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Abstract 

Sprint performance is multifactorial in nature and is dependent on a variety of 

coordination and motor control features. During the sequential phases of a sprint, the athlete 

completes a series of spatiotemporal coordination strategies to achieve the fastest possible 

velocity. The overall aim of the study was to leverage wearable sensor technology and data-

driven tools to objectively assess the kinematic and neuromuscular determinants of optimal 

sprint velocity from a large dataset of university-aged sprinters. To achieve this, we recruited 

participants to run three 60 m sprints as fast as possible, while being outfitted with wireless 

electromyography (EMG) and a full-body inertial measurement unit (IMU) suit to obtain full-

body 3D kinematics. Five strides about peak sprint velocity were selected and used for inputs 

into a principal components analysis (PCA). Significant stepwise multivariable regression 

models were generated for both kinematic and EMG features identified using PCA, with the 

kinematic model outperforming the EMG model as the kinematic model displayed a higher R2 

value. This suggests that the kinematic dataset used in this study is a better predictor of sprint 

performance when compared to the EMG dataset, and that both may be viable options in the 

development of data-driven objective sprint coaching tools.  
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CHAPTER I – INTRODUCTION 

1.1 Data Driven Coaching  

The analysis of sprint performance using biomechanical tools has traditionally been limited 

to well-funded performance institutes and research laboratories. Recently, with advancements in 

technology, sophisticated biomechanical technologies are now more affordable and accessible to 

practitioners. Specifically, wearable sensors have provided practitioners with the ability to easily 

capture three-dimensional (i.e., 3D) movement kinematics and muscle activation in ecologically 

relevant scenarios. Despite this, there is a lack of information regarding patterns of coordination 

that define optimal sport technique. Current coaching standards rely on anecdotal evidence, and 

visual appraisal of movement, which can be subjective, and lack the sensitivity needed to 

optimize performance and avoid injury. Further, these methods fail to capture the coordinative 

dynamics of a movement, as traditional methods often rely on selecting a single data point at 

extreme points in the movement (Glazier, 2021). This results in poor feedback to the athlete and 

practitioner as it provides no insight into how an individual can improve their movement strategy 

to change their movement outcome.  

The coordinative strategy used by an individual to during sprinting to achieve a maximal 

sprint velocity is likely to differ based on the individual’s demographics and skill level (Newell 

& Vaillancourt, 2001). This makes it challenging to identify key features using traditional 

biomechanical methods of data analysis because of the natural variation that is likely to occur 

(Riley & Turvey, 2002). However, using techniques borrowed from computer science such as 

machine learning and artificial intelligence, we can begin to define coordinative patterns that 

exist. One particularly useful technique is Principal Component Analysis (PCA). PCA works to 

identify key modes of variation in a data set, these modes of variation are called principal 
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components (PCs). Principal components can then be used to inform other machine learning 

methods such as regression, clustering, or classification to identify patterns in a data set. In the 

study of coordination, PCA has been used to identify differences in skill level (Gløersen et al., 

2018; Ross et al., 2018a) and injury history (Astephen & Deluzio, 2004).   

The importance of objectively quantifying the coordinative strategy utilized by individuals 

during a complex movement is vital to improving skill acquisition (Newell & Vaillancourt, 

2001). The feedback can be used to inform coaches and athletes on how to optimize task 

outcomes. Previous work with PCA has been able to objectively identify differences between 

novice and advanced athletes (Gløersen et al., 2018; Ross et al., 2018a) but have failed to (1) 

understand the impact different coordinative strategies have on objective movement outcomes 

(such as sprint velocity) and (2) objectively identify the biomechanical meaning of principal 

components. Both present large limitations to the practical applications of data-driven analyses 

in applied settings.  

1.2 Biomechanical Determinants of Sprint Velocity 

The objective of sprinting is to cover a set amount of distance in the shortest time. Given 

this, a key determinant to sprint performance is horizontal running velocity. To achieve maximal 

running velocity, a sprinter leverages three phases: the start, acceleration phase, and the maximal 

speed phase. As the athlete progresses from acceleration to maximal speed, the athlete will 

increase their stride length and decrease their ground contact time (Hunter et al., 2004; Mattes et 

al., 2021). This therefore suggests that during the peak speed phase, maximum sprinting velocity 

is the by-product of stride length and stride rate (Coh et al., 2018; Hay, 2002; Hunter et al., 2004; 

Krzysztof & Mero, 2013). Previous work has suggested that stride length and stride rate are 

mutually dependent variables with a negative interaction (Hunter et al., 2004). In essence, this 
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means when stride length increases, stride rate decreases and vice versa (Debaere, Jonkers, et al., 

2013; Hunter et al., 2004). Throughout the literature, conflicting findings have been reported 

when trying to determine whether stride rate or stride length is the rate limiting parameter 

affecting sprint performance. Some authors have shown a strong correlation between stride 

length and peak sprint velocity (Hunter et al., 2004; Mattes et al., 2021), while others have 

suggested that stride rate is better correlated with peak sprint velocity (Morin et al., 2012). 

Despite these conflicting findings, there is agreement that both parameters are important to 

consider when optimizing sprint performance. Further it is clear is that both parameters rely on 

conflicting requirements. Stride rate is favourably influenced by low moments of inertia of the 

leg and therefore low masses and short limb length. Meanwhile, stride length is positively 

influenced by explosive strength and muscle mass (Babić et al., 2007; Hunter et al., 2005).  

 

Figure 1. A summary of the deterministic model of sprinting stride length. Retrieved from 

Hunter et al (2004). 
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1.2.1 Stride Length  

 Stride length increases with each step of sprinting, with peak values occurring between 

50-80 m during a straight-line sprinting bout (Salo et al., 2011). The deterministic model of 

sprinting originally published by Hay, (1994) shows that stride length is determined by stance 

distance and flight time (Figure 1). Stance distance is the horizontal distance of the centre of 

mass (COM) traveled during the stance phase and flight time is the duration of the flight (i.e., 

non-contact) phase. In a study conducted by Hunter and colleagues (2004), regression analysis 

was used to understand which determinants appeared to influence the stride characteristics the 

most. Specifically, stride length was shown to have a stronger correlation to sprint velocity than 

stride rate (Hunter et al., 2004). For stride length they found that stride length and flight distance 

showed a strong correlation (r ≥ 0.89) while showing no correlation in stance distance (r ≤ 0.10). 

Furthermore, it was determined that 88% of the variance in flight distance was explained by 

height of take-off, vertical velocity at take-off, and horizontal velocity at takeoff. Vertical 

velocity influenced flight distance the most and horizontal velocity of take-off affecting it the 

least.  

 Other studies have shown complimentary associations between stride length and various 

other biomechanical and neuromuscular variables. For instance stride length appears to be 

favourably influenced by explosive strength and muscle mass (Debaere, Jonkers, et al., 2013). 

This is consistent with other findings which suggested that the body mass and height of a sprinter 

may be important in producing greater ground support forces. This could be used to achieve 

greater flight distance (Hunter et al., 2004; Weyand & Davis, 2005). Other factors that influence 

stride length are the length of the lower extremity, biological sex, reaction force, the duration of 
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the contact phase, and the dynamic flexibility of the hips (Coh et al., 2010; Debaere, Jonkers, et 

al., 2013; Mattes et al., 2021).  

 

Figure 2. A summary of the deterministic model of sprinting stride rate. Retrieved from Hunter 

et al (2004) 

1.2.2 Stride Rate 

 Unlike stride length, stride rate does not significantly increase across the duration of a 

race. During the final stages of initial acceleration 95% of the maximal stride rate that is 

achieved during the maximal velocity phase has already been achieved (Debaere, Jonkers, et al., 

2013). Hay’s (1994) deterministic model of sprinting also addresses the critical determinants of 

stride rate (Figure 2). Previous work assessing the validity of this model found a strong negative 

correlation of stride rate with flight time (r = -0.81) and no correlation with stance time (Hunter 

et al., 2004). Factors such as height at takeoff, vertical velocity at take-off, and air resistance 

during flight are thought to influence flight time (Hunter et al., 2004). The findings of the 
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regression analysis revealed that flight time is strongly influenced by the vertical velocity at take-

off (Hunter et al., 2004).  

Findings by Morin and colleagues (2012) conflicted with evidence provide by Hunter et 

al. Specifically, these authors noted that a strong relationship exists between stride rate and sprint 

velocity and suggest that stance time is a key determinant in stride rate. Stance time appears to 

display a more complex interaction of various biomechanical and neuromuscular parameters. 

Specifically, Morin and colleagues (2012) found that a velocity-oriented force-velocity profile 

allowed for shorter stance times, as this allowed sprinters to apply more force quicker during the 

stance phase. Rate of force development is also heavily influenced by a variety of neuromuscular 

factors including muscle motor unit subtype, motor neuron excitability, inter and intramuscular 

coordination and central and peripheral fatigue (Coh et al., 2010). Along with these differences 

in neuromuscular factors, kinematic factors of horizontal velocity of the COM during stance, leg 

angle at touch down, leg angle at take-off and leg length have all been shown to influence the 

stance time (Hunter et al., 2004).  

Many different factors influence the correlation of stride length and stride rate to sprint 

velocity. Differences in methodology such as overground sprinting (Debaere, Jonkers, et al., 

2013; Hunter et al., 2004; Mattes et al., 2021; Salo et al., 2011) versus treadmill sprinting  (e.g., 

Morin et al., 2012) may influence the step characteristics used to achieve maximal velocity. 

However, other factors such as the kinematic system used, sprinter anthropometrics, and 

neuromuscular characteristics of the sprinter influence the contribution of stride rate and stride 

length to maximal sprinting velocity. Individual differences in the sprinters morphological and 

neuromuscular make up could explain some of the variance in the literature. Salo and colleagues 

(2011) analyzed 11 athletes who performed 10 or more races. They found that different athletes 
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had different reliance on stride rate and stride length to achieve their fastest sprint times. The 

result of these individual differences could result in different coordinative strategies used to 

achieve maximal sprint velocity (Hunter et al., 2004; Salo et al., 2011).   

1.3 An Overview of the Kinematics of Sprinting and Running   

The trunk and pelvis are require specific coordination strategies during running (Preece et 

al., 2016b; Schache et al., 1999; Seay et al., 2011). Previous literature on the kinematics and 

coordination of the trunk and pelvis during running is limited. Even more limited is the study of 

the trunk and pelvis axial rotation during sprinting. Currently, the role of the trunk and pelvis 

during running is not clear. It has been suggested that the anti-phase coordination of the pelvis 

and thorax may play an important role in controlling the centre of mass displacement during 

running (Preece et al., 2016b). This next section provides a detailed overview of the kinematics 

of the thoracic spine, lumbar spine, pelvis, and hip during running and sprinting (Figure 3).  

1.3.1 Sagittal plane 

1.3.1.1 Trunk and Pelvis 

The pelvis and trunk undergo a biphasic movement pattern in the sagittal plane, this 

pattern occurs in both running and sprinting (Novacheck, 1998). During running the pelvis 

operates in a anterior tilt relative to neutral, while the thoracic and lumbar spine operate in 

flexion relative to neutral (Preece et al., 2016a). The lumbar spine, thoracic spine, and pelvis 

reach peak flexion during the early swing phase. The pelvis reaches a secondary peak of anterior 

tilt during the late swing phase while the lumbar and thoracic spine both reach a secondary peak 

of flexion during the mid-swing phase. The pelvis and thorax kinematic trajectories suggest an 

anti-phase movement (Preece et al., 2016a; Schache et al., 2002). 
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The mean magnitude of pelvic tilting motion is within the range of 5-7°, which appears to stay 

relatively consistent with increases in running velocity (Schache et al., 1999). Interestingly, 

during sprinting the pelvis and trunk move into greater relative forward flexion, this is especially 

apparent in the acceleration phase. By using greater relative forward flexion the sprinter lowers 

their centre of mass which allows them to maximize horizontal force during the propulsion phase 

(Novacheck, 1998).  
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Thoracic Spine Lumbar Spine Pelvis 

   

 
  

   

Figure 3. Time series data for the thoracic spine, lumbar spine and pelvis during running gait with 

averages represented as the solid black line and standard deviation represented in grey. Data is 

plotted from right initial contact to the following right initial contact. The three dotted vertical lines 

represent right toe off, left initial contact and left toe off from left to right, respectively (Preece et 

al., 2016a).   
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Table 1. Summary of sagittal plane movement of the Trunk and Pelvis  

Study Type of Running Sample 

Population 

Motion Capture 

Method 

Region Speed 

(m/s) 

*Magnitude 

(°) 

(Schache et 

al., 2002) 

Treadmill running  Male runners Optoelectric Lumbar 4.2 m/s 8.1 

Pelvis 4.8 

(Preece et al., 

2016a) 

Overground 

running  

Healthy males 

and females 

Optoelectric Thoracic 3.9 m/s 6.0 

Lumbar 5.0 

Pelvis 3.0 

(Debaere et 

al., 2013) 

Acceleration phase 

of sprinting 

Male and 

female sprinters 

Optoelectric Pelvis 10 m 

sprint 

10.0 

(Nagahara et 

al., 2018) 

Acceleration phase 

of sprinting 

Male sprinters Optoelectric Trunk 60 m 

sprint 

5.0-12.0 

Pelvis 5.0-10.0 

*Note: Magnitudes are calculated as max-min range of motion (ROM) 

1.3.1.2  Hip 

During the initial swing phase after maximal extension has occurred near toe off, the hip 

reverses direction and begins to flex rapidly. The onset of hip extension begins at contralateral 

leg foot strike or slightly after (Schache et al., 1999). Hip flexion continues through the first 2/3 

of swing phase until a maximal position is reached. In the last 1/3 of the swing phase the hip 

reverses direction and begins to extend prior to foot strike. As running speed increases the 

relative duration of hip flexion increases while hip extension of the running cycle decreases 

(Schache et al., 1999). Interestingly, hip flexion during the first half of the swing phase seems to 

play an important role in increasing running speed. Specifically, Kunz and Kaufmann (1981) 

found that elite sprinters display greater peak hip flexion during the swing phase. Greater hip 

flexion during this swing phase has been shown to be associated with longer stride lengths.  
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Peak hip flexion and extension occur at the same time as peak pelvis posterior tilt and peak 

anterior tilt. Peak hip extension is reached immediately after take-off (Schache et al., 2002). The 

hip continues to extend during the second half of the swing phase, this is done to prevent 

excessive deceleration that would occur at the time of initial contact (Novacheck, 1998). This 

may also increase the stiffness of the leg upon ground contact. Increases in the degree of hip 

extension at toe off have been shown to be one of the variables associated with longer stride 

lengths (Schache et al., 1999). Kunz and Kaufmann (1981) found that elite sprinters have less 

extension at toe off which would decrease contact time.  

Table 2. Summary of sagittal plane movement of the hip   

Study Type of Running Sample 

Population 

Motion Capture 

Method 

Region Speed 

(m/s) 

*Magnitude 

(°) 

(Schache et 

al., 2002) 

Treadmill running  Male runners Optoelectric Lumbar 4.2 m/s 73.0 

(Debaere et 

al., 2013) 

Acceleration phase 

of sprinting 

Male and 

female sprinters 

Optoelectric Pelvis 10 m 

sprint 

10.0 

*Note: Magnitudes are calculated as max-min range of motion (ROM) 

1.3.1.3 Limbs  

 In the sagittal plane the limbs undergo flexion, extension, dorsiflexion and plantarflexion. 

The range of motion experienced by these shoulder, elbow and knee increase as running velocity 

increases (Novacheck, 1998). During sprinting the knee undergoes two peaks, with one peak 

occurring in the stance phase and a greater peak occurring during the swing phase. The range of 

motion of this can differ greatly depending on the skill level of the sprinter, with elite sprinters 

exhibiting up to 130 degree of maximum knee flexion (Novacheck, 1998). A summary of the 

kinematics of the upper and lower limbs can be found in Table 3 and 4.  
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In the sagittal plane the limbs undergo flexion, extension, dorsiflexion and plantarflexion. The 

range of motion experienced by these shoulder, elbow and knee increase as running velocity 

increases (Novacheck, 1998). During sprinting the knee undergoes two peaks, with one peak 

occurring in the stance phase and a greater peak occurring during the swing phase. The range of 

motion of this can differ greatly depending on the skill level of the sprinter, with elite sprinters 

exhibiting up to 130 degree of maximum knee flexion (Novacheck, 1998). A summary of the 

kinematics of the upper and lower limbs can be found in Table 3 and 4.  

Table 3. Overview of the Lower Limb Range of Motions  

Study Joint Type of Running Sample 

Population 

Motion Capture 

Method 

Speed 

(m/s) 

*Magnitude 

(°) 

Novacheck 

(1998) 

Ankle Maximal Velocity 

Sprinting 

Sprinters Optoelectic Max 50.0 

Knee Sprinters Optoelectric Max 125.0 

Sides (2015) Ankle Maximal Velocity 

sprinting  

Sub elite and 

elite 

Optolectric 

 

Max 44.0 

Knee Max  119.0 

*Note: Magnitudes are calculated as max-min range of motion (ROM) 
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Table 4. Overview of the Upper Limb Range of Motions  

*Note: Magnitudes are calculated as max-min range of motion (ROM) 

1.3.2 Frontal Plane 

1.3.2.1 Trunk and Pelvis 

The magnitude of movement in the frontal plane is more subtle than the sagittal plane of 

motion. Despite the smaller magnitude of movement, this motion plays an important role in 

stabilizing the upper body. Frontal plane motion of the trunk during running is not well studied. 

Thortenson et al (1984) and Carlson et al (1988) placed kinematic markers over the L3 and C7 to 

evaluate the angular displacement of the trunk during running. They both found that the maximal 

displacement of the trunk in the frontal plane occurred just prior to the mid to early stance phase. 

Maximal displacement occurred on the stance leg side.  

 Frontal plane range of motion of the trunk during running appears to range between 3-15 

degrees of absolute movement. Thorstenson et al (1984) found that the net amplitudes of the 

angular displacement ranged from 4 to 14 degrees. Carlson et al (1988) found that at running 

speeds of 2.5 m/s the net amplitude of frontal plane deviation had a magnitude of 7 degrees. 

These ranges are similar to more recent studies were magnitudes of lateral movement to range 

from 3 degrees to 11 degrees of motion (Preece et al., 2016a).  

Study Joint Type of 

Running 

Sample 

Population 

Motion Capture 

Method 

Speed 

(m/s) 

*Magnitude 

(°) 

Mann and Herman 

(1985) 

 

Shoulder 200 m 

Sprinting 

200 m 

sprinters 

2D Photometric Max 118-135 

Elbow 200 m 

Sprinting 

200 m 

sprinters 

2D Photometric Max 67-84 
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 Currently, Nagahara et al (2018) is the only study that evaluated the frontal plane 

kinematics of the trunk during the acceleration phase of sprinting. They found that the magnitude 

of lateral tilting decreased as the athlete reached the maximal velocity phase. During the first five 

strides the mean peak magnitude of thorax lateral tilting was found to be 20 degrees by the time 

the athlete reached there 25th step the athlete had decreased the magnitude of lateral tilting down 

to five degrees.  Interestingly, they also found that small stance side thorax lateral tilting was 

correlated with increased running speed during steps 15-25 during the acceleration phase of 

sprinting.  

 The motion that the pelvis goes through in the frontal plane is called lateral tilting, pelvic 

obliquity or pelvic list (Debaere, Jonkers, et al., 2013; Novacheck, 1998; Preece et al., 2016a; 

Schache et al., 1999). Like the thorax the magnitude of motion is relatively small compared to 

movements occurring concurrently in the sagittal plane. This motion serves an important 

function in shock absorption and controlling smooth decent and ascent of the body’s centre of 

gravity (Novacheck, 1998). Pelvic obliquity operates out of phase with thorax obliquity, with 

thorax obliquity preceding pelvic obliquity (Nagahara et al., 2018; Preece et al., 2016a).  

 At foot strike the stance side pelvic bone is slightly higher than the horizontal, while on 

the swing leg the pelvic bone sits slightly lower than the horizontal (Preece et al., 2016a; 

Schache et al., 1999). Once the sprinter reaches mid stance, the pelvic girdle is horizontal. As the 

sprinter continues to elevate on the swing side the pelvis reaches a maximal downward obliquity 

on the stance side around toe off (Preece et al., 2016a; Schache et al., 1999). During the flight the 

pelvis then begins to rise on the initial swing side and lower on the terminal swing side as it 

approached foot strike. This stops once the opposite side foot contacts the ground. During the 

flight phase there is minimal frontal plane movement.  
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 Overall, the magnitude of frontal plane trunk and pelvis motion in this is very small 

compared to other anatomically relevant planes of motion. Novacheck (1998) found that the 

magnitude of pelvis motion in this plane was 7-12 degrees while running at a velocity of 3.2-3.8 

m/s. This was consistent with other studies that found mean magnitudes to range between 10-20 

degrees of movement at similar running speeds (Preece et al., 2016; Schache et al., 2002). The 

magnitude of frontal plane pelvic motion does not appear to differ substantially in running vs 

sprinting with slightly greater magnitudes displayed during sprinting (Debaere et al., 2013; 

Nagahara et al., 2018; Novacheck, 1998). Nagahara (2018) found a mean magnitude of 5 degrees 

during the 4th-15th step of acceleration suggesting that pelvic obliquity is tightly regulated at 

higher velocity sprinting. They also found that small upward obliquity of the stance side pelvis 

was associated with effective 4th-15th step of acceleration.    
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Table 3. Summary of frontal plane movement of the trunk and pelvis    

Study Type of Running Sample 

Population 

Motion Capture 

Method 

Region Speed 

(m/s) 

*Magnitude 

(°) 

(Schache et 

al., 2002) 

Treadmill running  Male runners Optoelectric Lumbar 4.2 m/s 18.0 

Pelvis 12 

(Debaere et 

al., 2013) 

 

  

Acceleration phase 

of sprinting 

Male and 

female sprinters 

Optoelectric Pelvis 10 m 

sprint 

20.0 

(Preece et al., 

2016a) 

Overground 

running  

Healthy males 

and females 

Optoelectric Thoracic 3.9 m/s 8.0 

Lumbar 10.0 

Pelvis 20.0 

(Nagahara et 

al., 2018) 

Acceleration phase 

of sprinting 

Male sprinters Optoelectric Trunk 60 m 

sprint 

7.0-22.0 

Pelvis 12.0-25.0 

*Note: Magnitudes are calculated as max-min range of motion (ROM) 

 

1.3.2.2 Hip 

 The hip in the frontal plane undergoes abduction and adduction. Hip adduction and 

abduction occurs relative to the pelvis (Novacheck, 1998). Hip adduction during the initial 

contact acts as a shock absorption mechanism. This is an important mechanism in decoupling the 

lower extremity motion from the trunk and head. The result of the decoupling allows for minimal 

head and trunk motion, allowing for balance to be maintained.  

 The kinematic pattern between running and sprinting is similar. At foot strike the hip is 

adducted, during the initial stance phase adduction increases slightly. From midstance until toe 

off, during the propulsive period of stance the hip abducts until toe off. This hip abduction may 
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serve to generate space to allow the contralateral swing leg to clear during its swing phase. 

During the mid-swing phase, the hip continues abducting. At terminal swing phase the hip begins 

to adduct again in preparation for initial contact.   

 The frontal plane motion of the hip has the largest magnitude of motion compared to 

other frontal plane rotations in the lumbo-pelvic hip complex. Mann and Hagy (1980) were 

amongst the first to look at the frontal plane motion of the hip. Using 2D analysis they found that 

the amplitude of movement was 16-22 degrees while running at 3.3-5.4 m/s. In sprinting the 

magnitudes of frontal plane motion appear to be larger in comparisons to running. Deborare 

(2012) reported magnitudes of 21-22 degrees of frontal plane hip motion in sprinters during 10 m 

accelerations. Interestingly, Deborare et al (2012) showed a large amount of abduction during the 

propulsion phase. They suggested that hip abduction range of motion and minimal mediolateral 

velocity was an indicator of a compensatory mechanism that occurred in well trained athletes. 

This compensatory mechanism allowed for the athlete to minimize the effect of the lateral foot 

position during acceleration on the mediolateral velocity of the centre of mass.  

Table 4. Summary of frontal plane movement of the hip 

Study Type of Running Sample Population Motion Capture 

Method 

Speed 

(m/s) 

*Magnitude 

(°) 

Mann and 

Hagy (1980) 

Overground Sprinters and 

runners 

Photometric 3.3-5.4 16.0-22.0 

(Debaere et al., 

2013) 

Acceleration phase of 

sprinting 

Male and female 

sprinters 

Optoelectric 10 m 

sprint 

11.0 

(Preece et al., 

2016a) 

Acceleration phase of 

sprinting 

Healthy males and 

females 

Optoelectric 4.2 m/s 20.0 

*Note: Magnitudes are calculated as max-min range of motion (ROM) 
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1.3.3 Transverse Plane  

1.1.3.1 Trunk and Pelvis  

Few studies have successfully quantified rotation of the lumbar and/or thoracic spine in 

the transverse plane. The thoracic and lumbar spine were found to have a monophasic kinematic 

pattern (Nagahara et al., 2018; Preece et al., 2016a; Schache et al., 1999). During the stance 

phase the lumbar spine rotates towards the stance side leg. The lumbar spine continues this 

rotation to the stance side leg until reaching peak axial rotation immediately preceding the 

contralateral side toe off. During the swing phase the lumbar spine rotates towards the ipsilateral 

leg until reaching a peak at 86.4% of the running cycle (Schache et al., 2002). The lumbar spine 

then begins to rotate to the left preceding initial contact of the foot (Preece et al., 2016a; Schache 

et al., 2002).  

 From mid-swing to early stance the thorax moves from rotated to a neutral position. This 

period of motion seems to be driven by stored elastic energy of the abdominal muscles, as they 

have been shown to be inactive during this period (Mann et al., 1986). During initial contact, the 

thorax begins to rotate towards the stance leg. This motion continues until mid-stance. At this 

point the abdominal wall actively engages to rotate the thorax relative to the pelvis.  

Using skin markers during 3D motion capture, mean magnitudes were found to be 

between 23-30° (Preece et al., 2016a; Schache et al., 2002). However, MacWilliams (2013) used 

bone pins to analysis lumbar spine rotation during walking and found a much smaller magnitude 

4.5 degrees. Despite differences in locomotive modalities (running vs walking) it appears that 

Schache et al (2002) and Preece et al (2016) experienced a degree of measurement error likely 

due to skin artifact and some other factors as typical ROM in this region is much smaller (Shin et 

al., 2013; Sung et al., 2012). Further to this, it appears that sprinting has a significantly higher 
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range of motion at the thorax then running or walking. MacWilliams (2013) found a magnitude 

of 8.9 degrees for thorax rotation, this was similar with Schache et al (2002) and Preece et al 

(2016). While evaluating the acceleration phase of sprinting Nagahara et al (2018) found that 

during sprint acceleration the thorax demonstrates a magnitude of 23 degrees.  

 Pelvis movement in the transverse plane is commonly known as axial rotation or internal 

and external rotation (Schache et al., 1999). Transverse plane pelvis motion in running displays a 

monophasic kinematic pattern. At foot strike the pelvis externally rotates to the side of the lower 

limb preparing for foot strike. The pelvis is externally rotated on the stance side, which continues 

to around mid-stance where the maximal position of external rotation occurs. During terminal 

stance the pelvis begins to internally rotate on the stance side such that by toe off the pelvis is in 

a neutral position. Internal rotation of the pelvis on the swing leg continues through early swing 

and reaches maximal position of internal rotation around mid-swing. The magnitude of pelvic 

rotation and running speed does not appear to display a consistent pattern. At a running speed of 

3.2-4.2 m/s amplitude of pelvis axial rotation ranged between 10-18 degrees (Novacheck, 1998; 

Preece et al., 2016a; Schache et al., 2002). During sprinting magnitudes ranged between 12-20 

degrees of motion (Debaere, Delecluse, et al., 2013; Nagahara et al., 2018). It is unclear if this 

variation in the data is a result of measurement error or differences in running technique. 
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Table 5. Summary of Transverse plane movement of the trunk and pelvis     

Study Type of 

Running 

Sample 

Population 

Motion Capture 

Method 

Region Speed 

(m/s) 

Magnitude 

(°) 

(Schache et al., 

2002) 

Treadmill 

running  

Male runners Optoelectric Lumbar  3.9 

 

23.0 

Pelvis 23.0 

(MacWilliams et 

al., 2013) 

Walking  Healthy 

males and 

females 

Optoelectric, with 

bone pin markers 

(L1, L2, L3, L4,  

L5 ,S1) 

Thorax  1.29 8.9 

Lumbar  4.5 

Pelvis 10.7 

(Debaere, 

Delecluse, et al., 

2013) 

Acceleration 

phase of 

sprinting 

Male and 

female 

sprinters 

Optoelectric Pelvis 10 m 

sprint 

10.0 

(Preece et al., 

2016a) 

Overground 

running  

Healthy 

males and 

females 

Optoelectric Thorax 4.2 20.0 

Lumbar 19.0 

Pelvis 11.0 

(Nagahara et al., 

2018) 

Acceleration 

phase of 

sprinting 

Male 

sprinters 

Optoelectric Thorax  60 m 

sprint 

20-22 

Pelvis 10.0-12.0 

 

1.1.3.2 Hip 

 Transverse plane of movement of the hip is commonly known as internal and external 

rotation. During the absorption period of stance the hip internally rotates before returning to a 

neutral position by toe off (Novacheck, 1998). During the swing phase internal rotation increases 

during mid swing before returning to a neutrally rotated position by terminal swing.  
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Table 6. Summary of Transverse plane movement of the hip    

Study Type of Running Sample 

Population 

Motion Capture 

Method 

Speed 

(m/s) 

Magnitude 

(°) 

(Debaere, 

Delecluse, et al., 

2013) 

Acceleration phase 

of sprinting 

Male and female 

sprinters 

Optoelectric 10 m 

sprint 

12.0-15.0 

 

1.1.3.3 Limbs  

 Transverse movement of the upper and lower extremity include internal, external 

rotation, pronation, supination, inversion, and eversion. Pronation occurs during the absorption 

phase of the movement. While supination usually occurs during the generation phase of a 

movement (Novacheck, 1998). There are currently no papers that report transverse plane 

movements for the upper and lower limb in sprinting  

1.4 Optoelectrical Motion Capture Systems vs Inertial Measurement Units (IMU) 
 
 The gold standard for motion capture is an optoelectrical system. These systems facilitate 

the 3D tracking of passive or active infrared markers placed on the body of a human participant 

during a dynamic movement. However, due to the extensive set up data collection with these 

systems are typically limited to laboratory settings. Recently, inertial measurement units (IMUs) 

have started to overcome some of the practical limitations of optoelectrical systems. IMUs 

include a variety microelectromechanical system (MEMS) often including triaxial 

accelerometers, gyroscopes, magnetometers, and in some cases global positioning systems 

(GPS). In some practical cases IMUs are utilized in place of gold-standard optoelectronical 

systems since they are small sensors that are highly transportable and can be directly placed on 
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the skin of an athlete or participant. Further, these wireless sensors do not require direct line of 

sight, and therefore can be used for athletic or workplace-related movements where line of sight 

may be compromised. Finally, IMUs can be used to dramatically increase a 3D capture volume 

allowing for the wireless capture of movements spanning 10-250m, dramatically exceeding the 

capture volume of most optical systems. As noted previously, IMUs track motion via the fusion 

of three different sensors that are imbedded in the IMU. Typically the sensor fusion process 

implements some type of Kalman filter and computational anthropometric mode (Schepers et al., 

2018).   

  With recent interest in IMUs a growing number of validation studies have aimed to assess 

the accuracy of many kinematic outputs obtained using these wearable sensors. It has typically 

been shown that error during gait analysis for lower limb sagittal plane angles show good 

correlation coefficients with optically derived angles. While errors may increase in frontal and 

axial plane angles (Ohtaki et al., 2001; Schepers et al., 2018; Seel et al., 2014; Weygers et al., 

2020).  In the sprint literature there is also a growing interest in IMUs. Traditionally, 

optoelectrical system have been the preferred assessment tool. However, the extensive set up and 

limited collection volume has typically prevented researchers from being able to capture longer 

sprinting bouts. With the growing interest a growing number of validation studies have aimed to 

assess the viability of IMUs as an alternative to optoelectrical systems for the motion capture of 

sprinting. IMUs have been shown to be accurate in estimating spatiotemporal parameters (de 

Ruiter & van Dieën, 2019), stance duration (Schmidt et al., 2016), sprint velocity (Gurchiek et 

al., 2018), sprint power (Slawinski et al., 2020) and trunk inclination (Bergamini et al., 2012), 

among others. 
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1.6 An Overview of Neuromuscular Control During Sprinting  
 

Sprint velocity is a multifactorial motor ability which is dependent on many different 

features of the motor system. A component that often limits sprint velocity is the ability to 

coordinate the neuromuscular system. Coordination of the neuromuscular system requires the 

proper sequencing and timing of various muscles to effectively optimize sprint technique. 

Sprinting belongs to a classification of movements called terminal movements (Latash, 1994). 

Terminal movements have a precise set structure with a defined beginning and end of movement. 

Every terminal movement requires an adequate motor program. A motor program is a pre-set 

group of commands that sequence the order in which muscles fire. A key component of 

locomotion is the initial motor pattern generated by the central pattern generator (Golubitsky et 

al., 1999). A central pattern generator is a neural circuit that produces rhythmic patterns of motor 

activity without the need for sensory input. The effect of central patterns on locomotion have 

been well studied in animal models. The basic stepping behaviour can be entirely generated by 

central pattern generators at the spinal cord level (Kandel et al., 2012). These patterns become 

further refined by higher regions of the central nervous system, particularly the cerebellum, 

motor cortex, and the brain stem which integrate afferent feedback and assist in movement 

coordination. Specifically, various systems such as the visual, proprioceptive, and vestibular 

system provide information to these regions of the brain. For instance, proprioceptive systems 

appear to influence the timing and amplitude of the stepping behaviour (Kandel et al., 2012) 

While the visual system provides information to the motor cortex. The motor cortex then 

provides control over stepping movement and planning of coordination (Kandel et al., 2012).  

Central patterns are a highly adaptive behaviour which are intertwined with various 

reflexes. These reflexes include reciprocal inhibition, recurrent inhibition, parallel 
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excitation/inhibition and mutual excitation (Kandel et al., 2012). Although all these reflexes are 

likely to influence sprint performance, one that is particularly important is reciprocal inhibition. 

Reciprocal inhibition describes the reflexive behaviour of the neuromuscular system which 

causes the relaxation of the antagonist muscle to accommodate the agonist muscle. The 

importance of quickly activating muscles is well documented (Coh et al., 2010; Morin et al., 

2012). While, the ability to quickly relax muscles may also play an important role in the 

performance of high velocity movements (Pinto & McGill, 2020; Verkhoshansky & Siff, 2009).   

Sprinting is an inherently unstable activity which requires the central nervous system to 

stabilize compressive buckling forces and shearing forces as the centre of mass displaces 

horizontally and vertically. As previously discussed the displacement of the COM appears to be 

functionally associated with the coordinative behaviour of the trunk and pelvis (Preece et al., 

2016a). By adapting an anti-phase coordination strategy of the thorax and pelvis the system is 

inherently more stable because the displacement of the COM is minimized. This is critical in an 

activity like sprinting where athletes are required to accept forces up to 5x their body weight with 

each stride (Weyand et al., 2000). The result of this is the need for muscles to dynamically shift 

between different levels of activation. Traditionally, the literature has focused primarily on 

activation of the upper and lower extremities with minimal focus on muscles of the trunk. A 

summary of the activation patterns of both peripheral and axial muscles can be seen in Figure 4.  
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A)  

B)  
 
Figure 4. The muscle activation and timings of lower limb during the gait cycle. A) Timing 
was gathered from Chumanov et al. (2007), Higashihara et al. (2010), Kuitunen et al. (2002), 
Kyröläinen et al. (2005) Mero & Komi.(1987), Novacheck. (1998), Pinniger et al. (2000), 
(Thelen et al., 2005), (Yu et al., 2008) B) Muscle activation timing gathered from (Mann et al., 
1986) indwelling electrodes were used for the iliacus, adductor longus and peroneus longus 
muscles. All other muscles were captured using surface electrodes.  
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1.6 An Overview of Coordination and Performance 
  

Sprint performance is manifested through the complex interaction of many different 

joints and segments. Each of these joints and segments can undergo different actions which 

results in many movement degrees of freedom (i.e., the capacity for linear and rotational 

movement about specific joints). The movement apparatus (i.e., motor cortex) coordinates these 

structures to interact with the environment through a process known as motor control. Motor 

control can be modelled with two different types of measurements, namely a control parameter 

and/or an order parameter. Control parameters aim to quantify the result of a movement, with a 

classic example being movement velocity. Order parameters characterize the organisation of a 

movement to facilitate a control parameter outcome. For example, if an order parameter is 

movement velocity, an order parameter would characterize the differences in coordination 

between a walk, jog, run, or sprint. In summary, this means that any control parameter is dictated 

by the underlying order parameters, to accomplish a given movement (Kelso, 1997).  

The formation of coordinative strategies is thought to form through self-organization. The 

strategy displayed is dependent on variety of factors including specific task, organism, and 

environmental constraints. When learning a task Bernstein (1967) noted that redundant degrees 

of freedom need to be mastered in order to reach task mastering, he coined this the degrees of 

freedom problem in his seminal text The Co-ordination and Regulation of Movements. In this he 

hypothesized that during motor learning the central nervous system (CNS) searchers for an 

appropriate coordinative pattern once this is identified the CNS freezes degrees of freedom to 

achieve greater control. The adaptation of the CNS is thought to increase the repeatability of the 

motor output at the cost of creating a less adaptable system.  Further to this, Bernstein (1967) 

proposed that coordination is the “organisation of the control of the movement apparatus” 
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(p.127). Where control is the effect of coordination. To illustrate this point, consider a sprinter 

accelerating where the primary aim is cover as much distance in the shortest amount of time. The 

velocity of the centre of mass is governed by the coordination of the entire body. The formation 

and self-organization of coordinative structures is thus dependent on a variety of factors 

including task, organism, and environmental constraints.  

 The formation and self-organization of coordinative structures has been explored through 

the degrees of freedom problem proposed by Bernstein (1967). He proposed that joints, 

segments, and muscles give rise to redundant degrees of freedom. The highly intricate and co-

dependent nature of these features is thought to give rise to the movement systems result in non-

linearity and variability of most biological systems. The motor control system optimizes its 

variability by reaching functionally preferred states called attractor states. An order parameter 

(i.e., velocity of movement) can be manipulated to change a systems attractor state by walking 

the system to a non-equilibrium phase transition. As an order parameter reaches a phase 

transition, variability of the behaviour of the system will increase. Once variability becomes too 

much the system will destabilize the attractor state and either behave chaotically or find a new 

attractor state. Attractor states represent the ideal set of order parameters to accomplish a given 

control parameter outcomes. In some instances, a single motor strategy (or attractor state) is 

optimal, in other cases many optimal motor solutions to accomplish a given motor task within a 

set of control parameter constraints.   

 Movement variability can either be functional or non-functional. Functional variability 

increases the systems complexity and allows for the system to become more adaptable (Lipsitz, 

2002). While non-functional variability is variability that produces noise in the system. Thus, the 

structure of variability is vital to the understanding of coordination of movement.  In Bernstein’s 
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degree of freedom problem, he attempted to explain the structure of variability as an individual 

reached mastery. He hypothesized that during motor learning the CNS searches for an 

appropriate coordinative pattern, once this is identified the CNS will freeze degrees of freedom 

to achieve greater control. This adaptation of the CNS is thought to increase the repeatability of 

the motor output at the cost of creating a less adaptable system. Bernstein’s hypothesis went on 

to state that as the individual reach’s mastery, the degrees of freedom become unfrozen, and the 

variability of the coordinative dynamics will increase. This results in a U-shaped relationship 

between coordinative variability and skill level.   

  The U-shaped pattern of variability has been seen on several occasions in the literature 

(Robins et al., 2006; Vereijken et al., 1992; Wilson et al., 2008). For instance, Wilson and 

colleagues found this pattern emerge in a group of five competitive triple jumpers. Wilson and 

colleagues evaluated three intra-limb couplings using vector coding (Coupling 1= stance leg 

ankle plantar/dorsi flexion-knee flexion/extension, coupling 2=stance leg knee flexion/extension-

hip flexion/extension and coupling 3=swing leg knee flexion/extension-hip flexion/extension) 

during the hip-step transition phase in the triple jump. Mean coordinative variability for coupling 

three showed the strongest correlation with a U-shaped model (R2=0.9868) while coupling one 

(R2=0.3659) and two (R2=0.6931) showed weaker correlations. Despite the weaker correlations 

in coupling one and two, it was still evident that the novice and advanced triple jumpers 

displayed higher coordinative variability then the intermediates. The findings suggest that even 

highly trained performers undergo a U-shaped change in coordinative variability as skill develop. 

As a result, it seems likely that the variability of the coordinative dynamics of an athlete fluctuate 

through one’s career towards the development of mastery for any particular motor skill.  
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Unlike triple jump, sprinting is cyclical activity that lacks a discrete spatial target. Rather, 

sprinting requires the optimization of spatiotemporal factors with the goal of increasing running 

velocity (Hamill et al., 2012). Sides and colleagues used CRP and coordinative variability to 

identify differences in between sub-elite and elite sprinters. CRP has previously been used to 

quantify differences in running mechanics (Hamill et al., 2012). CRP works by taking the 

differences in the phase angle between two oscillators. The phase angle is calculated by 

calculating the arctangent function of the normalized position and velocity of a time-series data 

(Hamill et al., 2012). In Sides (2015) analysis of sub-elite and elite sprinters, they found that elite 

sprinters demonstrated subtle differences in the coordination of the hip-knee coupling and knee-

ankle sagittal plane coupling. For instance, at the point of mid-stance, the sub-elite group had a 

significantly more out-off phase HK coupling than the elite sample While this difference 

converged towards a similar in-phase HK coupling between sub-elite and elite groups at TO. 

Another difference identified occurred in the early swing phase, the sub-elite group exhibited a 

more in-phase motion for both he HK and KA coupling compared to the elite group; however, 

this was not statically significant. While the main difference that occurred appeared to be in the 

timing of in-phase coordination and magnitude of out-phase coordination for the KA for during 

the swing phase. Sub-elite sprinters displayed a greater out-of-phase CRP value and did not 

reach an in-phase KA coupling until later in the gait cycle (Figure 5). This demonstrates that 

differences in the coordination of the lower limb may play a role in sprint performance.  
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Figure 5. HK and KA coupling ensemble CRP time series differences between elite and sub-
elite sprinters (Retrieved from Sides, 2015) 
 

As previously mentioned, the variability is a key component of movement analysis. The 

role of it during sprint performance is not well understood. Several studies have aimed to provide 

insight into the temporal variation that occurs across the gait cycle (Sides, 2015; Wdowski & 

Gittoes, 2013). Sides (2015) demonstrated that sub-elite sprinters display more variability in the 

HK coupling at touchdown and toe off, less variability in the KA at touch down and toe off,  

more variability in the KA during opposite leg touch down, more variability in the HK during 

early swing, less variability in the KA during late swing. This suggests that the variability 

associated with sprint performance is likely to vary dependent on the skill level and time in the 

gait cycle.  
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Figure 6. HK and KA coordinative variability time series differences between elite and sub-elite 
sprinters (Retrieved from Sides, 2015) 
 
 While initial work provide by Slides (2015) provides insights into the importance of 

coordination in sprint performance more work is needed to understand the role it plays.  

Future work should expand our understanding by using 3D kinematics, upper and lower body 

segments, and the analysis of both inter- and intra-limb coordination measures.  

1.7 An Overview of Data Driven Approaches to Feature Identification in Human Movement 
 

From autonomous cars and natural language processing to predictive sport modelling and 

skill classification models, machine learning systems are increasingly prevalent in society. These 

models can be used to solve a variety of different complex numerical problems, two common 

classes of problems are classification and regression. A classification problem aims to categorize 

a set of data into classes (i.e., skilled and unskilled). In biomechanics machine learning 
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algorithms such as Linear Discriminant Analysis can be used to classify athletes based on 

movement technique as novice or advanced (Ross et al., 2018a). While a regression problem 

aims to predict a continuous set of outcomes (i.e., sprint velocity). These models can often 

outperform humans or at the very least improve human performance. The deployment of 

machine learning models in biomechanics is a relatively recent phenomenon and has great 

potential.  

The data collected in biomechanics is often of high spatiotemporal dimensionality, and 

also often highly redundant due to time-varying long-range spatiotemporal correlations between 

timeseries parameters (Riley & Turvey, 2002). Principal component analysis (PCA) can be used 

to reduce high volumes of high dimensional data to a smaller set of lower dimensional 

orthogonal modes of variation. PCA works by identifying orthogonal modes of variation in the 

data set and representing these as principal components (PC). The algorithm works by 

maximizing first PC so that it captures the largest mode of variation present in the data set, the 

subsequent PCs follow the same optimization rule but explain less variance in the data set. PCA 

has large clinical and research applications due to both reduce highly complex datasets, and to 

facilitate the re-construction of any raw data following analysis. For example, a single principal 

component score can be used to reconduct a representative waveform using single component 

reconstruction (SCR) (Brandon et al., 2013), further an entire set of principal components can 

reconstruct the original input data matrix.  

PCA has large clinical and research application as it helps reduce high dimensional data 

sets to a set of orthogonal modes of variation. These partitions of the data can represent primary 

modes of variation without the need for a priori hypotheses. This facilitates a data-driven or 

hypothesis-generating approach to research. However, one challenge with the use of PCA in 
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biomechanics is the interpretation of the biomechanical meaning of these PCs. Two common 

approaches to aid with the interpretability of a PC is a biplot and SCR.  

Biplots work by plotting the feature vectors present in a PCA against two or three PCs. 

From these plots we’re able to understand several things, including the features magnitude of 

loading on each PC, the contribution of a feature to a PC and the correlation between two or 

more feature vectors. For example, how strongly a feature loads on a PC are represented by the 

length of the vector along the PC axis. To determine how much a feature contributes to a PC 

relative to other features, can be determined based on the relative angle between the feature 

vector and the PC axis. The smaller the relative angle between a feature vector and a PC axis the 

more that feature contributes to that PC. Lastly, the correlation between features can be 

determined based on the relative angle between feature vectors. A small relative angle, between 

feature vectors determines that the features display a strong positive correlation. On the other 

hand, if the angles are opposite to one another, this signifies a strong negative correlation. Lastly, 

if the feature vectors are perpendicular to one another then the two features are not correlated.  

SCR is used to reconstruct a single PC to identify how the PC scales a biomechanical 

feature. Using the PC loading vector and the percentile of the PC score to reconstruct an upper 

band (i.e., 95th percentile) and a lower band (i.e., 5th percentile) for each PC. This allows for us to 

understand how the PC is influencing the behaviour of a biomechanical waveform. Brandon and 

colleagues recommended three types of classifications for a PC. These include a magnitude, 

difference and a phase shift feature. An example of these features can be seen in Figure 7.  
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Figure 7. An example of representative of extremes, loading vectors and single component 
reconstruction on various biomechanical waveforms. Lumbar spine angle (A, D, G), knee 
adduction (B, E, H) and lateral gastrocnemius EMG (C, F, I). A, D, G represent magnitude 
features, B, E, H represents a difference feature and C, F, I represent a phase shift. Retrieved 
from (Brandon et al., 2013) 

 
PCA has been used in a variety of applications in biomechanics with one of the early 

applications being the work of Troje (2002). Troje’s work serves as a foundation for the 

application of PCA in the objective assessment movement technique. Troje initially set out to 

understand how biologically and psychologically relevant information is encoded in visual 

motion patterns. To understand this Troje used 40 participants (20 males and 20 females) to 

determine kinematic differences in gait features based on age, sex, and emotion. To discriminate 

these differences Troje used PCA. He found that four PCs accounted for 98% of the variance in 

whole-body kinematics dataset. Using PC scores Troje was able to model the spatiotemporal 

behaviour of the gait pattern across classifiers related to age, sex, and emotional state.  
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PCA can be used to assess sport technique and has been used to assess inter-athlete 

variability and intra-athlete variability of a sport technique. Gløersen et al (2018) showed that by 

condensing all participants into a single PCA it was possible to determine technical differences 

between athletes. To do this, the authors took the full body kinematics using an optoelectrical 

motion capture system to assess 12 consecutive strides of treadmill roller skiing on six 

internationally ranked cross-country skiers. Gløersen et al found that five PCs represented 96.1% 

of the variance in the dataset and found that they correlated to differences in the international 

ranking of their skiers. Through reconstruction of their data, they were able to determine the 

biomechanical significance of their PC scores. For example, PC2 suggested that the highest 

ranked skier flexed the hip approximately 29 ms earlier compared to the lowest ranked skier. 

This study shows the power of a PCA to provide sport biomechanist and coaches to objectively 

analyze and benchmark their athlete’s technique to inform training interventions.  

1.8 Thesis Overview & Bridge Summary 
  

Traditional research studies in the areas of sport biomechanics rely on the development of 

a priori hypotheses, and the acquisition of human movement data from a small representative 

sample of athletes. This can result in non-trivial statistical and theoretical biases in the 

development and testing of specific hypotheses from small datasets. For instance, in the sprint 

literature there has been an emphasis on the analysis of the lower limb despite strong theoretical 

and anecdotal evidence that the spine and upper body may also be important to optimize 

performance. This thesis aims to use a holistic data-driven (i.e., hypothesis generating) approach 

to objectively identify key coordinative features are associated with optimal sprint velocity. The 

experiment conducted in this thesis was designed to identify kinematic and neuromuscular 

features using full-body kinematic and a nine channel surface EMG data set that could predict 
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sprint velocity using a data-driven framework. The findings of this thesis have implications 

concerning the role coordination plays in sprint performance and can be used to inform coaching 

practice. It was hypothesized that several distinct kinematic and neuromuscular features would 

be present as significant contributors to predicting sprint performance. These included distinct 

differences in the coordinative strategy of the thorax and pelvis, smaller range of motion of the 

pelvis, and differences in the timing of the activation of the muscles that attached to the 

thoracolumbar fascia. Although expected, these kinematic and neuromuscular differences did not 

inform the selection of specific outcomes, or the statistical testing of said outcomes following the 

acquisition of experimental data. Rather, a large sample of high-dimensional neuromechanical 

data was obtained from >40 sprinters varying in ability, and the data were analyzed holistically 

to assess if the hypothesized parameters had any apparent influence on sprint performance. The 

following chapters detail a draft of a manuscript which is in preparation for submission to a 

special edition of Frontiers in Sports and Active Living, titled Rising Stars in Biomechanics and 

Control of Human Movement: 2022. This special edition will showcase the high-quality work of 

both emerging talents and internationally recognized researchers in the early stages of their 

careers. The following sections of this thesis have been designed to align with the formatting 

requirements for this special edition to facilitate the rapid dissemination of this research.   
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CHAPTER II – AN EXPLORATORY STUDY EVALUATING THE 
EFFECTIVENESS OF A DATA DRIVEN APPROACH TO IDENTIFY 

COORDINATIVE FEATURES THAT ARE ASSOCIATED WITH PEAK 
SPRINT VELOCITY 

Prepared for submission to Frontiers in Sports and Active Living, titled Rising Stars in 
Biomechanics and Control of Human Movement: 2022. 

2.1 Introduction   
 

The objective of sprinting is to cover a set amount of distance in the shortest amount of 

time. To do this the sprinter leverages three different phases: the start, acceleration phase and the 

maximal speed phase to achieve the fastest possible sprinting velocity. During each of these 

sequential phases the athlete undergoes a series of coordination strategies to achieve the fastest 

possible velocity. Although sprint performance is a popular topic in biomechanics, many of these 

studies have assessed specific sub-regions of the body and have selected discrete parameters a 

priori for statistical analysis. These approaches have led to a bias in the sprint biomechanics 

literature where many of the studies have focused on the kinematics of the lower limb, which has 

resulted in the failure to assess the relationship between sprint velocity and the upper body 

kinematics. While it would be simpler to evaluate the upper body in isolation to fill this gap in 

the literature, doing so would fail to accurately quantify the complexity of a whole-body 

movement such as sprinting. As it’s believed that coordination of whole-body movements is 

highly intricate and co-dependent in nature (Kelso, 1997). Thus, the approach used in this work 

aims to use a data-driven approach to understand whole-body coordinative strategies associated 

with peak sprint velocity. This work constitutes as hypothesis generating research, which aims to 

inform future research and coaching practices.  

Sprint velocity is multifactorial and is defined by a variety of kinematic, kinetic, and 

neuromuscular features. At its simplest sprint velocity is the by-product of stride length and 

stride rate (Hunter et al., 2004). Stride length and stride rate are mutually dependent variables 
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with an inverse relationship (Hunter et al., 2004). To accomplish a faster sprint velocity, an 

athlete must either increase stride length or stride rate while maintaining the other. These 

features have been reported to be influenced by different factors. For instance, stride length 

appears to be positively influenced by explosive strength, muscle mass, lower extremity length, 

biological sex, ground reaction force, ground contact duration, and dynamic flexibility of the 

hips (Coh et al., 2010; Debaere, Delecluse, et al., 2013; Hunter et al., 2004; Mattes et al., 2021; 

Weyand & Davis, 2005). In contrast stride rate appears to be influenced by rate of force 

development which can be affected by motor neuron excitability, inter and intramuscular 

coordination, fatigue, horizontal velocity of the COM during stance, leg angle touch down, leg 

angle at take-off, and leg length (Coh et al., 2010; Hunter et al., 2004).  

 During high velocity sprinting the neuromuscular system is required to activate and relax 

many muscles quickly and rhythmically. Previous work in the field has focused largely on the 

lower extremity and can provide insights into the complexity of neuromuscular coordination 

during sprinting. For instance, a shift in control strategy of the lower limb muscular appears to 

occur around 7.0 m/s as increases in running velocity below 7.0 m/s appear to be driven by 

increases in muscle force of the ankle and beyond 7.0 m/s is driven by increases in muscle force 

of the hip (Dorn et al., 2012). While this exemplifies the dynamic nature of neuromuscular 

control in sprinting, what remains unanswered is the role of muscles of the trunk and thorax body 

during sprinting. Particularly, the muscles that attach to the thoracolumbar fascia, as a strong 

theoretical foundation suggests these muscles play an in regulating the pendulum like action of 

the contralateral arm and leg during locomotion, this may be particularly important during higher 

velocities (Gracovetsky & Farfan, 1986; Vleeming et al., 1995).  
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Sprinting is a whole-body movement which requires the CNS to optimize the relationship 

between many joints and segments. Multi segmental coordination has been shown to have an 

influence a variety of factors including an individual’s health and performance (Cazzola et al., 

2016; Seay et al., 2011). In many cases a coach tries to influence an individual’s coordination by 

leveraging a variety of coaching tools such as sport specific drills, cueing and other training 

intervention (i.e., weightlifting). However, due to the limitation in available biomechanical 

technology to track changes accurately and reliably in sprint technique, the impact of these 

interventions has largely been determined using subjective methods of appraisal. This can make 

it challenging to effectively understand the effect of an intervention. Fortunately, recent 

advancements in wearable technology such as wireless EMG and inertial measurement units 

(IMUs) have allowed for practitioners to accurately quantify kinematic and neuromuscular 

coordination (Beange et al., 2019).  This has resulted in a growing demand on biomechanical 

researchers to understand the link between whole-body multi-segmental coordination and 

specific movement outcomes such as sprint velocity (Glazier, 2021).  

 Biomechanical data typically consists of high volumes of high dimensional data. The 

volume and high dimensionality of these data sets make it challenging to select key features for 

statistical analysis. Traditionally, biomechanists have selected a single data point at an extreme 

point in a movement (i.e., range of motion).  However, this can result in non-trivial statistical 

biases as this often ignores other regions of a waveform which may also be significant modes of 

variation. Furthermore, by selecting a discrete data point to represent a movement this eliminates 

information containing the spatiotemporal coordinative dynamics, that define optimal sport 

technique. This creates a challenge in the translation of information of coaching practices, as 

coaches assess movement by inspecting the behaviour of the entire body, not a single joint at a 
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discrete point in time. Fortunately, biomechanists can borrow data reduction techniques 

traditionally used in machine learning to reduce the volume and dimensionality of a data set. 

This is possible because biomechanical data is largely redundant due to time-varying 

spatiotemporal correlations that exist (Riley & Turvey, 2002). This means that by applying 

algorithms such as principal component analysis (PCA), we can effectively reduce the volume 

and dimensionality of the data while still preserving the time-varying spatial temporal 

coordinative information that defines optimal sport technique. PCA works by identifying primary 

modes of variation in a data set and representing them as orthogonal vectors, these vectors are 

called PCs. The outputs of PCA, called principal components (PC) are particularly useful as they 

can be used as inputs into more advanced machine learning algorithms such as regression, 

classification and clustering algorithms.   

 In recent years, machine learning and artificial intelligence has developed rapidly 

particularly in the field of natural language processing and autonomous cars. A lesser-known 

application of machine learning is in the objective quantification of human movement. One of 

the early pioneers in this area was Nikolaus Troje, who adapted a PCA to model the effect of 

age, body mass index, biological sex and emotion has on human walking. This initial framework 

has been adapted to model differences in skiing technique and classify athletes as novice or 

advanced (Gløersen et al., 2018; Ross et al., 2018a).  PCA-based movement pattern recognition 

techniques have been growing in popularity due to its ability to provide easily interpretable 

models using single component reconstruction (SCR) (Brandon et al., 2013). Using SCR, a full-

body avatar can be reconstructed to provide athletes and coaches with an easy-to-use technique 

to communicate key technical differences between individuals and/or to provide longitudinal 

feedback to an athlete or coach.  
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 The PCA based framework developed by Troje, and subsequently implemented by Ross 

et al., (2018) shows promise in the ability to identify coordinative differences between 

individuals. However, what remains unknown is whether a PCA-based framework can identify 

kinematic and neuromuscular features that are correlated with sprint velocity.  

1.1.1 Purpose 

The purpose of this work is to leverage recent advancements in wearable sensor 

technology and data-driven tools to objectively assess the kinematic and neuromuscular 

determinants of sprint velocity through the analysis of a large dataset of university-aged 

sprinters.  This hypothesis-generating study will serve as the foundation for future work related 

to the development of customizable data-driven sprint coaching tools. 

1.1.2 Hypothesis Statement 
 

It was hypothesized that several distinct kinematic and neuromuscular features would be 

present as significant contributors to the prediction of sprint velocity. These included distinct 

differences in the coordinative strategy of the thorax and pelvis and the timing and activation of 

the muscles attached to the thoracolumbar fascia.  
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2.3  MATERIALS & METHODS  
2.3.1 Participants 

  
Forty participants (27 male, 13 females; mean ± standard deviation age: 21.8 ± 3.2 years; 

height: 176.8 ± 8.4 cm) from a variety of team sports and track and field events were recruited 

for this study.  Demographic information is presented in Table 6. One participant was removed 

from the sample due to issues with data quality. Participants were required to be recreationally 

active at least twice a week in a sprint-based sport. Participants must not have reported any 

neurological, cardiovascular, or muscular disorders that may impact their sprint performance and 

have no known allergies to rubbing alcohol or adhesives. The current protocol was approved by 

the institutional research ethics board in accordance with the Canadian Tri-Council Policy 

Statement (TCPS 2) on the Ethical Conduct for Research Involving Humans (REB #20-364).  

 

Table 6. Participant Demographics 

Demographic Sample size Age Male Female Height 

Rugby 6 21 +/- 2.5 4 2 178 +/- 20.5 

Sprinting 4 20 +/-1.8 3 1 175+/- 14.2 

Soccer 15 21.9 +/- 3.7 10 5 174.6 +/- 3.7 

Ice Hockey 7 22.3 +/- 3.0 3 4 178.0 +/- 9.4 

Other 8 23 +/- 3.0 8 0 180.4 +/- 4.1 
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Figure 8. Summary of Experimental Workflow for both the kinematic and EMG data set. A similar process was completed for both data streams to 
create two different PCA frameworks  
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2.3.2      Experimental Protocol 

 An overview of the experimental design and data analysis protocol can be seen in Figure 

8. Each participant completed a single experimental visit lasting approximately 2 hours. 

Following the completion of the informed consent form, all participants were instrumented with 

two types of wearable sensors. Full-body kinematics were collected using a 17-sensor IMU suit 

(XSens, Awinda). Specifically, IMU sensors were placed bilaterally on the feet, shank, thigh, 

upper arm, forearm, hands, and shoulders. A single sensor was placed on the sternum, pelvis, and 

head. All kinematic data was acquired at a frequency of 60 Hz. Muscle activation was recorded 

for nine muscles located from the lower body to upper body (need to include specific locations). 

Bipolar surface electrodes and sensors (Noraxon Ultium) were placed according to SENIAM 

guidelines on the right gastrocnemius (GAS), right bicep femoris (BF), right gluteus maximus 

(GMAX), right gluteus medius (GMED), right vastus lateralis (VLO), right rectus femoris (RF), 

left lumbar erector spinae (LES), left latissimus dorsi (LD), and left external obliques (EO). All 

EMG data was acquired at a frequency of 2000 Hz. For a complete review of specific landmarks 

for sensor attachments please refer to Table 8 and Figure 9. 

 Following instrumentation, the participant underwent a self-directed warm-up for 5 

minutes. Once the participant completed the warmup, they then completed three 60 m over-

ground sprints on synthetic track, each separated by a period of at least 5 minutes of passive rest 

to avoid any influence of neuromuscular fatigue. During these over-ground sprints, 3D whole-

body kinematics and neuromuscular activity were recorded simultaneously. The trial with the 

fastest peak sprint velocity achieved was selected and used for further analysis.  
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Table 8. Summary of the location of each sensor 

Location Optimal position 

Foot Middle of the bridge of the foot 

Lower leg  Medial surface of the tibia  

Upper leg Lateral side above knee 

Pelvis  Flat on sacrum 

Sternum Flat in the middle of the chest 

Shoulder Scapula 

Upper arm Lateral side above the elbow  

Forearm Lateral and flat side of the wrist 

Hand  Backside of hand 

Head Rear of head 

 

 

Figure 9. Bipolar electrode (blue circles) and IMU (orange squares) placement on the participant 
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2.3.3     Data Analysis 
 
 3D kinematic data were high definition (HD) reprocessed using XSens MVN Analyze 

software and a 64-marker data set was exported into a .c3d file. The .c3d file was imported into 

MATLAB (2021b) using Biomechanical Tool Kit 5 (Barre & Armand, 2014). The origin of the 

coordinate system for the imported data was reset so that the x, y, z positions of the right ankle at 

the beginning of the sprinting trial represented the origin. To correct positional drift during the 

sprinting trials we created a custom PCA framework to create a new global coordinate system 

(GCS) to ensure that all positional data were aligned for all sprints, and for all participants. 

Specifically, PCA was used to derive the three highest components of variation in the XYZ 64-

marker dataset, across all timepoints, for each sprint. Next, 3D rotations were then computed 

between each 3D loading vector and the original global coordinates to derive a 3D rotational 

offset. Once obtained this rotational offset was applied to all markers such that the new x-axis 

corresponded to the axis of progression (i.e., PC1), the new y-axis corresponded to the 

mediolateral axis (i.e., PC2), and the new z-axis corresponded to the vertical axis (i.e., PC3) for 

each participant/sprint. This allowed for all participants and sprints to be registered to the same 

3D coordinate axes prior to further analyses. Once all data were realigned all data were cropped 

only include 60 m of sprinting. This was done by determining the frame which the x-position of 

the T8 marker reached 60 m.  

Sprint velocity during the 60 m sprint was calculated by first calculating the Euclidean 

norm of the thoracic marker and then calculating its first derivative. The magnitude and point of 

the maximal velocity was then identified, which was used to inform the selection of the five 

cycles used for our analysis. To facilitate the extraction of individual cycles, the local minima of 

the z-position of the right ankle maker was used. After five separate strides were partitioned, 
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they were then each time normalized to 101 frames using a polynomial spline function and 

subsequently de-biased by subtracting the location of the T12 marker (x, y, z) from all 64 

markers in the dataset. This was done to ensure that there was no forward progression of the 

sprinter and thus none of this variability would be detected by the PCA. 

 After stride segmentation, the five strides about maximal velocity were then ensemble 

averaged, and subsequently scaled by dividing each participants height and reshaped to a 1 x 

19392 (64 markers * 3 axes * 101 data points) vector. The 1 x 19392 vector for each participant 

(representing an average stride about peak velocity during the fastest sprinting trial) was then 

used to construct a PCA matrix, where each row represented a participant, and each column 

represented the time-varying series of the x, y and z position of each marker. The result was a 40 

x 19392 data matrix (40 participants * 64 markers * 3 axes * 101 data points) which was used as 

an input for the PCA (Eq 1). 
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 Raw EMG data were imported into MATLAB (2021b). All EMG data were full wave 

rectified and low pass filtered using a dual pass 2nd order Butterworth filter with a cut-off of 250 

Hz. The filter cut off was determined using a residual analysis (See Appendix E) (Winter, 2009). 

The filtered data were amplitude normalized by averaging the maximum of the three highest 

peaks in the first 20 m of the sprint. It has been suggested that this technique may be superior 

over MVIC normalization due to the EMG values being obtained in similar neural condition (i.e., 
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dynamic sprinting) as MVICs fail to reflect the neural drive in dynamic high velocity 

contractions and can create challenges in interpretation (Ball & Scurr, 2012). Following 

normalization, the analyses of the EMG signals mirrored the approach taken for the kinematic 

data. Specifically, the normalized EMG data was then partitioned into five cycles and time 

normalized using a polynomial function to 2000 data points. These cycles were selected about 

the point of maximal velocity. The data was then reshaped to a 1 x 18000 vector (9 EMG 

channels * 2000 data points). Each participant’s vector was then complied into a 40 x 18000 data 

matrix which was used as an input for the PCA (Eq 2).  
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2.3.4 Feature Selection and Regression Analysis 

Following the application of the PCA to the kinematic and EMG data matrices, PCs that 

explain >95% of the variance in the dataset were retained for further analysis. Simple linear 

regression was performed on the PC scores and maximal sprint velocity (m/s). After it was 

determined that multiple PCs had moderate-to-weak correlations with sprint velocity, a 

multivariate linear regression was constructed using stepwise linear regression. Specifically, 

dependent variables into the kinematic and EMG stepwise regression models included age, sex, 

height, and the retained PCs. The stepwise linear regression function used both forward and 

backward stepwise search mode. The stepwise regression had a tolerance criterion of (p > 0.10). 

If the variable added had p-values that exceeded the exit tolerance, then the variable with the 
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largest p-value was removed. Any PC variables that were determined to be significant 

contributors to the kinematic and EMG stepwise linear regression model were subsequently 

reconstructed using multicomponent component reconstruction (MCR), SCR and interpreted 

using PCA spatial and temporal biplots.   

SCR and multicomponent reconstruction (MCR) were used to reconstruct an upper and 

lower limit that provides insight into functional meaning of our model. SCR provide a functional 

interpretation of the biomechanical meaning of each PC by representing how each feature is 

scaled an individual PC (Eq 3 and 4). Following the completion of SCR, it appeared that multiple 

PCs had an interacting effect. To accommodate these potential interactions, MCR (Eq 5 and 6) to 

understand how all the PCs included in our stepwise linear regression scaled our features over 

the gait cycle. This provided us with a more holistic insight into the scaling of features that are 

represented in our stepwise linear regression models.   

𝑥9& =	 𝑥̅ 	+	𝑢' 	 ∗ 	𝑧() (3) 

𝑥9* =	 𝑥̅ 	+	𝑢' 	 ∗ 	𝑧#) (4) 

𝑥9& =	 𝑥̅ 	+	𝑢! 	 ∗ 	𝑧() +	𝑢$ 	 ∗ 	𝑧() +	𝑢+ 	 ∗ 	𝑧() +⋯	𝑢% 	 ∗ 	𝑧() (5) 

𝑥9& =	 𝑥̅ 	+	𝑢! 	 ∗ 	𝑧() +	𝑢$ 	 ∗ 	𝑧() +	𝑢+ 	 ∗ 	𝑧() +⋯	𝑢% 	 ∗ 	𝑧()  (6) 
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2.4 Results 
 

The mean peak velocity during the 60 m sprint was 7.94 ± 0.69 m/s (Males = 8.13 ± 0.58, 

females = 7.24 ± 0.56) (Figure 10A, 10B, 11A, and 11B).  

A)  

B)  

Figure 10. A) Displays the velocity profile of the fastest sprinter (Dark Blue), slowest sprinter 
(Light Blue) and median sprinter (Grey) for the entire 60 m. Peak velocity is represented by 
the orange dot on each velocity profile. B) Displays the mean and standard deviation velocity 
profile over the 60 m sprint and the mean and standard deviation of the position of the 
maximal velocity. 
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A) 

 

 

B) 

 

Figure 11. A) Displays the distribution of peak sprint velocities for both males and females. 
B) Displays the mean sprint velocity for male, female, and all participants. 

2.4.1 Principal Component Analysis and Linear Regression (Kinematics) 
 

In the assessment of the kinematic data, the first 21 PCs were retained, which explained a 

collective 95.4% of the total variance in our dataset (Figure 12A). Individually, these PCs 

displayed weak-moderate correlations with maximal sprint velocity (r = 0.02 – 0.55), this 

suggests that the relationship between movement coordination and sprint velocity may be 

impacted by a multitude of kinematic variables (Appendix D). Stepwise linear regression 

revealed that PC 1 (p = 0.0002), PC 3 (p = 0.0119), PC 9 (p = 0.0055), PC 11 (p = 0. 0066), PC 

12 (p = 0.0772), PC 13 (p = 0.0130), PC 16 (p = 0.00004) and Sex (p =0.0255) were significant 
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contributors to a multivariate linear model capable of predicting sprint velocity. The linear 

regression model (Eq 3) displayed a R2 = 0.795 with a root mean squared error (RMSE) = 0.351, 

P-value = 1.02e-08. A summary of the model can be found in Table 9.   

𝑌 = 𝑃𝐶	1 + 𝑃𝐶	3 + 𝑃𝐶	9 + 𝑃𝐶	11 + 𝑃𝐶	12 + 𝑃𝐶	13 + 𝑃𝐶	16 + 𝑆𝐸𝑋					(3) 
 
 
Table 9. Description of kinematic stepwise linear regression model 

Feature Estimate 
 

SE t Statistic p Value 

(Intercept) 7.6141 0.13203 57.6 4.1581e-33 
PC 1 -0.0002 3.5833e-05 -4.23 0.0002 
PC 3 -0.0001 -2.6740 -2.67 0.0119 
PC 9 -0.0003 -2.9866 -2.99 0.0055 
PC 11 -0.0003 -2.9122 -2.92 0.0066 
PC 12 0.0002 0.0001 1.83 0.0772 
PC 13 0.0003 0.0001 2.64 0.0130 
PC 16 0.0007 0.0002 4.73 4.6579e-05 

Sex 0.3877 0.16523 2.35 0.02551 
 
2.4.2 Principal Component Analysis and Linear Regression (Electromyography) 

In the assessment of the EMG data, the first 33 PCs were retained, which explained a 

cumulative 95.7 % of the variance in the EMG data set (Figure 8B).  Individually, these PCs 

displayed a weak-moderate linear correlation with sprint velocity (r = 0.01-0.33), as with the 

kinematic data, this suggested that there are multiple neuromuscular factors that influence peak 

sprint velocity (Appendix D). Stepwise linear regression revealed that PC 1 (p = 0.011), PC 5 (p 

= 0.019), PC 21 (p=0.016), PC 22 (p=0.105) and Sex (p =0.0001) were significant contributors 

to predicting sprint velocity. The linear regression model displayed an R2 = 0.586 with a RMSE 

= 0.444, P-value = 1.64e-05. A summary of this model is presented in Table 10. 

𝑌 = 𝑃𝐶	1 + 𝑃𝐶	5 + 𝑃𝐶	21 + 𝑃𝐶	22 + 𝑆𝐸𝑋				(4) 
 

 

Table 10. Description of EMG stepwise linear regression model 
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Feature Estimate 
 

SE t Statistic p Value 

(Intercept) 7.306 0.154 47.306 5.198 e-34 
PC 1 -0.0008 0.0002 -3.105 0.0107 
PC 5 -0.001 0.0004 -2.873 0.0189 
PC 21 -0.0018 0.0007 -2.535 0.016 
PC 22 0.002 0.0008 2.709 0.105 
Sex 0.703 0.162 4.342 0.0001 
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A)  

B)  

Figure 12. A) Screen Plot for PCs from kinematic PCA, B) Scree Plot for PCs from EMG 
PCA 
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2.4.3 Functional Interpretation of Kinematic PCs 

This section discusses the biomechanical meaning of each of the PC used in the kinematic 

stepwise linear regression model. Through visual inspection of the PCs using SCR the functional 

meaning of each PC was determined. Following, the competition of the SCR analysis, it was 

evident that multiple PCs represented the same kinematic feature (i.e., heel recovery). However, 

the directionality of the difference between the fast and slow sprinter contradicted one another. 

For example, PC 1 demonstrated that sprinters with faster sprint velocities were associated with 

higher heel recovery, but PC 9 demonstrated a lower heel recovery position was indicative of a 

faster sprint velocity. This suggested that there may be an interaction effect between PCs which 

influenced the timing and magnitude of the sprint postures. Thus, we used MCR to understand 

this effect and gain a better representation of our stepwise linear regression model. A summary 

of the biomechanical meaning each individual PC can be found in Table 11, and a detailed 

analysis can be seen in Appendix F.  

 

Table 11. Summary of PC explained variance and Biomechanical Interpretation  

PC Explained 
Variance 

(%) 

Biomechanical Interpretation 

1 25.2 Contra-lateral limb coordination and dynamic trunk extension related to COM 
projection  

3 10.3 Lower limb stance leg kinematics associated with height of heel recovery and 
dynamic trunk extension 

9 2.7 Transverse plane asymmetry of the lower limb during the swing phase 

11 1.7 Trunk inclination across the entire gait cycle 

12 1.7 Transverse plane asymmetry of the lower limb during the swing phase and dynamic 
trunk extension 

16 1.1 Mid stance heel width 
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MCR was completed using PC 1, 3, 9, 11, 12 and 15, together these PCs represent 42.7% 

of the total variance in our data set (Table 11). MCR revealed that faster sprint velocities were 

generally associated with differences in the timing of the arm swing, a dynamic trunk extension 

strategy, a faster knee drive and a higher heel recovery (Figure 13 A-C). These amongst more 

subtle differences will be presented in the following section.  

During the early stance phase MCR revealed that faster sprint velocity was associated 

with a higher heel recovery, less deviation in the posture of the head, a smaller stance distance 

relative to the COM. The joint kinematics of the stance side leg displayed less hip flexion, more 

dorsiflexion and more hip adduction were associated with faster sprint velocities. Additionally, 

differences appeared in the timing of the arm swing and onset of trunk rotation. Specifically, it 

appeared that avatar representing faster sprint velocities demonstrated a leading trunk rotation 

and arm swing strategy when compared to the slower sprint avatar.  

During the mid-stance several different features were identifiable using MCR. The 

segmental kinematics revealed that a forward leaning shank on the stance side and a foot position 

in front of the COM were demonstrated by the sprint avatar representing faster sprint velocity. 

The joint kinematics revealed several differences in the joint angles of the lower and upper 

extremity. Specifically, the stance side leg demonstrated that a greater degree of plantar flexion, 

a less flexed knee and a less flexed elbow were present in the avatar that represented faster sprint 

velocities. Additionally, the faster sprint avatar had swing side kinematics that showed greater 

hip flexion and shoulder flexion relative to the slower sprint avatar. In addition to the segmental 

and joint kinematics variation existed in the dynamic behaviour of the trunk. Specifically, the 

faster sprint avatar begins extending its trunk, this trunk extension continues until the avatar 

reaches the early swing phase.  
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MCR reveled differences in the late-stance joint and segmental kinematics between the 

slow and fast sprint avatars. Notable segmental kinematic features included a more perpendicular 

shank ankle on the swing side, a more forward leaning shank angle on the stance side, a more 

upright trunk position, a hand position closer to the midline and greater separation between the 

right and left upper limb.  The joint kinematics also revealed that the faster sprint avatar had 

stance side kinematics that displayed greater plantarflexion of the ankle, greater flexion of the 

shoulder and greater internal rotation of the shoulder. On the swing side a less flexed knee, a 

more flexed shoulder and a more extended elbow was demonstrated by the faster sprint avatar. In 

addition, distinct differences in the timing of the arm swing and trunk extension strategy can be 

seen between the faster and slower sprint avatar. Specifically, it appears that dynamic trunk 

extension and upper swing of the arm is timed to aid in the propulsion of the sprinter into the 

flight phase of the sprint.  

During the early swing phase, it was revelated that several kinematic features varied 

between the slow and fast sprint avatar. Specifically, the segmental kinematics of the faster sprint 

avatar demonstrated a swing side foot position further in front of the COM, a more parallel shank 

segment on the stance side and a head more in line with the midline of the body. The joint 

kinematics of the faster sprint avatar showed that the stance side leg had greater knee flexion and 

a more externally rotated hip and on the wing side it had a less flexed knee and hip when 

compared to the slower sprint avatar.  

 MCR revelated that during the late wing phase the avatar that represented a faster sprint 

velocity demonstrated key differences in the segmental and joint kinematics. Specifically, the 

segmental kinematics revealed that the faster sprint avatar had a stance side foot position closer 

to the COM, a narrower stance width and a swing side shank angle more parallel to the ground. 
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The joint kinematics revealed that the faster sprint avatar demonstrated a more flexed knee on 

the swing side and a less flexed knee and more extended hip on the stance side leg.  
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A)

 
B)

 
C)

 
Figure 13. MCR for PC 1, 3, 9, 11, 12 and 6 A) Sagittal plane view B) Frontal plane view C) 
Transverse plane view. The red avatar represents the 5th percentile (slow), black represents the 
mean and blue represents the 95th percentile (fast) 
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2.4.4 Interpretation of Electromyography PCs  

This section interprets the biomechanical meaning of each PC used in the EMG stepwise 

linear regression model. SCR and MCR was used to reconstruct the data from the PCA and 

interpret its biomechanical meaning. SCR was used to interpret the biomechanical meaning of 

each PC. However, like the kinematic data the directionality of the effect each PC had on the 

waveform contradicted each other. For example, the reconstruction of GMAX showed that faster 

sprint velocities were associated with less glute activation between 50-100% of the gait cycle 

however PC 5 demonstrated that more glute activation at the same point in the gait cycle was 

associated with faster sprint velocities. To understand the interaction of these PCs and better 

interpret our stepwise linear regression model we used MCR. A summary of the biomechanical 

meaning of each PC can be seen in Table 12, a detailed description can be seen in the Appendix  

G.  

Table 12. Summary of PC explained variance and Biomechanical Interpretation  

PC Explained Variance 
(%) 

Biomechanical Interpretation 

1 13.1 Phase shift feature for the musculature of the posterior chain. 
Magnitude scaler for EO 
Difference feature for VLO and RF 

5 5.9% Difference features for the GAS, GMED, LD, EO, VLO, RF and GMAX 

21 1.5% No biomechanical meaning 

22 1.4% No biomechanical meaning 

 
MCR was completed using PC 1, 5, 21 and 22 together these PCs represented 21.9% of the total 

variance in our data set (Table 12). MCR revelated that PCs scaled the GAS, GMAX, LD, EO, 
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VLO and RF as a difference feature (Figure 14) While LES and BF displayed phase shift 

features and GMED displayed a magnitude scaler. GAS displayed greater magnitudes of 

activation prior to touch down and during stance. GMAX had greater activation during stance 

phase and less during stance phase. LD had less activation during the stance phase and greater 

activation during the stance phase. EO had greater activation throughout the entire gait cycle. 

VLO had less activation during the early stance phase and greater activation during the swing 

phase. RF had less activation during the early swing phase. LES operated in an anti-phase manor 

relative to the slow sprinter, with more activation during the stance phase and late swing phase. 

BF had more activation during the late stance and early swing phases. GMED had greater 

activation during the 20-100% of the gait cycle.  
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Figure 14. MCR for PC 1, 5, 21 and 22 for A) GAS, B) BF, C) GMAX, D) GMED, E) LES, F) LD, G) EO, H) VLO, I) RF. Blue 

represents the 95%tile sprinter (fast), Red represents the 5%tile sprinter (slow), and grey represents the stance phase. 
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2.5 Discussion 

This study aimed to leverage advancements in wearable sensors and data science to 

identify key neuromuscular and kinematic determinants of peak sprint velocity in a large group 

of university aged athletes. After collecting full-body kinematics and 9 channels of EMG on a 

large non-homogenous group (n = 40) of sprint-based athletes, PCA was conducted on the 

kinematic and EMG data separately to identify key modes of variation associated with faster 

peak sprint velocities. Specifically, stepwise linear regression was used to find a correlation 

between the PCs, demographic variables including height, age and biological sex and peak sprint 

velocity obtained during the 60 m sprint. Significant multivariable regression models were 

generated for both kinematic and EMG features identified using PCA. In contrast to the 

kinematic data, the stochastic nature of EMG signal resulted in the inclusion of far more PCs to 

explain >95% of the variance in the data set. This partially contributed to the kinematic model 

outperforming model as the kinematic model displayed a higher R2 value, and therefore a better 

ability to predict sprint performance from PCA-derived features. This suggests that the kinematic 

data set used in this thesis is a better predictor of sprint performance when compared to the EMG 

dataset.  

The kinematic data set may have outperformed the EMG data set for several reasons. 1) 

the kinematic data set more information compared to the EMG dataset. For example, the 

kinematic dataset contained information regarding the whole-body, while the EMG data set only 

contained information regarding 9 muscles of the body. 2) Dynamic EMG has several limitations 

due to the biophysics of the signal. For instance, the sensor is attached to the muscle, which 

displays viscoelastic properties and during high velocity dynamic movements this can result in 

inconsistent signal pick up volumes and motion artifact. These methodological limitations can 
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induce non-physiologically significant variance which could make the EMG signal more 

stochastic, which may decrease the predictive power of the data set. 3) The human movement 

system is a complex system with many different subcomponents, EMG provides information on 

the neuromuscular activity of a muscle, however this is only one subsystem that influences sprint 

performance. Specifically, sEMG signals do not capture any potential contributions from passive 

tissues (i.e., thoracolumbar fascia) which may affect the performance of a sprinter. In contrast, 

kinematic data represent human movement on a macroscopic level, which allows for the 

behaviour of all sub-systems (i.e., passive, active, neural) to be analyzed. This may allow for 

kinematic data to be better predict sprint velocity since the data collected is the macroscopic 

behaviour of the system. Despite these limitations, the EMG model resulted in a significant 

model and can provide valuable information regarding the neuromuscular determinants of sprint 

velocity. Future work with this data should be focused on deriving more functional meaning 

from the EMG data set, such as calculating muscle synergy and co-contraction indices to better 

understand differences associated with faster sprint velocity.  

A common challenge in the use of PCA, is identifying the biomechanical meaning of 

PCs. Previous work in this area has used SCR to infer the biomechanical meaning of a PC 

(Brandon et al., 2013; Ross et al., 2018a). For example, using SCR we’re able to identify the 

variation in the behavior of the waveform by plotting the mean, 95 percentile and 5 percentile PC 

score. In our study, we constructed a movement avatar which allowed for us to understand that 

PC 1 represented inter-limb coordination associated with the projection of the COM. The 

challenge with this is we only identify the meaning of one PC. This is a large limitation in this 

type of analysis as it is thought that coordination of human movement is highly intricate and co-

dependent in nature (Kelso, 1999). This means that orthogonal modes of variation represented in 
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a PC could contain information that influences the timing and magnitude of a feature when used 

in a multivariate model. When analyzing our SCR, it appeared that this in fact occurred in our 

data set, as PC 1 represented a higher heel recovery and PC 9 represented a lower heel recovery 

despite both being correlated with sprint velocity. As a result, we decided to utilize MCR which 

reconstructed the sprint avatar and EMG waveform using all PCs included in the stepwise linear 

regression. This allowed for us to interpret the meaning of the multivariate linear regression 

model, which is likely to more accurately represent the key kinematic and neuromuscular 

features associated with sprint velocity. From this we were able to identify a variety of kinematic 

and neuromuscular features that were associated with faster sprint velocities. Some of the 

kinematic features included a dynamic trunk extension strategy, higher heel recovery and 

differences in the coordination of the contralateral limbs. While the EMG features demonstrated 

that faster sprint velocities were associated with a later peak activation of the LES, greater BF 

and GAS activation during the swing phase. MCR appeared to perform well for the kinematic 

data set, however the several muscles from the EMG data set appeared to suffer from 

reconstruction artifact. For instance, the EO displays negative activation values, despite this 

being impossible from the prepressing steps taken prior to input of the sEMG signal into the 

PCA matrix. We believe that this is likely due to reconstructing a high-dimensional data set with 

such few PCs.  

2.5.1 Kinematic Indicators of Sprint Performance 

 The kinematic model used seven PCs as significant contributors to the stepwise linear 

regression model. The PC selected showed that a variety of kinematic features had significant 

correlations with peak sprint velocities. Generally, these kinematic features resulted in 

differences in the timing and magnitude of movement expressed by the upper and lower body. 
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Many of these features have been identified previously in the literature as being associated with 

maximal sprint velocity. For example, previous segmental kinematics which have been 

associated with faster sprint velocities include (1) smaller horizontal distance between the knees 

at foot strike, (2) a more perpendicular stance side thigh during early stance (Yada et al., 2011), 

(3) a stance foot closer to the COM during mid-stance (Hunter et al., 2004, 2005; Yada et al., 

2011) , and (4) a more upright trunk at midstance (Sides, 2015). Additionally, joint kinematics 

associated with faster sprint velocity include (1) less knee flexion during early to late stance in 

the stance side leg (Bushnell & Hunter, 2007; Yada et al., 2011)  and (2) greater knee flexion of 

the swing side leg  during mid-stance (Bushnell & Hunter, 2007). These findings were all 

supported by our MCR. This supports the utility of using a data driven approach to identify key 

kinematic features that are associated with faster sprint velocity. However, the distinct benefit of 

using a data driven approach is the ability to holistically evaluate sport technique. For instance, 

our data-driven technique identified several features that to our knowledge had not been 

previously reported in the literature. Specifically, we identified that differences in the 

contralateral limb coordination, trunk control strategy and arm swing were features present with 

the faster sprint avatar. This demonstrates the utility of a data-driven approach in reducing bias in 

the analysis of sprint technique as these features demonstrated in the upper body have largely 

been neglected in the previous 100 years of biomechanical analysis of sprint technique (Fenn, 

1930).  

 An interesting finding in our study is the differences that occurred in the timing and 

sequencing of the arm swing. PC 1 and 3 represented differences in the timing and sequencing of 

the arm swing. Specifically, PC 1 appeared to represent variation in the timing of the arm swing 

that was associated with the contralateral lower limb, while PC 3 represented differences in the 
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range of motion of the arm swing. These differences in PC 1 and PC 3 also manifested 

themselves in the MCR. The MCR demonstrated showed that faster sprinters timed the upward 

swing of their arm closer to toe off. This may be beneficial in projecting the COM and 

generating greater flight time, which could impact stride length and ultimately sprint velocity. 

Although, the arm swing is not well understood, several studies have shown that the arm swing 

may be important in the generation greater vertical impulse (Hinrichs et al., 1987), stride length 

(Bhowmick & Bhattacharyya, 1988) and of horizontal velocity (Bhowmick & Bhattacharyya, 

1988). Further, empirical evidence suggest that the arm-swing is important in generating sprint 

velocity as several studies have demonstrated a reduction in sprint velocity when the arm-swing 

motion is constrained (Grant et al., 2003; Wdowski & Gittoes, 2013). More work is required to 

better understand the impact of the arm-swing on sprint performance. Specifically, understanding 

how differences in the coordination between the lower limb and upper limb arm swing have on 

previously studied biomechanical variable such as stride length, stride rate, ground contact times, 

flight time and ground reaction force (GRF) in addition to sprint velocity.  

 Previous findings have found that a wider stance width associated with faster sprint 

velocities as it was shown to also be associated with greater propulsive impulses (Nagahara et 

al., 2017). However, in our study, it was seen that the faster sprint avatar had a narrower stance 

width. Interestingly, it appeared despite the narrower stance width the faster sprinter avatar had 

less range of motion of the hip in the frontal plane during the stance phase. This could be 

explained by the greater GMAX and GMED activation seen in our EMG results. The greater 

activation of this musculature could allow for the faster sprint avatar to maintain a relatively 

isometric frontal plane hip which could allow for greater force to be transferred in the anterior-

posterior direction which could facilitate faster sprint velocities. While alternatively, the slower 
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sprint avatar may have greater range of motion in the frontal plane during ground contact due to 

weaker hip abductors relative the adductors which can result in the medial translation of the 

thigh segment (Kulmala et al., 2017). This could result in less force being available to transition 

in the anterior-posterior direction which could facilitate a slower sprint velocity. Further research 

is required to understand the importance of frontal plane kinematics and step width. Specifically, 

future work should aim to understand if different neuromuscular control strategies and 

anthropometrics influence the need for a wider stance width to achieve a faster sprint velocity.  

 PCs 9 and 12 represented postural asymmetries of the lower swing side lower limb during 

the mid and mid-late stance phases. While much uncertainty surrounds asymmetry in regards to 

its effect on injury risk and performance (Bishop et al., 2018).  It is widely agreed that 

asymmetries do exist in sprinting; however, the functional significance of such asymmetries is 

still up for debate. Several studies have displayed that no correlation between lower limb 

asymmetries exist between injury and performance (Bissas et al., 2022; Haugen et al., 2018). 

Although some have suggest that perhaps they serve as a compensatory mechanism to 

anthropometric discrepancies (Vagenas & Hoshizaki, 1991), chronic strength weakness or 

imbalances in range of motion (Bezodis et al., 2018). Nevertheless, asymmetry was present in 

our model of sprint velocity in PCs 9 and 12, which collectively explained 4.4% of the variation 

in our dataset. Further exploration into the functionality of asymmetry in sprinting is needed 

determine whether these PCs are simply a by-product of the methodology and participant pool 

analyzed here, or if these phenomena have potential clinical or functional significance.   

 Several PCs represented variation of the coordination of the trunk. Specifically, PCs 1, 3 

and 12 captured represented trunk extension during the transition from late stance to early swing. 

While lower limb kinematics are well studied in sprinting, those of the spine and trunk are poorly 
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understood. To our knowledge, only one study has explored the kinematics of the trunk during 

sprinting. The results of Nagahara and colleagues (2018) demonstrated that a smaller inclination 

of the thorax was associated with greater increase in running speed. Despite this, the 

methodologies used in this study limited the spatial-temporal resolution which limit their ability 

to identify coordinative features that varied over time. The findings derived from our data-driven 

analyses provide new understanding into the role the trunk may play in sprint performance. 

Specifically, it appears that a dynamic trunk extension strategy is associated with faster sprint 

velocity. From our interpretation of the data, it appears that the timing of this trunk extension is 

used to aid the sprinter in generating propulsive forces. Future work should aim to identify 

whether spatial-temporal coordination difference exist in slow vs fast sprinters and whether 

differences in the trunk kinematics result in any improvements in biomechanically relevant 

phenomenon such as increases in ground reaction force, step length, and flight time.  

2.5.2 Electromyographic Indicators of Sprint Performance 
 

Four PCs were used as significant contributors to the EMG stepwise linear regression 

model. However, two of these PCs (PCs 21 and 22) appeared to represent noise or some other 

non-physiological phenomenon.  

PC 1 displayed a systematic phase shift feature in the posterior muscles that attach to the 

thoraco-lumbar fascia. This systematic shift in the activation of the posterior musculature to later 

in the gait cycle may serve to maximize the acceleration of the lower leg during touch-down. 

Previous, work by Clark and colleagues (2020) has shown that the angular kinematics of the 

thigh and ankle are closely related. This close relationship was proposed to be advantageous 

because the velocity gained from the hip was transferred to the shank at impact. This increase in 

the foots velocity at touch down can be advantageous as it has been shown to create a larger 
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vertical ground reaction force (Clark et al., 2020), which has been demonstrated to be 

differentiator between sprinters and non-sprinters (Weyand et al., 2000). To our knowledge, this 

is the first study to evaluate the impact the muscles that attach to the thoracolumbar fascia have 

on sprint performance. These preliminary findings along with a strong theoretical foundation 

warrant further exploration into the role the coordination of these muscles have on sprint 

performance. Specifically, future studies should aim to understand the significance of this pattern 

by these muscles through muscle force modelling, synergist analysis, and co-contraction indices 

in addition to the SCR and MCR analyses implemented here. 

2.5.3 Development of a Data-Driven Training Tool using Multi-Component Reconstruction 
 

One of the principal strengths of methodological approaches taken in this thesis is to use 

a data-driven approach to identify key performance indicators in sprint performance. To this 

point individual contributors (i.e., principal components) have been interpreted in isolation using 

methods of SCR and MCR (i.e., Brandon et al., 2013). Given the potentially interacting nature of 

the multiple features identified in each stepwise linear regression model it is possible that a MCR 

approach can be taken using all significant predictors to generate representative depictions of the 

kinematic and electromyographic data of those tending to have relatively faster or relatively 

slower peak sprint velocities. This approach has the capacity to create visual animations or 

avatars which can be used to depict strategies one may take to enhance sprint performance, and 

could be used in an enhanced, data-driven coaching framework. Examples of the MCR derived 

from the kinematic and EMG data are depicted in Figures 13 and 14 respectively.   

Although the differences identified in the kinematic and EMG data set using a data-

driven method appeared to be well represented in the biomechanical literature, several 

methodological concerns do exist. For instance, our primary concern with the method used in 
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this thesis is the presentation of negative muscle activation values for several muscles. This 

occurred despite all EMG waveforms having positive activation values prior to being input into 

the PCA. We have attributed this error as artifact from the reconstruction process. As such, 

future work should investigate various methodologies to reconstruct multiple PCs. This will be 

useful in the pursuit of a more objective understanding of human movement, as MCR greatly 

enhances the interpretability of PCA-based movement pattern recognition frameworks.   

2.5.4 Limitations 

 Although the approaches taken with this research have some fundamental strengths, they 

also do have some limitations worth addressing. A key limitation is the use of wearable 

technology which does not provide gold-standard kinematic data. Although validation studies 

have shown good agreement between the XSENS Awinda IMU suit and optical motion capture 

systems (Schepers et al., 2018), the sensors used in this study are subject to factors such as 

ferromagnetic interference and drift. Our selection of wearable sensors was selected based on 

several reasons. For one, it allowed for use to assess whether the data provided from wearable 

sensors was sensitive to identify differences in skill levels. Second, we wanted to capture a large 

distance of overground sprinting so that we could evaluate a sprinters coordination near maximal 

velocity.  This would have not been feasible using the optical motion capture system available to 

the research team. To accommodate errors derived from the use of wearable IMU sensors many 

technical steps were taken to correct our data (i.e., drift reduction); however, it is possible that 

these technical treatments of our data were insufficient, and instrumentation noise may still exist 

in our dataset.   

 A second limitation may include the feature selection strategy used for this analysis. 

Specifically, we decided to retain many PCs, so that we could capture a variety of modes of 
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variation that explained sprint performance. There is the possibility that by doing this we may 

have biased our stepwise linear regression towards PC features which represent biomechanically 

or physiologically irrelevant phenomena (i.e., noise). Future work in PCA should focus on more 

objective PC selection criteria based on heuristics and statistical based selection criteria to ensure 

greater certainty that the appropriate dimensionality of the data is selected.  

 Finally, due to the time and scope of this master’s thesis the sample size was limited to 40 

participants, 13 female and 27 males. This sampling approach yielded an imbalanced dataset of 

males and females, with the majority of females falling below the mean peak sprint velocity in 

our dataset. Additionally, the sample size of 40 limits our ability to apply more advanced 

machine learning algorithms to our data set which include unsupervised approaches such as 

clustering. As a result, we’ve constructed an “ideal” model of sprint velocity that provides a one-

size fits all approach, while treating males and females equally in our statistical models. This is 

unlikely the most optimal technique for every sprinter to adapt as it is likely a wide variety of 

optimal technique exists based on differences in anthropometric, skill and internal physiology. 

This is an area for future work which would aim to identify fundamental sprinting phenotypes 

using clustering algorithms which would likely segment the strategies taken by males and 

females.  
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CHAPTER III – SUMMARY, CONCLUSION AND FUTURE 
DIRECTIONS  

 
3.1 Summary of Thesis Findings 

 Sprint performance is a multifactorial skill that is dependent on a variety of kinematic, 

neuromuscular, and kinetic features. Sprinting is a well-studied area of the sport biomechanics 

literature. However, there has traditionally been a theoretical bias to understand the role the 

lower extremity plays in sprint performance, while neglecting the upper body. This despite 

strong theoretical evidence that the upper body may play an important role in sprinting. To 

supplement the previous research studies the goal of this thesis was to leverage advancements in 

data science and wearable technology to use a data-driven approach to objectively identify key 

coordinative features that were associated with sprint velocity.   

To accomplish our goal, we recruited a large group of university aged athletes to 

complete three maximal 60 m sprints during which we concurrently collected full body 

kinematics and nine channels of EMG. Using a PCA based framework we produced two 

significant stepwise linear regression models (kinematic and EMG), with the kinematic model 

outperforming the EMG demonstrated by a higher r2 value (0.795 vs 0.586).  From these models 

we were able to identify several features that were associated with faster sprint velocity, not 

previously reported in the sprint biomechanics literature. These include differences in the 

contralateral coordination of the upper arm and lower leg, a dynamic trunk extension strategy, 

asymmetry between the legs during swing and differences in the arm swing mechanics. These 

findings suggest that the coordination between the upper and lower body may play a greater role 

in sprint performance than previous thought. As such, the lower body kinematics are not 

sufficient to explain differences in sprint velocity between individuals. 
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3.2 Conclusion and Future Direction 

Data-science and wearable technology is an emerging area in biomechanics and sport 

performance. This study demonstrated the utility of a data-driven approach to identify key 

kinematic and EMG features in a large dataset which included whole-body kinematics and 9-

channels of EMG. To our knowledge this is one of the few studies that directly linked a specific 

whole-body coordinative strategy to an objective performance outcome. This framework can 

serve as the foundation to bridge the gap between biomechanists and sport coaches. As we have 

successfully created an objective framework that can be used to inform adjustments in sport 

technique by a coach to improve a specific outcome of a movement (i.e., sprint velocity).   

The work presented here is a promising step towards a more objective evaluation of 

sprint technique several key limitations do need to be addressed to increase the utility of this 

framework. We were successful in defining one “optimal” sprint technique to achieve higher 

sprint velocities, but it is likely that more than one sprint technique is associated with faster 

sprint velocities. Future work will look to identify different movement phenotypes that may have 

different ways of achieving faster peak sprint velocities. The end goal of this work will be to 

develop a data-driven coaching software which helps clinicians and coaches benchmark and 

address errors in neuromechanical coordination that limit an individual’s performance. This will 

be the first application available on the market that truly provides objective information on an 

athlete’s coordination. Which can have large implications on rehabilitation and performance 

training programs for athletes of all skill levels.   
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Figure 15. Extracted knowledge and future directions building the work presented in this thesis. 
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APPENDIX A: ORIGIN AND INSERTION OF STUDY RELATED MUSCULATURE  
 

Muscle Origin Insertion  

Erector 
Spinae  

Arises by a broad tendon from posterior 
part of iliac crest, posterior surface of 
sacrum, sacroiliac ligaments, sacral and 
inferior lumbar spinous processes and 
supraspinous ligament  

Iliocostalis Lumborum, thoracis, cervices; fibres 
run superiorly to angles of lower ribs 
and cervical transverse processes  

Longissimus Thoracis, cervicis, capitis; fibers run 
superiorly to ribs between tubercles 
and angles to transverse processes in 
thoracic and cervical regions and to 
mastoid process of temporal bone 

Spinalis Thoracis, cervicis, capitis; fibers run 
superiorly to spinous processes in the 
upper thoracic region and to cranium  

External 
Obliques 

External surfaces of 5th-12th ribs Linea alba, pubic tubercle and anterior half of iliac 
crest  

Latissimus 
Dorsi  

Spinous processes of inferior 6 thoracic 
vertebrae; thoracolumbar fascia, iliac 
crest and inferior 3 or 4 ribs  

Floor of intertubercular sulcus of humerus  

Gluteus 
Maximus 

Ilium posterior to posterior gluteal line; 
dorsal surface of sacrum and coccyx; 
sacrotuberous ligaments 

Most fibers end in iliotibial tract, which inserts inro 
lateral condyle of tibia; some fibers insert on gluteal 
tuberosity 

Gluteus 
Medius  

External surface of ilium between 
anterior and posterior gluteal lines  

Lateral surface of greater trochanter of femur  

Bicep 
Femoris   

Long head: ischial tuberosity 

Short head: linea aspera and lateral 
supracondylar line of femur 

Lateral side of head of fibula; tendon is split at the site 
by fibular collateral ligament of knee  

*Retrieved from Moore et al 2022  
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APPENDIX B: GENERAL HEALTH QUESTIONNAIRE  
 

 
 
 
 
 
 

Generic Health History Form 
 

Age:                   Sex:                 Height:     
 

1. Have you experienced pain in any region of your body such as the ankle, upper thigh or lower 
back that has caused you to miss school, work or any regular activity?  

□Yes (If Yes, please describe)                         □No 
Date: 

 
 

2. Have you experienced an injury to the ankle, upper thigh or lower back within the last three 
months that you have sought medical treatment (physician, chiropractor, physiotherapist)?  

□Yes (If Yes, please describe)                         □No 
Date: 

 
 

3. Have you ever experienced skin sensitivity or an allergic reaction to adhesives such as medical 
tape or medical electrodes? 

□Yes (If Yes, please describe)                         □No 

 
 
 

4. Have you ever sought medical treatment relating to a skin condition in the region of the lower 
back or upper thigh? 

□Yes (If Yes, please describe)                         □No 
Date: 

 
5. Do you regularly engage in any type of physical activity? 

□Yes (If Yes, please describe)                         □No 
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6. Have you ever been classified as having a musculoskeletal (e.g. Parkinson’s Disease or Cerebral 
Palsy) or Neurological (e.g. Diabetic Neuropathy or concussion) disorder which may affect your 
balance? 

□Yes (If Yes, please describe)                          □No  
 Date: 
 

7. Have you ever been classified as having an auditory (e.g., inner ear disorder, vertigo, upper 
respiratory infection, etc.) disorder which may affect your balance? 

□ Yes (If Yes, please describe)                          □No  
Date: 
 
 

8. What is currently your main sport?  
 
 

9. How long have you completed at your current main sport?  
 
 

10. Current Performance Level  
a) Olympic/World Championship 
b) National  
c) International  
d) Provincial  
e) Club  
f) Other: ______________________ 
 
 

11. Are you currently employed or studying?  
a) Employed and studying  
b) Employed  
c) Studying  
d) Other: _______________ 
 

12. How many months a year do you train?  
 
 

13. How many hours a week do you currently train?  
 

14. On a scale of 1-10 how intense is your average training session? (i.e. 1= very easy, 10 extremely 
challenging) 

□ 1  □ 2  □ 3  □4  □ 5  □ 6  □ 7  □ 8  □ 9  □ 10   
 

15. How often do you compete in a year?  
a) Once a week      b) Once a month     c) Once every several months      d) Once a year       
e) Other 
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APPENDIX C: Brock University REB Application 

 
 
 
 
  

Health Science Research Ethics Board 
 

 

Certificate of Ethics Clearance for Human Participant Research 
 

Brock University 
Office of Research Ethics  
Tel: 905-688-5550 ext. 3035 
Email:  reb@brocku.ca 

 

                    
 

DATE:  8/9/2021 
  
PRINCIPAL INVESTIGATOR: BEAUDETTE, Shawn - Kinesiology 
  
FILE: 20-364 - BEAUDETTE     
  
TYPE: Masters Thesis/Project 

 
STUDENT:              Chris  Vellucci 
SUPERVISOR: Shawn Beaudette 

TITLE: A data driven approach to identifying key biomechanical features that differentiate novice and 
advanced sprinters 

 

ETHICS CLEARANCE GRANTED  
 

Type of Clearance:  NEW Expiry Date:  8/1/2022 
 
The Brock University Health Science Research Ethics Board has reviewed the above named research proposal 
and considers the procedures, as described by the applicant, to conform to the University’s ethical standards 
and the Tri-Council Policy Statement.  Clearance granted from 8/9/2021 to 8/1/2022.   
 
The Tri-Council Policy Statement requires that ongoing research be monitored by, at a minimum, an annual 
report.  Should your project extend beyond the expiry date, you are required to submit a Renewal form before 
8/1/2022.  Continued clearance is contingent on timely submission of reports. 
 
To comply with the Tri-Council Policy Statement, you must also submit a final report upon completion of your 
project.  All report forms can be found on the Office of Research Ethics web page at  
https://brocku.ca/research-at-brock/office-of-research-services/research-ethics-office/#application-forms    
 
In addition, throughout your research, you must report promptly to the REB: 

a) Changes increasing the risk to the participant(s) and/or affecting significantly the conduct of the study; 
b) All adverse and/or unanticipated experiences or events that may have real or potential unfavourable 

implications for participants; 
c) New information that may adversely affect the safety of the participants or the conduct of the study; 
d) Any changes in your source of funding or new funding to a previously unfunded project. 

 
We wish you success with your research. 
 
 
Approved: 
 
  ____________________________ 
  Craig Tokuno, Chair 
  Health Science Research Ethics Board  
 
Note: Brock University is accountable for the research carried out in its own jurisdiction or under its auspices 

and may refuse certain research even though the REB has found it ethically acceptable. 
 

If research participants are in the care of a health facility, at a school, or other institution or community 
organization, it is the responsibility of the Principal Investigator to ensure that the ethical guidelines and 
clearance of those facilities or institutions are obtained and filed with the REB prior to the initiation of 
research at that site. 
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APPENDIX D: CORRELATION PLOTS BETWEEN MAXIMAL VELOCITY AND PCs 
Appendix D.1- Correlation between Maximal Velocity and Kinematic PCs 
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Appendix D.2- Correlation between Maximal Velocity and EMG PC
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APPENDIX F: SINGLE COMPONENT RECONSTRUCTION OF KINEMATIC PCS   
Appendix F.1- Single Component Reconstruction PC 1 
 
 
A) 

 
B) 

 
C) 

 
SCR for PC 1 A) Sagittal plane view B) Frontal plane view C) Transverse plane view. The 
blue avatar represents the 5th percentile (slow), black represents the mean and red represents 
the 95th percentile (fast) 
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Appendix F.2- Single Component Reconstruction PC 3 
 
A) 

 
B) 

 
C) 

 
SCR for PC 3 A) Sagittal plane view B) Frontal plane view C) Transverse plane view. The 
blue avatar represents the 5th percentile (slow), black represents the mean and red represents 
the 95th percentile (fast) 
 

 



 
  

 88 

Appendix F.3- Single Component Reconstruction PC 9 
 
A) 

 
B) 

 
C) 

 
SCR for PC 9 A) Sagittal plane view B) Frontal plane view C) Transverse plane view. The 
blue avatar represents the 5th percentile (slow), black represents the mean and red represents 
the 95th percentile (fast) 
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Appendix F.4- Single Component Reconstruction PC 11 
 
A) 

 
B) 

 
C) 

 
SCR for PC 11 A) Sagittal plane view B) Frontal plane view C) Transverse plane view. The 
blue avatar represents the 5th percentile (slow), black represents the mean and red represents 
the 95th percentile (fast) 
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Appendix F.5- Single Component Reconstruction PC 12 
 
A) 

 
B) 

 
C) 

 
SCR for PC 12 A) Sagittal plane view B) Frontal plane view C) Transverse plane view. The 
blue avatar represents the 5th percentile (slow), black represents the mean and red represents 
the 95th percentile (fast) 
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Appendix F.6- Single Component Reconstruction PC 13 
 
A) 

 
B) 

 
C) 

 
SCR for PC 13 A) Sagittal plane view B) Frontal plane view C) Transverse plane view. The 
blue avatar represents the 5th percentile (slow), black represents the mean and red represents 
the 95th percentile (fast) 



 
  

 92 

APPENDIX G: SINGLE COMPONENT RECONSTRUCTION OF EMG  
Appendix G.1- PC 1 SCR  

SCR for PC 1 the blue line represents a muscle activation pattern associated with faster sprint velocities, a red line is associated with 
slower sprint velocities, and black represents the mean  
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Appendix G.2- PC 5 SCR 

SCR for PC 5 the blue line represents a muscle activation pattern associated with faster sprint velocities, a red line is associated with 
slower sprint velocities, and black represents the mean  
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Appendix G.3- PC 21 SCR 

SCR for PC 21 the blue line represents a muscle activation pattern associated with faster sprint velocities, a red line is associated with 
slower sprint velocities, and black represents the mean  
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Appendix G.4- PC 22 SCR 

SCR for PC 22 the blue line represents a muscle activation pattern associated with faster sprint velocities, a red line is associated with 
slower sprint velocities, and black represents the mean  
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APPENDIX H: RESULTS FROM RESIDUAL ANALYSIS 

Appendix H.1 – Summary of Residual Analysis Results  

 
Participan
t 

Trial  VLO 
(Hz) 

LUM 
(Hz) 

OBL 
(Hz) 

MED 
(Hz) 

BIC 
(Hz) 

MAX 
(Hz) 

REC 
(Hz) 

LAT 
(Hz) 

GAS 
(Hz) 

MCUTOFF 
(Hz) 

P001 1 196 184 255 213 403 180 241 297 285 251 

P004 3 203 178 265 222 354 169 188 190 313 231 

P005 1 201 282 220 282 364 203 271 434 282 282 

P006 1 286 229 292 203 296 197 214 243 349 257 

P019 2 273 192 301 254 235 235 271 248 341 261 

P015 3 294 303 201 305 375 201 201 265 269 268 

 
Appendix H.2 – Example of Residual Analysis- P014, LES 
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APPENDIX I: XSENS Marker Set 
Appendix I.1- Locations of each marker on the anthropometric model  
 

 
 


