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Preface

In recent years, it was realized that the Multiple Input Multiple Output (MIMO) com-
munication systems seems to be inevitable in accelerated evolution of high data rates
applications. The MIMO systems, have received considerable attention of researchers
and commercial companies due to their potential to dramatically increase the spectral
efficiency and simultaneously sending individual information to the corresponding
users in wireless systems. Today, the main question is how to include multiple antennas
at transmitter and receiver side and, what are the appropriate methods of detection and signal
processing strategies for specific applications?

This book, intends to provide highlights of the current research topics in the field of
MIMO system, to offer a snapshot of the recent advances in this area. This work is
mainly destined to cover an overview of the major issues faced today by researchers
in the MIMO related areas. Also, it is accessible to anyone with a scientific background
desiring to have an up-to-date overview of this domain.

The book is written by specialists working in universities and research centers all over
the world to cover the fundamental principles and main advanced topics on high data
rates wireless communications systems over MIMO channels. Various aspects of the-
ses systems are deeply discussed by emphasis of their recent applications in five part
and twenty-two chapters. Moreover, the book has the advantage of providing a collec-
tion of applications that are completely independent and self-contained; thus, the in-
terested reader can choose any chapter and skip to another without losing continuity.
Each chapter provides a comprehensive survey of the subject area and terminates with
a rich list of references to provide an in-depth coverage of the application at hand.

The five parts of the book is managed as follows:

Part 1 Introduction, Detection and Channel Estimation Strategies

The first part contains four chapters that investigate an introduction to MIMO systems
models together with discussion about diversity, beam forming and, space time cod-
ing. The geometrical decoding in MIMO channels by name of lattice decoding, and
other type of decoding such as: LS, LMMSE, ML, MAP and joint LSML are considered,
too. Finally, the mathematical semi-deterministic MIMO channel model based on elec-
tromagnetic scattering and reflecting is developed and discussed in details.

Part 2 Information Theory Aspects
Part2 focus on information theory aspects of MIMO systems, including diversity-gain
of MIMO systems, which highlight the trade-off between capacity and bandwidth



XV Preface

efficiency and rate adaptive source encoding, where the rate is adapted to follow the
slow variations of the MIMO channel. Then, the capacity of MIMO system is investi-
gated in the presence of both co-channel interference and spatial correlation. Finally,
theoretical analysis for both ergodic and outage capacities of downlink transmission
together with capacity analysis of uplink cellular MIMO systems by considering the
co-channel interference as well as the effect of transmit power control are presented.

Part 3 Pre-processing and Post-processing in MIMO Systems

The non-linear precoder by name of Tomlinson-Harashima Precoder and beamfom-
ing are the main core of this part. At first, the capacity of MIMO- THP in perfect and
non-perfect CSI is obtained. In continue the conventional THP design is developed for
imperfect, correlated and channel estimator error as robust, improved and joint opti-
mization, respectively. Joint THP transceiver design for the multi-user MIMO down-
link system under both perfect and imperfect CSI is developed, too. Iterative optimi-
zation algorithm to determination of transmit and receive beam forming weights for
eigen-beam SDM in multi-user MIMO systems is discussed under constraint of both
total transmit power and the maximum transmit power. The recent advance in beam
forming based on finite-rate feedback from a communication-theoretic prespective is
addressed as ideal and non-ideal factors of feedback link. Finally, the problem of sym-
bol detection in Multi-Device STBC-MIMO systems is addressed. So, two evolutionary
optimization methods by names, Biogeography-Based Optimization and Estimation of
Distribution Algorithm are proposed to solve the problem of detection in a MD-STBC-
MIMO system.

Part 4 Application and Case Studies

This part contain some advanced application of MIMO systems and some main notes
in their implementations, which started by MIMO-OFDM technique that investigate
the effects of phase noise in centralized and distributed narrowband MIMO systems,
and discuss the feasibility of phase and frequency synchronization problem. In con-
tinue a novel threshold list subset detector that extends the List subset detector for an
iterative turbo-MIMO system is considered. Then, a narrowband interference suppres-
sion technique is discussed in MIMO systems. This part terminates with fundamentals
for pragmatic MIMO performance evaluation which consider some important notes in
implementation from antenna and propagation perspectives.

Part 5 Implementation and Experimental Evaluation

This part starts with some practical methods for capacity measurement and hardware
implementation of MIMO system with QPSK modulation. The implementation of the
MIMO system together with sphere decoding and space time coding is discussed, es-
pecially with emphasis on wireless sensor network perspective. The above hardware
implementation and practical measurement of MIMO system emphasis their potential
of dramatically increase of spectral efficiency and their bottlenecks where should be
considered in practice.

Finally, the editor would like to thank all the authors for their excellent contributions
in the different areas of MIMO systems and hopes that this book will be of valuable
help to the readers.

H. Khaleghi Bizaki
Iran
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1. Introduction

This chapter is attempted to provide a survey of the advanced concepts and related issues
involved in Multiple Input Multiple Output (MIMO) systems. MIMO system technology has
been considered as a really significant foundation on which to build the next and future
generations of wireless networks. The chapter addresses advanced MIMO techniques such
as polarization diversity and antenna selection. We gradually provide an overview of the
MIMO features from basic to more advanced topics. The first sections of this chapter start by
introducing the key aspects of the MIMO theory. The MIMO system model is first presented in
a generic way. Then, we proceed to describe diversity schemes used in MIMO systems. MIMO
technology could exploit several diversity techniques beyond the spatial diversity. These
techniques essentially cover frequency diversity, time diversity and polarization diversity.
We further provide the reader with a geometrically based models for MIMO systems. The
virtue of this channel modeling is to adopt realistic methods for modeling the spatio-temporal
channel statistics from a physical wave-propagation viewpoint. Two classes for MIMO
channel modeling will be described. These models involve the Geometry-based Stochastic
Channel Models (GSCM) and the Stochastic channel models. Besides the listed MIMO channel
models already described, we derive and discuss capacity formulas for transmission over
MIMO systems. The achieved MIMO capacities highlight the potential of spatial diversity for
improving the spectral efficiency of MIMO channels. When Channel State Information (CSI)
is available at both ends of the transmission link, the MIMO system capacity is optimally
derived by using adaptive power allocation based on water-filling technique. The chapter
continues by examining the combining techniques for multiple antenna systems. Combining
techniques are motivated for MIMO systems since they enable the signal to noise ratio (SNR)
maximization at the combiner output. The fundamental combing techniques are the Maximal
Ratio Combining (MRC), the Selection Combining (SC) and the Equal Gain Combining(EGC).
Once the combining techniques are analyzed, the reader is introduced to the beamforming
processing as an optimal strategy for combining. The use of multiple antennas significantly
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improves the channel spectral efficiency. Nevertheless, this induces higher system complexity
of the communication system and the communication system performance is effected due to
correlation between antennas that need to be deployed at the same terminal. As such, the
antenna selection algorithm for MIMO systems is presented. To elaborate on this point, we
introduce Space time coding techniques for MIMO systems and we evaluate by simulation
the performance of the communication system. Next, we emphasis on multi polarization
techniques for MIMO systems. As a background, we presume that the reader has a thorough
understanding of antenna theory. We recall the basic antenna theory and concepts that are
used throughout the rest of the chapter. We rigorously introduce the 3D channel model
over the Non-Line of Sight (NLOS) propagation channel for MIMO system with polarized
antennas. We treat the depolarization phenomena and we study its effect on MIMO system
capacity. The last section of the chapter provides a scenario for collaborative sensor nodes
performing distributed MIMO system model which is devoted to sensor node localization in
Wireless Sensor Networks. The localization algorithm is based on beamforming processing
and was tested by simulation. Our chapter provides the reader by simulation examples for
almost all the topics that have been treated for MIMO system development and key issues
affecting achieved performance.

2. MIMO literature and mathematical model

This section gives an overview of the MIMO literature. MIMO technology has been a
subject of research since the last decade of the twentieth century. In 1984, Jack Winters
at Bell Laboratories wrote a patent on wireless communications using multiple antennas.
Jack Winters in (Winters, 1987) presented a study of the fundamental limits on the data
rate of multiple antenna systems in a Rayleigh fading environment. The concept of MIMO
was introduced for two basic communication systems which are a communication system
between multiple mobiles and a base station with multiple antennas and another one between
two mobiles with multiple antennas. In 1993, Arogyaswami Paulraj and Thomas Kailath
proposed the concept of spatial multiplexing using MIMO. They filed a patent on spatial
multiplexing emphasized applications to wireless broadcast. Several articles which focused
on MIMO concept were published in the period from 1986 to 1995. We mainly cite the article
of Emre Teletar titled "Capacity of multi-antenna gaussian channels" (Telatar, 1995). This was
followed by the work of Greg Raleigh and Gerard Joseph Foschini in 1996 (Foshini, 1996)
which invented new approaches involving space time coding techniques. These approaches
were proved to increase the spectral efficiency of MIMO systems (Raleigh & John, 1998).
In 1999, Thomas L. Marzetta and Bertrand M. Hochwald published an article (Marzetta &
Hochwald, 1999) which provides a rigorous study on the MIMO Rayleigh fading link taking
into consideration information theory aspects. Afterwards, MIMO communication techniques
have been developed and brought completely on new perspectives wireless channels. The
first commercial MIMO system was developed in 2001 by lospan Wireless Inc. Since 2006,
several companies such as Broadcom and Intel have concerned a novel communication
technique based on the MIMO technology for improving the performance of wireless Local
Area Network(LAN) systems. The new standard of wireless LAN systems is named IEEE
802.11n. MIMO technology has attracted more attention in wireless communications. In fact,
it was used to boost the link capacity and to enhance the reliability of the communication
link. MIMO scheme is the major candidate technology in various standard proposals for
the fourth-generation of wireless communication systems. Enhanced techniques for MIMO
communications led to advanced technologies for achieving successful radio transmission. It
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promises significant improvements in spectral efficiency and network coverage. We mainly
cite multiple access MIMO systems, Ad-hoc MIMO , cooperative MIMO (Wang et al., 2010)
and cooperative MIMO in sensor networks (Shuguang et al., 2004) . Note that cooperative
MIMO systems use multiple distributed transmitting devices to improve Quality of Service
(QoS) at one/multiple receivers. This was shown to bring saves in energy and to improve
the link reliability in Wireless Sensor Network (WSN) where multiple sensor nodes can be
cooperatively functioned. In the following, we introduce the mathematical model for MIMO
systems. We briefly describe the flat fading MIMO channel and the continuous time delay
MIMO channel model.

Flat fading MIMO channel

Transmit antennas Receive antennas

_———— TL LN
1 1

Rk PR
D oo l
1 1 1 1
1 1 1 1
1 1 ! !
1 1 1 1
1 1 1 1
1 1 1 1
: : . .
1 1 1 1
e  Rx2
. N . é yz 1 T 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 i 1 1
1 1 . 1 1
. 1 1

: : Ngr2 : 1 1
1 1 1 1
[ 1 b ! co
—_— 1 Ngr 1 o
|TXNT 1 |RxNR 1
T b,
1 1 1 1
! ' XNp — ‘ : :
1 1 . 1 1
1 1 I 1

Fig. 1. Generic MIMO system model

Generic MIMO system with N7 transmit antennas and Ny receive antennas is depicted in
Fig. 1. Such model is typically used for cases where the frequency domain channel transfer
function remains approximately constant over the bandwidth of the transmitted waveform
and is referred to as the flat fading scenario. The input output relationship for this MIMO
system is defined as :

y=Hx+b (1)
where :

e His the (Ng x Nt) complex channel matrix described as :
H = [hy,..., hy,]

h, = [hlp,...,hNRp]T; p=1,...,Nt is the complex channel vector which links the
transmit antenna Tx) to the Ny receive antennas Rx, . .., Rxpy.
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o x=[xg,...,xn;]] is the complex vector for the transmitted signal
o y=1[y1,.-.,yn,]" is the complex vector for the received signal
* b=[bg,...,bn] T is the complex vector for the additive noise signal

At the receive antenna Rx;, the received signal is expressed as :

Nr
p=1

In the literature, other cases of simplified MIMO systems are also explained :

* Single Input Multiple Output (SIMO) is a simplified form of MIMO systems where the
transmitter system has a single antenna.

e Multiple Input Single Output (MISO) is a form of MIMO systems where the receiver
system has a single antenna.

* When neither the receiver nor the transmitter has multiple antennas, the radio system is
called Single Input Single Output (SISO) system.

The listed multiple antenna models are represented in Fig. 2.

X1 —
x —» H — VY : H — Y
XNT —
SISO MISO
— Y1 X1 —> — Y1
x — H : : H :
— YNg XNy —> — YN
SIMO MIMO

Fig. 2. Multiple antenna system

Continuous time delay MIMO channel model

The continuous time delay MIMO channel model describes the dynamic behavior of
the MIMO channel. The spatio-temporel signal output y(t) is expressed in terms of the
spatio-temporel signal input x(¢) , the (Ng x Nt) MIMO channel H associated time delay
and the noise signal b(t) as:

y(t):/H(t,r)x(t—r)dr—l—b(t) 3)

T is the time delay.

3. Diversity schemes

This section is intended to present methods for improving the reliability of communication
system by using different types of diversity.
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3.1 Spatial diversity

The use of multiple antennas in MIMO systems improves the performance of communication
systems. Signal will not suffer the same level of attenuation as it propagates along different
paths. The use of multiple antennas is called spatial diversity. Joint transmit and receive
diversity are carried out in MIMO systems. Nevertheless, the spatial diversity scheme can
be efficiently exploited when the antenna array configuration at receive and transmit sides is
properly performed to the propagation environment characteristic. This could be achieved if
multiple branches which are combined are ideally uncorrelated in order to reduce probability
for deep fades in fading channels.

Diversity gain

The spatial diversity systems are known for their reliability through the use of multiple
receive and transmit antenna arrays. The system reliability is represented by the diversity
gain. Diversity gain measures the increase of the error rate against the SNR and could be
expressed as the slope of the error rate as a function of SNR when SNR tends to infinity. A
tractable definition of the diversity gain is (Jafarkhani, 2005):

log(P.(SNR))

4= =M og(SNR)

(4)
P.(SNR) denotes the error rate measured at a fixed SNR value. A MIMO system with Nt

transmit antennas and Ny receive antennas can achieve a maximum diversity gain of Nt x
Ng.

Multiplexing gain

Thanks to the use of multiple antennas, MIMO systems perform spatial multiplexing.
Independent and separately data signals called streams are transmitted from each transmit
antenna. The data streams arrived at the receiver are demultiplexed and the maximum
number of independent transmission channels or degrees of freedom are min(Ng, Nt) (Zheng
& Tse, 2003). Such technique leads to an increase in the system spectral efficiency without
any need neither for additional bandwidth nor for additional power allocation. The spatial
multiplexing order is expressed as :

R(SNR)

RN log(SNR)

)
R(SNR) denotes the capacity for a given SNR value.

Diversity-Multiplexing trade-off

We should note that there is a compromise between maximizing the diversity gain so that to
increase the link reliability against fading and maximizing the multiplexing gain in order to
achieve the best spectral efficiency. This trade-off is expressed as :

d(?’) = (NT—T’)(NR—T’) ;r:O,...,min(NR,NT) (6)

This implies that if v pairs of antennas (Each pair consists of one transmit antenna and
one receive antenna) are exploited for spatial multiplexing, it remains (Nt — r) transmit
antennas and (Ng — r) receive antennas to be exploited for diversity gain. Nevertheless,
coding techniques could be used as a solution for inherent diversity-multiplexing trade-off
(Freitas et al., 2005).
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3.2 Temporal diversity and Space Time processing for MIMO systems
If channel varies in time, repeated signal versions can benefit from temporal diversity if they
are sent at different time intervals that is higher than the time coherence of the channel.

Space Time processing for MIMO systems

MIMO system can still achieve both spatial diversity and temporal diversity by exploiting
Space Time (ST) coding (Fig. 3). Let us review the flat fading model. The complex channel
matrix H(Ng x N7) is expressed as :

hi hip .. hing
h21 h22 hQNT

hNgt BNg2 - BNy

Given a block time of length L, at time ¢, the transmitted signal is expressed as :

x(t>:[x§f>_._,x§2]T it=1,...,L 7)

The input array signal X(Nt x L) is given by :

xil) x(z) . XgL)
OGN
2 2

O . W

XNT XNT XNT

The received signal matrix Y(Ng x L) is expressed as :

Y =

T
Yo ¥

2

UL YN - YN

The noise signal matrix B(Ng x L) is:

.

B B2 g

B — 2 2 2'
.1 .2 ' L
b0 62 D

The input output relationship of such system is given by :
Y=H-X+B (8)
Thereafter, the received signal at time ¢ at the receiving antenna Rx, is expressed as :

Nt
A =Y gl =1L g=1,.. Ng ©)
p=1
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Thus, ST coding is a class of a linear processing design. The transmitted matrix X is referred
as the ST code. ST codes are designed in order to achieve both maximum coding gain and
diversity gain. Thereafter, two main criteria should be satisfied when ST coding is performed.
These criteria are referred as the Rank criterion and the Determinant criterion (Tarokh et al.,
1998). Recently many types of ST coding structures were invented. Nevertheless, ST codes

TXl

Input signal ST encoding |- H ST decoding Receiver
Tx Nr
1

Fig. 3. ST coding for MIMO systems

may be split into two main types which are listed in the following :

1. Space Time Trellis Code (STTC) was invented by Vahid Tarokh in 1998. This coding scheme
transmits multiple redundant copies of trellis code which are distributed in time and space.
Vahid Tarokh gave a detailed description for trellis code construction in (Tarokh et al., 1998)

2. Space Time Block Code (STBC) aims to provide a diversity gain by transmitting
block codes distributed over the transmit antennas. Development of STBC is based on
complex orthogonal design. STBC for communication over Rayleigh fading channels was
introduced in (Tarokh et al., 1999). The most famous orthogonal STBC (OSTBC) design is
the Alamouti scheme which was invented in 1998 for a MIMO system when two-branch
transmit diversity with one receive antenna and two-branch transmit diversity with two
receive antennas are considered (Alamouti, 1998). At the receiver, the transmitted signal
can be easily recovered due to the orthogonality of ST code. Thus, OSTBCs have received
much attention from the coding community as compared to STTCs owing to their simple
design and low complexity receivers (Ghrayeb, 2006). Performance analysis in terms of
BER for various OSTBCs was derived in (Tran & Sesay, 2003). It was shown that we can
obtain gain from OSTBCs if appropriate number of transmit antennas are deployed.

For more detailed lecture about the listed ST codes, the reader could refer to (Tarokh et al.,
1998) (Tarokh et al., 1999) and (Vucetic, B. & Yuan, J., 2003). The simplest Alamouti scheme
was presented in (Alamouti, 1998). For the case of two receive antennas, if we consider two
symbols x;1 and xp, then :

e Attimeslot1, x; and x are transmitted simultaneously from Tx; and Tx;.
e Attimeslot2, —x5 and x] are transmitted simultaneously from Tx; and Tx,.

The input output relationship involving two receive antennas is expressed as :

1

y%; hiy hip b%i

) _ | b | ) By (10)
@y« | — | B, —h* X (2)\#

(v 2~ 2 (b”)

oy) Nt (2"
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Time
t=1 t=2
Txq X1 _xﬁ
Space
Txy X2 xf
Fig. 4. Alamouti code
Let us denote :
hiy hip
hoy hop
Hequ = *
hiy —hyy
h3, —hy

The estimated transmitted signal at the receiver is given by :

“
(&) =w| & an
%2 (%2 )
)"

where H is the pseudo inverse matrix of Hequ. Simulation results of the Alamouti scheme
for both MIMO systems MIMO(1 x 2) and MIMO(2 X 2) in case of fading Rayleigh channel
with Additive White Gaussian Noise(AWGN) are depicted in Fig. 5. Transmitted data signals
are Binary Phase Shift Keying (BPSK) modulated.

5= RayleighTx1Rx |]
—©6— AlamoutiTx2Rx1 |
—*— AlamoutiTx2Rx2 |

SNR(dB)

Fig. 5. BER curves for BPSK modulated signal with Alamouti coding
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3.3 Frequency diversity

Frequency diversity relies on the fact that signals are transmitted on different frequencies
so that different multipath structures in the propagation media are exploited. Transmitting
signals on different frequencies are referred as multicarrier transmission. One special case of
multicarrier transmission is Orthogonal Frequency Division Multiplexing (OFDM). OFDM
has got a great interest by the researchers and it was shown that using this type of modulation
gives a significant performance increase in wireless communications. OFDM modulation
technique was adopted by IEEE802.11a and IEEE 802.11b wireless LAN standards. When
using the OFDM technique, a single data stream is transmitted over a number of lower
rate carriers. This can be considered as a form of frequency multiplexing that could be
efficient for wide band communication. The signal frequency band is divided into several
frequency subchannels in order to get narrow band channels. Orthogonality between different
modulated carriers is imposed in order to avoid overlapping subchannels. Therefore,
signals are received without adjacent carrier interference. Both transmitter and receiver are
implemented using respectively the Inverse Fast Fourier Transform (IFFT) and Fast Fourier
Transform (FFT) techniques. The OFDM transmission scheme introduces guard bands /cyclic
prefix between the different carriers. This lowers the spectrum efficiency but it eliminates the
Inter Symbol Interference (ISI). It should be noted that when using OFDM technique, channel
equalization becomes simpler. Simulation of the OFDM system was performed in order to
measure the performance of such technique and compare it to the single carrier system. The
simulated OFDM system is given by Fig. 6.

ModulatedInput  — g/p | = | IppT | | 4CP | 1| P/S
H
b
Demodulated receive < p/s | : f Sl FET | ¢ —=cp || s/ [T
signal : : : :

Fig. 6. General structure of OFDM system

e P /S: Parallel to serial conversion
® S/P:Serial to parallel conversion
¢ +CP: Adding the cyclic prefix

* —CP: Removing the cyclic prefix
¢ H: Channel matrix

¢ b: Additive noise

For simulation, we consider a BPSK modulation scheme, a FFT length equal to 52 and a FFT
size of 64. The simulation results are given by Fig. 7. OFDM can be used in conjunction with
a MIMO system. MIMO-OFDM (See Fig. 8) is interesting for high data rate systems. A design
and simulation of MIMO-OFDM was introduced in (Yu et al., 2004).
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Fig. 7. BER curve for BPSK modulated signal using OFDM in AWGN channel

(IFFT+CP) Tx Rx1  (—cp+FFT)
Datal — oM LT 1]  orpm . .
Modulator 1 Demodulator 1
: Channel : [Receiver
Tx Nr Rx Ng
Y T
DataNy___| OFDM L1 OFDM N L,
Modulator Nt Demodulator Ny

Fig. 8. MIMO-OFDM system

3.4 Pattern diversity

Pattern diversity consists of the use of several colocated antennas with different radiation
patterns. This type of diversity can provide a higher gain versus a single omnidirectional
antenna if antennas are enough spaced and adequately polarized.

3.5 Polarization diversity

Polarization diversity is a diversity technique where different polarizations are used.
Horizontal and vertical polarizations could be used so that to provide diversity. At the MIMO
receiver for example, the antennas take advantage of the multipath propagation characteristics
to receive separate uncorrelated signals.

4. MIMO channel modeling

4.1 Geometry-based Stochastic Channel Models (GSCM)

Geometry-based Stochastic Channel Models(GSCM) have an immediate relation to physical
reality. Such models are based on geometrical considerations, mainly scatterer locations and
channel impulse response behavior. We distinguish the Double Bounce Geometry-based
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Stochastic Channel Models (DB-GSCM) and the Single Bounce Geometry-based Stochastic
Channel Models (SB-GSCM).

4.1.1 Double Bounce Geometry-based Stochastic Channel Models (DB-GSCM)

Geometry based stochastic channel models represent the channel in a propagation-based
stochastic way in which the geometry is represented by statistical means. The GSCM is
based on the concept of clusters of scatterers around the transmitter and the receiver. The
scatterer locations are defined according to a random fashion that follows a particular
probability distribution. Scatterers represent discrete channel paths and can involve statistical
characterizations of several propagation parameters such as delay spread, angular spread,
spatial correlation and cross polarization discrimination. These parameters will be detailed
in the following sections. Fig. 9 shows a random geometrical two circle model in which the
geometry of the scatterers follows a circular distribution. Each propagation path is able to have
two times of reflection by scatterers, one at transmitter side and another one at receiver side.
Local scatterers around the transmit antennas and receive antennas are respectively situated
in a circle of radius Ry and a circle of radius Rg. The distance between the receive antennas
and transmit antennas D is assumed to be longer than the radii Rt and Ry as depicted on Fig.

" Scatterers around the transmitter Scatterers around the receiver

Fig. 9. Double Bounce Scattering Mechanism

4.1.2 Single Bounce Geometry-based Stochastic Channel Models (SB-GSCM)

When a single bounce of scatters is placed around the transmit antennas or the receive
antennas, this is referred as SB-GSCM. SB-GSCM models are originally considered in systems
where the base station is elevated and there is no local scattering obstruct while the mobile
station (at the receive side) is surrounded by scatterers (Raoof & Zhou, 2009).

4.2 Stochastic channel models
Stochastic channel models can be split into three categories :

1. Correlation based models

2. Stochastic models of scatterers

3. Based propagation models

In the following, we briefly review the listed channel models.
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4.2.1 Correlation models

The independent and identically distributed (i.i.d) model

The listed models are normally calculated analytically. Hence, the channel matrix H can be
explicitly expressed. The simplest model is the ii.d model. This supposes that multipath
channels in presence of scatterers are independent and uniformly distributed in all directions.
The MIMO channel coefficients are statically independent with equal variance.

The Kronecker MIMO channel model
Kronecker model assumes that spatial transmit correlation and spatial receive correlation are
separable. Therefore, the full channel correlation matrix can be modeled by the Kronecker
product of the transmit and receive correlation matrix. Full channel correlation matrices is
expressed as :

Hcorr = Ry ® Rpy (12)

where :
e Rp= E[HfgronHKron} is the transmit correlation matrix.

e Rp,= E[HKronHIéron] is the receive correlation matrix.

* ® denotes the Kronecker product. The Kronecker product for matrices A and C is defined

as:
A;1C ApC ...

ARC=| Ay CAxRC...
The channel matrix according to the Kronecker model is expressed as (Biglieri et al., 2007):

Hyqon = lezész(R%‘éz) (13)

Hy is an ii.d. Rayleigh fading channel. Note that there are others MIMO channel models
based on the Kronecker such as the Keyhole model and Weichselberger model. A review of
these models is presented in (Raoof & Zhou, 2009).

4.2.2 Stochastic scatterer model

This section gives a generic description of stochastic models of scatterers. Multipath channels
are grouped into clusters according to statistical considerations. Besides, parameters for the
channel impulse response are determined in a random manner without referring to the
geometry of a physical medium. We mainly focus on the Saleh & Valenzuela (SVA) model
(Saleh & Valenzuela, 1987). For finite numbers of clusters and multipath components, the
impulse response of the SVA channel model is expressed as :

Lc Ky

h(t) =Y Y agrexp(7¥e)6(t — T) — Ticp) (14)
ISk

where :

e L.:Number of clusters which is Poisson distributed

* Kj;: Number of multipath propagation components which are grouped into a cluster
* ay;: Tap weight of the k-th path component of the I-th cluster

* Y : The phase of the k-th path component of the I-th cluster
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e T: Delay of the I-th cluster
¢ T : Delay of the k-th multipath component relative to the I-th cluster arrival time T}
e §(.) is the Dirac delta function

We assume that 7;, k = 1,...,Ky; I =1,...,Lc are computed relatively to the first
propagation component. Therefore, 7;; = 0; [ =1,..., L. Both cluster delay and multipath
component delay are given by Poisson processes. The described model was also extended
to the spatial domain by including direction of departure and direction of arrival. The
normalized directional channel impulse response can be written as :

h(tfr,¢r) = 7 é ngml agexp(j¥en)d (t— T — 1) (15)
X8 (¢r — P11 — ¢prR1) & (PR — PRI — PRAI)
here :
® Tj: Initial arrival time
¢ &g : Mean departure angle of the [-th cluster
¢ &g : Mean arrival angle of the [-th cluster
* T : Initial arrival time with respect to the [-th cluster
* ¢1),; : Departure angle with respect to the initial time and mean angle of the I-th cluster
* ¢r i Arrival angle with respect to the initial time and mean angle of the I-th cluster

The parameters L, and K;; are important for channel modeling design. They respectively
depend on two other parameters which are the cluster decay factor and the ray decay
factor. Fig. 10 shows the simulation results for the SVA model channel where four clusters
of multipath components are obtained.

Cluster 1
0.9F

0.8}
Cluster 3
0.7F
Cluster 4
06}

h(t)
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Fig. 10. Saleh & Valenzuela channel impulse response model for a SISO link
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4.2.3 Geometrical propagation model

Several existing analytic models are not coinciding with real situation. In fact, they rarely
consider the effect of topology structure on radio channel propagation. Geometrical-based
propagation model shows a more general model in which propagation considerations are
involved. For seek of brevity, we consider the example of the finite scatterer model. Let us
consider the Uniform Linear Antenna (ULA) antennas at both the transmit and the receive
sides. Assume that the element spacing between two close antennas at transmit and receive
sides are respectively denoted by dr and dgr. We consider finite number of scatterers that are
located far away from the transmitter and the receiver. In the finite scatterer model, each path
specifies a Direction of Departure (DOD) ¢t from the transmitting array and the Direction of
Arrival (DOA) ¢r at the receiving array. According to these considerations, transmitting and
receiving steering vectors are expressed as (Burr, 2003):

ar (0r) = [Lexp {—j276r} - ,exp {—j27 (Nr = 1) br}] (16)
_ ' - T
aR (0r) = [1exp {—j27br}, -+ ,exp{—j2m (Nr — 1) 6r }]
° 9"[ = dTSil‘l (4)"[) /A
e fr=dgsin(¢r) /A
* A is the wavelength of radio propagation.

The discrete channel model with L scatterers is therefore expressed via the array steering and
response vectors as:

Ls
Hg = Y Biar (6r,) af (61)) = Ag (6r) HpAY (67) (17)
i

* B is the complex amplitude of the [-th path

e Hp =diag(B1,---,pBL.)
* Ar(6r;) =[ar(611),--- a7 (61,L,)]
* AR (6r1) = [ar (Br;1), -~ ,ar (R L.)]

5. Performance analysis of MIMO systems based on capacity

5.1 Some entropy terminologies (G.Proakis, 1995)
We briefly review in this paragraph some terminologies that we need for the channel capacity
derivation.

Entropy: The entropy H(X) of a variable X measures the uncertainty about the realization of
X. Let X be arandom variable with a probability function p(x) = P{X = x},x = x1,..., x4
are possible values of X from a set of possible realizations x. The entropy H(X) of the
variable X is expressed as :

H(X) = E[-loga(p(x))]

= — ) p(x)loga(p(x)) (18)

xXex

E denotes the expected function.
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Joint entropy: The joint entropy measures how much information is contained in a joint
system of two random variables. Given two random variables X and Y with respective
probability functions p(x) and p(y), the joint entropy is expressed as :

H(X,Y) ==Y Y p(x,y)logy(p(x,y)) (19)
XEXYEY

Y denotes the set of possible values of y.

Conditional entropy : Suppose X and Y are random variables. Then, for any fixed value x
of X, we get a conditional probability distribution on Y. We denote the associated random
variable by H(Y|X). Conditional entropy is then :

H(Y|X) = H(X,Y) — H(X) (20)

Mutual information : Mutual information is a quantity that measures the dependence
between two arbitrary random variables. The mutual information between two discrete
random variables X and Y is defined to be :

I(X,Y) = H(X)+ H(Y) — H(X,Y)
= H(Y) = H(Y[X) 1)
5.2 Capacity definition based on information theory
Deterministic capacity

Channel capacity measures the maximum amount of information that could be transmitted
through a channel and received with negligible error. Hence :

C=maxZ(X,Y) (22)
p(x)

For a SISO link with input signal x, AWGN b and a constant channel gain /, the output signal
y is expressed as :
y=hx+b (23)
The mutual information is expressed as :
I(x,y) = H(y) = H(b)
< log, (e(Py +07)) ~ logy (wec)

Pr
=log, [1+ L
%(*%2)

o Pr = E{|x|?} is the transmit power

where :

* o} = E{|b|?} is the noise power

e log(e) =1
Finally, the normalized channel capacity is given by :
Pr ,
Csiso =log, |1+ — | bits/s/Hz (24)
of
b

This is referred as the famous Shannon’s channel capacity.
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Ergodic capacity

In information-theoretical sense, ergodic capacity refers to the maximum rate that
communication can be achieved; assuming that the communication duration is long enough
to exploit all channel state. In fact, the propagation channel varies in time. This causes the
channel capacity varying in time. Consequently, to measure the fluctuating channel capacity
in information theory, ergodic capacity is defined. Ergodic capacity refers to the maximum
rate that can be achieved during a long observation communication to exploit all channel
information. Ergodic capacity Cgiso is an expected value. For a SISO channel &, Csiso is
derived as :

Csiso = E max Z(x,y) bits/s/Hz (25)
{P(K):E{IXIZKPT Y
which could be also expressed as :
Cotso = E {logy(1+ “L{h2) b bits/s/H 26
siso = E log, (1 + (75\ %) its/s/Hz (26)

Outage capacity

Outage capacity is an another statical parameter on which relies the channel performance.
Outage capacity is defined as the probability that the capacity C(h) is lower than a certain
threshold C,,;. Outage capacity is expressed as :

Pout = Pr(C(h) < Cout) (27)

Outage probability is related to the Complementary Cumulative Distribution Function
(CCDEF):

CCDF =1 — Pyt (28)
In the following, we consider a MIMO system with Nt transmit antennas and Ny receive

antennas. We assume that the channel is flat fading. The received signal at antenna g, y; is
expressed as :

Nr
Yo=Y hgpxp+by; ;9=1,...,Ng (29)
p=1
The MIMO channel capacity is derived as :
I(xy) =H(y) = H(ylx) (30)

H(y) and H(y|x) are respectively the received signal entropy and the entropy of y|x. As
the received signal y and the signal noise b are independents, H(y|x) = H(b). Thereafter,
the capacity is obtained by maximizing the received signal entropy. For MIMO capacity
derivation, we denote :

¢ Ry = E {xx!}: Covariance matrix of the transmit signal
* R,=E {be }: Covariance matrix of the noise signal

¢ Ry = E{yy''}: Covariance matrix of the received signal
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Thus :
Ry = HRH + Ry, (31)

The mutual information is expressed as :
Z(x,y|H) = log, det (meRy) — log, det (11eRy,)
= log, det {INR + HR,H (Rb)—l} (32)

For circularly symmetric Gaussian random vectors, the mutual information is maximum and
also expressed as :

C = Z(x,y|H bit H 33
MIMO p(x):lzrg%}gm (x,y|H) its/s/Hz (33)

When no CSI (Channel State Information) is available at the transmitter, equal power
allocation is adopted. With the assumption that no correlation exits at the transmit side,

Pr
RX - FTINT
Pr is the total power available at the transmit side.
The MIMO capacity is then expressed as :

Cmvmo = log, det (INR + NLTHHH> bits/s/Hz (34)

< is the SNR.

5.3 MIMO capacity based on SVD: CSI known at the receiver
When CSI is available at the receiver, SVD factorization is used and MIMO channel capacity
could be easily derived. Let us first review the SVD technique. SVD is a factorization method
for complex matrix which is widely used in signal processing. We take an (N x M) matrix A,
SVD theorem states:

A =USVH (35)

e The eigenvectors of AAf make up the columns of U(N x N) which is an unitary matrix
(UUH = 1y).

e The singular values in S(N x M) are square roots of eigenvalues from AA" or ATA. The
singular values are the diagonal entries of the S matrix and are arranged in descending
order.

¢ The eigenvectors of A A make up the columns of V. V(M x M) is also a unitary matrix
(VVI =1;)).

Calculating the SVD of the MIMO channel matrix H leads to the following factorization :
H = Usv (36)
We substitute H by its SVD decomposition. Hence, the received signal is expressed as :

y =USVix+b (37)
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Let:
y = Ufly
x/ = vix
b = U'b (38)

As U and V are unitary matrix, variables X and b’ keep the same statistical densities as x and
b. Therefore, the channel model (y = Hx + b) could be also presented as :

y =SX +b (39)
Y =]
o x = [x/l,...,x}\,T

e S=diag(v/A1,..., VAR, 0,...,0) ;R =min(Ng, N7) is the rank of the channel matrix H.

]T
Equation (1) can be rewritten as:

Yim v, i=R+1,... Ng.

1

o { VA 4 b =R, 0

According to the equation above, the MIMO channel consists of R uncorrelated subchannels.
The covariance matrix of the signals y, x and b’ are expressed as :

H
Ry = U'RyyU
R/ = VARGV
R, = U'Rpy,U (41)
and
tr( y/yr) = tI‘(Ryy)

tr( x/x') tI‘(RXX)
tr(Rb/b/) = tr(Rypp) (42)

The capacity of the MIMO channel is the summation of the R uncorrelated subchannels.
Hence:

R
VWv
C = lo 1+
oo =) e (1+ 7

1=

R . .
:10g2H<1—|-7NA1> ;Y = P—g bits/s/Hz (43)
i=1 T %

One eigenvalue A of HH is obtained according to the following equation :

(Mg—=Q)y=0 ;y#0 (44)
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Q is the Wishart matrix :

Q — {HHH/ NR < NT,'

HHH, Ng > Nr. (45)

A is an eigenvalue of the matrix channel H. Hence :

det(/\IR - Q) =0

The associate characteristic polynomial of the channel matrix is the polynomial defined by :
p(A) = det(AMg — Q)

which is also expressed as :

R
pA) =]TA-A) (46)
Ll

2
If we substitute A by (—Nt g—’;) then :

§ (REACTRN (WL R W
If Nr < Nt then equation (43) becomes :

Coyp = log, det (IR + I\VITHHH> bits/s/ Hz (48)
Finally,

Csvp = R - log, det (1 n Z\7THHH> bits/s/Hz (49)

Simulation results for the ergodic MIMO capacity when CSI is available at the receiver is
depicted in the Fig. 11. For a MIMO system with two transmit antennas, ergodic capacity
increases linearly with the number of antennas. Ergodic capacity depends on the SNR level.
Plotted curves show that capacity grows with the SNR.

5.4 MIMO capacity based on Water-filling technique : CSI known at both transmitting and
receiving sides

When CSI is available at both the transmitter and the receiver, an optimal power allocation

could be exploited. This is referred as the water-filling technique. The main idea of

water-filling strategy is to allocate more power to better subchannels with higher SNR so as

to maximize the sum of data rates in all subchannels where in each subchannel the data rate

is related to the power allocation by Shannon’s Gaussian capacity formula %log2 (1+SNR).
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Fig. 11. Ergodic capacity derived by SVD

Water-filling strategy
The concept of the Water-filling technique (Yu & Cioffi, 2001) relies on the maximization of the
MIMO channel capacity under a total transmit power constraint.

Nr
PPZPT ;pzl,...,NT (50)
p=1

The channel capacity is given by :

NT Pp .
Cwr =Y log, {1+ 57, | bits/s/Hz (51)
p=1 %

Let:
NT Pp NT
Z=) log, 1+§AP +L(Pr—) P (52)
p=1 b p=1
¢ Lis the Lagrangian
* ), is the p-th singular value of the channel
e 07 is the noise signal variance

Allocated powers P, ;p =1,..., Nt are obtained by solving :

0Z
E 0 7 P 1/ .7 NT (53)
Hence,
P % (54)
= ]/[ _—
r /\P

J is a constant scalar that satisfies the total power constraint (See equation (50)).
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Capacity calculation based on Water-filling
Let R be the rank of H. The allocated power for the subchannel p is expressed as :

O'h *
Py=p—3t ;p=1,...,R (55)
p

where :
a” = max(a,0)
The received power at the subchannel p is then :
+

Hence, the channel capacity is expressed as :

P
Cwr = )_log, (1 + ’;’) bits/s/Hz (57)
P %
Finally, the channel capacity is :
R A U -
Cwr =Y log, || 5 bits/s/Hz (58)
p=1 T

Some numerical results for Water-Filling technique

We present some numerical results in order to simulate the performance of the water-filling
technique. Let us consider a correlated MIMO(4 x 4) channel that follows the Kronecker
model. We simulate the ergodic capacity according to both cases:

1. Equal power allocation for the transmit antennas

2. Optimal power allocation with Water-filling (WF) algorithm

Simulation results are depicted in Fig. 12. The MIMO capacity is improved by optimal
power allocation strategy but stills affected by channel correlation. Simulation of the CCDF is
shown in Fig. 13. The CCDF is improved by exploiting the WF technique for optimal power
allocation. We present simulation results for the CCDF for two SNR values: SNR = 6dB and
SNR = 10dB.

Water-filling technique: discussion
Water-filling provides an optimal power allocation and is an attractive strategy for capacity
improvement. Nevertheless, capacity gain appears significant when more transmit antennas
then receive antennas are deployed, i.e Ng < Nr. Moreover, this gain is considerable for
low SNRs and is specially interesting in the case of correlated channels. Fig. 14 shows that
the capacity gain is negligible for low SNRs and is almost null for high SNR values. CCDFs
for the MIMO(4 x 2) are depicted in Fig.15 and Fig. 16 respectively for high SNR value that
is equal to 18 dB and low SNR of 2 dB. Simulation results confirm that WF technique brings
more performances for high noise strength and correlated MIMO channel. Finally, at high SNR
value, the WF gain in ergodic capacity for MIMO(NR x Nrt) is expressed as (Prayongpun,
2009):

_ _ 0 if Nt < Ny

Cwr — Cvivo = {Rlog2 (%) i N> Ng 9

where R = min(Ng, N7).
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6. Combining techniques for MIMO systems

MIMO system can use several techniques at the receiver so that to combine the multiple
incoming signals for more robust reception. Combining techniques are listed below :

1.

Maximal Ratio Combining (MRC): Incoming signals are combined proportional to the SNR
of that path signal. The MRC coefficients correspond to the relative amplitudes of the pulse
replicas received by each antenna such that more emphasis is placed on stronger multipath
components and less on weaker ones.

Equal Gain Combining (EGC) simply adds the path signals after they have been cophased
(Sanayei & Nosratinia, 2004).

Selection Combining (SC) selects the highest strength of incoming signals from one of the
receiving antennas.

Combining techniques can be carried so that to satisfy one or more targets :

1.

SRS R

Maximizing the diversity gain

Maximizing the multiplexing gain

Achieving a compromise between diversity gain and multiplexing gain
Achieving best performances in terms of Bit Error Rate (BER)

Maximizing the Frobenius norm of the MIMO channel and therefore the MIMO channel
capacity

Let us recall the SIMO system model with Ny receive antennas. The received signal at the g-th
receive antenna is expressed as :

Yg=hgx+b; ;9=1,...,Ng (60)

hyq is the g-th complex channel gain, b, is an AWGN with zero mean and variance (75.
We keep for notations :
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* Pr: Transmit signal power
7 ="1isthe SNR
b
We assume channel normalization and a perfect channel estimation. We will be more

interested in the combining module. Our aim is to derive the combining coefficients g; ;4 =
1,..., Ng. The output signal at the combining module can be expressed as:

Nk Nk
y=x) g+ Y gqbq (61)
q=1 q=1

Combining technique in MIMO system is depicted in Fig.17. Combining coefficients relative
to the listed techniques are given by:

|Combining technique| Combining coefficient |

MRC 5=
h*
EGC 81 = iy
T, g[S Tl VK £ 4
5C 81 = { 0, otherwise.

Table 1. Combining coefficients

RX1 b] 91

| S,

\ G
JCNR bNR g

Nr
T

2

Fig. 17. SIMO system with combining technique

6.1 Maximal Ratio Combining (MRC)
The equivalent SNR of MRC has been calculated as :

2
Ngr 2
(qu Il > &

Ng

2

WET SN zv-lehq\zilvq (62)
q= q=

Thus, the instantaneous SNR 1y is expressed as the sum of the instantaneous SNR at different
receive antennas. For normalized channel matrix, the SNR is then:

Yy = Nr-7 (63)
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The system capacity with MRC is :
Ng
2 .
Cmrc = log, (1+’y~ Y |kl ) bits/s/Hz (64)

6.2 Equal Gain Combining (EGC)
The instantaneous SNR is expressed as :

Resulting capacity has been calculated as :

Ng
Cecc = log, (1 + NlR . Z ‘hqyz) bits/s/Hz (66)
q=1

6.3 Selection Combining(SC)
The receiver scans the antennas, finds the antenna with the highest instantaneous SNR and
selects it. We denote the highest received instantaneous SNR as :

7}/ = max (71/'~-/7NR) (67)

The SNR at the output of the combiner for an uncorrelated channel is:

NR 1
W=T L (68)
g=11
SC capacity is expressed as:
Csc = log, <1 +7-mqax |hq]2>
:m’;ax{log2 (1—|—'y-|hq‘2)} ;1<q<Ng bits/s/Hz (69)

The ergodic capacity curves for all three combining strategies are shown in Fig. 18. MRC yields
best performances in terms of channel capacity. However, MRC is the optimal combining
technique, MRC is seldom implemented in a multipath fading channel since the complexity
of the receiver is directly resolvable paths (Zhou & Okamoto, 2004). In general, EGC performs
worse than does MRC. Obviously, lower capacity is obtained with SC since only one Radio
Frequency (RF) channel is selected at the receiver. A study of combining techniques in
terms of BER was presented in (Zhou & Okamoto, 2004). MRC steel achieves the best BER
performances.

7. Beamforming processing in MIMO systems

Beamforming is the process of trying to steer the digital baseband signals to one particular
direction by weighting these signals differently. This is named "digital beamforming" and
we call it beamforming for the sake of brevity, (Jafarkhani, 2005). The desired signal is then
obtained by summing the weighted baseband signals.
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Fig. 18. Capacity for MIMO(4 x 1) using various combining techniques-Rayleigh fading
channel

7.1 Beamforming based on SVD decomposition
In this section, we provide an overview of MIMO systems that use beamforming at both
the ends of the communication link. We consider a MIMO system with Nt transmit
and Ng receive dimensions. From a mathematical point of view, joint Transmit-Receive
beamforming is based on the minimization (or maximization) of some cost function such as
SNR maximization. This method includes determining the transmit beamforming coefficients
and the receive beamforming coefficients so that to steer relatively all transmit energy and
receive energy in the directions of interest. Joint Transmit-Receive beamforming is illustrated
in Fig. 19.

TX1 RX1

Wt; by Wry
Y - ' Y Y
Wt, Txp Rxg by Wr,
N A il SHG SE (L)—yor
WiNT TxNT RXNR beR WILNR
g —
I S L

Fig. 19. Joint Transmit-Receive beamforming

* x: The transmit signal

o Wt=[Wt;,.. Wty,]T : The (N7 x 1) Transmit beamforming vector
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¢ H: The (Ng x Nt) channel matrix
o Wr = [Wry,.. ,Wry,]T : The (Ng x 1) Receive beamforming vector

e b=1b,.. .,bNR}T : The (Ng x 1) Additive noise vector with variance ag

¢ ygr: The output signal

Joint Transmit-Receive beamforming can be described by equation (70).
yer = WrlHW; - x + Wrl . b (70)

Eigen-beamforming could be performed by using eigenvectors to find the linear beamformer
that optimizes the system performances. Thus, we exploit the SVD factorization for channel
matrix H (H = USV!). Assigning U and V respectively to Wr and Wt is optimal for
maximizing the SNR given by :

W THW?E (xx!)

SNRBF
oy || W2

When SVD factorization is applied to MIMO channel matrix, equation (70) becomes :
ygr=S-x+U".b (71)

Note that Beamforming (Ibnkahla, 2009) is considered as a form of linear combining
techniques which are intended to maximize the spectral efficiency. The received SNR for
communication system with beamforming is expressed as :

YBF = Vr- Amax(H)

Amax is the maximum eigenvalue associated to matrix S and <, is the mean received SNR.
Thereafter, the capacity for MIMO system with beamforming is expressed as :

Cpr = logy {1+ 77 - Amax(H)}  bits/s/Hz (72)

Simulation results for MIMO capacity where beamforming technique is performed are shown
in Fig. 20. The MIMO channel capacity with beamforming is improved thanks to the spatial
diversity.

Note that beamforming technique is shown to improve the performance of the communication
link in terms of BER. Fig. 21 shows the plotted curves of BER as a function of SNR relative to
three cases :

¢ System performing beamforming
¢ Transmission without applying beamforming

¢ Transmission with simply Zero Forcing (ZF) equalization

The MIMO (3 x 3) channel is randomly generated and input signal is BPSK modulated. We
adopt the correlated MIMO channel with a spreading angle of 90° and an antenna spacing of

%. Fig. 21 shows that associated SVD beamforming technique brings the best performances in
terms of BER.
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Fig. 20. Capacity of MIMO system with beamforming technique
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Fig. 21. SVD based beamforming technique
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7.2 SINR maximization beamforming

Interference often occurs in wireless propagation environment. When several terminals are
densely deployed in the coverage area, Signal to Interference Noise Ratio (SINR) grows up
and efficient techniques are required to be implemented. Beamforming is an efficient strategy
that could be exploited so that to mitigate interference. Maximizing the SINR criteria could be
also considered so that to obtain optimal beamforming weights.

SINR maximization based beamforming in Multi user system
Model description

Fig. 22. Multi user system with beamforming

We denote :
e K:Number of users.
e E=les,...,ey]": The transmit signal vector
o Wit=[Wty,...,Wtx]|T: Weight vector for beamforming
* Mjy,..., Mg number of antennas respectively for users Uj, ..., Uk
¢ x: The transmit vector signal of size (N x 1)
Transmit signal is expressed as :
X = i Wty - e (73)
k=1

We assume that transmit signals and beamforming weights are normalized. The received
signal (Of size (M; x 1)) by user U, is :

K
y; = H; Z Wt; - e, + b; (74)
k=1
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b; is the additive noise with variance O'iz. The channel matrix H;(M; x N) between user U; with
M; antennas and the N antennas at the Base Station (BS) is assumed to be normalized. User
U; ;i=1,...,Kreceives the signal :

K
y;i = H;Wt; - e; + 2 H;Wt, - e, +Db; (75)
k=1k#i

At the receiver, the estimated signal for user i is:

witlTHHy,
&= il (76)
[[HiWt||
The SINR is the ratio of the received strength of the desired signal to the received strength of
undesired signals (Noise + Interference). Associated SINR to user i is expressed as :

H,Wt; ||
SINR; = | H;Wt; || 77)
Y HW 2] +0?
k=1ki
SINR could also be written as :
HWt, ||
Sk, — I HW] 8
L W HIH W |2
k=1k#i 2
Wt |2 +0;

Optimal beamformer weights are obtained by maximizing the Signal Leakage Ratio (SLR)
metric expressed as :

Wt 12
ser - LEW 2 )
| HiWt; ||
where :
- H H H H1H
H, = [HY,...,H! HL,, ... H{] (80)

The optimal weights Wt; ;i=1,...,K are derived (Tarighat et al., 2005) as the maximum
eigenvector of:
T Hy \—
((H;"Hy) "' (H{'H)))
Simulation results are shown in Fig. 23. These results show that the method is optimal for

determining the beamforming weights. Note that better performances in terms of BER are
achieved if more transmit antennas are used.
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BER

Fig. 23. Multi user BF (K =3, M =3/M = 4)

8. Processing techniques for MIMO systems: Antenna selection

MIMO system gives high performances in terms of system capacity and reliability of
radio communication. Combining techniques such as MRC results in more robust system.
Nevertheless, the deployment of multiple antennas would require the implementation of
multiple RF chains (Dong et al., 2008). This would be costly in terms of size, power and
hardware. For example, when several antennas are deployed, multiple RF chains with
separate modulator and demodulator have to be implemented. To overcome these limitations,
antenna selection techniques can be applied.

8.1 Antenna selection

Antenna selection technique (Ben ZID et al., 2011) is depicted in Fig. 24. We consider a MIMO
system with Nt transmit antennas and Ny receive antennas. The idea of antenna selection is
to select Lt antennas among the Nt transmit antennas and / or Lg antennas among the Ny
receive antennas. We distinguish different forms of antenna selection:

1. Transmit antenna selection
2. Receive antenna selection

3. Hybrid antenna selection: that is when antenna selection is carried among both transmit
antennas and receive antennas.

RE T o

. RF
Chain

\ Jﬁ Chain
1 .
F 1 X RE

Chain Chain
Fig. 24. Antenna selection in MIMO system

Rx
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Antenna selection algorithms do not only aim to reduce the system complexity but also to
achieve high spectral efficiency. When L7 antennas are selected at the transmitter and Lg
antennas are selected at the receiver, the associated channel will be denoted Hg. The capacity
of such system is expressed as :

Csel = log, {det (ILT + LlHIS’IHS>}
R

= log, {det <1LR + JHSHEH (81)
T

7 denotes the SNR. The antenna selection algorithm is intended to find the optimal subset
of the transmit antennas and /or the optimal subset of the receive antennas that satisfy
capacity system maximization. Nevertheless, it is obvious that the joint antenna selection
at the transmitter and the receiver brings more complexity when the number of antennas
increases.

Numerical results

Ergodic capacity of MIMO system with antenna selection at the transmitter and the receiver
is shown in Fig. 25. For simulation purposes, we generate a Rayleigh MIMO channel with
AWGN. Here, SVD factorization is applied. Plotted curves depict the ergodic capacity for the
MIMO(4 x 4). This evidently leads to the highest system capacity. When 3 transmit antennas
are selected among 4 transmit antennas and 3 receive antennas are selected among 4 receive
antennas, the maximum ergodic capacity that could be achieved is plotted in function of SNR.
Simulation results are also presented in the case when two antennas are selected at both the
transmitter and the receiver. According to the plotted curves in Fig. 25, it is obvious that one of
the important limitations of the antenna selection strategy is the important losses in capacity
at high SNR regime.

35 T

—— AS (2 Among 4)
—<&— AS (3 Among 4)
—6— No AS

Ergodic capacity

5 i i i
0 5 10 15 20

SNR(dB)

Fig. 25. Antenna selection in MIMO (4 x 2): Impact on ergodic capacity
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8.2 Antenna selection involving ST coding
We present in this paragraph, the simulation results in terms of average BER when joint
Alamouti scheme and antenna selection at the receiver are applied. The MIMO (4 x 2) system
with a Rayleigh channel and AWGN was created. Emitted symbols are QAM (Quadrature
Amplitude Modulation) modulated. The simulation model is given by the Fig. 26 (by, ..., by,
denote the additive noise signals). Plotted curves concern subsets of receive antennas where
Lr =1and Lg = 3. Simulation results show that even with only one selected antenna at the

RX1

by
L»é—»
1
Tx1
Y
Rx b
. q q Antenna ST
Alamouti
Input — Y . |~ Output
d Tx | ro— . . decod
Sequence encoder N selection | - ecoder Sequence
T
L
RXNR bjilR R
..I_—>@—>

Fig. 26. MIMO system with antenna selection and Alamouti coding

BER

Fig. 27. Joint Alamouti coding and antenna selection in MIMO (4 x 2)

receiver, performances in terms of BER still satisfactory. Nevertheless, when more antennas
are selected, better BER values are achieved thanks to receive diversity.
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Scatterers

Fig. 28. Angle spread

8.3 Antenna selection in correlated MIMO channel: Angular dispersion and channel
correlation

Angle spread refers to the spread of DOA of the multipath components at the transmit antenna
array. When scatterers are also distributed around the receive antennas, the scattering effect
leads also to an angle spreading relative to the DOA. In Fig. 28, the angle spread is denoted Ag.
We present a SISO model rich of local scatterers. For seek of simplicity, we consider a MIMO
(Ng x Nr) system with LOS channel and uniform antenna arrays at both the transmitter and
the receiver.

We denote :

e H: MIMO channel matrix

* dgp: distance between antenna g and antenna p

. 1+ correlation coefficient

Paq
* A:wavelength

e R = E[H"H] Correlation matrix

¢ «: Angle of arrival

e p(a) : Probability density function of the DOA
* AR(=2m): Angle spread at the receiving side

When LOS propagation is assumed, the channel coefficients can be expressed as :

W et —
gp =€ ~o;q=1,...,Ng,p=1,...,Nr (82)

The correlation coefficient at the receiving side between two receive antennas of indexes q and

I
q is expressed :

d_ sina

) = Elexp(—j2m 24 ——)] (83)

Paq A

Formula for correlation coefficients is expressed as :
R 27td_ sin(w)
2 ] , /
2

Evidently :
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Following a uniform distribution, correlation coefficients can be expressed as :

dq,q /
0y = (27 qu) g=1,...,Ng; ¢ =1,...,Ng (86)

Jo(.) is the zeroth order Bessel function. When antennas are uncorrelated, Ooqd = 0ifg #4.
Which induces :

d . d
]0(271%)20:>2n 'Z{q ~ 7T

Thus, in order to mitigate correlation between antennas, antenna spacing between two
antennas should be at least equal to % Nevertheless, antenna correlation still depends on
angular dispersion. Fig. 29 presents the plotted curves of the spatial correlation as a function of
the antenna spacing divided by the wavelength for various values of angle spread. According
to simulation results depicted in Fig. 29, we conclude that spatial correlation between two
antennas depends on antenna spacing and is reduced by higher angle spread.

Spatial correlation

d/h

Fig. 29. Impact of angle spread on spatial correlation

Better performances in terms of BER are achieved for AS = 30°. This is due to the fact that for
a given antenna spacing, system correlation is higher for lower angular spread. The impact of
angle spread on system performances is depicted in Fig. 30.

9. Multi polarization techniques

9.1 Basic antenna theory and concepts

We present in this paragraph, some basic concepts related to antenna. A rigorous analysis of
the antenna theory and the related concepts is available in (Constantine, 2005). Antenna is a
transducer for radiating or receiving radio waves. It ideally radiates all the power delivered
to it from the transmitter in a desired direction. The far electric field of the electromagnetic
wave is written in spherical coordinates as :

E=E¢(0,¢)0 + Ey(0,9)¢ (87)
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Fig. 30. Impact of angle spread on system performances

Eg and Ey are the electric field components. 6 and ¢ denote respectively the elevation angle
and the azimuthal angle. We distinguish two categories of antennas :

1. Omnidirectional antenna is an antenna system which radiates power uniformly

2. Dipole antenna radiates power in a particular direction.

Electric dipole could be oriented along the x-axis, y-axis or the z-axis. Table 2 gives the
expressions of the electric field components relative to each antenna orientation.

Eg(0,9) Ey(6,¢)
x| — cos(6) cos(¢) |sin(¢)
y|— cos(0) sin(¢) | — cos(¢)
z|sin(6) 0

Table 2. Radiation pattern for electric dipole

Radiation intensity

Antenna gain is defined as the ratio of the intensity radiated by the antenna divided by the
intensity radiated by an isotropic antenna. Normalized radiation intensity (or Antenna gain)
is :

i Eq (6,9) 1
2 1w 2m
o 417T<0/0/|Eg€4>d0+//|15¢6¢|d0)
0 =|Gieh) - Ey (.9) )
2m 2t
417_L_<0/0/|E9 6,9) 2dQ+//|E¢ 6¢)|d0)
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* () is the beam solid angle through which all the power of the antenna would flow if its
radiation intensity is constant for all angles within ().

* Gg(0,¢) and Gy (0,¢) are respectively the elevation antenna gain and the azimuthal
antenna gain.

9.2 3D Geometric wide band channel model
The 3D Geometric wide band channel model is presented in Fig.31.

RS

Tx
Fig. 31. 3D Geometric model for MIMO channel (Ng = 2, N7 = 2)
(1) (1)

Two transmit antennas (At ,A(Ti)) and two receive antennas (A, ,Ag{zx)) are presented. Wide
band MIMO channel involves several local clusters of scatterers which are distributed around
the transmitter and the receiver. The cluster index is denoted ¢, ¢ =1,..., L. Cluster around
the transmitter Cry(¢) is assumed to be associated with a set of M(*) scatterers (S(Ti’m) ;o om=
1,..., M), Cluster around the receiver Cgy(¢) is assumed to be associated with a set of N(*)
scatterers (Sg;n); n=1,...,NO).

We take for notations:

. R(TQ: Transmit cluster radius of index ¢

. Dg(): Distance between the reference transmit antenna and the transmit cluster center

(1) (£,m)

* dj ¢, Distance between antenna Ay and a scatterer St/

* dyy ,: Distance between antenna A(TZX) and a scatterer S%(’m

* dty: Transmit antennas spacing

® Dryory: Distance between the transmitter and the receiver

. Rl(fx): Cluster radius at the receiver of index /¢
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(1)

. Dgx): Distance between the reference antenna Ay and the center of the cluster ¢ at the
receiver.
(1) (&n)

* dj,: Distance between antenna Ay’ and the scatterer S/

(2) (£m)

* dy,: Distance between antenna Ay and the scatterer S/

The Non-Line of Sight (NLOS) channel coefficients in 3D Geometric model are given by
(Prayongpun, 2009):

WS4, F) = lim Z PDP(E

N—>oo

2 Z Gl” (PTx ;,BTxr'YTX)QEZ)bEZ)
quéx' IR ;ﬁRx,va)exp{j( (" + fol D+ oo+ 0 ) | (89)

* gc {1,...,NR}

° pE{l,...,NT}
e PDP(¥) is the power delay profile which gives the intensity of a signal received through a
multipath channel connecting a pair of clusters.

. Gp( Tx 4’Tx ;ﬂTX, Y1x) is the gain of antenna p with associated oriented direction
(Brx, 71x) and a wave propagation direction (9%’"), (p_(ri’m)).

o Gq(GI({i’”),zplgi’”);ﬁRx, YrRx) is the gain of antenna g with associated oriented direction
(Brx, TRx) and a wave propagation direction (Gl(fx’”), qbl(fx’")).

» ap) = exp{j2r(p 1) (dre/A) cos(B") cos(Bry) + sin(B") sin(Br) cos(¢r," — 1]}

» by = exp{jam(g — 1) (dra/N)[cos(6") cos(Bra) + sin(8g,") sinBre) cos(9p” 1]}

o AU = (1Fr /) sin(@17") cos(lE™ — wry)

o Sl = (el /) sin(0") cos 9 — )

o ¢l) = —2n(DY) + Dpy g+ D)) /A

* Qumn ~ U[—71, 7]

We assume that the transmitter and the receiver have motions above the plan (x,y) with

relative directions atyx and agry. In 3D Geometric model, the distances are expressed as :
1 ~ DY) (90)

o ~ DY) — dyy cos(65,")) cos () — dx sin(65,")) sin(fry) cos(gy™ — ) OD)

1,0 ~ D, 92)

o0~ Diy) = i c0s(04,") cos(Bry) — diy sin(0f”) sin(Brs) cos(@fe”) —7m)  (93)

Ao mn ~ D + Dy sin(8f") sin(9”) — D sin(65") sin(9") ~ Drscre (94

When there are no scatterers around the transmitter or the receiver, the channel model is
referred as Line of Sight (LOS).
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9.3 Depolarization phenomena
The polarization of an antenna is defined as the polarization of the wave radiated by the
antenna. At a given position, antenna polarization describes the orientation of the electric
field. Suppose an electromagnetic wave radiated by a transmit antenna has an incident electric
field E; with two components E; g and E; 5. In each scatterer’s environment, the electric field
components are reflected (Fig.32). Reflected elevation and azimuth components of the incident
electric field E; are denoted E, g and E; 4.

E;p

/!

Fig. 32. Antenna depolarization

The radiation pattern is expressed as a function of the azimuth and elevation amplitudes of
polarization vectors in both the elevation and the azimuth directions (6 and ¢).

Ei = Eip(0,9)0+ Eip(6,0)9 (95)
The reflected electric field is expressed as :
E, = SE; (96)

where :

¢ E, is the matrix notation for the reflected electric field expressed as:

_ Er,B
E, = {Emp} (97)
* Sis the scattering matrix given by:
S= [”9" ”94’] (98)
Vg6 Voo

- Ugp and vy respectively measure the co-polarization gains relative to the elevation
transmission and the azimuth transmission.

- Upp measures the depolarization gain of the elevation polarization relative to the
azimuth polarization.

- Ugp measures the depolarization gain of the azimuth polarization relative to the
elevation polarization.
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¢ The matrix notation for the incident electric field is :
E.
Ej= | " } 99
i { Eiy (99)

The depolarization effect is characterized by the Cross Polarization Discrimination
(XPD)(Raoof & Zhou, 2009)(Raoof & Prayongpun, 2007) which is defined as the power ratio
of the co-polarization and cross-polarization components of the mean incident wave.

The polarization discrimination for the elevation transmission is :

E 2
XPDy = \Ueelz (100)
E|vgel
The polarization discrimination for the azimuth transmission is :
E|U¢¢ ‘2
XPDy = (101)
" ElugyP?

In the following, we denote :

1 and U
X0 = XPD, X0 = XpD,

GSCM channel model involving antenna depolarization
The wide band GSCM channel modeling with antenna depolarization is given by :

PD

hap (1, f) = Ml;gng s ZZa Wexp{j (2 (" + £+ 9o+ 0b) }

G ((Zm) (/m

(n),

,,n C, Yl T
qug (OR? p ¢Rx ; Brxs 'YRX) ] S(Z,m,n)
qutﬁ(ngﬂ)/ Prye ' PRxs TRx)

ﬁTxr '7Tx) ‘| (102)
Gp ‘P( Tx ¢Tx 'ﬁTXI ')/Tx)

The scattering matrix with the depolarization mechanism is expressed as :

(€,mn)

1 e (£,m,n) Xy (£,mm)
(f,mln) B 1+Xé€,mn p (]89.9 ) 1+X((P[,m N P (]894) )

Tx,Rx — (L)

(103)
(¢,m,n) (¢,mn)

e @ (i) | o (™)

where s%m ) séfpm ) s((;ém’n) and 8(%"1’”) denote the phase offsets.

9.4 Impact of XPD on system capacity

We examine the impact of the XPD parameter on MIMO system capacity. For the seek of
simplicity, we consider the (2 x 2) MIMO channel generated according to the Kronecker
channel modeling. The dual polarized MIMO system is adopted (Fig. 33). Assuming that the
CSl is known at the receiver side, the MIMO system capacity can be derived by exploiting the
SVD technique. Fig.34 shows plotted curves of the CCDF for various inverse XPDs and the
curve of the MIMO channel capacity as a function of the XPD. Simulation results show that
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Fig. 33. Dual polarized antennas

XPD affects the performances of the MIMO system in terms of the CCDF and the capacity.
The MIMO system capacity is shown to be seriously reduced for high level of the polarization
discrimination. Thus, mismatch in polarization results in losses in the MIMO channel capacity.
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Fig. 34. Impact of XPD:(a) CCDF for dual polarized MIMO system, (b) Dual polarized MIMO
system capacity

9.5 GSCM channel correlation
Correlation coefficients relative to the NLOS channels h%LOS (t,T) and h(%LOS (t,T) are

expressed as :

Ryp,ip(8, T —7') = Elhgy(t, T)hg(t — ¢, T)] (104)
For zero phase offsets and one cluster of scatterers (L = 1), if xg = x¢ = x, then equation
(102) reduces to :

M N .
Rypap(@) =, Jim oo Y, L adelal bl exp {j (2n(A + D) e} o9

n

m

T
aan] A e e (09
Gap-Gaol LX1][Gpy-Gpg

,_\
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The continuous spatial correlation coefficients are given by (Prayongpun, 2009):

qu,qp //// exp { p p) 51n eTx cos ¢Tx - ]anTxC sin 9Tx Cos (‘PTX ')/Tx) }

2m(§ — . ) .
exp {] (qfq)m sin Oy cOS PRy — 27T frxG Sin Ory cOS(PRx — YRx) }

Gg'G~9 T 1)( Gg'G~9

q, q, P, P

|:qu¢ . Gq,q:} [X 1 ] |:Gp,¢ . Gﬁ,¢:| p (rYTx) p (7Rx) p (QTX) p (QRX) d')’TxdrYRdeTdeRx
(107)

¢ () involves the elevation angle and the azimuth angle and Q) = sin 6d¢d®.

e p(Ory) (= p (01, ¢1x)) and p (Qry) (= p (Orx, Prx)) respectively denote the probability
distribution of the scatterers around the transmitter and the probability distribution of
scatterers around the receiver.

The spatial correlation coefficients Ry, 55(&) is obtained as the product of three terms:
1. Transmit spatial correlation: R.,, ()

2. Receive spatial correlation: Ry. 7.()

3. Polarization correlation: O

where :

Ry, 5(¢) —// [Gp’q) } exp {j27(p — p)drx sinbry cos pru/A} -
exp {_]ZﬂfoiaI sin Oty COS((PTX - 'YTX)} p (rYTx) p (QTX) dyTxdQOrx (108)
// |:G:¢ G ¢:| exp {]27(([7 ‘1)de sin ry COS(PRX/)\}

exp {_]anRxg sin Ory COS(‘PRX - 'YRX)} P ('VRX) P (QRX) dYrRxdQRx (109)

6= [)1(’1‘] (110)

In literature, azimuth angles may follow uniform, gaussian, von Mises or Laplacien
distributions. For the elevation angle, three distribution functions can be used which are
uniform , cosinus or gaussian distributions. Depending on the propagation environment, we
should note that both von Mises distribution for the azimuth angle and uniform distribution
for the elevation angle perform better. Thus, azimuth distribution function is expressed as :

_ exp {kTX cos ((PTX - 4_7Tx)}

= 111
p(‘PTX) 27_(10 (kTX) ( )
The elevation distribution function is :
(01x) = ! (112)
PO = Ao

where :

* ¢ € [-7, 7
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* 1y is the mean azimuth angle
e ]y(+) is the modified Bessel function of zeroth order

* kry is a measure of the azimuth angle dispersion. 1/kry is analogous to the variance in the
uniform distribution.

* Af1y is the standard deviation of the Angle spread
o 01y € [frx — ABry, 01 + Ab7,] where 1y is the mean elevation angle

In the following, we present simulation results of the spatial correlation as a function of the
antenna spacing and variable values of the term f1,¢. We adopt the MIMO system with two
transmit antennas and two receive antennas and we present the plotted curves for the spatial
correlation coefficient relative to the transmit antennas Tx; and Tx,. Plotted curves for the
spatial correlation are presented in two cases :

1. Single polarized antennas (Fig. 35(a))
2. Dual polarized antennas (Fig. 35(b))

i
)
W
@fge%/

15
2
25
I s

(a) (b)

Fig. 35. (a) Spatial correlation for z dipole antennas

(ktx = 50, prx = 90°, 01 = 90°, Ab, = 90°), (b) Spatial correlation for dual polarized
antennas (z dipole antenna and x dipole

antenna) (kty = 50, f1x = Pmean, O1x = 90°, Abry = 90°)

According to Fig. 35(a) and Fig. 35(b), it is obvious that single polarized antennas system
shows less correlation. When dual polarized antennas are deployed, spatial correlation
which is expressed as a function of antenna spacing can be reduced. The impact of dual
polarization depends on the mean azimuth angle ¢ty = ¢mesn and spatial correlation is
shown to be negligible if ¢yeqn approaches 90°. Thus, spatial correlation can be nulled by
deploying orthogonal antennas. Finally, we present the impact of dual polarized antennas
on MIMO system capacity. The capacity gain brought by the dual polarized system relative
to the single polarized system is depicted in Fig. 36. The capacity gain that could be
achieved thanks to the use of dual polarized antennas is affected by the mismatch in antenna
polarization. Nevertheless, for low XPDs, the dual polarization scheme considerably improves
the channel capacity when comparing to the single polarized antennas system. Depolarization
phenomena in MIMO system and impact of correlation on MIMO system capacity were
rigorously discussed in references (Raoof & Prayongpun, 2007) and (Raoof & Prayongpun,
2005).
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Fig. 36. The capacity gain of (2 x 2) dual polarized antennas

10. RSS based localization in WSN with collaborative sensors

10.1 Scenario description
We propose the scenario depicted in Fig. 37 where two clusters of wireless sensor nodes are
presented. Cluster 1 consists of a source sensor Sty and a set of K sensors which are randomly
distributed in the sensing area.

Cluster 2

Cluster 1

Fig. 37. Scenario description

We assume that sensor nodes are equipped with omnidirectional antennas. The source sensor
Sty sends redundant BPSK modulated data signal to the sensor nodes which are located at
Cluster 1. The main problem with the presented scenario is the localization of the sensor Sg,.
We adopt the 2D geometrical model. Sensors are distributed in the (x-y) plan and source node
is arbitrary placed at the origin of the system coordinate. The geometric spherical coordinates
are defined by the triplet (, 6, ¢). Here, 6 = 7. The simulated layout for 10 sensors is depicted
in Fig.38. We propose a beamforming based localization algorithm involving Received Signal
Strength (RSS) measurements. We take into assumption that the radius from the origin to Sgy
is known. Thus, the detection of the target node relies on determining the steering vector that
corresponds to the location of Sg,.
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Fig. 38. Network layout (K=10)

10.2 System modeling
The wireless link between sensor Sy, k = 1,...,K and the target sensor is modeled by LOS
propagation. Each propagation link is characterized by :

1. A Rayleigh distributed attenuation denoted Ay.

2. A delay Ty relative to the reference sensor Sty :

7 = dy - S5%) (113)
where :
¢ d;: Distance between sensor k and the source node
¢ c:Speed of the light
* «;: Direction of arrival relative to the target sensor Sgy
3. A dephasing y:
Y =27 fc - T (114)
fc denotes the frequency carrier.
Each channel gain is therefore expressed as:
hy = M sk=1,...,K (115)

A Hadamard Direct Sequence Code Division Multiple Access (DS-CDMA) code is designed
for redundant transmitted BPSK data spreading. Walsh Hadamard codes are perfectly
orthogonal and employed to avoid interference among users in the propagation link. These
codes are exploited for sensor identification and help to mitigate noise effect. The codes for
users could be expressed as the columns (or the rows) of the Walsh-Hamadard matrix C. The
simplest Hadamard matrix codes are :

and
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This can be extended to a generic matrix notation using a recursive technique. In fact, if Cis a
Hadamard matrix of order I (the spreading code length), then becomes the 2/ order Hadamard

matrix.
C C
C -C
and
Cu=GC0Ch (116)
where ® is the Kronecker product and Cy 1,2 < l'is expressed as :

C2171 Czl—l :| (117)

C =
2 [Czu ~Cyis

Collaborative sensor nodes are presented in Fig. 39.

A

<l

SRx

Fig. 39. Collaborative sensor nodes

* dy.: Distance between sensor k and the target node
¢ D.: Distance between source node and the target sensor

* (i Direction of transmitted signal vector relative to sensor k
Given a sensor S with cartesian coordinates (xy, i), the associate spherical coordinates are :
© e =tan”'(5)
Let B = 27”, the steering vector is therefore :
Vs = [exp(=jBRy), ..., exp(=jpRk)] (118)

Distance Ry is the Euclidean distance between the target sensor with spherical coordinates
(D¢, 5, ¢c) and sensor Sy

Ry = |D¢ — dy|
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The Euclidean distance between points, A and B with respective coordinates A(x4,14)
B(xp,yp) is:

deuc = \/(XA - xB)Z +(ya — ]/B)z
Euclidean distance Ry can be approximately expressed as (Ahmed & Vorobyov, 2009):

Ry = \/Dg + d? — 2d;Dccos(¢c — Px) ~ D — dycos(¢pe — ) = De — dgcos() (119)

RSS based target sensor localization
Steering vector

51 : : Square root raised
. . _i8R . |

@ —- Spreading e (=jBR1) _:’ cosine transmit filter
A
o : : :
1 1
1 1

Sk . i . i Square root raised

o Spreading —4 o(~/FRK) > (cine transmit filter

Channel

Channel /

S -
6" — Square root raised

cosine receive filter

Fig. 40. The transmit location estimation process

The target sensor is said to be detected if the azimuthal coordinate ¢, is accurately estimated.
Antennas of sensors Sy, ..., Sk are steered in variable directions relative to a possible location
of the target sensor. In this way, the steering vector becomes a function of the angle ¢.. The
location estimation process starts by finding the location of the sensors within Cluster 1. The
set of K sensor nodes collaboratively form a common message in the direction of the target
sensor node Sg, (See Fig. 39). The target sensor node feedbacks the CDMA code to sensor
nodes within Cluster 1. The received data is then despreaded and broadcasted to sensor node
Styx. The location of the target sensor node is estimated following the RSS measurements
performed for all possible locations with respect to a scanning step. The estimated angle of
the target sensor corresponds to the maximum measured RSS (measurement of the power
present in a received radio signal) value. The received SNR is then evaluated and the accuracy
of the proposed algorithm is evaluated in terms of the variation of the statistical parameters
as a function of the SNR. The transmit localization process is depicted in Fig. 40. We apply a
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square root cosine matched filtering. The impulse response of the square root cosine filter is
shown in Fig. 41.

0.08 T T T T T
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0.02 d

0.01F 1

or 4

Square root Nyquist filter impulse response
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Fig. 41. Square root Nyquist filter

10.3 Simulation results
We present in this section, the simulation results in terms of statistical parameters which are
obtained following the Monte Carlo method. The main simulation parameters are :

'Simulation parameter |Value|
Spreading factor 16

D, 200 m
Number of angle scanning 50
Oversampling factor (Nyquist filter) 8

Mean square error
The mean square error (MSE) of an estimator is used to quantify the difference between an
estimator and the true value of the quantity being estimated.

MSE(‘PC) = E[(‘Pc - 456)2] (120)

$c denotes the sample average of ¢..

Statistical error measurement

Statistical errors are also computed for different number of sensors. This helps to measure
the deviation of the estimated location target node from its mean value. Plotted curves for
statistical estimator parameters including error estimator and MSE are shown in Fig.43 and
Fig.42. These are presented as a function of the received SNR. Simulation results are presented
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for variable numbers of sensors. The obtained results show that the target sensor location is
better estimated if more collaborative sensors are used. When 16 sensors are introduced, the
error estimation is almost negligible even for low SNR value. We should note that for far
target sensor node, we obtain higher error estimation. Fig. 44 shows the plotted curves of the
estimator error as a function of SNR for D = 200m and D = 400m. 8 collaborative sensors are
deployed in the network.
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MSE (Angle in Degree)
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Fig. 42. The mean square error for variable number of sensors

11. Conclusion

Throughout this chapter, we showed that MIMO technology brings significant advances in
spectral efficiency by employing several antennas at both ends of the communication system.
The geometric channel model was rigorously described and correlated MIMO systems were
also considered. Correlation occurs in rich scattering environment mainly when antennas
are spaced close of each others. In this chapter, we were interested by MIMO processing
techniques such as diversity combining, antenna selection and beamforming. Performances
of MIMO systems involving combining techniques were evaluated. We showed that
selection schemes can reduce the system hardware complexity at the mobile while keeping
sufficient performance in MIMO systems. Beamforming processing was also presented.
Some beamforming scenarios were studied and simulated in this chapter. Then, polarization
diversity for MIMO systems was investigated and depolarization phenomena was studied
and quantified by the cross polarization discrimination XPD. When orthogonal antennas
are used, the spatial correlation effect can be reduced or eliminated due to low radiation
pattern interference. Thus, colocated multi polarized antennas can be deployed. Capacity
gain for MIMO systems with dual polarized antennas compared to single polarized antennas
was evaluated. Numerical results show that for high XPD values, single polarized antennas
perform better. We have finally presented a communication model for WSN involving two
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Fig. 44. Impact of distance between the source node and the target node
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clusters of sensors at both the transmit side and the receive side. The set of sensors located
at the transmit cluster communicating with sensor nodes located at another cluster perform
a distributed MIMO system. RSS based localization exploiting beamforming technique was
numerically developed. The mean square error and the estimator variance associated with
the target sensor location were evaluated as a function of SNR for various parameters of
simulation. The obtained results show that accurate target sensor localization based on
beamforming processing and RSS measurement could be achieved if the communication
model is properly configured. The performed localization technique could be also carried out
under more severe channel environment. Thus, convenient antenna polarization strategy for
sensors has to be determined in order to fulfill efficient target sensor localization.
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1. Introduction

The channel capacity and error-rate performance of MIMO systems could be improved by
increasing the number of transmit antennas and receive antennas and the size of
constellation used for modulation (Foschini and Gans, 1998). A main bottleneck that restricts
the practical application of MIMO system is the unsatisfactory performance of the decoding
algorithms, due to either high computational complexity required or poor symbol error-rate
(SER) performance. Maximum-likelihood (ML) decoding which employs an exhaustive
search strategy under the minimum Euclidean-distance principle can exploit all the
available diversity and provide the optimum SER performance. However, its complexity
increases exponentially with the number of antennas and the size of constellation used.
Thus, for many cases, it is impractical to implement. Several sub-optimum decoding
algorithms such as equalization-based zero-forcing (ZF) and minimum-mean-square-error
(MMSE) detectors and nulling-and-cancelling detectors (NC) have been proposed for MIMO
systems (Paulraj, Nabar and Gore, 2003). Although their computation complexities are
dramatically less, these decoding algorithms have severe degradations in SER performances.
Sphere decoding (SD) (Viterbo and Boutros, 1999) is another search-based algorithm. Unlike
the exhaustive search engaged in ML decoding, SD confines the searching zone to be inside
some hyper sphere constructed in the space spanned by the received lattice points. It can
offer optimum SER performance with reasonable complexity. Several searching strategies
such as Fincke-Pohst (Fincke and Pohst, 1985) and Schnorr-Euchner (Schnorr and Euchner,
1994) have been developed to further improve the searching efficiency in SD.

Since the minimum Euclidean-distance principle could result in an optimum SER
performance, the purpose of this chapter is to introduce another perspective of
reconsidering this principle from the transmit lattice space. In the space spanned by the
transmit lattice points, the Euclidean distance in ML decoding is found to be related to a
series of concentric hyper ellipsoids. Searching the lattice point with the minimum
Euclidean distance from the received signal vector is equivalent to searching the lattice point
that is passed through by the smallest hyper ellipsoid. Decoding algorithms following this
perspective are often called geometrical detection (Artes, Seethaler and Hlawatsch, 2003). In
this Chapter, the geometrical analysis of signal decoding for MIMO channels is presented.
Then, the ellipsoid searching decoding algorithm (Shao, Cheung and Yuk, 2009) is
described. It is an add-on detection algorithm to standard suboptimal detection schemes
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and has better error-rate performance and higher diversity gains than the standard
suboptimal detection schemes.

2. Geometrical analysis of signal decoding for MIMO channels

Consider an uncoded MIMO system with M7 transmit antennas and My receive antennas
over a fading channel. The received signal matrix is given by:

A
A

=Hx+n )

-

where feC" is the Mg-dimensional received signal vector, xeC" is the Mr-dimensional
transmitted signal vector, H e C"~r is the channel matrix and is assumed to be known at the
receiver, and neC”* is an independently and identically distributed (i.i.d.) zero-mean
Gaussian noise vector with elements having a fixed variance. Equation (1) represents a
complex transmission, and it can be transformed into a real matrix equation:

{Re(r) Re(H) -Im(H)MRe(x)}_{Re(n)}

Im(r)| |Im(H) Re(H) |[Im(x)| |Im(n) 2)
r=Hx+n
where reR™ xeR" HeR™™ and peR™.
In ML decoding, the optimal solution is given by:
X, = argmin"r-I-Is"2 3)
s

where Q is the set of all the possible transmitted signal vectors, and the term |r-Hs|’is
known as the Euclidean distance between the received vector and the transmitted vector

distorted by the channel matrix.
The Euclidean distance in ML decoding can be rewritten as:

£(s)=[r-Hs[ =(s—x,)" M*(s-x,) )

where M =(H'™H)  and x_ is the result of zero-forcing (ZF) equalization (Wolniansky,
Foschini, Golden and Valenzuela, 1998) and can be written as:

x,=(HH) H'r=x+(H'H) Hn=x+i

©)
where ( HTH)'] H'n = i - Substituting (4) into (3) yields:
X,, = argmin{(s-xL,)T HTH(s-x(,)} (6)
seQ

It can be seen from (5) and (6) that, in the absence of noise or equivalently the transformed

Gaussian noise term f = (HT H)'1 H'n, both ZF detector and ML decoding will result in the

same correct solution. The reason why ML decoding can offer much better SER performance
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than ZF lies on the fact that the transformed Gaussian noise has been minimized by the
exhaustive search used in ML decoding, but the ZF results are directly distorted by the
transformed Gaussian noise n.
Using eigenvalue decomposition, the matrix M in (4) can be decomposed as:
-1
M=(H'H) =VAV'
(n'n) o)

where A=diag(21,ﬂ.2,...,/1MT)GRNTXNT are the eigenvalues of M arranged in descending

order, and v = [VI,VZ,---,VM Je R is the corresponding eigenvector matrix (Samuel and

Fitz, 2007).

In ML decoding, the Euclidean distance function f(s) given in (4) geometrically represents
an elliptic paraboloid (Horn and Johnson, 1985) inan N, +1 dimensional space with its axis
perpendicular to an N, dimensional subspace spanned by the symbol vectors in Q. X, is
the global minimum point of the elliptic paraboloid and is located on the subspace spanned
by the symbol vectors in Q as shown in Fig. 1. It can be seen from (4) that the function f(s)
reaches its minimum value at x_,ie. f(s) = f(x,)=0. The horizontal cross-section of the
elliptic paraboloid (4) is an N, dimensional hyper ellipsoid given by:

f)=a’ ®)

where 4” represents the height of the cross section above the N, dimensional space as
shown in Fig. 1. The length and direction of i-th semiaxis of the hyper ellipsoid are given as
aJ2 and V, respectively. With different values of a°, a series of concentric hyper

Ny dimensional

- .
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Fig. 1. Elliptic paraboloid with axis perpendicular to a subspace spanned by lattice points.
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ellipsoids are obtained and can be projected onto the subspace spanned by the vectors as
shown by the dash lines in Fig. 1. Thus, searching the lattice point with minimum Euclidean
distance is equivalent to searching the lattice point that is passed through by the smallest
hyper ellipsoid.

3. Ellipsoid-searching decoding algorithm

From section 2, we know that f(s)=4* represents a hyper ellipsoid centered at point
X, with the length and direction of its i-th semiaxis given as a\/z and V,, respectively. By
choosing different values of a, a group of similar hyper ellipsoids can be obtained. Thus,
the solution of ML decoding must be located on a hyper ellipsoid which has the minimum
surface area among these similar hyper ellipsoids.

Fig. 2. Elliptic paraboloid in 3-dimensional space.

Fig. 2 shows a two dimensional lattice point space (¢, — ¢, plane) with three lattice points
Point 1, Point 2, and Point 3 as shown in the figure. With different g, a group of similar
hyper ellipsoids can be obtained, and their projection onto the ¢ —¢a, plane are ellipses
which are all centered at the point X_. For each lattice point, there exists an ellipse that
passes through it. The corresponding ellipse of the ML solution is the one that has the
minimum area. As shown in Fig. 2, Point 1 is taken to be the ML solution while Point 2 and
Point 3 are not, since it is the inner-most ellipse and thus has the minimum area.

However, finding the smallest hyper ellipsoid containing the solution signal vector is not an
easy task. If we use the largest hyper ellipsoid which contains all the signal vectors, then the
complexity will be the same as ML decoding. Here we propose an ellipsoid-searching
decoding algorithm (ESA) that uses a small hyper ellipsoid containing the solution symbol
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vector to start the search and then identify all the symbol vectors inside. The ESA consists of
the following 3 steps:

3.1 Start with zero-forcing points

It is well known that zero-forcing (ZF) decoding is one form of linear equalization
algorithm. Although it cannot offer very high performance like ML decoding, its solution
however usually lies in the neighborhood of the transmit signal point. Thus we can consider
choosing the hyper ellipsoid that goes through the ZF solution to start the search. First, the
ZF equalized x_ is solved. Then its corresponding a; is computed. The starting hyper
ellipsoid is obtained as: ‘

f(xzj):aff )

3.2 Determine a circumscribed hyper rectangle

After determining the hyper ellipsoid, the next key task is to identify whether there are any
lattice points located inside this hyper ellipsoid. The axes of the N, -dimensional
rectangular coordinate system for the lattice point space are denoted as ¢, - axes. Since the
directions of the hyper ellipsoid’s semiaxes are not in parallel with the axes of the coordinate
system of the lattice point space, it is rather complicated to directly use the surface equation
(9) of the hyper ellipsoid. Here we propose to use a circumscribed hyper rectangle as
follows.

We set up a new N;-dimensional rectangular coordinate system with «;- axes
(i=1,2,3,..,N;) which coincide with the i-th semiaxis of the hyper ellipsoid and has the
origin coincides with the global minimum point x, . We use the superscript prime to denote
the variables in the new coordinate system. The coordinates of the 2T apexes of the
circumscribed hyper rectangle in this new coordinate system are given by:

k) =[x %)020, ] (10)
wherep=1,2,3,..2"1, xyi =tay JA; ,and a, is related to the hyper ellipsoid given by (9).

It can be easily shown that, by using coordinate transformation, the coordinates of the 2"
apexes in the original lattice point space are:

K =V-(k,) +x, (11)

where V is the eigenvector matrix in (7), and it serves as the transformation matrix:

i Voo Vst Vaa
Vi2 Vo Vi v VY
\& :|:V1’V2’“"VNT:|: Vis, V3o Vi3 otV (12)

N3

Ve Yoy Vawe o Vg, |



62 MIMO Systems, Theory and Applications

Thus the value of the i-th component of k, can be obtained as:

Ny
!

xpi = Z(tiqu ) X

(13)

where x; is the i-th component of X, . Since X, =a, /,1q , the maximum and minimum

. . ! .
boundaries in the ¢, - axes for each component in kcan be expressed as:

Ny

X oy = Xt ; RN (14.1)
Ny

Xi min = Xei T qZ::, quazf\/z (14.2)

Since the circumscribed hyper rectangle encloses the hyper ellipsoid, so any lattice point
= [Sl Sy e Sy J inside the hyper ellipsoid satisfies:

o

X <s, <X i=1,23,.,N,

i_min i_max (15)
It should be noted that this is not a sufficient condition for identifying the lattice points lying
inside the hyper ellipsoid.

From (15), we can obtain the possible value set £ = {8. £, 5.3,---} for the i-th element of the

i1°%i2>%i
lattice points located inside the hyper ellipsoid. So the search set becomes a larger hyper
rectangle that encloses the circumscribed hyper rectangle. For PAM and QAM, the elements

of ¢, are the odd numbers between x;, and x; ., and it can be easily shown that the

J _max
J (16)

3.3 Narrow the search set into ellipsoid

As mentioned before, the search set becomes a larger hyper rectangle and the number of

number of elements is:

Np
Num, = [Z
q=1

V4,

lattice points inside is ﬁ Num, - If there is any Num, equals zero, then it means that there is
i=1,i#l

no lattice point located inside the hyper ellipsoid. The searching process will terminate and
the zero forcing point chosen before is considered as the solution.

Otherwise, assuming the possible value set £, has the largest number of elements among
all the possible value sets, we form the combinations from the other N, -1 possible value
sets, and then substitute each of these combinations into (9), to determine the lattice point
elements of the possible value set & that are located inside the hyper ellipsoid. In doing so,
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the number of combinations that need to be considered is smaller and hence lesser
computation complexity. Denoting the k-th combination by:

k _
Com - |:gl,k H gz,k >t gw—],k’ gw+l,k T g/VT,k :| (17)
NT
k=12,.., [ Num,
j=ljzo

where &, represents an arbitrary element of the set ¢ .

Geometrically, the Com* is a line pierced through the hyper ellipsoid. The intersection of

the line and the hyper ellipsoid consists of two points, knownas E  and E_  along the

Lk k

@-th axis. Hence, the corresponding possible value set £, = {%,1,/(’%,2,“-'-} for the w-th

element of the lattice points are the odd numbers between E_  and E . . . Thus, any

Lk
lattice point that is located inside the hyper ellipsoid can be expressed as:

T
Xope = |:gl,k’€2,k" koS od ko Cork SNT,k:| (18)
d=12,.,n
where 7, is the number of the elements of {,, for Com.

Finally, we calculate the corresponding a” of each lattice point x .« Py (8). The point with
the minimum «” is the solution.

3.4 Examples

a. 2-D lattice space

For a 2x2 8-PAM MIMO system, the lattice set is a 2-dimensional space as shown in Fig. 3,
where it is assumed that the ellipse and its circumscribed rectangle have been determined
using our proposed method as described previously. The semiaxes of the ellipse are in
parallel with vectors V, and Vv, with lengths 4 .[2 anda,.[2,, respectively. The global
minimum point x_ is marked by a triangle on the figure. The coordinates of the four apexes,
A, B, C and D, in the new coordinate system are given by 4 :(—a » \/Z ,—a;,\/Z ),
B= (_aZf 4 ’+a2_/’\/z)’ C= (az/'\/z’_a;f\/z)’ and D= (“:f Aty ) , Tespectively.
Substituting these vectors into (13) yields the corresponding coordinates in the lattice point
space. From (14), the x, coordinates of points A and D are chosen as x,

in

and X max 7
respectively, and the x, coordinates of points B and C are chosen as x, . and xzimax,
respectively. Using (15), we can obtain a possible set of values along each axis, i.e., two
values {1, 3} along the x -axis and one value {1} along the x,-axis. Since the number of
values along the x -axis is larger than that along the x,-axis, we substitute &) =1 into the
hyper ellipsoid equation (9). As shown in Fig. 3, the possible value along the x, -axis
is¢g, =3, so the point x =[3 1] is obtained. Since it is the only point located inside the
ellipse, it would be the final solution.
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Fig. 3. 2-D lattice space example
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Fig. 4. 3-D lattice space example
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b. 3-D lattice space

Here, we continue to consider the case of 3-dimensional lattice space, namely 3 x 3 8-PAM.
Fig. 4 shows a 3-dimensional ellipsoid with its circumscribed rectangle which has been set
up by the method introduced in section 3.2. x_ is the center of the ellipsoid, whose semiaxes
are aligned along vectors V,, V,, V,, with their lengths being a_,,JZ , a;,-@ and az/\/z ,
respectively. By substituting the coordinates of the eight points A to H to (13) and (14), the
boundary points X in and X v’ %o min and X5 i ? which are all marked as
dots, are obtained. The possifole set of values along x,-axis is {1,73, 5}, and the possible set of
values along the x,-axis is {1, 3}. Along x,-axis, the possible set of value is {-1}. Since the
number of possible values along the x,-axis is the largest compared to those along the other
axes, we substitute Com' :[5251,33711 :[1,—1] and Com? :[gzvzjglz] = [3,—1] into (9) to
determine Emax’ . and Emim . along the x,-axis. As shown in Fig. 4, the possible value set <,
along the x,-axis is {1} for Com' and ¢, is {5} for Com’, so the point X, = [1 1 —1]T
and the point X, = [ 5 3 —1]T are obtained. By calculating their corresponding a?, it can
be concluded that the point x, , that has a smaller a’ is taken as the final solution.

min

and x27max’ x37

3.5 Results and conclusion

The ESA algorithm for MIMO systems has been briefly introduced. It contains three main
steps: Firstly, determine the hyper ellipsoid. Secondly, find out the probable value sets for
each component of the lattice point that is located in the hyper ellipsoid. Finally, search for
the ML solution. In the first step, either ZF detector or MMSE detector can be selected for
determining the hyper ellipsoid. In the second step, we firstly determine a loose boundary
for each component of the lattice points that may be located in the hyper ellipsoid. Then, by
further shrink the value set of the Nr-th component, all the redundant points can be
discarded and the lattice points inside the hyper ellipsoid are exactly detected.

Since the ESA algorithm uses the same criteria (3) of ML to make decision, it can thus
achieve the same performance as ML decoding. However, the ML decoding searches the
entire lattice space for solution while the ESA algorithm only searches a smaller subset, thus
ESA is more computation efficient. Simulation results of various algorithms on the error rate
performance are shown in Fig. 5 and Fig. 6 for comparison. In the simulations, we used 4-
QAM, 16-QAM , 64-QAM in Rayleigh flat fading Channels with ii.d. complex zero-mean
Guassian noise. Fig. 5 illustrates the SER performance of ESA compared with ML decoding,
ZF detector and MMSE detector using 4-QAM. Fig. 6 shows the SER performance of ESA
compared with ML decoding ZF detector and MMSE detector using 16-QAM and 64-QAM.
The performances of ESA can achieve the same performance as the ML decoding and are
much better than the sub-optimum detectors.

4. Conclusion

In this chapter, the geometrical analysis of signal decoding for MIMO channels is presented.
The ellipsoid searching decoding algorithm using geometrical approach is introduced. It is
an add-on to standard suboptimal detection schemes and has better SER performance and
higher diversity gains compared to the standard suboptimal detection schemes. It is able to
provide the same optimum SER performance as in the ML decoding but with less
complexity as only a subset of the lattice points are examined.
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Fig. 5. Comparison of SER performance of ESA, ML decoding, ZF and MMSE using 4-QAM.
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1. Introduction

In recent years, Multi-Input Multi-Output (MIMO) communications are introduced as an
emerging technology to offer significant promise for high data rates and mobility required
by the next generation wireless communication systems. Using multiple transmit as well as
receive antennas, a MIMO system exploits spatial diversity, higher data rate, greater
coverage and improved link robustness without increasing total transmission power or
bandwidth (Tse & Viswanath, 2005). However, MIMO relies upon the knowledge of
Channel State Information (CSI) at the receiver for data detection and decoding. It has been
proved that when the channel is Rayleigh fading and perfectly known to the receiver, the
performance of a MIMO system grows linearly with the number of transmit or receive
antennas, whichever is less (Numan et al., 2009). Therefore, an accurate and robust channel
estimation is of crucial importance for coherent demodulation in wireless MIMO systems.

Use of MIMO channels, when bandwidth is limited, has much higher spectral efficiency
versus Single-Input Single-Output (SISO), Single-Input Multi-Output (SIMO), and Multi-
Input Single-Output (MISO) channels. It is shown that the maximum achievable diversity
gain of MIMO channels is the product of the number of transmitter and receiver antennas.
Therefore, by employing MIMO channels not only the mobility of wireless communications
can be increased, but also its robustness against fading that makes it efficient for the
requirements of the next generation wireless services. To achieve maximum capacity and
diversity gain, some optimization problems should be considered (Yatawatta et al., 2006).

The emergence of MIMO communication systems as practical high-data-rate wireless
communication systems has created several technical challenges to be met. On the one hand,
there is potential for enhancing system performance in terms of capacity and diversity. On
the other hand, the presence of multiple transceivers at both ends has created additional cost
in terms of hardware and energy consumption. For coherent detection as well as to do
optimization such as water filling and beamforming, it is essential that the MIMO channel is
known. However, due to the presence of multiple transceivers at both the transmitter and
receiver, the channel estimation problem is more complicated and costly compared to a
SISO system. Of concern, however, is the increased complexity associated with multiple
transmit/receive antenna systems. First, increased hardware cost is required to implement
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multiple Radio Frequency (RF) chains and adaptive equalizers. Second, increased
complexity and energy is required to estimate large-size MIMO channels. Energy
conservation in MIMO systems has been considered in different perspectives. For instance,
hardware level optimization can be used to minimize energy. On the other hand, energy
consumption can be minimized at the receiver by using low-rank equalization or/and
reducing the order of MIMO systems by selection of antennas both at the receiver and
transmitter, without degrading the system performance (Karami & Shiva, 2006).
In order to attain the advantages of MIMO systems and quarantee the performance of
communication, effective channel estimation algorithms are needed. Many channel
estimation (identification) algorithms have been developed in recent years. In the literature,
three classes of methods to estimate the channel response are presented. They include
Training Based Channel Estimation (TBCE) schemes relying on training sequences that are
known to the receiver (Xie et al., 2007: Biguesh & Gershman, 2006: Nooalizadeh et al., 2009:
Nooralizadeh & Shirvani Moghaddam, 2010), Blind Channel Estimation (BCE) methods
(Sabri et al., 2009: Panahi & Venkat, 2009: Chen & Petropulu, 2001), identifying channel only
from the received sequences, and Semi Blind Channel Estimation (SBCE) approaches as
combination of two aforementioned procedures (Cui & Tellambura, 2007: Wo et al., 2006:
Chen et al., 2007: Abuthinien et al., 2007: Khalighi & Bourennane, 2008).
One of the most usual approaches to identify MIMO CSI is TBCE. This class of estimation is
attractive especially when it decouples symbol detection from channel estimation and thus
simplifies the receiver implementation and relaxes the required identification conditions. In
this scheme, the channel is estimated based on the received data and the knowledge of
training symbols during training symbol transmit. Then, the acquired knowledge of the
channel is used for data detection. TBCE schemes can be optimal at high Signal to Noise
Ratios (SNRs), but they are suboptimal at low SNRs. The optimal choice of training signals
is usually investigated by minimizing Mean Square Error (MSE) of the linear MIMO channel
estimator. It is perceived that optimal design of training sequences is connected with the
channel statistical characteristics (Hassibi & Hochwald, 2003).
Many blind channel estimation techniques can be found in the literature, and a good
overview is given in (Tong & Perreau, 1998). The blind channel estimation methods can be
classified into Higher-Order Statistics (HOS) based techniques (Cardoso, 1989: Comon, 1994:
Chi et al., 2003) and Second Order Statistics (SOS) based techniques (Chang et al., 1997).
Blind algorithms typically require longer data records and entail higher complexity.
Semi-blind channel estimation schemes, as the main core of this chapter, use a few training
symbols to provide the initial MIMO channel estimation and exchange the information
between the channel estimator and the data detector iteratively (Fang et al., 2007). The main
steps of proposed SBCE-ML method (Shirvani Moghaddam & Saremi, 2010) are as follows:
Step 1. Initial channel estimation by using the training only;
Step 2. *Given channel knowledge, perform data detection;

*Given data decisions, perform channel estimation by taking the whole burst as a

virtual training;

Step 3. Repeat step 2 until a certain stopping criterion is reached.
Several solutions have been proposed to minimize the computational cost, and hence the
energy spent in channel estimation of MIMO systems. In (Yatawatta et al., 2006) authors
present a novel method of minimizing the overall energy consumption. Unlike existing
methods, this method considers the energy spent during the channel estimation phase
which includes transmission of training symbols, storage of those symbols at the receiver,
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and also channel estimation at the receiver. Also they developed a model that is
independent of the hardware or software used for channel estimation, and use a divide-and-
conquer strategy to minimize the overall energy consumption.

In (Numan et al.,, 2009), a better performance and reduced complexity channel estimation
method is proposed for MIMO systems based on matrix factorization. This technique is
applied on training based Least Squares (LS) channel estimation for performance
improvement. Experimental results indicate that the proposed method not only alleviates
the performance of MIMO channel estimation but also significantly reduces the complexity
caused by matrix inversion. Simulation results show that the Bit Error Rate (BER)
performance and complexity of the proposed method clearly outperforms the conventional
LS channel estimation method.

In (Song & Blostein, 2004), authors focused on the achievable Symbol Error Rate (SER)
performance of a MIMO link with interference. Prior results on estimation of vector
channels and spatial interference statistics for Code Division Multiple Access (CDMA) SISO
systems. Most studies of channel estimation and data detection for MIMO systems assume
spatially and temporally white interference. For example, Maximum Likelihood (ML)
estimation of the channel matrix using training sequences was presented assuming
temporally white interference. Assuming perfect knowledge of the channel matrix at the
receiver, ordered Zero-Forcing (ZF) and Minimum Mean Squared Error (MMSE) detection
were studied for both spatially and temporally white interference. However, in cellular
systems, the interference is, in general, both spatially and temporally colored. This paper
proposes a new algorithm that jointly estimates the channel matrix and the spatial
interference correlation matrix in an ML framework. It develops a multi-vector-symbol
MMSE data detector that exploits interference correlation.

In (Zaki et al., 2009), a training-based channel estimation scheme for large non-orthogonal
Space-Time Block Coded (STBC) MIMO systems is proposed. The proposed scheme
employs a block transmission strategy where an N, x N, pilot matrix is sent (for training
purposes) followed by several N, x N, square data STBC matrices, where N, is the number of
transmit antennas. At the receiver, channel estimation (using an MMSE estimator) and
detection (using a low-complexity Likelihood Ascent Search (LAS) detector) will be iterated
till convergence or for a fixed number of iterations. Simulation results of this research show
that good BER and high capacity are achieved by the proposed scheme at low complexities.
Joint channel estimation, data detection, and tracking are the most important issues in
MIMO communications. Without joint estimation and detection, inter substream
interference occurs. Joint estimation and detection algorithms used in MIMO channels are
developed based on MultiUser Detection (MUD) algorithms in CDMA systems. ML is the
optimum detecor in these type of joint channel estimation and data detection algorithms. In
(Karami & Shiva, 2006), a new approach for joint data estimation and channel tracking for
MIMO channels is proposed based on the Decision-Directed Recursive Least Squares (DD-
RLS) algorithm. RLS algorithm is commonly used for equalization and its application in
channel estimation is a novel idea. In this paper, after defining the weighted least squares
cost function it is minimized and eventually the RLS MIMO channel estimation algorithm is
derived. The proposed algorithm combined with the Decision-Directed Algorithm (DDA) is
then extended for the blind mode operation. From the computational complexity point of
view being O(3) versus the number of transmitter and receiver antennas, the proposed
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algorithm is very efficient. Also, through various simulations, the MSE of the tracking of the
proposed algorithm for different joint detection algorithms is compared with Kalman
filtering approach which is one of the most well-known channel tracking algorithms.

The aim of (Rizogiannis et al., 2010) is to investigate receiver techniques for ML joint
channel/data estimation in flat fading MIMO channels, that are both data efficient and
computationally attractive. The performance of iterative LS for channel estimation combined
with Sphere Decoding (SD) for data detection is examined for block fading channels,
demonstrating the data efficiency provided by the semi-blind approach. The case of
continuous fading channels is addressed with the aid of RLS. The observed relative
robustness of the ML solution to channel variations is exploited in deriving a block QR-
based RLS-SD scheme, which allows significant complexity savings with little or no
performance loss. The effects on the algorithms” performance of the existence of spatially
correlated fading and Line-Of-Sight (LOS) paths are also studied. For the multi-user MIMO
scenario, the gains from exploiting temporal/spatial interference color are assessed. The
optimal training sequence for ML channel estimation in the presence of Co-Channel
Interference (CCI) is also derived and shown to result in better channel estimation/faster
convergence. The reported simulation results demonstrate the effectiveness, in terms of both
data efficiency and performance gain, of the investigated schemes under realistic fading
conditions. High throughput at a communication systems require high quality channel
estimation at the receiver in order to provide reliable data detection, such as that performed
by ML techniques. The channel estimation task is especially challenging in time varying
channels, such as the one soften arising in wireless communication links.

This paper (Wo et al., 2006) deals with joint data detection and channel estimation for
frequency-selective MIMO systems with focus on the analysis of the channel estimator. First,
it presents a scheme alternating between joint Viterbi detection and LS channel estimation
and analyze its performance in terms of unbiasedness. Since in the proposed technique the
channel estimator exploits both known pilot symbols (non-blind) as well as unknown
information bearing symbols (blind), this channel identification scheme is referred to as
semi-blind. Second, it derives the Cramer-Rao Lower Bound (CRLB) for semi-blind channel
estimation of frequency selective MIMO channels, which provides a theoretical lower bound
of the achievable MSE of any unbiased estimator. By simulation the MSE performance of the
proposed algorithm is evaluated and compared to the CRLB. The obtained results are
universal for systems with an arbitrary number of antennas and an arbitrary channel
memory length. As an example, a SBCE algorithm with LS channel estimator and ML data
detector will be first introduced and analyzed. It will be shown that the presented semiblind
channel estimator is biased at low SNR but tends to be unbiased at high SNR. Interestingly
but reasonably, the MMSE achievable by any unbiased channel estimator at high SNR will
be the same as that all data symbols are a-priori known at the receiver, but only the training
symbols are known at low SNR. Simulation results show that the MSE performance of the
presented SBCE coincides with the CRLB at high SNRs but exceeds CRLB at low SNRs due
to biasing. Of particular interest is the SNR value where a semiblind channel estimator begin
to approach the CRLB, which means that a SBCE will be able to fully exploit the channel
information carried by all observations for SNRs larger than this value.

Reliable coherent communication over mobile wireless channels requires accurate
estimation of time-varying multipath channel parameters. Traditionally, channel estimation
is achieved by sending training sequences or using pilot channels. Recently, there is a
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growing interest in training or pilot-based channel estimation for Direct Sequence CDMA
(DS-CDMA) systems. In (Rizanera et al., 2005), authors address the problem of mobile radio
channel estimation at high channel efficiency using a small number of training symbols. A
decision aided channel estimation scheme is proposed for slow fading multipath DS-CDMA
channels. The approach is an extension of single-user LS channel estimation. It is
demonstrated that, due to the suggested channel estimate updating algorithm, the proposed
scheme improves the channel estimation accuracy significantly. An adaptive method has
been considered to provide channel estimates. In this method, the received signal is
correlated with the locally generated spreading code at each multipath delay for channel
estimation at each symbol interval.

By using MIMO technology an increase in the system capacity and/or an improvement in
the quality of service can be achieved. The key to fully utilize the MIMO capacity relies
heavily on the requirement of accurate MIMO channel estimation. This chapter have a
review on TBCE as well as SBCE methods and offers some comparative simulation results.
Simulations are done in different cases, MIMO 2x2 with and without space-time Alamouti
coding, and also MIMO 4x4 to see the effect of the number of antenna elements. In addition,
performance of different estimators, LS, Linear MMSE (LMMSE), ML and Maximum A’
Posteriori (MAP) are evaluated based on BER and SER with respect to perfect channel
estimator. It also proposes the proper method to estimate flat fading MIMO channels that
uses LS estimator and ML detector in a joint state.

2. System model

Consider a MIMO system equipped with Ny transmit antennas and Ny receive antennas.
The block diagram of a typical MIMO 2x2 is shown in Fig. 1.
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>
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®
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Fig. 1. General architecture of a MIMO 2x2.
where x4, x; are the input (transmitted) signals of time slot 1 in locations A and B,
respectively. x1, x, are associated input signals of time slot 2.

It is assumed that the channel coherence bandwidth is larger than the transmitted signal
bandwidth so that the channel can be considered as narrowband or flat fading. Furthermore,
the channel is assumed to be stationary during the communication process of a block.
Hence, by assuming the block Rayleigh fading model for flat MIMO channels, the channel
response is fixed within one block and changes from one block to another one randomly.
During the training period, the received signal in such a system can be written as (1)
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Y=HX+N Q)

where ¥, X and N are the complex Np-vector of received signals on the Ny receive antennas,
the possibly complex Np-vector of transmitted signals on the Ny transmit antennas, and the
complex Ng-vector of additive receiver noise, respectively. The elements of the noise matrix
are independent and identically distributed (i.i.d.) complex Gaussian random variables with
zero-mean and o} variance, and the correlation matrix of N is then given by (Ma et al., 2005):

R = E{NY.N} = 6}.Ng.Iy, ()

where (.)H is reserved for the matrix hermitian, E{.} is the mathematical expectation, and Iy,
denotes the Np X Np identity matrix. Np is the number of transmitted training symbols by
each transmitter antenna. The matrix H in the model (1) is the Ny x Ny matrix of complex
fading coefficients. The (m, n)-th element of the matrix H denoted by h,, , represents the
fading coefficient value between the m-th receiver antenna and the n-th transmitter antenna.
Here, it is assumed that the MIMO system has equal transmit and receive antennas.

The elements of H and noise are independent of each other. In order to estimate the channel
matrix, it is required that Np > Ny training symbols are transmitted by each transmitter
antenna. The function of a channel estimation algorithm is to recover the channel matrix H
based on the knowledge of Y and X (Shirvani Moghaddam & Saremi, 2010).

As depicted in Fig. 1, output (received) signals in locations C and D are as follow:

Yn1 = h1. X1 + hap.xp + 1y
Yn2 = hiz. %1 + hyp. x5 + 1
1 ! ’ ’ (3)
Yn1 = hy1. 21 + hyp. 25 + 14
Vnz = Mz X1 + hop. Xy + 15

where y,1, ¥, are the output signals of time slot 1 in locations € and D, respectively. ¥, Y2
are associated output signals of time slot 2. ny,n,,ny,n; are independent Additive White
Gaussian Noises (AWGN). In (Alamouti, 1998), Alamouti proposed the first space-time
coding for a MIMO 2x2 system. The proposed matrix is as follow:

G= S1 52]

i @
which means that in the first time slot, s; and s, will be sent and in the second one, —s; and
s; will be transmitted. Following equations can be used to decoding process:

{fi = hi1.y11 + hi2.y12 + ho1. Y21 + hoa. ¥z )
Xy = h1z.y11 = ha1. Y12 + Moz Yo1 = ho1.y2,

This kind of coding is used in this research. Simulation results show its great effect on the
performance of the channel estimators in both TBCE and SBCE-ML schemes.

3. Channel estimators

As illustrated in Table 1, there are many algorithms to estimate the channel response from
training sequence. As shown in introduction and also (Leus & Von Der Veen, 2005: Murthy
et al., 2006), LS, LMMSE, ML, and MAP are the famous and more applicable estimators. In
this investigation, perfect estimator (inverse matrix) is a proper reference to compare the
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estimators. This reference method offers minimum BER in the case of a Rayleigh flat fading

MIMO channel or AWGN.
Channel Estimator Estimation Formula
Perfect Hperpect = Y. X71
LS Hys= (XH.X)"LxHY
LMMSE Hyyuse = (02.Cit + X1 X)"L.xHy
ML Hy, = (XH.Cp.X) L. XH.Cy.Y
MAP Hyap = (X1.C7LX +Cp) L. XH.CoLY

Table 1. Different Channel Estimators
where ()71 is reserved for the matrix inverse, Cy and C,, denote channel and noise

covariances, respectively.

3.1 Perfect estimator

Perfect estimator is the simplest algorithm to estimate the channel matrix. By setting the
noise equal to zero in (1), the perfect approach estimates the channel matrix as

Using equation (6), sub-channel r

Substituting (7) back into noise-free version of (3), input signals can be expressed as

— -1
HPerfect =Y.X (6)
esponses are simply obtained by
yr _Yn1 1
oo =m_X M n Tl
ll_x x'(xr_x_zxr
1 1 2 X1. 1
1 _Yn2 1
h _ Ynz _ Xz (ynz %1 'xl)
12 X xS xh-Zx!
X1 7
! _mxr ( )
Ynai=% %
h21 Xl —%2 57
2 xl' 1
yho20
h22 = %2,
27 %
_ Yn2-h11-R12.Yn1
— In1 h21'(h11-hzz—h12~h21)
Xiest = his
x — Ynz2-h11—h12.Yn1
265 hyyhgp—hip by
n2-h11-h12y7 (8)
v _h21‘(3’n2- 11— 12-}’n1)
’ _ o hi1.hpp—h1z.hp1
X1est = his
’ _ Ynz-hi1—Riz Y1
X2est =

hll'hZZ _h'12'h'21

where x¢5, X005: are the estimated input signals of time slot 1 in locations 4 and B, and
X1est» X9ese are associated estimated input signals of time slot 2, respectively.
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3.2 LS estimator
Considering (1), LS estimator finds H,g so that X.H,s = ¥. LS Algorithm, minimizes the
Euclidian distance of X. Ho5, — Y. For this minimization we do following steps:

”X- Hest - YHZ = (X- Hest - Y)H- (X- Hest - Y) =
(X.Hos)".(X.Hogp) =Y. X H,gp — (X.Hos)H.Y + YH Y )

By differentiating (9) with respect to H,s; and setting the result equal to zero, it is obtained
that H,g, should satisfy the equation (10)

2XH X.H, —2X".Y =0 - XU X.H,y = XH.Y (10)

Finally, the LS channel estimation algorithm is based on (11)

Hg= X1.X)"L.xHy (11)

3.3 LMMSE estimator
For linear model (1), the MMSE and LMMSE estimators are identical. So, let us minimize the
estimation MSE of H. It can be expressed in the following form:

Himumse = min E{||H — Hoq||?} (12)
Assuming E(H) = 0 and noise is AWGN, we can obtain that (12) will be minimized as

HLMMSE = (O‘,%Cgl +XH.X)_1.XH.Y (13)
Comparing (13) and (11), it is obvious that

HLMMSE - HLS = 0-,%CHXHY (14)

(14) shows that LMMSE needs to find an additional term compared to LS estimator. This
term depends on previous data and introduces more computational complexity.

3.4 ML estimator
To identify H from (1), the ML approach maximizes (15)

Hy,, = maxy p(Y|H) (15)

where p(Y|H) is the conditional probability of received signal respect to channel response. It
is given that the ML channel estimator (15) yields

Hy,= (X".cy. X)L XH.Ch. Y (16)

3.5 MAP estimator

In order to estimate the channel response, in addition training bits, MAP estimator needs to
find channel covariance as well as noise covariance. MAP channel estimate is in accordance
with previous conditional probability p(H|Y,X). MAP channel estimate can be found by
solving the following equation:

dln(p(H|Y,X)) _
a—HlH:HMAF =0 (17)
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By using the Bay’s identity (18) and solving the equation (17), MAP channel estimate can be
found as (19)
_ p(YIHX).p(HX)

p(HIY,X) = oo (18)

HMAP S (XHC‘,;lX + CH)_I.XH. C{ly (19)

4. Simulation results of TBCE

In order to compare the performance of LS, LMMSE, ML, and MAP estimators in TBCE for
MIMO channels, three cases, MIMO 2x2 without coding, MIMO 4x4, and Alamouti coded
MIMO 2x2 are simulated. Simulation results show the performance of different estimators
in terms of three metrics (BER, SER, and required processing time). For the sake of
simplicity and without loss of generality, we assume Rayleigh flat fading MIMO channel
with AWGN, 4QAM modulation, 8 training bits for MIMO 2x2 (N; = Ny = 2) and 32 bits
for MIMO 4x4 (N; = Ny = 4) which are generated randomly and followed by 400 data bits.
It is notable that when each point in our figures is obtained by averaging over 1000
independent simulation runs, the numerical and analytical results are almost identical.

Fig. 2 shows the BER as well as SER of different estimators in the case of TBCE. As depicted,
LS estimator has the better peformace (Lower BER and SER) rather than LMMSE, ML and
MAP estimators and its performance is close to the perfect one.
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Fig. 2. Performance metrics (BER, SER) versus SNR for a MIMO 2x2 (TBCE).

As shown in Fig. 3, increasing the number of transmit antennas leads to increase the
performance estimators, but it is highlighted in LS. It means, the performance of LS
algorithm in a MIMO 4x4 system is improved respect to MIMO 2x2. As before, increasing
the SNR is the reason for decreasing BER and SER of all estimators but it is more effective
for LS one.

The BER and SER of TBCE versus SNR for various channel estimators in the case of MIMO
2x2 with Alamouti coding, are shown in Fig. 4. Comparing Fig. 4 and Fig. 2, it is observed
that the BER and SER of all estimators are decreased using Alamouti coding especially at
low SNRs.

Considering the processing time of TBCE equipped with prefect estimator equal to 100, Fig.
5 shows the processing time for other estimators respect to the perfect one. As expected,
minimum processing time belongs to LS estimator.
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Fig. 3. Performance metrics (BER, SER) versus SNR for a MIMO 4x4 (TBCE).
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Fig. 4. Performance metrics (BER, SER) versus SNR for an Alamouti coded MIMO 2x2 (TBCE).

5. Simulation results of SBCE

For pure TBCE schemes, a long training is necessary in order to obtain a reliable MIMO
channel estimate which reduces the system bandwidth efficiency considerably. SBCE-ML
schemes require less computational complexity than blind methods and fewer training
symbols than training-based methods, making them attractive for practical implementation.
TBCE algorithms use only the training sequences to perform channel estimation, while a
SBCE algorithm takes the data symbols also into account. Since the data symbols are
practically unknown, before they can be used for channel estimation, the receiver has to
perform detection in advance. Thus, the task of channel estimation changes into joint
estimation of channel and data symbols.

By refining the channel estimate and the data decisions in a recursive manner, considerable
performance gain can be achieved step by step. As depicted in Fig. 6, in an iterative
structure, output of estimator is applied to detector for detecting data bits and also output of
detector is applied to the estimator as virtual bits and to estimate the channel again. This
iterative procedure runs until a criterion is achieved [Shirvani Moghaddam & Saremi, 2010].
For example, difference of estimation for two successive iterations is lower than a level. LS,
LMMSE, ML and MAP estimators may be used in estimation part but ML detector is more
attractive in semi-blind joint estimation and detection schemes. In the first step, channel
response is estimated considering short training bits. Then, by using the ML detector,
symbols are detected according to (20):

Xt = argmingey {”Y—H)?”i} (20)
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Fig. 5. Relative processing time of different estimators with respect to perfect one in a
MIMO 2x2 (TBCE).
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Fig. 6. Iterative structure of channel estimation and data detection in SBCE.

where H,g is used for detecting X,; and previous detected data is the virtual training
sequence to next estimation. ||.||[r denotes the Frobenius norm. This process will be
continued until (21) be satisfied.

(Hest,i'Xest,i) = (Hesti-1, Xest,i-1) (1)
The proposed method can be summarized as follow:
1. i = 0: H, (i denotes the iteration index);
2.i=i+1;
a.ML Data Detection
b.Channel Estimation
3.Repeat step 2 until (Hegi Xesr:) = (Heostio1 Xestio1)

In the next subsections, simulation results of SBCE-ML method for a Rayleigh flat fading
MIMO system in three cases, MIMO 2x2 (with and without Alamouti coding) and MIMO
4x4 are presented. For this type of channel estimation, 8 and 32 training bits are used for
MIMO 2x2 and MIMO 4x4, respectively followed by 40000 data bits. simulation results of
SBCE scheme are presented to find the efficient estimator with good performance (BER as
well as SER) and lower processing time.
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Fig. 7 illustrates the BER as well as SER of SBCE-ML using various estimators versus
different SNR for a Rayleigh flat fading MIMO 2x2 channel. It is obvious that, increasing
SNR is the reason for decreasing both BER and SER. As depicted, not only the performance
of LS algorithm is better than other estimators but also is close to the perfect one.

Fig. 7. Performance metrics (BER, SER) versus SNR for a MIMO 2x2 (SBCE-ML).

Increasing the number of transmit antennas leads to decreasing the performance estimators,
except LS. As shown in Fig. 8, the performance of LS algorithm in a MIMO 4x4 system is
improved respect to MIMO 2x2. In the other hand, a power gain or SNR improvement will
be achieved. For example in SBCE-ML, transmitting power will be saved about 3 dB, if BER
equals to 0.3.
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Fig. 8. Performance metrics (BER, SER) versus SNR for a MIMO 4x4 (SBCE-ML).

The BER and SER of SBCE-ML method versus SNR for various channel estimators in the
case of MIMO 2x2 with Alamouti coding, are shown in Fig. 9. it is observed that the LS
estimator outperforms the other estimators especially at low SNRs.
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Fig. 9. Performance metrics (BER, SER) versus SNR for an Alamouti coded MIMO 2x2
(SBCE-ML).
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Fig. 10 shows the processing time for different estimators (LS, LMMSE, ML, MAP) with
respect to the perfect estimator in SBCE-ML scheme. In this figure, required time for perfect
one is considered as 100 and other estimators’ processing time is evaluated based on the
perfect one. It is obvious that minimum processing time belongs to LS estimator.

SBCE-ML
100
95 958 964
89 I I E
Perfect LS LMMSE ML MAP

Fig. 10. Relative processing time of different estimators with respect to perfect one in a
MIMO 2x2 (SBCE).

6. Comparison of LS-based TBCE and joint LS-estimation & ML-detection
SBCE

Simulation results of TBCE and SBCE-ML methods show that the required processing time
and both BER and SER of LS estimator compared with other estimators is much better. In
this section by focusing on LS estimator, LS-based TBCE and LS-based SBCE-ML are
compared in a MIMO 2 x 2 (with and without Alamouti coding) and a MIMO 4x4, for
different SNRs based on BER, SER, required channel estimation processing time and relative
length of training bits.

Fig. 11 indicates the BER and SER metrics of LS-based TBCE and LS-based SBCE-ML
schemes for different SNRs. As shown, for both TBCE and SBCE-ML methods, increasing
SNR is the reason for decreasing both BER and SER. As depicted in this figure, SBCE-ML
offers a bit better performance rather than TBCE.
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Fig. 11. Performance metrics (BER, SER) of LS-based TBCE and SBCE-ML schemes in
different SNRs for a MIMO 2x2.
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As shown in Fig. 12, the performance of both LS-based TBCE and SBCE-ML schemes in a
MIMO 4x4 system is improved respect to MIMO 2x2. In the other hand, a power gain or
SNR improvement will be achieved. For example in SBCE-ML, transmitting power will be
saved about 3 dB, if BER equals to 0.3. In TBCE method, for BER equals to 0.2, transmitting
power will be saved about 0.5 dB. It is worthwhile to note that the excess of transmit or/and
receive antennas in MIMO systems leads to a higher capacity.
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Fig. 12. Performance metrics (BER, SER) of LS-based TBCE and SBCE-ML schemes in
different SNRs for a MIMO 4x4.

The BER and SER of both LS-based TBCE and SBCE-ML schemes versus SNR in the case of
MIMO 2x2 with Alamouti coding, are shown in Fig. 13. As shown in this figure, when SNR
equals to 0.25 dB, BER is 0.0130 for SBCE-ML and 0.0386 for TBCE. It means 3 times better
performance in lowest SNRs for SBCE-ML method rather than TBCE one. At higher SNRs,
the performance of LS estimator in both channel estimation schemes is analogous.

By considering the required processing time of LS-based TBCE and SBCE-ML schemes
rlated to prefect estimator, Fig. 14 shows that SBCE-ML method needs 25 percent more
processing time to estimate the channel than TBCE method. It is due to joint LS estimation
and ML detection of SBCE method.

Fig. 15, 16 show the required training sequences in each frame of data for TBCE and SBCE-
ML schemes, respectively. As depicted in Fig. 15, in TBCE method, transmitter sends 8
training bits before 400 information bits in each burst for a MIMO 2x2 system and 32 bits for
a MIMO 4x4 system. Figure 16, illustrates the required number of training and information
bits in SBCE-ML method for both MIMO 2x2 and MIMO 4x4. Considering the same training
bits, 400 information bits in the case of TBCE method are changed to 40000 bits in SBCE-ML.
As mentioned before, TBCE method needs more bits to estimate the channel because
training sequences should be transmitted periodically. On the other word, SBCE-ML
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Fig. 13. Performance metrics (BER, SER) of LS-based TBCE and SBCE-ML schemes in
different SNRs for an Alamouti coded MIMO 2x2.
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Fig. 14. Relative processing time of LS-based TBCE and SBCE-ML schemes in a MIMO 2x2.

Training Saquance(s bits) Data Stream(400 bits)

M

Tralning Sequonce(32 bits) Data Stream(400 bits)
B

Fig. 15. The burst of LS-based TBCE. A) MIMO 2x2, B) MIMO 4x4.
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Fig. 16. The burst of LS-based SBCE-ML. A) MIMO 2x2, B) MIMO 4x4.

method needs to transmit just one training sequence. Therefore, redundancies of TBCE
method are 2% and 8% for MIMO 2x2 and MIMO 4x4 systems, respectively. In the case of
SBCE-ML method, redundancies are 0.02% and 0.08%, respectively. It means 100 times
lower training bits for SBCE-ML respect to TBCE.

7. Conclusion

MIMO systems play a vital role in fourth generation wireless systems to provide advanced
data rate. In order to attain the advantages of MIMO systems, it is necessary that the receiver
and/or transmitter have access CSI. The time-varying nature of the channel typically requires
the use of frequent channel retraining, which in turn increases the data overhead due to
training signals, thus reducing the system’s overall spectral efficiency. Hence, effective channel
estimation algorithms are needed to guarantee the performance of communication.

In this chapter, training based as well as semi-blind channel estimation schemes in Rayleigh
flat fading MIMO systems are investigated. After introducing LS, LMMSE, ML and MAP
estimators, they are simulated in a Rayleigh flat fading MIMO channel considering AWGN.
Simulation results show that LS estimator is the best choice in both TBCE and SBCE-ML
schemes. This selection is due to faster processing and lower BER as well as SER of LS
estimator with respect to other estimators. In addition, it is illustrated that when the number
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of transmitter or/and receiver antennas increases, the performance of both TBCE and SBCE-

ML schemes significantly improves. Moreover, Alamouti coding has more effect on the

performance of SBCE-ML rather than TBCE.

Comparing LS-based TBCE and LS-based SBCE-ML methods based on BER, SER, required

training bits, and processing time, simulation results introduce most appropriate channel

estimation method that uses an iterative algorithm. This new proposed method is based on

LS estimator and ML detector. According to simulation results, LS-based SBCE-ML method

compared to LS-based TBCE method in different SNRs offers lower BER and also SER, 25

percent higher processing time, and 100 times lower training bits.

Some new research works and simulations can be considered to extend the above

mentioned results and techniques as follow:

1. Cosidering the TBCE and SBCE-ML methods for Rician flat fading MIMO channels and
extending the results of (Shirvani Moghaddam & Saremi, 2010) for these channels;

2. Applying the new versions of LS algorithm, Scaled LS (SLS) and Shifted SLS (SSLS)
proposed in (Nooralizadeh & Shirvani Moghaddam, 2010), for SBCE-ML scheme;

3. Considering the effect of type of training sequence, orthogonal as well as optimum
(Nooralizadeh et al., 2009), in channel estimation peformance;

4. Finding the channel estimation results based on MSE (or Normalized MSE) criteria;

5. Extending the results of (Nooralizadeh & Shirvani Moghaddam, 2011) and comparing
TBCE and SBCE-ML schemes in frequency selective fading MIMO channels;

6. Extending the analytical and simulation results of (Wo et al., 2006) considering the BER
and SER performance metrics instead of MSE one.
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1. Introduction

In systems which employ spatial filtering, Multiple Input Multiple Output (MIMO) systems,
switched beam systems or adaptive antennas, distribution of the multipath components is
important in determining the performance of the channel [Liberty & Rappaport, 1999],
[Allen & Ghavami, 2005]. In this regard, intensive research efforts have been invested.
Different measurement campaigns [Ranvier et al., 2007], [Chizhik et al., 2003], [Howard et
al., 2002] and site specific propagation prediction methods [Seidel & Rappaport, 1994],
[Anderson & Rappaport, 2004], [Gesbert et al., 2002] have been realized to characterize the
wireless channel. However, to simulate these systems without using measured data or site
specific propagation prediction techniques, a model must be used to generate multipath
channel parameters. Therefore, a number of realistic spatial channel models are introduced
and the defining equations (or geometry) are described in [Liberty & Rappaport, 1999].
However, these models are only valid for particular environments with specific
assumptions. Most of these simple geometrical models such as Lee’s and Geometrically-
Based Single-Bounce Circular Model (GBSBC) models are only applicable to outdoor
environments. In some of these models for instance, it is assumed that the transmitter (Tx)
and receiver (Rx) heights are the same which is a reasonable assumption only for some
outdoor applications where the Tx and Rx distance is quite large. Moreover, in these simple
models scatterers’ distribution is restricted into limited areas and the impact of channel
(including scatterers) on changing the polarization of the electric field and also antenna
pattern effect are not taken into account.

Therefore, there is a need for a general and more accurate model that is valid for both
outdoor and indoor environments with different scatterers’ distributions. Also a model that
includes effects of changing the electric field polarization and antenna characteristics on the
channel is required to make realistic conclusions about different environments.

Although ray-tracing may seem as another alternative that is more accurate in terms of
scattering environment and antenna characteristics, it is site specific, i.e. it needs exact
information about the study area and it is computationally intensive, needing very long
runtime. If general conclusions about system configuration based on statistics of the channel
are required, ray-tracing may not be a right choice as it demands to change the channel
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parameters several times and evaluate and compare the results for many runs. This can be
very time consuming if the runtime is too long.

In this chapter a method is introduced that can be used for channel estimation in both
indoor and outdoor envrionments. The method is called Single Interaction ScaTEring
Reflecting (SISTER) model [Emami, 2010]. This model is based on the method proposed in
[Svantesson, 2001]. In that work, a spatio-temporal channel model for MIMO systems is
proposed which is based on electromagnetic scattering and wave propagation. By studying
the scattering properties of objects of simple shapes, such as spheres and cylinders, a simple
function that captures the most important scattering properties is derived. A compact
formulation is obtained by using a dyad notation and concepts from rough surface
scattering. That model exploits the concept of positioning scattering objects and calculating
the received signal including polarization properties of the channel and the antennas and 3-
D wave propagation. However, it only accounts for uniformly distributed scatterers in the
surrounding environment and does not include different distributions for the scatterers,
reflection from the ground and antenna array factor in channel complex impulse response
calculations. Moreover, it is not suitable for indoor applications since it does not take into
account the reflections from the walls.

The SISTER model was developed to overcome the shortcomings of previous models
mentioned above. To keep it simple, spherical shape is chosen for scatterers in order to obtain
analytical expressions for scattered fields and only single interaction from each scatterer (or
reflector) is considered and the interactions between scatterers (or reflectors) are neglected.
Single bounce interaction has been used in some MIMO channel models such as GBSBC and
Geometrical Based Single Bounce Macrocell (GBSBM) channel models [Seidel & Rappaport,
1994] and ray-tracing models [Liberty & Rappaport, 1996]. While in reality multiple
interactions do exists, the level of interaction strongly depends on type propagation
environment. According to [Almers et al., 2007] for picocells, propagation within a single large
room is mainly determined by Line-of-Sight (LOS) propagation and single bounce reflections.
However if the Tx and Rx are in different rooms, then the radio waves either propagate
through the walls or they will be diffracted into the room with the Rx. The multiple-bounce
can be accounted using virtual single-bounce scatterers whose position and path-loss are
chosen such that they mimic multiple bounce contribution. With this approach SISTER model
can be utilized for environments with significant multiple bounce propagation.

The SISTER model not only is general in terms of different fading channels and antenna
configuration but also is simple and can run in a reasonable computation time. In SISTER
model, scatterers are located in an enclosed area containing Tx and Rx which can have
optional distance and heights. Any numbers and distributions including uniform and
cluster forms can be defined for scatterers. To increase the accuracy of the model, in addition
to scattering, reflections (from the ground for outdoors and from the walls for indoors) are
also included in it.

2. Summarized description of the SISTER model

In SISTER model different locations, configurations, radiation patterns and polarizations can
be defined for Tx and Rx antennas. Scatterers’ distribution, material and size can also be
defined. Simple shape of sphere is chosen for scatterers in order to obtain analytical
expressions for scattered fields.
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This model can be used for both indoor and outdoor applications and there is no limitation
on Tx and Rx heights, separation (as long as they are in each others far field) and element
spacing. In addition, both Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) cases are
modeled.

Without losing the generality, it is assumed that the Mobile Station (MS) is the transmitter
and the Base Station (BS) is the receiver. Therefore, the electric waves are generated at the
MS and then propagate towards the scatterers (or reflectors) and finally scatter (or reflect)
towards the BS. In order to use far field expressions for antennas, scatterers are located in
the far field of both Tx and Rx. From antenna theory, if the distance between the antenna

2p2

and the object is > where D is the largest dimension of the corresponding antenna and

L is the wavelength, object is located in the far_field.

As mentioned earlier, to keep this model simple, only single interaction from each scatterer
(or reflector) is considered and the interactions between scatterers (or reflectors) are
neglected (Fig. 1).

Seoatterer

R

Fig. 1. Single interaction for each scatterer is considered; rs, and rms are Rx and Tx distances
to the scatterer, respectively.

3. Analytical calculations

In this section, different required calculations will be explained first. Then it will be shown
how these calculations are used to compute the channel complex impulse response matrix
(H-matrix) and the channel capacity. By considering an Nt*Ng -MIMO system, where Nris
the number of transmitters and Ng is the number of receivers, H-matrix will consist of
Nt*NRg entries each of which corresponds to a different channel:

hyy hyp hyy hyy
h.. h,, h. h
gol 20 P P Py )
hyy hyp hyg hyy
hy hy hyp B

11 11
NT><NR

where h; is the channel impulse response between i Tx and j# Rx antennas.

Here, two cases of space and angle diversity are considered for the analysis. For space
diversity, multiple antennas and for angle diversity, multiple simultaneous beams are
assumed at both Tx and Rx.
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To calculate each entry of the channel complex impulse response matrix, hy, first radiated
electric field from the first Tx antenna (or beam) which is received by the first scatterer
should be calculated. After that, scattered field from the scatterers which is received by the
first Rx antenna (or beam) should be calculated. This procedure should be repeated for all
scatterers, antennas and beams. The scattered fields then should be summed over all the
scatterers at the receiver. Reflected field also should be calculated and added to the resultant
field. In the LOS case, electric field for direct path between Tx and Rx should also be
included in the summation.

3.1 Transmitter and receiver antenna pattern calculation

To calculate channel complex impulse response, electric field of the antenna elements used
at both ends and array factor in case of using the arrays are needed. In order to take mutual
coupling into account for the array case, array radiation pattern should be found by full
wave analysis using one of antenna design software tools. However, for the sake of
simplicity mutual coupling is not considered here. The SISTER model can be applied to
different antenna patterns but for convenience, the antenna pattern which is presented here
is for a half-wavelength dipole antenna.

Electric field of a z-directed half-wavelength dipole antenna is as follows [Balanis, 1997],
[Allen & Ghavami, 2005]:

Ioe—jkr cos[gcosej
Eq =j
6= M5,

)

T sinB

where Eg, 11, lo, 0 and r are electric field in a4 direction, intrinsic impedance of free space,
current amplitude, elevation angle and radial distance of observation point. Assuming that
the array axis is in z direction, array factor formula can be obtained by [Balanis, 1997], [Allen
& Ghavami, 2005]:

AF= 3D
n=1 ()
W = kdcosb +

where N,W k,d,0 and P are the number of array elements, progressive phase, wave
number, elements’ spacing, elevation angle of observation point and progressive phase lead
current excitation, respectively.

For an array, different scan angles can be used for different MIMO elements. Recalled from
antenna theory, scan angle of 8y can be achieved by choosing  as follows [Balanis, 1997],
[Allen & Ghavami, 2005]:

B = —kdcosf 4)

3.2 Scattered field calculation
Consider a sphere of radius a located at the origin as it is shown in Fig. 2.
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Fig. 2. A sphere of radius a located at the origin as a scatterer.

Assuming a uniform plane wave polarized in the x direction traveling along the z-axis is
incident upon this sphere, the incident electric field is given by:

—ikr-
Ei:EOe J rax (5)
k =aw,/pe

where E( is the incident field amplitude, @ is angular velocity, k, p and ¢ are the wave
number, electric permeability and permittivity of surrounding medium, respectively. Then
the far-field expressions for scattered field from the spherical scatterer at a point (r,6;,¢ i)
can be written as:

—jkr

ES =K

—(Egdp + Epd,) ©)

where Eg and E(sP are as follows [Svantesson, 2001]:

- j COS @; ® 4 2n+1
Ep = ]T(pl x 3 " =——[anu1(6;) - bnup(6;)]
n=] nn+1) "

gs _isinei & .n 2n+1

= m[anuz(ei) —bnui ()]

n=1

where u1(0;) andup(0;) are:

u1(0;) = sind;PL (cosd;)

1 0s0: ®)
up(6y) = 10l

sinfj
where, Prrln is the “Associated Legendre Function” [Balanis, 1989] and assuming that the
permeability of the sphere is the same as surrounding environment, a, and by, can be
written as:
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_ —KZjn@)stin(s1)] +Kgin (D lsin ()]
K20 (9)(51in(51)] ~k3in(s1)sh 6)]

b __—in®)s1in DI +in(s)lsin ()]
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where j, (x) is the “Spherical Bessel Function” of order 1, h® (x) is the “Spherical Hankel
Function” of the second kind of order n [Balanis, 1989] and a,, b, are coefficient dependent
on the electrical size of the spherical scatterer and s and s; are defined by:

s; =kja
10
{s=ka (10)

an

©)

where kl,k and a are the wave number for the spherical scatterer, free space wave
number and scatterer radius, respectively.

The infinite summation is approximated by taking only a limited number of terms (n.). A
rule of thumb of how many terms that should be evaluated is [Svantesson, 2001]:

ng =s +4.0551/3 42 (11)

Finally in order to have large amount of scattering, electrical conductivity should be chosen
high enough. Therefore, the dielectric properties of the conducting scatterers are assumed as
follows:

{85 =¢g((1-j100) (12)
H=K0

where ¢y and pg are surrounding medium’s (air) electrical permittivity and magnetic
permeability, respectively.

3.3 Reflected field calculation

To simulate the indoor scenario, transmitter, receiver and the scatterers are located in a
simple cubic room, the dimensions of which can be changed. For each single antenna at Tx
and Rx in a simple cubic room, six reflecting points exist. For example for a 4x4 MIMO. for
the sixteen existing channels, 96 reflection points exist. For each transmitter and receiver set,
reflecting points from different walls are found in terms of the dimensions of the wall and
the position of Tx and Rx.

To visualize the geometry easier, two reflecting points A; and As corresponding to walls1
and 5 and their planes of incidence are shown in Fig. 3.

As it is shown in Fig. 4, two triangles of ABC and AB’C’ are similar and hence reflecting
point, A, can be obtained as follows:

A—B, = i = Known

AB BC = AB and AB‘ can be obtained (13)
BA + AB = BB'= Known
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Flane of inciderice ™ |
for Wall 1

L
L]

Plhmtﬂ Incidence
for Wall 5

Fig. 3. 3-D geometry of two reflecting points.

where BB’ is the distance between projection points of Rx and Tx on the wall and BC and
B'C’ are the distances between Rx and Tx and the wall, respectively.

. A
v

B By

Fig. 4. 2-D Geometry of reflecting points in the plane of incidence.

As an example, As, reflecting point of wall5 can be found from two equations given below:

A5B5 _ B5C5 _ ZRX ~Zwall5

As5B5 B5C5  2TX ~Zwall (14)
2

)

\ . 2
B5A5+A5B'5=B5B'5 =\/(XRX =XTX)" +(YRX —YTX

Other reflecting points can also be found in a similar way.

After finding all the reflecting points, the electric fields originated at Tx side and reflected from
theses points and terminated at Rx side can be calculated. These fields must be added to those
obtained from all scatterers and the direct path between Tx and Rx to get the total electric field.
Since the reflection coefficient is different for transverse or perpendicular (I'tg) and parallel
(T'rm) polarization of electric field relative to the plane of incidence, received electric field on
the boundary should be decomposed into Transverse Electric (TE) and Transverse Magnetic
(TM) polarizations. Plane of incidence is the plane containing both a normal to the boundary
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and the incident wave’s propagation direction [Wentworth, 2005]. This plane is shown in

Fig. 4.
To decompose electric field components for wall5, for instance, Ex and Ey, each are split into
two polarizati ™ ¢TE ™ (TE : ‘> B
o polarizations of Ex™, Ex~ and Ey™, By~ respectively (Fig. 5):
Ex" =Ex cos(y)I'TM (15)
ExT =Ey sin(y)I'TE
EgM =Ey sin(y)['TM 16)
E;E :Ey cos(W)I'TE
_ Y cross . ..
where = arctanx— and I'tg and Ity are reflection coefficients of TE and TM
cross

polarizations, respectively and are shown in Fig. 5.

+n

= Angle of Plane
= Angle of Incidence

3

Fig. 5. 3-D view of electric field decomposition to TM and TE polarizations at the reflecting
point.

Since E, itself is the parallel component (TM), it does not need to be decomposed and hence
to find its corresponding reflected field, it should be simply multiplied by I'rm.

After finding TM and TE components of reflected waves, they should be converted to
previous global coordinates for further process:

EIX = E};M cos(y) + E;E sin(y)

I (17)
Ey = E;M sin(y) + E;E cos(y)
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where EIX and Ey are the x and y components of the reflected electric field from wall5.
The same procedure is applicable for other walls. To find I'rv and I'te, angles of incidence
and transmission are required [Wentworth, 2005]:

_n2cos(0i)-nq cos(t)
N2 cos(i)+n1 cos(0t)
_ M2 cos(B)—nq cos(b;)
N2 cos(¢)+n1 cos(6;)

I'TE
(18)

where (11, 112), (6;, ;) are the intrinsic impedances of free space and wall material and angles
of incidence and transmission, respectively. Referring to Fig. 5, one can easily calculate
angles of incidence and transmission for wall5 as follows:

h
Gizl—arctan Rx
2 BsAsg 19)
k1 sin(0j
et:arcsin&(l)
ko

where (0, 0y), hry, (ki, ko) are angles of incidence and transmission, Rx height and wave
number of air and wall material, respectively.

3.4 Channel capacity calculation

Assuming that the channel is unknown to the transmitter and the total transmitted power is
equally allocated to all Nt antennas, the capacity of the system is given by [Foschini & Gans,
1998]:

*

~ SNR  HH
C=log, [(det[[INT+ N, norm(HH*)]:l)] bps/Hz (20)

where Iy  is the identity matrix, SNR is the average signal to noise ratio within the receiver

aperture, Nt is the number of transmitter antennas, H is the NrxNg channel matrix and H*
is the conjugate transpose of H. To calculate H-matrix baseband channel complex impulse
response should be computed for scatterers, reflectors and direct path corresponding to each
channel.

1. Scatterers

Ng e—jk(‘fmsq‘+‘fsqb‘)

scatterers = [Eq(Ths) - Zeffo + Eo(tbs)- zeff(p] (21)

X

q=1 qusq fsqb‘ )

where N, Imgq, Tsqb/(Eo Eg), (L offo, ?eff(p) are the number of scatterers, distance vector
from Tx (MS) to qth scatterer, distance vector from Rx (BS) to qth scatterer, effective radiation
pattern at Rx in @y and &, directions (radiation patterns of Tx and Rx are included in
effective radiation pattern), and effective lengths of the half-wavelength dipole in a3 and
éq) directions, respectively.
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Assuming that the half-wavelength dipole antenna is connected to a matched load and
current distribution is sinusoidal, two components of effective complex length of dipole can
be obtained from [Collin, 1985]:

Teffy == L0
m [Eo]

(22)
Jeff, =20
? " n[Eo|

where Eg and E¢ are the electric fields radiated by the half-wavelength dipole while it is
in transmitting mode.
2. Reflectors

Ny e_jk(‘fmrq‘+‘frqb‘)r L L
hyeflectors = - ~ [Eg(tbr) - Leffo + E(p(fbr)' feff(p] (23)
q=1 qrmrq x rrqb‘ )

where Ny, fmrq, frqb /(Eg,Eg), (effo, ?ieff(p) are the number of reflectors, distance vector
from Tx to gt reflector (wall), distance vector from Rx to g reflector, effective radiation
pattern at Rxin a4 and &, directions, and effective lengths of the half-wavelength dipole in
dg and 4, directions, respectively.

3. Direct Path

To obtain direct field between Tx and Rx, the following equation is used:

3K [ |

h = _[Ee (fbm) : Eefﬂa + Ej(ii)m) : zefﬂ/)] (24)

direct -
%

where fmb,(EO,E¢),(EQHO,EQH¢) are the distance vector from Tx to Rx, effective radiation pattern
at Rxin &y and &, directions and the effective lengths of the half-wavelength dipole in &,
and &, directions, respectively.

3.5 Coordinate transformations

To find the total electric field at Rx which is the last destination of the traveled wave, many
coordinate transformations should be performed. Since, it is much easier to transform
rectangular coordinates of local and global systems rather than spherical ones, before each
transformation step, electric field in rectangular coordinate should be found.

Equation (25) is used frequently while developing the mathematical model. It is a general
formula to rotate a coordinate system and convert it to the other one by knowing the angles
between their axes.

Uy Ap-Uyp Oy Uyp 30Uy a
Uy | =|a;-u, a,-u, a,-u,| |a, (25)
Uy AUz Gy-Uz Gy Uy | a,

— \ =
New _System Rotation _ Matrix Old _ System
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The given solution in (7) is for an x oriented field propagation along the z-axis. However,

these conditions will rarely be met since the same coordinate system is used for all

scatterers. By employing a local coordinate system for each object, the mentioned solution
can be applied.

Different local and global coordinates are shown in Fig. 6 and defined as follows:

¢ Gmain (XGmain, YGmains ZGmain) 15 the global coordinate.

e Gl (xc1, Va1, zai) is a parallel coordinate system with Gmain and its origin is on the
center of Tx.

e L1 (x1, yr1, z11) is the local coordinate for Tx antenna and its origin is the same as that
of G1 and also for this coordinate system zi; is chosen along the direction of Tx dipole
and xr1 is defined on the plane of x1 and yai.

o L2 (xw2, yi2, z12) is the local coordinate for scatterers and its origin is on the scatterer
center and for this coordinate system zr; is chosen along the direction of r11 and xi» is
chosen along the direction of éLl . IL1, Or1, @1 are spherical coordinate components of
each scatterer in respect to L1 coordinate. It is worth mentioning that for each scatterer
an L2 coordinate is defined.

e L3 (xw3, yi3, z13) is the local coordinate for Rx antenna the origin of which is on the
center of Rx and also for this coordinate system z;3 is chosen along the direction of Rx
dipole and x13 is defined on a plane parallel to the plane of XGmain and YGmain.

Z G main

;
BS (Rx)
N -¥
Xex Y

Fig. 6. Global and local coordinates and dipole antennas at both ends.

The local coordinates L1 and L3 are defined to provide the possibility of using different
polarizations for Tx and Rx antennas, respectively.
Now to fulfill the condition required for using the scattering formulas, L1 coordinate system
should be converted to L2 coordinate system which is the local coordinate system of each
scatterer. If the scatterer is located at (rLi, Or1, @r1) in respect to L1 coordinate system, to
convert L1 into L2 coordinates system, one can use:

cosf, cosp, —sing, sind, cosey,,
|:fc » 2:|L2=|:fc ¥ EJU cosf, sing,, cosg,, sind, sing,, (26)
—sind,, 0 cosd,,
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where 0r; and @y, are scatterer’s coordinates referring to L1.

If the Tx antenna type is something other than dipole or generally, is an antenna with
electric field in both 8 and ¢ directions then the relation between the L1 and L2 coordinate
systems is more complicated and the corresponding rotation matrix is as follows:

A A 1
o § 2=l § 2)q %o
EgcosO11cosg1 —Egsingr] —Epcosb1coser] —Egsingp1 AsinBpqcoser | (27)

EgcosOp1singp] +Egcosor] —EpcosbL1sinerq +Egcoser] Asinbp1singr
—Egsinf1,1 +Epsinfr1 AcosOy1 1

where Eg, E, are the electric field components at each scatterer center referred to L1 and 011
and @1 are scatterer’s coordinates and A=,/E} +E$ . Equation (27) is simplified to rotation

matrix in (26) if Tx antennas has electric field only in 0 direction.

Finally, after all conversions of coordinate systems, the vectors which are necessary to find
channel complex impulse response such as electric fields and effective lengths should be
converted to the main global coordinate which is specified as Gmain in Fig. 6.

4. Verifying the SISTER model

To verify the obtained results from developed model, “Wireless Insite” software by Remcom
Inc. [Remcom Inc., 2004] is used. This software is a three-dimensional ray tracing tool for
both indoor and outdoor applications which models the effects of surrounding objects on
the propagation of electromagnetic waves between Tx and Rx.

In order to accomplish this verification, different steps have been taken. First, only a direct
path between Tx and Rx is considered for a Single Input Single Output (SISO) system and
received power is verified by both Friis equation and ray tracing tool.

It is assumed that a half wavelength dipole antenna (Gain=2.16dBi) is used at both ends, Tx-
Rx distance is 2.7m, both Tx and Rx heights are 1.5m and transmitted power is 0dBm
(ImW). For the mentioned system configuration, numerical results obtained from both
proposed mathematical model and ray tracing are summarized in Table 1.

Preceived |E.| (V/m) Phase E, (degree)

-44.362 dBm
SISTER Model (3.663x105 W) 0.117 76.917

. -44.350 dBm
Ray Tracing (3.673x10% W) 0.117 73.496

Friis Equation -44337dBm |
d (3.684x10% W)

Table 1. Numerical results for a SISO system.

As it can be seen the result obtained from the SISTER model matches well with a fractional
error less than 0.006 with both ray tracing tool and also Friis transmission equation given in
(28) [Balanis, 1997]:
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Pr A2
I (= )H)¢G,G 28
P; (41'cR) et (28)

where P;, P, A\, R, G; and G; are received power, transmitted power, wavelength, Tx-Rx
distance and Rx and Tx antenna gains, respectively.

In the next step (Fig. 7) one wall is added to the previous system configuration and the
reflected ray is evaluated as well. For this case, summarized results can be found in Table 2

which again shows an acceptable match with those of the ray tracing. The same procedure
to validate the reflected field has been done for all six walls and all have shown good match.

T -ll-:i."'l'l"-

Fig. 7. Ray tracing visualization of a SISO system in an indoor environment considering
reflection from one wall.

Preceived |E.| (V/m) Phase E. (degree)
-48.442 dBm
SISTER Model (1432x108 W) 0.073 -115.719
. -48.461 dBm
Ray Tracing (1.425%10 W) 0.073 -121.210

Table 2. Numerical results for a SISO system configuration shown in Fig. 7

Channel capacity for the MIMO system configuration illustrated in Fig. 8 is compared for
both proposed model and ray tracing tool. Fig. 9 shows the results for three cases; direct
path only, reflected paths only, total paths.

Fig. 8. Ray tracing visualization of a 4x4-MIMO system in an indoor environment
considering six walls.
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As the final step to verify the results, the capacity of MIMO systems with different NtxNg
antenna numbers are evaluated in an outdoor environment for NLOS case and the results
are compared with Rayleigh model for similar antenna numbers. Fig. 10 shows the
capacities obtained from simulated Rayleigh channel by MATLAB and SISTER model
applied to an outdoor NLOS environment with 30 scatterers for different numbers of
antennas.

As these results show good agreement with both ray tracing tool and Rayleigh model is
achieved.

Comparing MIMO Channel Capacity Results of the Proposed Model and Ray Tracing

| r
L oo Reflacted Pathe g7
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Fig. 9. Comparing MIMO channel capacity obtained from SISTER model and ray tracing tool
for different rays.
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Fig. 10. Comparing channel capacity obtained from SISTER model and Rayleigh model.

The MIMO configuration is the same as Fig.8 and the room dimensions are 5x4x3 m3 and a
wall exists to block the LOS path.

5. Results of applying SISTER model for different scenaris

Although the SISTER model is sufficiently general to be applied to any distributions and
locations for the scatterers, here we concentrate only on picocell environments.
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Moreover, “Angle Diversity” which is a new promising solution and has recently attracted
considerable attention in MIMO system designs [Allen et al., 2004] is also evaluated model
and compared with well-known “Space Diversity” method by applying the SISTER. In this
method, instead of multiple antennas used in space diversity case, multiple simultaneous
beams are assumed at both sides. The main advantage of this technique comparing is that it
allocates high capacity not to all the points in space, but the desired ones. This results in
minimum undesired interference. The main difficulty in such systems, however, is the beam
cusps (beam overlaps) [Allen & Beach, 2004] and finding the optimal angles where the
different beams should be directed towards. We have investigated the use of antenna array
in angle diversity case to implement the narrow beams needed in this method. We also have
addressed some problems with beam cusps which introduce correlations in MIMO
channels, and suggested some solutions to overcome this problem.

Here, various results are presented which are ultimately useful to set the system design
parameters and to evaluate and compare the performance of MIMO systems using space or
angle diversity for both outdoor and indoor environments. Due to space limitations only some
of the results are presented here and more results can be found in [E.Forooshani, 2006].

5.1 SISTER results for outdoor environments

Outdoor system specifications considered are summarized in Table 3. Tx refers to
transmitter and Rx refers to receiver antennas. Without loosing the generality, it is assumed
that mobile set (MS) is the transmitter and the base station (BS) is the receiver side. All
simulations are done based on working frequency of 2.4GHz. For results shown in Figs 11-
15, a 4x4 MIMO system is considered.

Two common scatterer distributions for outdoor environments are uniform distribution
around each end and cluster distribution, as shown in Fig. 11(a) and Fig. 11(b), respectively.

Tx (MS) . Relative height of Tx and Distance between
height Rx (BS) height Rx Tx and Rx
Outdoor|
System 241 (3m) 401 (5m) 161 (2m) 1021 (13m)
Table 3. Outdoor system specifications.
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Fig. 11. Outdoor system configuration for: (a) NLOS scenario with uniformly distributed
scatterers around both ends, (b) LOS scenario with cluster form scatterers in a cubic volume
(200Ax150A%501 or 25x18.75%6.25, m3).
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5.1.1 Impact of ground material

For outdoor environment, impact of two types of ground material, high and low conductive
ones (Fig. 12) are investigated. Reflection from the high conductive ground contributes as
much as the direct path and its presence can suppress the effect of direct path and hence
increase the capacity comparing to the low conductive ground case. It also shows that for a
ground with conductivity more than 100 S/m, capacity is mainly controlled by the reflected
path from the ground and scatterers do not contribute much in the channel capacity.

Crutdoor Channel Capachy for Differant Sround Materals
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Fig. 12. Channel capacity at signal to noise ratio, SNR=30dB for different ground materials
(e=4, &,=25) considering 30 uniformly distributed scatterers, the LOS case.

5.1.2 Impact of number of scatterers

Figs. 13 and 14 show the impact of number of uniformly distributed scatterers in terms of
channel capacity versus SNR. Typical number of scatterers for this study is 30. In NLOS
case, it is assumed that there is no direct path but reflection from the ground exists (blocked
LOS or quasi-LOS). Fig. 13 shows the LOS case. In this case reflection from the high
conductive ground contributes as much as the direct path. Therefore, its presence can
suppress the effect of direct path and hence increase the capacity in compare to the low
conductive ground case.

For NLOS case, shown in Fig. 14, when the number of scatterer is not high (30 scatterers)
reflection from the high conductive ground creates the dominant path and capacity is low.
When the number of scatterers is high enough (100 scatterers), they are able to lessen the
effect of reflection from the ground and in this case capacity is higher. For low conductive
ground, on the other hand, the reflection from the ground is so weak that no dominant path
exists and hence for both cases of 30 and 100 scatterers, channel capacity is high.

5.1.3 Comparing space and angle diversities

To compare space and angle diversity methods for a 4x4-MIMO system, a scenario
consisting of four clusters of scatterers is considered. The length occupied by antenna
elements is the same for both space and angle diversity methods. It is essential to keep the
array length the same if we intend to have a fair comparison between the two methods in
terms of system size and length. Antenna array length at both ends is 1.51.
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For space diversity case, four antenna elements are used while in angle diversity the same
four elements are used along with a Butler matrix to create four simultaneous beams with
different scan angles. Assumptions made for space and angle diversity methods are
summarized in Table 4.

Cutdoor Channel Capacity For Uniformly Distributed Scatterers
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Fig. 13. Channel capacity for different number of scatterers distributed uniformly around
both ends in LOS case (c=ground’s electrical conductivity, S/m).
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Fig. 14. Channel capacity for different numbers of scatterers distributed uniformly around
both ends in NLOS case including reflection from the ground but not the direct path
(o=ground'’s electrical conductivity).
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Number of Number of BS element MS element
elements at elements at . .
BS MS spacing (d-Rx) spacing (d-Tx)
Space Diversity 4 4 0.51 0.50
Angle Diversity 4 4 0.51 0.54

Table 4. Assumptions for space and angle diversity methods.

For space and angle diversities channel capacity is calculated based on equations (29) and
(30), respectively.

_ SNR ~ HH
C(SNR)—IogZ([det[{INT+ N norm(HH*J])] (29)

C<SNR>=logz([det[{INT+<GTXXGRX>S§Rxnorr’fj;H*JD] 60)
T

where C is the channel capacity, Iy is the Identity matrix, SNR is the signal to noise ratio,

Nr is number of transmitter antennas (or beams) and H is the channel matrix, whose
elements are calculated using the SISTER model. For space diversity hj is the path gain
between antenna element i at BS and j at MS. For angle diversity each h; represents the path
gain between ith beam at BS and jth beam at MS.

Factor (Grx * Grx) in (30) shows the array gain of angle diversity method. When an array
consists of elements with the spacing of 0.51, then its gain is equal to the number of elements
if antenna losses are ignored (Grx X Grx =4%4=16). Since it is assumed that the total power is
the same for two systems, it is required to take the array gain into account while comparing
capacities of two methods in terms of SNR. Note that no mutual coupling effect is assumed
in this calculation.

Fig.15 shows four beams angels at MS and BS sides for angle diversity case.

(a) (b)
Fig. 15. Four multibeams which are pointed towards four clusters located in different 0
angles (a) MS (Tx) (N-array=4, beam angles=620, 70°, 91°, 105°), (b) BS (Rx) (N-array=4, beam
angles=600, 830, 117, 1329).
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Table 5 and Fig. 18 (a) show singular values of normalized H-matrix and capacity results for
both methods in LOS case, respectively. Table 6 and Fig. 16 (b) show singular values of
normalized H-matrix and capacity results for both methods in NLOS case, respectively.

As Fig. 16 show angle diversity surpass space diversity significantly, mostly due to the array
gain. Even though angle diversity often shows better channel orthogonality, improperly
chosen angles caused not to achieve the maximum available capacity for the angle diversity.

Singular Valuel | Singular Value2 | Singular Value3 | Singular Value4
Space Div. 1.0000 0.0016 0.0004 0.0000
Angle Div. 1.0000 0.0024 0.0008 0.0000
Table 5. Singular values for 30 scatterers in 4 clusters for LOS.
Singular Valuel | Singular Value2 | Singular Value3 | Singular Value4
Space Div. 1.0000 0.4424 0.0062 0.0003
Angle Div. 1.0000 0.4481 0.0007 0.0000

Table 6. Singular values for 30 scatterers in 4 clusters for NLOS.

For NLOS case, the rays from Tx towards clusters behind the block are stopped which cause
reduction in the number of channels. Another reason which has caused getting undesirable
results for angle diversity method in both LOS and NLOS cases is the beam cusps.
Considering above discussion, for the given scenario, angle diversity seems to be an
appropriate alternative for space diversity which can provide similar orthogonality with less
interference.
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Fig. 16. Channel capacity for 30 scatterers in 4 clusters for (a) LOS, (b) NLOS.

5.1.4 Impact of number of clusters

The impact of the number of clusters on the channel capacity for a NLOS scenario, similar to
what was shown in Fig. 11(b) is also studied. To consider the effects of number of clusters,
clusters in this configuration are located in such a way to avoid blockage by the defined
obstacle in the middle of the study area. Fig. 17 shows that for a certain amount of SNR, as
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the number of clusters increases, at first, channel capacity increases but after a while it
remains constant. This is expected as by increasing the number of clusters multipath
components are increased and correlation between channels is decreased. However, after a
certain point the slope of capacity increase decreases because as the space is limited the
clusters are going to be closer to each other and after a while they will have overlaps. This
reduces the orthogonality of the channels. These results are also in agreement with those
cited in [Burr, 2003] based on “finite scatterer channel model” Also note that as the number
of scatters increases and the spacing between them decreases due to the increase in mutual
interactions a single interaction models such as SISTER is not accurate anymore.

Channel Capacity for NLOS (SMNR=20dB;
. . —

Capacity (bpsHz)

I

10 15 20 25
Cluster Mumber
Fig. 17. Channel capacity at SNR=30 dB for different numbers of clusters which contain 10
scatterers each.
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5.2 SISTER results for indoor environments

5.2.1 Office area
In order to characterize the indoor channel, the outdoor model is enhanced in such a way

that it includes not only the scatterers and reflection from the ground but also reflection
from the walls for a typical office area of 5x4x3 m3. Indoor system specifications considered
in this study are summarized in Table 7.

Relative | Distance
Tx Rx height of | between Room’s | Scatterers’” | Scatterers’
height | height | Txand Txand | dimension radius number
Rx Rx
104N | 14.4A 32.24\
i 3
Office (13m) | (1.8m) 4\ (0.5m) (4.3m) 5x4x3(m3) 0.Im 30

Table 7. A typical office area specifications.

Two distributions of uniform and cluster form for scatterers are considered to study an
office area (Fig. 18).
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Fig. 18. An office area including Tx, Rx and 30 scatterers distributed (a) uniformly and (b) in
cluster form.

5.2.2 Comparing space and angle diversities

Space and angle diversities are compared for different scenarios in [E.Forooshani, 2006] but
only results for 30 uniformly distributed and cluster scatterers in indoor are presented here.
Selected antenna beams in 2x2-MIMO angle diversity were (62°, 121°) for Tx and (72°, 119°)
for Rx. In 4x4-MIMO systems beams were selected at (48, 650, 130, 138¢) for both sides.
Capacities of both systems are shown in Fig. 19.

The composition of singular values is also given in Table 8. The results show that for the
4x4-MIMO system for both LOS and NLOS cases, angle diversity surpasses space diversity
method in terms of channel orthogonality. Moreover, it offers array gain which leads in an
increase in the capacity shown in Fig. 19(b). Based on these results, for this system, it is more
convenient to apply angle diversity method since LOS and NLOS capacities are similar if the
beams are selected properly while this is not true for space diversity. Furthermore, applying
angle diversity helps to lessen the interference effects (compare to omnidirectional antennas,
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the power is directed to limited angles) in an indoor environment which is a real concern
nowadays.

By try and error, it was found that, particularly for LOS case, higher capacity can be
achieved by choosing angles far away from the direct path which in most cases is
approximately around horizontal plane (8=90v).

In the 2x2-MIMO for space diversity, instead of 4 elements, there are 2 elements at each end
with the spacing of 31/2 and for angle diversity; there are two arrays with 1 spacing
between array centers. Each array consists of 2 dipoles with A/2 spacing.

To study angle diversity method for this 2x2-MIMO system in LOS case where 30 scatterers
are uniformly distributed, two beams are directed towards the reflecting points of ceiling
and the floor which actually are the two angles far from the direct path. For NLOS case,
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Fig. 19. Capacity for (a) 2x2-MIMO and (b) 4x4-MIMO systems.

SsvV1 SV2 sv3 SV4
Space Div. (LOS) 4x4-MIMO 1.0000 0.0067 0.0008 0.0000
Angle Div. (LOS) 4x4-MIMO 1.0000 0.1120 0.0011 0.0005
Space Div. (NLOS) 4x4-MIMO 1.0000 0.0208 0.0087 0.0002
Angle Div. (NLOS) 4x4-MIMO 1.0000 0.2252 0.0658 0.0000
Space Div. (LOS) 2x2-MIMO 1.0000 0.0094 | e | e
Angle Div. (LOS) 2x2-MIMO 1.0000 01529 | e | e
Space Div. (NLOS) 2x2-MIMO 1.0000 00011 | e | e
Angle Div. (NLOS) 2x2-MIMO 1.0000 01816 | e | e

Table 8. Comparing singular values for the 2x2-MIMO and 4x4-MIMO systems (SV:

Singular Value).
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however, since no direct path exists, there is more freedom to find the desirable angles.
Therefore, different angles for the NLOS case are chosen for beams that one of them is not
that far from the horizontal plane.

In practical application, even though it would not be feasible to perform angle optimization
every time there is a change in the Tx and Rx position, there is a possibility to develop a
method for finding optimum angles. In the systems that reference signals are used even
infrequently, the initial optimization based on these signals can be done and followed by
updates by estimating the Angle of Arrival (AOA). The assumption in this work was that
receiver has no information about the channel. This means beamforming methods that need
temporal and spatial reference (training signals) is not applicable. In that case semi-blind
adaptive beamforming techniques can be utilized to find the optimum angles [Allen &
Ghavami, 2005]. Main concern in this work can be if the angle diversity with non-optimum
angles can still outperform space diversity. Therefore, angles were chosen heuristically and
no optimization was performed to find the best possible ones. The results show, for the 2x2-
MIMO system similar to what was obtained for the 4x4-MIMO system, angle diversity
works better for both LOS and NLOS cases. Although angle diversity for 4x4-MIMO system
shows better performance, still 2x2-MIMO system gives desirable results. If one uses
beamforming techniques more desirable results might be achieved.

Space and angle diversity methods are also compared for office area where scatterers are in
cluster form. First beam angles were chosen based on the clusters’ location and they were
(610, 770, 1030, 121°). It can be noted that these beams are very close to each other and have
some cusps. These cusps cause increase in the correlation among the channels and show
decrease in channel capacity, therefore they were changed in such a way that have less cusp
(430, 73°, 1080, 136°), but they were not directed to clusters any more. This improved the
capacity. The capacity results for both sets are given in Fig. 20. In general cluster location
can give a good guide to find the beam angles and then by considering the cusps between
beams and blockage by walls a correction should be applied to improve the capacity.
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Fig. 20. Channel capacity for 30 scatterers in cluster form in the 4x4-MIMO system.
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6. Conclusion

In this chapter a mathematical model to characterize wireless communication channel is
developed which falls into semi-deterministic channel models. This model is based on
electromagnetic scattering and reflecting and fundamental physics however it has been kept
simple through appropriate assumptions.

Based on the results obtained from the SISTER model, impact of different factors on the
channel capacity were studied for different scenarios which represent possible wireless
MIMO systems such as Wireless Local Area Networks (WLAN) systems in real outdoor and
indoor environments. Performance of space and angle diversity methods in MIMO systems
are also compared and evaluated. Some of the main achievements are as follows.

The results obtained by SISTER model confirms that higher capacities are achieved for
NLOS cases compare to LOS or quasi-LOS cases. However, in LOS or quasi-LOS cases
where there is a single dominant path which introduces correlation among the MIMO
channels, strong path’s dominancy can be lessened by another strong path obtained from
either a strong reflection or a resultant path of large number of scatterers and hence channel
capacity will be improved. A better alternative to space diversity to improve the channel
capacity (especially for LOS case) is the use of angle diversity method. This technique is a
promising solution in MIMO systems whose main advantage is to allocate high capacity not
to all the points but to the desired ones which results in minimum interference for undesired
areas. Therefore, it can be very attractive for environments where interference is the main
consideration. Probably the main advantage of angle diversity over space diversity is the
similar performance of LOS and NLOS cases, while the space diversity shows a significant
reduction in performance for the LOS case.

For angle diversity method in LOS case, high performance can be achieved by selecting
beams such that they are not close to horizontal plane where usually a direct path exists. In
fact, in LOS cases nulls of the beams should be directed towards the direct path between Tx
and Rx to create decorrelated channels.

Even though angle diversity often shows better channel orthogonality, improperly chosen
angles lessen the probability of obtaining the maximum achievable capacity. Therefore,
choosing the right angles is very important. Improper selection can degrade the
performance of a 4x4-MIMO system to that one of a 2x2-MIMO system. In general locations
of clusters of scatterers can give a good guide to find the beam angles. However, after the
initial selection correction has to be done to avoid beam cusps and blockage by walls. This is
because the beam cusps can degrade the capacity due to increase correlation between
channels. Based on this study, only in some scenarios, angle diversity shows better
performance in LOS cases compare to NLOS as some scatterers which can be those with
high contributions on channel orthogonality are blocked. Consequently, for most scenarios,
angle diversity seems to be an appropriate alternative for space diversity which can provide
similar orthogonality with less interference. Even if in some cases it shows less
orthogonality still better performance than space diversity can be achieved because of
higher SNR due to the array gain.
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1. Introduction

Multiple-Input Multiple-Output (or the so-called MIMO) system, which employs multiple
antennas at both ends of the receiver and transmitter terminals, has been the subject
of intensive research efforts in the past decade with potential application in high speed
wireless communications network. This is chiefly motivated by the benefits of 1) the spatial
multiplexing gain, which makes use of the degrees of freedom in communication system by
transmitting independent symbol streams in parallel through spatial channels, to improve
bandwidth efficiency; 2) diversity gain, which can be achieved by averaging performance over
multiple path gains to combat fading, to improve channel capacity and/or bit-error rate (BER).
Information theoretical analysis reveals that MIMO systems indeed offer high spectral
efficiency (Foschini, 1996; Goldsmith et al., 2003; Telatar, 1999). It has been shown in (Tse
and Viswanath, 2005) that the capacity of an N, x Ny MIMO system with N; transmit and N,
receive antennas over i.i.d. Rayleigh fading channels scales with the minimum of the number
N of transmit antennas and the number N; of receive antennas at the high SNR regime. With
ideal capacity achieving Gaussian codes, capacity is attained by minimum mean squared error
successive interference cancellation (MMSE-SIC) at the receiver (Tse and Viswanath, 2005) if
the number of receive antennas is equal to or larger than the number of transmit antennas.
The receive diversity achieved by endorsing multiple receive antennas have been utilized
in practical communication systems. Recently, Space-Time codes have also been developed
to obtain transmit antenna diversity gain (Alamouti, 1998; Caire and Shamai, 1999; Ma and
Giannakis, 2003; Tarokh et al., 1999; Xin et al., 2003). Performance gains induced by different
schemes of MIMO systems were comprehensively compared in (Catreux et al., 2003).

It is well-known that there is a tradeoff between multiplexing gain and diversity gain.
The diversity gain is usually measured by the slope of the BER curve. Over i.i.d. Rayleigh
distributed channels, the diversity order of N; x N; systems with linear equalization is given
by Ny — N; + 1 at high SNR at full multiplexing (Winters et al., 1994). This implies that given a
fixed number N; of transmit antennas, increasing the number N; of receive antennas increases
the diversity order. Conversely, given a fixed N;, an increase in N; (which contributes to
multiplexing gain) decreases the diversity order. In (Narasimhan, 2003), by exploiting the
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tradeoff, an adaptive control of the number of transmit antennas and symbol constellations
is proposed to improve the performance of spatial multiplexing in correlated fading channels.
Moreover, theoretical analysis that shows a fundamental tradeoff between multiplexing gain
and/or diversity gain including Vertical-Bell Laboratories Layered Space-Time (V-BLAST)
and Space-Time Codes (STC) have been reported (Tse and Viswanath, 2005; Zheng and Tse,
2003).

Capacity or ergodic capacity, which is the capacity averaged over fading channels, are often
utilized to evaluate capacity gain. On the other hand, BER or average BER, which is the BER
averaged over fading channels, relate to diversity gain. These gains have been analyzed by
approximate expressions for these measures at the SNR extremes, or by directly evaluating
them for a particular channel probability density function (pdf), e.g., i.i.d. complex-normal
distribution (Chiani et al., 2003; Marzetta and Hochwald, 1999; Smith et al., 2003). However,
since the full diversity order appears only at high SNR, having higher diversity order does not
necessarily mean having better performance at a particular value of SNR. Moreover, diversity
gain of Rayleigh channels does not necessarily imply the existence of diversity gain for other
distributed channels. In this chapter, we study universal properties of the performance of
MIMO system as in (Ohno and Teo, 2007), which is independent of channel probability density
functions and hold at any SNR.

We only consider the case where the performance measure is a convex or concave function of
SNR. However, it is shown that important performance measures, including channel capacity
and BER, are convex or concave. Thus, our results are significant. To get more insights into
MIMO systems, we study capacity gain from a different point of view. A similar approach is
adopted in (Ohno and Teo, 2007) to analyze the impact of antenna size of MIMO systems on
BER performance with zero-forcing (ZF) equalization.

Take channel capacity for example. Let us suppose that you can install an additional receive
antenna in the N; X N; system to construct an (N; + 1) X N; system. Assume that the
underlying channel environment is not time-varying (i.e., static). Then, can any other gain
(besides power gain) be obtained by increasing the number of receive antennas? Without the
values of channel coefficients or the associated channel pdf, no one can answer this question
or evaluate the possible gain correctly. Now, we look at the problem from another perspective.
For simplicity, we put N, = 2 and N; = 2. From a 3 X 2 system, we can remove one receive
antenna in three different ways to obtain three possible 2 x 2 systems. Then, we compare the
performance of the original 3 x 2 system with the average performance of the three 2 x 2
systems. We show in this chapter that without the knowledge of channel coefficients and at
any value of SNR, the capacity of the original 3 x 2 system is greater than the average capacity
of the three 2 x 2 systems. More generally, our analysis reveals that increasing the number of
receive antennas generates capacity gain even in static channels. From this, we can prove that
the mean capacity with respect to channel pdf, which is mathematically equivalent to the
so-called ergodic capacity for fading channels, increases as the number of receive antennas
increases at any value of SNR. Our proof relies not on the channel pdf but on the concavity
of the capacity function. This implies that the concavity is indispensable to obtain receive
antenna diversity.

Next, we consider removing a transmit antenna from an N, x N; system and compare the
capacity of the Ny x N; system with the average capacity of Ny x (N; — 1) systems. Clearly,
removing one transmit antenna reduces the multiplexing gain. For comparison, we adopt
the capacity per transmit antenna as a parameter. Then, we prove that reducing the number
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of transmit antennas improves the capacity per transmit antenna. It follows that the mean
capacity per transmit antenna degrades as the number of transmit antennas increases at any
value of SNR irrespective of channel pdf. This means that increasing the number of transmit
antennas improves the multiplexing gain but degrades the capacity per transmit antenna.
There exists a tradeoff between multiplexing gain and capacity gain regardless of channel pdf
and SNR.

Although we do not evaluate how much gains there actually are, which requires the
knowledge of channel coefficients or channel pdf, our results are universal in the sense that
performance ordering with the number of transmit antennas and the number of receive
antenna is independent of channel pdf and holds true at any value of SNR. We also study
the achievable information rate of block minimum mean squared error (MMSE) equalization
to obtain similar results.

2. Preliminaries and system model

We consider a MIMO transmission with N; transmit and N, receive antennas over flat
non-frequency-selective channels. Let us define p/N; as the transmit power at each transmit
antenna for the N, x N} MIMO system. We denote the path gain from transmit antenna n
(n € [1,Ny]) to receive antenna m (m € [1,N;]) as hyy. The path gains are assumed to be
unknown to the transmitter but perfectly known to the receiver.
Let the received signal at receive antenna m be x;,. The N; received signals are arranged in a
vector as © = [x1,...,XN,] T where [] T denotes transposition. Then, x is expressed as

T = ﬁH s+ w, (1)

N

where the N, x N; channel matrix H, the N; x 1 combined data vector s having i.i.d. entries
with unit variance, the N; x 1 vector w of zero mean circular complex additive white Gaussian
noise (AWGN) entries with unit variance are respectively given by

h11 tht
H=|:@ - /|, (2)
]’ler hNyNt
T
s = [Sl SNt:I , (3)
T
w = [wl c WNJ (4)

Let the mth row (which corresponds to the mth receive antenna) of the channel matrix H be
hy, form € [1, Ny, and the nth column (which corresponds to the nth transmit antenna) of the
channel matrix H be h;, for n € [1, N;] so that we can also express the channel matrix as

hq
H = : :V"l"'ith]- (5)
hy,
The signal-to-noise ratio (SNR) at receive antenna m is found to be p||hy,||>/ N;, where || - || is

the 2-norm of a vector, while the overall receive power of the symbol transmitted from antenna
1, i.e., the sum of power from transmit antenna 7 at all receive antennas, is p| |y ||? / N;.
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With capacity achieving Gaussian codes, for a given channel H, the information rate of the
N; x Ny MIMO system is expressed as (see. e.g. (Telatar, 1999; Tse and Viswanath, 2005))

Iy + L-HYH

N HH, ©

Cn,N, = log

Iy, + pHHH‘ = log
N

where (-)* stands for complex conjugate transposition. Over fading channels, MIMO system
offers the benefits of multiplexing gain and/or capacity/diversity gain (Larsson and Stoica,
2003; Tse and Viswanath, 2005).

For our analysis that follows, we utilize the achievable information rates of non-linear
Maximum Likelihood (ML) equalization and minimum mean squared error (MMSE)
equalization. MMSE equalizations at the receiver becomes available if the channel matrix has
column full rank, which requires N; > N;.

Let us shortly review MMSE equalization for MIMO systems. If we employ block-by-block
equalization, the MMSE equalizer is given by G = \/% H*( &H H™ + Iy )"l The
equalized output is thus expressed as § = Gx. We define the nth entry of the equalized output
as 8y = pnSn + Un, Where vy, is the effective noise contaminating the nth symbol. Then, we can

show that the signal-to-interference noise ratio (SINR) of symbol n after MMSE equalization
is expressed as (Kay, 1993; Tse and Viswanath, 2005)

-1

N;

SINRy, Nu = L-RH Iy + L2 Y BAM) R )
N N I=1,l#n

Block-by-block MMSE equalization can be easily implemented but cannot achieve the
capacity except for some special cases. Capacity is achieved by MMSE successive interference
cancellation (MMSE-SIC) at the receiver. Then, SIC with optimal cancellation order is utilized
in Vertical-Bell Laboratories Layered Space-Time (V-BLAST) (Foschini et al., 1999). Although
cancellation order affects the BER performance, it does not change the achievable information
rate (Tse and Viswanath, 2005, Chapter 8). Thus, it is convenient in what follows to only
consider the simplest MMSE-SIC that does not perform the optimal ordering (i.e., arbitrary
ordering) procedure. We first equalize symbols from transmit antenna 1. Then after decoding
them, the contribution of the signal due to the symbol from transmit antenna 1 is reconstructed
and eradicated from the received vector. The same procedure is repeated for the remaining
symbols from transmit antenna 2 to transmit antenna N;. If we denote the SINR of the
equalized output at the nth step of MMSE-SIC as SINR;/C and there is no error propagation,
then the capacity in (6) can be adequately expressed as (Tse and Viswanath, 2005, Chapter 8)

N;
Cy,, = ) log (1+SINRFC). (8)
n=1

3. Decreasing the number of receive antennas

Based on the mathematical tools in the previous section, we investigate information rates of
MIMO systems when we decrease the number of receive antennas, while fixing the number of
transmit antennas. As the number of receive antennas decreases/increases, the overall receive
power decreases/increases, which is known as power loss/gain. Thus, it seems obvious that
capacity degrades as the number of receive antennas decreases. However, the MIMO system



Another Interpretation of Diversity Gain of MIMO Systems 119

may have different receive power from each transmit antenna and the same conclusion is not
self-evident. This begs the question: Given the “fair” condition that the overall receive power
from each transmit antenna is kept constant even if the number of receive antennas decreases,
does capacity decreases or increases? We study how the capacity is affected by the number of
receive antennas when the overall receive power from each transmit antenna is fixed.

Let us define a sample correlation of the channel matrix H as

N,
Ry, =H"H =Y hilhy. 9)

m=1

Assuming that N, > 2, we fix the number of transmit antennas at Ny and decrease the number
N, of receive antennas by one. When receive antenna  is removed from the N, x N; system,

the corresponding channel matrix is denoted as H"). The (N, — 1) x N; channel matrix H (*)
(1)

yields the N; x N correlation matrix Ry ° ; ,, corresponding to (9), expressed as

N;
=HWHHEW = Y hllh,. (10)
m=1,m#pu

(1)
RN,fl,Nt

It is easy to see that the matrices Ry, n, and R%)—l, N, are related as

N,
Y Ry = (N~ 1Ry, - (11)
n=1

If we remove one receive antenna from the N; x N; system, there are N, possible systems
having N, — 1 receive antennas. We compare the capacity of the N, x N; system with the
average capacity of (N; — 1) x N; systems with respect to antenna selection. This average
capacity is equivalent to the average capacity when we uniformly remove one receive antenna
among N; antennas, i.e., the selection of any one receive antenna has the same probability
1/N;.

If receive antenna y is removed from the N, x N; system, then the overall receive power
from transmit antenna n reduces to pZZ": Lt \hmn|?/ N¢. Thus, for (N, — 1) x N; system,
the average overall receive power from antenna n with respect to random receive antenna
dropping is given by

1 ¢ a [nn 2 (Nr—1> R 2
|l o Xor = p , (12)
Ny u=1 \m=1,m#pu N Ny N

which depicts a reduction in the average overall receive power from antenna n. To ensure
that the average overall receive power from each transmit antenna remains constant even
when the number of receive antennas is reduced by one, we increase the transmit power of

the (N; — 1) x N; system by a factor of %, i.e., we replace p in (12) by Nlr\]jlp. Then, for
2
this (N; — 1) x N; system, the receive SNR at receive antenna m increases to % % and

hence the average overall receive power of the (N; — 1) x N; systems is equal to the overall
receive power of the N; x N; system. Thus, the effects of power loss due to the reduction of
the number of receive antennas disappears on the average.



120 MIMO Systems, Theory and Applications

The information rate of the (N; — 1) x N; system without receive antenna y is expressed as

W _ Ne P\ pm
N1, = log | In + (Nr -1 Nt) Ry |- (13)
Then, we have from (11) that
N,
P Ly (N o po
= = — = . 14
N Ry, N, N, ;;1 (Nr 3 Nt> Ry 1N, (14)

At this stage, we utilize a fundamental property of logdet function: its concavity property.
Since log det is a concave function in positive definite matrices, substituting (14) into (6), we
find that

1 N Ny p (1)
= log|Iy, + — Z ) RY
CNrer og [In, + N, ; (Nr -1 Nt> N,—1,N;
1 ¢ Nr 0\ pw 135 )
> log | I R = ; 15
Z N, ;4;1 og [In, + (Nr 1 Nt> N,—1,N; N, VECN,_LM, (15)

where the equality holds if and only if all R%?_l N, for i € [1, N] can be diagonalized with

the same unitary matrix.

Eq. (15) shows that for a fixed channel, the capacity of the N, x N; system is not smaller
than the average capacity of (N, — 1) x N; systems taken over antenna dropping. It should
be noted that the average is not taken over fading channels. For a static channel, we find
another disadvantage/advantage of decreasing/increasing the number of receive antennas in
addition to power loss/gain. Indeed, (15) is fundamental, from which we will see later that
the mean capacity of MIMO systems is also an increasing function in the number of receive
antennas at any value of SNR irrespective of channel pdf. Eq. (15) comes only from the basic
property of the log det function. It is worth emphasizing that the capacity gain achieved by
increasing the number of receive antennas is a direct consequence of the concavity of the
log det function.

To analyze the average capacity over random channels, let us denote the channel probability
density function (pdf) of channel H as P(H) and similarly for H(*) as P(H(*)). We consider
the following channel characteristics:

Assumption 1.
P(HW) = P(H®) = - = PHN), 1o

This implies that when any one row is removed from the N; x N; channel matrix, the resultant
(N; — 1) x Nt channel matrix has the same probability density function. Clearly, if the entries
of H are ii.d., then (16) holds true. However, it should be remarked that a more general
class of channels which includes for example, non i.i.d. channels having correlation between
channel gains, meets (16).

The mean capacity is defined as the expectation of the capacity with respect to channel pdf,
ie,

E{Cn.n} = / C,nP(E)dH, (17)
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where E{-} denotes the expectation operator. This is mathematically equivalent to the
so-called ergodic capacity if the channel is slowly fading and the channel statistics are ergodic.
Consequently, it follows from (15) that

E{Cn,n,} N, /Cz(\? N PH)AH = — Nr Z E{CN CiN (18)
n=

where the equality sign is removed since the equality in (15) holds only for some special

channel realizations. Under Assumption 1, E {CI(\% )71 Nt = E{CNn,—1,n,}, where E{CN,—1n,}
is the mean capacity of (N; — 1) x N; system. Thus, we can conclude that:

Theorem 1. Let the capacity of an M x N MIMO system be Cpy N. If the MIMO channel satisfies
Assumption 1, then the average capacity taken over channel pdf is an increasing function in the number
of receive antennas, i.e.,

E{Cn,n.} > E{CN,—1 N}/ (19)
where Ny x Ny system and (N — 1) x Ny system have the same receive powetr.

Theorem 1 clearly states the capacity gain in MIMO transmission that can be acquired by
simply increasing the number of receive antennas. A special case of Theorem 1 is well-known
where at high SNR, the diversity order of N; x N; systems over i.i.d. Rayleigh distributed
channels with linear equalization is N, — Ny + 1 at full multiplexing (Winters et al., 1994).
Here, no approximation is made and no channel pdf is specified except for Assumption 1 to
obtain Theorem 1. It is universal in the sense that (19) holds not just for a specific channel
pdf but for all kinds of channel pdf meeting Assumption 1, and at all values of SNR. The
capacity gain that arises from increasing the number of receive antennas always exists, since
it is a result not attributed to the distinct characteristic of Rayleigh fading but attributed to
the basic property of the logdet function. Hypothetically, if log det were convex (which is
never the case), the inequality in (15) and hence the inequality in (19) would be reverse. Thus,
the concavity of the log det function is indispensable to obtain receive antenna diversity. To
know how much the actual gain is, one has to evaluate the expectation using the underlying
channel pdf. In some special channel pdf, e.g., complex-normal distribution, one could derive
an analytical expression of the corresponding capacity gain, e.g., as in (Winters et al., 1994).

3.1 Block MMSE equalization case

Assuming that the channel matrix H is tall and has column full rank, let us analyze the
achievable information rate with block MMSE equalization.

After block MMSE equalization, we have N; parallel channels. Then, the achievable
information rate, denoted as CI%”N[, of Ny x N; system with block MMSE equalization can

be expressed as
N

CR,N, = Y log (1+SINRy, N, ) - (20)
n=1

If we define the (post-processing) SINR for symbol s;, after block MMSE equalization when
receive antenna y is removed as SINR%V) 1N, forn e [1, Nt], then the achievable information
rate of the (N; — 1) X N; system is

N;
eyt = L tog (14 SINRY ). (21)

n=1
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We utilize the following inequality in (Ohno and Teo, 2007):

1 N
SINRN, N, > 1 ) SINRYY | . 22)
T }l:l

The R.H.S. of (22) denotes the average SINR of symbol n when one receive antenna is
randomly dropped.
Since log is a concave function, we have from (22) that

e8> L 3" 3% log (14 SINR® _ 1y c5 ) 23
NN 2 L Og( + r—l,N[,n) = L Oty (23)
N; n=1pu=1 Ny =1

This states a deterministic yet universal characteristics of the achievable information rate
of MIMO systems with block MMSE equalization. For a given channel environment, if a
receive antenna is randomly dropped, the average information rate with respect to random
antenna dropping degrades except for some special cases. Indeed, the average information
rate depends on the number of receive antennas and a fortiori deteriorates as the number of
receive antennas is lessened.

By using a similar derivation of Theorem 1, averaging (23) over channel pdf leads to:

Theorem 2. Let the achievable information rate of an M x N MIMO system be CIIf,LN, when block
MMSE equalization is adopted. If the MIMO channel satisfies Assumption 1, then the achievable
information rate averaged over channel pdf is an increasing function in the number of receive antennas,
ie.,

E{CR.n} > E{CR 1N} (24)

where Ny x Nj system and (N, — 1) x N; system have the same receive power.

Theorem 2 states that capacity gain with increasing number of receive antennas exists
even for block MMSE equalization. Theorem 1 as well as Theorem 2 highlight the
advantage/disadvantage of MIMO system upon increasing/decreasing the number of receive
antennas.

4. Decreasing the number of transmit antennas

In this section, we consider the information rate for a fixed number N, of receive antennas
when the number N; of transmit antennas is reduced by one, assuming that 2 < N; < N;. For
comparison between N, x N; system and N; x (N; — 1) system, as in the previous section, we
uniformly remove one transmit antenna among N; transmit antennas, i.e., the selection of any
one transmit antenna has the same probability 1/ N;.

It is often the case that the sum of total transmit power of all transmit antennas is kept
constant for different numbers of transmit antennas. But, here we fix the transmit power of
each transmit antenna to be p/N;. This implies that the sum of transmit power reduces from
p to (Nt — 1)/ Ny, if one transmit antenna is removed. In this case, the overall receive power
from a transmit antenna remains constant, while the average receive power at each receive
antenna of N; x (N; — 1) system with respect to antenna droppingis (N; — 1)/ N; of the receive
power at each receive antenna of the original N, x N; system.
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For analysis, we recall block MMSE equalization and MMSE-SIC equalization. If there is no
error propagation in SIC, then we have

SINRy;, N, » < SINR;C, (25)

where SINRy, v, » and SINR; € are respectively the SINR of symbol from transmit antenna
in block MMSE equalization and in MMSE-SIC equalization. For all n € [1, N;], the equalities
in (25) hold if and only if the channel matrix H has orthogonal columns.

We can decompose the capacity of N, x N; system by the following manipulation:

Ni
CNr,N, = log INr + %t Z hnh?{[
n=1

P i
Iy + 1 Y Rl

=lo
& Ni n=1,n#v

o N e
Iy + | Iy + Y huRI) CoRRM
n=1n#v

= CI[\II/},N,—l + log (1 + SINRNr,Nt,v) , (26)

where CLY ]N 1 is the capacity of the N, x (N; — 1) system without transmit antenna v. It
follows from (26) that

Ni
NiCyn, = Y [c}y},M_l +1log (1 +SINRNV,N,,V)] . 27)

v=1

On the other hand, from (8) and (25), we have the relation:

N;
Y log (1+SINRy, n,v) < Cn, N,/ (28)

v=1
where the equality holds if and only if SINRy, n,, = SINRS/C for all n € [1, Ny, i.e., the

channel matrix H is orthogonal. Combining (27) and (28) results in

1 &
CNrrNt < N;—1 1CNr,Nt—1‘ (29)
V=

Capacity per transmit antenna for N, X N; system can be defined as Cn, N, = N%CN,A,N,.

Similarly for Ny x (N; — 1) system, as Cl[il/},Nf—l = ﬁc}g}wr_l. Then, we obtain from (29)
that

_ 1 N 1 [v]

CN, N, = CN NS Z N TNNC1 T R 2 NN (30)

This means that the capacity per transmit antenna of N, x N; systern is in general smaller than
the average capacity per transmit antenna of N, x (N; — 1) system. The relation in Eq. (30) is
satisfied for any channel (channel-independent) and for any SNR.

To get more insights, we assume that

Assumption 2.
p(H[l]) - p(H[Z]) =...= P(H[N’]), (31)

where HY) denotes the channel matrix when transmit antenna v is dropped from the N, x Ni system.
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Multiplying both sides of (30) by P(H) and taking the average over P(H ), we can conclude
that

Theorem 3. Suppose an N, x Ny system where N, > Ny > 2. Let the capacity per transmit antenna of
M x N MIMO system be Cpy . If the MIMO channel satisfies Assumption 2, then the mean capacity
per transmit antenna is an decreasing function in the number of transmit antennas, i.e.,

E{Cn,N,} < E{CNn,N—1}, (32)

where Ny x Ny system and Ny x (N — 1) system have the same transmit power at each antenna.

Intuitively, this result may be quite reasonable, since in the original N, x N; system, symbols
from transmit antenna v can be considered as an interference to symbols from transmit
antenna n and the effect of symbols from transmit antenna v is absent if transmit antenna
v is removed. For i.i.d. Rayleigh channels at high SNR, the diversity order of N, x N; systems
is Ny — N; + 1 and hence reducing N; increases diversity order (Winters et al., 1994), while the
capacity scales with min(N, N;) (Tse and Viswanath, 2005). However, diversity or capacity
gain at high SNR for Rayleigh channels does not imply capacity gain at all SNR for other
channels. Thus, our result is not self-evident. From (32), we can find a fundamental tradeoff
between bandwidth efficiency and capacity gain for any channel pdf at any value of SNR, i.e.,
if one increases the number of transmit antennas, then bandwidth efficiency or multiplexing
gain is enhanced but the average capacity per transmit antenna is degraded.

Theorem 3 is in sharp contrast to Theorem 1. The mean capacity per transmit antenna is an
increasing function in the number of receive antennas, which is easily concluded from Theorem
1, while the mean capacity per transmit antenna is a decreasing function in the number of
transmit antennas.

4.1 Block MMSE equalization case

We return to block MMSE equalization case and will see that similar results for MMSE-SIC
equalization also hold for block MMSE equalization.

Let us denote the (post-processing) SINR of symbol # of the Ny x (N; — 1) system without
transmit antenna v after block MMSE equalization as SINRE\VIJ/M?L”. It has been shown in
(Ohno and Teo, 2007) that for n # v,

SINRY! 1, > SINRy, v, n- (33)

Hence, removing one transmit antenna, i.e., reducing the bandwidth efficiency, improves the
SINR of each symbol transmitted from the remaining antennas and hence its information rate,
i.e.,, if we denote the achievable information rate from antenna #n of N; x N; system and of

N; % (N — 1) system respectively as Cﬁr Non and Cf,’y[}/\],hl .- then

B,
> CB oy for n# . (34)

The achievable information rate of N; X N; system per transmit antenna is expressed as
1Y

Cflr,Ny = ﬁt Zlcl%,-,l\]t,n' (35)
n=
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Similarly, the achievable information rate of Ny x (N; — 1) system without transmit antenna v
is
Ni

B 1 B,[v]
¢ =N ¢ : 36
NN-1 7 N, =1 n:l,zn;év N,,Ni—1,1 (36)
Subsequently, we have
Ni N; Ni
—B [v] 1 B 1 1 B,[v]
RN =N, Z NN TR Z CN N ~ V);l ( N -1 nzg#chr,Nf—l,n

1§ L Bl
'NA Z CN ,Nin N -1 Z CNr,N,—l,n : (37)
v=1,v#n

One finds from (34) that the argument in the brackets of (37) is less than or equal to 0, which
leads to

B B
CNN, < N,[,I;\], (38)

This shows that if one transmit antenna is randomly removed with probability 1/Nj, for a
fixed number of receive antennas, the achievable information rate per transmit antenna of
the N, x N; system is never larger than the average achievable information rate per transmit
antenna of Ny x (N; — 1) system. Since the equality sign holds only for some special cases,
on the average, reducing the number of transmit antennas improves information rate per
transmit antenna. We can again find a pure tradeoff between bandwidth efficiency and
capacity gain.

If we average (38) with respect to channel pdf satisfying Assumption 2, we can state that:

Theorem 4. Suppose an N, x N; system with block MMSE equalization where Ny > Ny > 2. Let
the achievable information rate per transmit antenna of M x N MIMO system be C E,LN. If the MIMO
channel satisfies Assumption 2, then the average capacity per transmit antenna is a decreasing function
in the number of transmit antennas, i.e.,

E{C_I%,,Nz }<E {CJ%,,N,A } (39)

where Ny x Ny system and Ny x (Ny — 1) system have the same transmit power per antenna.

5. Numerical simulations

To validate our theoretical findings, we perform computer simulations on the MIMO system
for different antenna sizes. The results for both MMSE-SIC and block MMSE equalizations
are presented. In our simulations, we always keep the average overall receive power of each
symbol the same as in our theoretical analysis. We plot the information rate per transmit
antenna with respect to E;, / Ng where at each E;, / Ny, the average receive power of each symbol
is kept constant regardless of the antenna configuration.

In simulations 1 and 2, we see the effect of the number of receive antennas on the information
rate averaged with respect to random receive antenna dropping over a fixed channel. Fig. 1
and Fig. 2 illustrate the results for a fixed Ny = 4 and N, varying from 8 to 4 for MMSE-SIC
equalization (which achieves the capacity) and block MMSE equalization, respectively. As
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one may see from these figures, the information rate averaged with respect to random receive
antenna dropping degrades with a decrease in N;. Especially for block MMSE equalization,
the degradation of the information rate is significant when N; is decreased. These results hold
true not just for this fixed channel but also for other channels we have tested, which confirm
the fidelity of (15) and (23), i.e., our analysis of the ordering of the information rate based on
concavity of the log det is correct.

Then, in the next two simulations, we test the impact of the number of transmit antennas on
the information rate averaged with respect to random transmit antenna dropping over a fixed
channel. We set N, = 8 and decrease N; from 8 to 4. The simulation results are shown in Fig. 3
and Fig. 4 for MMSE-SIC equalization and block MMSE equalization respectively. We observe
that as the number of transmit antennas is reduced, the information rate averaged with
respect to random transmit antenna dropping improves even when the transmit power of each
transmit antenna remains the same. The information rate increase for MMSE-SIC equalization
is small but is quite significant for block MMSE equalization when we decrease the number
of transmit antennas. Evidently, this ordered information rate performances validate (30) and
(38).

In our subsequent simulations, instead of simulating over a fixed channel, we take the average
over 10° Rice channels of Rice factor 2 that compose of zero mean Gaussian taps with unit
variance in order to verify the effect of the number of receive antennas on the information
rate per transmit antenna averaged over random channels. Fig. 5 and Fig. 6 depict the results
for a fixed N; = 4 and N, varying from 8 to 4 for MMSE-SIC and block MMSE equalizations
respectively. We can see that the information rate averaged over random channels degrade
with a decrease in N, for both MMSE-SIC and block MMSE equalizations, demonstrating that
the information rate averaged over random channels is an increasing function in the number
of receive antennas. These are in good agreement with Theorem 1 and Theorem 2, which hold
true for all SNR.

Lastly, to see the effect of the number of transmit antennas on the information rate per
transmit antenna averaged over random channels, Fig. 7 and Fig. 8 show the results for a
fixed N, = 8 and N; varying from 8 to 4 for MMSE-SIC and block MMSE equalizations
respectively. The simulation results confirm Theorem 3 and Theorem 4 as the information rate
averaged over random channels improves with a decrease in N; (or equivalently, decrease
in both bandwidth efficiency and multiplexing gain). In other words, the information rate
averaged over random channels is a decreasing function in the number of transmit antennas.
These ordered performances show unequivocally that there is an undisputed tradeoff between
the information rate and bandwidth efficiency (and /or multiplexing gain).

6. Conclusions

Based on our novel point of view, we have demonstrated theoretically that under the condition
of a fixed overall received power and a fixed number of transmit antennas, the information
rate averaged over random receive antenna dropping and the information rate averaged
over random channels degrade with a decrease in the number of receive antennas. These
results are derived from the basic property of the logdet function. On the other hand, for
a fixed number of receive antennas, we have proven that a decrease in the number of transmit
antennas translates into an amelioration in both the information rate averaged over random
transmit antenna dropping as well as the information rate averaged over random channels,
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Fig. 1. Information rate per transmit antenna with respect to random receive antenna
dropping for MMSE-SIC over a fixed channel for a fixed Ny = 4 and varying N;.
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Fig. 2. Information rate per transmit antenna with respect to random receive antenna
dropping for block MMSE over a fixed channel for a fixed N; = 4 and varying N;.
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Fig. 3. Information rate per transmit antenna with respect to random transmit antenna
dropping for MMSE-SIC over a fixed channel for a fixed Ny = 8 and varying N;.
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Fig. 5. Information rate per transmit antenna averaged over random channels for MMSE-SIC
for a fixed N} = 4 and varying N;.
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Fig. 7. Information rate per transmit antenna averaged over random channels for MMSE-SIC
for a fixed N, = 8 and varying N;.
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which highlight the tradeoff between capacity and bandwidth efficiency (and multiplexing
gain). All these results hold for any kind of i.i.d. channel regardless of the channel pdf and is
valid at any SNR. Numerical simulations corroborated our analysis.
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1. Introduction

In the context of wireless communication, a Multiple-Input Multiple-Output (MIMO) system
is a system that employs multiple antennas both at the transmitter and receiver. The first
theoretical analysis of MIMO systems were developed by Winters (1987), Foschini (1996) and
Telatar (1999), and since then there have been many research efforts on this subject. What
mainly makes MIMO systems interesting is their potential ability to achieve an increase in
system capacity or in link reliability without requiring additional transmission power or
bandwidth (Goldsmith, 2005).

In this work, we focus on the utilization of MIMO systems for the lossy transmission of
source information. In particular, we want to compare several different strategies for the
transmission of a zero mean Gaussian source over Rayleigh-fading MIMO channels, assuming
rate-adaptive source encoding. The MIMO transmission strategies are based on techniques
such as Repetition coding (REP), Time Sharing (TS), the Alamouti scheme (ALM) and Spatial
Multiplexing (SM) (Alamouti, 1998; Tse & Viswanath, 2006).

Depending on its characteristics, each strategy will be used either for the transmission of a
Single Description (SD) or the transmission of a Multiple Description (MD) representation of
this source. In SD coding, a single stream of information describing the source is transmitted
over a single channel. In MD coding (Gamal & Cover, 1982), the source is represented
using two different descriptions that are transmitted over two independent channels. If both
descriptions are correctly received, they can be combined together at the receiver to obtain a
reconstruction of the source at a certain quality. If only one of the two descriptions is correctly
received, a reconstruction of the source is still possible but at a lower quality.

We consider adaptive source encoding, where the rate is adapted to follow the slow variations
of the channel (due e.g. to shadowing and path loss) or the fast variations of the channel (due
to fading), leading to two scenarios that we call fixed-outage and zero-outage, respectively.
In the first case, we consider Gaussian source transmission over MIMO systems when CSI is
not available at the transmitter. In this scenario, since the transmitter does not have knowledge
of channel state information (CSI), it does not know the instantaneous rate supported by
the channel, i.e. its capacity, and hence it is not able to adapt the source coding rate to the
channel conditions to ensure the decoding of the information at the receiver with an arbitrarily
small probability of error. Instead, it encodes and transmits the source information using a
rate chosen to achieve a selected outage probability. When the channel does not support the
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transmission of information at the chosen coding rate, data are lost and the system experiences
an outage. We call this the fixed-outage rate-adaptive approach.

In the second scenario (zero-outage rate-adaptive), we consider the different MIMO strategies
under the assumption of perfect CSI at the transmitter. In this case, the transmitter is able to
follow the variations of the channel by adapting the source coding rate to the instantaneous
capacity, since it is aware of the particular channel realization in every time instant. In
such a situation there is no outage since the source rate is always adapted to achieve the
instantaneous channel capacity (Choudhury & Gibson, 2007). This observation has a direct
impact on the usefulness of the TS strategies in the zero-outage scenario. These strategies
employ a time sharing approach to the transmit antennas to create independent channels from
our MIMO system (Zoffoli et al., 2008a). These independent channels are then used to provide
path diversity by transmitting multiple description representations of the source over them.
However, path diversity is useful only if the channels are unreliable, i.e. if they suffer outages.
For this reason, in the zero-outage scenario we do not consider the TS strategies.

The different strategies for both the fixed-outage and the zero-outage rate adaptation
approaches are described in the following sections, where we also evaluate their performance
by studying the statistics of the distortion at the receiver.

In the presence of outage, it is usually assumed either implicitly or explicitly that
retransmissions will be used for data scheduled to be transmitted during an outage; indeed,
choosing an operational outage rate may be associated with an acceptable retransmission
rate. Although retransmissions are the natural response to outage for data sources, relying
on retransmissions may or may not be appropriate for compressed voice or video for several
reasons. First, it is not unusual to rely on packet loss concealment for voice and video up to
some non-trivial packet loss rate. Second, it may be more desirable not to retransmit for voice
and video in order to reduce latency or to maximize access point throughput. As a result, the
suitable measure of performance for lossy source coding of voice and video is the average
distortion of the source reproduced at the receiver. Average distortion is also the appropriate
performance indicator for the zero outage rate case, since we are adapting the source coding
rate to the instantaneous capacity of the channel, and it is desired to determine the reproduced
quality of the source delivered to the user. Therefore, for our work here, we choose the mean
squared error (MSE) fidelity criterion.

In Section II, we present the basic assumptions and set up the particular MIMO problems we
are addressing. Section III contains the development of the fixed outage rate adaptive source
encoding scenarios we examine, including the repetition strategy and single description
source coding, the time sharing strategy and the three multiple descriptions source coding
methods (no excess marginal rate, no excess joint rate, and optimized multiple descriptions
source coding), the Alamouti strategy with single description source coding, and spatial
multiplexing with single description source coding. Zero outage rate adaptive source
encoding, wherein CSI is available at the transmitter and the source coding is adjusted to
match the instantaneous capacity, is described in Section IV, including the developments
and derivations of the distributions of the reconstructed source distortion for the repetition,
Alamouti, and spatial multiplexing strategies. Extensive results for each of the methods and
comparisons of the results are presented in Section V, while Section VI summarizes the
conclusions from the work.
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2. Assumptions and preliminaries

Our main goal is to discuss how MIMO techniques impact on adaptive source encoding.
Although most of our results can be easily extended to cover the general N; x N, MIMO
channel case, for the sake of simplicity we consider the frequency-flat 2 x 2 MIMO channel.
The system is characterized by the channel matrix H, having the form

hi1 hip
H <h21 h2z>
Each entry h;; of the channel matrix H represents the gain of the channel between the j-th
transmit antenna and i-th receive antenna. These channels are assumed to be independent,
random and with very slow Rayleigh fading. The h;; are then i.i.d. complex Gaussian random
variables with zero mean and unit variance, which remain constant over the transmission of
a large number of symbols. Under these assumptions, the squared magnitude of the channel
gains can be written as

|2—1 i,j=1,2 1)

|h = 2x,']‘,

g
where the x;; are random variables distributed according to a chi-square distribution with 2
degrees of freedom (Hogg & Craig, 1970). Perfect CSI, i.e. knowledge of H, is assumed to be
always available at the receiver, while the transmitter has a full or partial CSI depending on
the scenario, as will be discussed later.

The total transmitted power by the transmit antennas is constrained to P;. If both transmit
antennas are transmitting simultaneously, each antenna will transmit with equal power P;/2,
while, if only one antenna is transmitting at a given time, it can make use of full transmit
power P;. The noise at the receiver is AWGN, with i.i.d. statistics and the same average power
N at each receive antenna.

We denote with 7;; the instantaneous Signal to Noise Ratio (SNR) of the signal transmitted by
the j-th antenna and received by the i-th antenna. Thus,

by

i = 5 il =7, i=1,2 0]

ij
if only the j-th antenna is transmitting at a given time, and
P Yy .
Yij = ﬁlhg\z = §|hij\2, Lj=12 ©)

if both antennas are transmitting at the same time.

Fig. 1. 2x2 MIMO model.

The source is assumed to be a zero-mean memoryless Gaussian source with a variance
normalized to unity. The system bandwidth is also assumed to be normalized to unity.
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In the following, we will denote with ¥ the ratio P;/ N and with I'(z) and I'(4, z), respectively,
the gamma function and the incomplete gamma function (Hogg & Craig, 1970). We will also
denote with X% the distribution of a chi-square random variable with k degrees of freedom,

with F)((k) (z) its CDF and with

its probability density function (PDF) (Hogg & Craig, 1970).

3. Fixed-Outage rate-adaptive source encoding (FORA)

In a wireless channel, due to multipath propagation and users’ mobility, the capacity is
varying in time. In this section we assume that the source encoder knows only the statistical
distribution of the wireless channel mutual information, and that it adapts its rate accordingly.
The source encoder rate is chosen to produce a certain outage probability, determined to
minimize the distortion at the received end. This could be assumed a slow-adaptive technique,
since the source encoder rate will follow the variations of the channel statistics due, for
instance, to shadowing and path loss changes.

3.1 Repetition

The REP strategy is based on repetition coding (Tse & Viswanath, 2006). The basic idea is to
transmit the same symbol over the two transmit antennas in two consecutive time slots. In
each time slot, only one of the two transmit antennas is used for transmission, while the other
antenna is turned off.

Thus, in the first time slot the symbol S; is transmitted on the first transmit antenna and it
is observed by the receiver through the two channels with gains /17 and hy;. In the second
time slot, the same symbol S is transmitted on the second transmit antenna and it is observed
by the receiver through the two channels with gains /1, and hy;. A Maximal Ratio Combiner
(MRC) (Goldsmith, 2005) is then used at the receiver to optimally combine the four signals
received by the two receive antennas in the two different time slots.

The instantaneous SNR v of the signal at the output of the MRC is given by the sum of the
instantaneous SNRs 7y;; of its input signals (Goldsmith, 2005), that are given by Eq. (2)

2 2
vy=Y vi=7 Y bl (4)

ij=1 ij=1

In this way, a single channel is obtained from the four independent channels available in our
MIMO system. This strategy is then suitable for the transmission of a SD representation of the
source.

The instantaneous capacity of this single channel in [bits/channel use] is given by (Goldsmith,
2005)

1 1 ¢ 2
Czilog2 (1+’y>=§10g2 1+'Yi]gl|hij| ©)

where the factor 1/2 arises because we are transmitting the same symbol over two consecutive
time slots.
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The source coding rate Rggp of the SD coder is chosen to be equal to the outage capacity at a
given value for the outage probability Py, i.e. it is chosen such that

Pr{c < RREP} = Pt

Thus, with probability 1 — Py, the system is not in outage, which means that it can support
the transmission at a rate Rggp with an arbitrarily small probability of error, since its capacity
is higher than Rrgp (Cover & Thomas, 1991). In such case, the receiver is able to reconstruct
the source information with a distortion D equal to (Cover & Thomas, 1991)

Dy = 2—2Rgep

If the system results in outage, which happens with probability P, the receiver is not able
to correctly decode the transmitted information with an arbitrarily small probability of error
and achieves a distortion equal to 1.

The expected distortion D at the receiver is then

D= (1 _Pout)Dl +Pout

The outage rate R{4,, defined as the average rate correctly received over many transmission

bursts (Goldsmith, 2005), is given by
R‘I){uEtP = (1 - Pout)RREP

3.2 Time sharing - multiple description (TS-MD)

In this strategy a TS approach is adopted to obtain two independent channels from the MIMO
system. The idea behind this strategy is to transmit two different symbols over the two
transmit antennas in two consecutive time slots. In each time slot, only one of the two transmit
antennas is used for transmission, while the other antenna is turned off. Thus, in the first time
slot the first symbol Sy is transmitted over the first antenna and it is observed by the receiver
through the two channels with gains /117 and hy;. In the second time slot, the second symbol
Sy is transmitted over the second antenna and it is observed by the receiver through the two
channels with gains /1, and hyy. The receiver will then combine the two signals received in
the same time slot using a MRC.

Since each received signal has a SNR given by Eq. (2), the signal at the output of the MRC in
the j-th time slot has a SNR equal to (Goldsmith, 2005)

2 2
vi=Y v =7Y |hijl?
i=1 i

In this way, two independent channels are effectively created in the two time slots, making
this strategy suitable for the transmission of a MD representation of the source.
The channel at the j-th time slot has an instantaneous capacity C; equal to (Goldsmith, 2005)

1 1 &,
Cj =5 log, (1+'rj) =5 log, 1+7[i [hij] (6)
1=

where the factor 1/2 arises because each channel is used only half of the time.



138 MIMO Systems, Theory and Applications

The side description rate Ry;p/2, which equals the transmitted rate over each channel, is
chosen to be equal to the outage capacity for a given P, i.e. is chosen such that

R
PT{CJ' < I\ZAD} = Pout

The expected distortion D at the receiver is then given by
D = (1= Pout)*Do + 2Pout(1 — Pout) D1 + Py )

where Dy and D; are the distortions achieved by the receiver when observing, respectively,
both descriptions or only one of the two descriptions.

Depending on the type of MD coder used, Dy and D; can have different expressions (Balam
& Gibson, 2006) and different TS-MD strategies can be obtained. The No Excess Marginal
Rate coder (MD-NMR) (Balam & Gibson, 2006) is employed in the TS-MD-NMR strategy:.
The side descriptions are then rate distortion optimal and the distortions have the following
expressions (Balam & Gibson, 2006; Effros et al., 2004)

2—Rwmp
Po= 35 R
Dy =27 Rwp

The No Excess Joint Rate coder (MD-NJR) (Balam & Gibson, 2006) is employed in the
TS-MD-NJR strategy. Here the joint description is rate distortion optimal and the distortions
have the following expressions (Balam & Gibson, 2006; Effros et al., 2004)

Dy = 2—2Rmp

1 _2R
_ 1 2 MD
(1)

The optimal coder (MD-OPT) (Effros et al., 2004) is employed in the TS-MD-OPT strategy.
In this case, neither the side descriptions nor the joint description is rate distortion optimal,
but they are chosen to minimize the expected distortion D in Eq. (7) for a given Ppy. The
distortions Dy and D; are given by the following expression (Balam & Gibson, 2006; Effros

et al., 2004)
14a 1-a 2-2Rwp
(DO’D1>_<“’ 2~ 2 VT )

2—Rmp ]

Dy

with

—2Rump
ac [2 '35 Rup

Thus, the MD-OPT coder chooses the proper value for a to minimize the expected distortion
D.
The outage rate R34}, is given by

R
R?\%lt:) = (1 - Pout)zRMD + 2P0ut(1 - Pout)ﬂ

2
= (1 - Pout)RMD
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3.3 Alamouti
This strategy employs the Alamouti scheme (Alamouti, 1998; Tse & Viswanath, 2006) to obtain
two independent channels from the MIMO system. Since both channels have the same gain
given by le,j:l |hi]-|2 (Tse & Viswanath, 2006), it is evident that it is impossible to have, for a
given realization of the channel matrix H, one channel in outage and the other not in outage,
i.e. both channels can only be simultaneously in outage or simultaneously not in outage.! This
strategy is then not suitable for the transmission of a multiple description representation of the
source, as also pointed out in (Effros et al., 2004). Instead, it could be used for the transmission
of a single description representation, demultiplexing it into two half-rate substreams which
are then transmitted over the two channels.
The signals at the output of the Alamouti decoder have the same instantaneous SNR v, equal
to the sum of the SNRs of the signals on each branch (Goldsmith, 2005). Thus, from Eq. (3) we
have
2 ¥ 2 )
=) T =5 Y il
ij=1 ij=1
The instantaneous capacity of this system is then given by (Sandhu & Paulraj, 2000)

5 2
C =log, <1 —I—'y) = log, (1 + 0 Z hij|2> 8)

ij=1

and the source coding rate R 41 s is chosen such that

PT’{C < RALM} = Poyt
The expected distortion is then
D= (1 - Pout)Dl + Pout

where D; is the distortion achieved by the receiver when the system is not in outage, which is
equal to (Cover & Thomas, 1991)
D; = 27 2Rawm €)

The outage rate R%Y, is given by
R%im = (1= Pout)Rarm

3.4 Spatial multiplexing

In the SM strategy (Tse & Viswanath, 2006), a single symbol stream is first demultiplexed and
encoded into two separate and independent substreams. Each substream is then transmitted
simultaneously over each transmit antenna and, at the receiver, an optimal joint decoder is
employed for retrieving the original symbol stream.

Since this strategy requires one single symbol stream, it can only be used for the transmission
of a SD representation of the source.

1 This is true also because the transmitted rate on each channel is the same, which is the only case of
interest for us.
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The instantaneous capacity achievable with this strategy is given by (Foschini & Gans, 1998)

C = log, det (12 + zHHH> (10)

where I is the 2x2 identity matrix and H! denotes the conjugate transpose of the channel
matrix H. In a similar way as before, given the outage probability the source coding rate Rgps
is chosen such that

Pr{C < Rsm} = Pout

This CDF can be computed for a general MIMO channel without resorting to MonteCarlo
simulation as indicated in (Chiani, Win & Zanella, 2003). For the particular case of the 2 x 2
MIMO, a simple closed form expression is derived in the Appendix.

The expected distortion D at the receiver is then

D= (1 _Paut)Dl + Pout

where
Dy = 27 2Rsm (11)

is, as usual, the distortion achieved when the system is not in outage.
The outage rate R4/ is given by

Rg%l = (1 - Pout)RSM

4. Zero-outage rate-adaptive source encoding (ZORA)

In this section we assume that the source encoder knows the (instantaneous) value of the
wireless channel mutual information. Thus, it encodes the source at a rate just below the
mutual information, leading to the best achievable distortion at the receiver side. Note that
this is a zero-outage strategy, that is expected to provide better results than the fixed-outage
strategy, at the cost of increased system complexity due to the need for complete CSI at the
transmitter side. Furthermore, this is a fast-adaptive technique compared to the fixed-outage,
since the rate of adaptation is determined by the variations of the channel fading.

4.1 Repetition

Since transmitter side information does not increase capacity unless transmitted power is also
adapted (Goldsmith, 2005), the capacity of this strategy in a given fading realization has the
same expression as in (5) which can be rewritten using (1) as

1 7 & 1 7
C = E 10g2 (1 + E ijgl xl-]-> = E 10g2 <1 + EXS
where Z,Z,j:1 Xjj = Xg ~ X% (Hogg & Craig, 1970).

Since the transmitter has CSI knowledge, in every time instant the source coding rate Rrgp
can be adapted to achieve the instantaneous capacity C. The distortion D, observed at the
receiver is then (Cover & Thomas, 1991)

1

D, — 2~ 2Rrer — _
' 1+ Tx;
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which is a continuous random variable. Its expected value is

+o0 1
DREP = ]E[Dr} = /0 1 n jzf7((8) (Z)dZ
2

1 +o0 23 7;d

_E/o 21725 T#
, 7—72+2«73—e%r(0, )

Drep = - -

REP = ¢ i

The CDF Frgp(d) of the distortion at the receiver can be derived as

which yields

A=

2—-2d
FREP(d) = PI’{Dr < d} = PT{XS > ~d }

4 (® 2—2d
—1h ( 7d
4.2 Alamouti

This strategy (Zoffoli et al., 2008a) employs the Alamouti scheme to obtain two independent
channels from the MIMO system. These two channels are then used for the transmission of
a single description representation of the source, after demultiplexing it into two half-rate
substreams. The capacity for the ALM strategy is given by (8) that, from (1), can be expressed

as

_ 2 _

i i

C = log, (1 + 1 ”Zl x,-]-> = log, (1 + 4x5>
i,j=

where 21‘2,]':1 Xjj = Xg ~ X% (Hogg & Craig, 1970).
Using transmitter side information, the source coding rate R 41 5; can be adjusted to follow the
variations of the capacity C. Thus, the distortion at the receiver is given by (Cover & Thomas,
1991)

D, = 272Rawm — 71, >
(1+ Jx)
Its expected value can be evaluated as
+oo 1 8
Darm = E[Dy] = / — )(()(z)dz
Jo (1412
— 1/-+00 2 7%(12

6Jo (44 92)?

which finally results in

2
Daim =3
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The CDF Fupp(d) of the distortion is

Faum(d) = Pr{D, < a} = pr{xs 4 —wﬁ}

Wi

- ()

4.3 Spatial multiplexing strategy

Here, a single description of the source, i.e. a single symbol stream, is first demultiplexed and
encoded into two separate and independent substreams. Each substream is then transmitted
simultaneously over each transmit antenna and, at the receiver, an optimal joint decoder is
employed for retrieving the original symbol stream. The capacity of this strategy is given by
(10).

In the Appendix it is shown that the expected distortion for ZORA over SM MIMO system is
given by

Dgp = —

8[7—207r(0,2)][7(7+2) —4(5+ 1)er (0,
76

)]

YN

+

The CDF of the distortion observed at the receiver is obtained in the Appendix as

Fsm(d) = Pr{DV < d} =1- Pr{x1xz < \}H}

= 1—F(\}H) (12)

5. Numerical results

5.1 Discussion for the fixed-outage strategies

We begin the discussion by comparing only the three TS-MD strategies. Then, we compare
TS-MD-OPT with the remaining three strategies.

Figure 2 compares the expected distortions achievable with the TS strategies at a fixed ¥
of 10 dB. These results can be explained using the same observations we made in (Zoffoli
et al., 2008b), where we considered MD strategies over two parallel and independent fading
channels. For completeness, we now briefly restate here these conclusions.

As expected, TS-MD-OPT achieves the lowest distortions, since it is designed to minimize
Eq. (7). At low outage probabilities, both descriptions are correctly decoded most of the time
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and optimal performance is achievable with the TS-MD-N]JR strategy, since it is designed to
minimize the distortion Dy. As the outage probability gets higher, the receiver becomes able
to correctly decode only one description most of the time and TS-MD-NMR achieves optimal
performance, since it is designed to minimize the distortion D;.

Figure 3 compares the remaining strategies and TS-MD-OPT at a fixed y of 10 dB. As can be
seen, the lowest distortions are achieved with the SM strategy. However, this performance
comes at the expense of complexity, mainly due to the presence of the joint decoder at the
receiver. Interestingly, the ALM strategy, which can be employed for reducing this complexity,
shows only a very small loss in performance with respect to SM. Looking at the source coding
rates of the different strategies, reported in Fig. 4, it can be seen that ALM obtains rather high
coding rates, but still significantly lower than those of SM.

10( |
—REP ,
9f---TS-MD !
------ ALM )
81--sm -
o)
o ///// !
L - ’
g6 L
2 5 pmrmt T
-g //// ) “H"H.‘_\u““"””
O 4 . euoEs -
3 .
2:'

OO 01 02 03 04 05 06 07 08 09 1
Outage probability

Fig. 4. FORA: source coding rates vs. outage probability for the different strategies with ¥ =
10 dB.

This observation, at a first analysis, might erroneously lead to the expectation of a more
evident difference in performance between these two strategies. In fact, it must be recalled
that the distortions D; are exponential decaying functions of the coding rate (see Egs. (9) and
(11)). So, due to this type of dependency, the distortions D; are very similar even though the
coding rates are significantly different.

Returning to Fig. 3, as the outage probability grows, performance of SM and ALM quickly
worsen and the lowest distortions become achievable with the TS-MD-OPT strategy. This
happens because SM and ALM are both transmitting over a single unreliable channel, while
TS-MD-OPT employs path diversity over two independent and equally unreliable channels
reducing the overall system outage probability. The REP strategy has in general the worst
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performance, except for very low values of outage probabilities where it performs slightly

better than TS-MD-OPT.

We now consider the outage rates achievable with the various strategies, plotted in Fig. 5. In

4,

35

Outage rate
N

O !

—REP
---TS-MD

0 041

Fig. 5. FORA: outage rate vs. outage probability for the different strategies with ¥ = 10 dB.

Outage probability

02 03 04 05 06 07 08 09

(Choudhury & Gibson, 2007) it has been shown that, when considering the lossy transmission
of information over a single channel with very slow Rayleigh fading, designing the system
to maximize outage rate does not lead to the minimization of the distortion at the receiver.
Inspired by this observation, we want to determine if the same result applies to our MIMO

case.

We denote by p,; the outage probability that minimizes expected distortion and by p, the
outage probability that maximizes outage rate. Table 1 shows the values of p;, p,, the
corresponding distortions and the percent differences in distortion for the various strategies
with 4 = 10 dB, obtained from Figs. 3 and 5. As can be seen, the outage probabilities that
minimize distortion are very different from the outage probabilities that maximize outage

pa | pr |D(pa)|D(pr) AD%

ALM 0.015]0.130| 0.0458 | 0.1372 |199.41
TS-MD-OPT|0.084|0.212| 0.0825 | 0.1058 | 28.24
REP 0.026]0.108| 0.1069 | 0.1551 | 45.01
SM 0.013]0.157| 0.0338 | 0.1589 |369.76

Table 1. p4, pr and respective distortions for the various strategies with 4 = 10 dB.
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rate. Thus, if the system is designed to maximize outage rate instead of minimizing distortion,
suboptimal performance is achieved. In some cases this approach could result in much higher
distortions, as in the SM strategy where the percent difference between the two distortions
is almost 370%. TS-MD-OPT is the less sensitive strategy to this design error, but still has a
distortion that is more than 28% higher than the minimum distortion.

5.2 Discussion for the zero-outage strategies

Figure 6 plots the expected distortion as a function of 4 for the different strategies. As
can be seen, the lowest distortion is achieved with the SM strategy at all values of . This
performance, however, comes at the expense of realization complexity, due to the presence
of the joint ML decoder at the receiver (Zoffoli et al., 2008a). Similarly to the case of CSI at
the receiver only of (Zoffoli et al., 2008a), if the ALM strategy is employed to reduce this
complexity, only a small decrease in performance is observed, especially at high values of ¥.
Significantly higher distortion is produced with the REP strategy.

Figures 7, 8 and 9 plot the CDF of the distortion for different values of ¥ respectively for
the REP, ALM and SM strategies. The square markers in the plots represent the value of the
expected distortion for the respective value of 4. Interestingly, an increase in the value of ¥ not
only improves the value of expected distortion for every strategy (as it appears evident also
from Fig. 6), but also improves the probability p.(7) of achieving that distortion. The values
of pe(7) for the different strategies and for different values of ¥ are reported in Table 2. It can

pe(7)
4=1dB|y =3dB|y =5dB|y = 10dB
ALM| 0630 | 0.658 | 0.684 0.731
REP| 0594 | 0.608 | 0.621 0.637
SM | 0641 | 0678 | 0712 0.787

Table 2. Probability of achieving expected distortion for the various strategies with different
values of 7.

be observed that, given the same increase of ¥, the increase in p,(¥) in the REP strategy is
significantly lower than the increase in p,(¥) for the remaining two strategies. For example,
if 4 increases from 1 dB to 10 dB, p.(7) in the REP strategy increases by about 0.04, while in
ALM and SM it increases by about 0.10 and 0.14, respectively. Moreover, returning to Figs. 7,
8 and 9, an increase of ¢ also causes an increase in the slope of the CDF for all strategies,
suggesting that the values of distortion become less variable as ¥ increases.

A comparison of the CDF of the distortion for the various strategies at a fixed ¢ of 5 dB is
reported in Fig. 10. Both ALM and SM strategies have similar and very steep CDFs, which
means that it is possible with these strategies to achieve low values of distortion with high
probability. For example, with a probability of 0.9, SM achieves a distortion approximately
equal to 0.05, while ALM achieves a distortion approximately equal to 0.07. The REP strategy
has a much less steep CDF than the other two strategies, and indeed, with a probability of 0.9
it achieves a significantly higher distortion, approximately equal to 0.15.

5.3 Comparison between fixed-outage and zero-outage
The zero outage strategies require CSI at the transmitter, fast adaptation at the transmitter to
respond to the CSI, and commensurate additional complexity compared to the fixed outage
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Fig. 10. ZORA: CDF of the distortion at the receiver for the different strategies at a fixed ¥ of
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approaches. As a result, we would hope for and expect some gain in performance. Using SNR
to denote the ratio P;/ N, a comparison of the FORA minimum distortion values in Fig. 3 for an
SNR of 10 dB, with the minimum expected distortion achieved by the Alamouti and Spatial
Multiplexing schemes at a 10 dB SNR, available in Fig. 6 for ZORA, reveals that the more
complex zero outage rate strategies have more than an order of magnitude lower distortion.
In fact, the Alamouti scheme under the zero outage approach achieves the same minimum
average distortion as in Fig. 3 but at less than a 6 dB SNR, and the spatial multiplexing scheme
under ZORA produces the minimum average distortion in Fig. 3 but at an SNR of around 4
dB. Thus, 4 to 6 dB gains in SNR are available with the more complex zero outage strategies
compared to the fixed outage methods.

6. Conclusions

The results for the Fixed Outage Rate strategies used in a TS MIMO mode show that of the
three MD methods, namely, the No Excess Joint Rate coder (MD-NJR), the No Excess Marginal
Rate coder (MD-NMR), and the optimized MD coder (MD-OPT), the MD-OPT performs
best across all outage probabilities since if follows the envelope of the other two methods.
However, to optimize the MD-OPT coder, we need to know the packet loss rate to minimize
the average distortion. While the TS-MD-OPT outperforms the other MD approaches studied,
the TS-MD-OPT scheme performs worse for low outage probabilities than the REP, ALM,
and SM MIMO schemes that use an SD coder and is only able to take advantage of the MD
source coding method as the outage probability moves toward 0.1 and higher. Perhaps the
most important result obtained is that the outage probability that maximizes outage rate
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is much different from the outage probability that minimizes expected distortion for all of
the methods, and that the performance penalty for ignoring the expected distortion in the
optimization can be substantial. Thus, the usual approach of selecting the outage probability
to maximize outage rate is suboptimal for lossy source coding.

For the ZORA methods, wherein CSI is available at the transmitter and the source coding rate
is adapted to match the instantaneous channel capacity, it is shown that SM performs best
among REP, ALM, and SM, but that ALM performs very well, particularly in light of its lower
complexity. Plots of the cumulative distribution of the distortion as a function of SNR indicate
that not only does an increase in SNR reduce the expected distortion, but it also increases the
probability that that distortion will be achieved. Additionally, the CDFs of the distortion have
a much steeper slope with increased SNR, thus implying a much narrower range of variation
for the performance. The more complex and adaptive ZORA approach using transmitter CSI
is also shown to achieve more than an order of magnitude reduction in average distortion
over the FORA methods and to yield a reduction of 4 to 6 dB in required SNR for the same
performance.

7. Appendix: Statistics of the distortion for ZORA

To determine the expression of the expected distortion at the receiver for the zero-outage
strategy, we first need to introduce the characteristic function ¢(z) of the capacity C, defined
as (Chiani, Win & Zanella, 2003)

¢c(z) = E [eﬂﬂcﬂ = Kdet [U(z)]

where, for a 2 x 2 uncorrelated MIMO Rayleigh fading channel, K = 1 and U(z) isa 2 x 2
matrix with ik-th elements given by (Chiani, Win & Zanella, 2003)

foo s \/#s
up(z) = /0 xiTk=2e=x <1 + zx> dx (13)

Since the source coding rate Rgy is adapted, in every time instant, to the capacity C, we can
now express the expected distortion Dgy, in terms of the function ¢¢(z) as (Cover & Thomas,
1991)

Dsy =E {Z*ZRSM} _ ]E[€72C1n2j| _ (PC('an)

L
In2
“(fn>

where we defined i = uy (jIn2/ 7). Developing the expression in (13), we get for the 2 x 2
MIMO

= det i1y — f12fin (14)
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The CDF Fsp(d) of the distortion at the receiver is related to that of the capacity via the
relationship

Fsp(d) = Pr{D, < d} = 1—P1’{C > logz\}a}.

For MIMO, the CDF of the capacity can be derived starting from the characteristic function
(Chiani, Win & Zanella, 2003; Shin et al., 2006). For small MIMO systems results for the PDF
and CDF can also be found in (Smith et al., 2003).

For the particular case of the 2 x 2 MIMO of interest here, we derive below a closed form
expression for the CDF. We first need to rewrite the expression of the capacity in (10) using the
singular value decomposition of H, to obtain (Telatar, 1999; Winters, 1987)

2 -
C=log, [ (1 + zAi> = log, (x1x2)
i=1

where

=1+ %Ai, i=1,2 (15)

and the A; > A, > 0 are the two ordered nonzero eigenvalues of the matrix HH!, giving
x; > land x1 > xo.
The distortion observed at the receiver is then (Cover & Thomas, 1991)
1
(x122)?
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and Fsp;(d) results

Fspm(d) = Pr{D, < d} =1- Pr{x1x2 < \}a}

1
=1 F(ﬁ) 10
where F(z) = Pr{x;x; < z}.

We now define S as the set of points (x1, x2) such that
S= {(xl,xz) ER?:x; > Lxp > 1Lxg = x5 010 < z}

If X is the vector X = (x1, xp) with joint PDF fx(x1,x), F(z) can then be evaluated as
F(z) = /Sfx(xl,xz)dx1dx2

1 /%2 1%
= 5/1 /1 ? fx(x1, xp)dxydxy (17)

The joint PDF of X can be expressed in terms of the joint PDF fa (A1, A7) of the vector of the
eigenvalues A = (A1, Ay) as (Papoulis & Pillai, 2001)

fx(x1,x0) = W = %fA(Mﬂz) (18)

where ] is the Jacobian matrix of X. Since from Eq. (15) we have

2 .
)Ll-:%(xi—l), 121,2
we can rewrite Eq. (18) as
4 2 2
X1, X = 5 — (X _1 , — X —1 19
fx(x1,x2) ,)/zfA<,)/(1 )7(2 )) (19)

The joint PDF of the eigenvalues of HHH for a MIMO system with uncorrelated fading
between antenna elements can be written as (Chiani, Win & Zanella, 2003; Chiani, Win,
Zanella, Mallik & Winters, 2003; Telatar, 1999)

faM,Az) = e Me M2 (A = 4p)?
which, substituting into Eq. (19), yields

16 4 7%()[14’3(2)(

fx(x1,x0) = geﬁe 7 x1—x2)?

Substituting this last expression into (17) gives

z

8 4+ 2 _2 Yy 2
Fz:—(ﬁ/eﬁxz/Ze 7 (xy — xp)2dxydx
(z) 7, 1 (x1 — x2)"dx1dxy
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which can be finally written as
2 4 (%2 2
E(z) = —e¢7 / 7 %2
(2) ,736 L€
2
: {ei {'?2 —2'?(x2 — 1) +2<x2 — 1) }

e {"yz +2’7(;—2 - xz) +2(xiz — xz)z] }dxz

By using this expression into (16), it is then possible to evaluate the CDF of distortion for the
SM strategy.
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Analysis of MIMO Systems in the Presence of
Co-channel Interference and Spatial Correlation

Dian-Wu Yue and Qian Wang
Dalian Maritime University
China

1. Introduction

Wireless communication systems employing multiple antenna elements at the transmitter
and the receiver have been attracting much interest in recent years due to the significant
capacity gain promised by the multiple-input multiple-output (MIMO) systems [Teletar
(1999)], [Foschini & Gans (1998)]. The MIMO systems have been analyzed deeply from two
different perspectives [Teletar (1999)]-[ Yue & Zhang (2010)]: one concerns the evaluation of the
information-theoretic (Shannon) capacity, the other concerns performance evaluation in terms
of outage probability or symbol error probability of practical systems. Both of the capacity
analysis and performance analysis strongly rely on random matrix theory and matrix variate
distributions.

So far the capacity issues of MIMO systems have been extensively studied in the literature,
yet with main focus on the scenario without interference [Teletar (1999)]-[Kiessling (2005)].
In cellular systems, however, multiple users share the same radio spectrum, which typically
causes co-channel interference. It is well known that co-channel interference ultimately limits
the quality of service offered to the users. There have been initial investigations for the MIMO
capacity with co-channel interference in fading environments [Catreux et al. (2000)]-[Kang &
Alouini (2003a)]. In particular, Song and Blostein [Song & Blostein (2002)] studied the behavior
of MIMO capacity with varying number of interferers through simulations. In [Kang et al.
(2007)] and [Kang & Alouini (2003a)], Kang et al. obtained exact closed-form expressions for
the moment generating function, mean, variance of MIMO capacity. Specifically, the paper
[Kang et al. (2007)] considered MIMO Rayleigh fading channels in the presence of additive
noise and interferers with arbitrary average powers, but requiring that there is no spatial
correlation both among transmit antenna elements and among receive antenna elements for
the desired user, and there is no correlation among receive antenna elements for any interferer.
Reference [Kang & Alouini (2003a)] considered MIMO Rician channels in the presence of
Rayleigh co-channel interference, but requiring that there is an identical correlation structure
among receive antenna elements for both the desired user and interferers, and there is no
correlation among their transmit antenna elements.

In many practical situations, however, signal correlation among the antenna elements exists
in realistic environments due to poor scattering conditions. A typical example of this is an
uplink transmission from a mobile station (MS) to a base station (BS) , where around the
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BS the number of scatterers is usually smaller than around mobile terminals, thus leading
to the fact that the correlation at the BS is stronger than at the MS. Another typical example
of this is a downlink transmission from a BS to a MS, where the antennas at the BS can be
spaced sulfficiently far to achieve uncorrelation among them. On the other hand, it is more
difficult to space the antennas far apart at the mobile terminals due to physical size constraints,
and consequently correlation arises among the antenna elements in such scenarios. The
above factors have given us an impetus for studying the capacity of MIMO channels with
interference and receive correlation [Wang & Yue (2009)]. In Section 3, we will investigate
the capacity issue in the case where the MIMO channels of the desired user and co-channel
interferers are all subject to Rayleigh type of fading.

A MIMO system can be configured differently. One configuration is transmit/receive diversity
(TRD) which has been widely used due to its simplicity and good performance. The
performance of MIMO systems with optimal TRD depends on their operational environments.
Their performance in a Rayleigh fading environment without co-channel interference was
investigated by Dighe et al. [Dighe et al. (2001)] by assuming that the MIMO channels follow
independent and identical (i.i.d.) Rayleigh distribution. The resulting outage probability
is expressible in the form of a determinant. This result was subsequently extended by
Kang and Alouini [Kang & Alouini (2003b)] to a general case of independent, but not
necessarily identically distributed, Rician fading channels. The results, again, takes the
form of determinants. For the case using dual antennas at the transmitter or receiver
end, they obtained [Kang & Alouini (2004a)] an explicit expression for outage probability
complementing the result of Dighe [Dighe et al. (2001)]. The performance of MIMO systems
with optimal TRD in the presence of co-channel interference was tackled in [Dighe et al.
(2003)] and [Kang & Alouini (2004b)] under various fading environments allowing for the
MIMO fading channels of the intended user and interferers to be non-i.i.d. Rician/Rayleigh,
ii.d. Rician/Rayleigh, and Rayleigh/Rayleigh. All these studies focus on MIMO systems with
uncorrelated or semi-correlated antennas.

By semi-correlation, we mean that the spatial correlation exists only at one side, transmitter
or receiver end, of the MIMO systems. Even for the case with semi-correlation, it is usually
assumed that the intended user and interferers have the same correlation structure to simplify
the mathematical analysis. In fact, the use of this assumption leads to the same mathematical
treatment as the one with ii.d. channels. The ii.d. or uncorrelated assumption is often
invalid in many practical applications. Significant correlation among the antennas exists in
realistic environments due to, for example, limited spacing between antennas. Furthermore,
the spatial structure (and even the fading distribution) of the interference usually differ from
its counterpart for the intended user since their signals propagate over different multi-paths,
suffer from different fading, and arrive at the receive antenna array with different incident
angles. To handle these general fading situations, we must take different methodology [Yue &
Zhang (2010)]. In Section 4, we will investigate the performance issue of MIMO systems with
optimal TRD mainly over general Rayleigh/Rayleigh fading channels in a unified framework.
Throughout the paper, we use extensively relevant notations and results from multivariate
statistical theory, in particular, various matrix-variate distributions. Although relevant results
are available in the statistical literature [Muirhead (1982)], [Gupta & Nagar (2000)] and [Mathai
et al. (1995)], they are given only for real variables. The extension of these results to their
complex counterparts, as required in this paper, is straightforward. Such results, though
useful for wireless communications, are not found in the open references. We therefore first
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summarize definitions of various special functions with complex matrix arguments and their
properties in Section 2 for the use in this paper which, we hope, are also useful to researchers
in the area of wireless communications.

Moreover, we will use the following notations throughout the paper. By I, we denote the
identity matrix of size n x n (the subscript will be omitted wherever the size of the matrix is
clear from the context), 0 signifies the all-zero matrix, diag(xy,...,x,) denotes the diagonal
matrix with elements x1, ..., x,, the determinant of the matrix X is denoted by |X| or det(X),
[x;;] is a matrix with x;; representing its (i, j)th element and correspondingly, |x;j| denotes
its determinant. eig(X) denotes the diagonal matrix of eigenvalues of X. The symbol X > 0
indicates that X is positive definite; likewise, X > A means X — A > 0. We use notation
tr(X) to signify the trace of the square matrix X, etr(X) to denote exp(trX), X' to mean the
Hermitian transposition. The symbol ® denotes the Kronecker product of two matrices, ‘~’
means ‘distributed as’, CW,(n, L) is a complex Wishart distribution , CN(, L) is a complex
vector variate Gaussian distribution, CN ;(M, A ® B) means a complex p x g matrix variate
Gaussian distribution and Ex[-] denotes expected value with respect to X.

2. Definitions and properties for random functions of complex matrix arguments

2.1 Zonal polynomials

Zonal polynomials were introduced by James [James (1964)], and have become an essential
tool for studying and expressing some useful special functions of matrix arguments (such as
Hypergeometric functions of matrix arguments we will discuss).Using these special functions
in matrix arguments, many distributions of quadratic forms can be obtained in a very compact
form.

For k > 0, we denote x = (ky,kz,...,kp) such that k = Z]’.;lkj,kl >k > ... > kp > 0. Then
we call x a partition of k into p parts. Partitions may be ordered lexicographically as follows. If
k= (ki,ky,...) and A = (I1,1p,...), then we say k > A if k; > [; for the first index i where the

partitions differ. Now let y;, ..., Y, be p variables. Then we say that the monomial y’lﬁ e yl;”

is of order x and that ylil x ~y];,” is of higher order than ygl X ~y;” if k > A. The degree of a
monomial in p variables is the sum of degrees of the individual variables. The degree of a
polynomial is the maximum degree of the monomials making up the polynomial. We denote
by Vi the vector space of symmetric homogenous polynomials of degree k in p variables.
Further let Vy be the subspace of Vj defined by polynomials of order x. Then Vj is the direct
sum of the irreducible invariant subspaces V.

Defintion 1. Let Vy, be defined on the eigenvalues of a p x p Hermitian matrix X. Then the polynomial
(trX)X € V. has a unique decomposition into polynomials Cy(X) € Vi according to

(trX)* =Y Ce(X). (1)
k

The component of (trX)K in Vi, Cc(X), is called a zonal polynomial of X.

The zonal polynomial Cy (X) is defined for all k and p, but for a partition x of k into more than
p parts, it is identically zero. The zonal polynomials have the following useful properties.

Property 1. For a scalar a,
Cy(aX) = a*Cy(X). @)
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Letx = (k1, ko, ..., kp) be a partition of k. We will denote the complex multivariate hypergeometric
coefficient by

ﬁa—z+1 3)
=1

where (x), = x(x+1)---(x+n—1)is the Pochhammer symbol [James (1964)]. Note that
(x)o =1
Property 2. For p and g,

Ce(Ip) x
G~ @
Property 3.
Ce(X) = Cr(UXUY) 5)
where U € U(p), and U(p) is the group of all p x p complex unitary matrices.
Property 4.
/U(p) Ci(UMXUY)[dU] = G (X)C(Y) /Ce (1) ©)

where [dU) is the invariant measure on the unitary group U(p) normalized to make the total measure
unity.

A general formula for the coefficients of zonal polynomials has not been found. For more
detail study of zonal polynomials, the reader is referred to [Muirhead (1982)].

2.2 Hypergeometric functions of matrix arguments

Many matrix variate distributions, especially central quadratic form distributions, can be
written in terms in hypergeometric functions of matrix argument [James (1964)]-[Khatri
(1965)]. Hypergeometric functions of matrix argument is a natural generalization of
(generalized) hypergeometric functions of scalar argument, which have been used widely in
the field of science and engineering.

Defintion 2. Let X be a p x p Hermitian matrix. Then hypergeometric functions of one complex
matrix arqument is defined by

n];c

- ad [am]xCx
mF,E”>(a1,...,am;b1,...,bn;X):I;; i" (' ) %
where ay, ..., am; by, ..., by are arbitrary complex numbers, Y, denotes summation over all partition

K.

For the conditions for convergence of the mentioned-above series, the reader is referred to
[Gupta & Nagar (2000)]. From Definition 2 it follows that

oFy (X) = etr(X) ®)

and )
VP (@X) = T-X | 9)



Analysis of MIMO Systems in the Presence of Co-channel Interference and Spatial Correlation 159

Defintion 3. Let q < p. Then the hypergeometric functions of two Hermitian matrices X(p X p) and
Y(g % q) is defined by

wEPD (@, am by, b X, Y) = 22 ] (i x(Y) (10)

The hypergeometric functions of two Hermitian matrices have the following properties.

Property 5.
/U( ) wEPP @y, by, - b XUYUD U] = wEPP(an, .. ams by, b X, Y). (1)
r

Property 6.
mﬁy(lp/p)(al,. . .,am;bl,. . .,bn;IP,X) - mﬁr(lp)(al,. . .,um;bl,. . .,bn,‘X). (12)

For more detail study of hypergeometric functions of matrix arguments, the reader is referred
to [Gupta & Nagar (2000)]. The hypergeometric functions of two Hermitian matrices can be
expressed in terms of scalar hypergeometric functions [Khatri (1966)], which is the practical
relevance of our some results given in follow-up parts.

2.3 Generalized Hermitian polynomials of matrix arguments

Hayakawa in 1969 gave the definition of generalized Hermite polynomial of real matrix
argument Hy(T), and extended the definition to the case of two real matrix arguments:
P¢(T, A). Crowther in 1975 further extended it to the case of three real matrix arguments :
P¢(T, A, B). Now we introduce the definition of generalized Hermite polynomial of complex
matrix argument and its extensions. These functions of matrix arguments play an important
role in the study of the distribution of some quadratic forms.

Defintion 4. Let T : p x g and W : p x q, be arbitrary complex matrices, then the generalized
Hermite polynomial with a complex matrix argument Hy(T) which corresponds to the partition x =
(ki,ka, ..., kp) of k is defined as:

He(T) = 7 Pletr(TTH) /w etr[-WW! —1(TWH £ WTH)|Ce(-WWHaw — (13)

where1 = /—1.

It should be noted that (13) can be regarded as the Fouier transform of etr[ ~WW']C,(—~WW™).
The distributions of the latent roots of a noncentral Wishart matrix and of related statistics can
be expressed as series of generalized Hermite polynomials.

Defintion 5. Let p < g, and let T : p x g and W : p x q, be arbitrary complex matrices, and
let A : gxqgandB : px p be Hermitian positive definite matrices; then the generalized Hermite
polynomial with three complex matrix arquments Py (T, A, B) which corresponds to the partition x =
(ki,ko, ..., kp) of k is defined as:

Pc(T,A,B) = ~Pletr(TT") /w etr[-WW' — 1(TWT + WTH)|C(-BWAWT)dW.  (14)
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The generalized Hermite polynomial with three complex matrix arguments P, (T, A, B) has
several simple properties as follows.

Property 7.
Py (T, I, 1p) = Px(T,1;) = Hy(T). (15)

Property 8.
P(T,A,1,) = Pc(T,A). (16)

Property 9.

Ck(A)Ck(B
Pi(0,4,B) = (-1)![q) HBHB) )
«(Ig)

Crowther has calculated the polynomial P.(T,A,B) for some special x. With general «,
however, there is no formula available for their calculation. For more detail study of Hermitian
functions of matrix argument, the reader is referred to [Gupta & Nagar (2000)] and [Mathai et
al. (1995)].

3. Ergodic capacity of MIMO systems with interference and correlation

3.1 System model

We consider a wireless link equipped with t antenna elements at the transmitter and r antenna
elements at the receiver. It is assumed that the system is interference-limited, and there are a
total of £ interfering users each equipped with t; antenna elements, i = 1,..., {. The received
r x 1 vector at the desired user’s receiver can thus be modeled as

4
y=Hs+ ) Hs; (18)
i=1

where H is the r X t normalized channel complex matrix with Gaussian distribution [Gupta
& Nagar (2000)]: H ~ CN;+(0,Z® ¥), L ® ¥ is the covariance matrix of random matrix H; s
is the t x 1 transmitted data vector for the desired user with covariance matrix £(sst) = R
and total transmitting power tr(R;) = E;. Similarly, for the i-th co-channel interferer, H; and
s; are the r X t; normalized channel matrix and the f; x 1 transmitted vector with short-term
average power E; per antenna, respectively. It is assumed that H; ~ CN,4(0,Z; ® ¥;) and
S; ~~ CNtl.(O, Ri)-
Now we take a closer look at the correlation structure of H and H; in (18). The correlations
of the matrices H and H; are specified by Z ® ¥ and Z; ® ¥;, respectively. Physically, £
and X; represent the r x r correlation matrices of incoming signal and interference at the
receiver, respectively. Correspondingly, the transmit-antenna correlations for the desired user
is characterized by the t X t correlation matrix ¥, whereas its counterpart for interferer i
is specified by the t; x t; correlation matrix ¥;. The structure of these correlation matrices
depends on channel’s fading characteristics, geometry and polarization of antenna arrays,
and signal/interferers angle of arrival and spread, as described in various references [Chuah
et al. (2002)].
The mentioned-above correlated MIMO channel model is one of several classical correlated
MIMO channel models [Kermoal et al. (2002)]. It is very convenient for mathematical
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tractability, and has been used by many papers [Kiessling (2005)], [Paulraj et al. (2003)]. With
it, the MIMO channel correlation is separable [Kermoal et al. (2002)], [Paulraj et al. (2003)], i.e.,

H ~ A'H,B (19)

where
r=AA (20)
Y =B'B (21)

and Hy, ~ CN,,,t(O, I, ® I}) isa r x t random matrix of i.i.d Gaussian elements. For simplicity,
just as in [Blum et al. (2002)], [Kang et al. (2003)] and [Kang et al. (2007)], all of the interfering
signals s;, i = 1,...,/, are assumed to be not known at the desired user’s receiver, and they
are all modeled as complex Gaussian vectors. Hence, the interference }:le H;s; conditioned
onH;i=1,...,¢, is complex Gaussian with covariance matrix

14
R. = ) HRH!
i=1

= H/R/H! (22)
where
H; = (le' e ,Hg) (23)
and
R; = diag(Rl, s ,R(). (24)

This implies that the interference is whitened by multiplying y by R 172,

For analytical tractability, it is assumed firstly that £y = X, = --- = X, = Xj. Note
that our assumption is more general than in the literature [Catreux et al. (2000)]-[Kang &
Alouini (2003a)] where all correlation receive matrices for interferers are identity ones, namely
Y] =Xp = -+ = Xy = I.In order to obtain easy-to-compute closed-form expressions
which provide useful insight, we have to assume further that Ey = E; = --- = E; = Ej,
Y=Land ¥, =1;,¥> =1, -, ¥y = I;,. These assumptions are valid when the interfering
signals come from approximately same distance from the receiver and the shadowing effects
are small. However, it will lead to a pessimistic estimate of system performance if the total
interfering power is fixed [Ye & Blum (2005)]. Exactly, under these assumptions, what we
will finally obtain is indeed a lower bound on the ergodic capacity for the general case. To
make the problem mathematically tractable, these assumptions are usually adopted for the
performance analysis of MIMO systems [Kang & Alouini (2003a)], [Kang & Alouini (2004b)],
and [Zhang & Cui (2004)]. Moreover, we assume that perfect channel information is available
to the receiver, but the transmitter has no channel information. Then the optimum R; to
maximize the instantaneous capacity is given by Ry = %It. For that, we can assume that
R: = &I, and Ry = E11y,, Ry = Eoly,, -+, Ry = E/I,.

Under all these assumptions made above, we will derive some statistical expressions only
with respect to the random matrix pH' (H;H}) "'H, where p = tETSI It should be noticed that
from Chapter 3 of [Gupta & Nagar (2000)] for the general settings of {E;} and {Z;} we can
approximate with high precision R; by only using a single Wishart-distributed matrix (e.g.,
H;HY), and thus (18) can be still used as a good approximating model for the general case.
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3.2 Moment-generating function of mutual information
The instantaneous mutual information I(s,y) between input vector s and output y of the
MIMO link according to (18) is given by Blum et al. (2002)

I(s,y) =log, [I: +Q |, (25)
where
Q = RH'R;'H. (26)
Now let H ~ CN, 4(0, £ ® I;) with
L=AZ 1A, (27)
here A is defined in (20), and let H; ~ CN,1,(0,I, ® I;,) with
{
tr=Y t. (28)

From the proof of Theorem 7.4.1 of [Gupta & Nagar (2000)], it can follow that Q can be
reexpressed as

Q = pH' (H,H])'H (29)
The MGF of mutual information I(s,y) is defined as
M(6) = Eglexp(01(s,y)/ logye)] = Eg | 1 +Q|°. (30)

Furthermore, the MGF M(6) can be written in terms of hypergeometric functions of one

matrix argument over complex field 2F1(r).

Theorem 1. Suppose that the number of receive antennas for the desired user is equal to or less than

the total number of transmit antenna for the interferers, namely r < t1. Then we have that

_ Tt +t)T(t - 0)
Lr(t)Tr(t+ £ = 0)

M(0) DB (0,6t + t; — 0,1 pE); (31)

where T'+(-) is the complex multivariate gamma function defined by
r
Iy(m) = n’(r_l)/znl"(mfﬂrl). (32)
i=1

The proof of Theorem 1 is placed in 6.1.

It should be pointed out that in order to make the problem mathematically tractable, the
assumption of ¥ < t; is usually adopted for the performance analysis of MIMO systems
[Kang & Alouini (2003a)], [Kang & Alouini (2004b)], and [Zhang & Cui (2004)]. In downlink
transmission, this particularly true for small and lightweight hand-held/portable receive
terminals for which the size of practical adaptive array will typically be restricted to one or
two antenna elements.

A general hypergeometric function of one Hermitian matrix argument can be expressed in
terms of scalar hypergeometric functions [Kiessling (2005)], which is of the practical relevance
of Theorem 1.
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The Vandermonde matrix with respect to a p x p diagonal matrix A = diag(A1, Az, -, Ap)
with Ay > Ay > -+ > A, can be denoted by

v(A) = () (33)

Lemma 1. Let W be a p x p Hermitian matrix. Define @ = eig(W) = diag(wy, ..., wp) with
w1 > ... > wp. Then

(P)(ul, . ,am;bl,...,bn,‘W): (34)

where F = [fj;] with
fij =l T Fa(@ =+ A — b — 4L by — + ) (35)

fori,j=1,2,...,p.

Remark 1. The scalar hypergeometric functions appearing in the above lemma are built-in functions
in computational software packages such as Mathematica.

Remark 2. When some of the w;'s are equal, we obtain the results as limiting case on the right of (34)
via L'Hospital’s rule.

3.3 Ergodic capacity of MIMO systems
A MGF uniquely defines a probability distribution. Once we can find the MGF of mutual
information, we can determine all moments, including the practically important first moment,
which is also known as ergodic capacity in MIMO literature[Catreux et al. (2000)]-[Kang et al.
(2007)]:

C= EQI(s,y) =&qlog, |L+Q]. (36)
The standard approach to determine the ergodic capacity is just to find first the related MGF.
Specially,

=log,e- aAgie(e) lo=0- (37)

Furthermore, After a lengthy process (see 6.2 for details), we can obtain the following

expression of the ergodic capacity of MIMO systems in terms of scalar hypergeometric
functions.

Theorem 2. Suppose that r < t]. Let A = eig(I, — pX) = diag(61,05, -+ ,6;) with &1 > &, >
- > 0y
a) When r < t, then

Lo logye logye- Y1 | D(h) |
- 38
=L liTkein T e (38)

where D(h) = (d;(h)) is an r x r matrix satisfying

Z] 1 (—j+D)e(t—j+1)e8,

; T i # h
dl,](h) _ (t+tl ]+1)kk ]# (39)

J—1 (= D)(t—j1)8
(Zb 0t1+b)Z (= ]+1)kkk' j=h
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b) When r > t, then

r il ogye log,e-Y!_, | D(h) |
C = 2 : 2 h=1 (40)
N R A Y
where D(h) = (d; j(h)) is an r x r matrix satisfying
j—1 (=j+D)e(t—j+ 1), . .
Zk:,O (t+kt1—j+1)kkk! ’ JEhjSt
dij(h) =167, jAR >t (41)
b= 1)yl (DD
hij = (Zp=0 75) Lo (tJrktlfj+1):k! 1] =
Here
ST+t —j+1) 1, _ i
:7/][—]/ t]l_ tlll_ )1 1—26: _ 1— 42
hij =9 T +1) Jo X1 =) (1 = 6x)  [In(1 - 6ix) — In(1 — x)]dx.  (42)

3.4 Numerical examples and remarks
Now we offer some numerical examples validating the analysis and showing the effect of
various system parameters on the ergodic capacity of MIMO systems. For simplicity, we adopt
the correlation model of exponential type (see [Loyka (2001)] and [Kiessling (2005)]) at the
receiver with

L = [gl] (43)

£ =g/ (44)

The correlation coefficients g and B are for the desired user and interferers, respectively. They
range from 0 to 1. Here 0 means that the correlation is the weakest, and 1 means that the

correlation is the strongest. Furthermore, the SIR in dB is defined by 10log;, (%) which

characterizes the signal to interference ratio in the considered physical condition.

The ergodic capacity versus the SIR is depicted in Fig.1 where the four curves are shown for
four different correlation coefficients equal to § = 0.3, 0.6, 0.8, 0.9, respectively. The considered
MIMO system possesses 4 transmit antennas and 4 receive antennas with 10 interfering
antennas. The correlation coefficient B; is set at 0.4. As expected, the ergodic capacity decreases
with increasing B. It can be further seen that the effect of strong correction on the capacity is
significant.

Fig.2 depicts the ergodic capacity versus the SIR for four different correlations. The four
curves in Fig.2 are shown for interfering correlation coefficients equal to f; = 0.3,0.6,0.8,0.9,
respectively. The considered MIMO system is with 2 transmit antennas and 4 receive antennas
and interfered by a user with 8 antennas. The correlation coefficient is set at § = 0.5. It can be
seen from Fig.2 that the impact of correlation for interferers on the ergodic capacity increases
with increased interfering correlation coefficient B; . Therefore, the interference correlation is
beneficial, especially the strong correlation.

Simulation results are included in Figs.1-2 for comparison. Each point in the simulation curves
are obtained by averaging over 100,000 independent computer runs. The theoretical and
simulation results are nearly identical verifying the validity of the theory. Consequently, in
the following evaluations, we only consider the theoretical results.
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In Fig.3, a MIMO system with 4 transit antennas and 4 receive antennas is considered. We
assume only 1 interferer is involved in this system. We observe the ergodic capacities with
various interference antennas. In Fig.3, the four curves correspond to the number of total
interfering transmit antennas f; = 4,5, 6,7, respectively. It can be observed that the ergodic

capacity drops as t] increases, and the drop becomes gradually slow.
pacity drop p g y

Finally, in Fig.4, we compare our analytical results (neglecting the noise component) with the
Monte-Carlo simulation results with Gaussian noise involved in the corresponding physical
conditions. We set the transmit power in the interest system at 30dB, and let g and S| be qual
to 0.4 and 0.8, respectively. Furthermore, we assume the system is interfered by a user with 10
antennas. We plot the curves with t = r = 2,3 and 4, respectively. As shown in the figure, our
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analytical results match the simulation results under low SIRs, however, we lose the precision
gradually as SIR grows.

4. Outage performance of TRD MIMO systems with interference and correlation

4.1 System model

Suppose the intended user employs r antennas to receive signals transmitted from ¢ antennas.
The channels that link the ¢ transmit and r receive antennas are characterized by an r x t matrix
H, which is assumed to follow the joint complex Gaussian distribution with mean matrix M
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and covariance matrix X @ ¥. Symbolically, we will write
H~CN;(MZIZ®Y) (45)

where ¥ and I define the correlation structure at the transmit and receive ends, respectively.
It is assumed that the intended signal is corrupted by ¢ independent interferers, and the ith
interferer transmits its signal with ¢; antennas where i = 1,..., /. The desired information
symbol by is weighted by the transmit beamformer u before being feeded to the ¢ transmit
antennas. The transmit beamformer is normalized to have a unit norm u'u = 1 so that the
transmit energy equals Es = |by|?. The r x 1 vector at the desired user’s receiver can thus be
written as

4
y = bpHu + Z H;s; +n, (46)
i=1
where H; is the r X t; the channel matrix characterizing the links from the desired user’s r
receive antennas to the ¢; transmit antennas of interferer i; and s; is the symbols transmitted
by interferer i, such that £ [sisﬂ = E;I;, with E; denoting the average symbol energy. In the
way similar to defining H, we assume

H; ~ CN,;,(M;, ;@ ¥)) (47)

We assume the additive noise vector n to follow the r x 1 complex Gaussian distribution of
mean zero and covariance matrix R,,. Conditioned on H;,i = 1,...,/, the covariance matrix
of interference-plus-noise component is given by

!
Rc = Y EHH! +R,. (48)
i=1

4.2 Formulation

The TRD system transmits one symbol at a time, and employs a weighting vector
w to combine received vector y to form a single decision variable. The transmit and
receive weighting vectors, u and w should be chosen to maximize the output signal to
interference-plus-noise ratio (SINR) at every time instant, as defined by

y - w' (Hu)(Hu)'w (49)

wt&, [(Ele H;s; +n) (Tl Hys; + n)*} w

where &, denotes the expectation with respect to n. The result of expectation equals R
given in (48). Optimization of -y is the problem of Rayleigh quotient. Given the channel-state
information and conditional on u, we optimize y with respect to w to obtain [Kang & Alouini
(2004b)]
tHEHTR-]
u' (EsH'R; "H)u

ww=—bﬁf—L (50)
where we have used the fact that u'u = 1 to represent the second line in the form of Rayleigh
quotient. Thus, we can upper bound y(u) by

Ymax = )\(1) (51)
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where A1) > Ag) = -+ - A(y) are the non-zero eigenvalues of the matrix product
F=EHR 'H (52)

in the descending order, and V(1) V(2) " V(g) are their corresponding eigenvectors.
The non-ordered eigenvalues and eigenvectors will be denoted by Aq,A,---,A; and
V1,V , Vg, respectively.

The outage probability of TRD systems can be defined directly in terms of the instantaneous
SINR Yiax = /\(1) or by channel capacity [Kang et al. (2003)]

C= 10g2(1 + )\(1)). (53)

Both leads to the same expression for an outage event: A (1) < A, but with the protection ratio
A defined differently as shown by

_f outage in terms of y
A= { 260 — 1, outage in terms of C. 54)

In either case, we can write the outage probability as
Pout = Pr{)\(l) < A} (55)

To determine the outage performance, the central issue is to determine the probability density
function (PDF) of /\(1) or equivalently, its cumulative density function (CDF).
Determination of the CDF of the principal eigenvalue of a rank-q non-negative definite matrix
of the formF = E SH*R; 1H has been addressed intensively in the literature [Muirhead (1982)].
The predominant methodology, however, is to arrange the sample eigenvalues in a descending
order and then to determine the PDF of the largest one. The methodology is also prevailing
in the area of communications [Kang & Alouini (2004b)]. Such methodology, however, often
leads to mathematically intractability except for some simple cases. In this paper, we therefore
consider the non-ordered sample eigenvalues instead. The key step is to represent the outage
event A1) < A, alternatively, by virtue of non-ordered eigenvalues. To this end, we write the
sample space

{F:Aq) <A} ={F:n_ (4 <A} (56)

The right-hand side is further expressible in matrix form. Hence,
{F : )\(1) < A} = {F F< AI} (57)

where F < AI means that (AI — F) is a positive definite matrix. The equivalence of the two
expressions is obvious, in much the same way as what we do in selection combining. Let V
denote the matrix of eigenvectors of F. Namely, V = (vy,---,vg, -+, v;). Hence we can write

Al —F = Vdiag(A — Ay, -+, A—Ag,0,-+-,0)V7 (58)

The positive definiteness of (AI — F) implies that all of eigenvalues A — A; are positive, and
vice versa, thus showing the correctness of (57). This equivalence was previously used in
Chapter 9 of [Muirhead (1982)].

We use it here to represent the outage probability yielding

Pyut = Pr{F < AI}. (59)
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The matrix representation of outage event, though simple in principle, provides a novel
framework to tackle the outage issue of the optimal TRD system. The key to success along
this direction is to find the joint cumulative distribution function of matrix F.

For ease of presentation, we define variables

u = max{r,t} (60)

v =min{r, t} (61)

and the v x u complex matrix

~1/2ppg-1/2
Y — {Z MY , r<t ©2)

Y-12Mte-1/2 <y

4.3 Outage performance with co-channel interference

We first proceed to operational environments with co-channel interference. For mathematical
tractability, let us first simplify the interference covariance matrix given in (48). We assume
that the operating environment is interference-dominated, so that the noise component is
negligible. Hence, we can rewrite (48) as

4
R. =) EHH! (63)
i=1
where HZ'H;r ~ CWy(t;, X;). Forthe casewithEy = E; =--- =E;=Ejand 1 =Ly = --- =
X, = Xj, itis easy to use Theorem 3.2.4 of Muirhead [Muirhead (1982)] to assert that R, up to
a factor of Ej, follows the Wishart distribution, as shown by

R. ~ CW,(t,E)) (64)

where t; = Zle t;. Clearly, this is the extension of the closure property of chi-square
distribution. For the general setting of E;’s, we can accurately approximate R. by using a single
Wishart-distributed matrix, say Qq, in much the same as what we do for a sum of chi-square
variables [Pearson & Hartley (1976)]. The resulting matrix Q; has the following distribution

Q; ~ CW,(t1, Z1), (65)

for which the parameters t; and Z; can be determined by equating the first two moments of
Q; and R¢; for details, see Chapter 3 of [Gupta & Nagar (2000)]. From the above analysis, it
follows that we can use a single a Wishart-distributed matrix, say Q, to replace R, to simplify
the analysis. It also follows that ¢; is usually much greater than the number of antennas of the
intended user. Thus, without loss of the generality, we can write the decision matrix (52) as

F = (E/Ey)H'Q;'H (66)
whereby, for a given power protection ratio A, the outage probability can be written as

Pout(x) = Pr{F < AI}
= Pr{] < xI} (67)
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where x = AE;/E; and J is defined in terms of random channel matrices H and Q1, as shown
by

J=H'Q'H. (68)
We assume the signal suffers from Rician fading so that the corresponding channel matrix
H ~ CN,;(M,Z ® ¥). Suppose that the interferer employs #; transmit antennas such that
r < t1. We also assume that the ¢; channel-gain vectors for the interferer that link each transmit
antenna to the r receive antennas are independent and identically distributed as CN;(0, Z1).
Then, we can assert that Q; ~ CW;(t1,Z1). Under these assumptions and by introducing the
following matrix notations:

Lz, <y
s= {3 T ©)
and .
_JETELr <t

we can explicitly work out the outage probability defined in (67), obtaining results
summarized in the following theorem. The proof of this theorem is placed in 7.1.

Theorem 3. The outage probability of the optimal TRD system with co-channel interference is given
by
00 L uv+k [t + tl]

Pout(x):dk;) k! Z‘t[u—i—v]

K

EPc(Y,A,0) (71)

K

where . B
_ Dt 1)(v)
To(t+t; —u)To(u+0)

IA]°|®]" - etr[-YY']

The above generalized Hermite polynomial P (-, -, -), though difficult in numerical calculation
[Gupta & Nagar (2000)], serve as a fundamental tool in the study of the distribution of some
quadratic forms. Eq.(71) is a general formula, providing a solid foundation for further study.
This combination can be treated as a special Rayleigh case by setting M = 0. Namely, H ~
CN,+(0, X ® ¥). With the condition, Theorem 3 leads to the following corollary.

Corollary 1. Let M = 0. Then

Pout(x) = dyx* 2 E7) (u, t + 11 + v; xA, —©) (72)

where N N
Ty(t+ )T (v)

The corollary is made by inserting M = 0 into (71) and invoking Property 9 in Section 2 (i.e.
the complex counterpart of Expression (1.8.3) in [Gupta & Nagar (2000)]).
Our concern is whether (72) can be further simplified. To this end, we note that when r = £, the
7 (1,0)
E

1

dy =

[Al|©]" (73)

hypergeometric function ; involved in (72) can be converted to scalar hypergeometric
functions which are much easier to calculate by using for example, the built-in functions in
Matlab, Mathematica and Maple. The simplification can be done by invoking the following
lemma (see Lemma 2 in [Kiessling (2005)]).
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Lemma 2. Let A = eig(X) = diag(Ay,...,Ap) and B = eig(Y) = diag(wy, ..., wp) with Ay >
.. > Apand wy > ... > wp. Furthermore define

p
Tp(p) =T[T(p—i+1) (74)
i=1
ap(A) = H(/\i —A) (75)
i<j

and
P n
Hl—[ b —i+ 1 (76)
i=1j=1

forb = (by,by,...,by). Then

- r L
mFrgp,p)(alw--/am}bl/---/bn}X/Y> p(p) ( ) | | (77)
ap(A)ay(B)Y},(a)
where L = [I;;] with
Li=mFi(ar—p+1,..am—p+Lbi—p+1,.. by —p+1LAw)) (78)

fori,j=1,2,...,p.

When some of the A;’s or w;’s are equal, we obtain the results as limiting case on the right of
(77) via L'Hospital’s rule (see [Kiessling (2005)] for a detail process.)

Let us return to the general case with r # f. There is a simple method to convert this problem
into the corresponding one with r = t. The basic skill is to obtain the exact outage probability
as the result of a limiting process. The interested reader is referred to [Kiessling (2005)] for
details. By the same token, we can simplify (72) to obtain an alternative expression which is
much easier in numerical calculation.

Corollary 2. Let Dy = eig(A) = diag(éy,...,6,) and Dg = eig(®) = diag(6y,...,0,) with
6 >...>0,and0y > ... > 0, Then

Pout(x) _ dzxuvfu(ufl)/2|z‘ (79)
where dy is defined as follows

(=1 V2ry () [ (t+ 5 —u + 1)]°|A[°[©]°

dy = 80
2T T - w0+ 1 (Da)as (Do) o
and the entries of matrix Z = [z;] are given by
JF(Lt+t—u+T104+1; —xGi(S]'), i<y
Zjj = ) (81)
(x(gj>(1—v—1)’ i>v.

The expression in (71) is a general result. Its correctness can be examined by showing that the
main result of [Kang & Alouini (2004b)] is one of its special cases.
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Corollary 3. Let M = 0and ¥ = 1;. Then

v | B(E) [T+ —i+1)

Pout(x):Er(tthl,u,i+1)r(u7i+l)l"(vfi+l)

where B(y) is an v X v matrix function of the scalar y with entries

BW)lij=By(u—v+i+j—1t —r+1).

The function B, (p, q) is called the incomplete beta function (see [Gradshteyn & Ryzhik (1994)],
Eqn.[8.391]).

This result is exactly the same as Eqn.(11) of [Kang & Alouini (2004b)]. The proof is a little
complicated, yet not important to us, and thus is omitted.

4.4 Outage performance without co-channel interference
When co-channel interference is absent, we can set E; = 0,i = 1,. .., £ to rewrite (48) as

R, = NO D, (83)

where @, has been normalized to signify the branch noise correlation matrix whereas Ny
denotes the noise variance at each branch. Now we need a difference treatment due to the
replacement of the random matrix summation R, = Zle EZ-H,-H:.r with a constant matrix
No®;, in the quadratic form F. Nevertheless, the procedure is parallel.
Given the change in covariance matrix R;, we need to modify x and J accordingly, as shown
by

x=ANy/Es, J=H'® 'H. (84)

Correspondingly, matrices A and © are modified to

L ld, t<r
A= {‘I"l, r<t. (85)
and )
e, r <
o= {:" %) ®

With these notations, we can write Pp,; = Pr{] < xI} which, after some manipulations as
shown in 7.2, leads to the following result.

Theorem 4. The outage probability of the optimal TRD system without co-channel interference is
given by
> x0tk _ Pe(Y,A,©)
P I — 7 7
out(Q < ¥1) Ck;) K~ [u+o)x

(87)
where _
c— I'y(0)
fv(u + ZJ)
An important case is Rayleigh faded signals for which M = 0 and (87) can be simplified.

|Al°|@]" - etr[-YYH). (88)
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Corollary 4. when M = 0, we have that

Pout = cyx™ 1151(”’0)(u; u+v;xA, —0) (89)
where _
r
o = 2 |apjgpn, (90)
I'y(u+0)
This corollary’s proof is similar to that of Corollary 2 and thus is omitted.

ﬁl(u,v) I'_:l(u,v)

Similar to » , the hypergeometric function 1 involved in (89) can be also
easily calculated by representing it in terms of scalar hypergeometric functions for ease of
calculation. Specifically, by using the same techniques as used by Kiessling [Kiessling (2005)],

we can obtain the following corollary.

Corollary 5. Let Dy = eig(A) = diag(dy,...,6,) and Dg = eig(®) = diag(6y,...,0,) with
01> ...>0,and 6y > ... > 0.

Poyut(x) = cox@~4(#=1)/2)y| 91)

where c; is given by
(=112 (0) | A]°| O

Ccy = , 92
27 [0+ 1] (D)o (Do) .
and the entry of the matrix Y = [y;;] is given by
B 1F(Lo+1; fxeiéj), i<uv;
Yij = { (xé]-)(i’v’1), i> 0. ©3)

To examine the correctness of our results given in (89), let us consider the special case of
independent noise and i.i.d. fading Rayleigh channels such that ®, = Iand ¥ = X = I. These
conditions, when inserted into (89) and simplified, leads to (94) shown below.

Corollary 6. Let &, =1and ¥ =X = 1. Then

[A(x) |

Fout = [T T(u—k+1)[(v—k+1)

where A(x) is a v x v matrix function with its (i, j)th entries given by
A))jj=v(u—v+it+j—1x)
fori,j=1,2,...,0.

This result is identical to the corresponding one in [Dighe et al. (2001)] and [Kang & Alouini
(2003b)]. If we further set v = 2, then (94) can be rewritten as
(= 1,20y (u+1,x) = y(u,x)?

()T — 1) ‘ ©5)

pout =

which is exactly the same as the known result described in [Kang & Alouini (2004a)]. Its proof
is not difficult but not important and thus, is omitted.



174 MIMO Systems, Theory and Applications

4.5 Numerical results and remarks

The validity of Theorem 3 and Theorem 4 has been rigorously examined by showing that they
include most of existing results in the literature as special cases. In this section, we examine the
correctness of Corollary 1 and Corollary 4 with numerical results. For simplicity, we assume
that the spatial correlation among antennas follows the exponential model with correlation
between antennas p and g given by ¢(p,q) = gP~9lexp(j(p — q)7/12). Physically, glP—!
denotes the correlation magnitude, and g stands for the correlation coefficient.

We assume that the receiver is equipped with r antennas for the reception of Rayleigh
faded signals from ¢ intended transmit antennas. The received signals are corrupted by
Rayleigh faded interference from ¢ interferers. Thus, Corollaries 2 and 5 are applicable in
theoretical evaluation. Simulation results are also included for comparison. Each point in the
simulated curves is produced by averaging over at least 100, 000 independent computer runs.
Throughout this section, we set t = 4 and v = 2, and assume that the correlation at the
intended transmit and receive ends is characterized by g; and g, respectively.

We first investigate the case with co-channel interference. For ease of illustration, assume
the presence of only one co-channel interferer (i.e., ¢ = 1) which employs t; antennas for
transmission. Further assume that the correlation structure at the both sides of the f; x r
interfering channel matrix is the same, characterized by g;.

Fig.5 shows the variation of outage probability with the number of the interferer’s transmit
antennas. The parameter setting is: gt = 0.5, g = 0.9, and g; = 0.5. The curves in the figure
are for t; = 2, 3, 4, 10, 14, respectively. As expected, the outage performance becomes worse
as t1 increases, but the decrease magnitude becomes smaller and smaller. It is also observed
that the simulated results coincide with their theoretical counterparts.

10 b= fgzi%;: % .y

<

— . — . Theory results, t,=2
=3

Outage Probability
5

— — — Theory results, t
— Theory results, t, =4
10 " H Theory results, t.=10

1
1
1
1

Theory results, t1=14

Monte-Carlo simulation results

10 : ‘
0 5 10 15 20
SIR(dB)

Fig. 5. Variation of outage probability with the number of interfering antennas.

The influence of the interferer’s correlation coefficient on the outage probability is shown in
Fig 6 where t; is set to 3 and the three curves are shown for g; = 0.3, 0.8 and 0.9, respectively.
Other parameters are set to be gy = 0.5 and g = 0.95. We observe that over the region
of moderate and high SIR, the outage performance improves with increased g;. This is is
easy to understand since a higher interference correlation implies a sharper directional beam
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which is easier to be nullified by using interference-covariance matrix inversion involved in
our quadratic form. Clearly, unlike the effect of the intended user’s correlation, the spatial
correlation of co-channel interference is an advantage to the outage performance of TRD
systems. From these curves, we can see, again, a nearly perfect agreement between the
theoretical and simulated results.
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.
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SIR(dB)
Fig. 6. Influence of interference correlation g; on the outage performance.

In Fig.7, the outage probability versus the number of transmit antennas under different SIRs
are plotted. The parameters are setatr = 2, gy = 0.5, ¢ = 0.9 and g; = 0.5. The three curves in
the figure are for SIR= 10dB, 15dB and 20dB, respectively. As shown in the figure, the outage
performances improves almost linearly with the number of transmit antennas ¢ increasing.
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3 4 5 6 7 8 9
The number of transmit antennas t

Fig. 7. Influence of signal transmit correlation on the outage probability.

Fig.8 considers the case when 2 interfering users involved. The 2 interfering channel matrixes
are with the same correlation coefficient g1 = 0.5, in the receive end. The equivalent t; and
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X, are determined by equating the first two moments of Q; and R, as we introduced in
the previous section. The other parameters are setatt = 3,r = 3, g = 0.5 and g = 0.9.
We observe the loss of precision as we change the interference power distribution which is
denoted by a ratio € = E;/E;. It is shown in the figure that our analysis has high precision
when the ratio € is close to 1, however, when the ratio loses balance, say € = 5, the theory
curve can only be considered as a lower bound of the real performance.

Outage Probability
>

— Theory results, e=1:1
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H - — — Theory results, e=1:5
O Simulation results,e=1:1
*  Simulation results,e=1:2
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Fig. 8. Influence of the number of transmit antennas on the outage probability.

We next consider the case without co-channel interference. Fig.9 shows the outage probability
as a function of SIR for different values of g;. Here we set g, = 0.5. The three curves are for
gt = 0.1, 0.5and 0.9, respectively. It is clear that the outage performance drops with increased
transmit correlation coefficient g;. This is quite intuitive since high transmit correlation means
the lose of more degrees of freedom in transmit diversity. A perfect agreement between
simulation and theoretic results are observed again.

5. Conclusions

Wireless transmission using multiple antennas has attracted much interest due to its
capability to exploit the tremendous capacity inherent in MIMO channels. However, the
performance of MIMO systems is very sensitive to the presence of co-channel interference
or spatial fading correlation. In this chapter, based on the theory of complex matrix variate
distributions, we have investigated the performance of MIMO systems in the presence of
both co-channel interference and spatial correlation. We first have derived several exact
closed-form expressions of the MIMO ergodic capacity in Rayleigh fading environments,
and demonstrated by experimentation the influences of co-channel interference and spatial
correlation on the ergodic capacity. Then we have tackled the outage performance issue
of MIMO systems with optimal transmit/receive diversity, and obtained two formulas of
outage probability for general cases of Rayleigh faded signals with and without Rayleigh
faded interference, respectively. Finally, we have presented numerical results to validate
the theoretical analysis of outage probability. It can been found that the theoretical analysis
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Outage Probability
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Fig. 9. Influence of the interference power distribution on the outage probability.

of MIMO systems with co-channel interference and spatial correlation depends heavily on
multivariate statistics knowledge, especially the theory of matrix variate distributions.

6. Appendix: Proofs of theorem 1 and theorem 2 in section 3

6.1 Proof of theorem 1

Proof of Theorem 1 : a) Suppose that t < r. From Equation (61) of [Khatri (1966)], the PDF of the
random matrix Q can be written as

fr(t+t1) —ri§|—t r—t
= ——=——|pI X
£(Q) = £ sppslonE @
Tt (a0) QIR (44 11, Q0T + Q)L 2T 96)
where g is an arbitrary scalar constant. Let ¢ = p~!. Then we get after simplifying
Lr(t+t) | st ot
- =, =, < Z
FQ) = £t (B0
QB+ 1,Q(0 + Q)T — (o) ) 97)
Make the transformation
L=1+Q)'Q (98)
and the Jacobian of the transformation is given by Equation (5.1.3) of [Khatri (1965)]
J(QL) = k-1~ (99)

Thus the MGF of mutual information I(s,y) is expressed as

M) = [ 1+l (Q)0

fr(t + tl)
L ()T (r) |02

/0<L<I |L‘V—l‘|1 - L|t1—r—9 1Fét,r)(t +t;,L 1L — (pf‘.)‘l)dL(loo)
t



178 MIMO Systems, Theory and Applications

Using Equation (7) of [Khatri (1966)] and Definition 2 here, we further have

Lt +t)l(t+t =7 —0) 0| B (b byt 4 — 6,1, T, — (0E) 1) (101)

M(e) - f‘r(f[)ft(tﬁ»flfe)

From Equation (54) of [Shin & Lee (2003)] or Property 2 in Section 2, we have

Ce(Iy) _ [tx
= 5 102
Ce(Ir) [« (102
Therefore, we have by noting relationship between the hypergeometric function of two matrix
arguments and the hypergeometric function of one matrix argument (involving Property 2
and Property 6)

B bttt — 01,1 — (0B) ) =SB (bt Bt 1 — 61— (0E)7) (103

Applying (49) of James [James (1964)] to the above expression, we further get

tHt)l(t+t —r—0) o« = 5\~
M(0) = & (tg iEtthl 0) )IPZI QR+t b+t = 61— (pE) )
ATttt —r=0) ¢ 5
- (ti; iEtthi—r) LF (6 i+t - 61— (D)) (109

It is obvious that _ _
Li(t+tp—r—0)  T,(t;—6)

- = 2 105
Ti(t+1t;—6) T, (t+t;—6) (105)
Thus we obtain the desired result
Lt + )0 (b1 —0) =) -

M(0) = = - F/(=0,t;t+t;—06,1—pX%). 106
(6) T ()T (b1 —6) > ! ( ! FE) (106)

b) Now we consider the case where r < t. It follows easily that
I+ Q| =|I+F] (107)

where F = R™1/2HA'R /2. In order to get an expression of M(#) , we can make use of the
PDF of the random matrix F to replace the PDF of Q . Based on Equation (62) of [Khatri (1965)],
the PDF of the random matrix F is given by

(1) | e tipir
FE) = 2o
|5 + (o)~ B (¢ 4 1, F(goE + F) 7L T, — q1y) (108)

where 4 is an arbitrary scalar constant. By taking g — oo, the PDF of F can be rewritten as

r(t+ tl)

(1) F, 1) PR TET AR e 1 BRE) T ), (109)

f(F) =
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From Definitions 2 and 3, we obtain with the help of Equation (90) of James [James (1964)]
Tr(t+ 1) tgt—r #(r) s \—1
F)= ———"|pZ|'|F Ey/(t+ t, (pZI F
. fr(t +1 )

= U oR | E[ L + (o) LR (), 110
Thus the MGF of mutual information I(s,y) can be expressed as

/F 1+ F|? f(F)dF
Ty(t+1p) / t—r 0 $1 V1|~ (t+H)
L ()T, (1) | pX F>0| I+ FIHL + (o21,)~°F]

M(6)

(111)

Using Problem 1.18 of [Gupta & Nagar (2000)], we get the following desired result with the
help of (49) of James [James (1964)]

_ Lt t)Tr(t - 6)

p(r) bt —0:1— 0%
S ey e R

(112)
6.2 Proof of theorem 2

Proof of Theorem 2: By Theorem 1 we get

OM(6
C =log,e- a(g ) lo—0
o T(t+t)l(t—0) #(r)
1 0,6t +1t;—0:1—p%
982" 90 L F, (1))T ,(t+t1—9)2 p ettt PE)}
t+t0)T(t —0) (r)
=1 I il —0 B0t + 1 pZ
ogye { Fo (T (E+ £y —6)}‘9’02 ( ;1-pZ)
0
+logye- 25 {2 DB (6,65t 4t — 6;1— pE)} |90
= log, e(A+B)

(113)
In what follows, we will derive expressions of A and B in order to compute C. By (87) of James
[James (1964)], we can have

S0, B4 b1 pE) = 1.

(114)
For an integer r < a, we get with the definition of gamma function
0 0
@rr(“ ) o= O—B*H a—0—i+1) |p=o

i=1

T r a
;:11—1 (a—i+1) aerr(u—k—9+1)\90

r

= -T,(a Z (a—k+1) (115)
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Here ¢(+) is the digamma function defined by (8.360) of [Gradshteyn & Ryzhik (1994)]

P(x) = rr,((;)) : (116)

With the help of (8.365) in [Gradshteyn & Ryzhik (1994)], we can have

_ 3 u=o) N+ 1)
{ T, () }lo= 0+86{F(t—|—715110)}‘9:0

i (t+tr—k+1)— Z¢(t1—k+1)

i 1
ggtl—k+1+1 (117)

Now we consider how to compute B. From Lemma 1 it is known that

|G|

..,(r) ~
(=0, 5t+t—6,1—pX) = (118)
where G = [g; ] with
ij =0 JoFi(—0—j+ Lt —j+ L+t —0—j+1;5) (119)
fori,j =1,2,...,r. In particular, we get by (3) of James [James (1964)]
I (i et =+ 18
gijlo—o= ) (120)

= (tFtp—j+1)k!

a) For r <'t, it follows with the help of (48) of James [James (1964)]

9gij r—jd T(t+t;—0—j+1) (1, 4
, _ =i 9 i1 _ 0101 _ s \i—1+8
a6 =0 =% "5 F(tlfe)l"(tf]#l)/o (1-x) (1= )= dx oo

r—iT(t+tr—j+1)

i

— /l (1 = )N (1 = Gx)i (1 = 6;x) — In(1 — x)]dx

It)r(t—j+1) Jo
+éf T(p(tr) - (tz+t—1+1)>zFl(—j+Lt—j+1;t+t1—j+1;z5l-)
bOT()r (t—1+1>

o D (=)0

/ (1= x) (1 = 6,0)In(1 = 6x) — In(1 — x))dx

- 121
(h;()tl—i—b)k[;) (t-i—f[—]-‘rl)kk! (121)
Therefore, we have when r < ¢
_ 0 BV (0,6t +t;— 6,1 — p&
g t2b (6t 4t — 61— pZ)} [p=0
Yhy | D(h) |
= == 122
V(a) (122
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where D(h) = (d; j(h)) with

j—1 (= D(t—j+1)0] ;
A S e e Fu j#h
dij(h) = . (123)
b= 1yl (DD
hij = Ly—o 5 k=0 (t+knfj+1)kkk1 Jj=h

Here h; ; is defined by

p=g L it ) /1xf*f(1—x)f1*1(1—(six)ffl[znu—(six)—Zn(1—x)}dx (124)

W% T)T(E—j+1) Jo

b) When t < r, we note that for j > ¢

P (=0 =+ 1)t —j+ 1) T

= ' e 125
81 k; (E+t—j+1—0)k! (125)
After some column operations on the determinant |G|, we can have for f < r
Y1 | D(R) |
B— &hi=1 12\ | (126)
140]
where D(h) = (d; (h)) with
j—1 (—j+Di(t—j+1)0, " . )
Ek:O (t+t—j+1) k! 4 ) 7& hl] <t
dij() = 4 57, iAEh >t (127)
t—i 1 w1 (D=0
hij = Lo=0 5 Li=o (tJrktrjnLl):k! 1j=h

7. Appendix: Proofs of theorem 3 and theorem 4 in section 4

7.1 Proof of theorem 3

The Distributions of quadratic forms in matrix argument have been investigated extensively
by many authors. For more details, the reader is referred to [Gupta & Nagar (2000)] and
[Mathai et al. (1995)]. In order to prove Theorem 3, we first extend a lemma for real data
to its complex counterpart to obtain the following.

Lemma 3. Let X ~ CNpyyn(M,ZQ®Y), Z > 0¥ > 0and let A be an x n Hermite positive definite
matrix. Then the PDF of quadratic form S = XAX is given by

ad 1
S) = X
f(8) fk;);k![n]K

Pe(Z72MY¥ 2 (I, — qB) " 2,B~! —4I, £ 2SE"2)

(128)



182 MIMO Systems, Theory and Applications

where x denotes a partition of k, g > 0, B = ¥YV/2A¥"/2, 1, — qB > 0 and

w1 n—m
f _ NEtT’( q):. S) | S | -etr[—Z_lM‘I’_lM+]- (129)

Do (n) [ 2 [*[F ["] A ™

Note that g is an arbitrary scalar constant. The PDF for 4 > 0 is called the Wishart type
representation, and for ¢ = 0 is called the power series type representation.

To prove Theorem 3, we also need two properties of the generalized Hermite polynomial with
three complex matrix arguments, as described below.

Lemma 4.
/ etr[~GS] | S |17 Pe(T, A, B~1/25B~1/2)ds
S>0
=T,(q,x) | G |77 Pc(T,A, B /2G71B~1/2) (130)
where )
Tp(a,x) = a7 V2T C(a+k —i +1). (131)
i=1
Lemma 5.

SV | S |77F Py(T, A, B~1/28B~1/2)ds
0<d<

T 9T, (p)

~

Ty(p+4q,x)

where V is an arbitrary Hermite positive definite matrix.

| V|7 Pe(T,A,B~/2vB~1/2) (132)

Proof of Theorem 3: We begin with the case of t < r and determine the PDF of the quadratic
form J in (68). Under the condition of given matrix Q,, by plugging g = 0 into (128) of Lemma
3, the conditional PDF of J can be expressed as

0 1
f(])|Q1 = %k;);m X
P(¥Y :M'Z"21,272Q,Z7%,¥ 2J¥ 1) (133)

where

Q== DA etr[—(Z)"'MY~'MT]. (134)

Te(r) | ZQ 1 Y )
Then by applying Lemma 4 we carry on the expectation of f(J)|g, with respect to Q; ~
CW;(t1,X1) yielding

Pe(Y IM'E"2, 27 i5, 572, ¥ ¥ 7) (135)
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where

5= [T Tt + 1) etr[— (Z)" MY 'M']. (136)

Le(r)Tr(h) | 2Z Y )
The desired outage probability is nothing but the integration of f(J) over J < xI. The
integral, however, involves matrix arguments and needs to be simplified. To this end, we
invoke a property of the generalized Hermite polynomial, i.e., Lemma 5. By applying this
property,setting Q) = xI, and using the definitions of A and ® , we complete the proof for this
case of t <.
We next consider the case of r < t. Let

J1 = HiH, (137)
where Hy = {Qfl/zH}+. Due to the fact
Pour = Pr(J < xI;) =Pr(J; < xI,), (138)

then in this case the proof is quite similar to the proof given for the case where t < v, and so is
omitted. N N L

Finally, we need the identity, Tr(t + t1)T;(t + £, — ) = Tr(t1)T(t + £1), to give the unified
representation of (71).

7.2 Proof of theorem 4
The following property of the generalized Hermite polynomial with three complex matrix
arguments is useful in the proof.

Lemma 6. Fora p x q random matrix V.~ CN(0,I; ® 1)),
P(T,A,B) = Ey[Ce(—B(V —1T)A(V —1T)")]. (139)
where1 =/ —1.

In [Teletar (1999)], Telatar gave the following useful limiting result for a Wishart-distributed
matrix sequence.

Lemma 7. Let S, ~ CW;(n, %Ir). When n — oo, then
S, — 1. (140)

Proof of Theorem 4: Without loss of generality, we can assume from (85) and (86) that
®, = I Under the condition of Theorem 3, we first let t{ = n be a variable, and
further let Q;(n) ~ CW,(n, %In). Then, according to Lemma 7, we can assert that when
n — oo, the TRD system with co-channel interference will reduce to the TRD without
co-channel interference. Correspondingly, the outage probability of the optimal TRD system
with co-channel interference (71) will reduce to the outage probability of the optimal TRD
system without co-channel interference, which is just (87) in Theorem 4. Let us verify this
assertion. By inserting Z; = 11, into (71) and comparing the two expressions of (71) and (87),
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we only need to prove Egs.(141) and (142) shown below.
a) Fort < r, when n — oo, then

~

I“,(H—n,K)P Y 1
-~  1x 7

P, = -
n'tTy(n) "

LYy S Py, 2Ly ). (141)

b) For t > r,when n — oo, then

~

p, = LrEEm0) by -1 Ly gy, 91 51, (142)
n'tTy(n) "
Here, we have used the fact that
r
[a]x = = @x), (143)
T (a)

Based on Lemma 6, the proof of (141) and (142) can be done by showing the validity of the
following assertion. Namely, for an arbitrary r x r Hermite matrix S and n — o, we have

Fr(H—n,K) 1

P, = Ce(=Z718) — C(Z719). (144)
n'tTy(n) n

To this end, we invoke Property 1 to simplify (144). It remains to show

~

rr(t +n, K)

"R (145)
nt+kT, (n)

whose validity can be checked by directly using the definition of FNP (a,x) given in (131).
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Japan

1. Introduction

Multiple-input multiple-output (MIMO) has been accepted as a promising technology for its
potential to achieve low bit error rate (BER) by space time coding [1] or to achieve large
capacity by multiplexing [2]. MIMO multiplexing has been widely adopted to realize high
speed data communications. The capacity of MIMO systems in the point-to-point
transmission without external interferences has been studied in [3, 4] to show that large
capacity can be achieved in a rich scattering environment. In a cellular environment, the
same frequency/frequencies can be used in neighboring cells. As a result, co-channel
interference exists and the channel between the base-station (BS) and the mobile-station
(MS) is changed from noise-limited channel to interference-limited channel.

Recently, the capacity of MIMO systems in the cellular environment has attracted much
interest. Uplink (transmission from MS to BS) capacity with variable-rate transmissions is
studied in [5]. By modeling the co-channel interference as additive white Gaussian noise
(AWGN), the uplink capacity is also studied in [6, 7]. On the other hand, from the users’
stand point, the downlink capacity may be more interesting. However, the results for the
downlink capacity of cellular MIMO systems presented in the literature are mainly based on
the simulation results. Very detailed simulation results for the downlink MIMO capacity in
3G FDD WCDMA cellular systems can be found in [8]. By assuming single-frequency-reuse
(the frequency reuse factor (FRF) equals to 1), the capacity of downlink cellular MIMO
systems is studied by simulations and the results are presented in [9, 10]. These results are
given in terms of the number of antennas, the modulation schemes, the propagation
parameters as well as the cell size. However, FRFs other than 1 are not considered. By taking
various FRFs into consideration, a comparative study on the capacity of cellular MIMO
systems is presented in [11]. A comprehensive comparison between the capacity of SISO,
SIMO, STBC-MISO and MIMO systems in a cellular environment is made based on the
simulation results.

In general, fixed FRF has been considered in cellular systems. It is reported in [12] that a
flexible FRF may help to improve the capacity for cellular single antenna (SISO) systems.
However, flexible design of FRF for cellular MIMO systems is rarely available in the
literature.

In this chapter, the downlink capacity of cellular MIMO systems is theoretically analyzed in
terms of both the ergodic and outage capacities. The theoretical results of the best and worst
situation capacities suggest that the greatest capacities may be achieved by using FRF 1 or
FRF 3 adaptively according to the situations. Therefore, a hybrid frequency reuse scheme is
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introduced to maximize the overall downlink capacity. It is shown by numerical results that
the average ergodic and outage capacities can both be increased by the hybrid frequency
reuse scheme when compared with the schemes using fixed FRF 1 or FRF 3. Especially,
when compared with the commonly accepted FRF 1 scheme, the average outage capacity
can be increased as much as 50%. Therefore, by using the hybrid frequency reuse scheme,
the coverage problem of the single-frequency-reuse cellular systems can be greatly
alleviated.

The rest of the chapter is organized as follows. Section 2 describes the system model of the
point-to-point MIMO systems. Some useful results for the capacity of point-to-point MIMO
systems are also presented. Section 3 describes the system model of the cellular MIMO
systems. The currently existing frequency reuse schemes are introduced. And the ergodic
and outage capacities are theoretically analyzed based on the cellular structures of different
frequency reuse schemes. The hybrid frequency reuse scheme is proposed in Section 4.
Numerical results are then presented in Section 5. Finally, the chapter is concluded in
Section 6.

2. Point-to-point MIMO systems

A. System model
The received signal in a point-to-point MIMO system with N, transmit and N, receive

antennas can be written as
y=Hx+n, (1)

where H is an N, x N, channel matrix. The elements of H are identical and independently
distributed (i.i.d.) complex Gaussian variables with zero mean and unit variance (This
means that we assume Rayleigh fading). y is the N, — dimensional received signal vector.
x is the N, - dimensional transmitted signal vector. n is the N, — dimensional additive
white Gaussian noise (AWGN) vector with variance o .

B. Capacity analysis for point-to-point MIMO systems
The capacity C of the MIMO systems from the view point of information theory is the
mutual information between input signals and output signals, given by [13]

{3 ) {1y

H:H)}, )

where E {} represents the expectation over channel realizations and H represents the

instantaneous channel matrix.

It is assumed that the receiver has perfect channel state information (CSI) but the transmitter
does not. Therefore, the transmitted power is allocated equally to each transmit antenna.
According to (2), the capacity for a system with N, transmit and N, receive antennas is

generally given by [3, 4]

Crmo = E{log2 det[IN’v + NR 5 HH]} , 3)

t
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where P, :E{"x"Z} is the average total transmitted power and superscript * represents

conjugate transpose. Let S=HH' if N, <N,and S=HH otherwise, n= max{N ,A,Nt} and
m= min{N N t} . The capacity in (3) can be rewritten in respect of the eigenvalues 4,,---,4,,

of the matrix S as [4]
Como =E1 3 log,| 14202 |1 )
i=1 Nro-z 1

When the components of noise vector and transmitted signal vector are ii.d. and
rank(H)=m, C,y,0 in (4) can be rewritten as [4]

o P,
Comio = 108, [1 rh ﬂ}p(l)dﬂ . ®)

t

Since we are assuming Rayleigh fading, the probability density function (p. d. f) of 2, p(4),

is given by
1 m=1 k' ) A
/1 = — - Lfl*m /I /Inﬂn 74’ 6
p( ) mk:o(k'i‘?’l—m)![k ( ):| € ©)
k
where L’I’(ﬂn (/1) — %e/l/fim—n %(eflﬂvnfnnk) )

Increasing the number of receive antennas will increase degree of freedom and therefore
improve the capacity performance. However, MSs could not employ large number of
antennas due to the size limitation. Therefore, in this study, the number of the receive
antennas is assumed to be equal to the number of transmit antennas. Under this assumption,
the capacity in (5) becomes

o P m=1 2 _a
Comio = jo logz[l + Nt(tf AJ;[Lk(/l)] etda, )
k
where L (1)= %el %(e’uk). Note that although the expression in (7) yields the ergodic

capacity, the outage capacity can also be evaluated similarly. For example, the outage
capacity C,y, (which represents an outage of 10%) can be obtained by

P
Cypy, =mlog, [1 + N_;_ZA’IO/] ’ )
t

where 4, satisfies P(/1 < ﬂ,m%) =01.
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3. Cellular MIMO downlink transmission

A. System model

In the cellular circumstance, there exists co-channel interference from the neighboring cells
due to the frequency reuse. The received signal vector in (1) should be modified to include
the path loss effect and shadowing loss effect as well as the co-channel interference as

B
YC('IIular = d(;a 1075/10 HX + z d;a 1075/10Hixi +n
P - ©)
=d;*10*/"Hx + v

In (9), d, represents the distance between the MS and the desired BS, d,(i=1,-,B)

represents the distance between the MS and the i co-channel BS, & represents the path
loss exponent and B is the number of considered co-channel BSs; ¢ represents the
shadowing loss in dB, which follows the Gaussian distribution with zero mean and
standard derivation o, . It is reported in [10] that the system capacity will decrease when

o, increases. However, such decrease will not exceed 50% (3dB) when o, increases from 0
dB to 8 dB. To simplify the analysis, in this study, £ =0 (no shadowing loss) is assumed; H,

represents the channel matrix between the MS and the i” co-channel BS and x; is the

I
transmitted signal vector from the i" co-channel BS; VZZd; “H,x; +n represents the
i=1

interference plus noise term.
The co-channel interference is usually modeled as Gaussian distributed [6, 7]. Under this
assumption, v can be treated as equivalent AWGN with zero mean and variance [14]

o, =var{v}= var{zs: d“Hx; + n} = id["E{"xiuz} +o0°, (10)
i1 i=1
where E{"xi"z} is the average total transmitted power of x; .

B. Frequency Reuse schemes

There are two types of frequency reuse schemes where integer FRFs or non-integer FRFs are
used. The non-integer FRF was recently introduced by [12]. In the following, the frequency
reuse schemes with integer FRFs and non-integer FRFs will be described respectively.

a. Frequency Reuse Scheme with Integer FRFs

Fig. 1 shows the co-channel interference from the neighboring cells to a MS in the central
cell. Integer FRFs of 1, 3, 4 and 7 are used for example. Here, the best situation and the worst
situation are defined according to the received signal-to-noise- ratio (SNR). The best
situation happens with the MS near the center of the cell where the desired BS locates. The
worst situation happens with the MS at the boundary of the cell, where the distance
between the MS and the desired BS is largest [5]. Let K represent the FRF. As shown in Fig.
1, when K>3, the co-channel interferers in the second and above tiers are far away from
the MS and therefore their interference can be ignored. However, when K=1, the
interferers in the second tier are no more negligible. Therefore, when K =1, co-channel
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FRF=1 FRF=3

Worst Situation
Fig. 1. Co-channel interference with integer FRFs.

interferers in both the first and second tiers will be considered. The signal-to-interference-
plus-noise-ratio (SINR) at the MS is approximated by [11]

-a 2 -a
Bt/

—-a —-a K
6 12
P,-ro“/az-[Z[dK'”] + (dm,) }1
i1\ Ty -1\ I

. ~ 7
inte, K

Pt'roia/az'gia JK>1

(12)

a

P -r”’/ozi[dK'” j +1
7o o

where 7, is the cell radius, ¢=d,/r, is the normalized distance between the MS and the
desired BS; d, ,; represents the distance between the MS and the i" co-channel BS in the
1"(I=1,2) tier when the FRF equals to K. Note that the SINR expression in (12) can be
used for the MS at arbitrary positions within a cell.

b. Frequency Reuse Scheme with Non-integer FRF

In this situation, the frequencies are allocated in a more sophisticated way. Here two non-
integer FRFs, 7/3 and 7/4 (following the definitions in [12]), are considered. The
corresponding frequency allocation schemes are shown in Fig. 2 where symbols f1, ..., f7
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FRF=7/3 FRF=7/4

Best Situation

Wiarst Situation

Fig. 2. Co-channel interference with non-integer FRFs.

represent the frequencies used in each cell. Take FRF=7/3 as an example. The frequency set
{ f1,f2,f 4} is used by the desired BS in the center. The neighboring cells use the frequency
sets {f2,f3,f5}, {f3,f4 f6}, {f4.f5.f7}, {f5,f6,f1}, {f6,f7,f2} and {f7,f1,f3},
respectively. As a result, each neighboring BS uses one frequency in common with the
desired BS. Therefore, when non-integer FRF is used, the considered co-channel interferers
are located similarly to the situation when FRF=1. However, the power of the interference is
different. The SINR at the MS is approximated by

-a 2 -a
B - /O- &

P -1, /0' z +Z . +1
i=1 0

i=1 1’0

,K is non-integer , (13)

~
non—inte,K "~

where 7, is determined by the FRF K; 7, ,=1/3 and 7,, =1/2.

C. Capacity analysis for cellular MIMO systems
The capacities in (7) and (8) for point-to-point MIMO systems should be modified
accordingly to calculate their counterparts in cellular environment. In addition, the
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capacities for an MS in the cellular environment should be normalized by the total
bandwidth. Therefore, the ergodic and outage capacities are given as

1 ¢ Iy Nt 2, 14
Ckz?jo log, 1+F/1 Z[Lk(/i)]e dA (14)

t k=0

1 r
Caut%,K ~ Em logz [1 + FKﬂ“gut%] N (15)
t

where T'y =T, when K is integer and ', =I",, ..« otherwise; C_,, , represents the

outage capacity with an outage of out% when FRF=K and A4 satisfies

out%
P(A < Ay ) = 0ut% .

out%

Calculating from (14) and (15), the best situation and the worst situation capacities are

shown in Fig. 3 and Fig. 4 respectively. The parameters used to generate the results are as

follows. The number of antennas (N, =N, ) is set to be 4; the received SNR at the boundary

(P,-1,% /o) is set as {0dB,104B,204dB,30dB} ; the path loss exponent « is set as {2.5,3.5};

the path loss from the cell center to the cell boundary is set as -15dB (i.e., the cell radius is

3.98 km when o equals to 2.5 and 2.68 km when o equals 3.5); Finally, the FRFs are set as

{1,7/4,7/3,3,4,7} .

When considering the best situation, it can be observed from Fig. 3 that:

1. The greatest ergodic capacity is achieved by the single-frequency-reuse systems. This
observation also coincides with the conclusions in [15].

2. The greatest outage capacity (C,,, ) is achieved by systems using FRF=7/4 or integer
FRF=3.

When considering the worst situation, it can be observed from Fig. 4 that:

1. The greatest ergodic capacity is achieved by systems using FRF=3.

2. For low and moderate values of P,-7,“/o” (0 dB or 10 dB), the greatest outage capacity
(Cyyy ) is achieved by systems using FRF=3.

3. For higher P,-r,* / o’ (20 dB or 30 dB), even greater outage capacities can be obtained
by using FRFs > 3 . However, the increase is insignificant.

Therefore, considering the ergodic/outage capacities under best/worst situations as a

whole, the optimal capacity performance may be achieved by using FRF=1, 7/4 or 3.

4. Hybrid frequency reuse scheme for cellular MIMO systems

The widely accepted approach to design the FRF is to use a fixed FRF within the entire cell.
However, from the results in Fig. 3 and Fig. 4, it is obvious that a fixed FRF cannot
guarantee the greatest capacities in different circumstances. For example, K=1 is the
optimal FRF when the MS is at the center of the cell, but it cannot support high capacity for
the MSs at the cell boundary; On the other hand, K =3 is a good choice when the MS is at
the cell boundary. However, it cannot support high capacity for the MSs near the center of
the cell. Enlightened by hybrid frequency reuse scheme for cellular SISO systems in [12], we
propose a hybrid frequency reuse scheme for the cellular MIMO systems. In this hybrid
frequency reuse scheme, both FRF 1 and FRF 3 will be used and adaptively allocated. One
possible solution to realize the hybrid frequency reuse scheme is shown in Fig. 5 where all
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Fig. 3. Capacities of cellular MIMO systems under the best situation.
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the BSs use a frequency set of three frequencies { firfor f3} . For each MS, FRF 1 or FRF 3 will
be used according to its position within the cell. When the MS is near the cell center,
{ firfar 5} will all be used (FRF=1). Otherwise, when the MS is near the cell boundary, only
one frequency, f, or f, or f,, will be used (FRF=3).

Fig. 5. Hybrid frequency reuse scheme. When the MS is near the center, three frequencies
{f.1,£ 2, f 3} will be used(FRF=1); When the MS is near the boundary, only one frequency
will be used (FRF=3).

For a given MS, we have determined the FRF by the following steps:
Step 1. As the pre-knowledge, the cell radius r,, the path loss exponent « , the transmitted

power P, and the variance of the noise o should be estimated.

Step 2. For a given MS, estimate its distances to the desired MS d, and the co-channel MSs
d,i=1,-,B.

Step 3. Calculate the SINR by (12) and then evaluate the system capacities by substituting

the SINR into (14) /(15) to get the ergodic/outage capacities. The capacities for
K=1 and K =3 will be calculated respectively to get C, /C,,,, and C, / C

out,3 *

Step 4. Select FRF so that K = ml?x{CK} for maximum ergodic capacity or K = m}gx{CM,K}

for maximum outage capacity.
Following these steps, the FRF allocation within a cell is shown in Fig. 6 as an example
where polar coordinate is used. In the figure, the hexagonal areas represent one cell, the
circle areas within each cell are the areas where FRF 1 will be used. Otherwise, FRF 3 will be
used. It is observed from Fig. 6 that:
1. The FRF 1 areas shrink slightly as the path loss exponent increases.
2. The FRF 1 areas shrink as the received SNR at the cell boundary (P, -7;“ /o ) increases.

It is indicated that the co-channel interference problem cannot be alleviated by increasing
the transmit power if single-frequency-reuse scheme is employed. Therefore, for the areas
near the cell boundary, the proposed hybrid frequency reuse scheme will be a good solution
to reduce the co-channel interference.
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5. Numerical results

It is assumed that the MS is uniformly located within a cell. The average capacities can then
be calculated by averaging (14) and (15) over the entire cell. The parameters used to generate
the numerical results are listed in Table .

The capacities of cellular MIMO systems using the proposed hybrid frequency reuse scheme
(hybrid FRF) are compared with those using FRF 1 and FRF 3 schemes in Fig. 7 and Fig. 8. It
can be observed from that the proposed hybrid frequency reuse scheme can increase both
the average ergodic and outage capacities. When compared with the FRF 1 scheme, the
increase is mainly on the average outage capacities as shown in Fig. 7. The increase can be as
significant as about 50% when P, -1, “ / o’ =30 dB for the MS equipped with 8 antennas. Even

t
for the noisy environment when P, -7;“/o” =10 dB, such increase is more than 10% for the

MS equipped with 2 antennas. On the other hand, when compared with the FRF 3 scheme,
the increase is mainly on the average ergodic capacities as shown in Fig. 8. The increase is
over 60% when P,-7,*/o* =10 dB and over 47% when P, -7;“ /o =30 dB.

To make it clearer, the increase of average capacities gained by the hybrid FRF over the FRF
1 scheme and FRF 3 scheme is summarized in Table II in percentage.

Number of antennas (N, =N,) 2~8
Received SNR at the cell boundary
w2 10dB, 30dB
B -1y / o
Path loss exponent 3.5
Path loss from the cell center to the cell
-15dB
boundary
Frequency allocation schemes FRF1, FREF 3, proposed hybrid frequency
reuse scheme

Table I. Parameters

Number of antennas
2 3 4 5 6 7 8
Outage P-1,“/c* =10dB | 10.5% | 12.8% | 14.3% | 15.3% | 16.7% | 17.5% | 17.8%
Over P 1" [o® =30dB| 21.7% | 29.8% | 37.8% | 43.7% | 47.4% | 49.5% | 49.9%
FRFlErgodica-ro-“/az=10d3 1.6% | 1.6% | 1.6% | 1.6% | 1.6% | 1.6% | 1.6%
P-1;“/c* =30dB| 3.0% | 3.0% | 3.0% | 3.0% | 3.0% | 3.0% | 3.0%
Outage P-r," /o =10dB | 13.6% | 7.6% | 3.8% | 14% | 05% | 0.1% *
Over P-1;*/o® =30dB| 2.9% - - - - - -
FRF3 Ergodicg-ro-“/azzde 62.9% | 63.1% | 63.4% | 63.5% | 63.6% | 63.7% | 63.7%
P-1;*[o® =30dB | 47.3% | 47.6% | 47.8% | 47.9% | 48.0% | 48.1% | 48.1%

*represents no increase

Table II. The increase of average capacities of the proposed hybrid frequency reuse scheme
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Remark: As we know, the coverage problem (the transmission between the BS and MS fails
at the cell boundary due to the co-channel interference) has been the major problem for the
commonly used single-frequency-reuse cellular systems. From the numerical results, it is
seen that such problem can be greatly alleviated by using the proposed hybrid frequency
reuse scheme.

6. Conclusions

In this chapter, the downlink capacity of cellular MIMO systems has been theoretically
analyzed in terms of both ergodic and outage capacities. The FRF has been considered and a
hybrid frequency reuse scheme has been introduced. Numerical results have shown that
both the ergodic and outage capacities can be increased by the hybrid FRF scheme.
Especially, when compared with the commonly used FRF 1 scheme, the outage capacity can
be increased as much as 50%. Therefore, the hybrid FRF scheme can greatly alleviate the
coverage problem of the single-frequency-reuse cellular systems.
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1. Introduction

In recent years, it was realized that designing wireless digital communication systems to
more efficiently exploit the spatial domain of the transmission medium, allows for a
significant increase of spectral efficiency. These systems, in general case, are known as
Multiple Input Multiple Output (MIMO) systems and have received considerable attention
of researchers and commercial companies due to their potential to dramatically increase the
spectral efficiency and simultaneously sending individual information to the corresponding
users in wireless systems.

In MIMO channels, the information theoretical results show that the desired throughput can
be achieved by using the so called Dirty Paper Coding (DPC) method which employs at the
transmitter side. However, due to the computational complexity, this method is not
practically used until yet. Tomlinson Harashima Precoding (THP) is a suboptimal method
which can achieve the near sum-rate of such channels with much simpler complexity as
compared to the optimum DPC approach. In spite of THP's good performance, it is very
sensitive to erroneous Channel State Information (CSI). When the CSI at the transmitter is
imperfect, the system suffers from performance degradation.

In current chapter, the design of THP in an imperfect CSI scenario is considered for a
MIMO-BC (BroadCast) system. At first, the maximum achievable rate of MIMO-THP system
in an imperfect CSI is computed by means of information theory concepts. Moreover, a
lower bound for capacity loss and optimum as well as suboptimum solutions for power
allocation is derived. This bound can be useful in practical system design in an imperfect
CSI case.

In order to increase the THP performance in an imperfect CSI, a robust optimization
technique is developed for THP based on Minimum Mean Square Error (MMSE) criterion.
This robust optimization has more performance than the conventional optimization method.
Then, the above optimization is developed for time varying channels and based on this
knowledge we design a robust precoder for fast time varying channels. The designed
precoder has good performance over correlated MIMO channels in which, the volume of its
feed back can be reduced significantly.

Traditionally, channel estimation and pre-equalization are optimized separately and
independently. In this chapter, a new robust solution is derived for MIMO THP system,
which optimizes jointly the channel estimation and THP filters. The proposed method
provides significant improvement with respect to conventional optimization with less
increase in complexity.
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Notation: Random variables, vectors, and matrices are denoted by lower, lower bold, and
upper bold italic letters, respectively. The operators E(.), diag(.), L , PDF, and CDF stand for
expectation, diagonal elements of a vector, statistically independent, Probability Density
Function, and Cumulative Distribution Function, respectively.

2. MIMO-BC-THP systems

2.1 Type of MIMO channels

There are three types system can be modeled as MIMO channel [1]:

a. point-to-point MIMO channel

This type of MIMO system is a multiple antenna scenario, where both transmitter (TX) and
receiver (RX) use several antennas with seperate modulation and demodulation for each
antenna. We refer this type of channel as MIMO channel (Central transmitter and receiver).
b.  multipoint-to-point MIMO Channel

The uplink direction of any multiuser mobile communication system is an example of a
MIMO system of this type. The joint receiver at the base station has to recover the individual
users’ signals. We will refer to this type of channel as the MIMO multiple access channel
(Decentralized transmitters and central receiver).

c.  point-to-multipoint MIMO Channel

The downlink direction of mobile multiuser communication systems is an example of what
we call a MIMO broadcast channel (Central transmitter and decentralized receivers).

2.2 Precoding strategy

The main difficulty for transmission over MIMO channels is the separation or equalization
of the parallel data streams, i.e., the recovery of the components of the transmitted vector
x which interfere at the receiver side. The most obvious strategy for separating the data
streams is linear equalization at the receiver side.

It is well-known that linear equalization suffers from noise enhancement and hence has poor
power efficiency [2]. This disadvantage can be overcome by spatial decision-feedback
equalization (DFE). Unfortunately, in DFE error propagation may occur. Moreover, since
immediate decisions are required, the application of channel coding requires some clever
interleaving which in turn introduces significant delay [2].

The above methods require CS) only at the receiver side. If CSI is (partly) also available at
the transmitter, the users can be separated by means of precoding. Precoding, in general
case, stands for all methods applied at the transmitter that facilitate detection at the receiver.
If a linear transmitter preprocessing strategy is used, we prefer to denote it as
preequalization or linear precoder. In other case we refer it as non-linear precoder.

In MIMO channels a version of DFE by name, matrix DFE is used where is a non-linear
spatial equalization strategy at the receiver side. The feedback part of the DFE can be
transferred to the transmitter, leading to a scheme known as THP. It is well known that
neglecting a very small increase in average transmit power, the performance of DFE and
THP is the same, but since THP is a transmitter technique, error propagation at the receiver
is avoided [3]. Moreover, channel coding schemes can be applied in the same way as for the
ideal additive white Gaussian noise (AWGN) or flat fading channel.

The analogies between temporal equalization methods (in Single Input Single Output (SISO)
channels) and their direct counterparts as spatial equalization methods (in MIMO channels)
are depicted in Table I [2].
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ISI channel H(z) MIMO channel H
(temporal Equalization) (spatial Equalization)
at Rx Linear equalization via 1/H(z) | Linear equalization via H,'
Linear pre-equalization via Linear pre-equalization via
. atTx 1/H(z) H;'
linear at Tx / Rx | OFDM/DMT, vector precoding SVD
at Rx DFE Matrix DFE
Non-linear | at Tx / Rx THP MIMO-THP

Table 1. Corresponding Equalization Strategies for ISI Channels and MIMO Channels.

2.3 The Principle of THP

The information theory idea behind the THP is based on Costa’s “writing on dirty paper
result” for interference channels [4], which can be informally summarized as follows:

"When transmitting over a channel, any interference which is known apriori to the transmitter does
not affect the channel capacity. That is, by appropriate coding, transmission at a rate equal to the
capacity of the channel without this interference is possible."

If we extend the Costa precoding concepts for multiple antenna with Co-Antenna
Interference (CAI) then THP structure can be obtained [1, 3]. Consider these subchannels in
some arbitrary order. In this case, the encoding for the first subchannel has to be performed
accepting full interference from the remaining channels, since at this point the interference is
unknown. For the second subchannel, however, if the transmitter is able to calculate the
interference from the first subchannel, “Costa precoding” of the data is possible such that
the interference from the first subchannel is taken into account. Generally, in the kth
subchannel considered, Costa precoding is possible such that interference from subchannels
1 to k-1 is ineffective.

We can apply this result to the MIMO channel [5]: If the precoding operation contains a
Costa precoder, no interference can be observed from lower number subchannels into
higher number subchannels.

Note that it is possible to transform H into a lower triangular matrix with an orthonormal
operation [6]. In this way interference from lower-index subchannels into higher-index
subchannels is completely eliminated, and together with Costa precoding adjusted to this
modified transmission matrix, effectively only a diagonal matrix remains for the
transmission. It turns out that a simple scheme for Costa precoding works analog to the
feedbackpart of DFE, now moved to the transmitter side and with the nonlinear decision
device replaced by a modulo-operation. This is also known as THP [7, 8], and the link
between THP and Costa precoding was first explored in [9].

2.4 MIMO-THP system model

The base station with 7, transmit antenna and 7, user (in whichn, <n,) with single
antenna can be considered as MIMO broadcast system. A block diagram of this MIMO
system together with THP is illustrated in Fig. 1 and is briefly explained here.

The n, dimensional input symbol vector a passes through feedback filter B, which is
added to the intended transmit vector to pre-eliminate the interference from previous users.
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Fig. 1. THP model in a MIMO system

Then the resultant signal is fed to modulo-operator, which serve to limit the transmit power.
The output signal of modulo-operator is then passed through a feed forward filter to further
remove the interference from future users [10]. Finally, the precoded signal is launched in to
the MIMO channel. As all interferences are taken care of at the transmitter side, the receivers
at the mobile user side are left with some simple operations including power scaling
(diagonal elements of matrix G ), reverse modulo-operation, and single user detection.
According to Fig. 1, the base band received signal can be modeled as:

r=Hx+n @

where ¥ e ¢™,reC™", HeC™" and neC™" are transmitted, received, channel and
noise matrices, respectively (C denotes complex domain). The elements of the noise vector
are assumed as independent complex Gaussian random variables with zero mean and
variance o, i.e., n~CN (O,GZInR) . The elements of matrix H are considered as complex
Gaussian random variables (i.e. flat fading case). In other words, the channel tap gain from
transmit antenna i to receive antenna ,j is denoted by h, which is assumed to be
independent zero mean complex Gaussian random variables of equal variance, that is
Ef] hji ‘2] =1.

The operation of THP is related to the employed signal constellation A . Assume that in each
of the parallel data streams an M -ary square constellation (A is a squared number) is
employed where the coordinates of the signal points are odd integers, ie,
A={a, + ja,la,.a, € {J_rl,J_rS,...,J_r(\/ﬁ —-1)}}. Then the constellation is bound by the square
region of side length ¢ =24 M which is needed for modular operation [3].

Note: In the rest of the chapter, for means of simplicity, the number of transmit and receive
antennas are assumed to be the same (i.e., n, =n, =K ). Also, we consider the flat fading
case. Whenever these assumptions are not acceptable we clarify them.

The lower triangular feedback matrix B, unitary feed forward matrix F and diagonal
scaling matrix G can be found by ZF or MMSE criteria as [11]. The received signal before
modulo reduction can be given as:

y=Gr=GHFB'v+n )

wheren =Gn ,and v=a+d is effective input data, and d is the precoding vector used to
constrain the value of X [13]. If ZF criterion is used, it requires GHFB™' =1I. Thus, the
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processing matricesG , B, and F can be found by performing Cholesky factorization of
HHH as [13]:

HH" = RR"

G =diag(r;,... 1)
B =GR

F=H"'R

®)

where R =[r,] is a lower triangular matrix. The error covariance matrix can be shown as:
®,, = E[(Gn)(Gn)" ] = diaglo? /1202 | 72, ] @

i.e, the noise is white.
If MMSE criterion is used the matrix R can be found through Cholesky factorization of [5]:

(H"H +{T)=R"R ®)
where ¢ =¢. /0. . The matrices G, B and F can be found as:

G =diag[r',...,7gx |

B=GR ©6)
F=R"H"
The error covariance can be shown as:
®,, =E[ee” |=0.G* =diaglc./7.,....0. 1 74] (7)

i.e. error can be considered as white.

In outdated CSI case, the system model, which is considered in Fig. 1, operates in a feedback
channel where the CSI is measured in downlink and fed to the transmitter in uplink
channel. Time variations of channel lead to a significant outdated (partial) CSI at the
transmitter. In fact there will always be a delay between the moment a channel realization is
observed and the moment it is actually used by the transmitter. The effect of time variations
(or delay) can be considered as: H = H+AH , where H ,fl and AH are true, estimated and
channel error due to time variations [13]. We assume that the channel error has Gaussian
probability density function with moments E[AH]=0and E[AHAH"]=C,,, .

According to Fig. 1, the received signal can be considered as:

y=Gr=G(H +AH)FB 'y + i @)
where n =Gn and v is effective data vector [12]. If ZF criterion is used, it requires:

GHFB' =1 )

The processing matrices R,G,B and F can be found by doing Cholesky factorization of
HH" as[11]:
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HH" = RR"

G =diag(r; s, Tix)
B=GR

F=H'R

(10)

where e=w+n =GAHFx + Gn is considered as an error vector and the term w stands for
channel imperfection effect due to outdated CSI. The error covariance matrix can be
obtained as:

®,, = E[ee” = 02G(C,, +T)G" (11)

Note that, with a small channel error assumption (i.e. C,, — 0), the error covariance matrix
in an imperfect case tends to the error covariance matrix in a perfect case, i.e.

®,, =c:Diag(1/ 1} /15, 1115 (12)

3. MIMO-THP capacity

The first attempt to calculation of achievable rates of THP is done by Wesel and Cioffi in
[15]. The authors considered THP for discrete-time SISO consists of Inter-Symbol
Interference (ISI) and AWGN. They derived an exact expression for maximum achievable
information rate for ZF case and provided information bound for MMSE case. In this
section, we develop the achievable rates analysis provided in [15] for MIMO-THP in flat
fading channel. We obtain the maximum achievable rate and some upper and lower bounds
of it for ZF and MMSE cases with perfect and imperfect CSI.

3.1 Achievable rates of point-to-point MIMO-THP
Consider a point-to-point MIMO system with THP as Fig. 2.

n
« =>e=>|L0 == #» GF |0 = =
—| r

y

I-B

Fig. 2. THP model in a point-to-point MIMO system

The received signal vector can be expressed as:

z=T,[GFHB'v + GFn]=T,[a+w+n'] (13)

where w is residual spatial interference after MMSE criterion on THP filters (in the ZF case
w=0) and T,() is modulo ¢ operator so eliminate its output on interval

T=[-t/2,t,/2)x[-jt,/2,jt,/2). As n'=GFn is white Gaussian noise and with the
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assumption that w, Lw, & a, Lw, for Vizj (so that symbol | stand for statistical

independence) the received vector r can be decoupled in K parallel streams as! [17]:
zkzl",[ak+wk+n£] ; k=1~K (14)

Because of the decoupling of the received information symbols in (14) and assuming
independence between elements in @ the mutual information between the transmitted
symbols and the received signal vector can be expressed as the sum of the mutual
information between elements of each vector:

1(a;z)=§1(akgzk) (15)

=

where /(.) denote mutual information. Each term in the sum is independently can be
considered as:

I(ak;zk):h(zk)_h(zk |ak):h[rt(ak + Wy +n,:)]—h[1—‘t ((ak W, +nl’r)|ak)]

= h[l“,(ak +w, +n, )]—h[l"t ((wk +n,)|a, )] (16)

where /(.) denotes differential entropy. Calculation of the above mutual information seems
to be difficult and we try to find an upper and lower bound of (16) by some approximations.
Remark 1: An upper bound on the achievable rate of the channel produced by MMSE-THP of
(16) can be found as [17]:

K
Also, the upper bound can be obtained essentially by neglecting the spatial interference
term w, in (16) [17]. The lower bound depends largely on the variance of w, [15]. A lower
bound on achievable rate can be found as [17]:

X 2
1, (a;2)= 2.2log, (1) - log,(270%) - %10& e—2log,(2erf(1/20)) (18)

Thus, a truncated Gaussian [17] with variance of »* =var(w, +T,(n])) produces a slightly
tighter bound but requires the computation of var(T(n))).

Remark 2: The upper bound attained in (17) can be simplified if some approximations are
allowed so that a quasi-optimal (or sub-optimal) closed form solution can be found. This
approximations can be done based on the value of #/o (See [17]).

3.2 General THP in point-to-point MIMO with perfect CSI

Whenever CSI is available at the transmitter in a communication system, since the
transmitter has knowledge of the way the transmitted symbols are attenuated and
distributed by the channel, it may adjust transmit rate and/or power in an optimized way.

! For MMSE case the above assumption for high value of SNR is acceptable and the above results can be
true in asymptotic case, so MMSE performance for high SNR values converge to ZF [2].
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For instance, in the multi-antenna scenario some of the equivalent parallel channels might
have very bad transmission properties or might not be present at all. In this situation, the
transmitter might want to adjust to that by either dropping some of the lower diversity
order sub channels or by redistributing the data and the available transmission power to
improve the average error rate. This can be done by generalization of THP concepts as
GTHP by enabling different power transmission for each antenna. GTHP can be done in two
main scenarios [17]:

First: If the loading is made according to capacity of system; this structure enables different
transmission rate per antenna.

Second: 1f it is needed to ensure reliable transmission rate for each antenna, the loading
should be made according to minimize error rate of system.

Here we consider two different optimization scenarios for loading strategies of THP and
extend it's concept in structure that t is not constant, so the modulo interval is different for
each sub channel (¢,) [17].

3.2.1 Capacity criterion

In this section, the power adaptation strategy of the second type of GTHP concept is
employed. The optimal power allocation is calculated in MIMO-GTHP systems, while
regarding the modulation schemes is given. If the loading is made according to capacity of
system, this structure enables different transmission rate per antenna. One of the good
features of this scenario is that it is scalable architecture, because it allows adding or
removing transmitters without losing the precoding structure as explained in [16].

If a assumed as an i.i.d. uniform distribution on T, for such a case, x is also i.i.d. uniform
on T (regardless of the choice of matrix B). Thus the transmitted power from kth antenna
will be p, =E{|x, |’} =1¢; /6 (for real case p,=t;/12). Its corresponding rate will equal the
maximum achievable mutual information in (17):

1(t,) =1(a,z, ,t,)=2log,(t,) — h[T, (n})] (19)

Then the maximum achievable rate for a system with THP will be the maximum of the sum
of the rates of each stream subject to a maximum total transmitted power constraint, i.e.

K K
CGenemI = male(tk) = max 2(2 lOgZ (t]\) - h[rt (nll\ )])
T8y o g

(20)
K 1 k£ )

st Y p=—X2t =k

k=1 6 k=1

In order to maximize (20) we assume that all the available streams are classified into two
groups? (g -Gaussian and u -uniform) based on ¢/ values [16]. As shown in [17], the
achievable rate of streams belonging to u tends to zero; no power is assigned to these
streams, i.e. t, =0 Vk eu . Thus the solution of the maximization problem in (20) can be
found as assigning the same power to the entire stream in g (and no power to those inu ).
The optimal solution can be shown to be [17]:

2 Based on the value of /o for each stream
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clrs = zz[ |g6”f ] , keg 1)

keg

n'y

where | g| denotes the number of active antennas and o, is variance of ', . Then some kind
of adaptive rate algorithm is necessary to achieve the maximum capacity of the GTHP.

3.2.2 Minimum SER criterion

In some application it is needed to ensure reliable transmission rate for each antenna
(especially in MIMO broadcast channels). In this section we try to find the optimal sub
channel power allocation in MIMO GTHP systems, while regarding the modulation
schemes is given. As mentioned, for each sub channel we have:

z,=a,+n', k=12..,K (22)

where we assumed that w, tend to zero. For simplicity assume MQAM transmission in all
sub channels is used. In this case the approximate average SER for a fixed channel H
simply given as [17]:

SER=~ 3 (1- | | E,) (23)

0+
\/_

2
30 |nd : . ,
and we assumed modulation order (i.e. M, ) can be varied for each

M1,

sub-channel, so that variable bit allocation is possible (that we didn't consider here). In this
case we have [17]:

where B,

1
E, =B—W(A A) (24)

k 3
M (M 1)

(\/A/Tk - 1)2 |’”kk|2

the inverse of the function f(x)=x.e";x>0,1ie., W(x)=a< ae“=x.

where 4, = and W(x) is the real valued Lambert’s W -function defined as

Since the W (x) function is real and monotonically increasing for real x >-1/e, the value of
A such that iEk (1)—K =0 holds which can be found by using some classical methods as
k=1

denoted in [17]. On the other hand, W(x) is a concave and unbounded function with
W©0)=0 and W(x)<x , the unique solution for E =[E,,.,E.]' can be found by the

following simple iterative procedure[14]:
i.  Chose a small positive 4 which satisfy

Il M?ﬁ

4
Zs E, (25)

ii. Calculate
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E:

T

1 B
— W4 26
1B, (Ak ) (26)

M=

=~
u

iii. 1If ET is not yet sufficiently close to E, , multiply 4 by ET/ET and go back to step (ii).
iv. Compute E =[E,,...,E,]" according to (24).
Note that since W (x) for x>-1/e is monotonic function, then according to relation (24) the

highest power (max£,) assign to the weakest signal so that the SNR value almost stay
constant for all sub channels.

3.3 Achievable rate in imperfect CSI

In [17] the scheme proposed in [18] for MIMO THP system was modified by allowing
variations of the transmitted power in each antenna. The authors stated the problem of
finding the maximum achievable rate for this modified spatial THP scheme and found that
Uniform Power Allocation (UPA) with antenna selection is a quasi-optimal transmission
scheme with a perfect CSI.

In this sub-section, based on previous researches about SISO and point-to-point MIMO
channels, an analytical approach to attain the maximum achievable rate bound in an
imperfect CSI case is developed for broadcast channel. It will be shown that this bound
depends on the variance of the residual Co-Antenna Interference (CAI) term. Moreover, it
will be shown that the power allocation obtained by the UPA in [17] is sub-optimal in an
imperfect CSI, too.

3.3.1 Maximum achievable rates

The received signal after modulo operation can be considered as z = a +T, [GAHFx + 1] . Since
x has i.i.d. distribution, W = GAHFx can be considered as an unknown interference with an
i.i.d. distribution. Also, for such an a, z is i.i.d. uniform on T . In this case, the received
information can be decoupled in K independent parallel data steams and the mutual
information between k" element of data vector, a, , and the corresponding element of the
received signal, z, , is [13]:

I(ak;zk): h(zk)—h(zk |ak)= h(z )—h[l",k ((wk +n)|a, )] < log2(6pk)—h{l",k (ié‘_k"x/ +7, ﬂ (27)

7=t By

where 6, =[AHF],.and h(.) denotes differential entropy. Let us define the random variable

!

2
K . o K p 2
I ~ . . .
e, as e, =_Z%r—"xj +1, where its power is o =r—§+z;r—2/|§kj| and o, =[AH],; . With the
J= Tk ke /7 Thk

assumption of small error, e, can be approximately modeled as a complex Gaussian

random variable. In the case where, the above assumption is true, the mutual information
expression (27) can be very well approximated as [13]:

I(ak;zk)zlogz L?k ]+ (28)

where
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K 2
=6rp, /we(c’ +Y|6.| p,
Xk Pk (o, ,2:11| A,| p»,) 29)

log[x]" = max[log(x),0]

The achievable rates for THP in an imperfect CSI case will then be the sum of the mutual
information of all K parallel steams as [13]:

K K
C = max Zl(ak;zk) ~ maleng [Xk]+
{Pe} k=1 {Pi} k=1

K (30)
s.t. z Dy =P
k=1

Observed that C (or y,) depends on three components: |5Aj|2,rkzk and p,. In order to
maximize y,, some kind of spatial ordering is necessary in order to maximize it. For this
purpose, it is required to decompose H (in Cholesky factorization) so that the elements of
r; to be maximized (finding the ordering matrix similar to [11]).

On the other hand, it was assumed that by making small error assumption, e, can be
approximately modeled as a complex Gaussian random variable. This is equivalent to
assuming max |8, p; <o, ;Vj. Now, we assume that the entries of error matrix are

i

bounded as max |6, < a, ;Y k,j [13]. In addition, for the sake of simplicity and without
5]
loss of generality, we assume that o =max a,. Then, the power distribution that will
5]

maximize the achievable rates will be the solution of the following maximin problem:

K

C=max min3log,[z, ]
pi 6!,- k=1

2 (31)

<a ; Vi,j

5@'1'

K
st )Py =pr , max
k=1 i

In order to solve the above maximin problem the worst-case is assumed, i.e.
a=max |6, ;Vi,j. With this assumption, the minimum mutual information will be
L

attained for each term in the summation. Then, the resulting maximization problem leads to
[13]:

K 2 "
C=max ) log, —6fkr""
= we(o, +ap;) (32)

K
s.t. ;pk =Pr

The resulting maximization problem is a standard constrained optimization problem, and
can be solved with the use of the Lagrange method in which the solution result is p, = const.
It means that the p, is independent of k , i.e the distribution of the power, in worst-case, is
UPA.
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Note that, if we consider different noises with different powers for each user, the
distribution of power may not be the UPA.

3.3.2 Capacity loss

In the previous section, it is shown that the capacity of MIMO-THP can be obtained by the
UPA. More over, it can be observed from (32) that this capacity, in worst case, depends on
the channel error value (i.e. a). We define the capacity loss as difference between the
capacity of MIMO-BC-THP in a perfect CSI and in an imperfect CS], i.e. relation (32), as [19]:

A ~ K 2 K 2
AC=C,-C, :%1()&{%} - Elog2 {%} <Klog, [1 + K] (33)

re(o. +ap,)

The above bound for capacity loss only is valid for values of & so that the approximation of

max | 5;(]- P p . <0, j ;VJ is valid [19]. It means that this bound depends on SNR value and is

J
acceptable for high SNR value, i.e., this capacity loss bound is asymptotic bound for worst-
case in which bounds the capacity loss of MIMO-THP . It is desired to bounding the capacity

loss of optimal solution of (29). Assume C, is the capacity of optimal solution that can be

obtained by exactly analysis or by numerical simulation. In this case we can bound
AC=C,-C, as[19]:

AC=Klog,[1+ K]—Klog{[l +%a]:| e (34)

n

where ¢ is a positive value. The lower bound can be obtained by choosing ¢ =K -2 [19]:

AC> {K log,[1+ K]—Klog{(l +p—2aﬂ +(K —2)1 (35)
o

n

where [x]" =max[x,0]. In simulation we refer (35) as theoretic loss.

3.4 Spatial ordering

The VBLAST-Like ordering can be used in order to improve the power loading performance of
MIMO-GTHP system in Fig. 1 [1]. To do this, since the loading is based on the SNR values of
the equivalent parallel sub-channels, which in turn are proportional to |rkk ?, the distribution of
these diagonal entries is an essential parameter in power loading performance. It turns out that
by introducing a permutation matrix in the decom)position of H, ie, allowing different
ordering of the sub channels, the distribution of the |rkk| values can be modified as [1]:

. . 2
P, =argmin (117, 1/ | 1 ool | g )= argmin((6])

It means that in the cholesky factorization of (4), the decomposition should be made so that
the square value of diagonal elements of matrix R minimized. It means that the matrix P is
selected so that the column of H corresponding to minimum square value of diagonal
elements of G is permuted to the left. Deleting this column from the matrix H, and forming
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the cholesky factorization of this modified matrix, we can obtain second column of matrix P.
Continuing this way, constantly updating P, the decomposition of H is constructed. The
pseudo-code for the algorithm is given in Fig. (3).

Initialization :
P=[p;]=0
for i=1toK do:
[O R]=qr(H) ;  for ZF

R=chol(HH" + (1) ;  for MMSE
G = diag(inv(R))"2
l,=argmin(g,;)
; .
F,=1

H , = zeros(size(H , )

’

end
Fig. 3. The pseudo code for ordering

Note that for ZF or MMSE-THP, the system performance will be dominated by the signal
component with the largest noise variance, and we can find the ordering algorithm in the
minimax noise variance sense as [1].

3.5 Simulation and results

3.5.1 Perfect CSI

The mutual information for real x, with i.i.d uniform distribution on the module interval [-
t/2, t/2) is plotted in fig. 4, where the average transmitter energy is ¢*/12. This figure also
shows the mutual information curves for the upper (17) and lower (18) bounds for each sub
channel. For comparison we also plotted the well-known AWGN channel capacity (with no
ISI). Observe that the upper bound lies above the AWGN capacity and lower bound lies
below this capacity (especially for high SNR values).

Figs. 5 and 6 give the performance comparison of the MMSE-GTHP with/without power
loading (relation (24)) when 4QAM and 16QAM modulations are used, respectively. From
these figures, it is clearly seen that the MMSE-GTHP with ordering can achieve better
performance than the MMSE-GTHP with or