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Abstract: Industry 4.0 has promoted the concept of automation, supporting workers with robots
while maintaining their central role in the factory. To guarantee the safety of operators and improve
the effectiveness of the human-robot interaction, it is important to detect the movements of the
workers. Wearable inertial sensors represent a suitable technology to pursue this goal because
of their portability, low cost, and minimal invasiveness. The aim of this narrative review was to
analyze the state-of-the-art literature exploiting inertial sensors to track the human motion in different
industrial scenarios. The Scopus database was queried, and 54 articles were selected. Some important
aspects were identified: (i) number of publications per year; (ii) aim of the studies; (iii) body district
involved in the motion tracking; (iv) number of adopted inertial sensors; (v) presence/absence of a
technology combined to the inertial sensors; (vi) a real-time analysis; (vii) the inclusion/exclusion
of the magnetometer in the sensor fusion process. Moreover, an analysis and a discussion of these
aspects was also developed.

Keywords: IMUs; industry 4.0; human-robot collaboration; upper limb

1. Introduction

The focus of the industrialization stage called Industry 4.0 is to guarantee an optimal
communication among human beings, machines, and resources, and hence to create smart
products, procedures, and processes [1]. The appeal of Industry 4.0 is based on two
reasons: (i) it represents an industrial revolution predicted a priori and not observed ex post,
providing the opportunity to actively shape the future; (ii) it has a huge economic impact,
developing new business models and services [2]. Even though automation is one of the
core principles of Industry 4.0, the worker’s ability to supervise the environment remains
an important resource within the factory [3]. In this context, the World Health Organization
has identified physical work, organizational, and psycho-social risk factors that cause the
so-called work-related musculoskeletal disorders (WMSDs). These multifactorial diseases
(Figure 1) occur when there is a mismatch between the physical capacity of the human body
and the physical requirements of the task [4]. The WMSDs reduce work productivity, affect
the working capacity, decrease worker satisfaction, and increase medical and compensation
costs [5]. For all of these reasons, human safety has to be preserved by assessing the
biomechanical risk associated with the industrial tasks performed [6].

Considering all of the technological innovations introduced by Industry 4.0, the central
role assumed by the concept of automation has led to include robotic systems in the working
environment. According to the last estimates of the International Federation of Robotics
(IFR) report, the demand for industrial robots has been affected by a continuous increase
since 2010. Moreover, regardless of the global pandemic situation, the year 2020 also
featured a growth rate of robot installations of nearly 0.5% [7].

Despite the high levels of repeatability, accuracy, and speed guaranteed by traditional
industrial robots, their lack of versatility makes them unsuitable for an effective adaptation
to the changes in production or dynamic working environments [8]. To overcome the
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limitations of the traditional industrial robots while maintaining the central role of humans,
collaborative robots, or cobots, have been introduced. Indeed, they enable a direct interac-
tion with human operators supporting task execution, reducing fatigue, and shortening
times of production. Accordingly, robot precision and repeatability are combined with
human perception, intelligence, and flexibility [9]. Based on the level of the interaction
between the human and the robot, IFR [10] identifies five distinct scenarios (Figure 2):

• Cell. It is not a real cooperating scenario, because the robot is located in a traditional
cage far away from the human.

• Coexistence. The human and the robot work alongside each other but they do not
share a workspace.

• Synchronized. The human and the robot share a workspace, but only one of the
interaction partners is present in the workspace at a time.

• Cooperation. Both the human and the robot perform tasks at the same time in the
shared workspace, but they do not work simultaneously on the same product or
component.

• Collaboration. The human and the robot work simultaneously on the same product or
component.
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As shown in the last three scenarios, the presence of a shared workspace implies a
higher level of interaction between the human and the robot and hence the necessity to
guarantee the safety of the operator. The guidelines presented in the technical specification
ISO/TS 15066:2016 contain the safety requirements for collaborative robots, in terms of
power and force limitations, and aim at avoiding damages in case of collisions with the
human [11]. In addition to safety, another important requirement for collaborative robotics
is to improve the effectiveness and performance of the interaction between the human and
the robot [12].

To achieve the appropriate responsive behavior within the shared workspace, sensors
enabling the tracking of the human motion can be exploited to plan the robot’s control logic
and thus optimize its path, timing, and velocity. This operation of motion capture can be
performed with a variety of technologies. Vision instruments, such as stereophotogrammet-
ric systems and RGB-D cameras are considered the gold standard for the human motion
analysis because of their precision and accuracy. However, they have many disadvantages,
such as high costs, occlusion problems, encumbrance, long subject preparation and data
post-processing times, and constraints related to the laboratory environment. To overcome
these limitations, wearable technologies, such as magnetic-inertial measurement units
(MIMUs) have been promoted, thanks to the recent diffusion of micro-electro-mechanical
systems. Once MIMUs are fixed on body segments, the human movement can be quanti-
tatively characterized by collecting data from the triaxial accelerometer, gyroscope, and
magnetometer embedded in each sensor [13]. Moreover, the complementary information
of acceleration, angular velocity, and magnetic field can be exploited by means of a sensor
fusion algorithm to estimate the absolute orientation and displacement of the MIMU [14].

Considering an industrial scenario, MIMUs represent a suitable solution because
they are low-cost, portable, easy to wear, minimally invasive, and free from laboratory
constraints. However, the estimation of the MIMUs orientation through the sensor fu-
sion process involves drift problems. These can be mitigated by implementing additional
biomechanical constraints and specific calibration procedures. In addition, ferromagnetic
disturbances, typical of the manufacturing environment, can affect the MIMU magnetome-
ter reading and thus deteriorate the quality of the analysis. To solve this problem, it is
advisable to exclude the magnetometer from the sensor fusion process, de facto using IMUs
(inertial measurement units) instead of MIMUs.

In light of all of these considerations, the present survey was conducted with the final
aim of providing a general overview about the use of wearable MIMUs/IMUs, to track the
movement of the human upper body in the industrial field.

2. Materials and Methods

Three main concepts were combined to plan and implement the analysis: motion
tracking, wearable IMUs, and industrial context. Accordingly, the following search string
was searched for in the Scopus electronic database on 23 November 2022:

TITLE-ABS (motion* OR trajectory* OR kinemat* OR track*) AND (imu OR mimu OR
inertial OR wearable) AND (industry* OR manufactur* OR ergonom* OR (robot* AND
collab*) OR worki*))

Additional filters were introduced: (i) the publication year was restricted from 2011 to
2022; (ii) the document type was limited to articles, conference papers, and reviews; (iii) the
only included language was English. The search gave 2645 results, which were manually
screened, based on specific exclusion criteria (Figure 3).

At the end of the screening phase, 54 full-text papers were selected and read (Table 1).
Once the articles were collected, some important aspects were identified and analyzed:

• Number of publications per year;
• Aim of the work;
• Body district involved in the motion tracking;
• Number of adopted MIMUs/IMUs;
• Presence/absence of a technology combined to MIMUs/IMUs;
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• Presence/absence of a real-time analysis;
• Inclusion/exclusion of the magnetometer in the sensor fusion process.
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Table 1. Results of the literature analysis focused on human motion tracking with MIMUs/IMUs in
the industrial context.

Study Year Aim Body District MIMUs/IMUs
Number Technology Real-Time Magnetometer

Huang C. [15] 2020 Risk assessment Total body 17 MIMUs Yes Yes

Peppoloni L. [16] 2016 Risk assessment Upper limb 3 MIMUs + EMGs Yes Yes

Giannini P. [17] 2020 Risk assessment Total body 11 MIMUs + EMGs Yes Yes

Monaco M.G.L. [18] 2019 Risk assessment Upper body 8 MIMUs + EMGs No Yes

Santos S. [19] 2020 Risk assessment Upper body 4 MIMUs Yes Yes

Humadi A. [20] 2021 Risk assessment Upper body 17 MIMUs No Yes

Peppoloni L. [21] 2014 Risk assessment Upper limb 4 MIMUs Yes Yes

Yan X. [22] 2017 Risk assessment Upper body 2 MIMUs Yes Yes

Merino G. [23] 2019 Risk assessment Total body 17 IMUs No No

Chan Y. [24] 2022 Risk assessment Upper body 6 MIMUs No Yes

Fletcher S.R. [25] 2018 Risk assessment Total body 17 MIMUs Yes Yes

Li J. [26] 2018 Risk assessment Total body 7 MIMUs Yes Yes

Caputo F. [27] 2019 Risk assessment Upper body 6 MIMUs No Yes

Nunes M.L. [28] 2022 Risk assessment Upper body 7 MIMUs No Yes

Martinez K. [29] 2022 Risk assessment Total body 9 MIMUs Yes Yes

Hubaut R. [30] 2022 Risk assessment Upper body 4 IMUs + EMGs No No

Colim A. [31] 2021 Risk assessment Upper body 11 MIMUs No Yes

Schall M.C. [32] 2021 Risk assessment Upper body 4 IMUs No No

Olivas-Padilla B. [33] 2021 Risk assessment Total body 52 MIMUs No Yes

Winiarski S. [34] 2021 Risk assessment Total body 16 MIMUs No Yes

Zhang J. [35] 2020 Collaborative robotics Upper body 5 MIMUs + vision Yes Yes

Ates G. [36] 2021 Collaborative robotics Upper body 5 MIMUs No Yes

Skulj G. [37] 2021 Collaborative robotics Upper body 5 IMUs Yes No

Wang W. [38] 2019 Collaborative robotics Upper limb 1 IMUs + EMGs Yes No

Sekhar R. [39] 2012 Collaborative robotics Upper limb 1 IMUs Yes No

Chico A. [40] 2021 Collaborative robotics Upper limb 1 MIMUs + EMGs Yes Yes

Tao Y. [41] 2018 Collaborative robotics Upper limb 6 MIMUs No Yes

Al-Yacoub A. [42] 2020 Collaborative robotics Upper body 1 IMUs + EMGs + vision Yes No
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Table 1. Cont.

Study Year Aim Body District MIMUs/IMUs
Number Technology Real-Time Magnetometer

Tortora S. [43] 2019 Collaborative robotics Upper limb 2 IMUs + EMGs Yes No

Resende A. [44] 2021 Collaborative robotics Upper body 9 MIMUs Yes Yes

Amorim A. [45] 2021 Collaborative robotics Upper limb 1 MIMUs + vision Yes Yes

Pellois R. [46] 2018 Collaborative robotics Upper limb 2 IMUs No No

Grapentin A. [47] 2020 Collaborative robotics Hand 6 IMUs Yes No

Bright T. [48] 2021 Collaborative robotics Hand 15 IMUs No No

Digo E. [49] 2022 Collaborative robotics Upper limb 2 IMUs Yes No

Lin C.J. [50] 2022 Collaborative robotics Upper limb 3 MIMUs + EMGs Yes Yes

Rosso V. [51] 2022 Collaborative robotics Upper limb 1 IMUs No No

Tuli T.B. [52] 2022 Collaborative robotics Upper limb 3 MIMUs + vision Yes Yes

Tarabini M. [53] 2018 Tracking in industry Upper body 6 MIMUs + vision Yes Yes

Tarabini M. [54] 2018 Tracking in industry Upper body 6 MIMUs + vision No Yes

Caputo F. [55] 2018 Tracking in industry Total body 10 MIMUs No Yes

Digo E. [56] 2022 Tracking in industry Upper body 3 IMUs Yes No

Borghetti M. [57] 2020 Tracking in industry Hand 2 MIMUs No Yes

Bellitti P. [58] 2019 Tracking in industry Hand 2 MIMUs No Yes

Fang W. [59] 2017 Tracking in industry Head 1 IMUs + vision Yes No

Manns M. [60] 2021 Action recognition Total body 8 MIMUs Yes Yes

Al-Amin M. [61] 2019 Action recognition Upper body 2 MIMUs + EMGs + vision Yes Yes

Al-Amin M. [62] 2022 Action recognition Upper limb 2 MIMUs No Yes

Kubota A. [63] 2019 Action recognition Upper limb 1 IMUs + EMGs + vision No No

Calvo A.F. [64] 2018 Action recognition Total body 4 MIMUs + EMGs + vision Yes Yes

Antonelli M. [65] 2021 Action recognition Upper body 4 IMUs No No

Digo E. [66] 2020 Other Upper body 7 MIMUs + vision No Yes

Maurice P. [67] 2019 Other Total body 17 MIMUs + vision No Yes

Li J. [68] 2017 Other Hand 10 MIMUs Yes Yes

3. Results and Discussion

In this section, the selected 54 full-text papers of the review are presented through
bar diagrams identifying some important aspects. Moreover, the results are discussed
canalizing these aspects in a typical industrial scenario. Even if extreme attention was
paid to include any possible synonymous terms, when the search string was built, some
terms may be missing. In addition, the limitation of the publication year from 2011 to 2022
may have restricted the number of results. However, this choice is in line with both the
development of Industry 4.0 and the spread of wearable inertial sensors for the human
motion tracking.

3.1. Number of Publications per Year

Considering the publication year of the selected papers, the interest towards the use of
MIMUs/IMUs for the human motion tracking in industry has proportionally grown from
2016 (Figure 4). The only exceptions are represented by 2020, which might be explained by
the global pandemic situation, and 2022, because it has not ended yet. This growing trend
is in line with the emergence and development of Industry 4.0, the increase of automation
processes, and the spread of collaborative robotics.

3.2. Aim of the Work

Scientific research exploiting MIMUs/IMUs in industrial scenarios is focused on
several aspects (Figure 5). A first part of the studies has been devoted to the biomechanical
risk assessment of manufacturing workers. Due to the high impact of WMSDs on the safety
and quality of work, many studies have focused on the prevention of these upper body
disorders, recognizing the improper task settings, identifying uncomfortable postures, and
assessing the exposure to risk factors, with a biomechanical analysis. Some studies have
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concentrated on the development, validation, and accuracy evaluation of a wearable system
for the estimation of the WMSD risks in manufacturing [15–22]. Other studies have adopted
MIMUs/IMUs to collect human activity data and perform an ergonomic analysis in specific
industrial and working tasks, such as harvesting [23,24], installing [25], assembling [26–28],
or handling [29,30]. In addition, MIMUs/IMUs have been exploited to quantify the WMSD
risk exposure in the upper body, by assessing the influence of a robotic implementation [31],
comparing different tasks [32], identifying the main joints contributing to the motion [33],
or complementing the ergonomic procedures into workstation design [34].
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In addition to a risk assessment, collaborative robotics also represents a frequent aim of
the literature studies using MIMUs/IMUs, for industrial applications (Figure 5). In this case,
the main intent is to improve the human-robot interaction, in terms of safety, effectiveness,
and timing [35,36]. Some studies have adopted MIMUs/IMUs to estimate the position and
orientation of the worker and consequently to teleoperate [37], control [38–40], or teach [41]
the robot. Some studies have focused on predicting human motion and the reached target to
make the robot aware of the operator’s intentions within the shared workspace [42–44]. In
other cases, more attention has been paid to safety and, in particular, to collision avoidance
within the shared dynamic and unstructured workspace [45]. Moreover, the possibility of
adapting human motion tracking to industrial scenarios by excluding the magnetometer
from the sensor orientation estimation, has been investigated [46,47].

Finally, some studies have generally focused on the industrial context proposing
methods for human motion tracking [53–59] and human action recognition [60–65], with
the aim of improving productivity while ensuring safety.

3.3. Involved Body District and Number of Adopted MIMUs/IMUs

The body district involved in the human motion analysis (Figure 6) and the resulting
number of adopted MIMU/IMUs (Figure 7) are other important aspects to consider in the
literature. When studies were conducted with the aim of assessing biomechanical risk in
the manufacturing or creating databases for ergonomics purposes, a total body analysis
involving a high number of sensors (≥17) has been performed [15,23,25,33,67].
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In other studies that generally focused on human motion tracking in different in-
dustrial scenarios, the motion analysis involved only the upper body (number of sensors
between six and 11) positioned on the trunk and upper limbs [18,27,31,44,53–55]. Consider-
ing the context of the collaborative robotics, the main interaction between the human and
cobot generally involves the upper limbs with a limited number of adopted MIMUs/IMUs
(from one to three) positioned on the upper arm and forearm [38–40,43,45,46,49–52]. More-
over, given the importance of the manual operations in industrial environments, other
studies have adopted a variable number of MIMUs/IMUs (between two and 16) to focus
on hand and finger tracking [47,48,57,58,68].
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3.4. Presence/Absence of a Technology Combined to MIMUs/IMUs

Another important aspect to be analyzed is the presence of another mocap tech-
nology, associated with MIMUs/IMUs, for the human motion tracking in the industrial
context (Figure 8). All articles identified in the analysis chose MIMUs/IMUs because
of their many advantages for human motion tracking in the manufacturing field. How-
ever, two streams of thought can be identified in the literature. On the one hand, the
MIMUs/IMUs performance is considered to be sufficient for the industrial context and
for this reason they have replaced other systems. Based on their portability and minimal
invasiveness, MIMUs/IMUs have been selected as the only technology for improving
human-robot collaboration [36,37,39,41,44,46,47,65]. On the other hand, although the ad-
vantages of MIMUs/IMUs are recognized and stated, the magnetometer sensitivity to
the ferromagnetic disturbances and the orientation drift due to the sensor fusion make
their performance insufficient for the industrial context. Some studies on human motion
tracking in industrial and collaborative robotic scenarios, have compensated for the limits
of the MIMUs/IMUs, by combining them with vision systems [35,45,54,59,60,66]. In other
cases, the biomechanical risk assessment of workers has been performed by integrating
MIMUs/IMUs with electromyographic sensors (EMGs) to complete the analysis with
information of the muscular activation [17,18,21,23,26]. Finally, some literature studies
have exploited the data collected by MIMUs/IMUs, EMG sensors, and vision systems, to
recognize human actions [61,63,64].

3.5. Presence/Absence of a Real-Time Analysis

Independently from the aim, real-time human motion tracking is a fundamental re-
quirement for the industrial context. First, an online risk assessment is suitable to evaluate
the biomechanical load in the manual material handling [17] or repetitive efforts [21], to
improve the assembly workstations [26,31], and to build an alert system for the preven-
tion of musculoskeletal disorders [15,22]. Furthermore, collaborative robotics can also
advantageously exploit the real-time tracking of human motion in terms of safety and
efficiency [69]. Indeed, an online information exchange between the operator and the robot
improves both the interaction [35,42,44,56] and the robot control [37,40]. As Figure 9 shows,
studies dealing with the real-time capture of human motion are more than those that do
not consider this concept.
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3.6. Inclusion/Exclusion of the Magnetometer in the Sensor Fusion Process

When the human motion analysis is performed in the manufacturing environment, the
presence of ferromagnetic disturbances makes the magnetometer readings an unreliable
source of information [56,70]. Consequently, it is necessary to exclude the magnetometer
from the estimate of the MIMUs orientation and hence to adopt IMUs. In this case, the drift
occurring around the vertical axis can no longer be compensated for. Moreover, the relative
orientation on the horizontal plane (i.e., perpendicular to the gravity vector) among two or
more units, which is fundamental to estimate the segment pose and consequently the joint
kinematics, is unknown.

To overcome these limitations, additional biomechanical constraints and specific cali-
bration procedures have to be introduced. The exclusion of the magnetometer from the
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sensor fusion process is gaining attention (Figure 10). Indeed, some literature studies have
estimated the orientation of IMUs only exploiting the accelerometer and the gyroscope.
Focusing on the context of collaborative robotics, since the robot itself represents a fer-
romagnetic disturbance, one of the main goals is the magnetometer-free human motion
tracking [37–39,42,43,46,47].
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4. Conclusions

This review summarizes the state-of-the-art knowledge on wearable sensors used to
track human motion in different industrial scenarios, particularly focusing on the year
of publication, the purpose, the number and placement of sensors, the presence of other
additional technologies, the concept of real-time, and the exclusion of the magnetometer.
The results suggest that MIMUs/IMUs are a suitable solution for capturing human motion
in the manufacturing field. Accordingly, the efforts in the exploitation of these systems,
instead of, or in addition to traditional technologies should focus on implementing a
real-time analysis and excluding the magnetometer from the sensor fusion process.
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