43 research outputs found

    Temporal Development of Sense of Presence and Cybersickness during an Immersive VR Experience

    Get PDF
    Following the advances in modern head-mounted displays, research exploring the human experience of virtual environments has seen a surge in interest. Researchers have examined how to promote individuals’ sense of presence, i.e., their experience of “being” in the VE, as well as to diminish the negative side effects of cybersickness. Studies investigating the relationship between sense of presence and cybersickness have reported heterogeneous results. Authors that found a positive relation have argued that the phenomena have shared cognitive underpinnings. However, recent literature has reported that positive associations can be explained by the confounding factor of immersion. The current study aims to investigate how cybersickness and sense of presence are associated and develop over time. During the experiment, participants were exposed to a virtual roller coaster and presented orally with questions aimed to quantify their perceived sense of presence and cybersickness. The results of the experiment indicate that cybersickness and sense of presence are both modulated by the time spent in the virtual setting. The utilized short measures for sense of presence and cybersickness were found to be reliable alternatives to multi-item questionnaires.publishedVersio

    VR.net: A Real-world Dataset for Virtual Reality Motion Sickness Research

    Full text link
    Researchers have used machine learning approaches to identify motion sickness in VR experience. These approaches demand an accurately-labeled, real-world, and diverse dataset for high accuracy and generalizability. As a starting point to address this need, we introduce `VR.net', a dataset offering approximately 12-hour gameplay videos from ten real-world games in 10 diverse genres. For each video frame, a rich set of motion sickness-related labels, such as camera/object movement, depth field, and motion flow, are accurately assigned. Building such a dataset is challenging since manual labeling would require an infeasible amount of time. Instead, we utilize a tool to automatically and precisely extract ground truth data from 3D engines' rendering pipelines without accessing VR games' source code. We illustrate the utility of VR.net through several applications, such as risk factor detection and sickness level prediction. We continuously expand VR.net and envision its next version offering 10X more data than the current form. We believe that the scale, accuracy, and diversity of VR.net can offer unparalleled opportunities for VR motion sickness research and beyond

    Forecasting the Onset of Cybersickness using Physiological Data

    Get PDF
    指導教員:Machael Vallanc

    Countering the Novelty Effect: A Tutorial for Immersive Virtual Reality Learning Environments

    Get PDF
    Immersive Virtual Reality (iVR) is a new technology, the novelty effect of which can reduce the enjoyment of iVR experiences and, especially, learning achievements when presented in the classroom; an effect that the interactive tutorial proposed in this research can help overcome. Its increasingly complex levels are designed on the basis of Mayer’s Cognitive Theory of Multimedia Learning, so that users can quickly gain familiarity with the iVR environment. The tutorial was included in an iVR learning experience for its validation with 65 users. It was a success, according to the user satisfaction and tutorial usability survey. First, it gained very high ratings for satisfaction, engagement, and immersion. Second, high skill rates suggested that it helped users to gain familiarity with controllers. Finally, a medium-high value for flow pointed to major concerns related to skill and challenges with this sort of iVR experience. A few cases of cybersickness also arose. The survey showed that only intense cybersickness levels significantly limited performance and enjoyment; low levels had no influence on flow and immersion and little influence on skill, presence, and engagement, greatly reducing the benefits of the tutorial, despite which it remained useful.This work was partially supported by the ACIS project (Reference Number INVESTUN/21/BU/0002) of the Consejeria de Empleo e Industria of the Junta de Castilla y León (Spain), the Erasmus+ RISKREAL Project (Reference Number 2020-1-ES01-KA204-081847) of the European Commission and the HumanAid Project (Reference Number TED2021-129485B-C43) of the Proyectos Estratégicos Orientados a la Transición Ecológica y a la Transición Digital of the Spanish Ministry of Science and Innovation

    A Somatic Approach to Combating Cybersickness when using Head-Mounted Displays

    Get PDF
    This thesis presents a novel approach for reducing the risk of cybersickness during virtual reality locomotion in a 3D environment through the use of somatosensory feedback. This project looks directly at existing theories regarding the cause of cybersickness and describes the processes taken to develop, test and measure the efficacy of a solution. The solution proposed by this thesis builds on the concept of sensory misalignment, where the body struggles understand its state due to conflicting sensory feedback and consequently generates negative health symptoms and discomfort. As such, the studies in this project attempt to emulate the feedback of real movement during VR locomotion by artificially generating the passive airflow undergone whilst moving. To evaluate the work, two studies are carried out where users drive a simulated car around a virtual environment, which in one condition is accompanied by the solutions dynamic airflow emulation equipment. Primarily, studies examine for cybersickness, however on-going discussions in the research community regarding the nature of correlation between sickness and presence present interesting insights that this project could contribute to. The project’s pilot study failed to find conclusive results but provided a major amount of information about the correct strategies to use when investigating this exploratory area. A second study was far more successful, providing conclusive results showing that users felt less sickness and increased presence during the session supported by the somatic feedback extension. As such this work concludes suggesting somatosensory feedback has positive interactions with cybersickness, as per the project hypothesis regarding existing theories. Additionally, positive correlations with presence suggest somatic feedback can have an overall positive effect on VR locomotion

    Configural Scoring of Simulator Sickness, Cybersickness and Space Adaptation Syndrome: Similarities and Differences?

    Get PDF
    From a survey of ten U.S. Navy flight simulators a large number (N > 1,600 exposures) of self-reports of motion sickness symptomatology were obtained. Using these data, scoring algorithms were derived, which permit examination of groups of individuals that can be scored either for 1) their total sickness experience in a particular device; or, 2) according to three separable symptom clusters which emerged from a Factor Analysis. Scores from this total score are found to be proportional to other global motion sickness symptom checklist scores with which they correlate (r = 0.82). The factors that surfaced from the analysis include clusters of symptoms referable as nausea, oculomotor disturbances, and disorientation (N, 0, and D). The factor scores may have utility in differentiating the source of symptoms in different devices. The present chapter describes our experience with the use of both of these types of scores and illustrates their use with examples from flight simulators, space sickness and virtual environments

    User-centered Virtual Environment Assessment And Design For Cognitive Rehabilitation Applications

    Get PDF
    Virtual environment (VE) design for cognitive rehabilitation necessitates a new methodology to ensure the validity of the resulting rehabilitation assessment. We propose that benchmarking the VE system technology utilizing a user-centered approach should precede the VE construction. Further, user performance baselines should be measured throughout testing as a control for adaptive effects that may confound the metrics chosen to evaluate the rehabilitation treatment. To support these claims we present data obtained from two modules of a user-centered head-mounted display (HMD) assessment battery, specifically resolution visual acuity and stereoacuity. Resolution visual acuity and stereoacuity assessments provide information about the image quality achieved by an HMD based upon its unique system parameters. When applying a user-centered approach, we were able to quantify limitations in the VE system components (e.g., low microdisplay resolution) and separately point to user characteristics (e.g., changes in dark focus) that may introduce error in the evaluation of VE based rehabilitation protocols. Based on these results, we provide guidelines for calibrating and benchmarking HMDs. In addition, we discuss potential extensions of the assessment to address higher level usability issues. We intend to test the proposed framework within the Human Experience Modeler (HEM), a testbed created at the University of Central Florida to evaluate technologies that may enhance cognitive rehabilitation effectiveness. Preliminary results of a feasibility pilot study conducted with a memory impaired participant showed that the HEM provides the control and repeatability needed to conduct such technology comparisons. Further, the HEM affords the opportunity to integrate new brain imaging technologies (i.e., functional Near Infrared Imaging) to evaluate brain plasticity associated with VE based cognitive rehabilitation

    Use of Incremental Adaptation and Habituation Regimens for Mitigating Optokinetic Side-effects

    Get PDF
    The use of incremental and repeated exposures regimens have been put forth as effective means to mitigate visually induced motion sickness based on the Dual Process Theory (DPT) (Groves & Thompson, 1970) of neural plasticity. In essence, DPT suggests that by incrementing stimulus intensity the depression opponent process should be allowed to exert greater control over the net outcome than the sensitization opponent process, thereby minimizing side-effects. This conceptual model was tested by empirically validating the effectiveness of adaptation, incremental adaptation, habituation, and incremental habituation regimens to mitigate side-effects arising from exposure to an optokinetic drum. Forty college students from the University of Central Florida participated in the experimentation and were randomly assigned to a regimen. Efforts were taken to balance distribution of participants in the treatments for gender and motion sickness susceptibility. Results indicated that overall, the application of an incremental regimen is effective in reducing side-effects (e.g. malaise, dropout rates, postural instabilities, etc.) when compared to a non-incremented regimen, whether it be a one-time or repeated exposure. Furthermore, the application of the Motion History Questionnaire (MHQ) (Graybiel & Kennedy, 1965) for identifying high and low motion sickness susceptible individuals proved effective. Finally, gender differences in motion sickness were not found in this experiment as a result of balancing susceptibility with the gender subject variable. Findings from this study can be used to aid effective design of virtual environment (VE) usage regimens in an effort to manage cybersickness. Through pre-exposure identification of susceptible individuals via the MHQ, exposure protocols can be devised that may extend limits on exposure durations, mitigate side-effects, reduce dropout rates, and possibly increase training effectiveness. This document contains a fledgling set of guidelines form VE usage that append those under development by Stanney, Kennedy, & Kingdon (In press) and other previously established guidelines form simulator use (Kennedy et al., 1987). It is believed that through proper allocation of effective VE usage regimens cybersickness can be managed, if susceptible individuals are identified prior to exposure

    Identifying strategies to mitigate cybersickness in virtual reality induced by flying with an interactive travel interface.

    Get PDF
    Virtual Reality (VR) is a versatile and evolving technology for simulating different experiences. As this technology has improved in hardware, accessibility of development, and availability of applications its interest has surged. However, despite these improvements, the problem of Cybersickness (CS) remains, causing a variety of uncomfortable symptoms in users. Hence the need for guidelines that developers can use to create experiences that mitigate these effects. With an incomplete understanding of CS and techniques yet to be tried, this thesis seeks to identify new strategies that mitigate CS. In the literature, the predominant theories attribute CS or closely related sicknesses to the body rejecting inconsistencies between senses and the body failing to adapt to conflicts or new dynamics in an experience. There are also a variety of user, hardware, and software factors that have been reported to affect it. To measure the extent of CS, the Simulator Sickness Questionnaire (SSQ) is the most commonly used tool. Some physiological responses have also been associated with CS that can be measured in real-time. Three hypotheses for mitigation strategies were devised and tested in an experiment. This involved a physical travel interface for flying through a Virtual Environment (VE) populated with models as a control condition. On top of this, three manipulation conditions referred to as Gaze-Tracking Vignette (GV), Personal Embodiment (PE), and Fans and Vibration (FV) could be individually applied. The experiment was designed to be between-subjects, with participants randomly allocated to four groups. Overall, 37 participants did the experiment with Heart Rate (HR), eye-tracking data, and flight data recorded. Post-exposure, they also filled out a survey that included the SSQ. To analyse the data, statistical tests and regression models were used. These found significant evidence that a vignette that changes intensity with speed and scope position with eye-gaze direction made CS worse. The same result was found from adding personal embodiment with hand tracking. Evidence was also found from the SSQ that directional fans with floor vibration did not cause a difference. However, an overall lowering of HR for this condition indicated that it might help, but could be due to other factors. Additionally, comments from participants identified that many experienced symptoms consistent with CS, with dizziness as the most common, and some issues with the usability of the travel interface

    Application of Virtual Reality in the study of Human Behavior in Fire : Pursuing realistic behavior in evacuation experiments

    Get PDF
    Virtual Reality (VR) experiments are used to study human behavior in fire because they allow simulation of fire events with relatively low risks to the participants, while maintaining high levels of experimental control. Manystudies have used VR experiments to explore aspects of the human response to fire threats, but VR experiments as a research method are yet to be subjected to a systematic process of validation. One way to validate VR experiments is to compare VR data to data obtained using other research methods, e.g., case studies, laboratory experiments, and field experiments. Five independent VR experiments were designed to collect data that could be then compared to data collected using other research methods. Both datasets, VR and physical, are thencompared with each other to assess similarities and differences between them. Results show that participants in the VR experiments often acted like people did in the physical-world events. Moreover, Human Behavior in Fire theories that explain the behavior of victims in real fires were found to also explain the participants’ behavior in the VR experiments. There were differences between VR and physical-world samples, which highlighted limitations of VR experiments or aspects about realism that need to be considered when designing VR experiments. Visual realism is not enough for participants to interpret a virtual fire emergency as a threat. Therefore, VR experiments need to induce participants to take the virtual fire event seriously. Social norms that apply in physical world contexts may not emerge naturally in virtual environments, and measures should be taken to enhance behavioral realism in VR. These findings are a meaningful contribution to the development of the VR experiment method for collection of behavioral data
    corecore