,2, . . . ,N}).
It is also shown in [PG97, CJ10] that an additional likelihood equation (related to the

scaling of the reconstructed sources) requires that the expressions in (4.17) and (4.20) equal 1

for n =m. Consequently, the respective diagonal (n,n)-th element of B̂QnB̂
T
should equal 1

as well - but this is merely a scaling condition, which may be substituted with other scaling

constraints if desired. For example, this scaling constraint is used in the context of BSS, but is

not applicable in other contexts, such as our CBF application. Note that all other elements (in

columns and rows other than the n-th) of B̂QnB̂
T
are irrelevant to the ML (or QML) solution,

namely, the resulting structure of each B̂QnB̂
T
may generally be far from diagonality, as long

as its n-th row and column are exactly of the form expected in a diagonal matrix.

A similar form of estimating equations is encountered in a somewhat more specific context

of Gaussian Auto-Regressive (AR) sources in [vdV01] (see also [CJ10], Ch.7), and in a more

general context (of Gaussian source signals which are not necessarily stationary, but have

general temporal-covariance patterns) in [Yer10]. The complex-valued version would also be

encountered in these contexts (with complex-valued sources), but only when all signals in

question are circular complex-valued random processes [Yer12].

General AJD is basically an ad-hoc tool which attempts to “best fit” a prescribed model to
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the set of target matrices, with no claim of optimality in any significant sense. As shown in

[Yer00, TY09], in some particular cases general AJD can be made asymptotically optimal by

the introduction of proper weighting. However, the same asymptotic optimality appears in a

much more “natural” and computationally simpler way in SeDJoCo (with particular choices of

target-matrices), since SeDJoCo can directly attain the ML estimate of A or B in such cases.

In fact, following [Yer10], it can be concluded that (asymptotically) optimal separation of

independent Gaussian sources with any kind of time/frequency diversity (whether stationary,

non-stationary, partly stationary and partly non-stationary, etc.) can always be attained via

the solution of a SeDJoCo problem.

4.3.2. Equivalent formulations and existence of a solution

The SeDJoCo problem formulation can take several alternative, equivalent forms, each shed-

ding a somewhat different light on the basic aspects of this problem. The three alternative

formulations presented below apply both to the real-valued and complex-valued cases.

As already mentioned, in the basic SeDJoCo formulation the number of matrices N must

equal the matrices’ dimensions, namely N = n. Thus, consider N symmetric (in the real-valued

case) or Hermitian symmetric (in the complex-valued case) target-matrices C1, ...CN , each of

dimensions N ×N . The SeDJoCo problem can be stated as:

Proposition 4.3.1. Given N target-matrices C1, ...CN , find an N×N matrix B = [b1 b2 ⋯ bN ]H,
such that

bHj Cibi = δji ∀j, i ∈ {1,2, . . . ,N} , (4.21)

where δji denotes Kronecker’s delta function (which is 1 if j = i and 0 otherwise).

Equivalently, the same problem can be stated as:

Proposition 4.3.2. Given N target-matrices C1, ...CN , find an N ×N matrix B, such that

BCiB
Hei = ei ∀i ∈ {1,2, . . . ,N} . (4.22)

In other words, each transformed matrix BCiB
H should be exactly “diagonal” in its ith

column (and, since it is symmetric/Hermitian, also in its ith row), in the sense that all off-

diagonal elements in these row and column must be exactly zero. All other elements may take

arbitrary (nonzero) values. In addition, with the problem formulations above we also require

that the diagonal (i, i)th element of BCiB
H be 1 - but this is merely a scaling constraint on

the rows of B - once any matrix B satisfying the exact off-diagonal zero constraint is found,
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it is straightforward to simply rescale each of its rows such that bHi Cibi = 1, without any effect

on the “i-wise diagonality” property. As we shall see in the sequel, this scaling constraint is

only used in one of the SeDJoCo solutions.

Multiplying both sides of equation (4.22) by A =B−1 on the left we obtain

CiB
Hei =Aei ⇒ ai =Cibi ∀i ∈ {1,2, . . . ,N} , (4.23)

where ai denotes the ith column of A = [a1 ⋯ aN ]. In other words, the same problem can be

stated as follows:

Proposition 4.3.3. Given N target-matrices C1, ...CN , find two reciprocal N ×N matrices

B and A =B−1, such that the ith column of A is given by Cibi, with bHi denoting the ith row

of B, i = 1,2, . . . ,N .

Assuming that all target-matrices are invertible, we may also swap the roles between B and

A, obtaining that the ith column bi of B
H should be given by C−1i ai, where a

H
i denotes the ith

row of AH, i = 1,2, . . . ,N . This means that the same problem formulations Proposition 4.3.1

and Proposition 4.3.2 above may be cast in terms of AH (instead of B) with the inverses of the

target-matrices substituting the target matrices. This implies that the “direct” and “indirect”

formulations of SeDJoCo coincide: If B is the SeDJoCo diagonalizer of C1, . . . ,CN , then its

(conjugate) transposed inverse AH is the SeDJoCo diagonalizer of the inverse set C−11 , . . . ,C−1N .

It is important to note that this desirable “self-reciprocity” property, is generally not shared

by other non-orthogonal AJD algorithms. In fact, it is easy to show that this property is

satisfied in non-orthogonal AJD when (and only when) the target matrices are exactly jointly

diagonalizable. In general, however, the target matrices are not exactly jointly diagonalizable.

Obviously, for real-valued and complex-valued matrices cases, SeDJoCo requires the solution

of N2 real-valued equation in N2 real-valued unknowns and (2N)2 real-valued equations in(2N)2 real-valued unknowns, respectively. Since these equations are nonlinear, the real-valued

solutions may not definitely exist and be unique. However, we will show that a solution

must exist if all the N target-matrices are positive definite (PD), but there is not an explicit

condition for uniqueness.

Let us consider the real-valued case first. Let C1, . . . ,CN denote a set of symmetric, real-

valued PD target matrices, and let λi > 0 denote the smallest eigenvalue of Ci, i = 1, . . . ,N .

Consider the likelihood function for estimation of B from Ci which has been derived in [Yer10]

on equation (24)

C(B) △= log ∣detB∣ − 1

2

N

∑
i=1

eTi BCiB
Tei. (4.24)
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4.3. SeDJoCo transformation based closed-form CBF

For all nonsingular B, C(B) is obviously a continuous and differentiable function of all ele-

ments of B. In addition, C(B) is bounded from above:

C(B) = log ∣detB∣ − 1

2

N

∑
i=1

bTi Cibi

≤ log
N

∏
i=1
∥bi∥ − 1

2

N

∑
i=1

λib
T
i bi

=
1

2

N

∑
i=1
{log ∥bi∥2 − λi ∥bn∥2}

≤
1

2

N

∑
i=1
{− logλi − 1} ,

(4.25)

where ∥bi∥2 △= bTi bi denotes the squared 2 norm of bi, and where we have used the properties

1. ∣detB∣ ≤∏N
i=1 ∥bi∥ (Hadamard’s inequality);

2. bTi Cibi ≥ λi∥bi∥2; and
3. logx − λx ≤ − logλ − 1 for all x > 0.

Note also that C(B) tends to −∞ when B approaches any singular matrix, and C(B) has
additionally the property

C(α ⋅B) α→∞ÐÐÐ→ −∞ ∀B (4.26)

Consequently, C(B)must attain a maximum for some nonsingularB. Being a smooth function

of B for all nonsingular B, its derivative with respect to (w.r.t.) B at the maximum point

must vanish.

Indeed, differentiating C(B) w.r.t. B(i,j) (the (i, j)-th element of B) and equating it to zero

we get (for all i, j ∈ {1,2, . . . ,N})
∂C(B)
∂B(i,j)

= A(j,i) −
1

2

N

∑
k=1

2eTkEijCkB
Tek

= A(j,i) −
N

∑
k=1

δkie
T
j CkB

Tek

= A(j,i) − e
T
j Cibi = 0

(4.27)

where we have used the relation

∂ log ∣detB∣
∂B(i,j)

= A(j,i), (4.28)
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4. Coordinated beamforming techniques

since
∂ log ∣detX ∣

∂X
= (X−1)T = (XT)−1 for a square matrix X [Dyr04].

The first equality of 4.27 holds for all nonsingular real-valued B, and Eij
△= eieTj denotes an

all-zeros matrix with an only 1 at the (i, j)-th location. By concatenating these equations for

j = 1,2, . . . ,N into a vector we get ai = Cibi, which has to be satisfied for each i = 1,2, . . . ,N .

This means that the solution of SeDJoCo can be expressed as the maximizer of C(B), which
always exists when the target matrices are all PD.

Naturally, this derivation is closely related to the fact that SeDJoCo yields the ML (or QML)

estimate of the demixing matrix in some specific BSS contexts (e.g., [PG97, DZ04]) with some

specific target-matrices. However, we obtained here a more general result, which holds for

any set of PD target matrices, and not only for the specific matrices used for ML or QML

estimation in [PG97, DZ04].

We now consider the complex-valued case. The main formal difficulty in applying the same

proof to the complex-valued case stems from the fact that C(B) as defined above would be a

real-valued function of a complex-valued matrix, and as such would not be differentiable w.r.t.

B. To mitigate this difficulty, we take the well-known approach of Brandwood [Bra83] (or

van den Bos [vdB94]), reformulating C(B) as Ĉ(B,B∗), such that B and B∗ are considered

independent variables. The “complex-gradient” w.r.t.B is then defined as the partial derivative

of Ĉ(B,B∗) w.r.t. B, considering B∗ to be constant (and this gradient equals the complex-

conjugate of the similarly-defined complex-gradient w.r.t. B∗). At a maximum point, the

complex-gradients of Ĉ(B,B∗) w.r.t. both B and B∗ must vanish.

Indeed, define

Ĉ(B,B∗) △= log detB + log detB∗ − N

∑
i=1

eTi BCi(B∗)Tei, (4.29)

and assume that the target-matrices Ci are all Hermitian and PD, denoting the smallest

eigenvalue of Ci as λi > 0 (i = 1, . . . ,N). Using the complex-valued version of the same

arguments used above in support of equation (4.25), we have

Ĉ(B,B∗) ≤ N

∑
i=1
{− logλi − 1}. (4.30)

Here, the upper bound of Ĉ(B,B∗) is given. This upper bound can be achieved by some

nonsingular B, such that its complex-gradient w.r.t. B (and to B∗) at the maximum point

must vanish.
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4.3. SeDJoCo transformation based closed-form CBF

Differentiating w.r.t. B(i,j) we obtain

∂Ĉ(B,B∗)
∂B(i,j)

= A(j,i) − 0 −
N

∑
k=1

eTkEijCk(B∗)Tek
= A(j,i) − 0 −

N

∑
k=1

δkie
T
j Ck(B∗)Tek

= A(j,i) − e
T
j Cibi = 0

(4.31)

where bi is the ith column of B∗, namely bHi is the ith row of B. Differentiation w.r.t.

B∗ would simply yield the complex-conjugate version of the same equation. Once again, by

concatenating these equations for j = 1,2, . . . ,N into a vector we get ai =Cibi.

We have shown the existence of the solution, but not the uniqueness. In fact, with arbitrary

(positive-definite) target-matrices the SeDJoCo solution might not be unique.

4.3.3. Solutions of SeDJoCo

Unlike classical AJD, the SeDJoCo problem and its solutions have rarely been addressed in the

literature. To the best of our knowledge, with the exception of our journal paper [YSRH12]

and two conference papers [SRH10c, Yer09], so far only two different iterative algorithms have

been proposed (both in the context of ML or QML BSS): One by Pham and Garat [PG97],

which is based on multiplicative updates of B, and the other by Dégerine and Zäıdi [DZ04],

which is based on alternating oblique projections w.r.t. the columns of B. Both algorithms

were developed for the real-valued case only, but can also be extended to the complex-valued

case.

In this section we describe two new solutions proposed in our journal paper [YSRH12]. One

is based on Newton’s method and employs a conjugate gradient solution of the intermediate

sets of sparse linear equations. The other is based on a modification of an existing LU-based

non-orthogonal AJD algorithm [Afs06]. Both algorithms will be presented for both the real-

valued and complex-valued versions of the problem.

4.3.3.1. Solution by Newton’s method with conjugate gradient (NCG)

4.3.3.1.1. Real-valued target matrices

Beginning with the real-valued version, we propose to apply Newton’s method for the maxi-

mization of C(B) in order to solve the nonlinear equations (4.27). To this end, let us define

the N2×1 gradient vector g and the N2×N2 Hessian matrix H as follows. First, we define the
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4. Coordinated beamforming techniques

indexing function Ix(j, i) △= (j − 1)N + i, which determines the location of B(j,i) in vec(BT)
(the concatenation of the columns of BT into an N2 × 1 vector). Then, as we have already

seen in (4.27), the elements of the gradient vector g are given (for j, i ∈ {1,2, . . . ,N}) by
gIx(j,i)

△=
∂C(B)
∂B(j,i)

= A(i,j) − e
T
j Cibi. (4.32)

. The vector g can also be seen as a vectorized version g = vec (GT) of the gradient matrix

G
△= AT − [C1b1 ⋯CNbN ]T. (4.33)

Differentiating (4.27) once again w.r.t. B(p,q) we get the elements of the Hessian H (for all

j, i, p, q ∈ {1,2, . . . ,N}),
H(Ix(j,i),Ix(p,q))

△=
∂2C(B)

∂B(j,i)∂B(p,q)

=
∂

∂B(p,q)
{A(i,j) − eTi Cjbj}

(1)
= −eTi AEpqAej − eTi Cjeq ⋅ δjp

= −A(i,p)A(q,j) −Cj(i,q) ⋅ δjp. (4.34)

At step (1) we have used the relation ∂A = −A ⋅ ∂B ⋅A. The key observation here, is that

if we differentiate at B = IN , then H becomes considerably sparse, since at B = IN we also

have A = IN , thus A(n,p)A(q,m) = δnpδqm. The computation of the associated N2 × 1 update

vector −H−1g can then be attained with relative computational simplicity using the conjugate

gradient method (which exploits this sparsity). Note that with B = IN we have

H = −P −Bdiag(C1, . . . ,CN), (4.35)

where the Bdiag(⋅) operator creates a block-diagonal matrix from its matrix arguments, and

where P is merely a permutation matrix transforming the vec(⋅) of a matrix into the vec(⋅) of
its transpose, namely for any N ×N matrix Y , we have P ⋅ vec(Y ) = vec(Y T) (note also that

P = PT = P −1).

Therefore, the operation of H on any vectorized N ×N matrix Y T can be easily expressed

as:

H ⋅ vec(Y T) = −vec ([C1y1, . . . ,CNyN ]T +Y ) , (4.36)
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4.3. SeDJoCo transformation based closed-form CBF

where y1, . . . ,yN denote the columns of Y T (rows of Y ). This relatively simple relation,

requiring N3 rather than N4 multiplications, can be conveniently exploited in a conjugate-

gradient-based computation of H−1 vec(GT).
Luckily, the joint congruence structure of the SeDJoCo problem enables us to always work

in the vicinity of B = IN , as each update of B can be translated into transformation of the

target matrices, defining a “new” problem in terms of the transformed matrices. In other

words, suppose that a set of target matrices C1, . . . ,CN is given, and an initial guess for B

is B(0) = IN . Following a single iteration of the Newton algorithm at B(0) = IN , a correction

matrix ∆ is found and used for updating B(1) =B(0)+∆ = IN +∆. Apparently, the next step

is to apply the next iteration of the Newton algorithm by calculating the correction matrix at

B(1), but this would no longer be computationally appealing, since at B(1) ≠ IN the structure

of the Hessian severely departs from equation (4.36) and becomes cumbersome and nonsparse.

Fortunately, an attractive alternative exists in SeDJoCo. Rather than computing the next

update at B(1) with the original target matrices, we can transform these matrices into a new

set of target matrices, using the congruence transformation implied by B(1), namely obtain

C̃i = B(1)CiB
(1)T for i = 1,2, . . . ,N . This transformation fully accounts for the update in

B, so that with the new set C̃1, C̃2, . . . , C̃N , B(0) = IN can be used again as an “initial

guess”, which leads to a convenient calculation of the next update. The process proceeds

by retransforming the new target matrices at each step, and accumulating the updates by

applying the respective left-multiplicative updates of B.

With the given target matrices and some initial guess of B, the NCG algorithm is summa-

rized as follows.

1. Update the transformed target matrices

C̃i ←BCiB
T i = 1,2, . . .N.

2. Using (4.33), construct the gradient matrix G at B = IN ,

G = IN − [C̃1e1, . . . , C̃NeN ]T.
3. Find the correction matrix ∆, given by

vec(∆T) = −H−1 ⋅ vec(GT).
Note: a key observation is that the associated system of linear equations H vec(∆T) =
−vec(GT) may be conveniently solved by using the conjugate-gradient method or the
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conjugate-gradient-squared method (used in the simulations). However, as H has the

dimension N2×N2, a direct solution is computationally too expensive for large values of

N . In such a case, the sparsity of H in (4.35) calls for employing the conjugate-gradient

method1 to obtain an iterative solution with guaranteed convergence in a finite number

of steps. The method does not involve an explicit inversion of H, but merely requires

a computation of products of the form Hy in each iteration. As shown in equation

(4.36) above, such products are computed with N3 (rather than N4) multiplications by

exploiting the special sparse structure of H.

4. Apply and accumulate the correction B ← (IN +∆)B
These 4 steps are repeated until convergence. This algorithm is somewhat similar in structure

to Pham’s multiplicative updates algorithm [PG97]. However, unlike the Pham’s multiplicative

updates algorithm based on the direct solution of (4.21), it is based on an iterative solution

of (4.27), which conveniently lends itself to the use of a conjugate gradient algorithm in each

Newton iteration by exploiting the sparsity of H. Furthermore, we note that the multiplica-

tive updates algorithm in [PG97] assumes that at the vicinity of a solution the transformed

matrices B̂CiB̂
T
are all nearly-diagonal for further simplification. This assumption may be

reasonable in the context of BSS (since near separation the empirical correlation matrices are

all nearly diagonal if the observation length T is sufficiently long). However, it excludes non-

BSS applications (such as our proposed CBF), in which there is no reason for the transformed

matrices to exhibit any diagonality on top of the attained “i-wise diagonality”.

4.3.3.1.2. Complex-valued target matrices

Since the gradient and the Hessian of the real-valued C(B) w.r.t. a complex-valued B are

undefined, we must therefore resort again to van den Bos’“complex-gradient” and “complex-

Hessian” [vdB94], and apply Newton’s approach to the maximization of (4.29). To this end,

we need:

* The gradient of Ĉ(B,B∗) w.r.t. B, which we shall denote in vector form as the N × 1

vector g○;

* The gradient w.r.t. B∗, which we shall denote g∗;

* The Hessian w.r.t. B and B, which we shall denote by the N2 ×N2 matrix H○○;

1In Matlab, the conjugate-gradient-squared method is easily implemented by applying the command X =

cgs(A,B) which attempts to solve the system of linear equations AX = B for X ∈ C
N×M . The dimension of

A is N ×N and B has the dimension of N ×M
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4.3. SeDJoCo transformation based closed-form CBF

* The Hessian w.r.t. B and B∗, which we shall denote H○∗;

* The Hessian w.r.t. B∗ and B, which we shall denote H∗○;

* The Hessian w.r.t. B∗ and B∗, which we shall denote H∗∗;

Evidently,

g○Ix(j,i)
△=

∂Ĉ(B,B∗)
∂B(j,i)

= A(i,j) − e
T
i Cjb

∗

j , (4.37)

which is a vectorized version g○ = vec((G○)T) of
G○

△= AT − [C1b
∗

1⋯CNb∗N ]T. (4.38)

Differentiating once again w.r.t. B(p,q),

H○○(Ix(j,i),Ix(p,q))
△=

∂2Ĉ(B,B∗)
∂B(j,i)∂B(p,q)

=
∂

∂B(p,q)
{A(i,j) − eTi Cj(B∗)Tej}

= −eTi AEpqAej − 0 = −A(i,p)A(q,j). (4.39)

Conversely, differentiating w.r.t. B∗(p,q),

H○∗(Ix(m,n),Ix(p,q))
△=

∂2Ĉ(B,B∗)
∂B(j,i)∂B

∗

(p,q)

=
∂

∂B∗(p,q)
{A(i,j) − eTi Cj(B∗)Tej}

= 0 − eTi CjE
T
pqej = −e

T
i Cjeqδjp. (4.40)

Naturally, we also have g∗ = (g○)∗, H∗∗ = (H○○)∗ and H∗○ = (H○∗)∗.
The vectorized update matrix is then given by

⎡⎢⎢⎢⎢⎣
δ

δ∗

⎤⎥⎥⎥⎥⎦ = −
⎡⎢⎢⎢⎢⎣
H○○ H○∗

H∗○ H∗∗

⎤⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎣

g○

g∗

⎤⎥⎥⎥⎥⎦ , (4.41)
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where δ = vec(∆T). Obviously, it is sufficient to solve for the first half only. Using the

four-blocks matrix inversion relation, the solution for δ is also given by

δ = −[H○○ −H○∗(H○○)−1H∗○]−1[g○ −H○∗(H○○)−1g∗]. (4.42)

In order to simplify, we take advantage of the ability to work at B = IN . Substituting

B = IN (and A = IN ) for the Hessian matrices (4.39), (4.40), we get

H○○ =H∗∗ = −P

H○∗ = (H∗○)∗ = −Bdiag(C1, . . . ,CN). (4.43)

Thus, equation (4.42) reduces into

δ = [P −ΛP TΛ∗]−1[g○ −Λ∗P Tg∗], (4.44)

where Λ
△= Bdiag{C1, . . . ,CN} is used as a shorthand notation.

The conjugate gradient method can be used by exploiting the sparsity of the complete

Hessian matrix (at B = IN ), since for any N ×N complex-valued matrix Y , the product

⎡⎢⎢⎢⎢⎣
−P −Λ

−Λ∗ −P

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
vec(Y T )
vec(Y H)

⎤⎥⎥⎥⎥⎦ = −
⎡⎢⎢⎢⎢⎣
vec (Y + [C1y1, . . . ,CNyN ]T )
vec (Y ∗ + [C1y1, . . . ,CNyN ]H)

⎤⎥⎥⎥⎥⎦ (4.45)

can be computed in N3 instead of (2N)4 complex-valued multiplications.

With the given target matrices Ci, i = 1,2, . . . ,N and an initial guess of B, the complex-

values version of the NCG algorithm is summarized. We repeat the following until convergence.

1. Update the transformed target matrices

C̃i ←BCiB
H i = 1,2, . . .N.

2. Using (4.38), construct the gradient matrix G○ at B = IN ,

G○ = IN − [C̃1e1, . . . , C̃NeN ]T,
and denote g○ = vec((G○)T ).

3. Find the correction matrix ∆, given by

vec(∆T ) = [P −ΛP TΛ∗]−1[g○ −Λ∗P T (g○)∗],
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4.3. SeDJoCo transformation based closed-form CBF

with Λ = Bdiag (C̃1, . . . , C̃N). To alleviate the computational load, the conjugate-

gradient method can be used for this part, exploiting the sparsity of the complex Hessian

by the use of (4.45) (with each Ci substituted by C̃i).

4. Apply the correction B ← (IN +∆)B
We emphasize in passing that although the scaling equations bTi Cibi = 1 (or bHi Cibi = 1) are

inherently built into the NCG algorithm above, they are sometimes irrelevant. For example, in

the coordinated beamforming application this scaling constraint does not apply, since a large

value of bHi Cibi leads to a large power of the desired signal at the ith user. Clearly, if a matrix

B solves the SeDJoCo problem with any scaling equations, then for any diagonal matrix D,

D ⋅B also solves SeDJoCo, but with possibly different scaling equations. Therefore, the NCG

solution can be used with different scaling constraints, simply by re-normalizing the rows of

B as desired.

4.3.3.2. Solution by structured joint congruence (STJOCO) transformation

The structured joint congruence (STJOCO) transformation is derived by modifying Afsari’s

LU-based non-orthogonal matrix joint diagonalization (NOJD) [Afs06]. However, unlike the

algorithm in [Afs06] which was designed to simultaneously diagonalize a set of real-valued

symmetric matrices {Ci}Ni=1 of dimension n × n, the STJOCO transformation aims to solve

SeDJoCo problem. Since the STJOCO transformation is an extension of the LU-based NOJD

algorithm, we first review this algorithm

4.3.3.2.1. LU based NOJD algorithm

In [Afs06], an LU-based non-orthogonal joint diagonalization (NOJD) algorithm was proposed

as a class of NOJD methods using triangular Jacobi matrices which are based on the LU

factorization of the sought diagonalizer. A scaling-invariant cost function is used for the LU-

based NOJD which has the form [Afs06]

J1(B) = N

∑
i=1
∥Ci −B−1diag(BCiB

T)B−T∥2
F

(4.46)

Here, scaling-invariant means that the cost function J1 is invariant under scaling by a non-

singular diagonal matrix Λ, e.g., J1(ΛB) = J1(B).
The diagonalizer B is updated iteratively in the form

Bq+1 = (IN +∆q)Bq (4.47)
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where IN is the N ×N identity matrix, diag(∆q) = 0 and ∆q is found such that J1(Bq+1) is
minimized at each step. The LU-based NOJD algorithm considers ∆q with only one non-zero

element and refers to In +∆q as a triangular Jacobi matrix. Then, the equation (4.47) can be

further written as

Bq+1 = LqUqBq (4.48)

where Lq and Uq are N ×N unit lower and upper triangular matrices, respectively. Here a

unit triangular matrix is a triangular matrix with diagonal elements of one. Unit lower and

upper triangular matrices of dimension N ×N form Lie groups (definition found in Appendix

D.3) denoted by L(N) and U(N), respectively. This fact simplifies the minimization process

significantly. Now we can find Lq and Uq separately in the LU form to minimize J1 at each

step.

4.3.3.2.2. STJOCO transformation for real-valued symmetric matrices

Given a set of N symmetric real-valued matrices {Ci}Ni=1 of dimension n × n, it is the goal of

the STJOCO transformation to jointly minimize the magnitude of the off-diagonal elements

in the ith row and the ith column of the matrix Ci ∈ Rn×n with the sought matrix B. The

scaling-invariant cost function for the STJOCO transformation is given by

J2(B) = N

∑
i=1
∥Ci −B−1 [diag(BCiB

H) +Gi]B−H∥2F , (4.49)

where Gi = BCiB
H, except for the diagonal elements and the off-diagonal elements of the

ith row and the ith column which are zero. We also introduce an LU-based algorithm using

triangular Jacobi matrices for the minimization of J2. The matrix B is updated iteratively in

the following manner

Bq+1 = (IN +∆q)Bq

= LqUqBq . (4.50)

The triangular matrices Lq and Uq are found separately such that J2(Bq+1) is reduced at each

step.

Let us define Ll,k(a) as a unit lower triangular matrix with parameter a ∈ R corresponding

to the position (l, k), l > k and the rest of its off-diagonal entries are zero. The matrix Ll,k(a)
is an element of L(N). Similarly, we define an unit upper triangular Jacobi matrix with

parameter a corresponding to the position (l, k), l < k as Ul,k(a) which is an element of U(N).
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Any element of L(N) or U(N) can be represented as a product of lower or upper triangular

Jacobi matrices. Then the
N(N−1)

2
dimensional minimization problem of finding a Lq or Uq

to minimize J2 can be replaced by a sequence of one dimensional problems of finding the

parameter a of a triangular Jacobi matrix Ll,k(a) or Ul,k(a) for minimizing J2. We propose a

simple lemma to solve the one-dimensional problem.

Lemma 4.3.4. For Ll,k(a) with l > k, we have J2(Ll,k(a)) = b4a4 + b3a3 + b2a2 + b1a+ b0. For

Ul,k(a) with l < k, we have J2(Ul,k(a)) = b4a4 + b3a3 + b2a2 + b1a + b0, where
b4 = 4 ∑

i∈{l,k}
Ci(k, k)2

b3 = 8 ∑
i∈{l,k}

Ci(k, k)Ci(k, l)
b2 = ∑

i∈{l,k}

N

∑
p=1

p≠l,k

[2 Ci(k, k)2 + 4 Ci(k, l)2 + 2 Ci(k, p)2]

b1 = 4 ∑
i∈{l,k}

Ci(k, l)Ci(k, k) + 4 N

∑
p=1

p≠l,k

Cl(l, p)Cl(k, p)

b0 = 2
N

∑
i=1

N

∑
m=1
m≠i

Ci(i,m)2 .

Here we use Ci(index1, index2) to represent the entry of the matrix Ci at the position(index1, index2).
Notice that J2(Ll,k(a)) and J2(Ul,k(a)) are fourth-order polynomials in a and are always

non-negative. For a small a (i.e., ∣a∣ < 1) J2 is convex on R and we can always find a global

minimum by solving the cubic polynomial
∂J2(Ll,k(a))

∂a
= 0 or

∂J2(Ul,k(a))
∂a

= 0. As a result, the

value of the cost function J2 is reduced at each step. Note that a only depends on the elements

of the matrices Cl and Ck for the minimization of J2(Ll,k(a)) or J2(Ul,k(a)). The STJOCO

transformation is summarized below.

1. Set B0 = IN , a threshold ǫ, and the iteration index q = 0.

2. For l = 1, . . . ,N and k = 1, . . . ,N

* Upper triangular part (l < k): set U = IN

– find a such that J2(Ul,k(a)) is minimized according to Lemma 4.3.4.
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– Update Ci and U by setting

Ci ← Ul,k(a)CiUl,k(a)T
U ← Ul,k(a)U .

* Lower triangular part (l > k): set L = IN

– find a such that J2(Ll,k(a)) is minimized according to Lemma 4.3.4.

– Update Ci and L by setting

Ci ← Ll,k(a)CiLl,k(a)T
L ← Ll,k(a)L .

3. Update B by setting Bq+1 ← LUBq and q ← q+1. If J2(Bq)−J2(Bq+1)
J2(Bq) > ǫ, then go to step

2. Otherwise, the procedure has ended.

We can also use other stopping criteria such as tracking the changes in B (e.g., ∥LU − IN∥F ).
4.3.3.2.3. STJOCO transformation for complex-valued Hermitian matrices

The STJOCO transformation can be extended to complex-valued Hermitian matrices Ci ∈
C
n×n (i = 1,2, . . . ,N). In this case, the cost function is the same as in equation (4.49). We still

apply an LU-based algorithm using complex triangular Jacobi matrices to update the matrix

B and minimize the cost function J2.

To this end, we define Ll,k(a ⋅ exp(jϕ)) as a unit lower triangular matrix with a ⋅ exp(jϕ)
at the position (l, k) for l > k, the remaining off-diagonal entries of Ll,k(a ⋅ exp(jϕ)) are zero.

The parameters a and ϕ are real-valued and a > 0. In a similar fashion we define a unit

upper triangular matrix Ul,k(a ⋅ exp(jϕ)) for l < k. A product of lower or upper triangular

Jacobi matrices forms an element of L(N) or U(N). Then we can still use a sequence of one

dimensional minimization problems to replace the
n(n−1)

2
dimensional minimization problem.

However, in contrast to the real-valued case, two parameters a and ϕ have to be determined.

We propose Lemma 4.3.5 to solve the complex one-dimensional problem.

Lemma 4.3.5. For Ll,k(a ⋅ exp(jϕ)) with l > k, J2(Ll,k(a ⋅ exp(jϕ))) = c4a
4 + c3(ϕ)a3 +

c2(ϕ)a2 + c1(ϕ)a + c0. For Ul,k(a ⋅ exp(jϕ)) with l < k, we have J2(Ul,k(a ⋅ exp(jϕ))) =

84



4.3. SeDJoCo transformation based closed-form CBF

c4a
4 + c′3(ϕ)a3 + c2(ϕ)a2 + c′1(ϕ)a + c0, where

c4 = 4 ∑
i∈{l,k}

Ci(k, k)2
c3(ϕ) = 8 ∑

i∈{l,k}
Ci(k, k) ⋅Re{Ci(l, k) exp(jϕ)}

c2(ϕ) = 2 ∑
i∈{l,k}

N

∑
p=1

p≠l,k

[Ci(k, k)2 + ∣Ci(l, k)∣2 + ∣Ci(k, p)∣2 +Re{Ci(k, l)2 exp(2jϕ)}]

c1(ϕ) = 4 ∑
i∈{l,k}

Ci(k, k) ⋅Re{Ci(k, l) exp(jϕ)} + 4 N

∑
p=1

p≠l,k

Re{Cl(p, l)Cl(k, p) exp(jϕ)}

c0 = 2
N

∑
i=1

N

∑
m=1
m≠i

∣Ci(i,m)∣2 ,

and c′3(ϕ) is the same as c3(ϕ), except that exp(jϕ) is replaced by exp(−jϕ). The same change

happens to c′1(ϕ).
The cost function J2(Ll,k(a ⋅exp(jϕ))) or J2(Ul,k(a ⋅exp(jϕ))) is a fourth-order polynomial

in a and a second-order polynomial in cos(ϕ). We can compute the algebraic solutions for
∂J2(Ll,k(a⋅exp(jϕ)))

∂a
= 0 and

∂J2(Ll,k(a⋅exp(jϕ)))
∂ϕ

= 0. However, the expressions are very compli-

cated. Alternatively, we can employ numerical nonlinear convex optimization methods (e.g.,

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method [BV04] with cubic line

search) to find the optimal point (a,ϕ) which minimizes the cost function J2(Ll,k(a⋅exp(jϕ))),
since J2 is convex for small a and ϕ (i.e., 0 < a < 1 and ∣ϕ∣ < π

4
). In our case these two methods

reach the same optimal point for (a,ϕ). Lemma 4.3.5 shows us that the minimizations of

J2(Ll,k(a ⋅ exp(jϕ))) and J2(Ul,k(a ⋅ exp(jϕ))) only depends on the elements of the matrices

Cl and Ck.

The procedure of the STJOCO transformation for the complex-valued case is the same as

for the real-valued case, except for step 2. In step 2 we find a and ϕ for the minimization of

J2(Ll,k(a ⋅ exp(jϕ))) or J2(Ul,k(a ⋅ exp(jϕ))) according to Lemma 4.3.5.

4.3.4. Convergence behavior

We evaluate the convergence of the proposed NCG and STJOCO solutions of the SeDJoCo

problem in the terms of the logarithm of the residual root-mean-squares (RMS,
√
J2(B) in

equation (4.49)) error versus the iteration number. The target matrices are arbitrary, randomly

generated, symmetric, positive-definite, real-valued matrices. Since the results for complex-
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valued matrices are very similar to the real-valued matrices, we do not present them here.

The convergence is compared to the iterative relaxation (IR) algorithm proposed in [DZ04],

but not to the solution proposed in [PG97], since the latter only converges for “nearly jointly

diagonalizable” matrices instead of the arbitrary target matrices. For all three solutions we

initialize the sought matrix B to the identity matrix (i.e., B = IN ), except for the NCG

algorithm with large values of N , because as N grows, the NCG algorithm becomes more

sensitive to the initialization. Therefore, for NCG with N = 10 we initialize B to the output

of the IR algorithm obtained as soon as the RMS error falls below 10−5. For fair comparison,

we continue the iteration count from the respective IR iteration number.

Figures 4.3 and 4.4 show typical convergence pattern of the three iterative algorithms (IR,

NCG, and STJOCO) for several independent trials. Note that the numbers on the y axis are

log10 of the RMS, and are not given in dB. The lower “saturation line” reflects an average

residual error of about 10−30, which means that a convergence pattern reaching that line attains

the exact solution. Here, we define “convergence to an existing solution” as the state where

the residual RMS error drops to the machine-accuracy around 10−30.
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Figure 4.3.: RMS error for IR, NCG, and STJOCO with arbitrary positive-definite real-valued
matrices for N = n = 3.

It is evident that the NCG algorithm significantly accelerates the convergence. For N = 3, in
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Figure 4.4.: RMS error for IR, NCG, and STJOCO with arbitrary positive-definite real-valued
matrices for N = n = 10.

100 independent trials the median number of iterations until convergence to an exact solution

was 42 for IR, 13 for NCG and 635 for STJOCO. As evident from Figure 4.4, STJOCO did

not converge to a machine-accuracy solution for N = 10 with the maximal tested number of

10 000 iterations, but still attained very reasonable solutions with small residual errors (way

below 10−5 after more than 500 iterations), which are probably local minima of its respective

cost function.

The accelerated convergence of NCG is obtained at the cost of only a moderate increase in

the computational complexity per iteration. The complexity per iteration is O(N4) (i.e., the
order of the multiplication is N4 [Knu98]) for the IR algorithm and approximated O(N5) (i.e.,
the order of the multiplication is N5) for the NCG algorithm. The STJOCO algorithm has

a comparable computational complexity O(N4) per iteration, but occasionally converges to

local non-zero minima of the cost-function. As we will show in the context of CBF that this

apparent disadvantage of STJOCO is generally compensated by a higher effective signal-to-

interference-plus-noise ratio (SINR) when a common threshold ǫ is defined for NCG, STJOCO,

and IR algorithms (e.g., ǫ = 10−7). Since the SINR is given by the ratio between the square of

the diagonal element on the “drilled” row or column (i.e., the (i,i)th element of the “drilled”
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ith row or column) and the sum of the squares of the off-diagonal elements in the same row

or column, this effective SINR is not effected by the scaling constraint on the sought matrix

B (discussed in Section 4.3.2).

4.3.5. Achievable sum rate of SeDJoCo-based CBF

With the application of the SeDJoCo transformation the combined transmit beamformer F

defined in equation (4.12) can be directly obtained as BH. The number of users K is the

same as the number of target matrices, and the number of transmit antennas MT corresponds

to the parameter N (namely, to the dimensions of the target matrices). Usually, N would

equal the number of users K. If N is smaller than K, then the number of matrices exceeds

their dimensions, and generally SeDJoCo does not have a solution in such case. Conversely, if

N is larger than K, then the system contains inherent redundancy. We can either add more

users or transmit multiple data streams to some of the users. For example, if the sequence of

K target matrices is augmented from {C1, . . . ,CK} to a sequence of N > K target matrices{C1, . . . ,CK ,CK , . . . ,CK}, such that CK is repeated N −K + 1 times. Then, following the

SeDJoCo solution the Kth user is able to receive N −K + 1 data streams with zero MUI. In

this work, we concentrate in the sequel on the case N =K.

The receive beamformer of each user is matched to the user’s effective channel (i.e., wi =
Hifi). In a system where dedicated pilots are used for the downlink, each user can estimate

its own receive beamformer. For the systems which use only a common pilot channel for all

users (e.g., 3GPP long term evolution), there is no way to estimate the effective channel gain

at the receiver. To solve this problem, a limited feedforward method can be utilized to inform

the receivers about the post-processing vectors [CMIH08a].

The performance of the SeDJoCo-based closed-form CBF in terms of the achievable sum

rate of a multi-user MIMO system is investigated. We also compare our results to the IR

solution [DZ04]. In addition, we compare them to the iterative coordinated beamforming

(CBF) algorithms [CMIH08a], the suboptimal coordinated BD algorithm [SSH04], and regu-

larized block diagonalization (RBD) linear precoding, since RBD can still be applied under

the condition that the system has a smaller number of transmit antennas MT than the total

number of receive antennas MR. In the simulations, we have MT = K and transmit one data

stream to each user. For simplicity, an equal power allocation is employed among the users.

The achievable sum rate is calculated as R =
K

∑
i=1

log2(1 + SINRi), where SINRi indicates the

signal-to-interference-plus-noise ratio at the user i. Dirty paper coding (DPC) has been shown

to achieve the capacity region of Gaussian MIMO broadcast channels. Therefore, we use the
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achievable sum rate of DPC as a benchmark.
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Figure 4.5.: Achievable sum rate comparison for MT =MRi
=K = 2.

Figure 4.5 shows the comparisons of the iterative coordinated beamforming (CBF) algo-

rithms [CMIH08a], the proposed SeDJoCo-based, as well as IR-based closed-form CBF algo-

rithms, when the system has two transmit antennas with two users and each user is equipped

with two receive antennas. It is observed that the STJOCO based closed-form CBF almost

achieves the same sum rate performance as the iterative CBF and performs better than NCG-

based and IR-based closed-form CBF. After rescaling each column of the combined transmit

beamforming matrix BH to have unit norm, the STJOCO solution tends to yield larger ef-

fective SINRs (compared to the IR and NCG solutions). Since the SINR is given by the ratio

between the square of the diagonal element on the “drilled” row or column (i.e., the (i,i)th

element of the “drilled” ith row or column) and the sum of the squares of the off-diagonal

elements in the same row or column, this effective SINR is not effected by the scaling con-

straint on the sought matrix B (discussed in Section 4.3.2). The larger SINRs lead to higher

achievable sum rates, even in cases where STJOCO does not attain an exact solution and some

residual MUI is present. This has been consistently observed in our simulations.

In Figures 4.6 and 4.7, the comparisons of the iterative CBF algorithm [CMIH08a], the

proposed STJOCO- and NCG- and IR-based closed-form CBF algorithms, the sub-optimal

coordinated BD algorithm [SSH04], and RBD precoding are presented. Here, the system has
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Figure 4.6.: Achievable sum rate comparison for MT =MRi
=K = 3.
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Figure 4.7.: Achievable sum rate comparison for MT =MRi
=K = 4.
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MT =MRi
=K = 3 andMT =MRi

=K = 4 for Figures 4.6 and 4.7, respectively. We can see that

the STJOCO-based closed-form CBF performs much better than the NCG- and the IR-based

closed-form CBF algorithms as well as the sub-optimal coordinated BD, by achieving almost

the same performance as the iterative CBF. The performance of RBD is heavily degraded when

the system has a much larger number of total receive antennas than the number of transmit

antennas.

4.4. Flexible coordinated beamforming (FlexCoBF)

In the above section, we have discussed our proposed closed-form CBF algorithm which pro-

vides an efficient solution for the open problem of CBF. However, our investigation focuses on

supporting one data stream per user (i.e., MT = K) and the receive beamforming strategy is

fixed to the MRC (i.e., Wi =HiFi) receiver.

In this section we propose an iterative coordinated beamforming algorithm for the multi-user

MIMO downlink channels, which is named as flexible coordinated beamforming (FlexCoBF)

[SRH10b]. Providing a high flexibility, the FlexCoBF algorithm efficiently solves the dimen-

sionality problem which constrains the applications of some linear precoding techniques. Com-

pared to the previous iterative coordinated beamforming [SSH04, ZHV08, SH08, CMIH08a],

the main advantages of FlexCoBF are as follows.

* It supports the transmission of multiple data streams to each user.

* FlexCoBF does not require special designs of the transmit-receive beamforming weights

contrast to the existing CBF algorithms, because FlexCoBF provides freedom in the

choice of the linear transmit and receive beamforming strategies.

– For the transmit beamforming, any existing linear precoding technique can be ap-

plied (e.g., ZF, BD, and RBD).

– The receive beamforming strategy can be chosen flexibly (e.g., MRC or MMSE

receivers).

* The convergence behavior of FlexCoBF is investigated. The simulation results demon-

strate that the sum rate performance of FlexCoBF approaches the sum capacity of the

MIMO broadcast channel as the algorithm in [CMIH08a], while requiring significantly

fewer iterations.

Furthermore, the extension of the FlexCoBF algorithm to a cellular scenario is consid-

ered. In a cellular system, the transmission in each cell acts as interference to the other
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cells, and the entire system is essentially interference-limited. Conventional approaches to

mitigate multi-cell interference, such as sectoring and frequency reuse, have unneglectable

drawbacks [ACJH07]. By introducing the concept of coordinated multipoint (CoMP) trans-

mission proposed for future wireless communication systems, full cooperation or limited co-

operation can be envisioned between BSs to combat the multi-cell interference. In a multi-

cell MIMO system considering the full cooperation between transmitters, BSs are linked to

a central processor via idea backhaul links (error free and unlimited capacity). Not only

channel state information, but also the full data signals of the users can be shared among

BSs. Consequently, the multi-cell system is transformed into a multi-user MIMO system. To

this end, the existing linear transmit-receive strategies for single cell such as DPC, ZF, BD,

RBD, CBF can be directly applied. However, some issues like the complexity of the joint

processing across all the BSs, the difficulty of CSI acquisition of all the users at each BS,

and the time or phase synchronization render full cooperation extremely difficult for real-

istic cellular systems. Therefore, several coordinated beamforming algorithms for downlink

multi-cell system have been explored when limited cooperations between BSs are considered

[KLL+09, CHHT13, CKH09, GMK10, TGR09, DY10, VPW10]. The method in [KLL+09] is

an extension of the coordinated beamforming algorithm in [CMIH08a] for a multi-cell system.

A single data stream to each user is considered and the receive beamforming strategy is fixed

to MRC matched filtering. The authors in [CHHT13, CKH09, GMK10, TGR09] consider the

scenario that one user intends to receive a desired data stream only from the desired BS, which

refers to a K-user MIMO interference channel. The coordinated beamforming algorithms with

interference alignment are valid only for some configurations of the number of transmit-receive

pairs and the number of antennas at the BS and users such as a two cell system with one

transmit-receive pair per cell in [CHHT13] and a three cell system with one transmit-receive

pair per cell in [CKH09] where the number of transmit antenna per BS is 1 (i.e., MT = 1). In
[DY10, VPW10], the design criteria of the coordinated beamforming algorithms are the mini-

mization of the total weighted transmit power subject to signal-to-interference-and-noise-ratio

(SINR) constraints at the users or the maximization of the instantaneous weighted sum-rate

subject to per-base-station power constraints. The optimal beamformers are found as the so-

lutions of the nonconvex problems. However, each user is equipped only with one antenna in

[DY10, VPW10] and the computational complexity could be an issue in practice.

A clustered cooperation strategy between BSs has been proposed [Ven07, BH07, ZCA08] and

has drawn a significant amount of interest recently. This strategy considers the full cooperation

in a cluster of N cells and limited cooperation between adjacent clusters. In this case, the

users are classified into two groups: cluster interior users and cluster edge users. Only the
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cluster edge users suffer from the inter-cluster interference (ICI). With full cooperation within

one cluster, the available spatial degrees of freedom are greatly increased, which can be utilized

to mitigate the intra-cluster interference and enhance the sum rate. Meanwhile, the limited

cooperation between adjacent cluster is used to reduce the interference for the cluster edge

users. In this way, the intra-cluster and inter-cluster interferences are efficiently mitigated.

Moreover, compared to the full cooperation within a cellular network, the system complexity

and users’ CSI and data requirements are significantly reduced due to the definition of clusters.

We extend FlexCoBF for this clustered cellular scenario in Section 4.4.2. Instead of only

considering inter-cluster interference reduction by limited cooperation between adjacent clus-

ters, we assume that the adjacent clusters involved in the limited cooperation transmit the

same data streams to the edge user to assist the transmission instead of acting as interference.

To this end, the available degrees of freedom are fully utilized.

4.4.1. FlexCoBF in a single cell

We consider a multi-user MIMO downlink system with a single base station (BS) and K users,

where the BS is equipped with MT transmit antennas and the user i has MRi
receive antennas.

The total number of receive antennas is denoted by MR, i.e., MR = ∑K
i=1MRi

. In this section

we focus on the case MR >MT. Notice that if MR ≤MT, any existing linear precoding method

or non-linear precoding method can be directly applied. We represent a quasi-static block-

fading MIMO channel between the BS and the ith user by Hi ∈ CMRi
×MT . In each fading

block, the channel Hi is considered constant. Let si ∈ Cri denote the transmitted signal for

the ith user and Fi ∈ CMT×ri indicate the transmit beamforming matrix of user i. The receive

beamforming matrix for user i is denoted by Wi ∈ CMRi
×ri . The variable ri represents the

number of data streams to user i. We use the term r to indicate the total number of data

streams for all users (i.e., r = ∑K
i=1 ri) and we have r ≤ MT. The ith receiver observes zero

mean circularly symmetric complex Gaussian white noise ni ∈ CMRi with variance σ2
n. Then,

the received signal of the ith user after receive combining is expressed as

yi =WH
i HiFisi +WH

i Hi

K

∑
ℓ=1,ℓ≠i

Fℓsℓ +W
H
i ni, i = 1, . . . ,K. (4.51)

The first term on the right-hand-side (RHS) of equation (4.51) is the desired signal for user i

and the second term represents the MUI at the user i caused by the other users in the system.

With a joint design of the transmit-receive beamformers, FlexCoBF can enforce zero MUI at

each user and achieve a sum rate close to the sum capacity of the MIMO broadcast channel.

We define an equivalent multi-user channel matrix He ∈ Cr×MT and a combined transmit
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beamforming matrix F ∈ CMT×r as

He =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WH
1 H1

WH
2 H2

⋮

WH
KHK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.52)

and

F = [ F1 F2 . . . FK ] . (4.53)

Note that r should satisfy r ≤ MT. The receive beamforming matrices Wi can be chosen

flexibly, e.g., MRC or MMSE receivers. The transmit beamforming matrix Fi is found by

applying an arbitrary linear precoding technique on the matrix He. In this section, we use

ZF, BD, and RBD precoding as examples. The transmit-receive beamformers are updated

iteratively until the stopping criterion is satisfied.

The FlexCoBF algorithm is summarized as follows.

1. Initialize W
(0)
i (i = 1, . . . ,K) to some random matrices, the iteration index p to zero,

and set the threshold ǫ.

2. Set p← p + 1 and compute H
(p)
e as

H(p)
e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W
(p−1)H
1 H1

W
(p−1)H
2 H2

⋮

W
(p−1)H
K HK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3. Apply the desired linear precoding algorithm on the matrix H

(p)
e to obtain the transmit

beamforming matrices F
(p)
i for all users (i = 1, . . . ,K).

4. Compute the receive beamformers for the pth iteration according to the desired strategy

using the precoded channel HiF
(p)
i . For instance,

* MRC receiver:

W
(p)
i =HiF

(p)
i

94



4.4. Flexible coordinated beamforming (FlexCoBF)

* MMSE receiver2:

W
(p)
i = (HiF

(p)
i F

(p)H
i HH

i + σ
2
nIMRi

)−1HiF
(p)
i

5. Check the stopping criterion. If it is not satisfied, go back to step 2. Otherwise, conver-

gence is achieved and the procedure has ended.

* Stopping criterion I for the chosen linear precoding which enforces zero MUI

(e.g., ZF and BD): track the residual MUI which is given as

MUI(H(p+1)
e F (p)) = ∥off(H(p+1)

e F (p))∥2
F
< ǫ,

where F (p) = [F (p)1 , F
(p)
2 , . . . ,F

(p)
K ] and off(⋅) indicates all off-diagonal elements of

the matrix H
(p+1)
e F (p).

* Stopping criterion II for the chosen linear precoding which allows some MUI (e.g.,

RBD): track the changes of the transmit beamformer which is ∥F (p+1) −F (p)∥2
F
< ǫ.

Compared to the previous iterative CBF algorithms [SSH04, ZHV08, SH08, CMIH08a],

FlexCoBF provides freedom in the choice of the transmit-receive beamforming strategies. The

receive beamforming strategy can be chosen flexibly (e.g., MRC or MMSE receivers) and any

existing linear precoding techniques (e.g., ZF, BD, and RBD) can be applied as the transmit

beamforming strategy. The complexity of the FlexCoBF algorithm mainly depends on the

complexity of the chosen transmit beamforming strategy. For example, if ZF precoding is

chosen as the transmit beamforming strategy for the FlexCoBF algorithm, we obtain the same

low complexity per iteration as the CBF algorithm in [CMIH08a], while achieving the same

sum rate performance as the CBF algorithm in [CMIH08a] with significantly fewer iterations.

This is demonstrated numerically in the simulation results.

In order to achieve a fast convergence, we propose two stopping criteria for FlexCoBF de-

pending on the chosen linear precoding scheme. For instance, ZF and BD precoding techniques

lead to zero MUI. Tracking residual MUI is more efficient than tracking the changes of the

transmit beamformer. However, RBD precoding allows some MUI and the amount of MUI

changes with the SNR. If we use stopping criterion I to track the residual MUI for FlexCoBF

with RBD precoding, the threshold assigned to this stopping criterion should be adaptive with

the SNR to ensure the convergence. This adaptive process requires an accurate prediction

2In the MMSE receiver structure, σ2

nIMRi
can be replaced by an interference plus noise covariance matrix if it

can be estimated in the system. Otherwise σ
2

n is the estimated background noise level.
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of the MUI for different SNRs which is difficult to achieve. Consequently, we find that the

stopping criterion II is a better solution for FlexCoBF with linear precoding techniques which

allow some MUI. The efficiency of stopping criterion II is demonstrated numerically in the

simulation results.

Figure 4.8.: The tracked residual MUI after 50 iterations for FlexCoBF with BD precoding
where stopping criterion I is applied and MT =K = 3, MRi

= 2, and SNR = 10 dB

FlexCoBF with stopping criterion I and II converges in most cases. Figure 4.8 is shown as an

example, where 1000 trials have been investigated and all trials stop after the 50th iteration.

We consider a multi-user MIMO system with 3 users and each user has two receive antennas.

The BS is equipped with 3 transmit antennas. The tracked residual MUI of the tested trials

can reach zero after 50 iterations. But there are rare trial cases where the convergence is

not guaranteed. In these cases the behavior is generally that a certain equilibrium point is

reached where the tracked residual MUI or the changes of the transmit beamformers converges

to a value above the threshold, and does not decrease with further iterations. Then, the best

available solutions for these cases are the results after a predetermined number of iterations.

Table 4.1 is shown as an example. Here, the threshold is set to 10−5. The trials, which did not

reach the threshold, have been manually stopped after 150 iterations.
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Table 4.1.: Convergence investigation for MT =K = 3, MRi
= 2, and SNR = 10 dB

Precoding methods Nr. of investigated trials Nr. of manually stopped trials Reached values of the manually stopped trials

FlexCoBF + ZF (stopping criterion I) 5000 11 (0.2%)

0.0884 1.5425
1.2704 0.0422
2.5802 0.0396
0.2376 0.0483
1.3408 1.4471
0.2376

FlexCoBF + BD (stopping criterion I) 5000 8 (0.16%)

0.5633 0.0008
0.0884 0.1026
1.5683 0.3126
0.0323 1.6592

FlexCoBF + RBD (stopping criterion II) 5000 17 (0.34%)

2.6740 0.0007
1.2611 1.3410
0.0009 1.3844
1.3333 0.00004
2.5937 0.0009
1.0156 2.6808
2.6989 1.4073
1.2091 0.00008
0.0006

4.4.1.1. Simulation results

To show the improvement of FlexCoBF, we compare it with the iterative CBF in [CMIH08a]

and the coordinated BD in [SSH04]. We assume that the BS and each user know the channel

state information (CSI) perfectly. Spatial correlation of the channels is considered and the

spatial correlated channel H ∈ CMR×MT is generated by the Kronecker model introduced in

Chapter 2. We have

H =R1/2
r Hw(R1/2

t )H, (4.54)

where Hw is a spatially white unit variance flat fading MIMO channel of dimension MR×MT.

The matricesRr ∈ CMR×MR andRt ∈ CMT×MT are the receive and transmit correlation matrices

with tr(Rr) =MR and tr(Rt) =MT, respectively. In the simulation, we assume that

Rr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ0r (ρ∗r)1 . . . (ρ∗r)MR−1

ρ1r ρ0r . . . (ρ∗r)MR−2

⋮ ⋮ ⋱ ⋮

ρMR−1
r ρMR−2

r . . . ρ0r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.55)

and

Rt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ0t (ρ∗t )1 . . . (ρ∗t )MT−1

ρ1t ρ0t . . . (ρ∗t )MT−2

⋮ ⋮ ⋱ ⋮

ρMT−1
t ρMT−2

t . . . ρ0t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.56)
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where ρr and ρt (0 ≤ ∣ρr ∣ , ∣ρt∣ ≤ 1) are the correlation coefficients at the receiver and transmitter

side, respectively. In the simulations, we assume ρr = ρt = ρ.
The threshold ǫ for the stopping criterion is set to 10−5 in all simulations and the maximum

number of iterations is limited to 50. The total transmit power PT is equally allocated among

users. The received signal-to-noise ratio is defined as SNR = PT/σ2
n. The sum rate performance

is estimated by averaging over 500 channel realizations.

4.4.1.1.1. Single Data Stream Transmission

In order to compare the proposed FlexCoBF algorithm with the CBF algorithm in [CMIH08a],

we consider the transmission of a single data stream per user first.
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Figure 4.9.: Achievable sum rate for MT =K = 3 and MRi
= 2.

In Figures 4.9-4.11, we assume a MIMO downlink system with three users in uncorrelated

Rayleigh fading (i.e., ρ = 0). Each user is equipped with MRi
= 2 receive antennas and the base

station has MT = 3 transmit antennas. Figure 4.9 shows the sum rate performance compar-

isons among the CBF algorithm in [CMIH08a], the proposed FlexCoBF algorithm applying

different linear precoding techniques (e.g., ZF, BD, and RBD) as the transmit beamforming

strategy, and the coordinated BD in [SSH04]. We observe that coordinated BD has the worst

sum rate performance due to the missing joint optimization between the transmit and receive
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Figure 4.10.: CCDF of required number of iterations for MT = K = 3, MRi
= 2 and all SNRs

(i.e., 0 dB − 30 dB), with stopping criterion I.
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Figure 4.11.: CCDF of required number of iterations for MT = K = 3, MRi
= 2 and all SNRs

(i.e., 0 dB− 30 dB), stopping criterion I for FlexCoBF with ZF and BD, stopping criterion
II for FlexCoBF with RBD.
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beamformers. The FlexCoBF algorithm can achieve a noticeably increased sum rate perfor-

mance, as the CBF algorithm in [CMIH08a]. It is noticed that FlexCoBF with RBD precoding

as the transmit beamforming strategy can achieve the best sum rate performance at low SNRs.

Figure 4.10 displays the complementary cumulative distribution function (CCDF) of the

required number of iterations of the FlexCoBF algorithm with stopping criterion I. We find

that FlexCoBF applying ZF and BD requires significantly fewer iterations compared to the

CBF in [CMIH08a], while having a comparable computational complexity per iteration as the

CBF in [CMIH08a]. Furthermore, in 80 percent of the trial cases FlexCoBF with ZF and BD

precoding converged in less than 10 iterations. However, the required number of iterations of

FlexCoBF applying RBD precoding is affected by the SNR, because of the property of RBD

precoding that a small amount of MUI is allowed except for very high SNRs. A fixed threshold

ǫ = 10−5 does not work well for this case. In order to ensure the convergence for all SNRs, we

have to adapt the threshold ǫ with the SNR which requires a prediction of the remaining MUI

and is difficult to solve.

Therefore, we investigate stopping criterion II for FlexCoBF with RBD precoding to avoid

the adaptation. Instead of tracking the residual MUI, we take the changes of the transmit

beamformers as a stopping criterion (i.e., ∥F (p+1) −F (p)∥2
F
< ǫ). It is found that FlexCoBF

with RBD requires significantly less iterations with stopping criterion II, while achieving the

same sum rate performance as FlexCoBF with RBD that tracks the residual MUI. Figure 4.11

shows that the convergence of FlexCoBF with RBD is ensured by stopping criterion II for all

SNRs (i.e., 0 dB − 30 dB ).

Figures 4.12 and 4.13 show the effect of the spatial correlation on the sum rate performance.

We still consider the system with MT =K = 3 and MRi
= 2. The sum rate performance is found

to degrade with the increasing spatial correlation coefficient ρ. Furthermore, FlexCoBF with

RBD as the transmit beamforming strategy and an MMSE receiver as the receive beamforming

strategy is more sensitive to the spatial correlation compared to FlexCoBF with RBD as the

transmit beamforming strategy and an MRC receiver as the receive beamforming strategy.

4.4.1.1.2. Multiple Data Streams Transmission

In Figures 4.14-4.16, we consider multiple data streams transmission per user. Equal power

allocation is employed among the different data streams of all users. It is observed that the

proposed FlexCoBF algorithm has a significantly increased sum rate performance compared

to the coordinated BD proposed in [SSH04], when the base station simultaneously transmits

multiple data streams to each user in the case where the total number of receive antennas MR

exceeds the number of transmit antennasMT. At low SNRs, FlexCoBF with RBD precoding as
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Figure 4.12.: Achievable sum rate for MT =K = 3 and MRi
= 2 at SNR = 5 dB vs. ρ.
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Figure 4.13.: Achievable sum rate for MT =K = 3 and MRi
= 2 at SNR = 25 dB vs. ρ.
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the transmit beamforming strategy achieves best sum rate performance compared to the other

methods. It is also found that FlexCoBF with RBD as the transmit beamforming strategy

and an MMSE receiver as the receive beamforming strategy is more sensitive to the spatial

correlation compared to FlexCoBF with RBD as the transmit beamforming strategy and an

MRC receiver as the receive beamforming strategy.
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Figure 4.14.: Achievable sum rate for MT = 6, K = MRi
= 3 and ρ = 0. The number of data

streams per user is {2,2,2}.

4.4.2. FlexCoBF in clustered cellular MIMO network

4.4.2.1. Clustered cellular MIMO network

We consider a cluster based cellular MIMO network where the universal frequency reuse is

applied. The network is divided into a number of disjoint clusters. Each cluster contains a

group of adjacent cells as shown in Figure 4.17 where each cluster consists of 7 cells.

We assume that the BSs within a cluster can fully share CSI and data of all the users in

this cluster and are perfectly synchronized in time and frequency. The BSs in different clusters

can exchange information such as user data or CSI. Therefore, a full cooperation is included

within a cluster and limited cooperation is introduced between adjacent clusters. To efficiently

accommodate all the users, we group them into two classes:
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Figure 4.15.: Achievable sum rate for MT = 6 and K = MRi
= 3 at SNR = 5 dB v.s. ρ. The

number of data streams per user is {2,2,2}.
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Figure 4.16.: Achievable sum rate for MT = 6 and K = MRi
= 3 at SNR = 25 dB v.s. ρ. The

number of data streams per user is {2,2,2}.
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Figure 4.17.: Clustered cellular scenario. In each cluster there is a virtual controller due to the
full BSs coordination within each cluster.

* Cluster interior users: they are in the center of the cluster and well protected from the

inter-cluster interference by path loss. The BSs within the same cluster work together

as a (virtual) super BS to serve the interior users with FlexCoBF. Therefore, the intra-

cluster interference is efficiently mitigated for these users.

* Cluster edge users: they are located at the cluster boundary and experience strong inter-

cluster interference. The cluster which the edge users belong to is named home cluster.

If a cluster edge user involves multiple neighboring clusters in a cooperation, the data

and CSI information of this user are shared between these clusters which are named as

help clusters. These help clusters transmit the same data streams to this edge user in

order to assist the transmission and take this user into consideration when implementing

FlexCoBF. In this way, the intra-cluster interference caused by the home cluster of this

edge user and the inter-cluster interference from the neighboring help clusters will be

efficiently suppressed.

For simplicity, we use a two-cluster configuration as an example to show the system and re-

ceive signal models, which is also considered in the following section to simplify the explanation

of the extended FlexCoBF algorithm.

In this example, there are two adjacent clusters. Each of them has two users. Due to the

full cooperation within a cluster, each cluster is equivalent to a multi-user MIMO system with

MT transmit antennas. There is a total of four users ui (i = 1, . . . ,4), where the ith user has

MRi
receive antennas. As shown in Figure 4.18, the users u1 and u2 belong to cluster 1 and
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the users u3 and u4 are in cluster 2. We assume that the users u1 and u4 are cluster interior

users. The users u2 and u3 are located at the cluster edge and experience a low signal-to-

interference ratio (SIR) due to the strong ICI. Limited inter-cluster cooperation is introduced

between the adjacent clusters. Let si ∈ Cri denote the transmitted signal for the ith user.

Cluster1 Cluster 2

u2

u3
u1 u4

Cluster edge

s2s2

s3

s3

s1
s4

Figure 4.18.: Two adjacent clusters with limited cooperation

The two clusters simultaneously transmit the same signal si to the cluster edge user ui jointly,

while transmitting different signals for cluster interior user independently. Since each cluster

serves its own interior user and all the cluster edge users simultaneously, it is reasonable to

assume that the number of transmit antennas MT is smaller than the total number of receive

antennas of all users served by this cluster. We use Fj,i ∈ CMT×ri to indicate the transmit

beamforming matrix within the jth cluster for user i. The receive beamforming matrix for

user i is denoted by Wi ∈ CMRi
×ri . Here, the variable ri represents the number of data streams

to user i. We denote the flat fading MIMO channel between the jth cluster and the ith user

by Hj,i ∈ CMRi
×MT and each user observes zero mean circularly symmetric complex Gaussian

white noise ni ∈ CMRi with variance σ2
n. Then, as an example, the received signals of the

cluster interior user u1 and the cluster edge user u2 are given as follows: 3

y1 =WH
1 H1,1F1,1s1 +WH

1 H1,1 ∑
ℓ=2,3

F1,ℓsℓ +W
H
1 n1 (4.57)

3We do not consider the interference caused by the cluster interior user u4 to u1, since it is neglectable compared
to the interference caused by users u2 and u3. Furthermore, we consider that the cluster edge users receive the
same data streams (not different data streams) from the help clusters due to the dimensionality constraint on
He ∈ C

r×MT in equation (4.52) where r ≤MT.
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and

y2 = WH
2

⎛⎝ ∑j=1,2Hj,2Fj,2

⎞⎠s2 +WH
2 H1,2 ∑

ℓ=1,3
F1,ℓsℓ +W

H
2 H2,2 ∑

k=3,4
F2,ksk +W

H
2 n2. (4.58)

The cluster interior user u1 only experiences intra-cell interference caused by the other users

served simultaneously by the first cluster. The cluster edge user u2 suffers interference from

both clusters. The first term of the right-hand-side (RHS) of equation (4.58) is the desired

signals for the user u2. The terms WH
2 H1,2∑ℓ=1,3F1,ℓsℓ and WH

2 H2,2∑k=3,4F2,ksk indicate

the interference signals. To remove all interference in the scenario, we introduce the extended

FlexCoBF algorithm which is described in the following section.

4.4.2.2. The extended FlexCoBF algorithm

Compared to the original FlexCoBF algorithm, we change the updating process of the cluster

edge users’ receive beamformers at each iteration. Here, we explain the algorithm for the case

of two adjacent clusters as depicted in Figure 4.18 for simplicity. Actually, it can be utilized

for an arbitrary number of adjacent clusters. The extended FlexCoBF algorithm includes

the joint design of the transmit-receive beamformers of all users in their home clusters by

using FlexCoBF in order to mitigate the intra-cluster interference, while updating the receive

beamformers of the cluster edge users with limited cooperations between the help clusters

to mitigate the inter-cluster interference. There is no direct interaction among the transmit

beamformers of the home clusters and the help clusters. An example of the extended FlexCoBF

algorithm at the pth iteration is illustrated in Figure 4.19, where the matrix F
(p)
j is a combined

transmit beamforming matrix for all users in the jth cluster. The terms W
(p)
1 and W

(p)
4

denote the receive beamformers of the cluster interior users u1 and u4, respectively, which are

obtained directly from FlexCoBF at the pth iteration. For cluster edge users, we use W
(p)
j,i

to indicate the precoded channel Hj,iF
(p)
j,i from cluster j to user i (i.e., W

(p)
j,i = Hj,iF

(p)
j,i ).

After information exchange between the cooperating clusters, the equivalent precoded channel

of the ith cluster edge user H̄
(p)
i is computed as the sum of the terms W

(p)
j,i (j = 1,2), since

the ith cluster edge user receives the same signal from the adjacent clusters. Then, the final

receive beamformers of the cluster edge users at the pth iteration are obtained according to

the desired receiver strategy using the equivalent precoded channel. Consequently, the receive

beamformers of all users at the pth iteration are incorporated into the (p + 1)th iteration of

FlexCoBF for both clusters. After convergence has been achieved, all the interference in the

scenario is reduced.
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3

Figure 4.19.: Block diagram of extended FlexCoBF for two adjacent clusters.

Based on the above description, we summarize the extended FlexCoBF algorithm for the

clustered multi-cell scenario as follows. We assume K users in each cluster where L (L < K)
users are cluster interior users and the remaining K − L users are cluster edge users. There

are Nc adjacent clusters, which experience interference from each other and are involved for

limited cooperation.

Initialization:

For the jth cluster, set W
(0)
i (i = 1, . . . ,K) to some random matrices, the iteration index

p to zero, and set the threshold ǫ.

Iteration:
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1. Set p← p + 1 and compute H
(p)
e as

H(p)
e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W
(p−1)H
1 Hj,1

W
(p−1)H
2 Hj,2

⋮

W
(p−1)H
K Hj,K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2. Apply the desired linear precoding algorithm on the matrix H

(p)
e to obtain the

transmit beamforming matrices F
(p)
j,i for all users (i.e., i = 1, . . . ,K).

3. Compute the receive beamformers for the cluster interior users according to the

desired receive strategy. For instance,

– MRC receiver:

W
(p)
i =Hj,iF

(p)
j,i , i = 1, . . . , L

– MMSE receiver4:

W
(p)
i = (Hj,iF

(p)
j,i F

(p)H
j,i HH

j,i + σ
2
nIMRi

)−1Hj,iF
(p)
j,i , i = 1, . . . , L

4. Compute the receive beamformers for the cluster edge users.

a) Assign the receive beamformers for cluster edge users as the precoded channel

Hj,iF
(p)
j,i

W
(p)
j,i =Hj,iF

(p)
j,i , i = L + 1, . . . ,K

b) Compute the equivalent precoded channel of the cluster edge users by consid-

ering adjacent interfering clusters.

H̄
(p)
i =

Nc

∑
ℓ=1

W
(p)
ℓ,i

=
Nc

∑
ℓ=1

Hℓ,iF
(p)
ℓ,i

, i = L + 1, . . . ,K

c) Update the receive beamformers for the pth iteration according to the desired

strategy using the equivalent precoded channel.

4In the MMSE receiver structure, σ2

nIMRi
can be replaced by an interference plus noise covariance matrix if it

can be estimated in the system. Otherwise σ
2

n is the estimated background noise level.
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– MRC receiver:

W
(p)
i = H̄(p)

i , i = L + 1, . . . ,K

– MMSE receiver4:

W
(p)
i =(H̄(p)

i H̄
(p)H
i + σ2

nIMRi
)−1H̄(p)

i , i = L + 1, . . . ,K

5. Compute the stopping criterion of FlexCoBF. If it is not satisfied, go back to

step 2. Otherwise, convergence is achieved and the procedure has ended.

4.4.2.3. User grouping

In a home cluster, users can be grouped into cluster interior and cluster edge users according to

the user locations, the path-loss, and the average signal strength. For example, a coordination

distance Dc is proposed in [ZCA08]. If the distance of the user to the cluster edge is not larger

than Dc, this user is classified as a cluster edge user. Otherwise, it is a cluster interior user.

We group the users based on the user position. Let us define d1 as the distance of a user

to the center of its home cluster, while using d2 to indicate the distance of this user to one of

its adjacent cluster. If the ratio of these two distances (i.e., d2
d1
) is smaller than a threshold

ξ, this user is classified as a cluster edge user. Meanwhile, the adjacent cluster related to the

distance d2 is considered for the limited cooperation and becomes a help cluster. In general, a

user achieves large ratios of d2
d1
, if this user is allocated close to the center of its home cluster

(i.e., small d1), In contrast, a user, near to the cluster edge, always can find a help cluster

which satisfies d2
d1
< ξ. Compared to the user grouping algorithm in [ZCA08], the method we

proposed can simultaneously classify the users and determine the help clusters.

Actually there is a trade-off when choosing the threshold ξ. If ξ is too small (e.g. ξ = 1),
all users in the home cluster will be treated as cluster interior users, which is equivalent to

the case that no cooperation is employed between the adjacent clusters. If ξ is too high (e.g.,

ξ = 3), even the users closed to the center of the home cluster will be treated as cluster edge

users and enjoy the limited cooperation with the adjacent clusters. Thus, the total number of

active users will be reduced.

In order to properly choose ξ, we investigate a utility function of ξ (i.e., U(ξ)), which consists

of the mean minimum signal to interference plus noise ratio (SINR) (i.e., SINRmin(ξ)) and the

effective sum rate (i.e., Reff(ξ)).
* Mean minimum SINR: For a given ξ and one realization of user location, the minimum

SINR among all users in the home cluster is denoted as SINRmin(ξ). The mean minimum
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SINR is the average value of SINRmin(ξ) over different channel realizations. SINRmin(ξ)
is mainly determined by the cluster edge users and increases as ξ increases.

* Effective sum rate: For a given ξ and given user locations, if there are Nc clusters serving

user i simultaneously by transmitting the same data streams, the effective rate of this

user is given by Ri/Nc, where Ri is the throughput achieved by user i and calculated by

Ri =
ri

∑
ℓ=1

log2(1 + SINRℓ). (4.59)

The term ri indicates the number of data streams for user i. Then, the effective sum

rate of the home cluster is defined as

Reff(ξ) = K

∑
i=1

Ri

Nc(ξ) . (4.60)

Here, Nc(ξ) indicates that the number of the clusters involved the limited cooperation for

the user i and it changes with the parameter ξ. The effective sum rate Reff(ξ) decreases
with the increase of ξ, since more users are treated as cluster edge user with increasing

ξ.

The mean minimum SINR and the effective sum rate lead to the opposing objectives with

respective to ξ. Therefore, we can further introduce a variable α to reflect the design objective

and define the utility function as

U(ξ) = α SINRmin(ξ)
maxξ SINRmin(ξ) + (1 − α)

Reff(ξ)
maxξ Reff(ξ) , 0 ≤ α ≤ 1. (4.61)

If edge users are more valuable to care about, α can set close to 1. If the sum rate is more

important, α is picked close to 0. This utility function can be interpreted as that the mean

minimum SINR (i.e., SINRmin(ξ)) and the effective sum rate (i.e., Reff(ξ)) are computed with

a given ξ, given user locations, and different channel realizations. Then, they are further

normalized by the maximum values of SINRmin(ξ) and Reff(ξ) over all possible values of ξ

(e.g., 1 ≤ ξ ≤ 3 in simulations), respectively. Therefore, the utility function is greater than 0

and smaller or equal to 1.

4.4.2.4. Cluster size

The size of the cluster has an impact on the sum rates, the degrees of freedom of the system,

and the complexity of the full cooperation within one cluster. For example, with a fixed ratio
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ξ, a small cluster size results in too many cluster edge users which will consume lots of degrees

of freedom and result in low effective sum rates. Therefore, it is important to select a suitable

cluster size for a practical system. In this work, we investigate the suitable cluster size by

considering the sum rates for different cluster sizes. It will be demonstrated in the simulation

results in Section 4.4.2.8.2 that there is a diminishing gain with the increase of the cluster size.

4.4.2.5. Exchange mechanism for clusters with limited cooperation

Once the users in one cluster have been classified into cluster interior and cluster edge users,

the help clusters which should be considered for limited cooperation are determined as well.

Here, we assume that Nc clusters have been involved for limited cooperation. We propose two

alternative exchange mechanisms for the implementation of the extended FlexCoBF algorithm

for one fading block where the channel is considered constant.

1. Online exchange mechanism:

All Nc clusters implement FlexCoBF simultaneously. But each cluster implements Flex-

CoBF only for its own, while requiring information about W
(p)
j,i from the other (Nc − 1)

clusters for the cluster edge user i at the pth iteration of FlexCoBF. Here, j indicates

the help clusters (i.e., j = 1, . . . ,Nc − 1) and p enumerates the iterations. To this end,

all Nc clusters should exchange W
(p)
j,i at each iteration of FlexCoBF. Once the stopping

criterion of FlexCoBF is fulfilled in one cluster, the information exchange can end as

well. In this case, the transmission delay between the Nc clusters is the predominant

factor limiting the time required to calculate the beamforming weights.

2. Offline exchange mechanism:

This mechanism is proposed to avoid the information exchange among the Nc clusters at

each iteration of FlexCoBF and to combat the effect of the transmission delay. Instead

of exchanging information about W
(p)
j,i for cluster edge users, the CSI knowledge of all

the users in the other (Nc − 1) clusters is required for each cluster. With the users’ CSI,

each cluster can implement FlexCoBF not only for its own, but also for the other (Nc−1)
clusters simultaneously. Consequently, the information about W

(p)
j,i is acquired within

each cluster without information exchange among the Nc clusters at each iteration of

FlexCoBF. In this case, the implementation complexity of each cluster is increased by

the number of clusters involved in the limited cooperation.
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4.4.2.6. Detection method for receive beamforming

For FlexCoBF in a single cell or the extended FlexCoBF in clustered multiple cells, the pre-

coded channel information (i.e., HiFi) is required for each user to calculate the receive beam-

formers. In a system where dedicated pilots per user are used for the downlink, each user

can estimate its own precoded channel information using least squares (LS) or MMSE channel

estimation. For systems which use only a common pilot channel for all users (e.g., 3GPP long

term evolution), there is no way to estimate the precoded channel at the receiver. To solve

this problem, in [CMIH08a] and [CMIH08b] a limited feedforward method has been proposed

to inform the users about the receive beamformers. In our work, we assume in the simulations

that each user has perfect knowledge of its precoded channel for simplicity.

4.4.2.7. Simulation results for two adjacent clusters

We consider two adjacent clusters shown in Figure 4.18 firstly for simplicity and evaluate

the performance of the extended FlexCoBF algorithm in terms of the system sum rate. The

achievable system sum rate is calculated as R =
r

∑
ℓ=1

log2(1 + SINRℓ), where SINRℓ indicates

the signal-to-interference-plus-noise ratio of the ℓth data stream and r is the total number of

different data streams. We take each cluster as a virtual multi-user MIMO broadcast channel

and assume that the transmit power of each cluster is PT. The system signal-to-noise ratio is

defined as SNR = PT/σ2
n. There are two users in each cluster in which one user is assumed to

be an interior user and another is a cluster edge user. The exact position of the users are not

known, we only assume that the path-loss of the cluster edge user is 10 times larger than the

path-loss of the cluster interior users. The threshold ǫ for the stopping criterion is set to 10−5

and the maximum number of iterations is limited by 50. For comparison, we consider cellular

scenarios with three different cooperation strategies.

1. FlexCoBF without cooperation between clusters

Each cluster only serves the users on its own and does not consider any cooperation

with adjacent clusters. As a result, the cluster edge users suffer from strong inter-cluster

interference. The intra-cluster interference among the users in one cluster is mitigated

by FlexCoBF performed for one cluster.

2. FlexCoBF with full cooperation in cellular scenarios

Full cooperation among all BSs in cellular scenarios is considered. The channel state

information (CSI) and transmit data of all users are shared among the cooperating BSs.

Consequently, the cellular scenario acts as a virtual single cell multi-user MIMO system.
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Therefore, the interference among users can be canceled by FlexCoBF.

3. Extended FlexCoBF with limited Cooperation between Clusters

Only the transmit data of the cluster edge users are shared among the home cluster and

the help clusters due to the limited cooperation. Online or offline exchange mechanisms

can be used to perform the extended FlexCoBF algorithm. We assume that each cluster

acquires perfect knowledge of the exchanged information (i.e., CSIs of all users or pre-

coded channels between cluster edge users and the involved help clusters). As a result,

all the significant interference can be canceled.

Figure 4.20.: Achievable sum rate for two-cluster scenario with MT = 3, MRi
= 2, and ρ = 0.

Figure 4.20 shows the sum rate performance of this two-cluster scenario with different coop-

eration strategies. Each cluster has three transmit antennas and each user is equipped with

two receive antennas. To utilize all spatial degrees of the freedom supported by one cluster,

each cluster simultaneously transmits three data streams. For FlexCoBF without cooperation

between clusters and FlexCoBF with full cooperation in cellular scenarios, two data streams

are intended to each cluster edge user and one data stream is for each cluster interior user.

For extended FlexCoBF with limited cooperation between clusters, each cluster serves three

users simultaneously and each user has one data stream. Notice that in this case each clus-

ter edge user jointly receives the same data stream from two adjacent clusters. Therefore,

there is a total of 6 data streams, but only 4 different data streams. Obviously, FlexCoBF
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with full cooperation in cellular scenario has the best sum rate performance, because of the

sharing of all users’ transmit data and CSI. FlexCoBF without cooperation between clusters

offers the worst sum rate performance because of the strong inter-cluster interference at the

cluster edge users. There is a performance gap between the extended FlexCoBF with limited

cooperation and FlexCoBF with full cooperation. This performance gap is caused by the fact

that only the information about the receive beamformers W
(p)
j,i (also called precoded channels

since W
(p)
j,i =Hj,iF

(p)
j,i ) of the cluster edge users are exchanged between BSs due to the limited

cooperation. The precoding matrices corresponding to the joint transmission to the cluster

edge users are not fully coordinated with the receive beamformers. However, the achievable

sum rate of the extended FlexCoBF with limited cooperation approaches FlexCoBF with full

cooperation at low SNRs due to the introduced multi-cluster diversity, which comes from a

situation where several clusters transmit the same signal to a cluster edge user. In Figure

Figure 4.21.: CCDF of required number of iterations for extend FlexCoBF in two-cluster
scenario over all SNRs (i.e., 0 dB - 30 dB), stopping criterion I for extended FlexCoBF with
ZF and stopping criterion II for extended FlexCoBF with RBD.

4.21, we evaluate the convergence of extended FlexCoBF for the two-cluster scenario. We

have observed that the extended FlexCoBF algorithm always converges in the simulations and

most of the trials require less than 10 iterations to achieve the convergence.
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4.4.2.8. Simulation results with exact user positions
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Figure 4.22.: A clustered cellular network with 7 adjacent clusters where each cluster has one
cell as an example.

We consider a more realistic scenario as shown in Figure 4.22. The cluster 1 is assumed to

be the home cluster. There are 6 adjacent clusters around. Users are uniformly distributed in

each cluster and each user has 2 receive antennas. Here, one realization of user locations in

cluster 1 is shown as an example. In the middle of each cluster is the virtual controller, which

perform the full cooperation within each cluster. There is Nr cells in each cluster, where each

cell is represented by a hexagon structure with side length of 1000 m. There is one BS per cell

and each BS is equipped with 4 transmit antennas. The maximum transmit power of each BS

is PBS = 1 dBm. Thus, the total transmit power of one cluster is PT = Nr ⋅ PBS. The channel
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models of the users include Rayleigh fading, path loss (corrresponding to a carrier frequency

of 2 GHz), and shadowing. The standard deviation of the shadowing is 8 dB, the path loss

exponent is 4, and the reference distance d0 for the antenna far field is 100 m. The extended

FlexCoBF employing ZF and MRC is considered due to its low complexity.

4.4.2.8.1. User grouping with ξ
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Figure 4.23.: Utility function U(ξ) for different ξ.
Figure 4.23 shows the resulting values for the utility function U(ξ). We assume that the

cluster has the size of Nr = 3. There are 500 realizations of the user locations. For each

user realization K = 12 and 500 independent channel realizations are simulated. We treat the

changes of SINRmin(ξ) and Reff(ξ) as of equal value, which means α = 0.5. It is found that

the maximum value of U(ξ) is achieved around ξ = 1.8, which is a proper choice for the other

simulations in this subsection.

4.4.2.8.2. Cluster size

With the fixed ξ = 1.8 and K = 50 per cluster, we have investigated the sum rate performance

of the home cluster for different cluster sizes (i.e., Nr = 1,3,5,7,10) by considering limited

cooperation. The round-robin user scheduling is applied. There are 1000 trials for each cluster
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Figure 4.24.: Sum rates of the home cluster with different cluster size.

size. For each trial 500 independent channel realization are simulated. Figure 4.24 shows

that there is a diminishing gain with the increasing cluster size. The achievable sum rate

improvement for the 3-cell cluster is around 28 bps/channel relative to the one cell cluster.

Similarly, around 27 bps/channel improvement is achieved for the 5-cell cluster compared to

the 3-cell cluster. From the 5-cell cluster to the 7-cell cluster and the 7-cell cluster to the 10-cell

cluster the achievable sum rate improvements are around 19 bps/channel and 13 bps/channel,

respectively. Therefore, we can conclude that until Nr = 7 a significant sum rate performance

gain can be achieved for the clustered cellular scenario.

4.4.2.8.3. Sum rates performance

With the fixed ξ = 1.8 and the cluster size Nr = 3, we investigate the sum rate performance of

the home cluster which is around by 6 adjacent clusters as shown in Figure 4.22. Three differ-

ent cooperation strategies are considered. They are FlexCoBF without cooperation between

clusters, FlexCoBF with full cooperation in cellular scenarios, and the extended FlexCoBF

with the limited cooperation between clusters defined in Section 4.4.2.7. There are K = 12

users in the scenario. Based on the exact user locations, 12 users are grouped into cluster in-

terior users and cluster edge users by applying the user grouping strategy proposed in Section

4.4.2.3. Table 4.2 shows the grouping results and the involved help clusters with respect to
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the cluster edge users. 1000 trials are simulated for each cooperation strategy. For each trial

100 independent channel realizations are run.

Table 4.2.: User grouping and the involved help clusters

User index Cluster interior user Cluster edge user Help clusters

1 x cluster 4 and cluster 5

2 x cluster 5

3 x cluster 2 and cluster 7

4 x

5 x

6 x cluster 2 and cluster 7

7 x cluster 2 and cluster 7

8 x

9 x

10 x

11 x

12 x

Figure 4.25 shows the sum rate performance of the home cluster. Obviously, FlexCoBF

without cooperation between clusters provides the worst sum rate due to the strong inter-

cluster interference at the cluster edge users. The performance gain introduced by the extended

FlexCoBF with limited cooperation is significant. The performance gap between the extended

FlexCoBF with limited cooperation and FlexCoBF with full cooperation has been caused by

the fact that only the information about the receive beamformers W
(p)
j,i (also namely precoded

channels since W
(p)
j,i =Hj,iF

(p)
j,i ) of the cluster edge users are exchanged between BSs due to

the limited cooperation. The precoding matrices corresponding to the joint transmission of

the cluster edge users are not fully coordinated with the receive beamformers.

that the calculations of the receiver beamformers for the cluster edge users are based on the

equivalent precoded channels (see Section 4.4.2.2) instead of their own precoded channels due

to the limited cooperation.

The significant performance gains by introducing the extended FlexCoBF with limited co-

operation are evidently observed from Figures 4.26 and 4.27 where only the throughputs of

the cluster edge users are shown.
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Figure 4.25.: Sum rates of the home cluster with different cooperation strategies.
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Figure 4.26.: An example of the throughput of user 3 with different cooperation strategies.
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Figure 4.27.: Sum rates of the cluster edge users with different cooperation strategies.

4.5. Summary and Conclusions

In this chapter of the thesis, we have discussed coordinated beamforming (CBF) techniques

for the case that the total number of the receive antennas is greater than the number of the

transmit antennas in a multi-user MIMO broadcast channel. The SeDJoCo-based closed-form

CBF has been proposed by us [SH09b, YSRH12]. Furthermore, we have designed an iterative

CBF (FlexCoBF) for the single cell and the clustered multiple cells scenarios. The main novel

contributions are:

* The proposed SeDJoCo transformation solves the problem that seeks a matrix B for a

set of symmetric, positive definite target matrices {Ci}Ni=1, such that the ith row and the

ith column of the transformed ith target matrix BCiB
H would be all-zeros, except for

the diagonal (i, i)th element. To the best of our knowledge, the solutions of this problem

have rarely been addressed in the literature. We have further proposed two solutions for

the SeDJoCo transformation. Both of them are based on formulating the problem as

different optimization problems and taking different approaches in the maximization or

minimization of the associated cost functions. Both approaches are provided in both a

real-valued and a complex-valued version.

- An approach based on Newton’s method (NCG): Normally, the application of New-
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ton’s method would require the inversion of an N2 × N2 Hessian matrix in each

iteration, which might be computationally expensive when N is large. However,

by identifying and exploiting the sparsity of the Hessian, we are able to apply the

conjugate-gradient method and enjoy the fast (quadratic) convergence of Newton’s

method at a moderate computational cost per iteration.

- An approach (i.e., STJOCO) based on successive unitary transformations involving

multiplications by parameterized lower and upper diagonal matrices: This method

offers linear convergence at a reduced computational load per iteration.

- Presentation of different equivalent formulations of the problem and their associa-

tion with the joint diagonalization problem

- A proof of existence of a solution for positive-definite target-matrices, both in the

real-valued and complex-valued cases

* Based on SeDJoCo, a closed-form CBF has been proposed to avoid iterative updating

between the transmit and receive beamformers, while achieving the same sum rate per-

formance as the iterative CBF. Unlike the closed-form CBF in [CMJH08] that is only

valid for a downlink system with two users and two transmit antennas, the proposed

SeDJoCo-based closed-form CBF can support a multi-user MIMO downlink system with

an arbitrary number of users and transmit antennas.

* The applications of SeDJoCo are not only restricted to the CBF, it can also be utilized

for maximum likelihood (ML) blind (or semi-blind) source separation [YSRH12].

* The proposed iterative CBF (FlexCoBF) does not require special designs of the transmit-

receive beamforming weights like the existing CBF algorithms, because FlexCoBF pro-

vides freedom in the choice of the linear transmit and receive beamforming strategies.

- For the transmit beamforming, any existing linear precoding technique can be ap-

plied (e.g., ZF, BD, and RBD).

- The receive beamforming strategy can be chosen flexibly (e.g., MRC or MMSE

receivers).

* FlexCoBF supports the transmission of multiple data streams to each user.

* Two alternative stopping criteria have been designed for FlexCoBF to achieve a fast

convergence. The number of required iterations is significantly smaller than those for

the CBF in [CMIH08a], while achieving the same sum rate performance.
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* The extended FlexCoBF algorithm can efficiently mitigate the intra-cluster and inter-

cluster interference and significantly increase the average throughput of the cluster and

the user throughputs of the cluster edge users by introducing limited cooperations in a

clustered cellular scenario.

* Based on the location of the users, a user grouping strategy has been proposed and

investigated to classify the users and determine the help clusters.

* It has been demonstrated by the simulation results that a significant gain can be realized

by constructing small size clusters.

Meanwhile, there are still some shortcomings and challenges of the proposed algorithms.

* Shortcomings of the solutions of SeDJoCo transformation (i.e., NCG and STJOCO)

– The NCG algorithm significantly accelerates the convergence, but its initialization

is sensitive in the case of a large number of target matrices, which often prohibits

proper convergence. Furthermore, NCG-based closed-form CBF leads to a lower

sum rate performance compared to STJOCO-based closed-form CBF.

– STJOCO-based closed-form CBF achieves the same sum rate performance as CBF

in [CMIH08a], but the STJOCO algorithm requires a larger number of iterations

until convergence to an exact solution compared to NCG algorithm. For a large

number of target matrices, the STJOCO algorithm might only converge to a local

minimum of its respective cost function.

* Challenges of performing the limited cooperation in the clustered cellular scenario (i.e.,

CoMP)

– Synchronization: Downlink MIMO cooperation between multiple BSs requires tight

synchronization in frequency and in time to avoid inter-carrier interference and

inter-symbol interference. It is feasible today by using commercial GPS (global

position system) satellite signals for outdoor BSs and a precisely timed network

protocol for indoor BSs. However, the cost of the synchronization should be further

reduced.

– Channel estimation: Sufficient resources must be allocated to pilot signals to ensure

reliable channel estimation. With the increase of the cooperation size, the expense

of additional pilot overhead is increased as well. This problem is more critical for

the estimation of channels at the BS in FDD networks than in TDD networks.

In TDD networks, the channel estimation on the uplink can be used for downlink
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transmission due to the reciprocity of the uplink and downlink channels. In FDD

networks, the channel estimates obtained at the receiver must be conveyed to the

BS over a bandwidth limited uplink feedback channel. Although quantized channel

estimates have been proposed to reduce the feedback bits, the size of codewords will

still be increased in a cooperative network. Thus, additional feedback bits might

be required to maintain a given rate loss.

– Backhaul : The ideal backhaul with unlimited capacity and zero-delay is not feasible.

In a practical cooperation network, a backhaul with a high bandwidth and a low

latency is required to connect the BSs with each other or with a central processor.

– Clustering : In practice, only a limited number of BSs can cooperate due to the

overhead management. Therefore, the cell cluster should be set up adaptively ac-

cording to the RF channel measurements and user positions in order to exploit the

cooperative gain at a limited complexity.
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5. Channel State Information Acquisition

5.1. Introduction and Motivation

In a multi-user MIMO downlink channel, the goal of the linear transmit and receive strategies

(e.g., linear precoding techniques and coordinated beamforming techniques) is to exploit the

spatial diversity of the mobile radio channel by using a large number of antennas to serve a

large number of users at the same time and on the same frequency resources. To achieve this

goal, the base station (BS) requires the channel state information (CSI) of the MIMO channels

between all BS antennas and all of the user antennas. In general, the CSI can be acquired at

the BS by either invoking the reciprocity principle or using feedback from the users.

The reciprocity principle [JVG01] in wireless communication states that the channel from

terminal A to another terminal B is identical to the transpose of the channel from terminal B

to terminal A, if both forward and reverse links occur at the same time, the same frequency,

the same antenna locations, and the same transmit and receive radio frequency (RF) chains.

Therefore, the BS might obtain the downlink channel from the uplink channel measurements

by applying the reciprocity principle as illustrated in Figure 5.1. However, the downlink and

uplink channels cannot use all identical time, frequency, spatial instance, and RF chains.

Transmit-receive chain calibration and equalization can transfer the transmit and receive RF

chains to be identical [BCC+07]. If the difference in time, frequency, and spatial instance

is relatively small compared to the channel variation across the referenced dimension, the

reciprocity principle may still hold. For example, in the time dimension this condition implies

that any time offset ∆τ between the uplink and downlink transmission must be smaller than

the channel coherence time Tc (i.e., ∆τ ≪ Tc). Similarly, any frequency offset ∆f must be

smaller than the channel coherence bandwidth Bc (i.e., ∆f ≪ Bc), and the antenna location

differences ∆d on the both sides must be smaller than the channel coherence distance Dc (i.e.,

∆d≪Dc).

The reciprocity principle is applicable in time division duplex (TDD) system, if the same

frequency resources are used for the down- and uplink transmissions. Therefore, the downlink

CSI can be extracted from the uplink transmissions of the user terminals. To achieve this, each

user needs to transmit dedicated pilots per antenna on the uplink. Generally, this overhead

is comparably small if the user terminals are only equipped with one or two antennas. From

each pilot transmission, the BS can acquire the channel coefficients to all its antennas at the
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Figure 5.1.: Reciprocity for channel state information (CSI) acquisition.

same time. This channel state information is then used for the downlink transmissions. It

should be noted that the available CSI is usually erroneous due to channel estimation errors,

channel instationarity (outdated CSI), and RF impairments (e.g., in-phase quadrature-phase

imbalance and carrier frequency offset). The spatial reuse scheme should be able to operate

also in presence of imperfect CSI. It has been shown in the literatures [SHGJ06, ZdLH13a] that

the linear precoding and decoding techniques are significantly more robust against CSI impair-

ments compared to the non-linear precoding techniques such as THP, although a performance

loss does occur due to the imperfect CSI [SH09c].

Another method for obtaining CSI is to use feedback from the receiver of the forward links

depicted in Figure 5.2. It is generally utilized in frequency division duplex (FDD) system.

Let the user terminals estimate their own channels during the downlink transmissions and use

feedback to signal this information back to the base station. Such feedback channels do exist

in current systems (e.g., for power control), but the required rate for the feedback is clearly

an important quantity for the system design. The practically motivated finite rate feedback

model was first considered for the point-to-point MIMO channels in [LHS03, MSEA03], where

the transmitter utilizes such feedback to more accurately direct its transmit power towards

the receiver. It is found in [LHSH04] that even a small number of bits per antenna can be

quite beneficial. Furthermore, the level of CSI available at the transmitter only effects the

SNR-offset in point-to-point MIMO channels. It does not affect the slope of the capacity vs.

SNR curve (i.e., the multiplexing gain). In contrast, the multiplexing gain of the multi-user

MIMO downlink channels is critically affected by the level of CSI available at the BS. Channel

feedback therefore is considerably more important for the multi-user MIMO downlink channels

than for the point-to-point channels.

The authors in [Jin06, RJ07] have discussed limited feedback strategies for multi-user MIMO

downlink channels employing the ZF and BD precoding, where the knowledge of the user

channels’ direction is considered to be more useful than the knowledge of only the channel

magnitude. Therefore, a quantized version of the channel direction of each user is fed back to

the BS. The number of feedback bits per user must be increased linearly with the SNR (in dB)
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Figure 5.2.: channel state information (CSI) acquisition using feedback.

in order to achieve the full multiplexing gain. However, it has been found by us in [SRH08]

that both the channel direction and the channel magnitude information are important for the

BS to perform the RBD precoding. Motivated by it, we have proposed a new limited feedback

scheme in [SRH08] to provide the quantized version of the channel direction and magnitude

to the BS.

Exact channel knowledge at each time instance is known as perfect CSI, which is ideal and

usually difficult to acquire in a time-variant channel. If perfect CSI is available at the BS, the

multi-user interference (MUI) can be efficiently eliminated by employing the linear transmit

and receive strategies such as linear precoding and CBF. If the channel varies too fast to

obtain instantaneous CSI, the spatial channel correlation (namely long-term CSI) can be used

alternatively to reduce the MUI and improve the system performance [SHMK09, KTS+10]

by applying the same linear transmit and receive strategies. Furthermore, if there is no CSI

available at the BS, the BS has to give up the transmit strategies like linear precoding and

CBF and serves only one user at a time. In this case, only the strategies (e.g., space-time

coding) which do not require CSI at the BS can be utilized. In [SHMK09], we have proposed a

new scheme (namely rank-one approximated long-term CSI (ROLT-CSI)) to exploit the second

order statistics of the channels at the BS.

As we have mentioned before, the CSI can be acquired from the known pilot symbols inserted

in the transmission at the expense of a reduced bandwidth efficiency. To avoid this drawback,

several efficient blind and semi-blind methods of channel estimation have been proposed in

various channel contexts, for example, for the SIMO and MIMO fading channels [TXK91,

MDCM95, Nef04], the space-time coded MIMO channels [ZMG02, VS08], and the MIMO-

OFDM channels [MdCDB99, YP03]. The basic idea of the blind channel estimation (BCE) is

to derive the channel characteristics from the received signal only. Depending on the different

ways to extract this information from the received signal, BCE schemes can be distinguished in

two classes: the moment-based BCE and the maximum likelihood (ML) based BCE. The main
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advantages and drawbacks of them have been briefly described in Chapter 1. The moment-

based BCE can be further divided into the second-order statistics (SOS) based BCE and

the higher-order statistics (HOS) based BCE. The authors of [BKP98] have compared the

performance of a HOS based BCE and a pilot based non-blind channel estimation scheme in

a TDMA mobile communication system. It has been shown that the BCE algorithm leads to

an SNR loss of 1.2− 1.3 dB only compared to the non-blind channel estimation, while it saves

a 22 % overhead caused by the transmission of the training sequences.

The SOS based blind channel estimation method in [MDCM95] has been viewed as a pio-

neering work which provides a subspace method for the blind estimation of the single-input

multiple-output (SIMO) channels. This subspace-based blind channel estimation algorithm

performs a singular value decomposition (SVD) of the correlation matrix of the measurement

data to separate the observed space into two orthogonal subspaces, namely the signal subspace

and the noise subspace. Then, the channel can be estimated up to a scalar factor by exploiting

the orthogonality property between the signal and noise subspaces. The concept behind the

subspace method is quite useful, since it is easily extendible to the blind estimation of the

MIMO channels, the orthogonal space-time coded MIMO channels, and the MIMO OFDM

channels.

However, in the existing subspace-based approaches to blind channel estimation, the mea-

surement data is stored in one highly structured vector by a stacking operation. As a result,

the structure inherent in the measurement data is not considered in the subspace estimation

step. A more natural approach to store and exploit the inherent structure of the measurement

data is given by tensors.

Tensor-based signal processing has become increasingly popular in many different areas

of signal processing. This is due to the fact that it offers several fundamental advantages

compared to matrix-based techniques, which have been introduced in Chapter 1. First of all,

multilinear decompositions are essentially unique without additional constraints and allow to

separate more components compared to the bilinear (matrix) approaches, which renders them

attractive for component separation tasks [KB09]. Moreover, since the structure of the data

is preserved, structured denoising can be applied, which leads to an improved tensor-based

signal subspace estimate and can enhance any subspace-based parameter estimation scheme

[HRD08].

In [SRH10a] and [SRH13b], we have proposed tensor-based approaches for blind channel

estimation of SIMO and MIMO channels. Furthermore, inspired by these work, a tensor-

based semi-blind channel estimation for Orthogonal STBC coded MIMO systems has been

proposed by us in [RSS+11] for arbitrary OSTBCs.
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This chapter is dedicated to the CSI acquisition. We start with an introduction of our new

scheme ROLT-CSI in Section 5.2. The quantization based limited feedback model is discussed

in Section 5.3. In Section 5.4, our tensor-based approaches for blind channel estimation are

studied. Finally, a summary is provided in Section 5.5.

5.2. Linear precoding with long-term channel state information

In this section we consider the multi-user MIMO downlink and assume that the channel is

correlated and varies too rapidly to obtain the instantaneous CSI (namely short-term CSI).

Instead, the knowledge of the spatial correlation at the BS is exploited (namely long-term

CSI), which allows us to use the existing precoding techniques (e.g., BD and RBD) designed

for the perfect CSI at the BS.

5.2.1. System and data model

We model the multi-user MIMO downlink channel as a perfectly tuned orthogonal frequency

division multiplexing (OFDM) channel without any inter subcarrier interference (the basics,

perspectives, and challenges of MIMO-OFDM are found in [Bol06]). In this system (as we

have shown in Figure 1.2), there are K users. The BS is equipped with MT transmit antennas

and the ith user has MRi
receive antennas. The total number of receive antennas of all

users is denoted by MR (i.e., MR = ∑K
i=1MRi

). We use Hi(Nf ,Nt) ∈ CMRi
×MT to denote the

propagation channel between the BS and the user i at subcarrier Nf and OFDM symbol Nt.

Then the combined MIMO channel matrix of all users can be defined as

H(Nf ,Nt) = [HT
1 (Nf ,Nt) HT

2 (Nf ,Nt) . . .HT
K(Nf ,Nt)]T ∈ CMR×MT . (5.1)

We assume that it is not possible to track the fast variations of the users’ channels, but

information about the spatial correlation of the channels can be obtained.

The downlink input output data model with linear precoding matrix F can be expressed as

y =H(Nf ,Nt)Fs +n , (5.2)

where the vectors s, y, and n represent the vectors of transmitted symbols, received signals at

all users, and additive noise at the receive antennas, respectively. The matrix F = [F1, . . . ,FK]
denotes the combined precoding matrix for all users which is used to mitigate MUI. The

dimensions ri and r denote the number of data streams at the ith user terminal and the total

number of data streams (i.e., r = ∑K
i=1 ri), respectively.
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Here, we introduce a chunk as the basic resource element, which was first proposed by

the Wireless World Initiative New Radio (WINNER) project [ISTrg]. A chunk contains NT

consecutive OFDM symbols in the time direction and NF subcarriers in the frequency direction

as shown in Figure 5.3. Therefore, the number of Nchunk = NF ⋅NT symbols are available within

each chunk. The linear precoding matrix F is kept constant in one chunk (called chunk-wise

linear precoding).

time

freq.

NT

N
F

Figure 5.3.: One chunk structure in time and frequency domain.

5.2.2. Previous long-term CSI method

The authors in [SH05b, RFH08] introduce a method to exploit the long-term CSI for the

multi-user MIMO downlink employing linear precoding techniques. They also use a chunk as

the smallest time-frequency resource allocation unit and define the spatial correlation matrix

estimate R̂i,b for user i at the chunk b as [SH05b, RFH08]

R̂i,b =
1

Nchunk

NF

∑
Nf=1

NT

∑
Nt=1

ĤH
i (Nf ,Nt)Ĥi(Nf ,Nt) ∈ CMT×MT , (5.3)

where Ĥi(Nf ,Nt) is the estimate for the channel of the ith user at subcarrier Nf and OFDM

symbol Nt. If several pilots per chunk are available, there are two options to obtain the

estimate Ĥi(Nf ,Nt). Either compute one estimate for the channels in chunk b from all pilots

jointly. Alternatively, one can compute one estimate per pilot and then interpolate between

these estimates for every symbol in chunk b.

130



5.2. Linear precoding with long-term channel state information

The singular value decomposition (SVD) of R̂i,b is

R̂i,b = Vi,bΛi,bV
H
i,b . (5.4)

Then, the equivalent channel is defined based on the spatial correlation matrix estimate R̂i,b

as follows [SH05b, RFH08]

Ĥi,b = Λ
1/2
i,b

V H
i,b ∈ C

MRi
×MT . (5.5)

Notice that if R̂i,b has a rank of MRi
, the matrix Ĥi,b can be directly obtained by the SVD of

R̂i,b in equation (5.4). If R̂i,b has a full rank of MT, the truncated SVD has to be applied to

R̂i,b to obtain Ĥi,b (illustrations of various SVDs are found in Table 5.4 of Section 5.4). The

matrices Ĥi,b, i = 1, . . . ,K contain all information about the long-term subspace of each user

available at the BS. We can now use the matrix Ĥi,b as a long-term equivalent channel and

perform the precoding on this matrix as if it represented the actual channel.

5.2.3. ROLT-CSI

We have proposed a new method (i.e., ROLT-CSI) to effectively represent the channel by ex-

ploiting the knowledge of the estimated channel spatial correlation. Compared to the previous

long-term CSI introduced above, our new method is more efficient, especially for the case that

the user has a low rank spatial correlation matrix. The performance improvement achieved by

our method will be demonstrated by the simulation results in the following section.

In our method, we consider the spatial correlation matrix for each receive antenna per user.

Then, for user i the spatial correlation matrix associated to the ℓth receive antenna is expressed

as

Ri,ℓ(Nf ,Nt) = E{ĥi,ℓ(Nf ,Nt)ĥH
i,ℓ(Nf ,Nt)} ∈ CMT×MT . (5.6)

Here ĥH
i,ℓ(Nf ,Nt) denotes the lth row of the channel matrix estimate Ĥi(Nf ,Nt) ∈ CMRi

×MT .

The index ℓ indicates the ℓth receive antenna of user i. The spatial correlation matrix of the

ℓth receive antenna of user i can be estimated by averaging over one chunk. Let R̂i,b,ℓ denote

the estimated spatial correlation matrix of user i, chunk b, and receive antenna ℓ. Then we

have

R̂i,b,ℓ =
1

Nchunk

NF

∑
Nf=1

NT

∑
Nt=1

ĥi,ℓ(Nf ,Nt)ĥH
i,ℓ(Nf ,Nt) (5.7)

and its SVD as

R̂i,b,l = Vi,b,ℓΛi,b,ℓV
H
i,b,ℓ , ℓ = 1, . . . ,MRi

. (5.8)

It has been found in [JG05a, JB06, BO02] that if only second-order channel statistics are
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available at the transmitter, the optimum transmission strategy is to transmit along the dom-

inant eigenmode of its spatial correlation matrix. Inspired by it, we define the equivalent

channel matrix of user i in chunk b as

Ĥi,b =Ai,bBi,b ∈ CMRi
×MT , (5.9)

where

Ai,b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
Λi,b,1(1,1) 0 ⋯ 0

0
√
Λi,b,2(1,1) ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
√

Λi,b,MRi
(1,1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CMRi

×MT

and

Bi,b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V H
i,b,1(∶,1)

V H
i,b,2(∶,1)
⋮

V H
i,b,MRi

(∶,1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CMT×MT .

Here Λi,b,l(1,1) indicates the largest eigenvalue of R̂i,b,l and V H
i,b,l(∶,1) denotes the correspond-

ing eigenvector of R̂i,b,ℓ.

The multi-user MIMO precoding can now be performed on the equivalent channel as de-

fined in equation (5.9). Clearly, the rank-one approximation in equation (5.9) can effectively

represent the channel if its spatial correlation matrix in equation (5.7) also has a low rank.

Utilizing BD precoding described in Chapter 3 as an example, if there is only long-term

CSI available at the BS, we use the equivalent channel in equation (5.9) from the ROLT-CSI

approach instead of the exact channel Hi in equations (3.9) and (3.11).

5.2.4. Simulation Results

We evaluate the throughput performance of the BD and RBD precoding techniques, when

only the long-term CSI is available at the BS. We consider a MIMO downlink system with 3

users. The simulation scenario is illustrated in Figure 5.4. The channels between each user

and the BS are generated by a geometry-based channel model called IlmProp, which has been

developed at Ilmenau University of Technology [DHS03] and is capable of dealing with time

variant frequency selective scenarios.

There are 8 transmit antennas at the BS and each user is equipped with 2 receive antennas.

The BS simultaneously transmits two data streams per user. User 1 and user 2 always have

non-line of sight (NLOS) channels and user 3 always has a line of sight (LOS) channel. The
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UT3

UT2
UT1

BS

UT3

UT2
UT1

BS

UT3

UT2
UT1

BS

UT2

BS

I Plm rop

Figure 5.4.: The geometrical representation of the simulation scenario. Each green point rep-
resents a fixed scatter. The channel impulse responses (CIR) are generated as a sum of
propagation rays. The channel is computed from the superposition of the LOS component
and a number of rays which represent the multi-path components. User 1 and user 2 always
have NLOS channels and user 3 always has a LOS channel.

velocities of the three users are 10 km/h. In Table 5.1, the important OFDM parameters are

listed.

Table 5.1.: OFDM Parameters

Parameters Values

Carrier Frequency 5 GHz

Subcarrier Spacing 0.50196 MHz

Useful Symbol Duration 1.9922 µs

System Bandwidth 128.5 MHz

Used Subcarriers [−128 ∶ +128], 0 not used

Chunk Size 8 subcarriers, 15 OFDM symbols

Duplexing Mode TDD

Since we assume time division duplexing (TDD), the channel reciprocity can be exploited.

We can therefore extract downlink CSI from the uplink transmission of the user terminal.

To achieve this, each user requires uplink dedicated pilots for the estimation of the channel

between the user terminal and all BS antennas. For each chunk, if there are several pilots

available (e.g., four pilots per chunk in a rectangular pattern have been defined for the TDD

mode in the WINNER project [ISTrg]), we can get the estimate of the channel Ĥi(Nf ,Nt) in
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two ways: either compute one channel estimate per pilot and then interpolate between these

estimates for every symbol in the chunk or compute one estimate from all pilots jointly and

use it as a representative for the entire chunk. In our simulation, we do not consider specific

interpolation algorithms or joint estimation from different pilots for simplicity. We assume

that Ĥi(Nf ,Nt) is already known exactly1. Then, we can calculate the equivalent channel

of the chunk with equation (5.9) for the ROLT-CSI approach and with equation (5.5) for

the long-term CSI method of [SH05b], respectively. Consequently, the BS can compute the

precoding matrix F for each chunk. The linear precoding schemes used in the simulation are

BD precoding and RBD precoding.

In Figures 5.5, 5.6, and 5.7 we assume that the channel Ĥi(Nf ,Nt) is known perfectly. In

Figure 5.5, we compare the throughput of the system with precoding based on ROLT-CSI to

the throughput based on the state of the art long-term CSI method in [SH05b]. We can see

that RBD precoding can achieve a higher data rate than BD precoding. When linear precoding

is performed based on long-term CSI, a significant performance gain can be achieved by our

new approach relative to the previous long-term CSI method.

2 2.5 3 3.5 4
x 10

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TP [bps]

C
C

D
F

 o
f c

el
l t

hr
ou

gh
po

ut

 

 

p. method, BD
p. method, RBD
ROLT−CSI, BD
ROLT−CSI, RBD

Figure 5.5.: CCDF of the sum rates with BD and RBD precoding based on long-term CSI at
the BS, respectively. p. method indicates the previous long-term CSI method.

In Figures 5.6 and 5.7 the individual user throughputs based on ROLT-CSI and the previous

1This assumption is reasonable, because the comparison of our ROLT-CSI method and the previous long-term
CSI method does not depend on the way to get Ĥi(Nf ,Nt)
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Figure 5.6.: CCDF of the individual user throughput with BD precoding based on long-term
CSI at the BS, p. method indicates the previous long-term CSI method.
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Figure 5.7.: CCDF of the individual user throughput with RBD precoding based on long-term
CSI at the BS, p. method indicates the previous long-term CSI method.
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long-term CSI approach are compared. It is shown that the ROLT-CSI approach is particularly

efficient for the user who has the LOS channel. Even for the users who only have NLOS

channels, which means that the spatial correlation matrix of these user channels have a high

rank, relative to the previous long-term CSI method there are still some performance gains

available for the presented ROLT-CSI approach.
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Figure 5.8.: CCDF of the sum rates with BD precoding based on long-term CSI at the BS, p.
method indicates the previous long-term CSI method.

Taking into account realistic channel propagation conditions, for Figure 5.8 and 5.9 we

assume that the channel Ĥi(Nf ,Nt) is known imperfectly. We consider a channel estimation

error, a channel interpolation error, and the delay resulting from the fact that the available

CSI of chunk k will be used to optimize the transmission over the channel realization of

chunk (k +n). One chunk and three chunks delay are considered separately in the simulation.

According to Table 5.1, the duration of one chunk is equal to the duration of 15 OFDM

symbols.

For the CSI imperfection, the channel estimation error and interpolation error are modeled

according to [ISTrg], but we increase the interpolation error variance to −20 dB. Compared to

the previous long-term CSI method, the performance gains achieved by our proposed ROLT-

CSI method are significant. It is also found that the delay is the predominant cause of a

performance degradation in a precoded multi-user MIMO system with long-term CSI.
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Figure 5.9.: CCDF of the sum rates with RBD precoding based on long-term CSI at the BS,
p. method the indicates previous long-term CSI method.

5.3. Quantized finite rate feedback for multi-user MIMO broadcast

channels

This section is focused on multi-user MIMO broadcast channels employing linear precoding

techniques and finite rate feedback strategies. Figure 5.10 shows us the basic system model.

We consider a multi-user MIMO system with a single base station (BS) and K users, where

the BS has MT transmit antennas and the ith user has MRi
receive antennas. Employing

linear precoding, the received signal after the decoding of the ith user is expressed as

yi =WH
i (Hi

K

∑
k=1

Fksk +ni) (5.10)

where the vector sk ∈ Crk×1 contains the data symbols and rk represents the number of data

streams for user k, k = 1,2, . . . ,K. The matrix Fk ∈ CMT×rk denotes the precoding matrix.

Here the matrix Hi ∈ CMRi
×MT is the channel matrix from the BS to the ith user. The channel

is assumed to be i.i.d. block Rayleigh fading. The vector ni ∈ CMRi
×1 represents the complex

Gaussian noise vector with unit variance (i.e., σ2
n = 1), which is independent of sk. The matrix

Wi ∈ CMRi
×ri denotes the decoding matrix and yi ∈ Cri×1 is the receive signal vector of user i.
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We assume that the total transmit power of all users is constrained by PT, i.e., E{ ∣∑K
k=1Fksk∣2 } ≤

PT (PT ≥ 0). Let us define P̃T = PT

σ2
n
and SNR = 10 log10 P̃T. Furthermore, we assume that each

user can perfectly estimate its own channel and quantize it to B bits. The BS acquires the B

bits of each user through an error free and zero delay feedback channel.
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Figure 5.10.: Limited feedback system model.

There are several ways to quantize the channel matrices. A straightforward method is to

view the channel matrix as a set of complex numbers and to encode every complex number

individually. If we assume that Nb bits are required to represent one floating point number,

then there are B = 2Nb ⋅MRi
⋅MT bits in total for the user i and 2Nb ⋅MR ⋅MT for all users

(MR = ∑K
i=1MRi

). This costs too much. The alternative is to quantize every individual matrix

by looking up a predefined codebook. If we allocate B bits for each codebook, we only need

B bits for one user and KB bits for all users. Therefore, this channel quantization method is

more efficient regarding the required feedback bits. It is also used in this section.

In the following part, we first overview the existing limited feedback strategies [Jin06, RJ07]

proposed for the multi-user MIMO broadcast channels employing ZF and BD. Then, we study

a new quantization scheme proposed by us in [SRH08] for the multi-user MIMO downlink

applying the RBD precoding.

5.3.1. Quantization scheme for ZF based system

In [Jin06] a simple downlink transmission scheme that uses ZF precoding in conjunction with

finite rate feedback has been studied. Since each user has only one receive antenna, the channel

between the ith user and the BS is a vector hi ∈ CMT×1. It is assumed that the number of

users is equal to the number of transmit antennas (i.e., K =MT =MR).
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5.3.1.1. Finite rate feedback model

The quantization is performed by using a vector quantization codebook which is known at

the BS and the user. In order to prevent the multiple users from quantizing their channel to

the same quantization vector, each user has a different codebook. A quantization codebook C

consists of 2B MT-dimensional unit norm vectors, i.e., C = {w1, . . . ,w2B}. Here, B indicates

the number of feedback bits per user. Each user quantizes its channel to the codeword that

is closest to its channel vector. The closeness is measured in terms of the principal angle

θ between two vectors or equivalently the inner product of these two vectors. Thus, user i

chooses a quantization index αi according to

αi = arg max
j=1,...,2B

∣hH
i wj ∣2

= arg min
j=1,...,2B

sin2 (∠(hi,wj)), (5.11)

where θi =∠(hi,wj) ∈ [0,π/2] and cos θi = ∣hH
i wj ∣

and feeds this index back to the BS. It is noted that only the direction of the channel vector

is quantized, the channel magnitude information is not conveyed to the BS.

Clearly, the choice of the vector quantization codebook significantly affects the quality of

the quantized CSI. Random vector quantization (RVQ) has been used in [Jin06] because the

optimal vector quantizer for this problem is not known in general.

5.3.1.2. Random vector quantization (RVQ)

Random vector quantization was first used to analyze the performance of CDMA and point-to-

point MIMO systems with finite rate feedback. It has been shown that RVQ is asymptotically

optimal in the large system limit (e.g., very large number of users) [SH05a, SH04a]. In [AYL07],

RVQ has been also utilized to quantize the beamforming vector for a point-to-point MISO

system.

Let ĥi denote the quantization of the channel direction h̃i (i.e., h̃i = hi

∥hi∥
). The quantization

error can be expressed as

D(C) △= 1 − ∣h̃H
i ĥi∣2

△= sin2 (∠(h̃i, ĥi)), (5.12)

which is the minimum of 2B independent random variables. The expectation of the quanti-

zation error averaged over all possible random quantization codebooks has been derived in a
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closed-form in Corollary 1 of [AYL07] as

E [D(C)] = 2B ⋅ β(2B, MT

MT − 1
). (5.13)

Here, the beta function is defined in terms of the gamma function as β(x, y) = Γ(x)Γ(y)
Γ(x+y) .

The gamma function is the extension of the factorial function to non-integers, and satisfies the

fundamental properties Γ(n) = (n−1)! for positive integers (see Appendix C.2). Furthermore, a

simple extension of inequalities given in [AYL07] provides a strict upper bound of the expected

quantization error.

Lemma 5.3.1. The expected quantization error can be upper bounded as [Jin06]

E [D(C)] < 2− B
MT−1 . (5.14)

Proof: see [Jin06]. The numerical results in [Jin06] indicate that this bound is tight and

indeed sufficiently precise to accurately characterize the throughput degradation due to finite

rate feedback.

5.3.1.3. Throughput analysis

Let the matrix Ĥ ∈ CMT×MT indicate the quantized version of the channels all users (i.e.,

Ĥ = [ĥ1, ĥ2, . . . , ĥK], notice that K = MT = MR). The ZF precoding is performed upon it.

If equal power allocation is used for the transmission, the receive signal to interference plus

noise ratio (SINR) at the user i is given by

SINRi =
P̃T

MT

∣hT
i fi∣2

1 +∑j≠i
P̃T

MT

∣hT
i fj ∣2 . (5.15)

Since the beamforming vectors fi ∈ CMT×1 are chosen orthogonal to the quantized channel

and not the actual channel realizations, the interference term in the dominator of the SINR

expression are not zero. Therefore, a throughput loss is introduced due to the residual interfer-

ence term. Considering the throughput averaged over the fading distribution, the performance

degradation can be quantified as a function of the feedback rate. Let us define the rate gap

∆R(PT) per user to be the difference between the throughput achieved by perfect CSI based

ZF and finite rate feedback based ZF. We have

∆R(P̃T) = [R(P̃T) −RFB(P̃T)] , (5.16)
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Theorem 5.3.2. Finite rate feedback with B feedback bits per user incurs a throughput loss

relative to ZF with perfect CSI upper bounded by [Jin06]

∆R(P̃T) < log2(1 + P̃T ⋅ 2
−

B
MT−1 ). (5.17)

Proof: see [Jin06].

5.3.1.3.1. Fixed feedback bits

It is noted from Theorem 5.3.2 that the rate loss is an increasing function of P̃T where P̃T = PT

σ2
n
.

When the number of feedback bits B is fixed, the finite rate feedback system is interference

limited at high SNRs because interference and signal power both scale linearly with P̃T. This

motives the following result.

Theorem 5.3.3. For a finite rate feedback system with ZF and a fixed number of feedback bits

B per user, the throughput is bounded as P̃T is taken to infinity.

RFB(P̃T) ≤MT(1 + B + log2 e
MT − 1

+ log2(MT − 2) + log2 e). (5.18)

Proof: see [Jin06].

Although the upper bound in Theorem 5.3.3 is not quite tight in general, it does correctly

predict the roughly linear dependence of the limiting throughput and the number of feedback

bits B. Figure 5.11 shows the performance of a 5 transmit antennas, 5 users MIMO system

with 10, 15, and 20 feedback bits per user. When the SNR is quite low, the limited feedback

performances approach to ZF with perfect CSI. However, with the increased SNR, the limited

feedback system becomes interference limited and the throughputs converge to an upper limit.

5.3.1.3.2. Increased feedback bits

In order to avoid the interference-limited behavior experienced in the case of a fixed number of

feedback bits, the number of feedback bits per user B should be scaled linearly with P̃T. In fact,

if B is scaled at an appropriate rate, the full multiplexing gain of MT can be achievable. It is

also desired to maintain a throughput loss ∆R(P̃T) that is not larger than a given bound log2 b

per user. The following theorem specifies a sufficient scaling of feedback bits B to maintain

the given bound log2 b.
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Figure 5.11.: Achievable throughputs for ZF MT =K = 5 with fixed feedback bits per user.

Theorem 5.3.4. In order to maintain a throughput loss that is not larger than log2 b per user

between ZF with perfect CSI and quantized CSI, it is sufficient to scale the number of feedback

bits per user according to [Jin06]

B = (MT − 1) log2 P̃T − (MT − 1) log2(b − 1)
≈

MT − 1
3

SNR − (MT − 1) log2(b − 1). (5.19)

Proof: see [Jin06].

The throughput loss of log2 b per user can easily be translated into a power offset, which

is a more useful metric from the design perspective. As we have known from Chapter 3, the

ZF precoding has a slope of MT bps/Hz/3 dB at asymptotically high SNR (i.e., multiplexing

gain, and note that MT =MR in our assumption of the ZF based system model). Therefore,

a throughput loss of log2 b bps/Hz per user, or equivalently MT log2 b bps/Hz in the sum rate

of all users, corresponds to a power offset of 3 log2 b dB (regarding equation (3.35) in Chapter

3). Thus, b = 2 indicates a 1 bps/Hz throughput loss per user or equivalently a 3 dB power
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offset. From Theorem 5.3.4, the scaling of bits for a 3 dB offset is

B =
MT − 1

3
SNR bits/user, (5.20)

which is a quite simple form.

Figure 5.12 shows the throughputs for a 5 transmit antennas and 5 users MIMO system

employing the ZF precoding based on perfect CSI and quantized CSI, respectively. The number

of feedback bits per user B is scaled according to equation (5.20) in order to maintain a 3 dB

power offset. Notice that the actual power offset is smaller than 3 dB due to the use of

Jensen’s inequality (definition in Appendix E.1) in deriving the throughput loss upper bound

in Theorem 5.3.2.
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Figure 5.12.: Achievable throughputs for ZF MT =K = 5 with increased feedback bits per user.

5.3.2. Quantization scheme for BD based system

In [RJ07] a limited feedback system employing the BD precoding at the BS has been considered,

where each user is assumed to have Mr receive antennas (i.e., MRi
=Mr for ∀i), the number of

users K > 1, and K = MT

Mr
which implies that the aggregate number of receive antennas equals

the number of transmit antennas (i.e., MR =MT). In order to perform BD, the BS only needs
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to know the spatial direction of each user’s channel, i.e., the subspace spanned by user channel

HT
i ∈ C

MT×Mr , i = 1, . . . ,K. Thus, the feedback only conveys this information.

5.3.2.1. Finite rate feedback model

Each user has it own quantization codebook which is fixed beforehand and is known to the

BS and each user. A quantization codebook consists of 2B matrices, i.e., C = {W1, . . . ,W2B}.
Here, B is the number of feedback bits per user and each codeword has the dimension MT×Mr.

The quantization of a channel spatial direction matrix H̃T
i (i.e., H̃T

i =
HT

i

∥HT

i
∥
F

) is chosen from

the codebook C according to [RJ07]

ĤT
i = arg min

W ∈C
d2c(H̃T

i ,W ), W ∈ CMT×Mr . (5.21)

Here, d(H̃T
i ,W ) is the distance metric which uses the chordal distance (details are found in

Appendix E.2). That is

dc(H̃T
i ,W ) =

¿ÁÁÀMT

∑
i=1

sin2 θi, (5.22)

where the θi for i = 1, . . . ,MT are the principal angles (i.e., θ1, . . . , θMT
∈ [0,π/2]) between the

two subspaces spanned by the columns of the matrices. Since the principal angles only depend

on the subspace spanned by the columns of the matrices, each codeword can be chosen as a

unitary matrix. No channel magnitude information is fed back to the BS.

5.3.2.2. Random vector quantization (RVQ) codebook

Since it is very difficult to design optimal quantization codebooks for the given distance metric,

the random vector quantization codebooks are studied instead in [RJ07]. Each codeword of

the RVQ codebook is chosen independently and uniformly distributed over the Grassmannian

manifold GMT,Mr(C) which is the set of all Mr-dimensional subspaces in an MT-dimensional

Euclidean space (the definition is found in Appendix E.2). Points in GMT,Mr(C) are equiva-

lence classes of orthonormal matrices with the dimension MT ×Mr. Each codeword therefore

can be assumed to have unitary columns. Let us analyze the performance averaged over all

possible random quantization codebooks. The expectation of the quantization error is defined

as

D(C) = E [d2c(H̃T
i , Ĥ

T
i )]

= E [d2c(H̃T
i ,W )] . (5.23)
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It has been shown in [DLR05] that the quantization error D(C) has an upper bound for a

codebook of size 2B as follows

D(C) ≤ D̄(C)
=

Γ( 1
M
)

M
(CMT,Mr,β)− 1

M 2−
B
M +Mr exp [−(2BCMT,Mr,β)(1−a)] , (5.24)

where Γ( 1
M
) is the gamma function (definition is found in Appendix C.2). The term M =

Mr(MT −Mr) and a ∈ (0,1) is a real number and chosen such that (2BCMT,Mr,β)− a
M ≤ 1. The

term CMT,Mr,β is given by

CMT,Mr,β =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
M !∏Mr

i=1
Γ(β

2
(MT−i+1))

Γ(β
2
(Mr−i+1))

if 0 <Mr ≤ MT

2

1
M !∏MT−Mr

i=1
Γ(β

2
(MT−i+1))

Γ(β
2
(MT−Mr−i+1))

if MT

2
≤Mr ≤MT

(5.25)

If each codeword is complex valued, β then is equal to 2. Otherwise, β = 1 for the real valued

case. The second exponential term in equation (5.24) can be neglected for large B.

5.3.2.3. Throughput analysis

In the case of perfect CSI based BD precoding, the BS has the ability to mitigate all multi-user

interference (MUI). Thus, the achievable throughput of user i is given by

R(P̃T) = E{log2 ∣IMr +
P̃T

K
HiFiF

H
i HH

i ∣} , (5.26)

where the expectation is carried out over all channel realizations. The transmit power is

assumed to be equally allocated between K users. In the case of quantized CSI based BD

precoding, the MUI cannot be perfectly canceled and leads to a throughput loss compared to

equation (5.26). Therefore, the achievable throughput of user i is given by

RFB(P̃T) = E⎧⎪⎪⎨⎪⎪⎩log2
RRRRRRRRRRRIMr +

P̃T

K

K

∑
j=1

HiF̂jF̂
H
j HH

i

RRRRRRRRRRR
⎫⎪⎪⎬⎪⎪⎭ −E

⎧⎪⎪⎨⎪⎪⎩log2
RRRRRRRRRRRIMr +

P̃T

K

K

∑
j=1,j≠i

HiF̂jF̂
H
j HH

i

RRRRRRRRRRR
⎫⎪⎪⎬⎪⎪⎭ ,

(5.27)

where F̂j indicates the BD precoding matrix calculated through the quantized CSI. Let us

define the rate gap ∆R(P̃T) per user to be the difference between equations (5.26) and (5.27).

Theorem 5.3.5. Finite rate feedback with B feedback bits per user incurs a throughput loss
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relative to BD with perfect CSI upper bounded by [RJ07]

∆R(P̃T) = R(P̃T) −RFB(P̃T)
≤ Mr log2(1 + P̃TD(C)). (5.28)

Proof: see [RJ07].

5.3.2.3.1. Increased feedback bits

With the fixed B, the finite rate system eventually becomes interference limited at high SNRs

(similar to the ZF case shown in Section 5.3.1.3.1). To avoid the interference-limited behavior,

the number of feedback bits per user B should be scaled linearly with the SNR. If we consider

to maintain that the throughput loss ∆R(P̃T) should be no larger than a given bound log2 b

per user, we have the following theorem.

Theorem 5.3.6. In order to maintain a throughput loss no larger than log2 b per user between

BD with perfect CSI and quantized CSI, it is sufficient to scale the number of feedback bits per

user according to

B ≈
Mr(MT −Mr)

3
⋅ SNR −Mr(MT −Mr) log2(b 1

Mr − 1)
+Mr(MT −Mr) log2 ⎛⎝

Γ( 1
Mr(MT−Mr))

Mr(MT −Mr)
⎞⎠ − log2CMT,Mr,β (5.29)

Proof: see [RJ07].

Furthermore, if we maintain a system throughput loss of K bps/Hz (i.e., b = 2) which

corresponds to a power offset of no more than 3 dB with respective to BD with perfect CSI,

it is sufficient to scale the number of feedback bits per user [RJ07]

B ≈
Mr(MT −Mr)

3
⋅ SNR − log2CMT,Mr,β . (5.30)

The number of feedback bits can grow very large for MIMO broadcast channels. Simulation

therefore becomes a computationally complex task. However, MIMO systems with a small

number of antennas can be simulated in a reasonable amount of time. Figures 5.13 and

5.14 show the achievable throughputs for multi-user MIMO broadcast channels employing BD

precoding based on perfect CSI and quantized CSI. The number of feedback bits per user B

is scaled according to equation (5.30) (the exact number of B can be found in Table 5.2). The

actual power offsets is found to be smaller than 3 dB due to the use of Jensen’s inequality
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(definition in Appendix E.1) in deriving the throughput loss upper bound in Theorem 5.3.5.

The simulations also suggest that the fixed number of feedback bits per user will result in an

increasing rate loss with increased SNR.
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Figure 5.13.: Achievable throughputs for BD MT = 4, K = 2, and Mr = 2

Table 5.2.: The number of feedback bits B for the case of BD with increased feedback bits.
The calculation of B is based on equation (5.30).

SNR 0 dB 4 dB 8 dB 12 dB 16 dB 20 dB

B for MT = 4 and Mr = 2 1 bit 6 bits 12 bits 17 bits 22 bits 28 bits

B for MT = 6 and Mr = 2 4 bits 15 bits 25 bits 36 bits 47 bits 57 bits

5.3.3. Quantization scheme for RBD based system

In order to correctly perform RBD, the BS requires not only the channel direction information,

but also the channel magnitude information which is used to avoid the noise enhancement and

improve the diversity. Therefore, the quantization methods proposed in [Jin06, RJ07] cannot

be applied to the multi-user MIMO systems employing RBD. In [SRH08], we have presented

a new efficient channel quantization scheme to provide both channel direction and magnitude
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Figure 5.14.: Achievable throughputs for BD MT = 6, K = 3, and Mr = 2

information to the BS.

5.3.3.1. Finite rate feedback model

The new channel quantization scheme is based on the equation

vec{Ĥi} = argmin
wj∈C

d2c(vec{Hi} ,wj) (5.31)

where the vector wj ∈ CMRi
⋅MT×1 is one codeword of the quantization codebook C used at the

ith user, which is fixed beforehand and known to the transmitter and user i. Here, vec{Hi}
denotes the stacked vector of the channel matrix Hi and dc(vec{Hi} ,wj) is the distance

metric. Here, we consider the chordal distance (details are found in Appendix E.2). It is

dc(vec{Hi} ,wj) =√sin2 θi, (5.32)

where θi is the principal angle between the two vectors (i.e., θi ∈ [0,π/2]). The matrix Ĥi ∈
C
MRi

×MT is the quantized version of the channel matrix Hi. Instead of directly quantizing

the channel matrix, we first quantize the stacked vector of the channel matrix Hi according

to equation (5.31), i.e., the codeword which is closest to vec{Hi} is chosen as vec{Ĥi}. Then
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we reshape vec{Ĥi} to get Ĥi. The advantages of the proposed channel quantization scheme

are:

* To perform quantization, instead of calculating the minimum value of the sum of the

principal angles spanned by the columns of the channel matrices, we calculate the mini-

mum value of the angle spanned by the two vectors.

* By quantizing the stacked vector of the channel matrix, we keep the relative magnitude

information for the columns of the channel matrix and avoid the loss of the channel

magnitude information which is caused by quantizing the channel matrix as a unitary

codeword matrix directly.

The quantization codebook C consists of 2B unit norm vectors (C = {w1, . . . ,w2B}). Each

of the codewords has the dimension MRi
⋅MT × 1. Here B is the number of feedback bits per

user. Clearly, the choice of the codebook significantly affects the quality of the CSI provided

to the BS. Therefore, we study two quantization codebook designs in this part.

5.3.3.2. Random vector quantization (RVQ) codebook

In the RVQ codebook design, we choose 2B codewords independently and uniformly from

the Grassmannian manifold Gn,p(C), which is the set of all p-dimensional planes in the n-

dimensional Euclidean space (the definition is found in Appendix E.2). Here, p = 1 and

n =MRi
⋅MT. One random codebook is generated for each user. We analyze the performance

averaged over all possible random codebooks.

The quantization error associated with all possible random codebooks C for the quantization

of Hi is defined as

D(C) = E [min
w∈C

d2c(vec{Hi} ,w)] (5.33)

In [DLR05] an upper bound to the quantization error is given by

D(C) ≤ D̄(C)
=

Γ( 1
n−1
)

n − 1
⋅ (Cn,p,β)− 1

n−1 ⋅ 2−
B

n−1 + exp [−(2B ⋅Cn,p,β)(1−a)] (5.34)

where Cn,p,β = 1
(n−1)!∏p

i=1
Γ(β

2
(n−i+1))

Γ(β
2
(p−i+1))

= 1, if complex value is assumed for each codeword (i.e.,

β = 2) and p = 1. Here, Γ(⋅) represents the Gamma function. Since the second exponential

term in equation (5.34) can be neglected for large B [RJ07], the upper bound therefore can be

149



5. Channel State Information Acquisition

simplified to

D̄(C) = Γ( 1
n−1
)

n − 1
⋅ 2−

B
n−1 (5.35)

5.3.3.3. Throughput analysis associated with random quantization codebook

A limited feedback of B bits per user ultimately leads to a throughput loss. Let us define the

throughput loss ∆Ri(P̃T) to be the difference between the per user throughput achieved by

perfect CSI for RBD and quantized CSI for RBD. We have

∆Ri(P̃T) = Ri(P̃T) −Ri,FB(P̃T), (5.36)

where Ri(P̃T) is the throughput per user achieved by perfect CSI based RBD and Ri,FB(PT)
refers to the throughput per user achieved by the quantized CSI based RBD. We have derived

an upper bound for ∆Ri(P̃T) (this result can also be found in our publication [SRH08]).

Theorem 5.3.7. The throughput loss per user incurred due to finite rate feedback relative to

RBD with perfect CSI can be upper bounded by

∆Ri(PT) ≤ log2(1 +∆Ii + P̃T ⋅ (∆Ii +D(C)) (5.37)

where ∆Ii is a residual MUI relative to the system SNR for the desired user i by using RBD

precoding with perfect CSI.

Proof: see Appendix E.3.

5.3.3.3.1. Increased feedback bits

For a fixed number of feedback bits per user B, the finite rate feedback system employing RBD

is interference limited at high SNRs like the finite rate feedback systems utilizing ZF and BD

precodings. In order to maintain a constant throughput loss, the number of feedback bits per

user B should be scaled linearly with the SNR.

Theorem 5.3.8. In order to maintain a throughput loss no larger than log2 b per user between

RBD with perfect CSI and quantized CSI, it is sufficient to scale the number of feedback bits

per user according to

B = (n − 1) ⋅ log2 P̃T − (n − 1) ⋅ log2 (b − 1 −∆Ii) + (n − 1) ⋅ log2 (Γ( 1
n−1
)

n − 1
)
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≈
n − 1
3

SNR − (n − 1) ⋅ log2(b − 1 −∆Ii) (5.38)

This expression can be found by equating the upper bound to the throughput loss in equation

(5.37) with log2 b. Instead of (∆Ii +D(C)) in equation (5.37), we use the expression of the

quantization error upper bound D̄(C) from equation (5.35). Then we solve the equation for B

as a function of P̃T and b.

For RBD precoding with perfect CSI, ∆Ii is approximately equal to zero at high SNRs and

equal to a small number at low SNRs. In our simulations, a two users MIMO system with

MT = 4, MRi
= 2 is considered. We average the MUI over the system SNR (i.e., 0 dB - 20

dB) and obtain an experimental value of ∆Ii as 0.25. The bound of the throughput loss can

be adjusted by the value of b. Here we set b = 2 which means 1 bps/Hz rate offset per user

and refers to a bound of 3 dB power offset. In Figure 5.15, we compare the performance

of the finite rate feedback system based on our new channel quantization scheme with the

channel quantization scheme proposed in [RJ07], which can only provide channel direction

information. We use the same number of feedback bits for both channel quantization schemes.

It is noticed that the number of feedback bits B can grow very large at high SNRs for MIMO

broadcast channels (the exact number of B can be found in Table 5.3). Simulations therefore

become a computationally complex task. However, if we consider a MIMO system with a small

number of antennas and a wide range of meaningful SNR values, the simulation is finished in

a reasonable amount of time.

Table 5.3.: The number of feedback bits B for the case of RBD with increased feedback bits.
The calculation of B is based on equation (5.38).

SNR 0 dB 4 dB 8 dB 12 dB 16 dB 20 dB

B for MT = 4 and Mr = 2 2 bit 11 bits 21 bits 30 bits 39 bits 48 bits

5.3.3.4. DE-LBG vector quantization codebook

Instead of the RVQ codebook design, we consider another efficient codebook design based

on the Linde-Buzo-Gray (LBG) vector quantization algorithm in order to reduce the number

of feedback bits. The LBG vector quantization algorithm [LBG80] is an iterative algorithm

based on the Lloyd algorithm which is known to provide an alternative systematic approach for

the Grassmannian subspace packing problem. Since the LBG vector quantization algorithm

was developed for applications on either known probabilistic source descriptions or on a long

training sequence of data, the codebooks obtained by the LBG vector quantization algorithm
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Figure 5.15.: Achievable throughputs for RBD MT = 4, K = 2, and Mr = 2 with increased B.

can better capture the statistics of the channel than RVQ by using a certain number of channel

realizations as a training sequence for the LBG algorithm.

The LBG vector quantization algorithm based codebook design problem can be stated as

that we want to find maximally spaced 2B points in the Grassmannian manifold Gn,p(C) with
the given training sequence. We assume the chordal distance as the distortion measure (the

definition of the chordal distance is found in Appendix E.2). Then, the minimum chordal

distance of the codebook is given by

dc,min(C) =mindc(ci,cj) for ci,cj ∈ C,∀i ≠ j. (5.39)

Our aim is to find a codebook of which the minimum chordal distance is maximized. Thus,

the codebook design problem can be expressed as follows. With the given training sequence

T and the number of codewords 2B, find a codebook C and the encoding region S such that

the dc,min(C) is maximized.

Compared to the original LBG vector quantization algorithm, we modify the optimality

criteria in [LBG80] as follows.

* Nearest Neighbor Condition:
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This condition states that the encoding region Sn should consist of all vectors that are

closer to cn than any of the other code vectors in the chordal distance sense.

* Centroid Condition:

In contrast to the original LBG algorithm, where the centroid of one encoding region is

determined by the arithmetic average of all the training vectors in this region, we modify

this condition by requiring the code vector cn of the encoding region Sn to be equal to the

dominant eigenvector of the covariance matrix Rn of all training vectors in this encoding

region. This scheme efficiently captures the statistics of the training vectors in the

encoding region. Hence we name this modified LBG algorithm as dominant eigenvector

(DE)-LBG vector quantization algorithm.

The DE-LBG VQ algorithm, first published in our paper [SRH08], is an iterative algorithm

which satisfies the above two optimality criteria. The algorithm requires an initial codebook

C(0) which is obtained by the splitting method. In this method an initial code vector is split

into two code vectors. The iterative algorithm is run with these two vectors as the initial

codebook. At the end of this step the two code vectors are split into four and the iterative

algorithm is run again. The process is repeated until the desired number of code vectors

is obtained. The number of iterations depends on the number of required codewords. The

algorithm is summarized below.

1. Generate a training sequence T which captures the statistical properties of the stacked

vectors vec{Hi} ∈ CMRi
⋅MT×1 of channel matrix samples. Channel matrix samples are

generated by Monte-Carlo simulations in this work.

T = {vec{H1},vec{H2}, . . . ,vec{HM}} (5.40)

Here M is the number of channel samples.

2. Generate the initial code vector č1 by choosing it as the dominant eigenvector of the

covariance matrix R of the entire training sequence. Set N = 1.

R =
1

M

M

∑
m=1

vec{Hm}vec{Hm}H (5.41)

3. Splitting: for i = 1,2, . . . ,N , set c
(0)
i = (1+ ǫ)či, c(0)N+i = (1− ǫ)či, here ǫ > 0 is a very small

number and we choose ǫ = 0.002. Then set N ← 2N .
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4. Codeword update: set the iteration index k = 0 and calculate the minimum chordal

distance of the initial codebook

d
(0)
c,min(C) =mindc(ci,cj) (5.42)

(a) Assign the source vector vec{Hm} to the N encoding regions by finding

ň = arg min
n∈1,2,...,N

dc(vec{Hm},c(k)n ) for m = 1,2, . . . ,M.

(b) Update the code vector in each region by using the centroid condition.

(c) Set k ← k + 1

(d) Calculate d
(k)
c,min(C), if d(k)c,min(C) > d

(k−1)
c,min (C) go back to step (a). Otherwise, go to

step (e).

(e) Set čn = c
(k−1)
n as the final code vectors.

5. Repeat steps 3 and 4 until the desired number of code vectors is obtained.

In Figure 5.16 we can see the system performance improvement of RBD with DE-LBG

comparing it with RVQ for a fixed number of feedback bits, where uncorrelated flat fading

channels are considered.

The DE-LBG vector quantization can be applied to an OFDM system. We assume a mi-

crocellular scenario based on the Manhattan grid where users with fixed velocities (∣v∣ ≤ 10

km/h) are randomly distributed in the streets. An OFDM channel with 128 subcarriers and

30 symbols is considered. The total bandwidth is 5.86 MHz and the carrier frequency fc = 3.95
GHz. RBD precoding is performed per chunk which contains 8 subcarriers and 15 symbols.

The channel model is the WINNER B1 channel [WIN06] (i.e., urban micro-cell scenario). The

chunk equivalent channel (i.e., the average of all channels corresponding to all the symbols in

one chunk, the calculation is based on equation (5.5).) is quantized by the DE-LBG vector

quantization codebook.

The result is shown in Figure 5.17. The complementary CDF of the cell throughput shows us

that with the DE-LBG codebook design, which can be adapted to the statistics of the channel

matrices, the system performance is still not significantly degraded for only 7 feedback bits

per chunk for one user compared to the case that the transmitter has perfect CSI.
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Figure 5.16.: Achievable throughputs for RBD MT = 4, K = 2, and Mr = 2 with fixed B in
uncorrelated flat fading channels

5.4. Blind channel estimation using a tensor-based subspace

method

Multi-dimension data analysis has attracted much attention in several scientific fields, such as

psychometrics [CC70], chemometrics [AB03], array signal processing [SBG00], communications

[MHS04, JLL09], etc. The main reason for its popularity is that the tensor-based signal

processing features some significant tensor gains compared to the matrix-based counterparts.

In this section we use tensors to solve blind channel estimation problems for SIMO and MIMO

multipath fading channels. At the beginning of this section we review the fundamentals of

tensor algebra that are used throughout this section such as the notations and operations of

tensors and one important tensor decomposition (namely the Higher-Order SVD).

5.4.1. Notations and operations of tensor

In signal processing, a tensor is defined as a multi-dimensional array. More formally, an R-way

or Rth-order tensor is an element of the tensor product of R vector spaces, each of which has

its own coordinate system. In this aspect, an R-D tensor is defined as a collection of numbers
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Figure 5.17.: Achievable throughputs for RBD with DE-LBG codebooks for MT = 8, K = 4,
and MRi

= 2 for ∀i, OFDM, WINNER channel model B1.

referenced by R indices. Up to R = 2, tensors are the same as matrices. For R > 2, new

notations and operations are required.

An R-D tensor A ∈ CM1×M2×...×MR is an R-way array which has the size Mr along mode r

for r = 1,2, . . . ,R. The total number of elements of the tensor A is denoted as M =∏R
r=1Mr.

The tensor operations we use in this section are consistent with [dLdMV00a].

- The r-mode vectors of a tensor A are obtained by varying the r-th index, while

keeping all other indices fixed. They represent the generalization of row vectors and

column vectors of matrices.

- The r-mode subspace or short r-space ofA is the vector space spanned by the r-mode

vectors.

- The r-mode unfolding of A is obtained by collecting all r-mode vectors as the columns

of a matrix with the dimension Mr × M
Mr

and represented by [A](r). The ordering of the

columns in the r-mode unfolding defines how to arrange the remaining (R − 1) indices.
Any permutation of these is a valid unfolding, as long as it is utilized consistently. There

are several popular choices:
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5.4. Blind channel estimation using a tensor-based subspace method

1. Forward cyclical: Start with the (r + 1)-th index, then the (r + 2)-th index, all

the way to the R-th index, then start from the first and proceed forward up to

the (r − 1)-th index. This convention was proposed by [dLdMV00a] and has been

popularly used as the standard in the signal processing community. Therefore,

we choose this column ordering in this section. In Figure 5.18, we visualize this

unfolding for a 3-D tensor as an example.

2. Reverse cyclical: Like forward cyclical, starting with the (r − 1)-th index and pro-

ceeding backward up to the (r + 1)-th index.

3. Forward column ordering: Start with the first index, then the second, up to the(r − 1)-th index, then continue with (r + 1)-th all the way up to the R-th index. It

is somehow the most natural way to collect the columns, since it coincides with the

standard way to store multi-dimensional data in the memory.

4. Reverse column ordering: Like forward but in reverse ordering, the columns are

collected by starting with the R-th index and proceeding backwards to the first.

- The r-rank of A is defined as the rank of [A](r). Note that in general, all the r-ranks

of a tensor A can be different.

- The r-mode product of a tensorA and a matrix Ur ∈ CJr×Mr is denoted as B =A×rUr

which is an (M1×M2×⋯×M(r−1)×Jr×M(r+1)×⋯×MR) tensor. Such transformation can

be expressed by multiplying all r-mode vectors ofA from the left-hand side by the matrix

Ur, i.e., [B](r) = Ur [A](r). Figure 5.19 visualizes the equation B =A×1 U1 ×2 U2 ×3 U3

for the 3-way tensors A ∈ CM1×M2×M3 and B ∈ CJ1×J2×J3 . Visualization schemes like

Figure 5.19 have proven to be very useful to gain insight into tensor techniques.

- The concatenation of two tensors along the r-th mode is symbolized via [A r B].
The r-mode vectors of the resulting tensor are given by the r-mode vectors of A stacked

on top of the r-mode vectors of B. In other words, we have

[A r B](r) =
⎡⎢⎢⎢⎢⎣
[A](r)[B](r)

⎤⎥⎥⎥⎥⎦ . (5.43)

5.4.2. Higher-Order SVD decomposition

The Higher-Order SVD (HOSVD) can be view as a special case of a Tucker3 decomposition,

which has been known since [Tuc66]. Tucker3 is basically a 3-mode Principle Component
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Figure 5.18.: Unfolding of the tensor A ∈ CM1×M2×M3 to the matrix [A](1) ∈ CM1×M2M3 , the

matrix [A](2) ∈ CM2×M3M1 , and the matrix [A](3) ∈ CM3×M1M2 . Here, M1 = 4, M2 = 5, and
M3 = 3.

21= AU1 U2

U3

B

Figure 5.19.: Multiplication of a 3-way tensor A ∈ CM1×M2×M3 with matrices U1 ∈ CJ1×M1 ,
U2 ∈ CJ2×M2 , and U3 ∈ CJ3×M3 .

Analysis (PCA) and can be expressed as

A = G ×1 V1 ×2 V2 ×3 V3, (5.44)
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where the tensor A has the dimension M1 ×M2 ×M3, the matrices Vr ∈ CMr×pr are the factor

matrices of the decomposition, and the tensor G ∈ Cp1×p2×p3 is denoted as the core tensor.

The term pr refers to the r-rank of A. If the matrices Vr are chosen to contain a basis for

the r-space of A, the decomposition is exact. Typically, the factor matrices Vr are chosen

to be unitary but this is not required. Therefore, the decomposition is not unique, because

every factor matrix can be post-multiplied with a square invertible matrix Tr when the inverse

matrix T −1r are absorbed into the new core tensor.

The HOSVD is introduced in [dLdMV00a] by simplifying the Tucker3 decomposition. In

the HOSVD decomposition, the factor matrices Vr are chosen as the pr dominant left singular

vectors of the r-mode unfolding [A](r). To distinguish this special Tucker3 decomposition

from the general case shown in equation (5.44) we use the notations Ur and S to indicate

the factor matrices and the core tensor for HOSVD, respectively. Thus, the HOSVD for the

general R-D tensor case can be written as

A = S ×1 U1 ×2 U2⋯×R UR, (5.45)

where Ur ∈ C
Mr×pr and S ∈ C

p1×p2×⋯×pR . The core tensor S satisfies the so-called “all-

orthogonality” condition, which means that all the unfoldings of S are row-orthogonal matrices.

It can be written as

[S](r) ⋅ [S]H(r) = diag {[σ(r)21 , σ
(r)2
2 , . . . , σ(r)

2

pr ]} . (5.46)

Moreover, σ
(r)
n indicate the r-mode singular values for n = 1, . . . , pr and r = 1, . . . ,R, which

are Euclidean norms of these rows. Like for the SVD of the matrix, they appear ordered by

magnitude, i.e., σ
(r)
1 ≥ σ

(r)
2 ≥ . . . σ

(r)
pr for r = 1, . . . ,R. The R sets of r-mode singular values

are in general different in the tensor case. It is noticed that the orthogonality of the factor

matrices Ur and the all-orthogonality of the core tensor S are the basic assumptions of the

HOSVD.

The HOSVD has numerous applications in the area of signal processing. The famous applica-

tions are face recognition [VT02], data mining with application to network modeling [STF06],

social network analysis [ACKY05], multi-dimensional harmonic retrieval [HRD08], and pattern

recognition [SE07]. Generally, these applications apply the HOSVD to perform rank reduction

in individual modes and then utilize parts of the decomposition such as the core tensor, the

factor matrices, or combinations thereof.

The comparison of the matrix SVD in Table 5.4 and the tensor HOSVD in Table 5.5 shows

a clear analogy between the two cases. The essential difference is that the core tensor S is in
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Table 5.4.: Variations of the matrix SVD

Singular Value Decomposition (SVD) of the matrix A ∈ CM×N , rank(A) = r
“Full SVD”: A = U ⋅Σ ⋅V H

U ∈ CM×M Σ ∈ CM×N V H ∈ CN×N

“Economy size SVD”: A = Us ⋅Σs ⋅V H
s

Us ∈ CM×r
Σs ∈ Cr×r V H

s ∈ Cr×N

“Low-rank approximation (truncated SVD)”: A ≈ Us ⋅Σs ⋅V H
s

Us ∈ CM×r′ Σs ∈ Cr′×r′ V H
s ∈ Cr′×N
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Table 5.5.: Variations of the tensor HOSVD

Higher-Order SVD of the tensor A ∈ CM1×M2×M3, n-rank(A) = rn, n = 1,2,3
“Full HOSVD”: A = S ×1 U1 ×2 U2 ×3 U3

1 2

U1 ∈ CM1×M1 U2 ∈ CM2×M2

U3 ∈ CM3×M3

S

“Economy size HOSVD”: A = S[s] ×1 U
[s]
1 ×2 U

[s]
2 ×3 U

[s]
3

1 2

U
[s]
1 ∈ CM1×r1 U

[s]
2 ∈ CM2×r2

U
[s]
3 ∈ CM3×r3

S[s]

r3

r1

r2

“Low-rank approximation (truncated HOSVD)”: A ≈ S[s] ×1 U
[s]
1 ×2 U

[s]
2 ×3 U

[s]
3

1 2

U
[s]
1 ∈ CM1×r

′
1 U

[s]
2 ∈ CM1×r

′
2

U
[s]
3 ∈ CM1×r

′
3

S[s]

r′3

r′1

r′2
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general a full tensor, instead of being pseudo-diagonal (i.e., nonzero elements only occur when

the indices are same) in the matrix case. The r-mode singular values are positive and real like

in the matrix case, on the other hand the entries of S are not necessarily positive in general.

They can be complex, when the tensor A is a complex-valued tensor.

The Eckart-Young theorem [EY36] shows that the truncated SVD provides the best low-

rank approximation of the given matrix in the Frobenius sense. Unfortunately, such a theorem

does not exist for the HOSVD. In fact, the truncated HOSVD does provide a good low-

rank approximation which is though not optimal in general. In the application of denoising

a low-rank desired signal from a noisy observation, the truncated HOSVD is asymptotically

optimal in the high signal-to-noise ratio (SNR) regime [dLdMV00b]. For this reason, we only

consider the truncated HOSVD for subspace estimation. In matrix-based subspace estimation

strategies, a stacking operation is applied to the observed data such that each column of the

measurement matrix represents a stacked version of one snapshot of the multi-dimensional

signal. However, such a representation does not account for the structure inherent in the data.

Therefore, we can improve the subspace estimation accuracy by performing a “structured”

subspace estimation based on the HOSVD. In the following we provide a short introduction

of the matrix-based subspace estimation and the tensor-based subspace estimation under the

observation of the N snapshots of a low-rank data of rank d.

5.4.2.1. Matrix-based subspace estimation

We consider an observation of the N snapshots of low-rank data of rank d on an R-dimensional

grid of size M1 ×M2 ×⋯,×MR under additive noise.

Let us define an array steering matrix A(r) for r = 1,2, . . . ,R, which is given by

A(r) = [a(r)1 ,a
(r)
2 , . . . ,a

(r)
d
] ∈ CMr×d. (5.47)

In the classical matrix method, a meaningful definition of an R-D measurement matrix X is

obtained by stacking all steering matrices A(r) along the rows and align the snapshots along

the columns. This stacking operation allows us to write the observation in matrix form

X =A ⋅S +N . (5.48)

Here, the matrix A ∈ C
M×d is the stacked version of all steering matrices in the form of

A = A(1) ◇ A(2) ◇ ⋯ ◇ A(R) where ◇ indicates the Khatri-Rao product and M = ∏R
r=1Mr.

The definition of the matrix S ∈ Cd×N depends on the applications. The matrix X ∈ CM×N

is composed of the stacked measurements. The noise samples are collected in the matrix
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N ∈ CM×N . It is obvious that the stacking operation does not capture the structure inherent

in the lattice that is used to sample the data.

Let us define X0 = AS to be the noise-free part of the data, which is at most rank-d.

Therefore, we can perform a rank-d-approximation of X via the truncated SVD. The column

space of the matrix X spanned by the d dominant left singular vectors is an estimate of the

true signal subspace. It is also identical to the space spanned by the columns of A. Note

that the true signal subspace is spanned by the d dominant left singular vectors of X0, i.e., all

columns of X0 lie in the signal subspace. The SVDs of X0 and X are expressed as

X0 =

⎡⎢⎢⎢⎢⎢⎢⎣
Us

M̄×d

Un°
M×(M−d)

⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎣
Σs

d̄×d

0d×(N−d)

0(M−d)×d 0(M−d)×(N−d)

⎤⎥⎥⎥⎥⎥⎥⎦
⋅ [Vs Vn]H (5.49)

X =

⎡⎢⎢⎢⎢⎢⎢⎣
Ûs

M̄×d

Ûn°
M×(M−d)

⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ̂s

d̄×d

0d×(N−d)

0(M−d)×d Σ̂n°
(M−d)×(N−d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [V̂s V̂n]H , (5.50)

where Us and Un are orthonormal basis for the signal subspace and the noise subspace, and

Ûs and Ûn are their estimates obtained from X. Furthermore, Σ = diag {[σ1, σ2, . . . , σd]} is

composed of the d non-zero real singular values on its main diagonal.

5.4.2.2. Tensor-based subspace estimation

In order to capture the natural structure inherent in the observation, we employ the HOSVD

for the subspace estimation. As discussed before, the HOSVD is easily computed via SVDs

of the tensor unfoldings. Moreover, the truncated HOSVD allows for multilinear low-rank

approximation in a manner similar to the truncated SVD.

By replacing the measurement matrix X with a measurement tensor X ∈ CM1×M2×⋯×MR×N ,

the observation can be modeled as

X =A ×R+1 ST +N , (5.51)

where the matrix S is the same as in equation (5.48), and the tensor N contains the noise

samples. The array steering tensorA ∈ CM1×M2×⋯×MR×d is constructed in the following manner

A = [A1 R+1A2 . . . R+1Ad] . (5.52)
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Here, Ai denotes the R-dimensional array steering tensor of the ith signal which is given by

Ai = a(1)(µ(1)i ) ○ a(2)(µ(2)i ) ○ ⋯ ○ a(R)(µ(R)i ), (5.53)

where ○ indicates the outer product operator and i = 1,2, . . . , d.

Compared to the matrix data model, we have the following identities

A = [A]T(R+1)
X = [X ]T(R+1)
N = [N ]T(R+1) . (5.54)

Let X 0 be the noise-free observation, such that X = X 0 +N . The tensor X 0 is of rank d

and, therefore, all the r-ranks are at most equal to d [dLdMV00a]. Thus, we can express X 0

and X in terms of the truncated HOSVD as

X 0 = S[s] ×1 U
[s]
1 ×2 U

[s]
2 ⋯×R+1 U

[s]
R+1 (5.55)

X ≈ Ŝ
[s]
×1 Û

[s]
1 ×2 Û

[s]
2 ⋯×R+1 Û

[s]
R+1. (5.56)

Here, the matrices Ur and Ûr for r = 1,2, . . . ,R + 1 are obtained from the SVD of the r-th

unfolding of X 0 and X which read as

[X 0](r) =
⎡⎢⎢⎢⎢⎢⎢⎣
U [s]r±
Mr×pr

U [n]r±
Mr×(Mr−pr)

⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎣
Σ
[s]
r±

d×d

0

0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⋅ [V [s]r V [n]r ]H (5.57)

[X ](r) =
⎡⎢⎢⎢⎢⎢⎢⎣
Û [s]r±
Mr×pr

Û [n]r±
Mr×(Mr−pr)

⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ̂
[s]
r±

d×d

0

0 Σ̂
[n]
r±

(M−d)×(N−d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [V̂ [s]r V̂ [n]r ]H , (5.58)

where U
[s]
r and U

[n]
r are the basis for the r-space and its orthogonal complement, respectively.

The term pr denotes the r-rank of X 0 which can be individually estimated via a model order

selection scheme operating on all unfoldings individually. Alternatively, the tensor-based model

order selection schemes [dCRHdSJ11] can be applied to estimate d and then decide pr =
min(Mr, d). To compare the truncated HOSVD of X with the truncated SVD of X, it is

obvious that the HOSVD performs low-rank approximation in all R + 1 modes. Hence, the

multilinear structure is exploited to perform more efficient denoising.
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In the matrix case, Ûs ∈ CM×d represents the basis of the estimated signal subspace. As a

multidimensional extension of Ûs we define a signal subspace tensor Û
[s]
∈ CM1×M2×⋯×MR×d

in the following manner [HRD08]

Û
[s]
= Ŝ

[s]
×1 Û

[s]
1 ×2 Û

[s]
2 ⋯×R Û

[s]
R . (5.59)

The relationship between Ûs and Û
[s]

is given by the following theorem:

Theorem 5.4.1. The HOSVD-based signal subspace estimate [Û [s]]T
(R+1)

can be expressed by

the SVD-based subspace estimate Ûs as [RBHW09]

[Û [s]]T
(R+1)

= (T̂1 ⊗ T̂2⋯⊗ T̂R) ⋅ Ûs, (5.60)

where ⊗ indicates the Kronecker product and the matrices T̂r ∈ CMr×Mr are the estimates of

the projection matrices onto the r-spaces of X 0, which are computed as T̂r = Û
[s]
r Û

[s]H
r .

Proof: see [RBHW09]

The relation (5.60) shows that the HOSVD-based subspace estimate can be seen as the

projection of the matrix-based subspace estimate onto the Kronecker structure inherent in

the data. In the presence of noise, if the rank of signal d is strictly less than the number of

sensors Mr in at least one of the R modes, the estimated signal subspace given by [Û [s]]T
(R+1)

is improved and differs from the estimated signal subspace given by Ûs due to the denoising

which is performed by filtering out the part of the noise that does not obey the required

Kronecker structure. On the other hand, if d ≥ Mr for any mode r, we have T̂r = Ir and

hence no performance improvement can be obtained in this particular mode r. Moreover, if

d ≥ max
r=1,2,...,R

(Mr), we have [Û [s]]T
(R+1)

= Ûs, i.e., if the number of signals d is greater than or

equal to the number of sensors in all R modes, we cannot achieve a performance improvement

in terms of the subspace estimation accuracy from the HOSVD-based subspace estimate.

The truncated HOSVD based subspace estimation has been applied to various areas in signal

processing. For instance, multi-dimensional model order selection [dCRHdSJ11], direction of

arrival (DOA) estimation [HRD08, THG09], and multi-dimensional channel estimation with

training data [RH10]. In the following subsections, we discuss one additional application for

the blind channel estimation. The achieved tensor gain is demonstrated numerically.
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5.4.3. Tensor-based blind estimation of SIMO channels

The blind channel estimation scheme in [MDCM95] has been viewed as a pioneering work

which provides an estimation of SIMO channels based on the second-order statistics of the

measurement data. In this subsection, we extend this matrix-based blind channel estimation

to the tensor case [SRH10a]. We use a 3-way tensor to model the measurement data and

employ the truncated HOSVD to obtain the improved signal subspace estimate.

We consider a SIMO system where the receiver is equipped with MR receive antennas. The

channel between each transmit and receive antenna pair is modeled as a finite impulse response

(FIR) filter with L + 1 taps. Let s [k] denote the symbol emitted over the transmit antenna

at time kT . Here T indicates the symbol duration. The discrete-time signal experiences the

unknown channel which is assumed to be time-invariant during the observation interval. Then,

the received signal vector at time kT can be obtained by the convolution of the transmit signals

and the channel impulse responses

y [k] = L

∑
ℓ=0

hℓs [k − ℓ] +n [k] ∈ CMR . (5.61)

Here, hℓ ∈ CMR contains the coefficients of the channel impulse responses corresponding to

the ℓth channel tap. The elements of the noise vector n [k] are circularly symmetric complex

Gaussian distributed with variance σ2
n and assumed mutually uncorrelated in space and time.

5.4.3.1. Matrix-based subspace method for SIMO channels

In practice, the measurement data is observed during consecutive data windows over all receive

antennas. We use W to indicate the length of the observed data window. The matrix-based

subspace method for the blind estimation of SIMO channels stacks the dimensions of MR

receive antennas and the data window length W into one highly structured MR ⋅W × 1 vector.

Thus, the measurement data with respect to the nth observation data window is given by

yn =HTsn +n, (5.62)
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where the vector sn = [s [nW ] , s [nW − 1] , . . . , s [nW −W −L + 1]]T denotes the input data

sequence with dimension (W +L) × 1. The vector yn has the structure

yn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
(1)
n

y
(2)
n

⋮

y
(MR)
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CMR⋅W×1, (5.63)

where y
(j)
n for j = 1,2, . . . ,MR has the dimension W ×1. The matrix HT is the filtering matrix

and structured as

HT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H
(1)
T

H
(2)
T

⋮

H
(MR)
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CMR⋅W×(W+L). (5.64)

Here, the matrices H
(j)
T indicate the banded Toeplitz matrix associated to the jth receive

antenna’s impulse response h(j). The vector h(j) is defined as

h(j) △= [h(j)0 , h
(j)
1 , . . . , h

(j)
L ]T

△= [h(j) [t0] , h(j) [t0 + T ] , . . . , h(j) [t0 +LT ]]T , (5.65)

where h(j) [t0] indicates the channel impulse response with respect to the jth receive antenna

at time t0. Then, we have

H
(j)
T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
(j)
0 ⋯ h

(j)
L 0 ⋯ ⋯ 0

0 h
(j)
0 ⋯ h

(j)
L 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 h
(j)
0 ⋯ h

(j)
L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CW×(W+L). (5.66)

5.4.3.1.1. Signal subspace estimation

The space-time correlation matrix Ryy ∈ CMR⋅W×MR⋅W of the measurement data is calculated

as

Ryy = E{yny
H
n } =HTRssH

H
T + σ

2
nIMR⋅W (5.67)

where the matrix Rss = E{snsHn } denotes the correlation matrix of the transmit data with

dimension (W +L)×(W +L). The matrix Rss is assumed to be full-rank, the noise-free part of

Ryy (i.e., HTRssH
H
T ) therefore has the rank of W +L. With the observation of N consecutive
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data windows at the receiver, the estimate of the space-time correlation matrix Ryy is obtained

as

R̂yy =
1

N

N

∑
n=1

yny
H
n . (5.68)

To calculate an SVD of the estimated correlation matrix R̂yy, we have

R̂yy =

⎡⎢⎢⎢⎢⎢⎢⎣
Ûs¯

MR⋅W×(W+L)
Ûn°

MR⋅W×(MR⋅W−W−L)

⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ̂s¯
(W+L)×(W+L)

0

0 Σ̂n°
(MR⋅W−W−L)×(MR⋅W−W−L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅[Ûs Ûn]H

(5.69)

Here, the columns of Ûs span the signal subspace, which is also the linear space spanned by

the columns of the filtering matrix HT .

5.4.3.1.2. Signal subspace based parameter estimation

Considering the orthogonality between the estimated signal subspace Ûs and the estimated

noise subspace Ûn, the unknown SIMO channel coefficients incorporated in the filtering matrix

HT can be identified up to a scalar factor by solving the problem 1 or problem 2 as defined

below. In problem 1, we minimize the following quadratic form by using the estimated noise

subspace Ûn

q(H) △= MR⋅W−W−L

∑
i=1

∥Ûn(∶, i)HHT ∥22 , (5.70)

where Ûn(∶, i) represents the ith column of the matrix Ûn. Alternatively, in problem 2 we

maximize the following quadratic form by using the estimated signal subspace Ûs

q(H) △= W+L

∑
i=1
∥Ûs(∶, i)HHT ∥22 , (5.71)

Here, the matrix H ∈ C(L+1)×MR is a combined channel matrix for all MR subchannels denoted

as H = [h(1), h(2), . . . ,h(MR)].
Let us solve the problem 2 as an example. In order to specify the quadratic dependence of

q(H) on the matrix H rather than on the associated filtering matrix HT found in (5.71), we

apply Lemma 5.4.2

Lemma 5.4.2. [MDCM95] If u(1),u(2), . . . ,u(MR) are MR arbitrary W ×1 vectors, which have

the structure u(j) = [u(j)0 , u
(j)
1 , . . . , u

(j)
W−1]T for j = 1, . . . ,MR. The matrices G(1),G(2), . . . ,G(MR)
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are the corresponding filtering matrices which have the banded Toeplitz structure

G(j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
(j)
0 ⋯ u

(j)
W−1 0 ⋯ ⋯ 0

0 u
(j)
0 ⋯ u

(j)
W−1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 u
(j)
0 ⋯ u

(j)
W−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C(L+1)×(W+L). (5.72)

Let us define u = [u(1)T ,u(2)T , . . . ,u(MR)T]T ∈ CMR⋅W×1 and G = [G(1)T ,G(2)T , . . . ,G(MR)T]T ∈
C
MR⋅(L+1)×(L+W ). Then, the following structured relation holds:

uHHT = vec(H)HG, (5.73)

where vec(H) indicates the stacked vector of the channel matrix H.

Proof: see [MDCM95]

Note that equation (5.73) corresponds to commutativity of the convolution operation. Ap-

plying Lemma 5.4.2, the following commutativity is reached

Ûs(∶, i)HHT = vec(H)HGi, for i = 1, . . . ,W +L, (5.74)

where the vector Ûs(∶, i)H and the matrix Gi correspond to the vector uH and the matrix G

in equation (5.73), respectively. The vector Ûs(∶, i) ∈ CMR⋅W×1 denotes the ith column of Ûs

which is splitted into MR subvectors Û
(j)
s (∶, i) ∈ CW×1 , i.e.,

Ûs(∶, i) = [Û (1)Ts (∶, i), Û (2)
T

s (∶, i), . . . , Û (MR)T
s (∶, i)]T . (5.75)

These subvectors Û
(j)
s (∶, i) can be used to construct the associated filtering matrix Gi ∈

C
MR(L+1)×(L+W ). Thus, the maximization problem in (5.71) can be transformed to the maxi-

mization of the following quadratic form

q(H) △= vec(H)H ⋅ (W+L∑
i=1

GiG
H
i ) ⋅ vec(H)

△= vec(H)H ⋅G ⋅ vec(H). (5.76)

The solution of this maximization problem is the eigenvector associated to the largest eigen-

value of the matrix G. To ensure the channel identifiability, there are several conditions which

have to hold [MDCM95]:
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1. The correlation matrix Rss is full-rank but otherwise unknown, which requires N ≥(W +L).
2. The matrix HT has a full column rank.

3. The observed data window length is greater than the channel order L (i.e., W > L).

4. The number of channel taps L + 1 has been correctly estimated before.

5. The noise samples are uncorrelated with the input data.

5.4.3.2. Tensor-based subspace method for SIMO channels

Instead of the stacking operation employed in the definition of yn in equation (5.62), we

introduce a 3-way tensor Y ∈ CMR×W×N to model the measurement data. The three dimensions

of the tensor Y represent the number of receive antennas, the observed data window length,

and the number of data windows, respectively. The corresponding input output data model

can be expressed as

Y =H ×3 ST +N . (5.77)

The matrix S = [s1, s2, . . . ,sN ] has the dimension (W + L) × N and contains input data

sequences associated to N sequentially observed data windows at the receiver. Each input data

sequence sn = [s [nW ] , s [nW − 1] , . . . , s [nW −W −L + 1]]T has the dimension (W +L)×1 for

n = 1,2, . . . ,N . The filtering tensor H ∈ CMR×W×(W+L) is constructed by aligning the banded

Toeplitz matrices of the MR subchannels along the first dimension as shown in Figure 5.20.

The tensor N contains noise samples and has the same size as the tensor Y .

= 3 +

W

MR N

H
(1)
T

H
(MR)
T

Y

H ×3 ST

N

Figure 5.20.: Block diagram of the tensor based data model in equation (5.77)
.

170



5.4. Blind channel estimation using a tensor-based subspace method

5.4.3.2.1. Signal subspace estimation

Instead of computing the SVD of the estimated space-time correlation matrix R̂yy found in

(5.96), we employ a truncated HOSVD of the measurement tensor Y to obtain an enhanced

estimate of the signal subspace. We have

Y ≈ S[s] ×1 U
[s]
1 ×2 U

[s]
2 ×3 U

[s]
3 , (5.78)

where S[s] ∈ Cr1×r2×r3 , U
[s]
1 ∈ CMR×r1 , U

[s]
2 ∈ CW×r2 , and U

[s]
3 ∈ CN×r3 . Here, rn (n = 1,2,3)

denotes the n-rank of the noiseless tensor Ỹ (i.e., Ỹ =H ×3 ST). In this application, we have

r1 =min(MR, L + 1), r2 =min(W, N ⋅MR), and r3 =min(N, W +L). Due to the assumption

of N ≥W +L, we can conclude that r2 is the same as the observed data window length W and

r3 is equal to W +L.

From equation (5.78), we define the estimated signal subspace tensor Û
[s]
∈ CMR×W×r3 as

Û
[s]
= S[s] ×1 U

[s]
1 ×2 U

[s]
2 . (5.79)

The columns of [Û [s]]T
(3)
∈ CMR⋅W×r3 span the estimated signal subspace. According to Theo-

rem 5.4.1, [Û [s]]T
(3)

provides a more accurate estimate than Ûs from the matrix case under the

conditions that the measurement tensor Ỹ is rank-deficient in the first or second mode (i.e.,

MR > r1 or W > r2). Otherwise, both the tensor-based and the matrix-based signal subspace

estimation yield exactly the same accuracy. Since r2 is equal to W for our model, [Û [s]]T
(3)

can achieve a better estimate under the condition MR > L + 1.

Computational complexity: We compare the computational complexity of the truncated

SVD and the truncated HOSVD in terms of the number of required multiplications for the

computation of the signal subspace. There is a large variety of methods to compute the

SVD with different complexities. [GL96] shows an efficient solution employing the method of

orthogonal iterations which has a complexity in terms of the required number of multiplications

of kt ⋅M ⋅N ⋅ r for an M ×N matrix truncated to rank r, where kt is a constant that depends

on the design of the algorithm. In the matrix case, a single SVD of the estimated correlation

matrix R̂yy truncated to rankW+L is computed to obtain Ûs. In the tensor case, the truncated

HOSVD of the measurement tensor Y is computed to obtain the estimated signal subspace

[Û [s]]T
(3)

, which is equivalent to truncated SVDs of all its unfolding. Moreover, additional

multiplications are required to compute the core tensor S[s] and the signal subspace tensor
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Table 5.6.: Comparison of the required number of multiplication for signal subspace estimation
in case of the matrix-based method and the tensor-based method, r2 =W and r3 =W +L.

Matrix-based method Tensor-based method

r1 <MR: kt ⋅M2
R ⋅W ⋅ r2 ⋅ r3 (MR +W ) ⋅ r1 ⋅ r2 ⋅ r3 + (kt + 1) ⋅MR ⋅W ⋅N ⋅ (r1 + r2 + r3)

r1 =MR: kt ⋅MR ⋅W ⋅ r1 ⋅ r2 ⋅ r3 (MR +W ) ⋅ r1 ⋅ r2 ⋅ r3 + (kt + 1) ⋅MR ⋅W ⋅N ⋅ (r1 + r2 + r3)

Û
[s]

. The total number of required multiplications is compared in Table 5.6. It indicates that

the computational complexity of the tensor method is higher than the matrix method but of

the same order. However, the performance improvement demonstrated in Section 5.4.3.2.4

justifies this increase of the computational complexity.

5.4.3.2.2. Signal subspace based parameter estimation

Since the column spaces of [Û [s]]T
(3)

and [H]T(3) approximately coincide, the unknown SIMO

channel coefficients incorporated in the filtering tensorH can be identified up to a scalar factor

by solving the maximization of the following quadratic form

q(H) △= W+L

∑
i=1
∥ÛsT (∶, i)H [H]T(3)∥22 . (5.80)

Here, we use ÛsT to indicate the estimated signal subspace of the tensor case for notational

simplicity (i.e., ÛsT = [Û [s]]T(3)). The channel parameter estimation scheme obeys the exact

same procedure as the scheme mentioned in Section 5.4.3.1.2, except for replacing Ûs(∶, i) and
HT by ÛsT (∶, i) and [H]T(3), respectively.
The channel identification of the tensor-based subspace method requires the following nec-

essary conditions

1. The matrix S of the transmit signal has the rank W +L, which requires N ≥ (W +L).
2. the 3-mode unfolding of the filtering tensor H has a full row rank W +L.

3. The observed data window length is greater than the channel order L (i.e., W > L).

4. The number of channel taps L + 1 has been correctly estimated before.

5. The noise samples are uncorrelated with the input data.
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5.4.3.2.3. Oversampled antenna array

As mentioned above, the performance benefit of the tensor-based subspace method is achieved

under the condition MR > L + 1. To maintain the performance benefit of the tensor model for

the case MR ≤ L+1, we introduce an oversampling of the received signals by a factor P = T /∆.

Then, for the received signal of the jth receive antenna y
(j)
n in the nth observed data window,

a set of P sequences are constructed according to

y(j,m)n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
(j)
n [k + m

P
]

y
(j)
n [k + 1 + m

P
]

⋮

y
(j)
n [k +W − 1 + m

P
]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CW×1, (5.81)

where m = 0,1, . . . , P − 1. Notice that the vector y
(j,0)
n corresponds to the vector y

(j)
n . Each

sequence y
(j,m)
n depends on the oversampled discrete-time impulse responses h(j,m). We have

h(j,m) △= [h(j,m)0 , h
(j,m)
1 , . . . , h

(j,m)
L ]

△= [h(j) [t0 +m∆] , h(j) [t0 +m∆ + T ] , . . . , h(j) [t0 +m∆ +LT ]] , (5.82)

where the vector h(j,0) is equal to the vector h(j) in equation (5.65). The filtering matrix in

this case is constructed as

HTP
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H
(1,0)
T

H
(1,1)
T

⋮

H
(1,P−1)
T

H
(2,0)
T

⋮

H
(MR,P−1)
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ CP ⋅MR⋅W×(W+L), (5.83)

where m changes from 0 to P −1 for each j and the matrix H
(j,m)
T is a banded Toeplitz matrix

associated to the discrete-time impulse responses h(j,m) and constructed as

H
(j,m)
T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
(j,m)
0 ⋯ h

(j,m)
L 0 ⋯ ⋯ 0

0 h
(j,m)
0 ⋯ h

(j,m)
L 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 h
(j,m)
0 ⋯ h

(j,m)
L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CW×(W+L). (5.84)
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We still can use a 3-way tensor Yp ∈ CMR⋅P×W×N to model the oversampled received signals.

Compared to the tensor Y , only the first dimension changes due to the oversampling. We

describe the corresponding input output data model as

YP =HP ×3 ST +N P . (5.85)

The filtering tensor HP has the dimension MR ⋅P ×W × (W +L) and is organized by stacking

the slices of the block matrices defined in equation (5.83) along the first dimension of the tensor

HP as shown in Figure 5.21. The noise tensor N P has the same size as the tensor YP . Notice

that the noise samples are not necessarily temporally uncorrelated due to the oversampling.

= 3 +

W

MR ⋅ P N

H
(1,0)
T

H
(1,P−1)
T

H
(2,0)
T

H
(MR,P−1)
T

YP

HP ×3 ST

N P

Figure 5.21.: Block diagram of the tensor based data model with oversampling.

By computing the truncated HOSVD of the measurement tensor YP , the signal subspace

tensor Û
[s]
P ∈ C

MR⋅P×W×r3P can be estimated as

Û
[s]
P = S

[s]
P ×1 U

[s]
1P
×2 U

[s]
2P

, (5.86)

where S
[s]
P ∈ C

r1P ×r2P ×r3P , U
[s]
1 ∈ CMR⋅P×r1P and U

[s]
2 ∈ CW×r2P . The terms rnP

(n = 1,2,3)
denote the n-rank of the noiseless tensor ỸP (i.e., ỸP = HP ×3 ST). It is found that r1P =
min(MR ⋅ P, L + 1). The parameter r2P is equal to W and r3P is the same as W +L. In this

case, the condition for achieving a more accurate signal subspace estimate in the tensor case

as compared to the matrix case is loosened to MR ⋅ P > L + 1.

5.4.3.2.4. Simulation results

By comparing the matrix-based subspace method and the tensor-based subspace method, we

demonstrate the performance improvement of the tensor-based subspace method for the blind

estimation of SIMO channels. The comparisons are shown in terms of the root mean square
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error (RMSE) of the estimated normalized channels. This RMSE is defined as

RMSE =
1

P

√
E{∥Ĥa −H∥2

F
}. (5.87)

Here, a = vec(Ĥ)Hvec(H)
∣vec(Ĥ)Hvec(Ĥ)∣ is a scalar factor due to the fact that the unknown SIMO channels

are only estimated up to a multiplication by a scalar. The channel matrix H is normalized to

unit Frobenius norm. The RMSE is averaged over 500 channel realizations.

Monte Carlo simulations have been conducted where the successive symbols are generated

statistically independent and emitted in 4-QAM format. The signal to noise ratio (SNR) is

defined as 10 log10
E{∥s(k)∥2

2
}

E{∥n(k)∥2
2
} . To simulate a multipath environment, we adopt a commonly

used model [TXK91] to construct an (L + 1)-ray multipath continuous-time channel h(j)(t)
between the jth receive antenna and the transmit antenna using a root raised cosine (RRC)

pulse shaping filter gc(t − γℓ, β). We have

h(j)(t) = L

∑
ℓ=0

α
(j)
ℓ

gc(t − γ(j)ℓ
, β), (5.88)

where the roll-off factor β is set to 0.5 in the simulations and α
(j)
ℓ

are complex valued Gaus-

sian random variables. The magnitudes of α
(j)
ℓ

(i.e., abs(α(j)
ℓ
)) have different mean values

corresponding to different ℓ. We set abs(α(j)0 ) to be real valued Gaussian random variable

with mean value 1 and standard deviation 0.5. Furthermore, we decrease the mean values of

abs(α(j)
ℓ
) with a step of size 0.2 (i.e., abs(α(j)1 ) with the mean value of 0.8, abs(α(j)2 ) with

the mean value of 0.6, etc.) Note that the maximum number of L is smaller than 5 in our

simulations. The term γ
(j)
ℓ

indicates the delay of the ℓth path, which is set to γ
(j)
0 = 0 and

γ
(j)
ℓ
= ℓ ⋅ T + ϑ. Here, ϑ is randomly chosen from 0.25 T , 0.5 T , and 0.75 T . The discrete-time

channel is obtained by sampling h(j)(t) at a rate of T /P . We observe the measurement data

with a smoothing window. The length of the observed data window is set to W = 10. The

noise samples are correlated in case of introducing oversampling. The correlated noise samples

can be obtained from the output of the RRC pulse shaping filter when additive white Gaussian

noise is introduced as the input.

* Smoothing Window with η =W

The smoothing parameter is denoted by η which indicates the number of the new mea-

surements in the next observed data window. First, we consider the case η =W , where

the adjacent observed data windows do not overlap with each other as shown in Figure
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nth observed window (n + 1)th observed window

observed data symbols

Figure 5.22.: The smoothing window with the smoothing parameter η =W .

5.22. Under this condition, Figures 5.23 and 5.24 show the comparison between the

proposed tensor method and the matrix-based subspace method. Under the condition

MR > L + 1, an enhanced estimate has been achieved by the proposed tensor-based sub-

space method, especially for a small number of observed data symbols. Much larger

differences between MR and L + 1 lead to a more significant improvement.
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Figure 5.23.: RMSE for blind estimation of SIMO channels with MR = 4 and r1 = L + 1 = 3 at
SNR = 20 dB

Figure 5.25 shows the case MR < L + 1, where both methods achieve the same perfor-

mance. In order to maintain the benefit of the tensor method, we use oversampling at the

receiver. For a fair comparison, the oversampling is utilized for both the matrix-based

method and the proposed tensor-based method. There is a significant performance im-

provement achieved by the tensor-based method, since the condition for achieving an
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Figure 5.24.: RMSE for blind estimation of SIMO channels with MR = 6 and r1 = L + 1 = 3 at
SNR = 20 dB

improved estimate is loosened to MR ⋅ P > L + 1.

* Smoothing Window with 1 ≤ η <W
Next, we investigate the overlap of the observed data windows as shown in Figure

5.26. We evaluate the RMSE performance of the matrix-based subspace method and

the proposed tensor-based method with different smoothing parameters η. Due to the

assumption N ≥ W + L, the cases with various η have different requirements for the

minimum number of observed data symbols. It is observed in Figure 5.27 that the

accuracy of the estimate improves with the decrease of the parameter η. But notice

that, with the same number of observed data symbols, the smaller parameter η leads

to a larger number of observed data windows which results in an increased computation

time. The proposed tensor-based method always outperforms the matrix-based subspace

method for any η.

Moreover, we show that the performance improvement of the tensor method in terms of

RMSE leads to a better performance in term of bit error rate (BER). Since the blind esti-

mation method of the SIMO channel identifies the unknown SIMO channel coefficients up

to a scalar a, a few pilots are therefore required to further identify a in order to decode the

received signals. Then, this blind channel estimation scheme changes to a few pilots aided
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Figure 5.25.: RMSE for blind estimation of SIMO channels with MR = 4, L + 1 = 5 at SNR =
20 dB.

nth observed window

(n + 1)th observed window

(n + 2)th observed window

observed data symbols

η

η

Figure 5.26.: The smoothing window with the smoothing parameter 1 ≤ η <W .
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Figure 5.27.: RMSE for blind estimation of SIMO channels with varied smoothing parameter
η. MR = 6, r1 = L + 1 = 3, P = 1, and SNR = 20 dB.

blind estimation (namely Semi-Blind Channel Estimation (SBCE)). In our simulations, we

first use training-based channel estimation (e.g., the MMSE estimator [WZ07]) to obtain an

initial estimate of the channel matrix H and indicate this estimate as H̃. Then, using the

channel estimate from the blind scheme (i.e., Ĥ), we can identify a by solving the minimization

problem min
a
∥vec(Ĥ) ⋅ α − vec(H̃)∥2

2
. The solution is a = vec(Ĥ)Hvec(H̃)

∣vec(Ĥ)Hvec(Ĥ)∣ .

We compare the BER performances of the semi-blind channel estimation based on the matrix

case and the tensor case. Furthermore, the BER performance of training-based non-blind

channel estimation is considered for comparison.

We consider MR = 5 and L + 1 = 3 which promises an enhanced performance of the tensor

method in terms of the RMSE. The number of observed data symbols is 14. Figure 5.28 shows

that this performance improvement still can be obtained by considering the BER performance.

The performance comparison between the semi-blind channel estimation and the training-

based channel estimation with the same pilot overhead are shown in Figure 5.29. With the

same pilot overhead, the semi-blind channel estimation reaches a better BER performance.

Here, the training-based channel estimation employs the MMSE estimator [WZ07].
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Figure 5.28.: BER for semi-blind estimation of SIMO channels with MR = 5, r1 = L + 1 = 3.
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Figure 5.29.: BER performance comparison for semi-blind estimation and training-based chan-
nel estimation of SIMO channels with MR = 5, r1 = L + 1 = 3.

180



5.4. Blind channel estimation using a tensor-based subspace method

5.4.4. Tensor-based blind estimation of MIMO channels

The blind estimation scheme of SIMO channels discussed previously can be naturally extended

to the MIMO channel case [SRH13b]. We consider a MIMO system where the transmitter

has MT transmit antennas and receiver is equipped with MR receive antennas. The channel

between each transmit and receive antenna pair is modeled as an FIR filter with a maximum

of L + 1 taps. Let s [k] = [s1 [k] , s2 [k] , . . . , sMT
[k]]T denote the symbol vector emitted over

MT transmit antennas at time kT . Here T is the symbol duration. This discrete-time signal

experiences an unknown communication channel which is assumed to be time-invariant during

the observation interval. Then, the received signal at time kT is formulated as

y [k] = L

∑
ℓ=0

Hℓs [k − ℓ] +n [k] ∈ CMR , (5.89)

whereHℓ ∈ CMR×MT contains the coefficients of the channel impulse responses corresponding to

lag ℓ. We assume that all subchannels have the same length L+1 for simplicity. The combined

channel matrix for all L + 1 subchannels is denoted as H = [HT
0 , . . . ,H

T
ℓ ]T ∈ CMR⋅(L+1)×MT .

The elements of the noise vector n [k] are circularly symmetric complex Gaussian distributed

with variance σ2
n and assumed mutually uncorrelated in space and time.

5.4.4.1. Matrix-based data model and signal subspace estimation

The measurement data is observed by consecutive data windows over all receive antennas.

Each window has the length W . The dimensions of MR receive antennas and the data window

length W are stacked into one highly structured vector. We denote the measurement data

with respect to the nth observed data window by yn ∈ CMR⋅W×1, which is given by

yn =HTsn +n. (5.90)

The term sn is the stacked vector of the input data sequences and has the structure

sn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

s2

⋮

sMT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CMT⋅(W+L)×1, (5.91)

where si = [si [nW ] , si [nW − 1] , . . . , si [nW −W −L + 1]]T is (W + L) × 1 dimensional input

data sequence on ith transmit antenna for i = 1, . . . ,MT. The matrix HT ∈ CMR⋅W×MT⋅(W+L)
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is the filtering matrix and structured as

HT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H
(1,1)
T H

(1,2)
T . . . H

(1,MT)
T

H
(2,1)
T H

(2,2)
T . . . H

(2,MT)
T

⋮ ⋮ ⋮ ⋮

H
(MR,1)
T H

(MR,2)
T . . . H

(MR,MT)
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.92)

Here, the matrix H
(j,i)
T ∈ C

W×(W+L) denotes a banded Toeplitz matrix associated to the

channel impulse response h(j,i) between the jth receive antenna and ith transmit antenna.

The vector h(j,i) is defined as

h(j,i) △= [h(j,i)0 , h
(j,i)
1 , . . . , h

(j,i)
L ]T

△= [h(j,i) [t0] , h(j,i) [t0 + T ] , . . . , h(j,i) [t0 +LT ]]T . (5.93)

Then, we have

H
(j,i)
T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
(j,i)
0 ⋯ h

(j,i)
L 0 ⋯ ⋯ 0

0 h
(j,i)
0 ⋯ h

(j,i)
L 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 h
(j,i)
0 ⋯ h

(j,i)
L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.94)

The space-time correlation matrixRyy ∈ CMR⋅W×MR⋅W of the measurement data is calculated

as

Ryy = E{yny
H
n } =HTRssH

H
T + σ

2IMR⋅W (5.95)

where the matrix Rss = E{snsHn } indicates the correlation matrix of the input data with

dimension MT ⋅ (W + L) ×MT ⋅ (W + L). The matrix Rss is assumed to be full-rank, the

noise-free part of Ryy (i.e., HTRssH
H
T ) therefore has the rank of r = MT ⋅ (W + L). With

the observation of N consecutive data windows at the receiver, the estimate of the space-time

correlation matrix Ryy is obtained as

R̂yy =
1

N

N

∑
n=1

yny
H
n . (5.96)
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To calculate an SVD of the estimated correlation matrix R̂yy, we have

R̂yy =

⎡⎢⎢⎢⎢⎢⎢⎣
Ûs¯

MR⋅W×r

Ûn°
MR⋅W×(MR⋅W−r)

⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ̂s

r̄×r

0

0 Σ̂n°
(MR⋅W−r)×(MR⋅W−r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [Ûs Ûn]H (5.97)

The signal subspace estimate is spanned by the first r =MT ⋅ (W + L) dominant left singular

vectors.

5.4.4.2. Tensor-based data model and signal subspace estimation

= 3 +

W

MR N

H
(1,∶)
T

H
(MR,∶)
T

Y

H ×3 ST

N

Figure 5.30.: Block diagram of the tensor based data model.

The dimension stacking operation employed in the definition of yn in equation (5.90) does

not account for the structure inherent in the measurement data. Therefore, we introduce a 3-

way tensor to model the measurement data. The three dimensions of the tensor Y ∈ CMR×W×N

represent receive antennas, observed data window length, and the number of data windows,

respectively. The corresponding input output data model can be expressed as

Y =H ×3 ST +N . (5.98)

The matrix S = [s1, s2, . . . ,sN ] ∈ CMT⋅(W+L)×N contains the input data sequences correspond-

ing to the N sequentially observed data windows at the receiver. Each column of S has the

same definition as sn in equation (5.91). The filtering tensor H ∈ CMR×W×MT⋅(W+L) is con-

structed by aligning the slices of the block matrices HT in (5.92) along the first dimension.

The slices of HT are defined as H
(j,∶)
T for j = 1,2, . . . ,MR and depicted in Figure 5.31. We

compute the 3-mode product of the tensor H with the matrix ST as shown in Figure 5.30.

The tensor N contains noise samples and has the same size as the tensor Y .
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=HT

H
(1,1)
T H

(1,2)
T

. . . H
(1,MT)
T H

(1,∶)
T

H
(2,1)
T H

(2,2)
T

. . . H
(2,MT)
T

H
(2,∶)
T

⋮ ⋮ ⋮ ⋮

H
(MR,1)
T H

(MR,2)
T

. . . H
(MR,MT)
T H

(MR,∶)
T

Figure 5.31.: Construction of the slices of HT .

By computing the truncated HOSVD of the measurement tensor Y , we have

Y ≈ S[s] ×1 U
[s]
1 ×2 U

[s]
2 ×3 U

[s]
3 , (5.99)

where S[s] ∈ Cr1×r2×r3 , U
[s]
1 ∈ CMR×r1 , U

[s]
2 ∈ CW×r2 , and U

[s]
3 ∈ CN×r3 . Here, rn (n = 1,2,3)

denotes the n-rank of the noiseless tensor Ỹ (i.e., Ỹ = H ×3 ST). In MIMO application,

we have r1 = min(MR,MT ⋅ (L + 1)), r2 = min(W,N ⋅MR), and r3 = min(N,MT ⋅ (W + L)).
According to the assumption of N ≥MT ⋅ (W +L), the r2 and r3 can be simplified to r2 =W
and r3 =MT ⋅ (W +L), respectively.
From equation (5.78), the estimated signal subspace tensor Û

[s]
∈ CMR×W×r3 is defined as

Û
[s]
= S[s] ×1 U

[s]
1 ×2 U

[s]
2 . (5.100)

Then, the estimated signal subspace is spanned by the columns of [Û [s]]T
(3)
∈ CMR⋅W×r3 . By

exploiting the inherent structure in the subspace estimation step, [Û [s]]T
(3)

can provide a

more accurate estimate than Ûs from the matrix-based method under the conditions that the

measurement tensor Ỹ is rank-deficient in the first or second mode (i.e., MR > r1 or W > r2).
Otherwise, both the tensor-based and matrix-based signal subspace estimation yield exactly

the same estimate. Since r2 is always equal to W for our model, a benefit of the tensor-based

signal subspace estimation is achieved under the condition MR > r1 =MT ⋅ (L + 1).
Comparing the computational complexities of the matrix-based and tensor-based signal

subspace estimations, it is found to obey the same expressions shown in Table 5.6 but with
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5.4. Blind channel estimation using a tensor-based subspace method

r1 =min(MR,MT ⋅(L+1)), r2 =W , and r3 =MT ⋅(W +L). We can conclude that the complexity

of the tensor method is higher than the matrix method but of the same order.

5.4.4.3. Oversampled antenna array

Similar to the SIMO channel case, we can introduce an oversampling of the receive signals

with a factor P = T /∆ to maintain the performance benefit for the case MR ≤ MT ⋅ (L + 1).
With oversampling a set of P sequences are constructed from the received signal of the jth

receive antenna in the nth observed data window y
(j)
n as

y(j,m)n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
(j)
n [k + m

P
]

y
(j)
n [k + 1 + m

P
]

⋮

y
(j)
n [k +W − 1 + m

P
]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CW×1, (5.101)

where m = 0,1, . . . , P −1 for each j. Each sequence y
(j,m)
n depends on the discrete-time impulse

responses h(j,i,m) for i = 1, . . . ,MT. We have

h(j,i,m) △= [h(j,i,m)0 , h
(j,i,m)
1 , . . . , h

(j,i,m)
L ]

△= [h(j,i) [t0 +m∆] , h(j,i) [t0 +m∆ + T ] , . . . , h(j,i) [t0 +m∆ +LT ]] . (5.102)

To this end, the filtering matrix associated to the jth receive antenna is defined as

H
(j,∶,∶)
T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H
(j,1,0)
T H

(j,2,0)
T . . . H

(j,MT,0)
T

H
(j,1,1)
T H

(j,2,1)
T . . . H

(j,MT,1)
T

⋮ ⋮ ⋮ ⋮

H
(j,1,P−1)
T H

(j,2,P−1)
T . . . H

(j,MT,P−1)
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CP ⋅W×MT⋅(W+L), (5.103)

where each matrix H
(j,i,m)
T ∈ CW×(W+L) has a banded Toeplitz structure associated to the

channel impulse response h(j,i,m) as

H
(j,i,m)
T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
(j,i,m)
0 ⋯ h

(j,i,m)
L 0 ⋯ ⋯ 0

0 h
(j,i,m)
0 ⋯ h

(j,i,m)
L 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 h
(j,i,m)
0 ⋯ h

(j,i,m)
L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.104)
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The filtering matrix associated to all receive antennas HTP
is a accumulation of H

(j,∶,∶)
T for

j = 1, . . . ,MR, we have

HTP
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H
(1,∶,∶)
T

H
(2,∶,∶)
T

⋮

H
(MR,∶,∶)
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CMR⋅P ⋅W×MT⋅(W+L). (5.105)

We still can use a 3-way tensor Yp ∈ CMR⋅P×W×N to model the oversampled received signals.

Only the size of the first dimension changes due to the oversampling compared to the previous

tensor Y . The corresponding input output data model is given by

YP =HP ×3 ST +N P . (5.106)

As shown in Figure 5.32, the filtering tensorHP ∈ CMR⋅P×W×MT⋅(W+L) is organized by aligning

the slices of the block matrices in equation (5.103) along the first dimension for all receive

antennas. The noise tensor N P has the same size as the tensor YP . Notice that the noise

samples are not necessarily temporally uncorrelated due to the oversampling.

= 3 +

W

MR ⋅ P N

H
(1,∶,0)
T

H
(1,∶,P−1)
T

H
(2,∶,0)
T

H
(MR,∶,P−1)
T

YP

HP ×3 ST

N P

Figure 5.32.: Block diagram of the tensor based data model with oversampling.

By computing the truncated HOSVD of the measurement tensor YP , the signal subspace

tensor Û
[s]
P ∈ CMR⋅P×W×r3 can be estimated as

Û
[s]
P = S

[s] ×1 U
[s]
1P
×2 U

[s]
2 . (5.107)

Here, the ranks of the second and third modes (i.e., r2 and r3) are the same as before. Only

the rank of the first mode changes to r1P =min(MR ⋅P,MT ⋅ (L+ 1)). Now, the rank-deficient

condition for achieving the benefit of the tensor case is loosened to MR ⋅P > r1P =MT ⋅ (L+ 1)
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due to the oversampling.

5.4.4.4. Signal subspace based parameter estimation

With the estimated signal subspace, the matrix-based method and tensor-based method follow

the same parameter estimation procedure as for the SIMO channel. Using the tensor case as

an example, we give a short description.

Since the column spaces of [Û [s]]T
(3)

and [H]T(3) coincide, the unknown MIMO channel

coefficients incorporated in the filtering tensor H can be identified up to a right multiplica-

tion by an invertible matrix A by solving the maximization of the quadratic form q(H) def=

∑MT⋅(W+L)
i=1 ∥ÛsT (∶, i)H [H]T(3)∥22. Here, we use ÛsT to indicate the estimated signal subspace

of the tensor case for notational simplicity (i.e., ÛsT = [Û [s]]T(3)). The maximization problem

can be solved by utilizing Lemma 5.4.2. The solutions of the maximization problem are the

eigenvectors associated to the MT largest eigenvalues of the matrix G. The matrix G obeys the

same formulation as in equation (5.76), but has a different size ofMR ⋅(L+1)×MT ⋅(L+W ) com-

pared to the matrix G in (5.76). The further determination of the unknown invertible matrix

A can be done by introducing semi-blind channel estimation (SBCE). The basic idea of SBCE

is to assign a few pilots on each transmit antenna to acquire a rough estimate of the channel

(denoted as H̃) which is utilized to identify the unsolved part after the BCE. Assuming that

Ĥ is the channel estimate from the blind method, the matrix A can be identified by solving

a minimization problem, i.e., min
A
∥ĤA − H̃∥2

F
. The solution 2 is A = Ĥ+H̃. Alternatively,

the authors of [MLM97, GL97] have proposed a blind identification of the unknown matrix A,

which employs a blind source separation algorithm (e.g., joint approximate diagonalization of

eigen-matrices (JADE) source separation procedure [CC96]) and only works for the channel

estimation in the frequency domain.

The necessary conditions for the channel identifiablity are listed as follows.

1. The correlation matrix Rss has full-rank but is otherwise unknown, which requires N ≥
MT ⋅ (W +L).

2. The matrix HT has a full column rank.

3. The number of transmit antennas MT is strictly less than the number of receive antennas

MR.

4. The observed data window length is greater than the channel order L (i.e., W > L).
2This solution only exists under the condition MR >MT, otherwise the matrix A cannot be identified.
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5. The number of channel taps L + 1 has been correctly estimated before.

6. The noise samples are uncorrelated with the input data.

5.4.4.5. Simulation results

Compared to the matrix-based subspace method, the new tensor-based subspace method for

the blind estimation of MIMO channels shows a performance improvement. The evaluation

is performed in terms of the root mean square error (RMSE) of the estimated normalized

channels. This RMSE is defined as

RMSE =
1

P

√
E{∥ĤA −H∥2

F
}, (5.108)

where A is the invertible matrix and is computed as A = Ĥ+H. The channel matrix H

is normalized to unit Frobenius norm and the RMSE is averaged over 500 channel realiza-

tion. The emitted signal is in 4-QAM format. The signal to noise ratio (SNR) is defined

as 10 log10
E{∥s(k)∥2}
E{∥n(k)∥2} . To simulate a multipath environment, we adopt a commonly used

model [TXK91] to construct an (L + 1)-ray multipath continuous-time channel h(j,i)(t) be-
tween the jth receive antenna and ith transmit antenna from a raised cosine pulse shaping

filter gc(t − γℓ, β). We have

h(j,i)(t) = L

∑
ℓ=0

α
(j,i)
ℓ

gc(t − γ(j,i)ℓ
, β), (5.109)

where the roll-off factor β is set to 0.5 for simulations and α
(j,i)
ℓ

are complex valued Gaussian

random variables. The term γ
(j,i)
ℓ

indicates the delay of the ℓth path. We use the same way

to define α
(j,i)
ℓ

and γ
(j,i)
ℓ

as what we have done for the SIMO channel case. The discrete-time

channel is obtained by sampling h(j,i)(t) at a rate of T /P . The length of the observed data

window is W = 10. We introduce a smoothing window to observe the measurement data with

a smoothing parameter η as defined for SIMO channel case. We also use the same way to

construct the noise samples for the oversampling case as that for SIMO channel.

First, we evaluate the case that satisfies the condition MR > r1 and η = W . We consider a

MIMO channel consisting of 2 taps and a transmitter with 2 transmit antennas. The first mode

rank of the measurement tensor is MT ⋅ (L + 1) (i.e., r1 = 4). The number of receive antennas

is greater than r1. In this case, we do not employ oversampling at the receiver, the value

P is set to 1. White Gaussian noise is added to the output. The performance improvement

introduced by the tensor method is observed in Figure 5.33. It is noticed that the performance
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improvement increases with the larger difference between MR and r1.
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Figure 5.33.: RMSE for MIMO channels: MT = 2, L + 1 = 2, r1 = 4, SNR = 20 dB.

Then, we consider the case MR ≤ r1 with η =W . We assume a MIMO channel consisting of

4 taps. The transmitter is equipped with 2 transmit antennas and the receiver has 5 receive

antennas, which leads to MR < MT ⋅ (L + 1). Under this condition, both the tensor-based

subspace method and the matrix-based subspace method achieve the same performance as

shown in Figure 5.34. In order to maintain the benefit of the tensor method, we introduce

oversampling at the receiver. For fair comparisons, the oversampling is utilized for both matrix-

based and tensor-based methods. It is observed that a performance improvement is achieved

by the tensor-based method with the oversampling factor P > 1, since the benefit condition

of the tensor method is loosened to MR ⋅ P > MT ⋅ (L + 1). Larger values of P lead to more

significant improvements.

Furthermore, we vary the smoothing parameter within 1 ≤ η <W for both the matrix-based

and the tensor-based subspace methods. In Figure 5.35, it is shown that the accuracy of the

estimate improves with the decrease of the parameter η. The proposed tensor-based method

always outperforms the current matrix-based subspace method for different η. But notice that

for the same number of observed data symbols, the smaller η results in an increased number

of observed data windows.

In Figure 5.36, we investigate the BER performance of a MIMO system where MT = 2,
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Figure 5.34.: RMSE for MIMO channels: MR = 5, MT = 2, L + 1 = 4, SNR = 20 dB.

MR = 10, L + 1 = 3, P = 1, and η = 10. We introduce a few pilots per transmit antenna to

identify the unknown matrix A due to the fact that the unknown MIMO channel coefficients

can be identified up to an invertible matrix A by BCE techniques (namely semi-blind channel

estimation (SBCE)). Since MR >MT ⋅ (L+ 1), the tensor based BCE can achieve an improved

channel estimate compared to the matrix method in terms of the RMSE. Figure 5.36 shows

that this improvement leads to a better BER performance of the tensor method compared to

the matrix case. Here, we observe 27 data symbols and the training-based channel estimation

employs the MMSE estimator [WZ07].

5.5. Summary and Conclusions

In this chapter of the thesis, we have discussed several new approaches for CSI acquisition

under different channel conditions.

* Time-varying correlated channel model

When the channel varies too fast to capture the instantaneous CSI (namely short-term

CSI), the long-term CSI based on second-order channel statistics is considered alterna-

tively. The proposed rank-one approximated long-term CSI (ROLT-CSI) approach rep-

resents the channel by exploiting the knowledge of the estimated spatial correlation per
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Figure 5.35.: RMSE for blind estimation of MIMO channels with varied smoothing parameter
η. MR = 10, MT = 2, L + 1 = 3, r1 =MT ⋅ (L + 1) = 6, and SNR = 20 dB.
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Figure 5.36.: BER performance comparison for semi-blind estimation and training-based chan-
nel estimation of MIMO channels with MR = 10, MT = 2, L + 1 = 3, P = 1, and η = 10.
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receive antenna and transmitting then along the dominant eigenmode of the exploited

spatial correlations. Therefore, ROLT-CSI is more efficient compared to the previous

long-term method if the channels have a high spatial correlation (e.g., LOS channels).

Even for the case that only NLOS channels are considered, the presented ROLT-CSI still

achieves some performance gain relative to the previous long-term CSI method.

* Limited feedback channel model

In FDD system, CSI is in general obtained by using feedback from the receiver of the

forward links. In order to reduce the feedback overhead, a finite rate feedback model is

considered, which requires that the channel matrix is quantized first before it is fed back.

Most channel quantization schemes for multi-user MIMO downlink employing precoding

only consider the directions of the channel [Jin06, RJ07], or they quantize the channel

directions and magnitudes separately [KZH08]. The quantization scheme we presented in

this chapter stacks the vectors of the channel matrix to maintain the relative magnitude

information for the columns of the channels and further quantizes the stacked vector.

Moreover, it is only required to calculate the minimum value of the angle spanned by the

two vectors instead of calculating the minimum value of the sum of the principal angles

spanned by the columns of the channel.

The choice of the codebook significantly affects the quality of the quantized CSI. If

the conventional random vector quantization (RVQ) codebook is considered, the limited

feedback multi-user MIMO system becomes interference limited with the increased SNR

when the number of feedback bits is fixed. On the other hand, the throughput loss can

be maintained with the increased SNR when the number of feedback bits per user is

scaled linearly with the SNR. However, the number of feedback bits can grow very large

to result in a high computational complexity in simulations. Therefore, only MIMO

systems with a small number of antennas have been simulated in this chapter. If more

efficient codebooks are considered (e.g., the DE-LBG vector quantization codebook), the

quantized channel has therefore an enhanced quality. However, a training sequence is in

general required for efficient codebook design.

* Channel estimation with blind techniques

Blind or semi-blind channel estimation has been well studied for various channel contexts

due to its bandwidth efficiency. The second-order statistics (SOS) based blind channel

estimation requires the estimate of the signal subspace. A more accurate estimate of the

signal subspace leads to a higher quality estimate of the unknown channels. Inspired

by it, we use tensors to model the measurement data in order to acquire an enhanced
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estimate of the signal subspace compared to the matrix-based data model. The truncated

HOSVD instead of the truncated SVD increases the computational complexity slightly,

but both have the same order for the number of required multiplications. Notice that the

benefit of the tensor gain is only obtained when the structured tensor is rank-deficient

in at least one of the R modes. In this chapter, only the tensor-based blind channel

estimation of SIMO and MIMO channels is discussed. Actually, we have also extended

it to the semi-blind estimation of MIMO systems employing arbitrary orthogonal space-

time block codes and per-antenna power loading [RSS+11]. It can be expected that many

useful applications of the tensor-based signal subspace estimation will be exploited in the

future.
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6. Conclusions and Outlook

With the development of mobile communications, the demand for reliable high data rates has

increased extremely. Multiple-input and multiple-output (MIMO) communication systems

are known to provide theoretically attractive and technically feasible solutions that fulfill the

aforementioned requirements. Appropriate linear transmit-receive strategies can efficiently

exploit the benefits of MIMO technology (e.g., the spatial multiplexing gain and the spatial

diversity gain) to promise maximum data rate or diversity order.

In this thesis, we have proposed new designs of linear transmit-receive schemes (e.g., SeDJoCo-

based closed-form coordinated beamforming and FlexCoBF) to solve open problems in the

area of closed-form coordinated beamforming and improve the performance of the existing al-

gorithms for iterative coordinated beamforming. Furthermore, we have investigated different

aspects regarding channel state information (CSI) acquisition by taking into account some

practical scenarios.

6.1. Conclusions

In Chapter 2 we go through the fundamentals of MIMO technology. We start with the major

achievable benefits of MIMO techniques. Then, we introduce the existing MIMO channel

models from the physical perspective and the analytical perspective. Finally, we present the

existing capacity results for the single-user MIMO case, the multi-user MIMO case, and the

multi-cell MIMO case. They do provide an insight into the capacity limits of the systems with

MIMO and the implications of the limits for the practical system designs in spite of the fact

that many problems are still unsolved for capacities of MIMO systems.

In Chapter 3 we study the existing well-known linear precoding schemes (i.e., ZF, BD, and

RBD) and their throughput losses relative to the DPC scheme. Inspired by the previous works

for the performance analysis of ZF and BD, we further propose a method to quantify the

average rate and power offsets between RBD, DPC, and BD at high SNRs for two cases. The

first case considers a multi-user MIMO broadcast channel where the aggregative number of

receive antennas of all users is smaller than or equal to the number of transmit antennas (i.e.,

MT ≥ MR). We show that the achievable multiplexing gain of RBD is the same as DPC at

high SNRs and derive the bounds of the average rate and power offsets between RBD, DPC,

and BD as a function of the system parameters. The second case assumes MT < MR in a
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multi-user MIMO broadcast channel. We find that the achievable multiplexing gain of RBD

drops to 1 at high SNRs. Therefore, we recommend to utilize RBD only for the low or medium

SNR regime when MT <MR.

Next, two novel coordinated beamforming algorithms have been developed in Chapter 4.

One is proposed as SeDJoCo-based closed-form CBF, which provides a proper solution for the

open problem of the closed-form CBF and supports more than two users in the MIMO broad-

cast channel. The SeDJoCo transformation is a particular form of the classical approximate

joint diagonalization (AJD) problem and has the goal of finding a single matrix B for a set of

target matrices C1, . . . ,CN that enforces the ith row and the ith column of the transformed ith

target matrix BCiB
H to approach zero, except for the diagonal element. We prove that the

solutions of SeDJoCo exist, , but they may not be unique. In addition, we propose two methods

to solve SeDJoCo problem (i.e., NCG and STJOCO). It is noticeable that the SeDJoCo trans-

formation can be used not only for the problem of the closed-form CBF but also the problems

of blind source separation (BSS) and independent component analysis (ICA). Another novel

beamforming algorithm is dedicated to the iterative CBF and named as flexible coordinated

beamforming (FlexCoBF). Compared to the existing iterative CBF algorithms, FlexCoBF is

designed with the benefits of a high flexibility on the transmit-receive beamforming, a sum

rate close to the sum capacity of the MIMO broadcast channel, and a good convergence. We

have originally developed FlexCoBF for the multi-user MIMO broadcast channel and we have

further extended it to clustered multiple cells. By introducing limited cooperation between

clusters (i.e., the concept of coordinated multi-point (CoMP)), the provided numerical results

have demonstrated a performance improvement of the proposed algorithm with respect to the

cluster throughput and the individual user throughout.

Finally in Chapter 5, three novel approaches associated to channel state information (CSI)

acquisition have been proposed for three different channel conditions, respectively. In a multi-

user MIMO downlink channel, the available CSI, which is an important issue for the imple-

mentation of the linear transmit-receive strategies, can only be obtained at the BS by invoking

the reciprocity principle or using feedback from the users. The perfect instantaneous CSI is

usually difficult to acquire in practice. Therefore, for the first approach, we show an efficient

method to exploit the second-order statistics of a time-varying correlated MIMO channel.

This estimated spatial correlation of the channels (also named long-term CSI) can assist BSs

to perform linear precoding if perfect CSI is not available. In the second approach, we consider

that the BS acquires CSI through a feedback channel from each user. In order to reduce the

feedback overhead, we propose a limited feedback strategy which is based on the quantization

of the individual channel matrix with a predefined codebook. Instead of directly quantizing
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the channel matrix, we stack the vectors of the channel matrix and quantize it in a vector

manner. Thus, the relative magnitude information for the columns of the channel matrix a

is perserved. With the second approach, we can provide the BS with the knowledge of the

channel direction and channel magnitude jointly, which is instantly applicable to the multi-user

MIMO downlink employing RBD precoding or other linear precoding techniques (e.g., ZF and

BD) with power allocations. In the third approach, we introduce the concept of tensors to

solve blind channel estimation problems which have been originally constructed and solved by

matrix computations. It is motivated by the remarkable advantages of tensor-based signal pro-

cessing compared to their matrix-based counterparts, which have been described in detail in

Chapter 1. The performance improvements by tenor-based processing have been demonstrated

in the simulation results.

Overall, the thesis is dedicated to the design of linear transmit-receive strategies and the as-

sociated CSI acquisition. We benefit from such designs in multiple ways, e.g., proper solutions

for some open issues (as for SeDJoCo-based closed-form CBF and the quantization scheme for

RBD based systems), improved performance and flexible extension (as for FlexCoBF, ROLT-

CSI, and tensor-based blind channel estimation), or profound analytical results for the system

design (as for throughput approximations for linear precoding schemes at high SNRs).

6.2. Future Works

The thesis has addressed a broad spectrum of topics associated with multi-user MIMO tech-

niques, CoMP, and linear transmit-receive strategies. Since they are also the hot topics in 4G

and 5G system design, many exciting directions for future research can be opened up.

Let us start with the coordinated beamforming (CBF) discussed in Chapter 4. Our proposed

SeDJoCo-based closed-form CBF can effectively solve the open problem existing in the CBF

techniques and support a multi-user MIMO downlink system with an arbitrary number of

users and transmit antennas. However, there are some shortcomings and challenges. Firstly,

only one data stream transmission per user has been considered and demonstrated for the

SeDJoCo-based closed-form CBF. From a theoretical perspective, it can be directly extended

to the multiple data streams transmission (e.g., ri data streams for the ith user) for the user i

by repeating the target matrix (i.e., Ci) of this user ri times as we have mentioned in Section

4.3.5. But it has not been demonstrated. It will be more interesting to find a new transforma-

tion which is similar to SeDJoCo but can simultaneously “drill” the off-diagonal elements of

the ri rows and columns of the target matrix Ci to zeros. However, it is a really challenging

task. Another challenging task is associated with the two proposed solutions of the SeDJoCo
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transformation (i.e., NCG and STJOCO). We have discussed their advantages and shortcom-

ings in Section 4.5. The further investigations are expected to enhance them, especially for

the case with a large number of target matrices. Finally, all of the existing solutions for the

SeDJoCo transformation (i.e., NCG, STJOCO, IR proposed in [DZ04], and multiplicative up-

date method in [PG97]) are iterative algorithms. It would be desirable to find a closed-form

solution, although the closed-form solution might not exist. Considering the proposed Flex-

CoBF algorithm for the single cell and the clustered multiple cell scenarios, there are some

challenges and interesting directions for future works. We have shown that the existing lin-

ear precoding techniques can be applied as the transmit beamforming strategy for FlexCoBF.

Actually, some non-linear precoding schemes such as Tomlinson-Harashima precoding (THP)

also suffer from the dimensionality constraint, i.e., the number of transmit antennas is equal

to or greater than the aggregate number of receive antennas. Therefore, applying the Flex-

CoBF approach with non-linear precoding techniques as the transmit strategy is a promising

path as well. Compared to FlexCoBF employing linear precoding as the transmit strategy, a

potential for sum rate and bit error rate (BER) improvement is expected. Actually, we have

started to investigate the FlexCoBF algorithm employing THP. Our preliminary results show

a remarkable performance gain in terms of the BER and the sum rate compared to the Flex-

CoBF algorithm employing linear precoding techniques [ZSHdL14a]. Another direction is to

introduce lattice reduction (LR) techniques to further improve the performance of FlexCoBF,

which is named as LR-aided FlexCoBF. LR techniques have the potential to transform a set

of non-orthogonal matrices to be nearly orthogonal [LLL82, ZdLH13b, ZdL12, SKMG05]. As

a result, the LR-aided FlexCoBF algorithm can achieve the maximum diversity order (i.e.,

MT) and the maximum spatial multiplexing gain (i.e., MT) at high SNRs [ZSHdL14b]. In

particular, the diversity-multiplexing tradeoff changes as compared to the standard FlexCoBF

as the LR-aided approach obtains a higher diversity order and a higher spatial multiplexing

gain. It is a really promising observation. A third direction is to investigate the potential

to implement the extended FlexCoBF algorithm by considering the challenges of CoMP (the

details of these challenges are described in Section 4.5). In particular, instead of the clusters

with a fixed size, the cluster could be set up adaptively [MF11] according to factors such as

the user positions and the RF channel measurements. Finally, applying all these methods to

an OFDM system or a filter bank multicarrier (FBMC) system [SS96, SK00, RSFBB10] is

an interesting direction as well. Instead of a straightforward extension, we can consider the

OFDM or FBMC system with a specific resource allocation (e.g., chunk as a basic resource

element), a defined pilot structure, and channel prediction and interpolation.

Concerning the throughput approximation for the linear precoding discussed in Chapter 3,
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there are interesting directions for future works as well. We have quantified the average rate and

power offsets between linear precoding techniques (i.e., ZF, BD, and RBD) and DPC, which

are really interesting and useful for system designs. However, similar analytical results for

CBF techniques are still missing. It would be a direction to utilize the capacity approximation

framework introduced in Chapter 3 to solve the analytical performance assessment problem of

FlexCoBF. Furthermore, non-linear precoding techniques have been demonstrated to achieve a

better BER and sum rate performance compared to the linear precoding techniques [ZdLH12,

ZdLH13a]. It would also be desirable to quantify the average rate and power offsets between

non-linear precoding and linear precoding as a function of the system parameters, although

the task is challenging.

Finally, considering the channel state information (CSI) acquisition strategies in Chapter 5,

some challenges remain as well. In our proposed upper bound for the throughput loss of RBD

caused by the finite rate feedback, the residual multi-user interference (MUI) of RBD (i.e.,

∆Ii in equation (5.37)) has not been specified. We only use an experimental value of ∆Ii in

our simulations. An exploitation of the distribution and dependence of ∆Ii on the SNR is an

interesting open area. Moreover, a random vector quantization (RVQ) codebook can be easily

constructed, but has a poor efficiency, especially for a system with a large number of users

and antennas where the number of feedback bits can grow very large at high SNRs in order to

maintain a constant throughput loss. An efficient codebook design is of significant practical

interest. Also, we have shown blind channel estimation as one successful application of tensors.

The consideration of applying the same idea to different applications, such as carrier offset

estimation techniques, orthogonal space-time block coding schemes, and multi-user detection

is a promising path as well.
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Appendix A.

Glossary of Acronyms, Symbols and Notation

A.1. Acronyms

1G First-generation
2G Second-generation
3G Third-generation
4G Fourth-generation
5G Fifth-generation
AJD Approximated Joint Diagonalization
AP Access Point
AR Auto Regressive
AWGN Additive White Gaussian Noise
BC Broadcast
BCE Blind Channel Estimation
BD Block Diagonalization
BS Base Station
BSS Blind Source Separation
CBF Coordinated Beamforming
CCI Channel Covariance Information
CCDF Complementary Culmulated Distribution Function
CDI Channel Distribution Information
CMI Channel Mean Information
CoMP Coordinated Multipoint
CSI Channel State Information
CSIR Channel State Information at the Receiver
CSIT Channel State Information at the Transmitter
DFE Decision-Feedback Equalization
DOA Direction of Arrival
DOD Direction of Departure
DPC Dirty Paper Coding
FBMC Filter Bank Multicarrier
FDD Frequency Division Duplex
FIR Finite Impulse Response
ICA Independent Component Analysis
IMT-2000 International Mobile Telecomminications-2000
IR Iterative Relaxation
ISI Inter-Symbol Interference
LR Lattice Reducetion
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MAC Multiple Access Channel
MIMO Multiple Input Multiple Output
ML Maximum Likelihood
MMSE Minimum Mean Square Error
MRC Maximal Ratio Combing
MUI Multi-User Interference
NCG Newton with Conjugate Gradient
OFDM Orthogonal Frequency Division Multiplexing
OSTBC Orthogonal Space Time Block Coding
PD Positive Definite
PSDs Power Spectral Densities
QML Quasi Maximum Likelihood
QoS quality of service
RBD Regularized Block Diagonalization
RF Radio Frequency
RHS Right Hand Side
SBCE Semi-Blind Channel Estimation
SDMA Space Division Multiple Access
SeDJoCo Sequentially Drilled Joint Congruence
SINR Signal to Interference plus Noise Ratio
SISO Single Input Single Output
SNR Signal to Noise Ratio
STC Space Time Coding
STBC Space Time Block Coding
STJOCO Structured Joint Congruence
TDD Time Division Duplex
TDMA Time Division Multiple Access
THP Tomlinson-Harashima Precoding
WSSUSH Wide-Sense Stationary Uncorrelated Scattering Homogeneous
ZF Zero-Forcing
ZMSW Zero-Mean Spatially White

A.2. Symbols and Notation

R Set of real numbers

C Set of complex numbers
△= Definition

← update to

a, b, c scalars

a, b, c column vectors

A, B, C matrices

A, B, C tensors
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0M×N Matrix of zeros of size M ×N

IM Identity matrix of size M ×M

IR,d R-way identity tensor of size d × d . . . × d

A(i,j) the (i, j)-element of the matrix A

A(i, j) also indicated the (i, j)-element of the matrix A

(⋅)T matrix transpose

(⋅)H Hermitian transpose

abs(a) magnitude of the complex valued variable a

∣⋅∣ determinant of a matrix (product of eigenvalues)

∥.∥2 Euclidean (two-) norm

∥⋅∥F Frobenius norm

A⊗B Kronecker product between A ∈ CM×N and B ∈ CP×Q defined as

A⊗B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 ⋅B a1,2 ⋅B ⋯ a1,N ⋅B

a2,1 ⋅B a2,2 ⋅B ⋯ a2,N ⋅B

⋮ ⋮ ⋮ ⋮

aM,1 ⋅B aM,2 ⋅B ⋯ aM,N ⋅B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

a ○ b outer product of two vectors, which can be regarded as a special case of

the Kronecker product of matrices.

A ◇B Khatri-Rao (column-wise Kronecker) product between A ∈ CM×N and

B ∈ CP×N and B ∈ CM×N and B ∈ CM×N

vec{⋅} vec-operator: stack elements of a matrix/tensor into a column vector,

begin with first (row) index, then proceed to second (column), third, etc.

unvecI×J {⋅} inverse vec-operator: reshape elements of a vector back into a

matrix/tensor of indicated size

diag {⋅} transforms a vector into a square diagonal matrix or extract main diagonal

of a square matrix and place elements into a vector

Bdiag {⋅} creates a block-diagonal matrix from its matrix arguments

tr(⋅) trace of a matrix (sum of diagonal elements = sum of eigenvalues)

det{⋅} determinant of a matrix (product of eigenvalues)

rank{⋅} rank of a matrix

the same space as the columns of A ∈ CM×r (assuming r ≤M)

A+ Moore-Penrose pseudo inverse of a matrix A ∈ CM×N , which we can

compute via
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A+ = V s ⋅Σ−1s ⋅U
H
s , where A = U s ⋅Σs ⋅V H

s represents the

economy-size SVD of A (cf. Section 5.4).

A+ = (AH ⋅A)−1 ⋅AH if rank{A} = N (full column rank)

A+ =AH ⋅ (A ⋅AH)−1 if rank{A} =M (full row rank).[X ](n) n-mode unfolding of tensor X in reverse cyclical column ordering

X ×n U n-mode product between tensor X and matrix U

X
R

⨉
r=1

rU r repeated n-mode products, short-hand notation for X ×1 U1 . . . ×R UR

[A n B] n-mode concatenation of tensors A and B

E{X} Expectation operator, i.e., mean of the random variable X

N (µ,σ2) Gaussian distribution with mean µ, variance σ2

CN (µ,σ2) circularly symmetric complex Gaussian distribution
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Appendix B.

Proofs and derivations for Chapter 2

B.1. Proof of equation (2.14)

Applying a SVD of the channel matrix H, the MIMO channel can be converted into r parallel,

non-interfering SISO channels (r ≤min(MR,MT)) by premultiplying the input by Vs ∈ CMT×r

and post-multiplying the output by the matrix UH
s ∈ Cr×MR . Thus, the received signal in

equation (2.11) can be rewritten as

ỹ =Σd + ñ, (B.1)

where ỹ = UH
s y, x = Vsd, and ñ = UH

s n. Note that the unitary rows of UH do not change the

statistics of the noise n. With water-filling indicated in equation (2.13), we have

Q = E{xxH} = VsPV H
s , (B.2)

where the matrix P ∈ Cr×r (i.e., P = E{ddH}) is equal to diag(P1, . . . , Pr). Thereby, the

capacity in equation (2.12) can be further calculated as

CSU =
r

∑
i=1

log2(1 + σ2
i Pi)

=
r

∑
i=1

log2 (1 + σ2
i (µ − 1

σ2
i

)
+

)
=

r

∑
i=1

log2 (1 + (σ2
i µ − 1)+)

=
r

∑
i=1
( log2(µσ2

i ))+ . (B.3)

B.2. Schur-convex and Schur-concave function

The Schur-convex function was first introduced in [Sch23] and has been widely used in the

study of majorization.

Definition B.2.1. For two vectors a ∈ Rd and b ∈ Rd, if
d

∑
i=1

ai =
d

∑
i=1

bi and
k

∑
i=1

a↓i ≥
k

∑
i=1

b↓i for
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k = 1, . . . , d, it is called that a majorizes b (i.e., a ≻ b).

Here, a↓i and b↓i indicate the elements of a and b which are sorted in decreasing order,

respectively.

Definition B.2.2. For a function f and two vectors (i.e., ∀a,b ∈ Rd), we have a majorizes b

(i.e., a ≻ b). If f(a) ≥ f(b), the function f is called Schur-convex. If f(a) ≤ f(b), the function
f is called Schur-concave.

Simple examples:

If f is a convex function defined on a real interval, then
n

∑
i=1

f(xi) is Schur-convex.
The Shannon entropy function

d

∑
i=1

Pi ⋅ log2
1

Pi

is Schur-concave.
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Appendix C.

Proofs and derivations for Chapter 3

C.1. Proof of equations (3.24) to (3.25)

For high SNRs, from equation (3.23) we get

CDPC(H, P̃T) ≅ log2 ∣IMR
+

P̃T

MR

HHH∣ . (C.1)

Due to the consideration of high SNRs, the equation (C.1) can be further simplified to

CDPC(H, P̃T) ≅ log2 ∣ P̃T

MR

HHH∣ . (C.2)

To utilize the property of the matrix determinants which is

det(cA) = cndet(A), for A ∈ Cn×n (C.3)

and the fact that HHH has the dimension MR ×MR, we have

CDPC(H, P̃T) ≅ log2 (( P̃T

MR

)MR

⋅ ∣HHH∣ ). (C.4)

Thus, we can reach the equation (3.24). That is

CDPC(H, P̃T) ≅MR log2 P̃T −MR log2MR + log2 ∣HHH∣ . (C.5)

According to the capacity approximation framework (i.e., equations (3.19) to (3.21)), we

can calculate the multiplexing gain S∞ by computing the first derivative of equation (C.5).

Finally, we reach the equations (3.25) and (3.26).
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C.2. Notes on several fundamental functions and distributions

C.2.1. Gamma function

Definition C.2.1. The Gamma function is an extension of the factorial function for real and

complex numbers. For example, if n is a positive integer, Γ(n) = (n − 1)!. If m is a complex

number with a positive real part, Γ(m) = ∫ ∞0 xm−1e−xdx [AAR01].

Figure C.1 from [AAR01] is shown here as an example of the Gamma function.

Figure C.1.: Example of Γ(x) and 1
Γ(x) for real valued number, where x0 = 1.46163.

Some particular values of the gamma function are shown as follows:

Γ(−3
2
) = 4

3

√
π

Γ(−1) = ∞
Γ(−1

2
) = −2√π

Γ(0) = ∞
Γ(1

2
) = √π

Γ(1) = 1

(C.6)
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C.2.2. Digamma function

Definition C.2.2. The digamma function is defined as the logarithmic derivative of the

gamma function Γ(x) [AAR01], i.e.,
ϕ(x) = d

dx
lnΓ(x) = Γ

′(x)
Γ(x) . (C.7)

Some fundamental properties of digamma function:

The digamma function satisfies the recurrence relation, i.e., ϕ(x + 1) = ϕ(x) + 1
x
.

Applying the recurrence relation of the digamma function, the digamma function ϕ(x)
can be expressed as

ϕ(x) = x−1

∑
ℓ=1

1

ℓ
− γ, (C.8)

where γ is the Euler-Mascheroni constant (i.e., γ = 0.577215).

Equation (C.8) implies ϕ(1) = −γ.
C.2.3. Wishart distribution

Definition C.2.3. If the columns of the matrixA ∈ Cm×n are zero-mean independent real/complex

Gaussian vectors with covariance matrix Σ, the random matrix W = AAH ∈ C
m×m is a

real/complex Wishart matrix with n degrees of freedom and covariance matrix Σ, i.e., W ∼
Wm(n,Σ). In other word, the matrix W has a Wishart distribution. The probability density

function of the Wishart matrix W for n ≥m is

f(W ) = π
−m(m−1)/2

det(Σ)n∏m
i=1(n − i)! exp( − tr(Σ−1W ))det(X)n−m. (C.9)

Some fundamental properties of a Wishart matrix W ∼Wm(n,Im) [TV04]:
E{tr(W )} =mn, for n ≥m
E{tr(W 2)} =mn(m + n), for n ≥m
E{tr2(W )} =mn(mn + 1), for n ≥m
E{tr(W −1)} = m

n−m
, for n >m

E{tr(W −2)} = mn
(n−m)3−n+m , for n >m + 1
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Let B ∈ Cp×m be a complex Gaussian matrix with zero-mean unit-variance entries. For

p ≤m ≤ n, we have

E{loge det(BW −1BH)} = p−1

∑
ℓ=0
(ϕ(m − ℓ) −ϕ(p + n −m − l)). (C.10)

C.2.4. Chi-square distribution

Definition C.2.4. If a1, . . . , aK are independent Gaussian random variables, the sum of their

squares A = ∑K
i=1 a

2
i has a chi-square distribution with K degrees of freedom, i.e., A ∼ X 2

K . The

probability density function of the chi-squared distribution is [AS65]

f(A) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
A(K/2−1)exp(−A/2)

2K/2(K
2
−1)! , A ≥ 0;

0, otherwise.

C.3. Proof of Theorem 3.3.4

Substituting equations (3.60) and (3.38) into equation (3.62), we get

∆̄RBD−BD = E{log2 K

∏
i=1
(1 + µiMR

P̃T

)}
= KE{log2 (1 + µiMR

P̃T

)}
≤ K log2 (1 + MR

P̃T

E{µi}) , (C.11)

where

0 ≤ E{µi} ≤
(a)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

E{tr((G(0)i G
(0)H
i )−1)}

(b)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
E{tr(G(1)i G

(1)H
i )} . (C.12)

Note that G
(0)
i G

(0)H
i ∈ CMr×Mr is Wishart distributed with MT −MR +Mr degrees of freedom

and G
(1)
i G

(1)H
i ∈ CMr×Mr is Wishart distributed with MR −Mr degrees of freedom.

To utilize the properties of Wishart matrices in [TV04]

E{tr(W )} = mn, for n ≥m (C.13)

E{tr(W 2)} = mn(m + n), for n ≥m (C.14)
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and

E{tr(W −1)} = m

n −m
, for n >m, (C.15)

where the matrix W ∈ Cm×m is a complex Wishart matrix with n degrees of freedom, the

term (a) and term (b) are calculated as Mr

MT−MR

and Mr(MR −Mr) for the case MT >MR (i.e.,

n >m), respectively. Thereby, if MT >MR, it leads to 0 ≤ E{µi} ≤ M2
r (MR−Mr)
MT−MR

.

For the case that MT = MR (i.e., n = m), the term (a) can be evaluated by Theorem 1 in

[BG96], where the lower bound for tr(W −1) has been utilized here. That is

E{tr(W −1)} ≥ [E{tr(W )} n] ⎡⎢⎢⎢⎢⎣
E{tr(W 2)} E{tr(W )}

ξ2 ξ

⎤⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎣

n

1

⎤⎥⎥⎥⎥⎦ , (C.16)

where the matrix W ∈ Cn×n is a complex Wishart matrix with n degrees of freedom and ξ

denotes the average of the largest eigenvalues of the matrix W . Then, we can reach Theorem

3.3.4.

C.4. Proof of Theorem 3.3.5

Substituting equations (3.24) and (3.60) into equation (3.66), we get

∆̄DPC−RBD = E{log2 ∣HHH ∣} −E{log2 K

∏
i=1
(1 + µiMR

P̃T

)} −E{log2 K

∏
i=1
∣G(0)i G

(0)H
i ∣}

= E{log2 ∣HHH ∣} −KE{log2 (1 + µiMR

P̃T

)} −KE{log2 ∣G(0)i G
(0)H
i ∣}

≥ E{log2 ∣HHH ∣} −K log2 (1 + MR

P̃T

E{µi}) −KE{log2 ∣G(0)i G
(0)H
i ∣}

≥ E{log2 ∣HHH ∣} −K log2 (1 + µMR

P̃T

) −KE{log2 ∣G(0)i G
(0)H
i ∣} (C.17)

Note that HHH is Wishart distributed with MT degrees of freedom and G
(0)
i G

(0)H
i is Wishart

distributed with MT −MR +Mr degrees of freedom. According to the property of Wishart

matrices in equation (2.12) of [TV04]

E{loge detW } = m−1

∑
ℓ=0

ϕ(n − ℓ), (C.18)
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C.4. Proof of Theorem 3.3.5

where the matrix W ∈ Cm×m is a complex Wishart matrix with the freedom n (n ≥ m), and

ϕ(⋅) is a digamma function which for natural arguments can be expressed as

ϕ(m) = ϕ(1) +m−1

∑
ℓ=1

1

ℓ
, (C.19)

where ϕ(1) is the Euler-Mascheroni constant (−ϕ(1) = 0.577215), we can reach Theorem 3.3.5.
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Appendix D.

Proofs and derivations for Chapter 4

D.1. Proof of Theorem (4.2.1)

Equation (4.8) implies that R1f1 is orthogonal to the vector f2. Similarly, equation (4.9)

implies that R2f1 is orthogonal to the vector f2. Since f2 is a one-dimensional non-zero

vector, its null space is one-dimensional. Therefore, R1f1 and R2f1 must be co-linear. Then,

we have

R1f1 = λ1R2f1, (D.1)

where λ1 is a constant scalar. If we take the Hermitian transpose of equations (4.8) and (4.9),

and apply the same argument to R1f2 and R2f2, we get equation (D.2) as follows

R1f2 = λ2R2f2, (D.2)

where λ2 is a constant scalar. Equations (D.1) and (D.2) show that f1 and f2 are the general-

ized eigenvectors of the channel correlation matrices (R1, R2). It is also equivalent to f1 and

f2 being eigenvectors of R−11 R2 as well as R−12 R1.

D.2. Notes on inverse discrete time Fourier transform (IDTFT)

Given a sequence x [n] corresponding to the samples of a continuous time function x(t) at the
discrete time t = nTs where Ts is the sampling interval, the discrete time Fourier transform

(DTFT) of x [n] is calculated as

X 1

Ts

(f) = ∞

∑
n=−∞

x [n] e−j2πfTsn (D.3)

To recover the discrete data sequence from the DTFT function, we have to calculate the

inverse DTFT. It is given by

x [n] = Ts∫
1

Ts

X 1

Ts

(f) ⋅ ej2πfnTsdf, (D.4)
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D.3. Notes on Lie group

where X 1

Ts

(f) is periodic in frequency with period fp = 1
Ts
. Equation (D.4) is an integral over

any interval of length fp. Applying the above equation (D.4) and substituting v = fTs, n = t,
and X 1

Ts

(f) = 1

ĥn(v) , we reach equation (4.16).

D.3. Notes on Lie group

Definition D.3.1. A real Lie group is a group of a finite-dimensional real smooth manifold

where the multiplication and inversion are smooth maps. A morphism of Lie group is a smooth

map which preserves the group operation: f(gh) = f(g)f(h).
A complex Lie group is defined in a similar way.
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Appendix E.

Proofs and derivations for Chapter 5

E.1. Notes on Jensen’s inequality

In probability theory, Jensen’s inequality is generally stated as [Haz01]

Definition E.1.1. If f(⋅) is a convex function and x is a random variable, we have

f(E{x}) ≤ E{f(x)} . (E.1)

Conversely, if f(⋅) is a concave function and x is a random variable, we have

f(E{x}) ≥ E{f(x)} . (E.2)

E.2. Notes on Euclidean space and Grassmannian space

E.2.1. Euclidean space

Definition E.2.1. Let C
n be an n-dimensional complex vector space. Then, M = (Cn, d) is

a metric space called Euclidean n-space. The metric d is the Euclidean metric. The general

Euclidean metrics are defined as [Haz01]:

For two complex vectors x ∈ Cn and y ∈ Cn,

– d1(x,y) = n

∑
i=1
∣xi − yi∣

– dr(x,y) = ( n

∑
i=1
∣xi − yi∣r ) 1

r
, r ∈ R and r ≥ 1

– d∞(x,y) = n
max
i=1
∣xi − yi∣

E.2.2. Grassmannian space

Definition E.2.2. The Grassmannian space Gm,n(C) is the set of all n-dimensional subspaces

of the m-dimensional Euclidean space.
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E.3. Proof of Theorem 5.3.7

In general, there are 3 ways to define the distance between two planes P ,Q ∈ Gm,n(C). Let
us first define the principal vectors and principal angles. We assume that there are two sets

of n vectors ui ∈ Cm, i = 1, . . . , n and vi ∈ Cm, i = 1, . . . , n corresponding to the planes P and

Q, respectively. If they satisfy uH
i ui = vH

i vi = 1 and uH
i uj = vH

i vj = 0, for i ≠ j, then the

vectors ui and vi are the principal vectors of the planes P and Q, respectively. The angles

calculated from the inner product of ui and vi are the principal angles θ1, . . . , θn ∈ [0,π/2]
(i.e., cos θi = ∣uH

i vi∣) between these planes.

Geodesic distance: dg(P ,Q) =√θ21 +⋯+ θ
2
n

Chordal distance: dc(P ,Q) =√sin2 θ1 +⋯ + sin2 θn = 1√
2
∥PPH −QQH∥

F

Maximum geodesic distance: dm(P ,Q) = max
i=1,...,n

θi

The geodesic distance and the maximum geodesic distance have a common drawback that

they are not everywhere differentiable. In contrast, the chordal distance has the expected

differentiability (details are found in [CHS96]).

E.3. Proof of Theorem 5.3.7

Considering the averaged individual throughput over the fading distribution, the rate Ri =
E{log2(1 + SINRi)} can be transmitted to user i if Gaussian inputs are used. Thus, the

throughput loss ∆Ri(PT) associated to user i can be written as

∆Ri(P̃T) =Ri(P̃T) −Ri,LF(P̃T) (E.3)

=E{ log2(1 + P̃T

K
∥Hi ⋅Fi∥2F
1 +∆Ii

)} −E{ log2(1 + P̃T

K
∥Hi ⋅ F̂i∥2F

1 +∆Ii +∑j≠i
P̃T

K
∥Hi ⋅ F̂j∥2F )}

(1)= E{ log2(1 +∆Ii +
P̃T

K
∥Hi ⋅Fi∥2F)} −E{log2(1 +∆Ii)}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(a)

−E{ log2(1 +∆Ii +
P̃T

K
∥Hi ⋅ F̂i∥2F +∑j≠i

P̃T

K
∥Hi ⋅ F̂j∥2F)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(b)

}

+E{ log2(1 +∆Ii +∑j≠i
P̃T

K
∥Hi ⋅ F̂j∥2F)}

(2)≤ E{ log2(1 +∆Ii +∑j≠i
P̃T

K
∥Hi ⋅ F̂j∥2F)}
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(3)≤ log2(1 +∆Ii +
P̃T

K
∑j≠iE{∥Hi ⋅ F̂j∥2F})

(4)≈ log2(1 +∆Ii +
P̃T(K − 1)

K
(∆Ii +D(C)))

(5)≤ log2(1 +∆Ii + P̃T ⋅ (∆Ii +D(C)))
Here, the matrix Fi is the RBD precoding matrix for user i which is calculated from the perfect

CSI and F̂i denotes the RBD precoding matrix of user i calculated from the quantized CSI.

The term ∆Ii is the residual MUI introduced by the RBD precoding (i.e., MUI cannot be

entirely eliminated by RBD). After (1) we first neglect the positive terms (a) and (b). Then,

regarding the property of ∥A∥2F = tr(AAH) and the fact that both Fi and F̂i are unitary

matrices, we can get ∥Hi ⋅Fi∥2F = ∥Hi ⋅ F̂i∥2F , which leads to bound (2). Then we use Jensen’s

inequality to get bound (3). Note that E{∥Hi ⋅ F̂j∥2F} is the MUI caused by the fact that the

precoding matrix F̂i is calculated from the quantized CSI. It can be upper bounded as follows

E{∥Hi ⋅ F̂j∥2F} = E{∥(Ĥi + ǫi) ⋅ F̂j∥2F}
= E{∥(Ĥi ⋅ F̂j + ǫi ⋅ F̂j)∥2F}
≤ E{∥Ĥi ⋅ F̂j∥2F + ∥ǫi ⋅ F̂j∥2F}
≈ (∆Ii +D(C))

where ǫi is the error introduced by the quantization of Hi. At step (4), we neglect K−1
K

and

reach bound (5).
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