1,464 research outputs found

    Wearable Sensors and Machine Learning based Human Movement Analysis – Applications in Sports and Medicine

    Get PDF
    Die Analyse menschlicher Bewegung außerhalb des Labors unter realen Bedingungen ist in den letzten Jahren sowohl in sportlichen als auch in medizinischen Anwendungen zunehmend bedeutender geworden. Mobile Sensoren, welche am Körper getragen werden, haben sich in diesem Zusammenhang als wertvolle Messinstrumente etabliert. Auf Grund des Umfangs, der Komplexität, der Heterogenität und der Störanfälligkeit der Daten werden vielseitige Analysemethoden eingesetzt, um die Daten zu verarbeiten und auszuwerten. Zudem sind häufig Modellierungsansätze notwendig, da die gemessenen Größen nicht auf direktem Weg aussagekräftige biomechanische Variablen liefern. Seit wenigen Jahren haben sich hierfür Methoden des maschinellen Lernens als vielversprechende Instrumente zur Ermittlung von Zielvariablen, wie beispielsweise der Gelenkwinkel, herausgestellt. Aktuell befindet sich die Forschung an der Schnittstelle aus Biomechanik, mobiler Sensoren und maschinellem Lernen noch am Anfang. Der Bereich birgt grundsätzlich ein erhebliches Potenzial, um einerseits das Spektrum an mobilen Anwendungen im Sport, insbesondere in Sportarten mit komplexen Bewegungsanforderungen, wie beispielsweise dem Eishockey, zu erweitern. Andererseits können Methoden des maschinellen Lernens zur Abschätzung von Belastungen auf Körperstrukturen mittels mobiler Sensordaten genutzt werden. Vor allem die Anwendung mobiler Sensoren in Kombination mit Prädiktionsmodellen zur Ermittlung der Kniegelenkbelastung, wie beispielsweise der Gelenkmomente, wurde bisher nur unzureichend erforscht. Gleichwohl kommt der mobilen Erfassung von Gelenkbelastungen in der Diagnostik und Rehabilitation von Verletzungen sowie Muskel-Skelett-Erkrankungen eine zentrale Bedeutung zu. Das übergeordnete Ziel dieser Dissertation ist es, festzustellen inwieweit tragbare Sensoren und Verfahren des maschinellen Lernens zur Quantifizierung sportlicher Bewegungsmerkmale sowie zur Ermittlung der Belastung von Körperstrukturen bei der Ausführung von Alltags- und Sportbewegungen eingesetzt werden können. Die Dissertation basiert auf vier Studien, welche in internationalen Fachzeitschriften mit Peer-Review-Prozess erschienen sind. Die ersten beiden Studien konzentrieren sich zum einen auf die automatisierte Erkennung von zeitlichen Events und zum anderen auf die mobile Leistungsanalyse während des Schlittschuhlaufens im Eishockey. Die beiden weiteren Studien präsentieren jeweils einen neuartigen Ansatz zur Schätzung von Belastungen im Kniegelenk mittels künstlich neuronalen Netzen. Zwei mobile Sensoren, welche in eine Kniebandage integriert sind, dienen hierbei als Datenbasis zur Ermittlung von Kniegelenkskräften während unterschiedlicher Sportbewegungen sowie von Kniegelenksmomenten während verschiedener Lokomotionsaufgaben. Studie I zeigt eine präzise, effiziente und einfache Methode zur zeitlichen Analyse des Schlittschuhlaufens im Eishockey mittels einem am Schlittschuh befestigten Beschleunigungssensor. Die Validierung des neuartigen Ansatzes erfolgt anhand synchroner Messungen des plantaren Fußdrucks. Der mittlere Unterschied zwischen den beiden Erfassungsmethoden liegt sowohl für die Standphasendauer als auch der Gangzyklusdauer unter einer Millisekunde. Studie II zeigt das Potenzial von Beschleunigungssensoren zur Technik- und Leistungsanalyse des Schlittschuhlaufens im Eishockey. Die Ergebnisse zeigen für die Standphasendauer und Schrittintensität sowohl Unterschiede zwischen beschleunigenden Schritten und Schritten bei konstanter Geschwindigkeit als auch zwischen Teilnehmern unterschiedlichen Leistungsniveaus. Eine Korrelationsanalyse offenbart, insbesondere für die Schrittintensität, einen starken Zusammenhang mit der sportlichen Leistung des Schlittschuhlaufens im Sinne einer verkürzten Sprintzeit. Studie III präsentiert ein tragbares System zur Erfassung von Belastungen im Kniegelenk bei verschiedenen sportlichen Bewegungen auf Basis zweier mobiler Sensoren. Im Speziellen werden unterschiedliche lineare Bewegungen, Richtungswechsel und Sprünge betrachtet. Die mittels künstlich neuronalem Netz ermittelten dreidimensionalen Kniegelenkskräfte zeigen, mit Ausnahme der mediolateralen Kraftkomponente, für die meisten analysierten Bewegungen eine gute Übereinstimmung mit invers-dynamisch berechneten Referenzdaten. Die abschließende Studie IV stellt eine Erweiterung des in Studie III entwickelten tragbaren Systems zur Ermittlung von Belastungen im Kniegelenk dar. Die ambulante Beurteilung der Gelenkbelastung bei Kniearthrose steht hierbei im Fokus. Die entwickelten Prädiktionsmodelle zeigen für das Knieflexionsmoment eine gute Übereinstimmung mit invers-dynamisch berechneten Referenzdaten für den Großteil der analysierten Bewegungen. Demgegenüber ist bei der Ermittlung des Knieadduktionsmoments mittels künstlichen neuronalen Netzen Vorsicht geboten. Je nach Bewegung, kommt es zu einer schwachen bis starken Übereinstimmung zwischen der mittels Prädiktionsmodell bestimmten Belastung und dem Referenzwert. Zusammenfassend tragen die Ergebnisse von Studie I und Studie II zur sportartspezifischen Leistungsanalyse im Eishockey bei. Zukünftig können sowohl die Trainingsqualität als auch die gezielte Verbesserung sportlicher Leistung durch den Einsatz von am Körper getragener Sensoren in hohem Maße profitieren. Die methodischen Neuerungen und Erkenntnisse aus Studie III und Studie IV ebnen den Weg für die Entwicklung neuartiger Technologien im Gesundheitsbereich. Mit Blick in die Zukunft können mobile Sensoren zur intelligenten Analyse menschlicher Bewegungen sinnvoll eingesetzt werden. Die vorliegende Dissertation zeigt, dass die mobile Bewegungsanalyse zur Erleichterung der sportartspezifischen Leistungsdiagnostik unter Feldbedingungen beiträgt. Zudem zeigt die Arbeit, dass die mobile Bewegungsanalyse einen wichtigen Beitrag zur Verbesserung der Gesundheitsdiagnostik und Rehabilitation nach akuten Verletzungen oder bei chronischen muskuloskelettalen Erkrankungen leistet

    A Narrative Review on Wearable Inertial Sensors for Human Motion Tracking in Industrial Scenarios

    Get PDF
    Industry 4.0 has promoted the concept of automation, supporting workers with robots while maintaining their central role in the factory. To guarantee the safety of operators and improve the effectiveness of the human-robot interaction, it is important to detect the movements of the workers. Wearable inertial sensors represent a suitable technology to pursue this goal because of their portability, low cost, and minimal invasiveness. The aim of this narrative review was to analyze the state-of-the-art literature exploiting inertial sensors to track the human motion in different industrial scenarios. The Scopus database was queried, and 54 articles were selected. Some important aspects were identified: (i) number of publications per year; (ii) aim of the studies; (iii) body district involved in the motion tracking; (iv) number of adopted inertial sensors; (v) presence/absence of a technology combined to the inertial sensors; (vi) a real-time analysis; (vii) the inclusion/exclusion of the magnetometer in the sensor fusion process. Moreover, an analysis and a discussion of these aspects was also developed

    Digital Twin for Monitoring Ergonomics during Manufacturing Production

    Get PDF
    Within the era of smart factories, concerning the ergonomics related to production processes, the Digital Twin (DT) is the key to set up novel models for monitoring the performance of manual work activities, which are able to provide results in near real time and to support the decision-making process for improving the working conditions. This paper aims to propose a methodological framework that, by implementing a human DT, and supports the monitoring and the decision making regarding the ergonomics performances of manual production lines. A case study, carried out in a laboratory, is presented for demonstrating the applicability and the effectiveness of the proposed framework. The results show how it is possible to identify the operational issues of a manual workstation and how it is possible to propose and test improving solutions

    Accuracy and repeatability of wrist joint angles in boxing using an electromagnetic tracking system

    Get PDF
    © 2019, The Author(s). The hand-wrist region is reported as the most common injury site in boxing. Boxers are at risk due to the amount of wrist motions when impacting training equipment or their opponents, yet we know relatively little about these motions. This paper describes a new method for quantifying wrist motion in boxing using an electromagnetic tracking system. Surrogate testing procedure utilising a polyamide hand and forearm shape, and in vivo testing procedure utilising 29 elite boxers, were used to assess the accuracy and repeatability of the system. 2D kinematic analysis was used to calculate wrist angles using photogrammetry, whilst the data from the electromagnetic tracking system was processed with visual 3D software. The electromagnetic tracking system agreed with the video-based system (paired t tests) in both the surrogate ( 0.9). In the punch testing, for both repeated jab and hook shots, the electromagnetic tracking system showed good reliability (ICCs > 0.8) and substantial reliability (ICCs > 0.6) for flexion–extension and radial-ulnar deviation angles, respectively. The results indicate that wrist kinematics during punching activities can be measured using an electromagnetic tracking system

    Modelling the Physical Human-Exoskeleton Interface

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    An exploratory study evaluating the effectiveness of a data driven approach to identifying coordinative features that are associated with sprint velocity

    Get PDF
    Sprint performance is multifactorial in nature and is dependent on a variety of coordination and motor control features. During the sequential phases of a sprint, the athlete completes a series of spatiotemporal coordination strategies to achieve the fastest possible velocity. The overall aim of the study was to leverage wearable sensor technology and data- driven tools to objectively assess the kinematic and neuromuscular determinants of optimal sprint velocity from a large dataset of university-aged sprinters. To achieve this, we recruited participants to run three 60 m sprints as fast as possible, while being outfitted with wireless electromyography (EMG) and a full-body inertial measurement unit (IMU) suit to obtain full- body 3D kinematics. Five strides about peak sprint velocity were selected and used for inputs into a principal components analysis (PCA). Significant stepwise multivariable regression models were generated for both kinematic and EMG features identified using PCA, with the kinematic model outperforming the EMG model as the kinematic model displayed a higher R2 value. This suggests that the kinematic dataset used in this study is a better predictor of sprint performance when compared to the EMG dataset, and that both may be viable options in the development of data-driven objective sprint coaching tools
    corecore