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ABSTRACT 

Virtual environment (VE) design for cognitive rehabilitation necessitates a new methodology 

to ensure the validity of the resulting rehabilitation assessment. We propose that benchmarking 

the VE system technology utilizing a user-centered approach should precede the VE 

construction. Further, user performance baselines should be measured throughout testing as a 

control for adaptive effects that may confound the metrics chosen to evaluate the rehabilitation 

treatment.   To support these claims we present data obtained from two modules of a user-

centered head-mounted display (HMD) assessment battery, specifically resolution visual acuity 

and stereoacuity. 

 Resolution visual acuity and stereoacuity assessments provide information about the image 

quality achieved by an HMD based upon its unique system parameters. When applying a user-

centered approach, we were able to quantify limitations in the VE system components (e.g., low 

microdisplay resolution) and separately point to user characteristics (e.g., changes in dark 

focus) that may introduce error in the evaluation of VE based rehabilitation protocols.  

 Based on these results, we provide guidelines for calibrating and benchmarking HMDs. 

In addition, we discuss potential extensions of the assessment to address higher level usability 

issues. We intend to test the proposed framework within the Human Experience Modeler 

(HEM), a testbed created at the University of Central Florida to evaluate technologies that may 

enhance cognitive rehabilitation effectiveness. Preliminary results of a feasibility pilot study 

conducted with a memory impaired participant showed that the HEM provides the control and 

repeatability needed to conduct such technology comparisons. Further, the HEM affords the 

opportunity to integrate new brain imaging technologies (i.e., functional Near Infrared Imaging) 

to evaluate brain plasticity associated with VE based cognitive rehabilitation.  
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CHAPTER 1 INTRODUCTION 

 Traumatic brain injury (TBI) is an insult to the brain due to external forces (e.g., car 

accident), internal damage (e.g., gunshot wound), or loss of oxygen (e.g., embolism). The annual 

incidence of TBI in the United States is 1.5 million Americans per year, with males in the age 

range of 15 to 24 years at the highest risk. Vehicular accidents are responsible for approximately 

44% of TBIs annually (CDC, 2001; Sosin, Sniezek., & Thurman, 1996). Currently, over 5 

million Americans live with TBI related disabilities (e.g., cognitive, motor, and affective). 

Cognitive impairments such as memory, reasoning, judgment, self-awareness prevent most 

persons with TBI from maintaining functional or financial independence, which places a strain 

on families as well as healthcare resources (Max, Mackenzie, & Rice, 1991; Rose, Brooks & 

Rizzo, 2005).  

 Laws requiring seatbelts and helmets reduced the incidence of TBI over the past few 

years (National Center for Injury Prevention and Control, 2001; Rutledge & Stutts, 1993). 

However, the medical rehabilitation field, specifically areas of Clinical Neuropsychology and 

Cognitive Rehabilitation, has not successfully provided reliable protocols for recovery of 

cognitive function after a TBI, thus placing the necessity for TBI rehabilitation into question 

(Ricker, 1998; Carney et. al, 1999). The negative issues surrounding cognitive rehabilitation 

stem from the expense involved in maintaining rehabilitation teams, which may include a 

neuropsychologist, an occupational therapist, a physical therapist, and a speech pathologist, as 

well as the lack of evidence as to the efficacy of treatment plans. More specifically, the cost 

associated with cognitive retraining could be somewhat justified if transfer of training from the 
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rehabilitation facility to the patient’s home were demonstrated. According to Rizzo and 

Buckwalter (1997), the advent of virtual environments (VEs) provides a solution for more cost 

effective and ecologically valid cognitive rehabilitation procedures. However, can VE overcome 

the historical failures of computer assisted cognitive retraining? 

1.1 Cognitive Rehabilitation and Computer-Assisted Cognitive Retraining 

 It is important to note that cognitive rehabilitation as a coherent field of medicine was not 

established in the United States until the early 1970’s (Boake, 1991). At this time, information 

processing models based on computers suggested that the brain functioned similar to hardware, 

software, and data input and output devices. In 1968, Atkinson and Shiffrin suggested that 

memory consisted of two distinct memory stores, short-term and long-term. In contrast, Craik 

and Lockhart (1972) posed a “levels of processing” approach to memory where persons 

engaging in deep, meaningful, information processing experienced more permanent retention of 

memory items than shallow, sensory kinds of processing. Structure versus processing debates, as 

well as debates on localization of brain function (modularity) versus holism (distributed 

processing), continued to qualify the differences between restorative and functional cognitive 

rehabilitation methodologies (Levin, 1991).  

 The premise of the restorative approach is that there are discrete brain processes that 

rehabilitation professionals can identify through neuropsychological testing. Further, these 

cognitive processes are trainable separately through drills and practice. The information 

processing metaphor suggests that processing occurs in a hierarchical manner, thus therapists 

should retrain cognitive functions such as attention before introducing training in daily living 
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skills. Using the restorative approach, a person with TBI would receive systematic and repetitive 

retraining of cognitive processes, and then integrate this learning with motor tasks. Eventually 

the patient would receive problem-solving tasks that matched more real life scenarios. The video 

game and personal computer industries changed how clinicians administered cognitive retraining 

modules and provided a solution to the high cost of TBI rehabilitation (Lynch, 2002). 

 Presenting training tasks on the computer allowed for more stimulus control, application 

consistency, and simpler data collection methods. A person with TBI could sit at a computer 

terminal and perform his or her exercises without the assistance of a therapist, potentially cutting 

costs. However, the computer software languages available at that time made programming 

custom applications almost impossible. Further, home computers were a luxury item not found in 

many patients’ homes, therefore outpatients continued to receive therapy within rehabilitation 

facilities.  

In 1982, Lynch evaluated the effectiveness of common Atari video games (i.e., Pac-Man) 

for cognitive rehabilitation. Atari introduced their first personal game console in 1977 at the cost 

of approximately 200 US dollars (Videotopia, 1998). Video games were a cost effective means 

of retraining attention and concentration abilities in the home as well as the therapy center. 

Empirical evidence suggested that computer-assisted therapy was effective in retraining some 

basic cognitive functions such as directed and divided attention (Lynch, 2002). Unfortunately, 

there is a lack of evidence supporting that persons with TBI undergoing computer-assisted 

therapy actually transfer their skill to other tasks (Chen, Thomas, Glueckauf, & Bracy, 1997). 

Lack of skill transfer from the therapy environment to every day tasks is a general criticism of 

the restorative approach (Chase & Eriksson, 1981; O’Conner & Cermack, 1987). Based upon 

these results, restorative therapists abandoned or limited their use of computer-assisted retraining 



4 

applications. The compensatory or functional approach to rehabilitation has shown more success 

as a rehabilitation paradigm; however, it too has limitations (Sohlberg and Mateer, 2001). 

 The functional approach to rehabilitation focuses on retraining of activities of daily living 

(ADL’s) such as meal preparation or dressing. The focus is not on changing brain function, but 

changing behavioral strategies for performing daily tasks. For example, a person experiencing 

memory problems may use a personal digital assistant (PDA) to store important daily events. 

Although there is increasing support for successful retraining under the functional approach 

(Wilson, 2000), opponents contend that the scripted nature of daily living task precludes the 

flexibility to generalize to new or even similar tasks or contexts (Kirsch, Levine, Lajiness-O’neil, 

Schnyder, 1992).  

Ylvisaker, Hanks, & Johnson-Greene (2002) proposed a more combined approach to 

cognitive rehabilitation, one based on personalized context and familiarity. The basic assumption 

of their context-based approach is that persons maintain a domain specific knowledge base 

within their brain that assists with integrating new information or recalling old. Domain 

specificity is a more general form of modularity in that different neural areas oversee specific 

cognitive functions; however, processing is not “encapsulated” or separated from other brain 

systems. Thus, both declarative and procedural domain-specific knowledge are stored and are 

available when experiencing the appropriate context.  

One could interpret the contextualized approach as suggesting that restorative therapy 

should only use personalized or familiar stimuli. As well, functional training should only include 

contexts relating to the individual’s own life experience. In actuality, context theory suggests that 

the distinction between restorative and functional approaches is nonexistent since the functional 

approach is embedded within that of the restorative. Schultheis & Rizzo (2001) posed a similar 
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argument and further posited that virtual reality technology offers a means to explore transfer of 

training issues systematically and under more ecologically valid or personally contextualized 

training conditions. Previous work with driving simulators and persons with TBI showed that 

computer simulated environments provided an effective testbed for assessing cognitive 

functioning (Engum, Cron, Hulse, Pendergrass, & Lambert, 1988; Lambert & Engum, 1992). 

1.2 Simulated and Virtual Environments as Rehabilitation Tools 

Simulation refers to the substitution of real objects or tasks with a model or system 

representation. Historically, simulation-based training is substituted for real world procedures 

when the cost of training (e.g., large-scale war games) is exceedingly high or when the learning 

task may pose dangers to the trainee or others (e.g., surgical training). This training paradigm 

permits errors and other natural behaviors (e.g., exploration) that occur during the learning 

processes without risk of harm. A successful application of simulation-based training is the 

CBDI or Cognitive Behavioral Driver’s Inventory (Engum, Cron, Hulse, Pendergrass, & 

Lambert, 1988). 

CBDI utilizes a mixed rehabilitation approach in that TBI participants perform a battery 

of driving related computerized tests, paper and pencil neuropsychological tests, vision and 

motoric tasks within a driving simulator. Scores for the test are pass or fail; however, the 

simulator records errors so that the participant can review his or her performance. The “after 

action review” whereby participants review their performance is especially important since many 

person with TBI do not recognize their own impairment. CBDI research suggests that a previous 

failure of the earlier computer-based training approaches was mainly due to lack of a real world 
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context (Gourlay, Lun, Lee, & Tay, 2000). These positive aspects of using simulated real world 

tasks extend to the more interactive virtual rehabilitation environments.  

1.2.1 Advantages of VE Training 

Burdea & Coiffet (2004) define the virtual environment (VE) as a high-end user 

computer-interface that involves real-time simulation and interaction through multiple sensory 

channels (e.g., vision, auditory, tactile, smell, and taste). The appeals of creating virtual 

environments for cognitive rehabilitation are many. Some positive aspects of VE include the 

ability to create a personalized environment that matches the disability level of the participant 

(Wilson, Foreman, & Stanton, 1997), to control experimental design factors, to improve realism 

through appropriate context, to provide quantifiable feedback for increased safety and self 

awareness (Schultheis & Rizzo, 2001), and to increase transfer of training (Rose et al., 2000). 

Further, immersion into virtual environments has the potential to increase a person’s engagement 

in his or her training task, thus potentially facilitating transfer of training transfer (Rizzo and 

Buckwalter, 1997). VEs also allow researchers to explore brain functioning using brain imaging 

techniques while participants engage in simulated real world tasks such as driving or navigating 

through their own home (Baumann et al., 2003).  

Current research using brain-imaging techniques (e.g., Transcranial Magnetic 

Stimulation, TMS) and functional Magnetic Resonance Imaging (fMRI)) supports the occurrence 

of brain changes after successful stroke motor therapy (Liepert et al., 2000). In addition, studies 

with brain injured lab animals suggest that exposure to an enriched environment, one with 

mentally stimulating objects and activities, enhances neurogenesis, the regeneration of brain 
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neurons (Johansson, 2003). Thus, VE training coupled with brain imaging techniques may 

augment our understanding of successful transfer of training from a brain reorganization 

perspective (Rose, Attree, Brooks & Johnson, 1998; Rose, Brooks & Rizzo, 2005).  

1.2.2 Transfer of Training from VE to Real World 

Success of VE as a rehabilitation-training tool ultimately hinges on the empirical 

demonstration of general and specific transfer along with generalization of learning to one’s 

home and possibly work environments. Two classic studies of transfer of training using virtual 

environments both explore motoric skill transfer with “normal” populations. Rose et al. (2000) 

trained participants on a virtual or real world “steadiness tester”, a simple sensorimotor task that 

trained the participant to move a ring along the path of a nonlinear wire without touching it. The 

researchers compared VE performance to that of the real world and found that persons who 

trained in the VE performed similarly or better than those persons trained in the real world. 

Todorov, Shadmer and Bizzi (1997) demonstrated that a VE trainer displaying only context 

relevant information (i.e., end effector information) improved performance in table tennis 

compared to instruction with a professional table tennis coach. Persons with learning disabilities 

also show positive transfer of training to real world tasks using VE.  

Brown, Standen, & Cobb (1998) found that children with learning disabilities performed 

better in a supermarket after receiving training in a virtual marketplace. Brooks et al. (1999) 

showed that an amnesic patient, who had been unsuccessful in navigating routes in a hospital 

unit, learned two routes after VE training. The findings are significant since the participant 

exhibited new learning although she was unaware that she had learned the routes. An 
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encouraging explanation is that VE training may have tapped procedural memory processes. 

Further, post neuropsychological assessment showed “mild improvement on tests of general 

intellectual abilities, visual perceptual and naming skills but memory and executive functions 

remained severely impaired” (p.73). Thus, this study as well as others does not explicitly 

demonstrate transfer of learning of specific cognitive skills from a virtual to a real environment.  

Further work is necessary to quantify the degree of similarity between tasks performed in 

the VE as opposed to those performed in the real world. As well, determining the perceptual or 

precise conditions that are most relevant to generalization is necessary. More importantly, VE 

tasks representing ADLs must show a relationship to performance within the home environment. 

To date there have been no follow-up studies to provide evidence for sustained transfer of 

training to the home environment. 

1.3 Motivation: VE System Design Confounds and System Benchmarks 

Although it seems as if we are close to proving the efficacy of VE as a training tool for 

persons with TBI, one must bear in mind that VE technology is also a basic research tool (Tarr & 

Warren, 2002). As such, it is imperative that basic researchers ensure that the VE technology 

provides reliable and valid measures of user performance prior to empirical testing.  There are 

several technological and computer graphics issues that lead to degraded perception in VEs that 

may confound VE rehabilitation assessments (Fidopiastis, Fuhrman, Meyer, & Rolland, 2004). 

For example, micro displays within the head-mounted display (HMD) typically limit the user’s 

visual resolution acuity. Further, HMD optical systems with a single imaging plane in many 

instances degrade the user’s ability to utilize depth cue information such as natural 
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accommodation and convergence mechanisms associated to the human eye (Wann, Rushton, 

Mon-Williams, 1995). The resultant visual perceptual errors have the potential to distort 

experimental results, including those obtained from brain imaging. 

Stanney (1995) makes the point that task characteristics will affect user outcomes in VE 

applications. Within the context of human and machine interaction, tasks are subjective units of 

work that can change the user’s performance based on actions needed to initiate, change, or stop 

system specific states (Christensen, 1993). Task characteristics also determine the level of 

realism, immersion, and overall detail necessary to achieve the desired training effect. For 

example, pain management and exposure therapies using VE technologies do not demand high 

levels of graphical detail or realism to achieve positive behavioral outcomes (Rothbaum & 

Hodges, 1999; Hoffman, Patterson, Carrougher, & Sharar, 2001). However, rehabilitation 

protocols for assisting persons with spatial neglect should ensure that distortions of shape and 

size constancy, as well as depth errors caused by the VE technology are controlled or at least 

understood prior to therapy and experimentation. Thus, how does one design a confound-free 

virtual rehabilitation environment utilizing current Human Factors assessment protocols? 

Over the past 10 years researchers within the Human-Computer Interaction (HCI) 

community have proposed varying VE systems design approaches including those that focus on 

perceptual issues (Wann & Mon-Williams, 1996; Fencott, 1999), usability defined as ease of use 

and utility (Kaur, Maiden, & Sutcliffe, 1999; Bowman, Gabbard, & Hix, 2002), or combined 

perceptual and usability models (Stanney, Mourant, Kennedy, 1998; Stanney et al., 2003). 

Stanney (1995) contended that human sensory and motor physiology may prove a limiting factor 

in some aspects of VE design. These limitations are accentuated by the sensory and motoric 

impairments of some person’s with TBI. Thus, within cognitive rehabilitation VE applications, 
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user characteristics must be separated from technology limitations (e.g., low display resolution) 

to ensure meaningful empirical results. Separating the human component from the engineering 

component may prove difficult (Kalawsky, 1993, p. 43). Melzer and Moffit (1997) tried to 

address this issue by applying similar user-centered methodologies to head-worn display (HWD) 

design cycles. As more technology providers (e.g., haptic devices) follow, convergence between 

the engineering and user requirements will simplify the VE design decision making. However, 

benchmarks addressing user sensory capabilities across separated and integrated technologies are 

necessary when evaluating performance of person with TBI. These benchmarks are critical to 

evaluating negative adaptation effects as well as positive transfer of training.  

Currently, usability tests lack appropriate sensory tests (vision, auditory, smell, and 

touch) to provide accurate benchmarks for VE systems (technology, computer graphics, and 

user). In this work, we propose a vision test battery that quantifies key components of the human 

image processing system (e.g., resolution visual acuity and depth perception). The results of such 

a battery should provide basic and applied vision parameters for the total VE system, which 

allow for appropriate benchmarks and performance evaluations that control for visual errors 

(e.g., distorted depth) within cognitive rehabilitation applications. Additionally, the methodology 

outlined for test design could be extended to other modalities, empowering rehabilitation 

therapists with a more reliable training tool capable of discerning positive retraining from VE 

system artifacts. 
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1.4 Research Summary 

The overall thesis of this research is that user-based sensory system testing is necessary 

for benchmarking VE system performance, especially for applications designed for use with TBI 

populations. For example, egocentric and exocentric distance judgments are both under and 

overestimated in virtual environments (VE) compared to the real world. How would this depth 

error affect the performance of stroke patients exhibiting hemineglect or failure to orient to one 

side of space (Myers & Bierig, 2000)? Would there be negative adaptation effects as a result of 

the VE exposure? Without norms and baselines for visual performance within the VE system, the 

potential for confounds in the results obtained from the VE rehabilitation application are 

heightened.  

Researchers have reported three main factors that contribute to distance judgment errors: 

head mounted displays (Rolland, Gibson, & Ariely, 1995; Rolland & Fuchs, 2001; Witmer & 

Sadowski, 1998; Willemsen & Gooch, 2002), computer graphics (Robinett &  Rolland, 1992; Hu 

et al., 2000; Loomis & Knapp, 2003), and human perceptual issues (Rinalducci, 1996; Surdick, 

Davis, King, & Hodges 1997, ). Given these multiple points within the VE system, how does one 

pinpoint weaknesses in the system setup? Technology and software are now available from the 

ODALab at the University of Central Florida to create a VE test environment capable of 

quantifying both near and far field vision errors using a VE systems approach. The resulting 

vision test battery is a cross platform assessment tool that can determine weaknesses in the VE 

system design and pinpoint technology that may potentially degrade user performance.   

In this work we evaluate VE system performance utilizing two modules of the vision test 

battery, resolution visual acuity and stereoacuity. We hypothesize that user specified visual 
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perceptual issues (i.e., dark convergence) may influence visual performance and may contribute 

to the individual variation seen in previous literature. Additionally, the effects of using a see-

through helmet-mounted display for simulation in near space on distance judgments will also be 

evaluated. One capability of the newest HMD is an adjustable image depth plane of .8, 1.5, and 3 

meters. This feature will allow us to study the effects of accommodation and convergence 

decoupling on depth perception without the constraints of collimated displays. The ultimate goal 

of such endeavor is to enhance transfer of training from simulation to real world tasks. More 

specifically, this work lays the foundation for advancing VE rehabilitation protocols for persons 

with TBI.  

Although giving insight to wayfinding and complex tasks of navigation, this work does 

not specifically address this research domain. Further, although we limit this discussion to 

completed modules of the test battery, the full battery is outlined. We propose an extension of 

this work to mixed reality designs within a cognitive rehabilitation scenario in the future works 

section.  

1.5 Dissertation Outline 

 The rest of the dissertation is organized in the following manner: Chapter 2 provides an 

overview of previous work in human factors and VE system design, focusing upon human 

performance issues. The summaries present assumptions, methodology, and outcomes of 

pertinent work in the field. We extend these design criteria to VE based cognitive rehabilitation 

applications.  

Chapter 3 describes background and concepts related to VE system hardware and 

software that affect the user’s visual perception. Within this chapter an overview of pertinent 
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features of the human visual system are discussed. As well, VE systems are further qualified by 

HMD and Computer Graphics related properties. For HMDs, optical imaging will be explained 

in addition to the importance of eye point location when evaluating system performance 

(Rolland, Ha, & Fidopiastis, 2004).  

 Chapter 4 gives an overview of the design of the vision test battery by first describing 

current vision tests. Noted factors affecting vision (e.g., lighting and dark focus) are discussed in 

order to provide a context and a foundation for the experiments described in Chapters 5, 6, 7, and 

8. 

 Chapter 5 describes a calibration procedure for the see-through head mounted display 

used for the experiments outlined in Chapter 7. 

 Chapter 6 describes the experimental rationale, methods, experimental design, results, 

and conclusions for an experiment addressing the several questions pertaining to the design of a 

vision test that assesses resolution visual acuity. In general the main questions asked are: 1) How 

sensitive and reliable is the vision test at determining the resolution visual acuity of the VE 

system  and 2) do factors such as contrast and other environmental lighting conditions effect the 

participants resolution visual acuity in the VE. 

 Chapter 7 describes the experimental rationale, methods, experimental design, results, 

and conclusions for an experiment addressing the two questions: 1) how adaptable is the test 

battery to use with different HMDs and 2) does dark focus accommodation affect a VE 

participant’s perception of depth? 

 Chapter 8  builds on the results of the dark focus experiment adding dark convergence as 

a predictive metric and utilizing these metrics as potential control parameters in the study of 

decoupling accommodation and convergence across three image planes (.8, 1.5, and 3 meters). 
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The three image planes also correspond to the three viewing distances, expressed in millimeters, 

used in the experiment. Hypotheses, methods, experimental design, results, and conclusions for 

this experiment are given. 

 Chapter 9 describes a unique approach to designing mixed reality environments for 

testing transfer of training with person’s with retrograde amnesia. The study also illustrates the 

need for vision assessment prior to VE retraining for persons with multiple impairments.  

 Chapter 10 summarizes the results and contribution of the work to the field.  In addition, 

we discuss how this work is extended to mixed reality designs where real and virtual objects are 

collocated within the VE. Finally, future work utilizing a see-through head mounted display 

within the mixed reality rehabilitation environment is discussed.  
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CHAPTER 2 VE SYSTEM DESIGN METHOD APPLIED TO COGNITIVE 
REHABILITATION 

In this section, we provide an overview of previous research in the field of Human-

Computer Interaction as it pertains to VE system design. We attempt to extend this work to 

support cognitive rehabilitation VE designs that require performance baselines. We discuss the 

approaches, measurements, and guidelines of the chosen design assessments, providing support 

for the proposed work outlined in this thesis.  

2.1 VE System Design: Overview 

 As described by the International Standard ISO13407, the Human-Centered Design 

Process for Iterative Systems has four main components (Stedmon & Stone, 2001): 

1) Understand and specify context of use involving the users, the computer-based 
system under design, and the environment within which it will be utilized 

2) Determine the functional relationship between users and technology 
3) Iterate design solutions including user testing at each stage of design and 

implementation cycle 
4) Seek input from a multidisciplinary team (e.g., software engineers, human factors 

specialist, ergonomists, etc.) to ensure safety while maximizing performance 
 

Within the user-centered design paradigm, usability evaluation is a key component. According to 

Preece, Rogers & Sharp (2002), the main goals of usability within the design cycle are to ensure 

1) system effectiveness: meets its specified use; 2) efficiency: supports the tasks; 3) safety: 

protects user from adverse effects, including negative training; and, 4) utility: meets the required 

goal (p. 12). However, extending usability metrics from graphical user interface design (GUIs) 

and web-based applications to virtual environment design has not proved satisfactory (Hix & 

Gabbard, 2002; Bowman, Gabbard & Hix, 2002).  
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 Kaur, Maiden, & Sutcliffe (1999) outlined a possible methodology for applying 

theoretical frameworks to assess interactions within an immersive VE. They created a hypertext 

tool to assess objects, actions, and system controls within an immersive VE.  Figure 1 diagrams 

the VE design stages determined by empirical evaluation. This general model commonly sited in 

the literature omits cognitive processing models as well as sensory criteria to understand 

interactions at a more top level (Kaur, Maiden, & Sutcliffe, 1999). The generality and top level 

approach may not be appropriate for the needs of designing some VE applications utilized for 

cognitive rehabilitation, which may require multimodal sensory baselines to assist in determining 

effects of training as well as mediating adaptation effects.  
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Figure 1 VE system design stages modeled after Kaur, Maiden, and Sutcliffe (1999). 
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 Stanney et al. (2003) designed an automated systematic software tool which integrated all 

current recommendations for usability engineering as it pertains to VEs. The Multi-criteria 

Assessment of Usability for Virtual Environments (MAUVE) included design considerations 

which evaluated multimodal output capabilities as well as cybersickness and aftereffects. 

Following Gabbard, Hix, & Swan (1999), these criteria were broadly qualified under headings of 

VE system interface (e.g., technology and software) and VE user interface (e.g., sensory and 

psychological). Although extendable, the MAUVE system currently cannot evaluate criteria 

listings for VE designs for cognitive rehabilitation protocols. Also, there are no quantitative 

metrics evaluating or comparing sensorial throughputs as benchmark criteria for the different VE 

system interface recommendations.   

 Bowman, Gabbard, & Hix (2002) proposed an alternative method of usability 

classification accounting for the VE type (i.e. general testbed or specific application), the 

necessity of human evaluators, and the testing output (i.e., quantitative or qualitative metrics). 

The performance results of a testbed usability evaluation are more generic and lend to more 

universal guidelines for VE design. For each specific application, a sequential evaluation 

approach is suggested (Gabbard, Hix, & Swan, 1999). This evaluation method employs usability 

methods such as cognitive walkthrough whereby the user steps through the VE required tasks; 

formative evaluation where users provide quantitative and qualitative assessments; and 

comparative evaluation which is a statistical evaluation of two or more VE system 

configurations.  

 Because of its ease and cost effectiveness, a sequential evaluation approach was chosen 

as the usability assessment for constructing the mixed reality kitchen reported in detail in 

Chapter 9. Sensory benchmarks are currently not a component of either usability evaluation. 
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However, researchers have used the VE testbed approach to study human performance aspects of 

usability, including some perceptual metrics (Lampton et al., 1994; Bowman, Johnson & 

Hodges, 2001; Griffiths, Sharples & Wilson, 2006). 

2.2 Human Performance Metrics and Method 

 Travis, Watson & Atyeo (1994) argued that user performance criteria should drive VE 

design to avoid over designing the application with useless and expensive sensory devices (p. 

53). Wann and Mon-Williams (1996) additionally argued that the user’s perceptual-motor 

capabilities should provide the foundation for VE system design. These capabilities should be 

evaluated within the context of user tasks. Wann and Mon-Williams made the point that basic 

research has not completely elucidated the workings of our sensory organs, including the visual 

system (p. 833). They successfully argued that the term “virtual reality” was an oxymoron and 

should be replaced by the term “virtual environments” (see also Kalawsky, 1993, p. 7). Within 

this construct, veridical representations of some aspects of the real world are unnecessary for VE 

applications. One component of the real world that should remain consistent is the representation 

of three-dimensional space.   

 According to Wann and Mon-Williams (1996), the perception of three-dimensional space 

is a defining element of VEs along with the potential for interaction (p. 833). Space perception is 

the ability to visually perceive the spatial layout of our three dimensional world. As such, 

perception of space is an output of the sensory processing of visual information (Cutting, 1997). 

Two properties of visual space perception are direction and distance with reference to the 

observer (Hershenson, 2000). Wann and Mon-Williams (1996) contended that the ultimate goal 

of correctly represented space was to support navigation and exploration about the space and 
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manipulation of object contained within the space. Lampton et al. (1994) utilized these 

components as the basis for their VE Performance Assessment Battery (VEPAB).  

2.2.1 Virtual Environment Assessment Battery (VEPAB) 

 VEPAB was constructed 1) to determine minimal trials necessary for achieving 

competency at interacting within VEs; 2) to identify system component limitations (e.g., effect of 

low display resolution on task performance),  and 3) to quantify incidences of cybersickness and 

negative aftereffects. Participants performed a range of activities providing feedback for task 

categories such as vision (e.g., recognition visual acuity), locomotion (i.e., walking or flying), 

manipulation (e.g., turning dials), tracking (e.g., moving the input device) and reaction time (i.e., 

target location).  The choice of utilizing generic tasks was to maintain baseline performances 

longitudinally as new technologies were introduced over time.  

 Main results showed that for the low resolution (234 horizontal lines by 238 pixels per 

eye) Virtual Research Flight Helmet used, participants experience the equivalent of 20/860 

resolution acuity, where normal acuity is 20/20 or one arc minute. Also, participants were less 

accurate at determining closer distances in the VE than those farther away. This effect was not 

noted in real world viewing. Only one person experienced acute sickness symptoms and no after 

effects were reported. Performance on locomotion tasks involving turns required many trials to 

demonstrate improvement levels capable of supporting more complex tasks such as tactical 

decision making. This result supported the authors’ claims that novice versus expert differences 

in interacting with VEs may hinder training. Several criticisms of this testbed approach are: 1) 

the interaction tasks were not chosen within a formal framework such as creating taxonomies of 

possible interaction combinations; 2) outside factors such as spatial ability of users’ were not 
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accounted for (Bowman, Johnson, & Hodges, 2001); and, 3) the presentation of tasks were too 

rigid to allow for clear distinction between novice versus expert users (Griffiths, Sharples, 

Wilson, 2006).  

2.2.2. Structured Approaches 

 Griffiths, Sharples, & Wilson (2006) developed a performance assessment tool to classify 

participants as novice or expert VE users. This integrated application tool established baseline 

metrics on simple navigation interactions such as turning corners and moving backwards and 

forwards within a maze. Also, the object manipulation task took place on a virtual international 

space station. These activities are similar to those performed in the VEPAB; however, the 

performance metrics chosen were meant to function as if in a game with multiple levels of 

difficulty. The design of such a testing environment required a systematic design cycle (Wilson, 

Eastgate, & D’Cruz, 2002). Although portable, this application is based upon immersive VE and 

may not translate well to other types of head-worn displays that require different setting for field 

of view and interpupillary eye distances. The design cycle approach seems quite extendable to 

cognitive rehabilitation paradigms.  

 Bowman, Johnson, & Hodges (2001) applied a strict testbed approach to the assessment 

of human performance in VEs. Their purpose was to evaluate all possible types of general or 

universal interactions (e.g., different ways to select an item in 3D space) utilizing a taxonomy of 

interaction techniques to classify and guide the testing procedures. The top level of the taxonomy 

hierarchy represented the general manipulation and selection techniques followed by the specific 

subclasses of the interactions (e.g., object orientation). These distinctions were further qualified 

by technique of user response (e.g., turn dial). User ability (e.g., spatial ability) and system 
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characteristics (e.g., binocular viewing) were also taken into account. The response variables 

were then statistically compared. However, the system characteristics were included as 

categorical variables and were not further quantified with respect to the user. Baseline 

performance within and between integrated technologies might not account for individual 

differences or interactions involving persons with disabilities.  

2.3 VE System Design with Clinical Populations  

 Cost is one prohibitive aspect to the design and the assessment of VEs for cognitive 

rehabilitation.  In addition to the technology (display, tracker, haptics, etc), software, application 

development, and maintenance are additional expenses.  Most applications for cognitive 

retraining require custom applications (Weiss, Rand, Katz, & Kizony, 2004).  However, there is 

some evidence that when designed correctly base VE platforms can be validly and reliably 

applied across therapy scenarios (Rizzo et al., 2006). 

  Rizzo, Buckwalter, & Van der Zaag (2002) first outlined design criteria for VE 

applications created for clinical populations. Cost-benefit analysis guided by the rule of “elegant 

simplicity” motivated therapists to consider the necessity of a VE solution in lieu of currently 

available methods (p. 1047). “Good Fit” assessments determined how well the VE solution 

presented real world attributes in a more controlled, repeatable manner that allowed for 

comparable results over treatment effects (p. 1048).  This point raises an important issue: VE 

solutions for cognitive rehabilitation are mostly designed to capture data necessary to evaluate 

levels of cognitive function or transfer effects pre and post rehabilitation. As such, they are 

inherently guided by experimental design and scientific principles. Yet, there are no standardized 



23 

methodologies for creating virtual rehabilitation environments, which leads to redundancy of 

systems and platforms.  

 Lack of standardization also makes comparisons across research endeavors difficult 

(Moreira da Costa & Vidal de Carvalho, 2000).  The use of open source applications is a possible 

solution; however, understanding which capabilities (e.g., 3D audio) a VE must possess to 

accomplish successful retraining and transfer is still an open question.  Transfer of training and 

monitoring aftereffects may require a modifiable multimodal testbed, which fits the needs of the 

various rehabilitation protocols.  

 While HCI guidelines are important, their goals and methods may change to 

accommodate for the sensory and perception deficits of this user population.  For example, 

persons with retrograde amnesia may not remember their VE exposure even 10 minutes post 

training. Questionnaires or verbal report methods may not be appropriate for this population; 

however, procedural tasks that support motor memory may prove useful. We experienced these 

design issues when constructing the mixed reality kitchen described in Chapter 9 and propose 

design guidelines for this population. Thus, VE design for cognitive rehabilitation must match 

research concerns with the comfort, the safety, and the acceptability of the user. Research and 

safety constraints may be best satisfied with baseline metrics representing both clinical and 

unimpaired populations.  

2.4 Moving Forward: Sensorial Baselines in the VE Design Cycle 

 If three-dimensional space representation is the hallmark of VEs (Wann & Mon-

Williams, 1996) and if individual differences account for more variability in user performance 

than system design factors (Kaber, Draper, & Usher, 2002), then why are there no 
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comprehensive test batteries that attain baselines for different sensory modalities? System 

characteristics (e.g., low contrast displays) under certain conditions degrade sensory information 

(e.g., brightness or contrast), thus distorting natural spatial relationships and movements within 

the VE. This distortion lends to misperception of the VE elements, limiting its usability. Thus, in 

some instances, beginning usability assessment at such a high level may misrepresent actual user 

performance. User individual differences such as those found within the heterogeneous TBI 

population (e.g., vision loss along with memory impairment) work in conjunction with the 

already perceptually degraded VE. In this case, individual differences and VE system 

characteristics are not independent factors and may lend to negative aftereffects and 

cybersickness. For example, Webb and Griffin (2002) found that low visual acuity might be a 

factor in motion sickness experienced in virtual simulations. Screening participants for low 

visual acuity may be important for some VE applications.  

 The Virtual Reality Test Battery for Virtual Reality Users (Howarth & Costello, 1997) 

was developed for the purpose of quantifying the changes in human perception after exposure to 

fully immersive VEs.  The battery included a visual acuity measure for low (18%) and high 

(90%) contrast visual acuity. The researchers tested for changes in visual acuity over a 20-minute 

period of full immersion and found no significant changes. One of the major oculomotor changes 

observed after VE exposure was that of heterophoria, shifts from normal resting eye position that 

may create double vision (Howarth, 1999).  

 Researchers determined that the mismatch between the inter-screen distance (distance 

between the two displays within a HMD) and the interocular distance (distance between the 

centers of rotation of two eyes) caused the change in normal resting state position of the two 

eyes.  Manufacturers of one HMD, Virtual i-glasses, worn during the experiment expected this 
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ocular change due to the optical design. However, most HMDs do not offer adequate 

documentation to determine these types of effects. In Chapter 5, we report on how a vision test 

can determine issues relating to lens tilt and misalignments of the ocular pieces within a see-

through projection display.  

 Further, we have shown the added value of employing user-centered design methods 

during the design cycle of HMDs (Fidopiastis et al., 2005). The vision tests created are 

extendable to the general VE Design cycle in that they can predict user performance as to what 

the users can see and how well they can see it (Davis, 1997; Robinett & Rolland, 1992). Given 

vision baselines, one can perform higher level usability tests with the confidence that the 3D 

virtual space is perceived correctly and appropriately accounts for individual differences of the 

user. Including such metrics when designing virtual rehabilitation spaces is paramount to the 

successful evaluation of the remediation techniques employed as well as ensuring the safety of 

the head-injured participant.  

 Although we only report on a vision test battery in this work, we propose that sensory 

testing should occur after the VE scope has been defined and the task analysis is performed. 

Thus, appropriate technologies can be compared if either a testbed or a specific application 

usability study is performed. The proposed design flow is outlined in figure 2. In any case, the 

sensorial baselines are collected prior to administration of higher order tests such as the VEPAB. 

Then, the framework for the VE can be appropriately constructed followed by iterative testing. 

The final VE design should provide the validity and reliability required by cognitive 

rehabilitation protocols and the extensibility to apply to more than one rehabilitation scenario.  
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 In Chapter 3 we outline HMD characteristics that lead to the development of the two 

vision modules. These technology parameters are discussed with respect to the human visual 

system. Then, in Chapter 4, we describe how the vision tests were developed.   
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Figure 2 Proposed interactive iterative VE design cycle including sensory performance metrics 
for establishing baselines within a cognitive rehabilitation VE.  
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CHAPTER 3 FROM OBJECT SPACE TO VISUAL SPACE: OPTICS, 
COMPUTER GRAPHICS & PERCEPTION 

 In a review of the VE applications used in cognitive rehabilitation protocols, Rose, 

Brooks, & Rizzo (2005) noted that the field is rapidly expanding from solely assessing cognitive 

abilities such as executive dysfunction (impairments in sequencing and organizing behavior) to 

include rehabilitation training programs. This extension is now viable given the reduced cost of 

technology that was once considered as high-end (e.g., dual computer processing units) and 

advances in graphics technology (e.g., separate graphics card processing units). There are also 

off-the-shelf software programs such as Vizard made by WorldViz® that allow for easy virtual 

world construction. However, to extend current specific applications of cognitive assessment to 

training programs requires a more involved strategy of interactive design. It is imperative to 

understand the multimodal interactions between the human user and the technology components 

supporting the VE application.  

 For example, Duh et al. (2002) outlined scene characteristics that may influence user’s 

perception of the virtual spatial layout. More specifically, the researchers were interested in 

discerning characteristics of the VE that elicited a sense of presence or the subjective experience 

of participating within the VE, while physically situated in physical space (Witmer & Singer, 

1998). The VE was created utilizing a Kodack DPI 100 projector (1024x768 pixel resolution) 

and a 3ft dome (180 x 180 deg. FOV). A high resolution fountain scene and a simple radial 

pattern, both (600 x 600 dpi), were chosen as exemplars of complex and simple scenes. The 

researchers varied users’ field of view (FOV), scene resolution, and scene complexity. 

Participants’ changes in posture were measured from a balance platform.   
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 The results showed that participant’s postural stability was negatively affected by 

increasing FOV. The authors speculated that the increased peripheral stimulation caused the 

postural disturbances experienced by their participants. This result supports the functional 

sensitivity hypothesis suggested by Stoffregen (1985) whereby perceived self motion is mediated 

by the different processing capabilities of the cones in the fovea and the rods in the retinal 

periphery. Further, more complex scenes presented with a large FOV caused the most postural 

instabilities in healthy participants. Although these findings must be replicated across display 

devices, these results are disconcerting for participants who present with vestibular imbalances 

or visual field cuts due to TBI. Exposure therapy utilizing VE technology is a promising 

rehabilitation strategy for persons with vestibular impairments (Whitney et al., 2002). However, 

often therapists are not always aware of such residual effects of the brain assault until the 

participant is already engaged in a therapy routine. Screening participants prior to VE exposure 

may assist in limiting negative aftereffects as well as lost data from empirical studies.  

3.1 User-Centered HMD Design Cycle  

 Head-mounted display (HMD) system designers are well aware of the perceptual 

limitation imposed by the HMD on the VE user. Robinett & Rolland (1992) discussed 

problematic aspects of HMD optics for idealized observers. Nemire & Ellis (1993) extended 

Robinett & Rolland’s work to account for errors caused during real world viewing conditions. 

Rolland, Gibson, & Ariely (1995) described procedures to quantify visual errors and propose a 

system calibration procedure for HMD users. Finally, Melzer and Moffit, (1997) suggested that 

user-centric design principles should be integrated into the HMD design cycle.   
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 Eggelston (1997) outlined the interdependencies of HMD properties, computer graphics 

techniques, and their combined effects upon the user’s perception of the VE (p. 41). Figure 3 is 

an adaptation of Eggelston’s user performance model. More specifically, the model illustrates 

how errors in the hardware (HMD optics and display) and software (Computer Graphics) impact 

the user’s ability to correctly perceive the constructed VE space. However, the user also 

contributes his or her individual differences in perceptual abilities (e.g., spatial processing) to the 

overall error. Thus, the model must include a user perception to image level interaction.  

 

 

 

 

  

 

 

 

 

 

 

 

  

Figure 3 Modified user-centered approach to the head-mounted display design cycle adapted 
from R.G. Eggelston (1997). User-centered design in the trenches. In J.E. Melzer & K. Moffit 
(Eds.) Head Mounted Displays: Designing for the user.  
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 From the user-centered design model it can be seen that the HMD designer is not only 

responsible for usability from a user’s perspective, but from the software perspective as well. 

The graphics designers seem more concerned with rendering the three-dimensionality of the VE 

spatial layout. However, best practices of computer graphics techniques as applied to different 

types of HMDs would be useful in the design process. 

 The remainder of this chapter is organized by first describing the evolution of the design 

cycle for the Head-mounted Projection Display (HMPD) used in these experiments.  The design 

cycle follows the recommendations of the field in assessing the prototype HMD from both the 

object space (e.g., space measured with rulers) and the visual space (e.g., the psychological space 

of the user). We then discuss the computer graphics component of the VE system and its 

interrelationship with the HMD and user. Embedded within each of these discussions are user 

constraints based on the human visual system. The human visual system will be discussed as it 

pertains to each section and then will be expanded upon to account for individual differences that 

are not accounted for by the HMD or software design cycle.  

3.2 General Optical Design Issues 

 HMD designers (Task, 1997) are concerned with limits in HMD parameters such as 

display resolution (image quality), field of view (information quantity), and contrast (light 

intensity changes). Such parameters may be quantified by purely engineering means where the 

eye is replaced by a camera (Speck et. al, 2000) or by user-centered methods. The advantage of 

the former is speed of measurement, and that of the latter is a more comprehensive evaluation of 

the system as it applies to task requirements. User-centered testing during the prototype phase of 

display development has the added benefit of reducing design errors, which in turn tend to 
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reduced development costs. Additionally, performing user-centered assessments over the full 

design cycle, allows for benchmarking, and thus a means of optimizing the VE system as a 

whole. Methodologies for applying user-based assessments are difficult since computations are 

based upon different characteristics of the human eye (e.g., resolution visual acuity).  

3.2.1 HMD Optical Parameters in Object Space 

 The aim of this section is to introduce the reader to common aspects of the HMD design 

cycle and how they relate to the human visual system. Although head-worn displays (HWD) 

come in many varieties, we are limiting this discussion to those displays that mount two 

miniature visual displays onto the user’s head via a headband or helmet (Rolland & Hua, 2005). 

A more comprehensive and current review of HWDs can be found in Cakmakci & Rolland 

(2006).  

 Milgram & Kishimo (1994) categorized display systems based upon the Reality-

Virtuality continuum whereby immersive HMDs visualize a computer generated world while 

see-through displays allow for visualization of a mix of real world and virtual objects. Although 

the VE design may require a mixed reality construct, the concern of typical HMD design is 

optimizing object space parameters of the image. As such, the assessments do not account for 

aberrations of the human eye or the neural processing that occurs from the retina to the visual 

cortex (Cakmakci & Rolland, 2006). Table 1 illustrates the main HMD parameters and their 

human visual system correlate.  

 As Table 1 illustrates, the human eye is a highly adaptable optical instrument that can 

adjust automatically to task demands and continue to perform optimally under varying conditions 

such as lighting and near or far viewing distances. In contrast, HMDs must be constructed from 
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materials that are not as flexible as those of the human eye and are thus limited in adaptability to 

scope of the task requirements. 

Table 1 HMD parameters compared to the human visual system correlate. HMD parameters are 
adapted from Cakmakci & Rolland (2006) and Rolland & Hua (2005). The HMD parameters 
also vary dependent on task requirements.  

 

HMD Parameters 
(Typical Values) 

Human Visual System 
(Typical Values) 

Monocular Field of View: 20◦ to 65◦ 
Binocular Field of View: 20◦ to 110◦ 

Monocular Field of View: 160◦ horizontal 
Binocular Field of View: 200◦ horizontal  

Image Quality: 2.0 to 4.1 arc min Visual Acuity: .8 arc min in fovea 

Exit Pupil: 12 mm Pupil: 2 to 10 mm depends on lighting conditions 

Luminance Range: 50 – 1000 cd/m2 Brightness: Scoptic 10-6 to 3 cd/m2 
                   Photopic > 3 cd/m2 

Image Focus: Fixed Accommodation: Dynamic and Cornea + Lens 
have a combined power of 58.6 Diopters 

Eye relief: 15 – 50 mm Eye Glasses imposed ER ≥ 17 mm 

Optical separation between the L and R 
lenses , 55 mm to 75 mm based on IPD of 
user 

Interpupillary Eye Distance (IPD): Distance 
between the two eyes, 55 mm to 75 mm  for 95% 
of Asians, Caucasians, and African Americans 

  

 For example, Field of view (FOV), as it relates to the HMD, is the angle subtended by the 

virtual image created by the HMD display as viewed by the observer when positioned within the 

HMD eyebox, or pupil (Task, 1997, p. 60). For VGA resolution, text-based displays may be 

monocular and require a FOV less that 40◦ to provide sufficient visual acuity (Cakmakci & 

Rolland, 2006). In contrast, more advanced tasks (e.g., navigation) may require a FOV of more 

than 60◦ to support the task requirements. The critical properties of HMDs in general that 

determine FOV are the size of the HMD imaging element and the focal length of the optics.  

 More specifically, for a given focal length and a larger imaging element, the FOV 

enlarges. Additionally, for a given FOV, a larger the microdisplay requires a larger the focal 
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length and near elements in the HMD design. A further constraint on the HMD FOV is the size 

of the exit pupil. The exit pupil of the system will be inversely proportional to the F-number of 

the optics. From an optical design approach, the larger the F-number, the least elements required 

to reach a given image quality. Thus, the larger the pupil size, the more difficult the design 

becomes.  

  The exit pupil of the optical system is the entrance pupil of the human eye, which ranges 

in diameter (2 to 10 mm) with changing illumination levels in the environment in photopic to 

scotopic ranges. In so doing, the pupil limits the light reaching the retina as a protective 

mechanism and changes the depth of field or the distance interval where near and far objects stay 

in focus without changing optical power (Pedrotti & Pedrotti, 1998, p. 171). Optical power for 

the human visual system is obtained through the process of accommodation or the change in lens 

shape as the observer fixates upon near or far objects. In optics terms the pupil can be considered 

as a true aperture stop (adjustable diameter that limits the amount of light entering an optical 

system) since it does not affect the FOV of the eyes (Roorda, 2002, p. 540).  The adjustments of 

the pupil are automatic and dynamic in response to the changing visual environment. 

 In order to see the complete range of the HMD FOV, the observer must view the 

displayed scene within the diameter of the HMD exit pupil (Task, 1997).  The exit pupil must be 

sufficiently large to account for eye movements necessary for the eye to focus on relevant parts 

of the visual scene. However, an adequate eye clearance and a large exit pupil size are 

challenging design constraints since they require a larger diameter optical lens, which typically 

requires more optical elements and thus adds bulk to the overall HMD design at a fixed image 

quality specification (Rolland & Hua, 2005, p. 6). Figure 4 illustrates the typical HMD FOV as it 

relates to the FOV of the human visual system. The image source responsible for HMD 
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brightness is the microdisplay element. More importantly, the microdisplay also limits the 

resolution capabilities of the HMD. 

           

Figure 4 Typical HMD FOV values overlaid are typical FOV values for the human visual 
system. Used with permission Rizzo, A.A & Kim, G.J. (2005). A SWOT Analysis of the Field of 
Virtual Rehabilitation and Therapy. Presence 14(2): 119-146. 

 

 Microdisplays are typically less than 1.5 inches in diagonal and despite their size must 

provide the brightness and the resolution to meet the vision requirements for the chosen 

application (see Rolland and Hua, 2005 for a more complete review of microdisplays). Currently, 

the most common microdisplay being considered for the cognitive rehabilitation community is 

the OLED or organic light emitting diode. Because the OLEDs are self-emissive they require 

less power and can be made without a backlight, which reduces its thickness. The lag between 
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the input to the pixel and the pixel response is less than 1 ms and provides uniform brightness 

across the display. The life span of these displays is less than 10,000 hours, which is less than 

any other microdisplay type. Despite the decreased life span, the allure of utilizing OLEDs is the 

potential to increase the number of pixels per degree of visual angle, which corresponds to the 

display resolution. Imaging technology known as photonics displays will likely compete on the 

market for HMD microdisplays given the ultra high resolution (e.g., 5 µ pixels) and brightness 

compatible with outdoor illumination under bright sun (Milliez, 2006) 

 Image quality for the HMD is best quantified by measuring the average subtense of a 

single pixel in either the horizontal or vertical dimension after being magnified by the optics. 

This resolution value can be easily compared to that of the human visual system. From Table 1, 

the average resolution of common microdisplays is 3.5 times less than that of the human eye. In 

more common Snellen acuity units, a person performing tasks while wearing such a display is 

operating at 20/70 acuity, as opposed to 20/20 acuity within the real world. Thus, there is also a 

trade off between HMD FOV and human visual acuity (VA) or the ability to resolve fine detail. 

More specifically, by increasing the HMD FOV without increasing the number of pixels, the 

magnified pixel reduces image resolution, thereby decreasing VA of the user. Visual acuity is a 

visual space parameter that has only recently been added as an assessment parameter in the 

HMD design cycle. 

3.2.2 HMD Optical Parameters in Visual Space 

 The importance of assessing HMD image quality in visual space was stressed by Ha and 

Rolland (2002). Because of the novelty of their approach custom designed macros to extend lens 

design software were created. Their approach aimed to provide exact computations of metrics 



37 

typically used to quantify defocus in the human image processing in an attempt to provide better 

guidelines for human factors usability studies. The metrics most relevant to this discussion are 

astigmatism, accommodation shift, and Modulating Transfer Function (MTF).  

 Optical aberrations due to defocus such as astigmatism (unequal focusing of light in the 

perpendicular direction through the display) and accommodation shift (defocusing across the 

FOV) are optimized taking into account visual acuity and depth of field of the human observer 

(Ha, & Rolland, 2002). The MTF is a method of evaluating the change in contrast modulation 

(changes in luminance) due to the effects of optical aberrations over varying sinusoidal 

frequencies, thus obtaining an overall image quality indicator (Rabbetts, 1998, p. 47). Separate 

MTFs accounting for the peak spectral sensitivity values for the human system (e.g., 555 nm) 

and differing pupil sizes were obtained. The MTF for the human visual system (555 nm spectral 

sensitivity and 3 mm pupil) suggests a 63 cycle/degree spatial frequency cut off (Westheimer, 

1986). Thus, scene detail presented below the cut off will not be in focus for the human observer. 

The ability to compare the HMD image quality with that of the human visual system is crucial to 

the development of benchmark measures that can guide the VE design process.  

3.2.3 Moving Forward: User Visual Performance 

 Thus far, the HMD assessment techniques discussed optimize the HMD image via 

computer modeling while accounting for the human visual system via analogous metrics and 

accepted reference values.  Fidopiastis, Fuhrman, Meyer, & Rolland (2005) extended the HMD 

image optimization procedure to include resolution visual acuity measures of actual observers. 

The methodology outlined by the authors took into account previous work that defined 

procedures to accurately render computer generated images as well as calibrate the HMD 
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(Rolland, Gibson, & Ariely, 1995). The results of these experiments are reported in Chapter 6. 

We further extended the work of Rolland et al. (2002) to include a test for stereoaccuracy and 

stereoacuity, both of which are measures of the quality of depth perception. The results of these 

experiments are presented in Chapters 7 and 8, respectively. The adaptation of the initial work to 

include human observers required an understanding of computer graphics techniques and their 

interaction with HMD characteristics as well as their effects on the user’s visual perception of 

the rendered scene. We present an overview of this work in the next section. 

3.3 Computer Graphics & Perception 

 Just as with HMD design, VE design considers the standard limits of the human visual 

system (e.g., visual acuity, contrast modulation, and stereoacuity) as minimal user requirements 

for optimal viewing of the VE scene (May & Baddock, 2002). However, some authors suggest 

that visual errors may be caused more by the graphical techniques used to define the spatial 

layout of the VE (Cutting, 1997; Ellis, 1993). Thus, even with a well designed and calibrated 

HMD, the VE may not support proper viewing conditions for successful task completion.  

 In computer graphics, different views from a virtual camera render the perspectives of a 

graphically displayed scene using perspective transformations. These calculations rely on 

Euclidean geometry and matrix algebra to transform a three-dimensional view of the “world” 

into two-dimensions and then, recover the z-axis or depth information to convert the image back 

into three dimensions. This transformation procedure foreshortens depth because information is 

lost along the z-axis (Foley, Van Dam, Feiner, & Hughes, 1995, p. 671). Cutting (1997) 

contended that any graphical system that relied on a camera and lens faces the same depth 

problem. For example, pictures taken with a longer lens will compress depth along the z-axis. 
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VE technology used to visualize computer graphics, such as HMDs, may compound the depth 

distortions. Robinett & Rolland (1991) recommended that the geometry of the computer 

generated scene must match the geometry of the HMD, namely the images must account for the 

relative position of the display screen, first order parameters and distortion, the optics and the 

eyes of the user. These recommendations are almost never cited in the literature on depth errors 

and stereoscopic HMD use.  

3.3.1 Software Design, HMD Requirements, & Eye Mechanisms 

 Most literature reviewed suggests that visual cues foundational to depth perception in VE 

lack realism, and thus possibly contribute to visual errors such as depth misjudgments (Sinai et 

al., 1999; Loomis & Knapp, 2003). There are several issues with the previous studies that should 

be noted: 1) computer graphics capabilities are different today than even 3 years ago; 2) there are 

new graphics techniques to provide more realistic viewing conditions; 3) none of the research 

documented a calibration procedure for ensuring that the graphics are presented correctly to the 

user, and 4) HMDs are cross compared without taking into account their performance limitations 

(e.g., FOV and resolution). As the literature on HMD design suggests, there are software 

solutions available to render depth more accurately within VEs. The recommendations outlined 

by Robinett & Rolland (1991) for ensuring that the rendered graphics support the geometry of 

the HMD are still relevant today.  

 Of the seven recommendations listed, the easiest to correct is measuring the 

interpupillary eye distance (IPD) or the distance between the two eyes as measured by the 

distance between the centers of the pupil. In many older model HMDs, the IPD was set to an 

averaged standard ranging between 63 and 65 mm. The exit pupil for these displays was either 
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sufficiently large (12 mm) to allow for eye movement or did not account for IPD differences 

among users. The IPD is important to vision because the offset position of the two eyes allows 

for binocular disparity, differences in viewpoint between the two eyes. Differences in image 

position on the retina can be in the horizontal or the vertical direction. Horizontal binocular 

disparity gives rise to stereopsis or the perception of three-dimensions (Steinman, Steinman, & 

Garzia, 2000). The IPD of the user should be set on the HMD and in the software.  

 A related issue is the depth plane of the virtual image and its effects on the 

accommodation and the convergence mechanisms of the eye. In many cases the image plane 

where the virtual world is rendered is set as a fixed distance from the user. This distance could 

range from action space (within arm’s reach) to infinity. When the image plane is set closer to 

the user, the lenses of the eyes accommodate (change their optical power) and converge (directed 

nasally or inward). In contrast, for objects rendered at infinity, the eyes are adjusted parallel to 

one another and the lenses adjust their curvature to a desired optical power. However, computer 

graphics techniques reduce the virtual cameras representing the user’s eyes to single fixed points 

or eyepoints. Thus, the depth of field for the virtual camera is set at infinity; therefore, all objects 

in view are in focus. Further, the 2D planes onto which the three-dimensional virtual objects are 

mapped must be level and perpendicular to cameras to define the straight-ahead direction (Angel, 

2003).  

 Wann, Rushton, & Mon-Williams (1995) suggested that there are several potential issues 

involved with these rendering constraints. First, if all virtual objects are in focus within the active 

viewing area of the VE world, then the main cue for accommodation, namely retinal blur is 

absent. Second, the mechanisms for accommodation and convergence are linked and reciprocally 

exert influence upon each other as the user’s point of fixation changes. These synchronized 
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movements are no longer coupled. Third, as the eyes converge, the centers of the pupils also 

move. The pupil movement changes the IPD for the user. Since, most HMDs are not equipped 

with an eye-tracking device, the constraint that a virtual object appears level and perpendicular to 

the virtual camera does not guarantee that the image will now be centered over the user’s pupil 

or the exit pupil of the HMD. Each of these mismatches between real and VE viewing have the 

potential to degrade the visual information seen by the user. More specifically, visual acuity and 

stereoacuity, determinants of image quality for the human eye, may degrade depending on the 

complexity of the VE scene and task. Robinett & Rolland (1992) recommended that the correct 

IPD be also set in the software.  

 However, accounting for accommodation and convergence mechanisms requires new 

hardware (Rolland, Krueger, & Goon, 2000). Also the development of new HMD hardware and 

associated algorithms for eye tracking are an active area of research (Vaissie & Rolland, 2002; 

Hua, Krishnaswamy, & Rolland, 2006). Recently, Rolland, Ha, & Fidopiastis (2004) showed 

through simulation how a best fixed eye point may be chosen for rendering. VE scenes depends 

upon whether minimizing the angular errors or depth errors is a task requirement. For reducing 

angular errors, choosing the pupil as the eyepoint for rendering the VE scene is suggested. Depth 

errors can be best reduced by choosing the center of rotation of the eyes as the eyepoint. These 

recommendations only apply to object space and do not account for optical aberrations of the 

eye. Further, the issue of changing fixation point and thus changing accommodation and 

convergence over a dynamic range is not addressed.  
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3.3.2 Challenges for See-through HMDs 

 Tarr & Warren (2002) contended that the current advancements in VE systems have 

allowed for basic research to progress in areas such as wayfinding. The advantages of VE 

systems in basic research are the ability to quantify and qualify the characteristics of the stimuli. 

These independent variables need not be veridical copies of the real world; however, they must 

be presented reliably. For example, researchers have tried to create virtual mazes with which to 

assess rodents on navigation processing. These efforts failed until the visual requirements for the 

rat were visualized correctly by the VE system. More specifically, the rodents’ visual system 

requires low luminance and resolution images presented over a wide field of view (Hölsche, et 

al., 2005). VE techniques have also been used to study depth cues used by fruitflies (Schuster, 

Strauss, & Gotz, 2002). These examples illustrate the need to match the human user’s vision 

characteristics with that of the HMD and the graphically displayed world. However, this 

constraint is more difficult when utilizing see-through HMDs. 

 The purpose for performing tasks while wearing a see-through HMD is that the real and 

the virtual worlds are combined to make up the task space. For example, following the “elegant 

simplicity” principle, some types of therapy may be best performed utilizing virtual components 

(e.g., stove burners) along with real world objects (e.g., dials for setting heat) instead of trying to 

replicate the total rehabilitation setting in a virtual counter part. There are two choices for see-

though displays and they are categorized based upon how they merge the real and virtual scene: 

optical see-through HMDs employ a semi-transparent mirror, while video-see through HMDs 

use a video camera (see Rolland & Fuchs, 2001 for a complete review).  The eyepoint location 

mismatch seems a greater issue for these HMDs.  
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 Biocca & Rolland (1998) showed that when the eyepoints of the rendered scene do not 

match the exit pupil of the display significant negative aftereffects occurred, especially for video 

see-through displays. The negative aftereffects were not sustained more than 30 minutes after VE 

exposure; however, the adaptation effects during task performance may confound results 

evaluating the success of transfer of training. Hua, Girardot, Gao, & Rolland (2000) introduced 

the first miniaturization of the optics for a new type of new head-mounted projection display that 

reduced visual distortion and allowed for correct occlusion of virtual objects. We utilize the first 

and second generations of the projection HMD, along with a video-see through and fully 

immersive display.  The characteristics of each display will be detailed in Chapter 5. 

3.4 Moving Forward: Establishing Benchmark and Metrics  

 In this chapter, we reviewed the design cycle of the HMD. There is a clear trend to 

incorporate the user within the design cycle not just as an extension of object space, but moving 

toward optimizing for user perception in visual space. This important step allows for a better 

understanding of human performance and better user safety. In addition, the interdependence 

among the HMD, computer graphics, and user was discussed. It is important from an 

experimental design perspective to understand this interplay when assessing outcomes from VE 

based rehabilitation protocols. Given a calibrated HMD and appropriately rendered graphics, 

visual errors should be minimized when performing required tasks within the VE. In the next 

chapter we discuss the construction of computer-based tests, which quantify the visual resolution 

visual acuity and stereoacuity of the user. These tests provide a step toward obtaining 

standardized baseline and benchmark metrics of the VE system.  
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CHAPTER 4 TEST BATTERY DESIGN & DEVELOPMENT: VISUAL 
ACUITY AND STEREOACUITY ASSESSMENT 

 Wann and Mon-Williams (1996) argued that VEs should support “salient perceptual 

criteria” such as binocular vision that allow for the appropriate perception of spatial layout (p. 

385). Their contention that VEs design must center upon the perceptual-motor capabilities of the 

user is an important design criteria for extending VEs to rehabilitation scenarios. Rehabilitation 

scenarios involving ADLs may necessitate a level of realism beyond generic action spaces such 

as a grocery store to support transfer of training to the home.  

 Human performance testing in the visual domain may be difficult since when viewing a 

complex scene in general the visual abilities of the user are dependent upon the sensory 

characteristics of the virtual and real objects (e.g., brightness and contrast) as well as the layout 

of the VE space (Bullimore, Howarth, & Fulton, 1995, p. 804). Further, the human eye is an 

optical system that is functionally limited much like the HMD in such parameters as display 

resolution or image quality. Given that the HMD parameters are designed with respect to 

limitations of the human eye, assessments utilized to determine the functional limitations of the 

human eye are applicable to testing visual performance when the human eye is coupled with an 

HMD.  

 In this chapter, we review the physiology of the human visual system that limits image 

resolution. We then present an overview of standardized tests that measure these limits. Finally, 

we present a methodology for applying these assessments (i.e. resolution visual acuity and 

stereoacuity) to evaluating the HMD together with the other VE system components.  
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4.1 Physiological Limits to Human Visual Resolution 

 There are two types of photoreceptors, rods and cones, which contribute to the 

geometrical organization or mosaic of the human retina (Goss & West, 2002, p. 97). The 

spacing, location, and function of these receptors determine the limits in resolving power (acuity) 

of the human eye. Figure 5 shows the projection of the distal stimulus (object location and 

dimensions in physical space) onto the fovea, an approximately 1 mm in diameter “pit”, creating 

a real and inverted image or proximal stimulus (size and location of object on the retina). In 

optics, the optical axis passes through the centers of the pupil, 3 mm behind the corneal surface, 

eye pupil, the posterior lens and is taken as the axis of symmetry from which all calculations for 

assessing image quality are based (Pedrotti & Pedrotti, 1998, p. 205). However, the visual axis 

projects through the center of the pupil to the fovea of the retina where the highest concentrations 

of cone photoreceptors are located (Shiffman, 2000).  

 

 

 

Figure 5 Adapted from Kolb et. al (2006) 
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 The nonuniform density of rods and cones within the retina allows for each type of 

photoreceptor to perform different functions. For example, there are over 120 million rods 

located in the retinal periphery. These photoreceptors are neurally connected to summate their 

responses in an effort to detect low light levels in the environment. Thus, they are more active 

during scotopic or low lighting conditions, less than 3 cd/m2 (Bullimore, Howarth, & Fulton, 

1995). This many-to-one neural connection decreases the acuity capability of the rods.  

 In contrast, there are over 5 million cones maximally concentrated toward the foveal 

region of the retina. Cones maintain approximately a one-to-one connection between a single 

cone and a single bipolar and ganglion cell (Shiffman, 2000; Roorda, 2002). This neuronal 

configuration allows the cones to detect fine detail and color in the visual scene. The cones are 

active during photopic lighting conditions. Figure 6 schematically illustrates the different 

neurons within the retina along with their interconnections that propagate the neural signal to the 

optic nerve, terminating in the visual cortex of the brain. 

 

 

Figure 6 Retina physiology. Adapted from Kolb et al. (2006). 
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 In the periphery, the receptor field size limits the amount of light being detected. 

Luminance levels below 10-6 cd/m2 are not detectable (Bullimore, Howarth, & Fulton, 1995, p. 

806). In the fovea, the distance between the centers of two cones is the limiting factor of acuity. 

Since this center to center distance is approximately 2 µm and at least 3 cones must be activated 

to determine the separation between two points of light, this limiting distance is 4 µm (Rabbetts, 

1998; Goss & West, 2002). The standard limit of visual acuity is typically reported as 1 arc min. 

A 4 µm separation distance corresponds approximately to .8 arc minutes, thus the optical limits 

are well predicted by the physiology of the retina (Goss & West, 2002, p. 97).  

 There are other physiological factors that affect visual acuity levels of the human eye. For 

example, under scotopic lighting conditions the pupil size increases to allow more light into the 

eye. In this case, increasing pupil size also enhances the resolving power of the eye. However, 

the increase in pupil size during photopic viewing decreases acuity (Rabbetts, 1998, p. 23). The 

decrease in acuity is caused by spherical aberrations resulting from the inability of the cornea 

and lens of the eye to properly bring peripheral light rays entering the eye into focus when the 

pupil dilates beyond 3 mm (Newman, 1970). Additionally, background illumination (amount of 

light falling on an object) and luminance (intensity of light reflected from a surface) levels affect 

visual acuity through their perceptual correlates, lightness and brightness (Gilchrist, 1994). 

4.1.1 Illuminance, Luminance, and Contrast 

 Photometric quantities are radiometric measures of light corrected for the spectral 

efficiency (range) of the human eye. The relevant photometric quantities of light are summarized 

in Table 2. The rods and cones of the human retina perform optimally under different levels 
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illuminance (lux) and luminance (cd/m2). The separate ranges of optimal performance for rod 

and cone receptors allow for the visual system to function under highly variable lighting 

conditions.  For example, under lighting conditions of low illumination, recognition visual acuity 

is limited (e.g., reading in the dark) due to scotopic vision. Based on current technology, the 

luminance within the HMD must match the environment to maintain contrast. 

Table 2 Photometric values, definition, and measurement  

Quantity Definition Units 
Luminous flux The quantity of radiant flux that 

creates a visual perception 
Lumen (lm) 

Luminous intensity The flux emitted from a point source 
per unit solid angle 

Candela (cd) or 
lumen steradian-1 (lm sr-1) 

Illuminance Flux per surface area.  Mediates 
scotopic and photopic vision 

Lux or 
lumen meter-2 (lm m-2)  

Luminance The luminous flux propagated from a 
surface point in a particular direction.  
Mediates brightness and contrast 

Candela meter-2 (cd m-2) or 
lumen meter-2 steradian-1   
(lm m-2 sr-1) 

Glare A light source of higher luminance 
than anticipated by the visual system, 
which decreases visual performance 

 

Reflectance The ratio of the luminance flux that 
strikes a surface to the luminance flux 
reflected off the same surface 

 

 

Low luminance (amount of light reflected off an object) causes the degraded visual 

performance in the case of reading text in low light. More specifically, the issue is quantal with 

respect to reading (i.e., not enough light is reflected from the page) and spatial with respect to the 

HMD in that the contrast (difference in luminance between the surround and the projected 

image) is lower.  The scenario can be best explained by the terms “lightness” or reflectance and 

“brightness” or the psychological equivalents of luminance (Walraven et al. 1990; Gilchrist, 

1994). 
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Reflectance is the ratio between luminous flux reflected from a surface and the flux 

incident to the surface (Fiorentini et al., 1990). Reflectance changes in objects are perceptually 

perceived as having more or less light on a grayscale or in comparison to something white. 

Therefore, illuminance and more so the reflectance values control shades and shadows; however, 

these quantities do not change the perceived contrast. Contrast, as well as the proximity of other 

bright/dark objects in the vicinity, determines perceived brightness. Perceived contrast, as used 

in the forthcoming experiments, was calculated using the luminance (L) differences between the 

target and background as defined by the equation:  

   
Background

BackgroundetT

L
LL −arg      (1) 

Contrast is thus independent of illumination for high luminance levels (Shapley & Enroth-Cugel, 

1984). However, illuminance does effect brightness perception when the neural system fails to 

maintain contrast constancy (e.g., the invariance of contrast to changing levels of light intensity) 

at low levels luminance (Heinemann, 1955).  Both luminance and illuminance and the derived 

measure of contrast are necessary variables in assessing visual performance.  

4.1.2 Measuring Illuminance and Luminance 

For simulations, illuminance and luminance values can be estimated from a lighting 

compendium such as the Illuminating Engineering Society’s publication, Lighting Ready 

Reference (Kaufman & Christensen, 1989).  Otherwise, the values must be measured using an 

appropriate instrument, illuminance meter or photometer, prior to the experiment. An 

illuminance meter contains a photocell area in which to collect the photons of falling light. 

Illuminance measurement depends on the distance one is from the light source and the angle 
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between the area of measurement and the light source. The further away from the light source, 

the less light is collected. As well, the photocell should be perpendicular to the light source to 

obtain the maximum illuminance value; otherwise the value will be reduced by a factor of the 

cosine of the angle of rotation (Howarth, 1995). Unlike illumination, luminance measures are not 

dependent on distance. The main factor in measuring luminance is the size of the acceptance 

angle (light collection area). The photometer should be set perpendicular to the area of interest. 

The source itself should be larger than the acceptance angle of the meter. Given the VE 

environment other photometric quantities may be needed. Some of these quantities are listed in 

Table 2. 

Most photometric measures can act as independent variables in the performance metric. 

For example, a user should experience degraded performance while using a see-through 

projection display under conditions of high illumination and low luminance. A simple yes/no 

response in a target detection task over varied light and luminance levels could determine the 

point where user performance fails. Where user bias is problematic an m-alternative forced 

choice paradigm would be necessary (Macmillian & Creelman, 1991 p. 125). We discuss these 

experimental design issues more in-depth in the next sections.  

4.2 Standard Visual Acuity Tests for HMD and VE System Performance Testing  

 For HMD prototyping and VE System assessment, choosing the most appropriate 

perceptual test is critical for predicting tasked-based human performance while wearing the 

HMD. Table 3 provides examples of visual acuity tests used by clinicians to determine the status 

of visual functioning in patients and by vision researchers to determine the limits in acuity under 

various experimental conditions. Of the visual acuity tests, the Snellen test is the fastest to 
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perform, and is therefore the most common. The Snellen test results are used mostly for 

evaluating tasks where letter recognition is important such as a driver’s ability to read or 

recognize lettering on traffic signs. However, when evaluating visual perceptual issues regarding 

VE, such as the limited resolution of the HMD microdisplays, resolution visual acuity (rVA) or 

the ability to resolve small visual angles  is a better metric (Bullimore, 1997). Resolution visual 

acuity, therefore, provides a metric of evaluating the user’s ability to see fine detail within the 

VE scenario.  

Table 3 Examples of visual acuity tests (Adapted from Shiffman, 2000, p. 99)  

  

  Given that the perception of three-dimensional space is foundational to VE system 

design, evaluating the user’s stereoacuity (the ability to judge relative depth from disparity) 

within the integrated VE system is also an important metric. Although depth information is 

carried by the retinal receptors, limitations in depth discrimination may be caused by the 

processing of depth information by the cortex, including regions beyond those of the visual 

cortex (DeAngelis, 2000; Neri, 2005). We will discuss these biological issues in the section 

pertaining to stereoacuity assessment. It is important to note that given that higher cortical levels 

are involved in processing space information, task demands and individual differences in 

processing salient VE scene information contribute to human performance error in judging 

spatial layout of VEs (Wanger, Ferwerda, & Greenberg, 1992; Cutting & Vishton, 1995). Thus, 

Detection  Detect target in visual field Examples 
Vernier or 
localizing 

 Identify displacement of two lines in space Manual vs. Gaze 
pointing 

Resolution 
(rVA) 

 Perceive the separation of two distinct elements in space 
(e.g., resolve gap size in the letter C) 

Landolt C 

Recognition  Name targets in space (e.g., identify letters) Snellen 
Dynamic  Locate moving targets in space MultiCAD 
Stereoacuity Align two targets while viewing at differing distances Howard-Dolman 
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stereoacuity baselines may assist in identifying HMD types that more appropriately match tasks 

requiring binocular vision.  

4.3 Psychophysics in Vision Test Design 

 Reliability, replicability, and cross platform compatibility were important features of the 

assessment design. Further, baseline metrics should be meaningful when compared to 

standardized test scores that reflect real world viewing. Thus, we chose vision tests that had an 

established methodology and real world correlate. Because of the similarity in display 

constraints, we adapted psychophysical metrics used in optimizing Night Vision Goggles (NVG) 

such as “frequency seeing” curves to the assessment of prototype HMDs (National Academy of 

Sciences, 1980; Pinkus & Task, 1998; Fidopiastis, Fuhrman, Myer, & Rolland, 2005). Within the 

framework of classical threshold theory, the relationship between physical properties of the 

world such as changing levels of light illumination and human sensory perception are quantified. 

Although more modern methodologies such as Signal Detection are available, these methods of 

analysis may be more appropriate for detecting targets in complex and noisy background 

(Rolland, 1990).  

 As classically defined, the absolute threshold is the stimulus intensity or magnitude 

where a positive detection of the stimulus is made 50% of the time (Schiffman, 2000). There are 

several statistical tests available to evaluate the absolute threshold.  Probit, best PEST, and Quest 

tests have all been used to evaluate visual acuity type data (Finney, 1980; Leberman & Pentland, 

1982; Watson, 1983). Adaptive methods such as best PEST and Quest use an adjustable 

procedure where the individual’s response determines the next presentation of the stimuli. There 

are several computerized tests that measure resolution visual acuity (Bach, 1996) and 
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stereoacuity (Bach, Schmitt, Kromeier, & Kommerell, 2001) utilizing bestPest procedure. Our 

concern with this type of method was accumulating errors over the large number of trials being 

conducted by a single subject (Kaernbach, 2001). Pinkus and Task (1998) provide some support 

for reliability issues using an adaptive method as a threshold estimator. We, therefore, chose a 

Probit analysis in conjunction with a modified Landolt C test to determine user rVA thresholds.  

 Three psychophysical methods are typically used to measure stereoacuity thresholds: 

method of adjustment, method of limits, and method of constant stimuli.  Within the method of 

adjustment paradigm, the observer positions a moveable object offset from a fixed target to be 

equal with the target. Each offset is randomly chosen and the mean deviations are used to 

determine stereoacuity. For the method of limits, the observer adjusts the moveable object to be a 

just noticeable difference (JND) in depth from the fixed target. The ranges of these JNDs are 

used to estimate stereoacuity. Reading (1983) considers the method of constant stimuli to be the 

gold standard for evaluating stereo thresholds (p. 113).  

 The method of constant stimuli requires the user to determine the first position perceived 

consistently closer than the fixed target and then the position perceived just farther than the 

target. The range is then partitioned into equal intervals and the moveable rod is placed at each 

position in random order. The response variable obtained is the percent near responses or 

percentage of times the observer adjusted the moveable object to be in front of the fixed target. A 

Probit analysis could be used to determine stereoacuity (Rolland, Gibson, & Ariely, 1995). 

However, Rolland et al. (2002) investigated the appropriate methodologies for measuring depth 

perception in a VE, which also controlled for the size and the shape of visually presented stimuli. 

The study pointed to the method of adjustment as a preferred method over the method of 

constant stimuli when measuring stereoacuity because with the MOC the observer can learn the 
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mean size presented within two blocks.  If the size is randomly varied to minimize that effect, the 

data have been shown to be extremely noisy thus requiring more data acquisition and increasing 

the duration of the experiment. Another concern is lessening the amount of time within the HMD 

so that any adaptation effects do not affect the results.  

 In sum, when using psychophysical measures, we can create testable conditions that 

quantify the relationship between the physical parameters of the VE system (e.g., limited 

resolution) and the representative visual performance metric such as resolution visual acuity 

(May & Badcock, 2002; Uttal & Randall, 2001). Based on the knowledge of how the system 

should perform, we can also make a priori predictions of how the user will perceptually perform 

(Meister, 1985).  Assuming that the HMD is calibrated, vision tests could discern limitations 

attributed to each separate aspect of the VE system or the system as a whole. The end result is a 

basic, yet rigorous optimization procedure that lends to a more comprehensive evaluation of the 

quality of system and user interactions (Melzer and Moffit, 1997).  

4.4 Modified Landolt C Visual Acuity Test Overview 

 The Landolt C visual acuity test is standard for measuring resolution acuity (National 

Academy of Sciences, 1980). The Landolt C is constructed on a 5 x 5 grid with the gap width of 

1 grid unit as shown in figure 7. The gap is randomly presented in one of eight positions. The 

observer must determine the direction of the gap. From a visual perspective there are two 

drawbacks in using the Landolt C: 1) uncorrected astigmatisms may make some orientations of 

the gap easier to see, and 2) guessing may show biased performance at low acuities, usually 

toward the right (Rabbett, 1998, p. 32).  
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Figure 7 Standard Landolt C visual acuity test 

 

 

 

 

 

 Others have found a “gap-down” effect, where correct responses were lowest for 

downward facing gaps (Schrauf & Stern, 2001).  To control for these potential confounds, all 

participants were tested for resolution acuity using corrective lenses, if needed. As well, the 

participants were not constrained by time in responding. Although guessing still occurred, there 

was no added pressure to perform under a time limit. The more challenging problems were 

translating the printed version of the test into a software application.  

 One main issue in converting the Landolt C test into a software application was 

accounting for anti aliasing effects. Typical stimuli for the Landolt C test, pictured on the left of 

figure 8, are circular C’s.  The circular shape provides radial symmetry, which facilitates equal 

blur along the curve of the C (National Academy of Sciences, 1980, p. 116). However, rendering 

a circular C utilizing computer graphics techniques requires the use of anti-aliasing methods to 

remove the “stair-stepping” effect found in low bandwidth displays. Figure 8 shows typical 

Landolt C stimuli with aliasing and anti aliasing effects present when rendering the curvature of 

the C. 
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Figure 8 Example of aliasing and anti-aliasing effects 

 

 

 

 

 

To remove these effects, a square C was created that retained the 5:1 ratio between the C size 

and the gap size. To further reduce aliasing and anti-aliasing effects the VA test was changed 

from an 8 AFC to a 4 AFC. Figure 4 shows the view of the square Landolt C test from the left 

and right eyes within the HMPD.  

Figure 9 Modified Landolt C visual acuity test 

 

 

 

 

 

 Receptive fields in the human retina are spatially tuned to respond best to specific sizes 

of stimuli in the visual scene. Visual acuity tests such as Landolt C assess only the smaller 

receptive fields that are responsible for fine detail processing. Furthermore, the recommended 

contrast for optotypes used in these tests is .85, which corresponds to high contrast targets 

(National Academy of Sciences, 1980). While the contrast level of optotypes may be varied there 

are no standards defined for varying contrast as a function of stimulus size.  
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  The contrast sensitivity function is a mapping of perceived contrast as a function of 

spatial frequency over all spatial frequency channels. Resolution visual acuity is the limit of this 

function. Future work will be expanded to investigate how the range of human spatial 

frequencies is filtered in the VE system. Currently, we focus on the sensory threshold tests for 

size (i.e., Landolt C) as a function of target contrast over the smaller frequency channels.  

4.4.1 Probit Analysis  

 In Probit analysis the percent correct responses for determining gap orientation are 

corrected for chance responding, then they are converted to z-scores or normal equivalent 

deviates (NED). In a 4AFC design, the participant has a 1 in 4 chance (25%) of guessing the 

correct gap orientation. Alternatively, in a two alternative forced choice design there is a 50% 

chance of guessing the correct gap direction. The percent correct responses are corrected for 

chance using the following procedure: 

Let P = percent correct trials 

PA = percent correct trials corrected for chance 

(1) if P < 25%  then P = 25%  

 (2)   
)%100(

%100*)(
Chance

ChanceScorePA
−

−
=       (2) 

For our design, 

(3) 
%)25%100(

%100*%)25(
−

−
=

ScorePA        (3) 

 The assumption in step one suggests that anything below 25% will approach chance on 

enough trials, therefore the score is analyzed as 25%. This requisite ensures that any response 
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under 25% is still accounted for in the final analysis. The general equation for correcting for 

guessing is given in equation 3. The specific equation used to analyze our dataset is given in 

equation 3. Next, the corrected scores are converted to normal equivalent deviates (NED) by the 

following equation: 

       NED = 2

- X
σ

X

       (4) 

 An NED is the value of a standard normal variable for a Normal distribution with a mean 

of 0 and standard deviation of 1. The cumulative probability equals the percent correct adjusted 

for chance. Equation 3 is actually the z-score, a statistic which quantifies the distance a data 

point is from the mean of the sample measured in standard deviations units. The NED values are 

used as the dependent variable in a linear regression with gap size (visual acuity) as the 

independent variable (e.g., NED = b0 + b1*VA).  Curve fitting is accomplished using either a 

graphical method (plot probit values against the stimulus intensity and read where p = 0.5) or the 

exact method (use an unbiased estimator in an iterative procedure). Finney (1980) suggested 

using a maximum likelihood estimator with Probit analysis. The slope-intercept (b0) and the 

slope value associated with the visual acuity, as computed from the regression analysis, is used 

to compute the expected NED values.  The resulting NED values are converted back into 

percents and evaluated against the threshold value to determine visual acuity. For a 4 AFC 

design, the threshold is 62.5%. 

4.4.2 Modified Landolt C Assessment for Augmented Reality 

 The current computer version of the Landolt C test is capable of assessing resolution 

visual acuity while wearing the HMD or under normal viewing conditions. However, the size of 
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one pixel is different when viewing a computer monitor versus when viewing the same pixel 

through an HMD. Also, magnification due to optics of the HMD changes the pixel size 

differently than for normal viewing over viewing distances. Therefore, the software is capable of 

accepting different resolution and FOV values for different HMDs. The code automatically 

scales the square Landolt C gap so that its smallest size is equivalent to the size of a pixel as 

defined by the HMD display parameters and the specified viewing distance. In addition, the IPD 

for the user is an input variable that allows the rendered stimuli to match the eye position of the 

observer.  

 To ensure that the rendered graphics matched the active area of the HMD display and the 

center of the pupil for the observer, the frame buffer overscan (FBO) was measured. The frame 

buffer is a memory store for the array of pixels constituting the visual scene (Angel, 2003). The 

resolution of the frame buffer determines the level of detail seen in the displayed image. FBO 

occurs because of anomalies in the graphics control device which truncates or stretches the active 

viewing area to misrepresent the number of viewable pixels (Rolland, Gibson, & Ariely, 1995). 

To overcome the FBO problem, we needed to code the application using software such as 

OpenGL that can control where in the frame buffer the rendered image will be appear (Fuhrman, 

Davis, Fidopiastis, & Rolland, 2006). The type of microdisplay (e.g., LCD) determines the type 

of FBO. In Chapter 5, we review calibration measures and discuss this topic further.  

 To create the contrast stimuli, the luminance of the Landolt C was varied by adjusting the 

binary grey-scale code within the computer program. The background of the display was set at a 

grey-scale value of 128. From this value, target grey-scale values giving contrasts of .2, .4, .6, .8, 

and 1 were computed using equation 1. The corresponding target grey-scale values are shown in 
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Table 4. How the modified Landolt C acuity test was adapted for each HMD assessed is outlined 

more specifically in the forthcoming experiments.  

Table 4 Grayscale values and corresponding contrast  

 

Grayscale Value Bit Value Contrast

0.5 128 0 

0.6 153 0.2 

0.7 179 0.4 

0.8 204 0.6 

0.9 230 0.8 

1 255 1 

4.5 Stereoacuity Assessment Overview 

Rolland, Gibson, & Ariely (1995) investigated the effects of presenting collimated 

images (virtual image is located at infinity) to a user performing a depth judgment task between 

real and virtual objects. The authors calibrated the HMD and controlled for hardware issues such 

as frame buffer overscan (region of the frame buffer that does not get drawn onto the display 

screen) to ensure that the optics of the HMD aligned with the graphical display. Without the 

correction for overscan, a 5 degree error could have been introduced to the results with the 

microdisplay used. Other controls such as adjusting interpupillary eye distance in hardware 

ensured that the optics of the display were centered over the pupils of each eye. Adjusting 

interpupillary distance in software ensured that the objects were rendered at the correct depth. 

0 1
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The optical bench prototype display had a display resolution of 441 x 593, 40 degree diagonal 

FOV, and resolution acuity of 3.6 arc minutes.  

The stimuli in this experiment were either computer generated generic objects (i.e. a cube 

and a cylinder) or real objects of the same type. Three conditions for the objects were tested: 

real/virtual, virtual/virtual, or real/real. One object was always fixed (target) at a referent 

location, while the other was moved in depth between trials (test). The object depths were 

presented in near space at two depths, 0.8 and 1.2 meters, and were separated by 110 mm to 

ensure that participants made their depth judgments by comparing the object center of the target 

with the object center for the test stimuli. The participants performed a 2AFC task where they 

determined whether the test cube was closer or further away than the target cylinder. Stimuli 

were presented in a fashion appropriate for the method of constant stimuli assessment. 

As expected, Rolland et al (1995) found no depth errors when objects were real/real or 

virtual/virtual. However, in the mixed condition (real/virtual), virtual objects appeared further 

away than real objects. Also, using optical ray tracing techniques, the authors found that 

pincushion distortion in the individual monocular images had the effect of bringing the 3D 

virtual object closer to the observer’s eyes, in proportion to the amount of distortion. Thus, in the 

case of this specific experiment, the actual bias may be slightly higher than the 50 mm measured.  

As the authors pointed out, Iavecchia, Iavecchia, & Roscoe (1988) have researched the 

effects of presenting collimated images to eyes using an optical device. The results of their 

studies suggest that the eye shifts focus to its individual resting point of accommodation (dark 

focus)1. The resting point of accommodation can be as close as 5 cm to almost 3 meters. Ehrlich 

                                                 

1 Thanks to Dr. Jaschinski-Kruza at the Institut für Arbeitsphysiologie at the Universität Dortmund for assisting me 
in understanding the dark focus metric.  
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(1999) measured dark vergence and dark accommodation in VE, she found that dark 

accommodation did not change; however dark vergence was shifted inward suggesting that the 

observer’s focus was closer than the resting set point. In her experiment, the participants 

performed a visually directed walking task up to approximately 7.5 meters. The observers 

underestimated distances in the VE, and after 15 minutes in the virtual environment, their dark 

vergence set points changed. Given the plasticity of the accommodation and convergence eye 

mechanisms based on task, the everyday work performed by the participants might have 

influence their accommodation and convergence set point prior to entering the experiment 

(Tyrell & Leibowitz, 1990). The set points for accommodation and convergence could also be 

altered within the experiment. Therefore, measuring these values prior to performing a depth 

perception experiment is critical when accounting for potential confounds based on individual 

differences. 

4.5.1 A Biological Overview of Depth Perception 

 Because the left and right eyes see two different views of the world, the proximal 

stimulus on either retina is offset from one another. This offset is termed binocular disparity and 

the resulting depth perception is called stereopsis (Backus, 2000). Table 5 and Figure 10 depict 

the processing and neuronal connections from the retina to the cortex of the macaque monkey for 

stereopsis. Although the lateral geniculate nucleus (LGN) in the thalamus receives a retinotopic 

mapping of the retina, disparity coding does not appear until the visual cortex (DeAngelis, 2000). 

Most simple and complex neurons in the striate cortex respond maximally to stimulation that is 

within the corresponding retinal field of each eye. The recorded output from such cells is higher 
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than the intensity of the stimulus delivered to each eye independently suggesting that binocular 

summation is occurring (Steinman, Steinman, & Garzia, 2000).  

 Further, binocular neurons are tuned to maximally respond to different levels of disparity. 

For example, some cells respond best to zero disparity or objects that are at the same distance 

with respect to the observer’s fixation point.  Other binocular neurons respond best to objects 

beyond the fixation point, crossed disparity, or closer than the point of fixation, uncrossed 

disparity.  However, more recent studies of the human visual pathway show that processing of 

disparity information, and thus depth perception, is not a lower cortical function as once thought 

(Backus, Fleet, Parker & Heeger, 2001; Parker, 2004).  

Table 5 Magnocellular and parvocellular pathways Adapted from Kandel, Shwartz, & Jessell 
(1995).  

Pathway Perception Stereopsis Oculomotor 
Magnocellular Movement, Flicker, Depth, 

Contrast Sensitivity 
Low spatial 
resolution, 40-36000” 

Initiate pursuit & 
Vergence 

   Parvocellular 
Interblob 

Blob 
Shape, Orientation 
Color 

 
High spatial 
resolution, 2-1200” 

Maintain vergence 

 

Figure 10 Motion, color, form & depth pathways 
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 Figure 11 pictorially illustrates the visual processing pathway schematically illustrated in 

Figure 10. This visualization shows that stereopsis is processed in two separate pathways, the 

ventral stream and the dorsal stream. As shown, the dorsal stream terminates in the parietal lobe 

and is thought to monitor visual control of action by providing moment to moment updating on 

the location and orientation of objects. In contrast, the ventral stream terminates in the temporal 

lobe and provides a more stable representation of objects allowing for object classification and 

identification such as face recognition (Goodale & Haffenden, 1998). Functionally, stereopsis 

seems to provide the dorsal stream with information needed to moderate vergence control, while 

the same information is providing the ventral stream depth information (Neri, 2004).  

 

Figure 11 Visual information processing pathway from retina to cortex. Used with permission 
from Dubac (2006) The Brain from Top to Bottom. 

 

 The functional distinction between the ventral and dorsal streams are important from a 

Neuropsychological point of view in that many agnosias (loss of knowledge) such as spatial 

agnosia are candidate areas for VE basic and applied research. Persons with agnosia may 

experience no lower visual system disturbances, yet they will not form accurate perceptions 

Optic Nerve 

Visual field 
of left eye 
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about the environment because of damage to higher cortical areas such as the temporal lobe. A 

VE scenario may provide a safe setting where virtual objects are quantified and controlled to 

accommodate the individual’s deficits. However, potential confounds in VE design greatly 

hinder the validity of basic and applied research outcomes.  Another issue regarding the dual 

function of stereopsis in the visual processing pathway is the locus of stereoacuity limits. 

 Banks, Gepshtein, and Landy (2004) used a random-dot stereogram paradigm to explore 

the locus of the stereoresolution (similar to the contrast sensitivity function) degrade. They 

varied factors pointing to the testing stimulus, the sampling limits at the level of the retina, or the 

correspondence issues in matching corresponding retinal points in the visual cortex. Their studies 

showed that for human observers with normal or corrected normal vision stereoresolution limits 

varied suggesting different contributions of stereo error along the visual pathway. For example, 

they found that for low dot density stereograms the paucity of information in the stimulus limits 

the threshold, while for higher dot densities retinal processing is the limiting factor. Further, the 

size of the retinal areas being matched by the cortical neurons may limit stereoresolution, an area 

too small may not provide enough information while an area too large may lend to higher 

ambiguity. Wong, Woods, & Peli (2002) also suggested various factors (cortical and more 

proximal) that affect stereoacuity. 

 Wong, Woods, & Peli (2002) used random-dot stereograms as test objects to study 

observers’ near and far stereoacuity. The authors also studied the mismatch between 

accommodation and convergence mechanisms to detect shifts in stereoacuity since they are 

intimately tied to appropriate target fixation. The random-dot stimuli were shown with shutter 

glasses that alternately displayed the stimuli to each eye. In addition, the researchers eliminated 

many monocular cues to depth perception such as texture and lighting. They found that there was 
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no difference in near and far stereoacuity for natural viewing. However, in a condition that 

mimics HMD accommodation and convergence mismatch, the researchers found that 

stereoacuity was significantly diminished.  

 The authors further speculated that the mismatch between the observers’ knowledge of 

the object’s position and the actual position also degraded stereoacuity. The authors concluded 

that stereoacuity of VE users should be measured to determine which users may be negatively 

affected by VE exposure. The authors were skeptical that a random-dot stereogram based 

stereoacuity measurement could be accurately obtained given the limited resolution of the HMD 

display. The low resolution of the display would be equivalent to the low density stimuli tested 

by Banks, Gepshtein, and Landy (2004) and would not be an accurate measure. The proposed 

stereoacuity metric based upon the Howard-Dolman task may be a more appropriate metric for 

use with HMDs. We present this assessment in the next section. 

4.5.2 Types of Stereoacuity Assessments 

 Establishing metrics for measuring the depth discrimination threshold have both clinical 

and practical importance. Saladin (1998) contends that stereopsis is the single best indicator for 

overall function of the sensory and motoric aspects of the visual system (p. 766). Within the 

workplace, stereopsis of employees is routinely monitored in such occupations as hazardous 

waste management, military, and aviation (National Research Council, 1987).  Clinical test for 

stereoacuity can be divided into two categories, real-depth tests and projected-depth tests.  

Real-Depth Tests 

 Within this test paradigm, a real test object is moved in and out of the plane of one or 

more target objects (Reading, 1983). The metric of the task depends upon the type of 
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psychophysical assessment employed. For example, when using the method of adjustment 

technique, the observer positions a moveable object offset from a fixed target to be aligned with 

a fixed target. The resulting measurement is the difference in distance between the test object and 

the target (target – nominal), or point of subjective equality (PSD). The PSD value is then used 

to estimate the stereoacuity for that observer. The Howard-Dolman two-peg test is a classic 

example of a real-depth test. 

 When performing the Howard-Dolman two-peg test, the participant views two rods seen 

against a high contrast background. One rod moves while the other rod remains stationary or 

fixed.  The task is to move the rod either to the first noticeable offset (e.g., JND) from the 

stationary rod or to the depth where the two rods appear at equal depth (e.g., PSD). The Howard-

Dolman apparatus shown in Figure 10 is one example of a Howard-Dolman testing instrument.   

Figure 12 Howard-Dolman apparatus  

 

 The Howard-Dolman apparatus completely encloses the two-rod mechanism in order to 

maintain uniform lighting across the two rods. Additionally, the participants view the rods 

through a 7 cm x 12.5 cm aperture to reduce other cues in the environment that may assist in 

All units are in cm 
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performing the task. The front face of the Howard-Dolman apparatus with 120 lux illumination 

is shown in Figure 13 a.  The typical viewing distances for the task are between 4 to 6 meters 

(Saladin, 1998, p. 743). The participant adjusts the rods by a string-and-pulley mechanism as 

pictured in Figure 13 b. The scale shown in Figure 12 is graduated in centimeters and the pointer 

indicates the disparity between the moveable rod and the target.  

Figure 13 (a.) Howard-Dolman rods and pulley system with lighting (b.) Participant performing 
Howard-Dolman task. 

a.        b.  

                   

 

Projected-Depth Tests 

  Stereograms, such as those used by Wong, Woods, & Peli (2002), are an example of a 

projected-depth test. Stereograms require stimuli to be presented through a stereoscopic device 

such as liquid crystal shutter glasses. Random-dot stereograms are computer generated left and 

right eye views that are time sequenced to appear independently at a rate that the human system 

cannot detect (Burdea & Coiffet, 2003).  The result is a 3D view of the virtual scene. Other 

stereograms employ vectography, a 3D photographic process of printing stereo images onto 

polarized material (Reading, 1983, p. 180).  
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 The Titmus Stereo Test shown in Figure 14 is a more standard projected-depth test. There 

are three types of stereograms represented: the Stereo Fly test, the Circle test, and the Animal 

Stereo test. The stereograms range in disparity. For example, the Circle test has 9 diamonds with 

four circles inside. One of the circles in the set of four has a disparity which could be singularly 

valued from 40 to 400 arcsec. The Titmus Stereo test requires the observer to wear glasses with 

polarizing filters. The stereograms are typically viewed from approximated arm’s length or 

within 40 cm.  The participant reports which circle is out of the plane in relation to the other 

three. 

Figure 14 Titmus stereo test, Photo from Bernell, http://www.bernell.com/ 

 

 

 

Potential Confounds to Stereo Tests: Depth Cues 

Thus far, we have been describing stereopsis as a foundational perceptual aspect of 

human depth perception. However, the degree of binocular disparity provides more precise 

information about an object’s distance from the observer or from other objects in the visual scene 

http://www.bernell.com/
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(Wickens & Hollands, 2000, p. 141). Although distance perception is a very powerful indicator 

of depth, to accurately perceive depth other cues from the environment are needed.   

Depth cues are typically classified as primary, those cues which are physiological, and 

secondary, those which are learned. Primary depth cues include convergence, accommodation, 

and binocular disparity.  Primary depth cues provide depth information over short distances since 

beyond 6 meters there is no convergence. Artists typically employ secondary depth cues to create 

depth in drawings or paintings. These pictorial cues include static information such as an objects 

size, interposition or occlusion, lighting and shadow, and linear perspective. There are also 

kinetic depth cues such as motion parallax where far objects appear to move slower and in the 

same direction as the moving observer while closer objects appear to move faster and in the 

opposite direction. Because many secondary depth cues may be present in the testing 

environment, these cues should be controlled for when measuring stereoacuity. More 

specifically, the cue of binocular disparity should be the only depth cue present in the testing 

environment.   

 The Howard-Dolman apparatus was adapted from Howard (1919) who recognized that 

the vision tests for fighter pilot in WWI were confounded by extraneous depth cues. The original 

Howard Depth test pictured in Figure 13 presented the observer with a view of two rods, each 1 

cm in diameter and 26 cm in length, through a screen and silhouetted against a background of 

uniform illumination. The head was fixed and the person’s eyes were centered with respect to the 

aperture window. The testing distance was 6 m. In addition the rods were placed such that only 

the center portions of the rods were visible.  
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Figure 15 Howard depth test (Howard, 1919) 

 

 

 The experimenter predetermined the disparity level and the participant responded by 

stating which rod, left or right, was closer to him. This procedure was repeated 20 times per 

disparity level: thus, the Howard Depth test employed the method of constant stimuli. 

Stereoacuity was measured as the lowest disparity level where the participant could correctly 

identify the object as nearer or farther to him 75% of the time.  

 Stereoacuity measured over 106 pilots within Howard’s study varied from 1.8 to 132.2 

arc seconds. To better understand individual differences among the pilots, Howard ranked them 

based upon their stereoacuity levels and then systematically evaluated all vision tests performed 

in conjunction with the depth perception test (e.g., resolution visual acuity). Howard found that 

IPD and resolution visual acuity had an affect on the stereoacuity for that observer. More 

specifically, pilots with a larger IPD and better visual acuity achieved stereoacuity levels less 

than 8 arc seconds. This result is an example of how individual differences may affect user 

performance on visual assessments. Thus, it is important to collect multiple metrics to assist in 
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explaining these differences. Passing stereoacuity for pilots was assessed as a 3 cm averaged 

error as measured from the viewing distance of 6 meters. The drawback to the Howard Depth 

test was the duration of the testing time, which made it impractical as a clinical test. The 

Howard-Dolman apparatus was created to decrease testing time.  

  There are several secondary depth cues available to the observer when performing the 

Howard-Dolman Depth test such as motion parallax due to head motion. The depth cue of 

apparent size or the change in size of the proximal stimulus on the retina with changing distance, 

along with accommodation, is also present. Because of these confounds, many early depth 

perception researchers questioned the validity of the Howard-Dolman test in measuring 

stereoacuity (Warren, 1940). Others argued that the Howard-Dolman task was relevant for 

assessing stereoacuity for tasks which predominantly required stereopsis with the support of 

minor primary and secondary depth cues (Sloane & Gallagher, 1945; Sloan & Atlman, 1954). 

More recently, Larson (1985) suggested a return to the original Howard Depth task with 

modifications to support clinical use. Projected-depth tests are becoming more clinically 

dominant since they provide a level of control over monocular depth cues while lessening test 

duration.  

Of the projected-depth tests mentioned only the random-dot stereogram can eliminate all 

other depth cues and provide the most accurate measure of stereopsis (Howard & Rogers, 1995). 

However, as Wong et al. (2002) point out, the use of random-dot stereograms with HMDs is not 

currently possible. In addition, while assessing different types of HMDs, introducing shutter 

glasses may not be a prudent experimental design decision. The modified virtual Howard-

Dolman task (V-HD task) developed by Rolland, Gibson, & Ariely (1995) and later improved 

upon by Rolland, Meyer, Arthur, & Rinalducci (2002) qualifies in general as a projected-depth 
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test. At this time, the assessment provides the best metric for measuring stereoacuity with regard 

to VE system assessment. 

4.5.3 Modified Virtual Howard-Dolman Depth Test for Augmented Reality 

 The V-HD task controls for the familiar size cues by presenting generic objects which 

have no real world correlation (Rolland, Gibson, & Ariely, 1995). Thus, there is no expectation 

of size when simultaneously viewing both objects. However, aspects of the graphics such as 

lighting may provide weak cues to depth. Motion parallax was controlled for by using a chinrest 

as Howard (1919) had done. A chinrest could be employed because the HMD used was a bench 

prototype. The HMDs worn in the forthcoming experiments were functioning prototypes or off-

the-shelf products. Given the weight of the HMDs and their respective cabling systems, it was 

not appropriate to restrain the head from moving. Also, we were interested in the errors 

generated when the observer was allowed some free movement of their head.  

Secondary depth cue systems, accommodation and the convergence, are stimulated 

unnaturally while viewing collimated images (Roscoe, 1991). Rolland et al (2002) adjusted for 

conflicts between accommodation and convergence mechanisms by placing the monocular 

optical images at the target or nominal depth where the 3D virtual objects were rendered. In the 

experiments discussed in Chapter 7, three types of HMDs were tested: optical see-through, video 

see-through, and fully immersive. Because the optical see-through display was built in the 

ODALab, we had full control over setting the depth plane for the microdisplay. Even though the 

HMPD-1 was designed to project a collimated image, we were able to adjust the settings of the 

optics to project the 3D test object to match the graphically rendered objects distance. This 

adjustment could not be done with off-the-shelf HMDs. Further, the second generation HMPD 
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(HMPD-2) worn in the experiments presented in Chapter 8 was specifically optimized to project 

images at the same distance as the rendered objects. Properties of each HMD will be discussed 

further in the next chapter,  

To account for the potential differences in accommodation and convergence when 

performing tasks while wearing each respective HMD, several vision tests were added as part of 

the procedure. More specifically, prior to testing participants were screened using the Titmus 

Stereo Test. All three tests were used to confirm that the participants’ stereoacuity was at least 40 

arc seconds prior to the start of the experiment. Further, the Howard-Dolman peg test using the 

Howard Dolman apparatus was performed before and after VE testing to monitor changes in 

visual performance over the course of the experiment. In addition, dark vergence and dark focus 

were measured before and after the participant performed the V-HD task to assess 

accommodation and convergence changes that may result from the VE exposure. These 

procedures are further detailed in Chapter 7.  

Virtual Howard-Dolman Stimuli 

 Rolland et al. (2002) showed that for the HMPD-1 system the optimal test stimuli for 

determining stereoacuity was a small cube or octahedron of the same volume (diameter equal to 

4 degrees of visual angle) presented with a long thin cylinder (diameter equal to 1 degree of 

visual angle). An example of the stimuli presented to the right eye is shown in Figure 16. In each 

experiment, the octahedron was the moveable object and the cylinder remained fixed at the 

nominal depth. However, the nominal depth changed according to the lens setting of the HMPD. 
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Figure 16 Virtual Howard-Dolman task octahedron and cylinder stimuli  

 

                             

 

 The change in viewing depth also changed the size of the virtual objects as well as the 

IPD of the observer. The software had to account for the changes in object size with respect to 

the variable IPD over the test viewing depths. Besides setting the lighting parameters, the most 

difficult aspects of designing the test were choosing the correct input device and the optimal 

resolution for the input device with which to move the octahedron. To establish the appropriate 

resolution for the input device, the resolvable depth for the HMD was calculated. The resolvable 

depth also establishes a predictive metric for determining the precision (variable error) of the 

HMD at each of the respective viewing distances.  
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Computing Resolvable Depth for the HMPD 

 The depth of focus (DOF) is the regional extent about the image plane where the 

projected image remains clearly focused without adjusting optical power. The depth of field 

represents the DOF in object space. There is also a range of distances in front and in back of the 

image plane where a single pixel size is just resolvable. This distance is considered the 

resolvable depth for the HMD. Rolland, Krueger, & Goon (2000) give the equations for 

determining resolvable depth for an HMD. We review a simplified version of the calculations. 

 Figure 17 depicts the geometry overview for determining DOF. The distance between 

points a and b represents the horizontal FOV for each eye across the projected image plane. The 

distance D is the distance from the image plane to the pupil of the eye. Three pixels are 

represented in the center of the binocular overlap region. 

Figure 17 Geometrical overview for determining resolvable depth 

 

 

 

 

 

 

 

 

     

 Figure 18 shows a simplified version of Figure 17 for the left eye, where L is the length 

of the image plane and θ is the FOV for the left eye. For the octahedron to remain in focus when 
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it is moved off the image plane, its position cannot exceed the limits imposed by the DOF for the 

HMD, which is a function of the numerical aperture (NA) of the optics (NA equal n’ sinα’ with 

n’=1 in air and α’ and the magnification). The magnification defines the size of a pixel projected 

onto the image plane at each respective viewing distance. As presented in the previous section, 

the resolution of an HMD is equivalent to the size of a pixel in arc minutes after being magnified 

by the optics. The size of a pixel in pixels per degrees is given by equation 7, where M is the 

horizontal FOV in degrees. 

Figure 18  Calculating the size of a pixel 
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To determine the resolvable depth for the HMPD, the distal (D2) and proximal (D1) positions, 

with respect to the fixation plane, were calculated as shown in equations 8-12.  The depictions 

for D1 and D2 are shown in Figures 19 and 20, respectively. Both projections used to define D1 

and D2 pass through the centers of adjacent pixels. This pixel spacing is taken as the limiting 

resolution of the microdisplay. For square pixels, this distance should equal one pixel. 

Figure 19 Calculating D1  
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Figure 20 Calculating D2   
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 As an example, the resulting ∆D values in mm for the second generation HMPD (HMPD-

2) are given in Table 6. These values pose the theoretical limits of stereoacuity (as computed 

with VE) for the user while performing tasks while wearing this display. Thus, we expect 

average variable errors to be within 1.50 to 14.98 mm for a viewing distance of 800 mm, based 

on pixel or sub-pixel resolution, 5.33 to 53.30 mm for the 1500 mm viewing distance, and 21.45 

to 214.79 mm for the 3000 mm viewing distance.  Resolution values for the input device and the 

results of the study are detailed in Chapter 8. 

Table 6 Predicted stereoacuity and resolvable depth in mm for the HMPD-2 as a function of 
pixel size and viewing depth. 

 

  Resolvable  Depth 
(mm) 

Pixel Size Depth (mm)  

1 
800

1500
3000

14.98 
53.30 
214.79 

 
1/2 

800
1500
3000

7.49 
26.64 
107.29 

1/4 
800

1500
3000

3.74 
13.32 
53.63 

1/10 
800

1500
3000

1.50 
5.33 
21.45 

   

Predicting Measures of  Stereoacuity, Resolvable Depth, and Other Response Variables 

 Stereopsis is not based on absolute disparity or the distance of a single object from the 

egocenter of the observer (Steinman, Steinman, & Garzia, 2000, p. 187). Absolute disparity is 

the cue for vergence and guides eye movements toward the to-be-fixated object (Howard & 
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Rogers, 1995). Thus, the Howard-Dolman Depth test measures relative distance, which is a 

comparison of the distance between two or more objects in the visual field and is the cue for 

stereopsis. In essence, the observer can discriminate objects that are closer from those that are 

farther away relative to some fixation point based upon relative disparities encoded at the level 

of the retina, yet processed in the visual cortex.  

 Cumming and Parker (1999) showed that absolute disparities are processed by area V1 in 

the visual cortex of a Macaque monkey. As discussed previously, the cortical locus of stereopsis 

is still under investigation. Understanding the visual processing stream, allows for better 

interpretation of experimental results since, in this instance, we are answering an applied and not 

basic research question. As Larson (1985) pointed out, there are multiple methods of analyzing 

Howard-Dolman type data suggesting that the test itself is flawed. However, given that the test 

was developed before knowledge of binocular disparity neurons were confirmed, allowing the 

testing methodology to evolve is reasonable if the test itself is reliable or consistent over 

measurements. 

 Weymouth & Hirsch (1945) reported on the reliabilities of different depth tests, which 

included both the Howard Depth test and the Howard-Dolman test.  The test-retest correlation 

for the Howard Depth test was .88, while the correlation for the Howard-Dolman test was .62. 

For the Howard-Dolman task, the authors reassessed the reliability after changing the scoring 

procedure from assessing absolute error (AE) calculated by equation 13 to that of calculating the 

root mean square error shown (RMSE) in equation 14. The result was to increase reliability of 

the metric to .86.   
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Given that the response variable is the distance error in mm between the two rods, equations 13 

and 14 can be written as: 
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Where χ is the participants’ response, T is the fixed distance of the target rod, and N is the 

number of repetitions. Schutz & Roy (1973) defined both scores, AE and RMSE, as composite 

metrics of both constant and variable errors. Constant error (CE) is the participants’ signed 

measurement error or bias in aligning the two rods. The mathematical expression for CE is given 

in equation 17. Variable error (VEr) as shown in equation 18 is the measure of dispersion about 

the participants’ own mean error ( X ), thus it is a measure of precision.  

n

T
CE

n

i
∑
=

−
= 1

)(χ
    (17) 

n

X
VE

n

ni
r

i∑
=

−
=

2)(χ
   (18) 

 In a summary article on the proper use for the CE and VEr metrics, Schutz (1977) 

recommended that the CE should not be used as a dependent measure in inferential statistics tests 
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such as t-tests. Instead, the absolute value of the CE (|CE|) along with VEr should be used as 

response variables to compare for between or within group treatment effects. Howard & Rogers 

(1995) term the CE with regard to the depth discrimination threshold as stereoaccuracy (p. 150).   

Ogle (1962) cautioned against using the CE to assess stereoacuity since individual differences in 

refraction errors or even ocular dominance may skew these results. In addition to evaluating the 

VE, Ogle recommended calculating the equivalence disparity angle (η) as a means to assess 

stereoacuity from Howard-Dolman like depth tests.     

Calculating the equivalence disparity angle (η) 

 Binocular correspondence theory suggests that there is a mapping of the binocular area of 

the visual field onto each retina of the eye (Reading, 1983). As discussed and shown in Figure 

11, the retina of each eye maps topographically to the lateral geniculate nucleus and follows a 

common pathway to the visual cortex. Along the pathway the monocular images are fused 

creating a single percept of the objects in the visual field. Small horizontal retinal disparities 

created by non corresponding retinal points give rise to stereopsis (Patterson, 1992). 

 Dolman (1919) designed his depth test to measure angular deviations in depth as 

measured from the point of fixation. At the observer’s fixation point, there is zero disparity 

(Steinman, Steinman, & Garzia, 2000). Consequently, all objects equidistant with the point of 

fixation are perceived as being at the same depth. That is to say that the relative distance between 

objects appears to be the same. The horopter is a theoretical construct that represents a mapping 

of objects in the visual field with zero disparities or of corresponding points along the retina 

(Patterson, 1992). This concept is instructive since it provides a geometrical method for 

predicting the limits of stereopsis.  
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 For the Howard-Dolman task the fixation target sets the horopter for that particular 

viewing depth. The moveable rod can either appear in front of or behind the point of fixation, 

(e.g., as crossed or uncrossed disparities, respectively). Figure 21 shows the geometry for 

determining the equivalence disparity angle (η). Within this framework, the angle Φ is the angle 

of convergence for the far object. Similarly, the angle ε represents the angle of convergence for 

the near object.  

Figure 21 Geometry for determining the equivalence disparity angle (η) 
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  and, 

 

    angle ( φε − ) = η    (20) 

 

Since ε, Φ, and η are small, then the sine, tangent, and angle in radians were taken to be 

equal. If the IPD and distance b are in the same units, then the angle can be converted to radians. 

The estimate for η in arc seconds by employing a conversion factor from radian to arc seconds 

becomes 

    206265)(2b
bIPD∆

=η        (21)  

In the forthcoming experiments, we calculated CE, |CE|, VE, and η as response variables from 

both the Howard-Dolman and modified Virtual Howard-Dolman task. In the next chapter we 

describe the HMD used in each experiment and calibration procedures for each type of display. 
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CHAPTER 5 CALIBRATION PROCEDURES FOR HMPD AND VE 
SYSTEM SETUP 

5.1 Introduction 

 Many off-the-shelf HMDs are improperly or inadequately documented. When reading 

technical specifications many important parameters of the display such as the microdisplay 

active area size is either not given or only partially specified. At the very least, specifications for 

any type of HMD should include: FOV for the x and y dimensions, size of the microdisplay, 

active area of the display in both the x and y dimensions, and pixel size or the equivalent so that 

these parameters may be computed. These parameters are necessary not only for software coding 

purposes, but also for calibration procedures. HMD manufactures should also include 

information about the optics alignment (e.g., whether the optical axis is convergent or divergent) 

to ensure proper use of the displays.  

 The purpose of this chapter is not to review the field of calibration for HMDs, but to 

report on the calibration methods that we employed to ensure that test stimuli for both the 

modified Landolt C and the Virtual Howard-Dolman test stimuli were properly viewed.  We also 

discuss the HMDs worn during the experiments and the VE system setup.    

5.2 Overview of HMDs 

Four HMDs were used during various experiments reported on in later chapters. Two 

HMDs were first and second generation prototype head-mounted projection displays (HMPDs) 

whose optics was developed in the ODALab at the College of Optics and Photonics at the 
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University of Central Florida (Rolland et al., 2004). The mechanical alignment of the ODALab 

HMPDs was performed by industrial partners. We also included an immersive display, VR6 

(Virtual Research Systems), and a video see-through HMD, the Canon COASTAR™. The 

HMDs are shown in Figure 22. Table 9 shows the parameters for each display as they are 

presented in their documentation. 

 

 

Figure 22  The upper left panel shows the VR6. The upper right panel shows the Canon Coastar. 
The bottom two panels show the ODALab prototype displays, on the left the HMPD-1 and on 
the right the HMPD-2, respectively. 
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Table 7 Technology specifications for HMDs used in experiments. 

  FOV 
(Degree) 

Resolution 
(Pixels) 

   

HMD Type Display Type H V H V 
Display Size 

mm 
Focus Plane 
      mm 

IPD 
mm 

HMPD-1 
800 
1500 
3000 

LCD 41 
40 
41 
42 

31 
31 
31 
32 

640 
 

480 
   

27 x 20  
 

Infinity 
800 
1500 
3000 

55-75 

HMPD-2 
800 
1500 
3000 

 
OLED 

 
33 
34 
34 

 
25 
26 
26 

 
800 

 
600 

 
12 x 9 mm 

 
800 
1500 
3000 

 
55-72 

Canon LCD 57 37 640 480  2000 63 
VR6 LCD 48 36 640 480 1.3 x 2.59 914 52-74 

         
 

 Both HMPDs have adjustable focal planes; however, only the optics of the HMPD-2 was 

designed and optimized for projecting images to the depths of 800, 1500, and 3000 mm. The 

adjustment for changing the depth plane for either HMPD was a manual adjustment. However, 

for the HMPD-1 we had to open the casing to adjust the optics each time we changed viewing 

depths. The adjustable focal plane aide in eliminating the accommodation and convergence 

decoupling that occurs in most HMDs. For example, the focal plane for the VR6 is set at 914 

mm, which is approximately 3 feet. Most imagery for this HMD will be set beyond this depth. 

Because of the limited adjustability of the Canon and the VR6, we only tested these HMDs at the 

1500 mm viewing distance.  

 Table 10 gives the resolvable depth predictions for each HMD at the 1500 mm viewing 

distance. As discussed in the previous chapter, the resolvable depth allows us to make 

predictions on user performance when aligning the octahedron with the cylinder at the 1500 mm 

viewing distance. More specifically, at each pixel and subpixel resolution we can predict the 
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user’s precision or variable error per HMD. For example, the ability for a user to discriminate 

front and back positions of the octahedron with respect to the cylinder should be compromised in 

both the Canon and the VR6. More specifically, the step sizes between each subpixel resolution 

are larger than that of the HMPD-1.  Thus, the participants should have more variability in there 

responses because of the decreased discriminability of front and back positions. However, other 

aspects of the viewing environment such as positioning of the stimuli with respect to the focal 

plane of the HMD may improve performance.  

Table 8 Predicted resolvable depth in mm for the HMPD-1, Canon, and VR6 as a function of 
pixel size. 

 

 Resolvable Depth for 1500 mm 
(mm) 

Pixel Size Canon VR6 HMPD-1 
1 95.54 78.32 65.93 

1/2 47.73 39.14 32.95 
1/4 23.86 19.57 16.47 
1/10 9.54 7.83 6.59 

    
 

 Calibrating the HMDs prior to performing the assessments is a necessary step to ensure 

accuracy of the testing method. The HMPD-1 had undergone engineering based calibration prior 

to the start of the experiment. The main issue with this display was overscan of the frame buffer 

as discussed in Chapter 4. The HMPD-2 was a true prototype display in that the mechanisms for 

adjusting the depth planes and IPD were still under design. This HMD posed new challenges 

when performing the experiments discussed in Chapter 7. The off-the-shelf HMD models were 

not easy to calibrate. The best we could do was to ensure that the software accounted for the 

FOV values listed in Table 9 when running the experiments which were included in their 

owner’s manual. However, this condition is similar to real world experience where the HMD for 
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first time users is essentially a black box with poor documentation. Once the HMD is best 

aligned, software can be used for fine tuning the calibration. HMD calibration is an active area of 

research for which there is currently no off-the-shelf solution (Tuceryan & Navab, 2000; Owen, 

Zhou, Tang, & Xiao, 2004). 

5.3 First Generation HMPD-1 and VE System  

 Hua, Girardot, Gao, & Rolland (2000) introduced the first miniaturization of the optics 

for a new type of new head-mounted projection display that reduced visual distortion and 

allowed for correct occlusion of virtual objects. The resulting prototype of this work is shown in 

Figure 20. Figure 21 illustrates the mechanism of how the HMPD functions.  

 The HMPD consists of a pair of small projection lenses, a beam splitter, a pair of micro 

displays, and retroreflective material strategically placed in the environment. The computer 

generated images are projected through the lens and retro-reflected back through the pupils of the 

eye. Through the aide of the beam splitter the exit pupil of the projection optics is coupled with 

the pupil so that the image can be seen. The beam splitter for both HMPDs is set at a 45 degree 

angle. The use of projection optics instead of eyepieces allows for a larger FOV and less optical 

distortion. The use of retroreflective material also distinguishes this type of technology from 

other projection based stereoscopic displays such as CAVES, Cave Automatic Virtual 

Environment (Cruz-Neira, Sadin, DeFanti, 1993).  

 Unlike the CAVE, which uses multiple back projection screens and projectors to simulate 

a collaborative virtual workspace, the HMPD setup allows for independent viewpoints of the 

same space without cross talk from multiple users sharing a common viewpoint. In addition, the 
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retroreflective material allows for correct occlusion when observing both real and virtual objects 

(Hua, Girardot, Gao, & Rolland, 2000).  

 

Figure 23 HMPD imaging pathway. Adapted from Hua, Gao, & Rolland (2000) 

5.3.1 Retroreflective Material and the Augmented Reality Center (ARC) 

 The main property of the retro-reflective material is that light rays hitting its surface at 

any angle are reflected back onto themselves. Because of this property, the image features such 

as shape and location are independent of retroreflective screen placement. Currently, there are 

two types of retroreflective material used in the ODALab VE system, ScotchliteTM 3M Fabric 

Silver (micro-bead array) and ScotchliteTM 3M Film Silver (corner-cubed array). 

 Each type of retroreflective material has a different underlying array structure (i.e., 

micro-beaded or corner-cubes) as shown in Figure 22. The beaded material is an off-the-shelf 

Eye 
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Projected Image 

Beam Splitter 

Retroreflective Screen 

Projection Lens  

Intermediary Image  



92 

material that acts through specular reflection, while the cubed material was custom specified and 

utilizes total internal reflection (TIR). A simple definition of TIR is that incoming light is bent in 

such a manner upon hitting the surface of the material that the entire ray is sent back into the 

direction from which it came.  Both materials are optimized for safety applications, not imaging.  

However, an optical structure operating on TIR properties is expected to yield higher reflectance, 

thus appears brighter. The point-spread functions for each material confirm that the cubed 

material achieved not only higher levels of brightness across the image plane, but also higher 

resolution (Martins & Rolland, 2003). 

Figure 24 Array structures of the retro-reflective materials. From Capdevielle, Martins, & 
Rolland (2003).  

 

 The retroreflective material, either type, aligns the Augmented Reality Visualization 

Center (ARC) shown in Figure 25a. The ARC is a prototype multi-modal Augmented Reality 

System with 3D visual, 3D audio and haptic capabilities configured as a quasi-circle of 4.57 m 

(15 ft.) diameter (Davis, Rolland, Hamza-Lup, & Ha, 2003).  The first four experiments reported 

were completed in the ARC. Due to a change in research venues a modified version of the ARC 

also shown in Figure 25b was used for the stereoacuity assessment of the HMPD-2. Thus, one 

aspect of this research was to ensure test replicability between research venues, which has 

implications for performing the vision tests with other VE systems.    
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a.           b.                   

  

 

Figure 25 (a) The ARC       (b) The quarter ARC 

3.3.2 Calibrating the HMPD-1 

 As shown in Figure 26, the control box for the HMPD drives the microdisplay. Its size 

necessitates larger cables, thus limiting mobility of the user.  Because this is also a prototype 

version, there is no standard to maintain consistency between control boxes. However, as with 

any controller for microdisplays there are errors in the electronics as part of the trade-off for 

miniaturizing these devices.  Although one control box is needed to drive the left and right 

microdisplays, each display and each control box needed to be tested separately.  
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Figure 26 HMPD-1 system components 

  

 As previously described, the FBO is an error generated by the display device controller 

whereby some parts of the active area of the screen are not displayed. To measure the FBO for 

each control box we used the functionality of OpenGL, low level Application Programming 

Interface (API) standard in VE design. Figure 27 shows the OpenGL visualization pipeline. At 

each level within the pipeline, OpenGL offers different functions to control each aspect of the 

imaging process.  At the level of the frame buffer graphical operations diagramed are confined to 

the viewable area of the buffer using the glViewport function. The function allows us to 

determine the displayable area accounting for the FBO. 

 

Control Box 
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IPD Adjustment
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Cables 
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Figure 27 OpenGL visualization pathway from OpenGL, http://www.opengl.org 

 Figure 28 shows the relationship between the graphics frame buffer and the viewable area 

of the display along with a screen shot of the FBO application. Table 9 describes the parameters 

used in the calculation. To obtain this area, the X and Y coordinates of the viewport must be 

located. The outer edge of the frame buffer is the starting point for the measurement. Finding this 

point on the X axis is the initial reference point. This initial point determines the initial Y 

reference point. Next, the coordinates that define the pixels that first come into view in the active 

viewing area are obtained. The lines shown in the application are one pixel width, thus, moving 

line over one space covers the range of the field of view one pixel width at a time. The final X 

and Y positions are subtracted from the initial X and Y positions to determine the number of 

pixel lines not drawn to the active area of the display. The pixel positions as defined in Table 9 

are outputted to the screen. This measurement must be obtained for both the left and the right 

viewports. Then, the new field of view for the virtual reality system is then recalculated to 

coincide with the FBO. 
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Figure 28  Frame buffer overscan measurement procedure  

Table 9 Parameter calculations for FBO2 

 void glViewport (GLint Xi, GLint Yi , GLsizei width, GLsizei height) 
 
Parameters 
Xi = the point where the buffer is first transcribed on the X-axis 
Xf = the final point that the buffer transcribed into the buffer on the X-axis 
Yi = the point where the buffer is first transcribed on the Y-axis 
Yf = the final point that the buffer transcribed into the buffer on the Y-axis 
 
Displayable Width in pixels = (Xf  - Xi) + 1 
Displayable Height in pixels = (Yf  - Yi) + 1  

                                                 

2 All code for the FBO measurement was created by Kit Fuhrman of the DARE ODALab coding team. 

Active area of the 
Microdisplay 

X, Y 
0, 0 

Graphics Frame Buffer

FBO newly defined FOV 
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Table 10 Results of the FBO procedure  

 
 FBO Values 

 Xi Xf Yi Yf (Yf  - Yi) 
+ 1 

(Xf  - Xi) 
+ 1 

Right 1 631 0 472 473 631 Box 
263 Left 2 639 1 479 479 639 

Right 0 639 0 473 474 640 Box 
264  Left 1 639 0 474 475 639  

  

 As shown in Table 12 the FBO for each eye measured from the same control box was 

different. In addition, the values for the left and right eyes changed when a new control box was 

attached to the system. More specifically, the FOV specified by the microdisplay is 640 x 480. 

When using control box 263, the FOV for the right eye was actually 631 x 473. In contrast, the 

values for the left eye were 639 x 479, which matches the documented FOV for the display. 

Since both microdisplays have a different center point for the screen, the information rendered to 

the display will not be exactly registered for each eye when viewed by the user. Although the 

HMPD was optimized for distortion, other HMDs do not have this feature. Compounded with 

distortion of the HMD lens system, errors in depth rendering caused by the FBO together with 

the alignment of the viewport centers on the optics, may result.  However, as Robinett and 

Rolland (1992) pointed out, accounting for FBO in the VE software design is a relatively easy 

way to ensure that the HMD and the graphics work together to give the best possible imagery.  

 Performing the FBO procedure using the HMPD-1 was easier compared to that of the 

HMPD-2. In both cases the microdisplays were directly accessible and a separate calibrated 

monitor was not needed. However, the HMPD-2 uses an OLED as apposed to an LCD. Because 

of the burn-in rate of the OLED, the active area of the display randomly shifts to ensure that a 

single pixel is not constantly being turned on and off with use. This leads to a randomly moving 
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FBO. Given the nature of our task, taking an average of these FBO measures may not be 

appropriate since the shift can be between 1 and 5 pixel widths. How best to measure the FBO in 

some HMDs (e.g., VR6) is yet to be determined.  

 At the very least, the appropriate FOV values for both the X, and Y directions should be 

used to define the viewport of the microdisplay in the graphics. These values will allow the 

software to better estimate the size of a pixel for that HMD. Although this step is part of the 

OpenGL rendering specifications, other API’s may only require the resolution of the display as 

an input variable. The VE designer should be aware of the possible visual errors that this higher 

level approach may induce. However, calibration of the HMD should ultimately not be the job of 

the end user. The HMD optomechanical assembly team is best able to measure the FBO of the 

microdisplay before assembly. Thus, before the microdisplay is mounted to the optics, the center 

of the viewport defined based on the FBO should be mapped to the central axis of the optics.  

With such alignment, the FOV is by construction symmetric with respect to the eyepoint.  The 

Manuals would then report these parameters for optimal use of the device. 

5.4 Second Generation Prototype HMPD-2 

The HMPD-2 is the second generation HMPD-1. The optics and projection system 

covered a 42o diagonal FOV as apposed to a 52o for the HMPD-1. The compactness of HMPD-2 

reduces the overall size and weight. As shown in Figure 29, the most notable changes were also 

the resolution (800 x 600), microdisplay type (OLED), and adjustable depth plane. The control 

boxes are now split into miniature boxes using eMagin’s microdisplay technology, one for each 

eye.  The miniature control boxes increase the participant’s mobility by reducing the bulk and 

thickness of the cables that connect to the display. The one drawback to this display was that it 



99 

was a quickly assembled prototype. As such some of the features (i.e., the IPD adjustor) were not 

as stable as we expected and necessitated recalibrating the HMPD frequently.  

 

 

 

 

 

Figure 29 HMPD-2 system components 
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5.4.1 Assessing Lens Misalignment with Human Observers  

 When we first tested participants with the Virtual Howard-Dolman task (V-HD task) 

while wearing the HMPD-2, they were unable to fuse the image. Further, the participants 

reported a tilting of the virtual objects with respect to one another. Analysis of the resulting 

depth errors from the V-HD task showed that the mean responses were well beyond the range 

predicted in section 4.5.3. The results of the depth assessment suggested that one or both of the 

lenses within the HMPD-2 were tilted with respect to the image plane as diagrammed in Figure 

30. 

 (a)        (b) 

  

Figure 30 (a) Correct alignment according to specification (b) Suspected alignment based upon 
assessment.  
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 We were able to test this prediction by measuring the parallax error between both eyes 

when participants viewed a stationary target with each eye separately and from each of the 

respective viewing distances. The stereoscopic stimuli were rendered to the display taking into 

account the IPD of the observer. Left and right eye views of a scene were generated by rendering 

the stimuli from each eyepoint separated by IPD.  Given that the HMPD-2 has two separate 

channels for generating images to each eye, measurements can be taken by closing one eye 

channel at a time. By marking the location of a single point seen by one eye and then marking 

the location of that point as seen by the other eye, should return the IPD of the user if the lenses 

are parallel. Using this method we tested whether the lenses were set parallel as specified by the 

optics design when they were aligned by the mechanical design team. The lenses had been tilted 

at mechanical assembly and were realigned by the optics team and perceptual scientists.  

 The ARC is a semi-circular structure, thus to minimize the possible effects from the 

surface being curved a stand approximately .91 m wide and tall was created out of Plexiglas.3 

The material was chosen because it was lightweight and provided a smooth surface with which 

to affix the retroreflective material. The stand was angled at 90 degrees and was leveled so that 

the retroreflective material was parallel to the observers’ line of sight.  

 A bull’s eye was computer generated and rendered to the display with the corresponding 

IPD of each observer. We measured the mean angle of deviation imposed by the IPD for each 

observer. Figure 31 illustrates the setup for this assessment. A double cross grid was constructed 

on transparent vellum so that it could be written on and would not distort the image from the 

HMD.    
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 (a)       (b) 

 

 

 

  

 

Figure 31 (a) Experimental setup for determining the angle of the lens tilt (b) Left and right eye 
deviation from respective IPD position 

 

 Three observers performed the assessment. A viewing distance was chosen and the 

observers took turns performing the assessment. The test was performed until each of the three 

depths had been tested. The procedure for each participant was to close one eye channel of the 

HMPD-2 and align the reference hair of the Bull’s eye and then they aligned the opposite eye. 

The final position of the Bull’s Eye was marked on the vellum as shown in Figure 31b.  

The results of the parallax test showed that when the image plane was set to .8 meters 

there was a 5 cm (3.57 degrees) error between the projected focus target and the perceived 

image. Additionally, the perceived image was shifted to the left of the target suggesting that one 

lens was tilting inward while the other lens remained parallel. These results were repeated over 

the 1.5 and 3.0 meter depth planes thereby confirming the misalignment of the two lenses and are 

presented in Table 11.  This procedure provided a solution to the issue of lens tilt raised by 

                                                                                                                                                             

3 All machine work was conducted by Richard Zotti at the College of Optics CREOL-FPCE  at UCF 

Left Eye Error   

Right Eye Error 
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Wann, Rushton, & Mon-Williams (1995), who suggested that optical see-through head-mounted 

displays should be tested for lens tilt prior to running experiments.  

Table 11 Misalignment error of the two lenses 

Image Plane 
(mm) 

Error 
(cm) 

Angle Error 
(degrees) 

800 5 3.57 
1500 8.5 3.24 
3000 15.5 2.96 

 

 The results of the experiment suggested that the lenses were adjusted to converge as 

opposed to their specified optical design requirement of being parallel. However, the assessment 

also suggests that one lens was tilted horizontally off axis. The resulting errors were between 5 

and 15 cm. The HMPD-2 needed to be calibrated prior to running the assessments. Since there 

were no methods to calibrate the display, a methodology was proposed and tested.  

5.4.2 Calibrating the HMPD-2 

 We confirmed the results from the observer study with a laser setup. Figure 32 shows the 

initial setup. The HMPD-2 was flipped, so that the optics were pointing upward. An apparatus 

was setup to hold a penlight laser perpendicular to the optics face and was set 6 meters from the 

stand. A 1 inch by 1 inch window mirror was placed over the left eye optic barrel. 
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Figure 32 Initial laser based alignment setup 

 We ensured that the beam of the laser pointer was perpendicular to the mirror by 

positioning the laser so that the beam reflected back onto itself or in the center of its “lens”.  As 

shown in Figure 33, we used a paper “deflector” to make sure that the laser was not wildly 

pointing at an angle. The setup was placed on a horizontal slide so that we could move the setup 

to the other eye without disturbing the alignment of the laser 

 

 

Figure 33 Deflector and laser pointer 
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 The laser was then turned on and the projected point location was marked onto a piece of 

vellum that was previously used to check the image alignment during the Bull’s-eye test. Once 

the point was made, we moved the laser setup toward the right eye and then re-centered it over 

the left eye. The laser was turned on and the point marked. This point fell exactly over the 

previous point, thus we concluded that translating the laser setup would not disturb the laser’s 

perpendicular alignment. After marking the point, the mirror was moved to the right lens. 

Hereafter, the left eye position was used as the reference point.  

 

 

 

Figure 34 Laser error point representing alignment of the right eye and marker representing the 
left eye measurement  

 

 When we centered the lens under the laser and reflected the beam off the mirror to the 

retroreflective material, the resulting point appeared above the horizontal alignment of the left 

mark and displaced 13.4 cm to the left.  The HMPD-2 head mount was set to .065 m or 6.5 cm 

suggesting a huge offset in the position of the right lens.  

Left eye mark in Green 

Right eye mark with laser 

IPD = 65 mm 
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 To realign the lenses the optical barrels had to be loosened with a hex wrench and 

manually moved. Figure 35 shows the instructions on how to align the optics. With this initial 

setup we were able to confirm the results of the experiment with human observers. However, the 

setup was not robust enough to allow for accurate alignment of the lenses. Thus, an alternative 

setup was devised and is pictured in Figure 32.  

 

Figure 35 Alignment mechanism for both left and right eyes of the HMPD-2 

 A low level infrared laser was setup as pictured in Figure 36. The laser was set at almost 

a meter above the optics board. The board was made level with respect to the floor and the stand 

affix with retroreflective material was leveled with respect to the laser apparatus. Once the 

system was leveled, the vellum sheet with the double cross grid was adjusted so that the center 

line was parallel with respect to the laser level. This step was included so that the target stayed 

parallel with respect to the floor and perpendicular to the laser beam.   

 

Loosen these screws to 
rotate the optics about the 
axis parallel to the screws 
to change the convergence 
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a      b 

  

Figure 36 Final laser setup and alignment  

 The laser beam was set on a moving platform and could translate in the X direction, 

although it remained fixed with respect to its Y position. To ensure that the laser was aligned 

with the optics board, a mirror was placed on the board and a beam was projected off its surface 

as shown in Figure 37a. The resulting beam reflected back to the laser. If the laser were 

perpendicular to the table then the laser beam would follow the same path back to its source, 

which is located in the center of the barrel as shown in Figure 37b. We adjusted the laser until 

the path of the reflected beam aligned closely with the source. Once the laser was set, we placed 

the HMPD-2 level and directly under the source. The mirror was placed on one of the lenses as 

shown in Figure 37c. The laser beam was then reflected off the mirror. Because of the beam 

splitter, the laser beam was directed toward the retroreflective material as shown in Figure 37 d.  
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    a    b 

    

     

   c    d 

Figure 37 (a) Ensuring that the laser is perpendicular to the table (b) laser beam reflected off the 
mirror (c) mirror placed on lens and laser beam directed toward retroreflective material (d) laser 
beam reflected from the mirror onto the retroreflective material. 

 

 The left and right optics were adjusted separately. The optics were considered aligned 

when the laser beam location was as close as possible to the IPD point for that respective eye. 

This procedure took approximately three hours to perform. As well, the displays which were set 

inside the HMPD were not anchored mechanically. If one display disconnected, then the casing 

had to be opened to reconnect it. This issue became problematic because the left and right eye 

lenses were set to move independently when using the IPD adjuster. Thus, one could adjust one 

eye without moving the other. However, the track that the optics was set upon was unstable once 

the housing was removed. Therefore, if the housing is removed then the HMPD-2 would need to 
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be recalibrated. It should be noted that once the calibration procedure is complete, the HMPD-2 

is stable and reliable in the field.  

 After the results of the first experiment were completed, the mechanical design team was 

contacted regarding the alignment of the lenses. The team confirmed that the optics had been set 

to converge at an image distance of 2 meters, which was not consistent with the optics 

specifications. We are unsure how customers of off-the-shelf products are able to confirm the 

parameters of the HMD without better documentation and baseline comparisons. On a personal 

note, I would never spend over 5,000 dollars on a stove for which I had to determine the heat 

setting by trial and error. Similarly, I would never buy a high end automobile, which is the cost 

of some of the HMDs on the market, if I had to constantly adjust the engine before driving it. 

This calls for the optomechanical design team to communicate closely with the optics and 

perception scientists in how they assemble the final product.      

5.4.3 Setting the Image Planes for the HMPD-2 

 In addition to the lens alignment, the image plane distances had to be calibrated. This 

calibration is only performed when the barrels are removed from the system. The barrels were 

removed twice during the course of the experiments because of issues with the OLED. After a 

period of use they developed black dots in the FOV. Given that the microdisplay was glued to 

the optics barrel, the barrels themselves had to be removed and shipped out of lab for removal of 

the display.  

 The expected image plane size for each viewing depth can be determined from the active 

viewing area of the display, the focal length of the HMPD, and the FOV in both the X and Y 

directions. The parameters above were set in an optical design software package called Code V. 
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The software used the parameter values in a ray tracing, tracing a ray of light from the eye back 

through the image plane into object space. In essence, the code matches the image height to the 

display height. The resulting image heights are given in Table 14.  

Table 12 Image plane width, height, and diagonal measures based upon viewing distance 

Screen distance(m) Screen Width (mm) Screen Height (mm) Screen diag. (mm) 
0.8 479.7 360.4 600.0 
1.5 911.6 684.8 1140.2 
3 1837.5 1380.4 2298.2 

 

 To adjust the settings for the HMPD-2, three observers were needed. The general 

procedure is for a single observer to stand at one of the viewing depths. With the HMPD adjusted 

for their IPD, they are to view a projected image of a high contrast stimulus (e.g., text) through 

one eye at a time. They then turned the adjustment knob for that lens until the stimulus appeared 

clear. Text was especially helpful since he or she could read the text when the HMPD-2 was 

brought into proper focus. Each observer must confirm the setting for that level of viewing 

distance for each eye. The barrels of the optics were then marked with an indicator for each 

depth.  
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CHAPTER 6 RESOLUTION VISUAL ACUITY: LIGHTING, CONTRAST, 
& RETROREFLECTIVE MATERIAL AFFECTS 

6.1 Introduction 

 Our goal in developing the HMD Performance Assessment Battery is to provide VE 

system designers with a user-centered methodology for systematically optimizing each aspect of 

the virtual environment (VE) from the HMD, computer graphics, to interactive devices 

(Fidopiastis, Meyer, Fuhrman, & Rolland, 2003). Given this approach, we hope to minimize 

problems associated with integrating display technology with end user task specifications. For 

example, when performing tasks using a wide field-of-view HMD, the user’s resolution visual 

acuity is typically reduced due to the limited image resolution of the miniature displays used in 

the HMD. Quantifying the decrement in rVA would allow the designer to make better decisions 

on what types of graphics to display or even to determine if the HMD is appropriate for the task. 

However, other aspects of the VE setup may degrade user performance in addition to or as the 

limiting factor.  Such is the case with the retroreflective material used with the HMPD. 

 In the ARC display, the optics of the HMPD project a separate left and right image into 

the augmented VE using a 50/50 beam splitter to reflect light off the retroreflective material. 

Because the retroreflective material reflects the light in the opposite direction of its incidence, 

stereo images are returned to the eyes of the user. The limit in user resolution acuity is imposed 

by the limited resolution of the microdisplay in current HMDs. One method of overcoming the 

limitations of the microdisplay is to augment the properties of the retroreflective material (e.g., 

increased brightness).  
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 Currently, there are two types of retroreflective material used in the ARC display, 

ScotchliteTM 3M Fabric Silver (Beaded) and ScotchliteTM 3M Film Silver (Cubed). The material 

for the ScotchliteTM 3M Film Silver (Cubed) should reflect more light, thereby enhancing the 

apparent brightness of the projected image. This quality should increase the light entering the 

user’s eye, thus improve resolution visual acuity.  In the forthcoming experiments, we assessed 

users’ rVA with the computerized version of the Landolt C (referred to as the optotype) visual 

acuity test while viewing the virtual optotypes  with either the ScotchliteTM 3M Fabric Silver 

(Beaded) or ScotchliteTM 3M Film Silver (Cubed)  in the environment. Both high contrast and 

low contrast stimuli were used to compare differences between the two materials given 

differences in their ability to reflect light.  

 As pictured in Figure 38, the ARC display is a circular structure with retroreflective 

panels covering the interior. The panels are .91 meters wide and 3 meters high. The ceiling and 

entrance of the ARC is covered with a heavy black cloth to block extraneous light from entering 

the VE. To assess differences in retroreflective material performance when lighting conditions 

changed, we tested rVA under three different light levels. Because of the relatively low level of 

illumination in the HMPD, only mesopic and scotopic light ranges were used in the ARC. These 

light levels roughly correspond to illuminance IES Lighting Handbook (1987) for lighting spaces 

for optimal user performance listed in Table 13.   

Table 13 Illuminance categories and values IES Lighting Ready Reference (1989), p. 87 

Performance on Tasks of high contrast or large size 200 to 500 Lux (18.58 to 46.45 footcandle) 
Occasional working space  100 to 200 Lux (9.29 to 18.58 footcandle) 
Simple orientation for short temporary visits 50 to 100 Lux (4.64 to 9.29 footcandle) 
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6.2 High Contrast rVA Assessment Experiment 1 

6.2.1 Hypotheses for High Contrast rVA Assessment Experiment 

Given the current VE system setup, we can make the following predictions: 

Hypothesis 1: Based on the HMPD-1 display size, and FOV, we estimated a 

maximum visual acuity of 4.1 minutes of arc.  

Hypothesis 2: Given the increased brightness of the ScotchliteTM 3M Film Silver 

(Cubed) material and subjective visual observation of brightness differences between 

the two materials, we expected slightly higher rVA scores with ScotchliteTM 3M Film 

Silver (Cubed) material in the environment.  

Hypothesis 3: As the light levels in the ARC increase, the contrast of the optotype 

decreases, this may lead to a decrease in performance on the rVA.  

6.2.2 Method High Contrast Experiment  

Participants 

 This study was approved by the University of Central Florida Institutional Review Board 

(IRB). The protocol is listed in Appendix X. Twelve participants (11 men and 1 woman, mean 

age  = 28years, SD = 5.70) performed the Landolt C Visual Acuity test under 3 different light 

levels presented in Table 13 under real world viewing and augmented reality viewing (e.g., using 

the HMPD) conditions. Half the participants viewed the cubed material while performing the 
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Landolt C visual acuity test wearing the HMPD-1. The other six participants performed the 

assessment while viewing the beaded material. Each participant was either corrected for or had 

20/20 vision. Glasses or contacts were worn during each part of the experiment. 

VE System 

 We used a first generation see-through projection head mounted display (HMPD) with a 

52 degree FOV. The microdisplays for the HMD were off-the-shelf Liquid Crystal Displays with 

a VGA resolution of 640x480.  Software ran on a computer system with Linux RedHat 7.2 OS 

and a dual processor graphics card. The LCD monitor was a Dell 17 inch flat screen. Within the 

ARC, we replaced two of the, ScotchliteTM 3M Fabric Silver (Beaded) panels with ScotchliteTM 

3M Film Silver (Cubed) panels.  

 

Figure 38 VE system: ARC, HMPD, and computer setup 

Modified Landolt C Computer versus Augmented Reality Version 

 Six different gap sizes representing the different levels of visual acuity in minutes of arc 

were presented. The stimuli were the same in each condition; however, the visual angle 

corresponding to each size (arc minutes) of the Landolt C changed from the computer to the 
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augmented reality condition. Table 14 below presents the change in visual angle for each 

environment. To accommodate for these differences, the participants were seated 1.85 meters 

from the LCD monitor in the computer version and were 2 meters from the retroreflective 

material in the augmented reality condition.  

Table 14 Visual acuity conversion values 

Computer 
(Arc 

Minute) 

Snellen 
Conversion 

(Ft and Meters) 

Augmented 
Reality 

(Arc Minute) 

Snellen 
Conversion 

(Ft and Meters) 
1 20/20 or 4/4 4.1 20/82 or 4/16.4 
2 20/40 or 4/8 8.2 20/164 or 4/32.8 
3 20/60 or 4/12 12.4 20/248 or 4/65.6 
4 20/80 or 4/16 16.5 20/330 or 4/66 
5 20/100 or 4/20 20.6 20/412 or 4/82.4 
6 20/120 or 4/24 24.7 20/494 or 4/98.8 

 

Lighting setup 

 Although other light configurations can be used (e.g., light reflected off the ceiling), we 

chose to suspend the light from the ceiling of the ARC to better control the effects of glare and 

extraneous light that may bounce off the floor onto the retroreflective material. Three 13 Watt 4-

pin PI fluorescent lamps (780 lumens, Warm 2700K) were mounted on a 51.5 cm by 59.5 cm 

gator board. The board was attached to the ceiling in the center of the ARC as illustrated in 

Figure 39. A diffuser of sheer black material and length .72 meters was attached to the board. 

The lighting levels were set using a Minolta T-10 illuminance meter. Illumination ranged from 

High (225 -209 Lux), Medium (140 to 132 Lux), and Low (61 to 53 Lux) to give an average 80 

Lux difference between each light level. These light levels are presented in Table 13. 
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Figure 39 (a) Lighting and computer setup (b) Adjusting the HMD for a participant 

Experimental Design 

 Participants were randomly placed in a retroreflective material condition (beaded or 

cubed). The three light levels were changed for each participant according to a partially 

counterbalanced design determined prior to the experiment. Within each test block, each Landolt 

C gap size was presented in random order. As well, there were five random presentations of each 

direction (up, down, left, and right) per level of visual acuity. Test blocks were run first with the 

computer version of the Landolt C test under real world viewing conditions, and then within the 

HMPD-1. Participants completed one test block per lighting condition for a total of 3 blocks per 

viewing environment. Within each block, they experienced each gap size 20 times. There were a 

total of 720 responses per participant. Once the responses were converted to percent correct and, 

then converted to NED values, a Probit analysis using light level, visual acuity, and gap direction 

as independent variables was completed.  
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Procedure 

 The initial lighting level was set for each participant prior to their entering the ARC. 

Participants were first seated 1.85 meters from the computer monitor. The interpupillary distance 

(IPD) of each subject was measured using a pupillometer. This value was entered into the 

Landolt C test to set the correct position for the left and right eye display of the stimuli on the 

LCD monitor. The IPD on the HMPD was also adjusted to center the optics and the image on the 

eyes of the observer in the augmented reality condition. This initial setup allowed the participant 

to visually adapt to the lighting conditions within the ARC prior to the start of the experiment. 

Once correctly positioned and the IPD entered, the participants were given a keyboard, and 

instructed to use the arrow keys to indicate the direction of the gap in the Landolt C stimuli.  

 Each time the participant key pressed their response, a beep would precede the 

appearance of the next stimuli. The test stimuli would remain on the screen until the participant 

indicated a response. There was no time limit in responding. The participant continued to 

respond until the program indicated that the test was complete. The software program recorded 

each response in a tab delimited file format that was exported to MS Excel. A combined data file 

was created for each subject across each lighting and viewing condition (computer or HMPD-1).  

 Once the subject had performed the computer version of the VA test, they were asked to 

stand on a mark 2 meters from the retroreflective material. The HMPD was adjusted for IPD and 

head size as shown in Figure 39b. Once the rVA test was completed within the HMPD-1, the 

subject was asked to sit again while the experimenter changed the light level. The procedure was 

repeated until data was collected for all three light levels.  
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6.2.3 High Contrast Visual Acuity Experimental Results 

 In all experiments, the ANOVAs were performed using SPSS 11.5, the Probit analysis 

was done using STATGRAPHICS plus 5.1, and all graphs were constructed using Minitab 14. 

Each statistical software package performs the respective analyses using slightly different 

formulas and assumptions. Software was chosen based on exactness of procedures. For example, 

STATGRAPHICS plus 5.1 provides a Probit analysis across multiple independent variables 

using a maximum likelihood regression, whereas SPSS does not.  

 The results showed that there was no difference in performance on the real world viewing 

condition for both groups in terms of visual acuity (MCubed = 98.64, SD = 3.22; MBeaded = 99.07, 

SD = 1.96). For visual acuity corresponding to 20/20 vision (1 arc minute), the participants in 

each group performed well above the 62.5% threshold (MCubed = 93.70, SD = 4.82; MBeaded = 

97.04, SD = 2.89). Although performance was poorer in the HMPD-1 for the smallest visual 

acuity (4.1 arc minute), the proportion of correct responses was still above the 62.5% threshold 

(MCubed = 88.89, SD = 11.91; MBeaded = 81.48, SD = 14.66). These results are graphically 

displayed in Figure 41 a and b.  
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Figure 40 (a) Real world viewing of rVA assessment showing no change in responses over 
testing (b) Modified virtual Landolt C results show rVA limit of HMD. 

a. 

b. 
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A mixed ANOVA (2 material types x 6 gap sizes x 3 light levels), where material type is 

a between groups measure and gap size and light levels are within groups measures, was used to 

analyze the percent correct responses adjusted for chance.  The ANOVA showed that there was 

no significant effect of room lighting on rVA while testing in HMPD-1 or while viewing either 

type of retroreflective material F(2, 144)= 4.39, p = .139, η = .217. There was a main effect of 

gap size, F(5, 50) = 6.83, p = .001, η = .406. As figure 39 shows, rVA performance declined 

when reaching the pixel size limit of the display. Also, retroreflective material type did not affect 

rVA performance.  

 As expected, participants exhibited gap direction errors at the 4.1 arc minute level when 

viewing the optotypes on either of the different materials regardless of lighting conditions. 

However, certain gap directions were harder to identify depending upon material type. Those 

who performed the rVA assessment viewing the beaded retroreflective material were only 65.9% 

correct at determining a gap facing upward. Accuracy at identifying leftward facing Landolt Cs 

was at approximately 73%. Participants were above 90% correct at identifying the other two 

directions. In contrast, those participants who viewed the cubed material were 86.7% correct at 

identifying the upward facing gap. While the participants were only 75.8% correct at identifying 

a gap facing downward. The participants were above 95% accurate at determining the other two 

directions. For participants in both groups, the right facing optotypes were the most correctly 

identified (98.5% for the beaded group and 100% for the cubed). For other gap sizes, the 

participants were over 90% accurate at identifying each gap direction. All percentages reported 

were adjusted for chance.  
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Figure 41 Percent correct corrected for chance across material, viewing, and lighting (a) real 
world viewing (b) HMPD-1 performance under different lighting conditions  

a.  

b.  
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6.2.4 Conclusion High Contrast Experiment  

 The results of the experiment confirmed that the visual acuity limit using the first 

generation see-through HMD was 4.1 arc minutes. This rVA limit is imposed by the 

microdisplay, and not the retroreflective material. However, as we are able to use higher 

microdisplay resolutions, the retroreflective material may become the systems limiting factor. 

Participants performed no differently when viewing stimuli projected from either retroreflective 

material. Thus, given high contrast visual stimuli either material will support the user’s ability to 

see details in the scene up to the limit of the HMPD-1.  

 The experiment also showed that given the constraint in lighting imposed by the HMPD, 

there is no benefit to visual acuity in changing light levels within a scotopic or mesopic range. 

Although the rVA values were not improved by the lighting conditions, they were not degraded 

either. This result suggests that participants may be able to perform tasks in personal space 

(slightly beyond arms reach) that require natural viewing while also viewing a 3D scenario (e.g., 

occupational therapy instructions) projected into action space (beyond arms reach to 30 m). The 

ARC system may provide an optimal training environment for different types of rehabilitation 

(e.g., physical) where some interactions are difficult to replicate in a virtual world. Given that we 

can reduce the ARC to a single panel of retroreflective material, the system may be easily setup 

in the patient’s home where the patient can view the therapist remotely while performing the 

training tasks using real world objects. Although more studies are needed to explore the efficacy 

of such a VE setup within the field of rehabilitation, this research lends support to such 

applications.  

 With respect to the HMD, lighting conditions within the ARC may also become less 

constrained as HMDs become less reliant on the contrast created between low levels of 
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illumination and the projected image. The next experiment will explore the effects of contrast 

given the current ARC setup. In addition, errors in reporting gap direction using the modified 

Landolt C should be explored further. Visual errors may be introduced by the pattern of the 

beads or corner cubes within each type of material. These patterns may become more apparent as 

the resolution of the display increases.  

6.3 Low Contrast rVA Assessment Experiment 2 

 In real world viewing conditions, all information is not always presented with high 

contrast and fidelity. We often experience fluctuations in environmental lighting that degrades 

the visibility of objects, such as viewing car brake lights at twilight.  As with see-through HMDs, 

low contrast between the displayed image and the surrounding environment degrades image 

detectability beyond that of the human visual system. We know from experiment 1 that all users 

with 20/20 corrected vision can reliably identify high contrast targets at the resolution limit of 

the HMPD-1 when viewing optotypes on each retroreflective material. Next, we used the rVA 

assessment to evaluate the projection head-mounted display for changes in user visual acuity as a 

function of target contrast. Participants performed the visual acuity test while viewing either 

retroreflective material to evaluate the head-mounted display system. 

 The goals of this experiment are three-fold. First, we are interested in determining 

limitations in user performance while wearing the prototype HMPD-1. This evaluation assists in 

determining upgrades or improvements in the next phases of the design cycle. Second, we would 

like to evaluate the VE system components to better understand weaknesses from a human 

interaction perspective in the current system setup. Given a calibrated HMPD and an 

understanding of the retroreflective material properties, the rVA assessment should aid in 
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determining properties of the VE system which are limited by the HMPD-1 or the projection 

material separately. Thus, future tests could discern limitations attributed to each individual 

component of the VE system or the system as a whole. Third, we are developing a means to 

obtain baselines and quantify individual differences in performance when interacting within a 

VE system. The assessment must be sensitive enough to quantify different levels of individual 

performance.  This capability will allow us to screen participants prior to performing 

experiments as well as to understand modifications to the VE design needed to support user 

interaction.  

 In this experiment we held the lighting constant to evaluate perceived contrast separately 

from changing illumination levels in the ARC. Luminance of the Landolt C was varied by 

adjusting the binary grey-scale code within the computer program as reported in Chapter 4. The 

background of the display was set at a grey-scale value of 128. From this value, target grey-scale 

values giving contrasts of .2, .4, .6, .8, and 1 were computed. As with the previous experiment, 

participants performed the rVA assessment under real world viewing conditions as well as in the 

HMPD-1.  

6.3.1 Hypotheses for Low Contrast rVA Assessment Experiment 

Given the current VE system setup, we can make the following predictions: 

Hypothesis 1: The addition of the contrast stimuli will allow for the screening of 

participants who are not capable of discerning low contrast targets in general. Thus, we are 

better able to control for individual differences within an experimental design. 

Hypothesis 2: The rVA assessment will reliably measure rVA individual user performance 

over multiple days.  
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Hypothesis 3: The point spread function for each material suggests that participants 

viewing the changing contrast stimuli projected onto the ScotchliteTM 3M Film Silver 

(Cubed) material will attain higher rVA scores. Thus, the HMPD-1 will not be the limiting 

factor to rVA acuity.  

6.3.2 Method Low Contrast Experiment   

Participants 

      Six participants (all male, mean age = 30.5, SD = 7.09) performed the complete experiment. 

Each participant was either corrected for or had 20/20 vision. Glasses or contacts were worn 

during each part of the experiment. 

VE System 

 Participants performed the augmented reality version of the assessment while wearing the 

same HMPD-1 discussed in Experiment 1. The microdisplays for the HMD were off-the-shelf 

Liquid Crystal Displays with a VGA resolution of 640x480.  Software ran on a computer system 

with Linux RedHat 7.2 OS and a dual processor graphics card. The LCD monitor was a Dell 17 

inch flat screen. Within the ARC, we replaced two if the, ScotchliteTM 3M Fabric Silver 

(Beaded) panels with ScotchliteTM 3M Film Silver (Cubed) panels.  
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Contrast Modified Landolt C Assessment 

 Six different gap sizes representing the different levels of visual acuity in minutes of arc 

were presented, as with Experiment 1. The same adjustments for viewing angle were applied in 

this experiment. The participants we seated 1.85 meters from the LCD monitor in the computer 

version and were 2 meters from the retroreflective material in the augmented reality condition. 

Each contrast level was presented randomly. To control for carryover effects, all levels of gap 

size were randomly presented within a contrast block.  

Experimental Design  

 Participants performed the contrast rVA test over a two-day period. They were randomly 

placed in retroreflective material condition (beaded or cubed) on Day 1, and performed the 

contrast rVA test on the opposite material the following day. There were 4 random presentations 

of each direction (up, down, left, and right) per level of visual acuity per contrast level.  Test 

blocks were run first with the computer version of the Landolt C test, and then within the 

HMPD-1. Participants completed one test block per contrast for a total of 5 testing blocks. There 

were a total of 480 responses per participant for each viewing condition. Probit analysis using 

contrast, visual acuity, and gap direction as independent variables was completed. Additionally, a 

within subjects repeated measures ANOVA was performed on the percent correct responses 

adjusted for chance. 
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Procedure  

 The 12 participants from Experiment 1 performed the contrast version of the Landolt C 

rVA test under constant low light levels with either the monitor or HMPD-1 as the display type. 

Participants were screened for contrast rVA above chance on the monitor version of the rVA test. 

More specifically, participants who failed to reach threshold for identifying gap directions at the 

1 arc minute level with the lowest contrast were not included in Experiment 2. Of the 12 

participants, only 6 participants qualified to perform the complete experiment. Each participant 

who performed Experiment 2 was either corrected for or had 20/20 vision. Glasses or contacts 

were worn during each part of the experiment. 

 The participants performed the contrast rVA test over a two-day period. On Day 1 

participants were randomly placed in a retroreflective material condition (beaded or cubed). Two 

days later they performed the contrast rVA test again viewing the opposite material. 

 There were four random presentations of each direction (up, down, left, and right) per 

level of visual acuity per contrast level. Contrast was calculated by adjusting the binary gray-

scale code within the computer program. After setting the background of the display to a gray-

scale value of 128, target grey-scale values giving contrasts of .2, .4, .6, .8, and 1 were computed. 

A Probit analysis using contrast, visual acuity, and gap direction as independent variables was 

completed to determine the rVA threshold for each contrast level. Additionally, a within subjects 

repeated measures ANOVA was performed on the percent correct responses adjusted for chance.  
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6.3.5 Low Contrast Visual Acuity Experimental Results 

 Figures 42a and 42b show the 95% confidence intervals for the means of the percent 

correct values adjusted for chance for the monitor display condition over the two testing days. 

The graphs show that there are no differences in rVA measured when performing the modified 

Landolt C test over the five contrast levels and between the two days of testing. All percent 

correct adjusted for chance values were 90% or above for all contrast and gap size levels. The 

means for .2 contrast and gap size of 1 arc min for each testing day were MDay1 = 97.2, SD = 2.75 

and MDay2 = 91.5, SD = 7.23.   
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Figure 42 Real world viewing results over consecutive days  

 

 

a. 



130 

 A repeated measures ANOVA (2 material types x 6 gap sizes x 5 contrast levels) was 

performed on the percent correct values adjusted for chance for the HMPD-1 display condition 

only. The results showed a two-way interaction between the type of material tested on and the 

gap size F(5, 25) = 4.72, p <.01, ρI = .380. Table 15 shows the means and the standard deviations 

of the % correct adjusted for chance outcome for the .2 contrast level and 4.1 arc minute gap size 

for both retroreflective materials. Participants viewing the modified Landolt C optotypes 

projected onto the beaded material performed worse than when viewing the stimuli projected 

onto the cubed material.  Results from the Landolt C test for both material types are graphically 

displayed in Figure 43.  

Table 15 % Correct adjusted for chance per contrast as a function of material type for 4.1 arc 
minute gap size. 

  %Correct Adjusted  for 
Chance 

   

Material Contrast
Percent  

 
     Mean              SD       
 
Beaded 

.2 

.4 

.6 

.8 
1.0 

32.50 
49.80 
55.75 
59.75 
76.50 

 1.10 
21.80 
13.74 
18.34 
21.40 

   
Cubed .2 

.4 

.6 

.8 
1.0 

  58.25 
100.00 
93.25 
94.25 
98.50 

4.96 
0.00 
5.20 
2.25 
1.50 
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Figure 43 Percent correct adjusted for chance for different contrast optotypes and materials  

 

 The rVA thresholds predicted by the Probit analysis are shown in Table 16 and Figure 44. 

The predicted rVA while viewing the beaded and cubed material for a contrast of .2 was 8.9 arc 

minutes and 6.2 arc minutes, respectively. A repeated measures ANOVA (2 material types x 5 

contrast levels), with material types and contrast levels as independent variables and the 

predicted rVA as the dependent measure also showed a main effect for both contrast and material 

CContrast(4, 20) = 12.4, p < .01, ρI = .655 and FMaterial (1, 5) = 11.9, p < .02, ρI = .645, respectively. 

As expected, participants’ rVA decreases with contrast level and is poorer when viewing the 

optotypes projected onto the beaded retroreflective material.   
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  Visual Acuity 
(arc minutes) 

   

Material Contrast
rVA  

 
     Predicted        SD       
 
Beaded 

.2 

.4 

.6 

.8 
1.0 

8.9 
6.8 
6.1 
5.5 
4.2 

 1.17 
2.12 
2.25 
2.12 
0.00 

   
Cubed .2 

.4 

.6 

.8 
1.0 

 6.2 
4.2 
4.2 
4.2 
4.2 

2.19 
0.00 
0.00 
0.00 
0.00 

   

 

Table 16  Predicted resolution visual acuity (arc minutes) from Probit analysis. 
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Figure 44 Estimated rVA for different contrasts over different materials 
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6.3.5 Conclusion Low Contrast Experiment 

 The modified Landolt C test reliably assessed rVA for different observers across different 

testing days. Further, the monitor display test environment provided a screening tool to assess 

user performance on the contrast stimuli prior to the participants entering the experiment. From 

an experimental design perspective, the contrast rVA assessment allowed us to identify 

participants who perform poorly when viewing low contrast stimuli in general. The data obtained 

to assess the differences between the retroreflective materials are not confounded by inherent 

visual limitations of the user. More importantly the assessment was able to identify those 

participants who may have altered vision due to corrective surgical procedures either from severe 

eye injury or vision correction (e.g., Laser-Assisted In Situ Keratomileusis, LASIK surgery).  

 Two of the participants who failed to meet threshold on the monitor based assessment 

had LASIK surgery approximately two years prior to participating in the experiment. LASIK 

surgery, reshaping of the corneal surface with a laser, has become increasing popular to correct 

for myopia or nearsightedness. However, one possible adverse effect is decreased contrast 

sensitivity (Sugar et al., 2002). The percent correct for each participant was 25% and 44% 

respectively for the .2 contrast level and 4.1 arc minute gap sizes. A third participant had 

suffered a previous eye injury that required surgical intervention that left scarring on the retina.  

The percent correct for this participant for the same contrast and gap size was also well below 

threshold at 38%. Each participant was either corrected to 20/20 or had normal vision and passed 

the rVA assessment with high contrast optotypes in Experiment 1. It is unclear why the other 

three participants performed below threshold on the monitor based version of the assessment. 

However, this example illustrates how user characteristics influence image quality outcomes as 

outline in Chapter 3, Figure 3.  
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 If we had not screened the participants prior to performing the experiment, we could 

assess the VE system more negatively than true performance. Further, we could falsely attribute 

failure of the VE system to the HMD, and not the beaded material as the results clearly suggest. 

When determining appropriate technology for use with clinical populations, accurate system 

assessment is imperative to ensure the safety of the patients and preserve the validity of the 

results. This study aids in defining how the properties of the custom made cubed retroreflective 

material actually augments user performance. In addition, by evaluating the system as a whole, 

we determined how the prototype HMPD and supporting technology limit or augment each 

other. 

 In sum, results from experiment 2 clearly show that there is a difference in rVA threshold 

between the two retroreflective materials as indicated by the respective point-spread functions. 

The differences in rVA between the materials are only for the low contrast targets. These results 

confirm that multiple tests of system parameters are necessary for accurate assessment of the VE 

system.  
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CHAPTER 7 STEREOACUITY AND DARK FOCUS FOR DIFFERENT 
HMDS 

7.1 Introduction 

 Each HMD has associated parameters such as FOV and display size. As discussed in 

Chapter 5, these parameters assist in determining the optimal range which maximizes HMD 

performance and subsequently user performance. As results from Chapter 6 show, VE system 

components other than the HMD can contribute to degraded user performance. Thus, it is 

important to understand how well the VE technology chosen for a particular application actually 

performs in comparison to its specifications. In many cases, the information provided about a 

particular technology may be incomplete or overstated. Each of these factors plays a part in the 

overall evaluation of the integrated VE system, which is why system calibration is an important 

step in the VE design cycle.  

 The work reported here is an extension of Rolland, Gibson, & Ariely (1995) and Rolland, 

Meyer, Arthur, & Rinalducci (2002). As described in Chapter 4, these studies were conducted 

using bench prototypes that allowed for maximal control over the implementation of their 

experiments. Here we use the working head-mounted prototype HMPD-1. There are several aims 

of this research that are different from the original studies.  

 First, in previous experiments the Howard-Dolman task was used to establish predictive 

measures of user performance within the VE. In the current research, we employ the Howard-

Dolman task to not only establish baseline stereoacuity for the individual participants, but also to 

monitor changes in real world performance due to the VE exposure. Second, we allow for free 

motion of the head to the degree that the person can adjust if they fell uncomfortable. Thus, we 
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are introducing depth cues that may not be represented in the original work. Third, as noted by 

the authors, individual differences in dark focus and dark convergence may degrade user 

performance when viewing images that mismatch accommodation and convergence eye 

mechanisms. Although Rolland et al. (2002) controlled for the mismatch between 

accommodation and convergence by placing the monocular optical images at the same depth as 

the rendered object, they did not measure the dark focus or dark convergence of their 

participants. In these initial experiments, we include a measure of dark focus and in subsequent 

experiments we measure dark focus. Fifth, only accuracy and precision of perceived depth 

expressed in mm were evaluated in previous studies. Here we convert the CE and VEr values to 

measures of stereoaccuracy and stereoacuity, which are angular metrics, as outline in Chapter 5.  

 In the sections to follow we report the results of two experiments. The first of which 

assesses the stereoacuity and associated errors as outlined in Chapter 4 for the HMPD-1 over 

three different viewing distances, 800, 1500, and 3000 mm. The goal of this study is to evaluate 

the metrics chosen with regard to HMD and usability assessment. To evaluate the extendibility 

of the HMD assessment, we evaluate two off-the-shelf HMDs: the Canon Coastar™ and the 

VR6. Experimental design issues not covered in previous chapters (i.e., dark focus) will be 

addressed in their respective sections.   
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7.2 HMPD-1: Error Metrics and Dark Focus over Three Viewing Distances 

7.2.1 Hypotheses 

 Given the current VE system setup, we can make the following predictions: 

 

Hypothesis 1: We expect the precision errors (VEr) to fall within the depth of 

resolution ranges for the HMPD-1 at each respective viewing distance. Stereoacuity is 

limited by the resolution of the display and should be roughly 246 arc seconds or 4.1 

arc minutes.  

Hypothesis 2: Given that we are aligning the optical image with the rendered image 

on the depth plane, we expect no shifts of dark focus across trials. Additionally, we 

do not expect adaptation changes as reflected in performance on the Howard-Dolman 

peg test.   

Hypothesis 3: Given the exposure time in the virtual environment is less than 15 

minutes per testing condition, we hypothesize that participants will experience lower 

cybersickness scores on the SSQ. 
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7.2.2 Method for Evaluating the HMPD-1 over Three Viewing Distances  

Participants 

 This reach was approved by the Institutional Review Board (IRB) of the University of 

Central Florida. The IRB protocol and consent form are listed in Appendix A. From a pool of 15 

participants, five participants (all male, mean age = 29.8, SD = 5.26) were randomly chosen to 

perform the experiment using the HMPD-1. The other participants performed a modified version 

of the experiment reported in the next section. Each participant in this experiment was either 

corrected for or had 20/20 vision. Glasses or contacts were worn during each part of the 

experiment. 

VE System  

We used the HMPD-1 with a 52 degree FOV. The microdisplays for the HMD were off-the-shelf 

Liquid Crystal Displays with a VGA resolution of 640x480.  Software ran on a computer system 

with Microsoft XP Pro and a dual processor graphics card. We used the full ARC display. Based 

on the results reported in Chapter 6, only the ScotchliteTM 3M Film Silver (Cubed) panels were 

used in the experiment.  

Experimental Design 

 Participants were randomly placed in a viewing distance sequence (e.g., 800, 1500, 

3000). Only one participant’s viewing distance order overlapped with another participant. This 

order was 1500, 800, 3000.  Each viewing distance was presented on a different day to minimize 

order effects. Each participant performed the Howard-Dolman peg test three times during the 
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experiment, before VE exposure, after the first VE exposure, and after the second VE exposure. 

Each trial consisted of 10 repetitions. The response variables of CE, |CE|, VEr and η were 

calculated from each test trial for the real world viewing condition. A repeated measures 

ANOVA was performed using only the |CE| and VEr values.  

 Dark focus and dark convergence were also measured before VE exposure, after the first 

VE exposure, and after the second VE exposure. The metric for dark focus is Diopters. This 

metric was added to evaluate participants for changes after each VE exposure. 

 In addition to calculating the response variables of CE, |CE|, VEr, and η, the % correct for 

evaluating whether the octahedron was in front of or behind the cylinder at the start of each 

stimulus presentation was computed. The octahedron appeared equal times to the right or to the 

left of the fixed target and an equal number of times in front or behind the object. Thus, the front 

or back judgments constituted a 2AFC design. Participants performed the Virtual Howard-

Dolman two times in the experiment. There were a total of 32 responses per trial.   

 After each exposure in the VE, the participants also filled out the simulator sickness 

questionnaire (SSQ)4, also listed in the Appendix X. The total sickness score and subscore for 

oculomotor effects were compared for each condition. Another questionnaire was administered 

to monitor general health and eye fatigue. This questionnaire is also listed in the appendix, but 

the results are not reported since the SSQ provided more information about participant health 

status. 

 

                                                 

4 Thanks to Julie Drexler of RSK, inc for her assistance in scoring the SSQ data 
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Procedure 

 Prior to entering the VE testing area, the participants completed a general questionnaire 

on daily tasks performed by the participant which could produce eye strain or alter performance 

on the assessments. Once completed, the SSQ pretest was administered (Kennedy, Lane, 

Berbaum & Lilienthal, 1993).  Participants were then asked to perform the Titmus Stereo Test. A 

passing score on the Circle test is considered as obtaining 6 out of the 11 judgments correct or 80 

arc seconds. We used this value as a screening criterion for the experiment.  The interpupillary 

distance (IPD) of each subject was measured using a pupillometer. This value was entered into 

the Virtual Howard-Dolman application to set the correct viewing position for each of the test 

stimuli.  

 The participants were then seated in front of the Howard-Dolman apparatus at the 

viewing distance that would be tested in the VE.  Using a random number generator, the 

experimenter predetermined the initial position of the moveable rod for each of the 10 judgments 

for a single trial. The input to the random number generator was the 20 possible whole number 

positions in cm along the Howard-Dolman scale. A separate set of starting positions was given 

for each Howard-Dolman trial. Once the 10 judgments for the Howard-Dolman task were 

completed, the participants’ dark focus was measured.  

 Dark focus was measured using a hand held stigmatoscope5 as shown in Figure 46. The 

participant held the stigmatoscope over the eye of their preference and moved the telescoping 

section inward and out until the internal light point being viewed came into focus. The barrel of 

the stigmatoscope was graduated in Diopters. Once the participant focused the light, the 

                                                 

5 Stigmatoscope, Dark Vergence Test, and Titmus test provided by RSK, inc 
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experimenter was able to read the Diopter value for that trial. There were four trials performed, 

two times with the barrel extended upon starting and two times with the barrel fully collapsed 

upon start.  

 

 

Figure 45 Example of dark focus testing using the stigmatoscope 

 
 
 The participants were then seated to the selected viewing distance from the retroreflective 

material and fitted with the HMPD-1. Prior to the start of each Virtual H-D trial, the participants’ 

visual acuity was tested. A string of 11 modified Landolt C optotypes each with a randomly 

placed gap position were displayed. The participants read off the gap directions for each string. 

A total of 5 strings were presented each representing 20.6. 16.5, 12.4, 8.2, and 4.1 arc minutes 

respectively. Based on the results presented in Chapter 6, the high contrast stimuli presented 

upon the cubed material should yield scores 100 % at each rVA level. Any score below 80% or 9 

out of 11 correct should be indicative of negative VE exposure effects.   

 The participants were then shown a practice stimulus and given the input device, which is 

pictured in Figure 46. We set the two dials on the Shuttle Express to either move the octahedron 

using larger steps or finer steps. Rotating either dial to the right moved the object further away 
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from the participant on the Z axis. Likewise, tuning either dial to the left moved the object closer 

to the observer. The resolution of each of the dials was set based on the work Rolland et al. 

(2002). These values are given in Table 17.  

 

  
 

Figure 46 Shuttle dial used for moving the octahedron in virtual space 

Table 17 Gross and fine adjustments for the input device 

Viewing Distance 
(mm) 

Gross Adjustment 
(mm) 

Fine Adjustment 
(mm) 

800 12 4 
1500 25 6 
3000 100 25 

 
  

 Once the participants were comfortable with moving the stimuli, they started the 

experiment. The octahedron could appear anywhere within a ± 50 mm range, where the center of 

this range was consider the nominal distance. Over the 32 repetitions, the octahedron appeared 

equally in front or behind the fixed cylinder, as well as to the right and to the left of the cylinder. 

Prior to moving the stimulus, the participants reported whether the octahedron appeared in front 

of or behind the cylinder. The participants then moved the octahedron to the point of subjective 

equality, where the octahedron and the cylinder appeared to be at the same distance. Once the 

Outer Dial for Gross Inner Dial for Fine 

Enter Button 
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PSD was determined, they pressed the enter button shown in Figure 44.  There was no time limit 

in responding. The program terminated upon completion of the assessment.  

 The HMPD-1 was removed from the participants and they filled out the SSQ post 

exposure questionnaire. They then were positioned in front of the Howard-Dolman apparatus and 

performed 10 PSE adjustments. Their dark focus was remeasured. This procedure was repeated 

for another sequence. Participants performed the experiment another two times at a different 

viewing distance.  

7.2.3 Results of HMPD-1 over the Three Viewing Distances 

 In all experiments, the ANOVAs were performed using SPSS 11.5 and all graphs were 

constructed using Minitab 14. Table 18 gives the CE means and the standard deviations for each 

participant at each viewing distance and for both testing environments. Overall, participants 

show a slight positive bias on both the Howard-Dolman (H-D) task and the Virtual Howard-

Dolman (V-HD) task.  Variability in responding increased over distance for each testing 

environment; however, variability was the greatest in the V-HD condition.   

 Figure 47 illustrates individual differences in bias across the two testing environments 

and viewing distances. Some participants consistently underestimate the distance of the cylinder, 

as evidenced by their negative scores.  Others perceive the cylinder to be further away and have a 

positive bias. Overall, the means for H-Dolman and V-H Dolman are similar to each other over 

all trials and reflect that the participants across all conditions are accurate in aligning the 

octahedron with respect to the nominal distance of the cylinder. 
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Table 18 Constant errors (mm) per participant (HMPD-1) as a function of depth for the Howard-
Dolman task and Virtual-Dolman task 

 

  Howard-Dolman   Virtual-Dolman  
       
 

Depth  
(mm) 

Subjects 
 

M 
 

SD 
  

M 
 

SD 
 

   
Pre     Post1    Post2 

 
Pre    Post1    Post2 

  
Pre       Post 

 
Pre       Post 

 
800 

  
 1 
2 
3 
4 
5 

 
  2.5 
 -0.1 
  1.3 
  0.3 
 -0.4 

 
  1.7 
  1.9 
  1.0 
  1.6 
 -0.5 

 
  0.7 
  0.8 
  1.7 
  0.3 
  1.6 

 
 1.8 
 1.8 
 2.2 
 1.3 
 1.0 

 
 3.2 
 3.7 
 2.5 
 1.4 
 1.0 

 
 2.8 
 1.1 
 2.4 
 1.6 
 1.6 

  
 -7.7 
  0.0 
  2.3 
  4.6 
  9.9 

 
-4.6 
 0.0 
 3.6 
 3.4 
 8.5 

 
18.1 
  3.0 
  9.4 
10.9 
  6.1 

 
12.1 
  2.8 
11.4 
  9.7 
  7.0 

 X  
SD 

  0.7 
  1.2 

  1.1 
  1.0 

  1.0 
  0.6      1.8 

 6.5 
 2.2 
 4.9   

       
1500 1 

2 
3 
4 
5 

  1.2 
  0.5 
10.7 
 -3.6 
 -0.1 

  -0.9 
   7.0 
   5.9 
  -2.1 
   1.0 

  2.5 
  3.2 
  6.6 
  0.6 
  1.4 

 2.8 
 3.5 
 9.1 
 2.6 
 2.1 

  3.3 
10.5 
  5.7 
  3.2 
  1.7 

1.4 
2.9 
1.1 
1.8 
3.2 

  -4.8 
 -4.6 
  8.5 
12.5 
  8.8 

-0.5 
-5.5 
 2.5 
 5.9 
 2.1 

25.9 
13.5 
23.3 
17.8 
29.9 

28.9 
18.5 
21.9 
15.6 
29.9 

 X  
SD 

 1.7 
 5.3 

 2.2 
 4.1 

  2.9 
  2.3       4.1 

  8.2 
 0.9 
 4.2   

       
3000 1 

2 
3 
4 
5 

 -0.1 
  2.8 
10.7 
  5.2 
  4.0 

 -0.5 
  0.3 
  9.4 
  0.8 
  0.9 

   1.2 
   0.8 
   9.1 
 -1.3 
 -8.7 

4.5 
6.6 
4.6 
5.3 
3.7 

3.9 
1.2 
5.9 
6.1 
5.6 

4.7 
1.6 
6.6 
6.4 
4.6 

 -11.2 
  -0.1 
   3.7 
  -6.9 
  19.8 

  -2.8 
   1.9 
   2.8 
-11.8 
 18.9 

24.9 
22.3 
29.4 
33.9 
32.0 

31.6 
18.3 
26.4 
28.9 
35.0 

 X  
SD 

  4.5 
  4.0 

  2.2 
  4.1 

  0.2 
  6.4        1.0 

 12.0 
   1.8 
 11.2   
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Figure 47 CE for each subject in the HMPD-1 condition at each test viewing distance (800, 1500, 
and 3000 mm) for the Howard-Dolman task and the Virtual-HD task. The results are ordered in 
the same manner they were performed in the experiment (i.e., H-D Pretest, V-HD Pretest, H-D 
Posttest 1, V-HD Posttest, and H-D Posttest 2).  Individual differences in accuracy are illustrated 
along with their biases. The center points represent the mean of the signed deviations between 
the participant’s responses and the nominal depth (800, 1500, or 3000 mm). The error bars 
represent the 95% Confidence Interval of the means. 

 

 Initial inspection of the V-HD data showed that the distribution was positively skewed 

and positively kurtotic. In comparison to a normal distribution for which the repeated measures 

ANOVA was designed, the data are shifted to the left and are more peaked than one would 

expect. Because the data do not appear to be from a normal distribution, other assumptions of the 

repeated measures ANOVA must be met before this statistic can be used to evaluate the data. A 
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test for additivity was performed to check that the participants’ responses were consistent across 

all levels of viewing distances. Also a check for homogeneity of variance was performed to 

confirm that variance across each factor was similar. Of the two tests, the test to ensure additivity 

is more important since nonadditivity in a repeated measures design leads to lower power. Given 

the small sample size, the analysis is already at low power.  

 Given that both tests failed, the data were transformed using the following logarithmic 

transformation: 

  Let Y = Raw test score 

  Y’ = Transformed test score 

  Y’ = Log(Y + 1)   (24) 

 

 The log transformed Y’ values for both the |CE| and VEr were used in the repeated 

measures ANOVA. The log transformed scores for the |CE| are shown in Table 19. The 

geometric means are also shown. Inspection of the results show that compared to the pretest at 

1500 mm, participants became more accurate on their posttests for the VE condition, pretest (M  

= 8.32 mm, 95% CI = 5.22 to 17.78) and posttest (M = 3.71 mm, 95% CI = 1.72 to 8.07). The 

results are graphically displayed in Figure 48. 
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Table 19 Log transformed absolute constant errors |CE| for each participant (HMPD-1) and 
group means as a function of depth for the Howard-Dolman task and Virtual-Dolman task 
 

  Howard-Dolman  Virtual-
Dolman  

     

Depth  
(mm) 

Subjects 
 

Log 
  

Log 
 

  
Pre     Post1    Post2 

  
Pre         Post 

 
800 

 
1 
2 
3 
4 
5 

 
  0.54 
  0.04 
  0.36 
  0.11 
  0.15 

 
0.43 
0.46 
0.30 
0.41 
0.18 

 
 0.23 
 0.26 
 0.43 
 0.11 
 0.41  

 
 0.94 
 0.01 
 0.52 
 0.75 
 1.04 

 
 0.75 
 0.01 
 0.66 
 0.65 
 0.98 

 X  
SD 

  0.24 
  0.21 

 0.36 
 0.12 

 0.29 
 0.13  

 0.65 
 0.41 

 0.61 
 0.36 

Geometric X  1.73 2.29 1.94  4.46 4.07 
     
1500 1 

2 
3 
4 
5 

0.34 
0.18 
1.07 
0.66 
0.04 

0.28 
0.90 
0.84 
0.49 
0.30 

0.54 
0.62 
0.88 
0.20 
0.38 

 0.76 
0.75 
0.98 
1.13 
0.99 

0.18 
0.81 
0.55 
0.84 
0.48 

 X  
SD 

0.46 
0.41 

0.56 
0.29 

0.53 
0.26  0.92 

0.16 
0.57 
0.27 

Geometric X  2.88 3.63 3.39  8.32 3.71 
     
3000 1 

2 
3 
4 
5 

0.04 
0.58 
1.07 
0.79 
0.70 

0.18 
0.11 
1.02 
0.26 
0.28 

0.34 
0.26 
1.00 
0.36 
0.99 

 1.09 
0.05 
0.67 
0.90 
1.32 

0.59 
0.46 
0.58 
1.11 
1.30 

 X  
SD 

0.64 
0.38 

0.37 
0.37 

0.59 
0.37  0.81 

0.48 
0.81 
0.37 

Geometric X    4.36 7.41 3.89  6.46 6.46 
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Figure 48 Log transformed means for the absolute constant error |CE| for testing condition, 
Howard-Dolman or Virtual-HD, at each viewing distance (800, 1500, and 3000 mm). 
Participants were wearing the HMPD. The results are ordered in the same manner that they were 
performed in the experiment (i.e., H-D Pretest, V-HD Pretest, H-D Posttest 1, V-HD Posttest, 
and H-D Posttest 2). The center points represent the log mean of the |CE| for the grouped means. 
The error bars represent the 95% Confidence Interval of the log means. 
 

 Visual inspection of the Figure 48 suggests that there is no effect of Trial or Viewing 

Distance on performance in the H-D condition. A repeated measures ANOVA (3 Viewing 

Distance x 3 Trials) confirmed that there was no significant effect of Viewing Distance, F(2, 8) = 

2.17,  p = .177, ρI = .189, or Trial, F(2, 8) = .102, p = .904, ρI = .22 for the H-D task. The 

repeated measures ANOVA (3 Viewing Distance x 2 Trials) for the V-HD task showed a 

significant interaction between Viewing Distance and Trial, F(2, 8) = 5.77, p = .028, ρI = .61. 

The interaction plot for this result is shown in Figure 49.  
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 The plot suggests that the difference in means between the pre and post test for the 

viewing distance of 1500 mm is significant. A paired samples t-test was performed on the pre 

and post tests at each depth. Only the pre and posttests for the 1500 mm viewing distance was 

significant, t(4) = 3.09, p = .037.  
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Figure 49 Log transformed means for the Virtual HD for the Pre and Post-testing conditions at 
each viewing distance (800, 1500, and 3000 mm) are represented illustrating the interaction 
between viewing distance and trial. Participants in the HMPD-1 condition were significantly 
more accurate in their posttest performance at the 1500 mm viewing distance. There were no Pre 
and Post differences in accuracy at the 800 or the 3000 mm viewing distances.  
  

 The results were pooled over Trial, but not Viewing Distance, to determine if the 

participants were more accurate in performing the H-D task than they were performing the V-HD 

task. A repeated measures ANOVA (3 Viewing Distances x 2 Environments) showed that there 

was no main effect of Environment, F(1, 4) = 3.51, p = .134, ρI = .56.  There was no significant 

interaction. These results are presented graphically in Figure 50. 
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Figure 50 Combined log means of the absolute constant error |CE| for the different viewing 
distances (800, 1500, 3000 mm) representing the Howard-Dolman task and the Virtual-HD task. 
The center points signify the log mean of |CE| pooled over all subjects. The error bars represent 
the 95% Confidence Interval of the log means. 
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 Table 20 shows the untransformed VEr for each of the participants over viewing 

distances and testing environments. The results are presented graphically in Figure 51. VEr is a 

measure of precision, thus the data show that participants are less consistent when performing 

the V-HD than when they perform the H-D task. VEr also corresponds to the resolvable depth 

computed for pixel resolution as shown in Table 21. As Table 21 shows all values of the VEr are 

accurate to within 1/4 to 1/10 of a pixel resolution. This result demonstrates the interdependence 

of the computer graphics and the HMD with respect to user performance. The anti-aliasing 

techniques applied to the rendering process of the 3D objects may assist participants in 

performing above expectation given the HMD parameters. To perform the repeated measures 

ANOVA analysis the data were log transformed using Equation 24. The log transformed data is 

shown in Figure 22. The same analysis was carried out as with the |CE|.  

 

 

 

 

 

 

 

 

 

 

 

 



152 

Table 20 Untransformed variable error VEr (mm) values per participant and group means as a 
function of depth for the Howard-Dolman task and Virtual-Dolman task 

 

  Howard-Dolman Task  Virtual-Dolman Task 
     

Depth  
(mm) 

Subjects 
 

Magnitude 
  

Magnitude 
 

  Pre       Post 1   Post 2       Pre             Post 
 
800 

1 
2 
3 
4 
5 

1.75 
1.70 
2.05 
1.27 
0.92 

3.07 
3.53 
2.41 
1.36 
0.92 

2.61 
1.08 
2.28 
1.49 
1.56 

 

17.80 
2.98 
9.23 
10.73 
5.99 

11.86 
2.73 
11.18 
9.57 
6.94 

 X  
SD 

1.54 
0.45 

2.26 
1.11 

1.80 
0.63  9.35 

5.59 
8.46 
3.72 

     
1500 1 

2 
3 
4 
5 

2.64 
3.35 
8.66 
2.46 
1.97 

3.14 
9.97 
5.45 
3.08 
1.61 

4.57 
6.08 
8.22 
1.43 
2.24 

 

25.45 
13.25 
22.91 
17.56 
29.43 

28.49 
18.18 
21.52 
15.39 
29.46 

 X  
SD 

3.82 
2.75 

4.65 
3.27 

4.51 
2.78  21.72 

6.40 
22.61 
6.22 

     
3000 1 

2 
3 
4 
5 

4.25 
6.27 
4.38 
5.02 
3.46 

3.72 
1.10 
5.59 
5.79 
5.28 

4.45 
1.54 
6.30 
6.07 
4.41 

 

24.50 
21.97 
28.92 
33.32 
31.53 

31.14 
17.99 
26.01 
28.46 
34.49 

 X  
SD 

4.68 
1.05 

4.30 
1.96 

4.55 
1.90  28.05 

4.75 
27.62 
6.24 
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Figure 51 Variable error (VEr) values for each participant performing the Howard-Dolman task 
or the Virtual-HD task at the different viewing distances (800, 1500, 3000 mm). The results are 
ordered in the same manner that they were performed in the experiment (i.e., H-D Pretest, V-HD 
Pretest, H-D Posttest 1, V-HD Posttest, and H-D Posttest 2). The height of the bar represents the 
magnitude of the VEr. The log transform of these values were used in the inferential statistics 
analysis. The actual values are shown in Table 19. 

 

 

 

 

 

 

 

 



154 

Table 21 Predicted resolvable depth in mm for the HMPD-1 as a function of pixel size and 
viewing distance. 

  Resolvable 
Depth 
(mm) 

Pixel Size Depth (mm)  

1 
800

1500
3000

18.36 
65.93 
267.34 

 
1/2 

800
1500
3000

9.18 
32.95 
133.47 

1/4 
800

1500
3000

4.59 
16.47 
66.71 

1/10 
800

1500
3000

1.84 
6.59 
26.68 

   
 

 A repeated measures ANOVA (3 Viewing Depths x 3 Trials) performed on the H-D data 

showed a significant main effect of Viewing Distance, F(2, 8) = 5.72, p = .029, ρI = .61. Post 

Hoc analysis using the Bonferroni post hoc criterion for significance confirmed that the 

participants are significantly more precise at the 800mm viewing distance (M= 2.77 mm, 95% CI 

= 2.11 to 3.61) than at 1500 mm (M = 4.74 mm, 95% CI = 2.68 to 7.97) or 3000 mm (5.22 mm, 

95%CI = 3.75 to 7.24). This result is shown graphically in Figure 52. The results are identical for 

the V-HD task. 

 A repeated measures ANOVA (3 Viewing Distances x 2 Trials) was conducted for the V-

HD data. The results showed a main effect of depth, F(2, 8) = 24.56, p = .001, ρI = .89. Post Hoc 

analysis using the Bonferroni post hoc criterion for significance confirmed that the participants 

are significantly more precise at the 800mm viewing distance (M= 8.91 mm, 95% CI = 4.57 to 

17.37) than at 1500 mm (M =22.38 mm, 95% CI = 15.85 to 30.90) or 3000 mm (28.18 mm, 
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95%CI = 22.38 to 35.48). This result is shown graphically in Figure 53. The results are identical 

for the V-HD task. There was no effect of Trial.  

Table 22 Log transformed variable errors (VEr) for each participant and group means as a 
function of depth for the Howard-Dolman task and Virtual-Dolman task 

 

  Howard-Dolman Virtual-Dolman  
    

Depth  
(mm) 

Subjects 
 

Log 
 

Log 
 

  
Pre     Post1    Post2

  
Pre           Post 

 
800 

 
1 
2 
3 
4 
5 

 
0.44 
0.43 
0.48 
0.36 
0.28 

 
0.61 
0.66 
0.53 
0.37 
0.28 

 
0.56 
0.32 
0.52 
0.40 
0.41 

 
1.27 
0.60 
1.01 
1.07 
0.84 

 
1.11 
0.57 
1.09 
1.02 
0.90 

 X  
SD 

0.40 
0.08 

0.49 
0.16 

0.44 
0.10 

0.96 
0.25 

0.94 
0.22 

Geometric X  2.51 3.09 3.63 9.12 8.71 
    
1500 1 

2 
3 
4 
5 

0.56 
0.64 
0.99 
0.54 
0.47 

0.62 
1.04 
0.81 
0.61 
0.42 

0.75 
0.85 
0.96 
0.39 
0.51 

1.42 
1.15 
1.38 
1.27 
1.48 

1.47 
1.28 
1.35 
1.21 
1.48 

 X  
SD 

0.64 
0.20 

0.70 
0.24 

0.69 
0.24 

1.34 
0.13 

1.36 
0.12 

Geometric X  4.36 5.01 4.90 21.88 22.91 
    
3000 1 

2 
3 
4 
5 

0.72 
0.86 
0.73 
0.78 
0.65 

0.67 
0.32 
0.82 
0.83 
0.80 

0.74 
0.40 
0.86 
0.85 
0.73 

1.41 
1.36 
1.48 
1.54 
1.51 

1.51 
1.28 
1.43 
1.47 
1.55 

 X  
SD 

0.75 
0.08 

0.69 
0.21 

0.72 
0.19 

1.46 
0.07 

1.45 
0.10 

Geometric X  5.62 4.90 5.25 28.84 28.18 
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Figure 52 Log variable error (VEr) means (bull’s eye), medians (line), and interquartile ranges 
for the participants’ grouped responses on the Howard-Dolman task performed at the different 
depths (800, 1500, 3000 mm) and on the separate trials (Pre, Posttest 1, and Posttest 2). Precision 
is significantly lower for the 800 mm viewing distance than at 1500 or 3000 mm. There are no 
significant differences in precision between 1500 mm and 3000 mm viewing depths.  
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Figure 53 Log variable error (VEr) means (bull’s eye), medians (line), and interquartile ranges 
for the participants’ grouped responses on the Virtual-HD task performed at the different 
viewing distances (800, 1500, 3000 mm) and on the separate Pre and Posttest trials. The mean 
averages illustrate the increase in VEr error between the 800 mm and 1500 or 3000 mm. There 
are no significant differences between the Pre and Post tests at any depth. 
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 Because there was only a significant effect of Viewing Distance, the data was pooled 

over Trials, but not viewing distance. A repeated measures ANOVA (3 Viewing Distances x 2 

Environments) shows a main effect for Viewing Distance, F(2, 8) = 22.36, p. = .001, ρI = .88, 

and for Environment, F(1, 4)= 94.09, p = .001,  ρI = .97. Participants were more precise in 

judging the distance of the octahedron at the 800 mm Viewing Distance (M = 4.96 mm, 95% CI 

= 3.37 to 7.31) than at 1500 mm (M = 10.23, 95% CI = 7.78 to 13.70), or 3000 mm (M = 12.12, 

95% CI = 9.31 to 15.88). Overall, participants’ responses were more consistent on the H-D task 

(M= 4.09 mm, 95% CI = 12.56 to 25.29) than on the V-HD task (17.78 mm, 95% CI = 12.56 to 

25.29. These results are shown graphically in Figure 54.  
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Figure 54 Combined log means of the variable error VEr for the different viewing distances (800, 
1500, 3000 mm) representing the Howard-Dolman task (H-D) and the Virtual-HD task (V-HD). 
The center points signify the log mean of the variable error VEr pooled over all subjects. The 
error bars represent the 95% Confidence Interval of the log means. The graph shows that there is 
more VEr over the different viewing conditions when participants perform the Virtual H-D task 
than when they perform the H-D task.  
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 Table 23 shows the stereoaccuracy in arc seconds for each participant for each viewing 

distance and testing environment. The reference line in the graph is taken as the fixation point or 

the nominal distance from the observer. If the objects are adjusted to the same distance, 

stereoaccuracy should be zero. For the H-D task, stereoaccuracy shows that participants are able 

to judge the target distance well with respect to the fixed cylinder location at all depths. They are 

the best, however, at judging the distance of the octahedron closer to the normal testing distance 

for the H-D task at 3000 mm. As with the H-D task, participants are not as accurate at judging 

distances at the viewing distance of 800 mm as they are at 3000 mm. Figure 55 graphically 

displays the stereoaccuracy for each of the observers, while figure 56 shows the grouped means 

for each viewing distance and testing environment.  
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Table 23 Stereoaccuracy (ηce) in arc seconds per Participant (HMPD-1) as a Function of Depth 
for the Howard-Dolman Task and Virtual-Dolman Task 

 

  Howard-Dolman   Virtual-Dolman  
       
 

Depth  
(mm) 

Subjects 
 

M 
 

SD 
  

M 
 

SD 
 

   
Pre     Post1    Post2

 
Pre    Post1    Post2 

  
Pre       Post 

 
Pre       Post 

 
800 

  
 1 
2 
3 
4 
5 

 
32.2 
 -1.4 
 16.2 
  3.9 
 -5.2 

 
21.9 
26.7 
12.5 
20.6 
-6.5 

 
  9.0 
11.3 
21.2 
  3.9 
20.9 

 
23.7 
25.2 
27.0 
17.2 
12.6 

 
41.7 
52.4 
31.7 
18.4 
12.7 

 
35.4 
16.0 
30.1 
20.2 
21.5  

 
-161.3 
   -0.7 
  46.2 
  95.5 
210.6 

 
-10.6 
-0.4 
73.3 
71.8 

180.0 

 
379.0 
69.3 

190.5 
228.3 
129.5 

 
606.4 
  63.5 
230.7 
203.8 
149.9 

 X  
SD 

  9.1 
 15.2 

15.0 
13.1 

13.3 
  7.6     

  38.1 
136.3 

62.8 
76.4   

       
1500 1 

2 
3 
4 
5 

   5.4 
   2.5 
  47.0 
-16.3 
  -0.5 

-4.1 
34.7 
25.9 
-9.5 
4.6 

11.3 
15.8 
29.0 
  2.7 
  6.4 

12.6 
17.5 
40.1 
11.7 
  9.6 

15.0 
52.0 
25.2 
14.7 
  7.8 

21.8 
31.7 
38.1 
  6.8 
10.9  

-28.7 
-29.8 
 48.9 
 74.6 
 53.0 

 -6.3 
-35.8 
 14.5 
 35.0 
 12.4 

154.1 
  87.6 
134.4 
106.3 
180.9 

172.5 
120.2 
126.2 
  93.2 
181.1 

 X  
SD 

   7.6 
 23.6 

10.3 
19.2 

 13.1 
 10.2     

 23.6 
 49.2 

4.0 
26.6   

       
3000 1 

2 
3 
4 
5 

-0.1 
4.0 

13.4 
6.7 
5.3 

-0.6 
0.4 

11.8 
1.0 
1.2 

1.6 
1.1 

11.4 
-1.7 

-11.4 

5.8 
9.3 
5.8 
6.8 
4.8 

5.1 
1.6 
7.4 
7.9 
7.3 

6.1 
2.3 
8.3 
8.3 
6.1  

-16.7 
-0.2 
5.3 

-10.3 
29.9 

-4.2 
3.1 
4.1 

-17.5 
28.5 

37.1 
36.3 
42.4 
50.4 
48.5 

47.1 
29.7 
38.2 
43.1 
53.0 

 X  
SD 

5.8 
4.9 

2.8 
5.1 

0.2 
8.2     

1.6 
18.0 

2.8 
5.1   
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Figure 55 Stereoaccuracy ηce for each subject at each viewing distance (800, 1500, and 3000 
mm) for the Howard-Dolman task and the Virtual-HD task. Participants performed the task 
wearing the HMPD-1. The results are ordered in the same manner that they were performed in 
the experiment (i.e., H-D Pretest, V-HD Pretest, H-D Posttest 1, V-HD Posttest, and H-D 
Posttest 2).  Individual differences in accuracy are illustrated along with their biases. The center 
points represent the mean of stereoaccuracy as calculated from the CE, viewing depth (800, 
1500, or 3000 mm), and interpupillary eye distance (IPD) of the observer. The error bars 
represent the 95% Confidence Interval of the means. 
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Figure 56 Stereoaccuracy ηce for each viewing distance (800, 1500, and 3000 mm) for the 
Howard-Dolman task and the Virtual-HD task. Participants performed the task wearing the 
HMPD-1. The results are ordered in the same manner that they were performed in the 
experiment (i.e., H-D Pretest, V-HD Pretest, H-D Posttest 1, V-HD Posttest, and H-D Posttest 2).  
Pooled differences in stereoaccuracy are illustrated along with their biases. The center points 
represent the mean of stereoaccuracy as calculated from grouping data over participants for each 
viewing depth (800, 1500, or 3000 mm). The error bars represent the 95% Confidence Interval of 
the means. A zero value for stereoaccuracy suggests that the participants were able to perfectly 
align the test objects.   
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 The stereoacuity thresholds for each observer are given in Table 24. As shown, 

stereoacuity varies greatly over trials for both testing environments per individual. Figure 57 

shows the overall stereoacuity for each viewing depth and testing environment. Although the 

data is noisy, the average stereoacuities for all participants are below the predicted threshold of 

the HMPD-1, which is 246 arc seconds. The reference line at 20 arc seconds is the standard real 

world viewing stereoacuity value. Participants’ performance on the H-D task is close to this 

value at each viewing distance. Figure 57 clearly shows that stereoacuity changes with distance 

in the VE condition. This shift in stereoacuity is not as great for the H-D task, but is significant, 

F(2, 28) = 19.65, p < .001, ρI = .88. This result would not be expected if the H-D task was devoid 

of all monocular cues (Wong, Woods, & Peli, 2002). However, given that the stereoacuity value 

measured is within appropriate limits, the H-D task seems appropriate for its use with HMD 

testing. 
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Table 24 Stereoacuity (ηve) in arc seconds per Participant (HMPD-1) as a Function of Depth for 
the Howard-Dolman Task and Virtual-Dolman Task. 

 

 
  Howard-Dolman Task Virtual-Dolman Task 

    

Depth  
(mm) 

Subjects 
 

M 
 

M 
 

     
800 1 

2 
3 
4 
5 

22.51 
23.93 
25.63 
16.35 
11.99

39.53 
49.75 
30.08 
17.48 
12.06 

19.98 
34.36 
16.10 
14.32 
43.44

372.99 
68.24 
187.46 
224.70 
127.45 

248.48 
62.46 
227.09 
200.54 
147.56 

 X  
SD 

20.08 
5.72 

29.78 
15.48 

25.64 
12.69

196.17 
115.37 

177.23 
74.43 

    
1500 1 

2 
3 
4 
5 

11.96 
16.60 
38.04 
11.14 
9.08 

14.25 
49.35 
23.93 
13.96 
7.42 

20.69 
30.09 
36.13 
6.47 
10.33

151.64 
86.26 
132.32 
104.64 
178.06 

169.77 
118.31 
124.26 
91.71 
178.28 

 X  
SD 

17.36 
11.88

21.78 
16.50 

20.74 
12.61

130.58 
36.53 

136.46 
36.53 

    
3000 1 

2 
3 
4 
5 

5.50 
8.61 
5.75 
6.39 
4.48 

4.81 
1.51 
7.34 
7.38 
6.83 

5.75 
2.11 
8.27 
7.72 
5.70 

36.50 
35.75 
41.76 
49.64 
47.69 

46.38 
29.27 
37.56 
42.40 
52.16 

 X  
SD 

6.15 
1.54 

5.57 
2.50 

5.91 
2.42 

42.27 
6.32 

41.56 
8.71 
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Figure 57 Overall stereoacuity ηve means and 95% Confidence Interval for the participants’ 
(HMPD-1) grouped responses on the Howard-Dolman and Virtual-HD task performed at the 
different depths (800, 1500, 3000 mm). The mean averages illustrate the change in stereoacuity 
over the different viewing depths. The reference line at 20 arc seconds represents average 
responding in the population at large. The reference line at 120 arc seconds represents the 
predicted stereoacuity based on the HMPD parameters. 
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 Table 25 gives the dark focus results for each Viewing Distance and Trial. The dark focus 

values are consistent across Trial and Viewing Distance. The only notable differences are for the 

first posttest at 1500 mm. All participants experienced a downward shift in dark focus as noted in 

Figure 58. A paired sampled t-test performed between the Pretest and Posttest for the 1500 mm 

Viewing Distance, was significant, t(4) = 4.88, p = .008. The participants who experienced 

greater shifts (e.g., participant 2) did not recover to baseline during the course of the experiment.  

 Table 26 shows the oculomotor subset scores for the SSQ given in both post sessions. 

Typically scores above 20 indicate that the participant is experiencing some effect of the VE 

(Kennedy, Kennedy, & Drexler, 2006). Participants 2 and 4 are suggestively high on this SSQ 

metric. However, these participants actually show a significant improvement in performance not 

seen at any other viewing distance. Since this is a repeated measures design where all the 

participants experience all conditions and thus act as their own control, the result may be more 

than spurious. However, a larger sample size is needed to quantify these effects further. 
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Table 25 Mean dark focus in Diopters per participant (HMPD-1) as a function of depth and 
testing condition 

 

  Dark Focus 
   

Depth  
(mm)  

M  
 

    Pre       Post1      Post2
 
800 

1 
2 
3 
4 
5 

1.7 
3.0 
1.2 
0.9 
0.1 

1.6 
2.9 
1.1 
1.3 
0.6 

1.9 
2.8 
1.4 
1.0 
0.4 

 X  
SD 

1.4 
1.1 

1.5 
0.9 

1.5 
0.9 

   
1500 1 

2 
3 
4 
5 

1.2 
1.4 
1.4 
1.4 
1.7 

1.1 
0.9 
1.0 
0.8 
1.2 

1.5 
0.6 
1.1 
1.2 
1.2 

 X  
SD 

1.4 
0.2 

1.0 
0.1 

1.1 
0.3 

   
3000 1 

2 
3 
4 
5 

1.6 
1.1 
1.1 
1.3 
1.4 

1.7 
1.0 
1.4 
0.6 
1.8 

1.9 
0.9 
1.7 
2.1 
1.6 

 X  
SD 

1.3 
0.2 

1.3 
0.5 

1.6 
0.4 
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Figure 58 Participants’ dark focus means for Pretest and Posttest trials after performing the 
Virtual-HD task at each viewing depth (800, 1500, or 3000 mm). The 95% Confidence Interval 
for each dark focus mean is given. The mean averages illustrate that participants seem to change 
in dark focus from the first and second trials for the 1500 mm viewing depth. For some 
participants their dark focus does not return to baseline before the third trial.   
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Table 26 Cybersickness scores for the oculomotor subset per participant (HMPD-1) for viewing 
distance and testing condition 

 

  SSQ 
   

Depth  
(mm)  

OD  
 

    Post1       Post2      
 
800 

1 
2 
3 
4 
5 

0 
38 
0 
23 
8 

0 
23 
0 
30 
0 

   
1500 1 

2 
3 
4 
5 

23 
61 
0 
30 
8 

0 
83 
0 
53 
8 

   
3000 1 

2 
3 
4 
5 

8 
23 
0 
15 
8 

0 
28 
0 
56 
0 
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7.2.4 HMPD-1 Error Metrics and Viewing Distance Conclusion 

 The results of this experiment are important for two reasons: 1) they demonstrate the 

difference between assessments for HMDs versus those for user assessment and 2) they open the 

door to future research when considering usability within the VE design cycle. The metrics for 

this experiment were chosen to identify individual differences, which they did. However, once 

identified there was not enough power when performing the analysis to meaningfully interpret 

these differences. Thus to extend to a real usability paradigm more participants are needed. This 

point is clearly illustrated with the participants’ performance at the 1500 mm viewing distance.  

 Although all participants showed a downward shift in dark focus, which may be 

indicative of cybersickness (Fowlkes, Kennedy, Hettinger, & Harm, 1993), we are unable to 

further evaluate the possibility that the participants were overcompensating in some manner. For 

example, participant 2, whose sickness scores were the highest, increased his CE from .5 to 7 

mm from the H-D pretest to the H-D posttest1. He also flipped sign on the CE metric between 

testing environments, (i.e., + for H-D and – for V-HD). Participant 4, who also experienced 

higher sickness scores, also flipped sign on CE in the opposite direction. The overall 

improvement shown by that testing condition could signal learning effects; however, the current 

experimental design was not aimed at these finding. 

   In contrast, the V-HD task was quite capable at evaluating the HMPD-1 against its 

specifications. Figure 58 shows that for the V-HD overall stereoacuity values are below the 240 

arc second limit set by the HMPD-1, (M800 = 186.70 arc sec, SD800 = 92.10 arc sec; M1500= 

133.52 arc sec, SD = 34.6; M3000= 41.91 arc sec, SD800 = 7.18). Further, participants performed 

within 1/4 to 1/10 of the pixel resolution of the display; thus demonstrating the supportive 
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interplay of the computer graphics and the HMD. However, these results show that observers 

perceive the V-HD differently than they do the real world task.  

 Although the HMPD-1 is set to project images at the same location as the object is 

rendered, participants performed worse at the near distance. This adjustment to the HMPD-1 was 

done to eliminate the mismatch between accommodation and convergence and to assist the user 

in performing the task. One explanation for the poor stereoacuity performances at the closer 

viewing distance could be that although the HMPD was set to function at 800 mm, it is designed 

for projecting collimated images. We see a vast improvement in stereoacuity as the projection 

moves toward the infinity setting, which could be set at 6 meters. Further, Wong, Woods, & Peli 

(2002) showed that stereoacuity is independent of viewing distance when monocular cues are 

eliminated. It may be that there are depth cue conflicts (e.g., lighting of the virtual objects) 

because of the HMPD-1 setting.  

 In Chapter 4, we showed that the H-D task could be a reliable assessment for 

stereoacuity. Although there was a significant difference in stereoacuity over the viewing 

distances, this result could suggest a violation of the assumptions of the stereo threshold by the 

equation. Computations of the exact equation for calculating the difference of the vergence 

angles were compared to the estimated values; the results were similar. This result suggests that 

there may be other distance cues represented in both the H-D and V-HD task that may facilitate 

stereoacuity in some instances and degrade it in others.  

 Wong, Woods, & Peli (2002) cited research showing that a change in vergence, when 

accommodation is left unchanged, reduces stereoacuity.  These dark vergence changes may 

persist and carryover into other aspects of the experiment. Since we did not test dark vergence in 

these studies, we added such a metric to the experiment performed in Chapter 8.  
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7.3 Virtual Howard-Dolman Assessment of Different HMDs at 1500 mm 

 The goal of this study was to apply the specifications from an off-the-shelf HMD to the 

V-HD software to assess the stereoacuity level of the observer while wearing that display. As 

outlined in Chapter 5 the off-the-shelf HMDs evaluated for this experiment were the Canon 

Coastar™ (Canon) and the Virtual Research 6 (VR6). The available metrics from the user’s 

manual were applied to the V-HD application to set the parameters of each respective display. 

The participants were only tested at the 1500 mm viewing distance.  

7.3.1 Hypotheses 

Given the current VE system setup and the HMD parameters given in Table 7, we can make the 

following predictions: 

Hypotheses for Canon HMD:  

• Based on the fixed IPD and a larger pixel size, participants performing the V-
HD task wearing the Canon should perform more variably when locating the 
nominal distance (i.e., CE should be more variable). 

• The optical image plane (2000 mm) and the rendered depth of the stimuli 
(1500 mm) are offset, but are more matched than in the VR6 which may 
improve precision (VEr), but not accuracy (CE).  

• The estimated stereoacuity based on information from their documentation is 
5.8 arc minutes, which equates to 384 arc seconds. From the results of the 
previous study we expect the graphics to support an overall stereoacuity better 
than 348 arc seconds.   

• Because of the larger pixel size, we expect lower % correct responding on 
front and back determinations than for HMPD-1.  

• Because the optical image location is set beyond the 3D image plane, the 
mismatch may cause some shift in dark focus.   
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Hypotheses for the VR6:  

• Based on the mismatch between the optical image plane and the rendered 
depth of the stimuli, (i.e., the optical image plane is set to 911 mm in the 
VR6), one would expect both CE and VEr measures to show high variability. 
However, rendering the virtual objects with respect to the user’s own IPD may 
improve CE variability.  

• The estimated stereoacuity for this HMD is 4.8 arc minutes, which equates to 
288 arc seconds. From the results of the previous study we expect the graphics 
to support an overall stereoacuity better than 288 arc seconds. 

• Because of the larger pixel size, we expect lower % correct responding on 
front and back determinations than for HMPD-1.  

• Because of the mismatch between the optical image location and the 3D 
image plane, there may be a shift in dark focus. 

 

Hypothesis for the HMPD-1:   

• Because the optical image is set at the same distance as the image plane, we 
expect low variability in localizing the fixed position of the cylinder. Both 
measures of CE and VEr should show lower error.  

• Because the smaller pixel size, we expect a higher % correct in responding on 
front and back determinations than for the other HMDs.  

 

Because the overall time per virtual environment was less than 15 minutes per group, we 

expected no large affect of cybersickness on the results per HMD condition. 

7.3.2 Method of Evaluating Different HMD Types  

Participants 

 This research was approved by the Institutional Review Board (IRB) of the University of 

Central Florida. The IRB protocol and consent form are listed in Appendix A. Fifteen 

participants (11 men and 4 women, mean age = 27.2 years) were randomly assigned to an HMD 
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condition. Each participant was either corrected for or had 20/20 vision. Glasses or contacts were 

worn during each part of the experiment. 

VE System 

HMPD-1 

The participants performed the Virtual-HD task wearing a first generation see-through projection 

head mounted display (HMPD-1) with a 52 degree FOV and a predicted 4.1 arc minute 

resolution. The microdisplays for the HMD were off-the-shelf Liquid Crystal Displays with a 

VGA resolution of 640x480.  Software ran on a computer system with Microsoft XP Pro and a 

dual processor graphics card. Participants performed the task in the full ARC display. Based on 

the results reported in Chapter 6, only the ScotchliteTM 3M Film Silver (Cubed) panels were used 

in the experiment.  

VR6 

The VR6 has a 48 x 36 degree FOV. The microdisplays are Liquid Crystal Displays with a VGA 

resolution of 640 x 480. The V-HD ran on a computer system with Red Hat Linux 9 as an 

operating system and a dual Intel Xeon 2.0 GHz processor with a GeForce4 Ti 4600 graphics 

card. The VR6 has a variable IPD, but the image plane is set at .91 meters. The predicted 

resolution is 4.81 arc minutes. Participants performed the V-HD task in the ARC although the 

VR6 is an immersive HMD.  
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Canon  

The Canon Coastar™ hybrid video-see through HMD which corrects for parallax errors, the 

image displacement between the camera and the eye, by tracking the FOV of the user was run on 

the same computer as the HMPD-1. The Canon has a 640 x 480 FOV with a set IPD distance of 

63 mm and a fixed image plane of 2000 mm. It has a predicted resolution of 5.8 arc minutes.  

Experimental Design 

 Participants were randomly placed in an HMD condition. The HMPD-1 was set to project 

the displayed image to the retroreflective material 1500 mm from the observer. The Canon was 

used in immersive mode and the object was rendered 1500 mm in the image space of the HMD. 

The image for the VR6 was similarly presented to the user.  Each participant performed the 

Howard-Dolman peg test three trials during the experiment, before VE exposure, after the first 

VE exposure, and after the second VE exposure. Each trial consisted of 10 repetitions. The 

response variables of CE, |CE|, VEr and η were calculated from each test trial for the real world 

viewing condition. Descriptive statistics were computed for each HMD. Since the analysis is not 

to cross compare the HMDs, no ANOVAs were performed on these metrics. However, a mixed 

repeated measures ANOVA was performed for dark focus.  

 Dark focus was measured before VE exposure, after the first VE exposure, and after the 

second VE exposure. The metric for dark focus is Diopters. This metric was added to evaluate 

change in visual system responding after each VE exposure. 

 In addition to calculating the response variables of CE, |CE|, VEr and η, % correct for 

evaluating whether the moveable virtual object appeared in front or behind the fixed target upon 
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the start of each repetition was computed. The octahedron appeared equal times to the right or to 

the left of the fixed target and an equal number of times in front or behind the object. Thus, the 

front or back judgments constituted a 2AFC design. Participants performed the Virtual Howard-

Dolman two times in the experiment. There were a total of 32 responses per trial.   

 After each exposure in the VE, the participants also filled out the simulator sickness 

questionnaire (SSQ), also listed in the Appendix. The Total sickness score and subscore for 

oculomotor effects were compared for each condition. Another questionnaire was administered 

to monitor general health and eye fatigue. This questionnaire is also listed in the appendix, but 

the results are not reported since the SSQ provided more information about participant health 

status. 

Procedure 

The procedure for this experiment was exactly the same as in the first experiment. The only 

difference was the adjustment of the displays for the users. The VR6 required more assistance to 

comfortably fit the users head.  

7.3.3 Results of the Virtual-HD Assessment for the Different HMDs 

 Table 27 shows the CE for each of the participants and their respective HMD cohort. The 

data show that all participants perform similarly on the H-D task. As expected, the results from 

the V-HD task are more variable across each HMD condition. The Canon group is consistently 

biased in front of the point of fixation or nominal distance (PreCanon = -4.6 mm, SDCanon = 18.4 

and PostCanon= -6.5 mm, SDCanon= 11.7). The other HMD groups show less variability and more 
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of a positive bias toward the nominal distance. The patterns of bias are illustrated in Figure 59. 

Those participants who wore the Canon HMD show more variability while performing the V-HD 

task, while those participants wearing the HMPD-1 showed more variability in their H-D scores. 

The VR6 group was more uniform in their responding over both testing conditions.  

Table 27 Constant errors (mm) per participant as a function of HMD for the Howard-Dolman 
task and Virtual-Dolman task at a viewing distance of 1500 mm 

 

  Howard-Dolman   Virtual-Dolman  
       

 
HMD 

Subjects 
 

M 
 

SD 
  

M 
 

SD 
 

   
Pre     Post1    Post2 

 
Pre    Post1    Post2 

  
Pre       Post 

 
Pre       Post 

 
HMPD

1 

  
 1 
2 
3 
4 
5 

  1.2 
  0.5 
10.7 
-3.6 
-0.1 

-0.9 
 7.0 
 5.9 
-2.1 
 1.0 

2.5 
3.2 
6.6 
0.6 
1.4 

2.8 
3.5 
9.1 
2.6 
2.1 

  3.3 
10.5 
  5.7 
  3.2 
  1.7 

1.4 
2.9 
1.1 
1.8 
3.2  

-4.8 
-4.6 
  8.5 
12.5 
 8.8 

-0.5 
-5.5 
 2.5 
 5.9 
 2.1 

25.9 
13.5 
23.3 
17.8 
29.9 

28.9 
18.5 
21.9 
15.6 
29.9 

 X  
SD 

1.7 
5.3 

2.2 
4.1 

2.9 
2.3     

 4.1 
 8.2 

 0.9 
 4.2   

       

Canon 

1 
2 
3 
4 
5 

0.6 
3.5 
1.9 
3.5 
1.9

-2.5 
 3.1 
 2.9 
 4.4 
 2.1 

 -2.3 
 2.1 
 3.4 
 2.0 
-0.7

1.6 
2.4 
4.4 
2.5 
3.8

3.0 
2.9 
1.9 
2.5 
2.3

2.7 
4.0 
2.5 
1.9 
3.6

-5.4 
4.1 

-35.4 
12.4 

1.3

-11.0 
  -4.3 
-24.2 
   5.3 
   1.6 

23.0 
25.2 
18.3 
22.1 
20.3 

24.1 
24.6 
23.8 
20.4 
21.8

 X  
SD 

2.3 
1.2

2.0 
2.6 

 0.9 
 2.3

-4.6 
18.4

  -6.5 
11.7  

   

VR6 

1 
2 
3 
4 
5 

3.0 
2.1 
3.8 
2.5 
0.4

0.8 
0.0 
3.7 
4.6 

-1.6 

3.2 
2.2 
1.9 
1.9 
1.1

2.9 
2.7 
1.6 
2.5 
2.5

3.5 
2.7 
2.7 
2.8 
2.3

2.2 
3.4 
2.6 
2.6 
1.7

-9.2 
 0.0 
 5.5 
-2.6 
 3.8

 -0.5 
  7.7 

 13.9 
-10.3 
   3.8 

25.5 
22.8 
22.4 
18.9 
26.8 

28.0 
19.3 
11.4 
23.2 
26.8

 X  
SD 

2.4 
1.3

1.5 
2.6 

2.1 
0.8

-0.5 
5.8

   2.9 
   9.1  
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Figure 59 Constant error (CE) for each participant performing at the test viewing distance of 
1500 mm for the Howard-Dolman task and the Virtual-HD task. The results are ordered in the 
same manner that they were performed in the experiment (i.e., H-D Pretest, V-HD Pretest, H-D 
Posttest 1, V-HD Posttest, and H-D Posttest 2).  Individual differences in accuracy are illustrated 
along with their biases for each HMD condition. The center points represent the mean of the 
signed deviations between the participant’s responses and the nominal depth (800, 1500, or 3000 
mm). The error bars represent the 95% Confidence Interval of the means. 
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 Table 28 shows the VEr error means for each participant in their respective HMD cohort. 

As reflected in the VEr scores, the HMPD-1 group shows higher precision errors on the H-D task 

than participants in either of the other HMD groups. The overall H-D variable error means for 

each HMD cohort are: MHMPD-1 = 4.32 mm, SD = 2.75, MCanon = 2.66 mm, SD = 0.78, and MVR6 

= 2.43 mm, SD = 0.48. The overall precision for each group on the V-HD task for both sessions 

is equivalent, although the HMPD-1 group shows higher variability over both trials (MPre = 

21.72 mm, SD = 6.40 and MPost =22.61 mm, SD = 6.22. The subpixel based resolution for each 

of the displays is between ½ and ¼ of the size of a pixel as measured for each display. The 

pattern of VEr is shown more clearly in Figure 60.  

 As the 95% Confidence Intervals (CI) show, the HMPD-1 group consistently performed 

with higher variability across all trials of the H-D task. This variability is also reflected in their 

V-HD scores, although the means for the pretest and posttest do not vary. For the Canon group, 

they show uniform precision over trials on the H-D task. The 95% CIs are more compact 

suggesting higher precision. This pattern of precision is reflected as well in their V-HD scores. 

Those persons in the VR6 group performed consistently on the H-D task, yet they were much 

less precise at aligning the octahedron and the cylinder in the virtual environment. The 95% CI 

for this group shows a trend of increasing error from the V-HD pretest to the posttest.  
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Table 28 Variable error VEr (mm) values per participant and group means as a function of HMD 
for the Howard-Dolman task and Virtual-Dolman task, viewing distance 1500 mm 

 

  Howard-Dolman Task  Virtual-Dolman Task 
     

HMD 
Subjects 

 
Magnitude 

  
Magnitude 

 
  Pre       Post 1   Post 2       Pre             Post 
 
HMPD-1 

1 
2 
3 
4 
5 

2.64 
3.35 
8.66 
2.46 
1.97 

3.14 
9.97 
5.45 
3.08 
1.61 

4.57 
6.08 
8.22 
1.43 
2.24 

 

25.45 
13.25 
22.91 
17.56 
29.43 

28.49 
18.18 
21.52 
15.39 
29.46 

 X  
SD 

3.82 
2.75 

4.65 
3.27 

4.51 
2.78  21.72 

 6.40 
22.61 
  6.22 

     
Canon 1 

2 
3 
4 
5 

1.50 
2.25 
4.16 
2.38 
3.64 

2.87 
2.77 
1.76 
2.37 
2.20 

2.57 
3.75 
2.42 
1.79 
3.41 

 

22.71 
24.86 
18.07 
21.83 
20.07 

23.84 
24.31 
23.47 
20.12 
21.56 

 X  
SD 

2.78 
1.09 

2.40 
0.45 

2.79 
0.79  21.51 

2.58 
22.66 
  1.76 

     
VR6 1 

2 
3 
4 
5 

2.75 
2.52 
1.54 
2.33 
2.33 

3.30 
2.57 
2.53 
2.65 
2.15 

2.08 
3.19 
2.43 
2.43 
1.58 

 

25.13 
22.48 
22.11 
19.92 
29.63 

31.14 
17.99 
26.01 
28.46 
34.49 

 X  
SD 

2.29 
0.46 

2.64 
0.41 

2.34 
0.59  23.85 

  3.72 
21.41 
  6.63 
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Figure 60 Variable error (VEr) means for participants performing the Howard-Dolman task or 
the Virtual-HD task with different HMDs at a viewing distance of 1500 mm. The results are 
ordered in the same manner that they were performed in the experiment (i.e., H-D Pretest, V-HD 
Pretest, H-D Posttest 1, V-HD Posttest, and H-D Posttest 2). The 95% Confidence Interval is 
also represented. The participants performed similarly on both tasks regardless of the HMD.  
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 Stereoaccuracy allows better understanding of the vergence angles of the observer 

attained when assessing the distance, and subsequently aligning the moveable object. The sign of 

the stereoacuity value gives an indication of the convergence angle related to the fixed object. As 

Equation 20 illustrates, when the convergence angle relating to the fixated object is bigger than 

that of the moveable object, stereoaccuracy will take on a negative value. Thus, the Canon group 

overall judged the cylinder to be closer than its fixed position, MCanonPre = -28.9 mm, SD = 112.0 

and MCanonPost = -33.0 mm, SD = 74.4. Similarly those participants in the HMPD-1 group 

perceived the cylinder as being further away from the nominal position (MHMPD-1Pre = 23.6 mm, 

SD = 49.2), and then nearer to the nominal depth on the subsequent trial (MHMPD-1Post = 4.0, SD = 

26.6). The VR6 group at first aligned the objects quite well (MVR6Pre = 2.2, SD = 35.0), and then 

on the second trial judged the cylinder to be closer than the nominal depth (MVR6Post = -33.0, SD 

= 74.4). The pattern of results is shown in Figure 61.    
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Table 29 Stereoaccuracy (ηce) in arc seconds per participant as a function of HMD for the 
Howard-Dolman task and Virtual-Dolman task 

 

  Howard-Dolman   Virtual-Dolman  
       

HMD 
Subjects 

 
M 
 

SD 
  

M 
 

SD 
 

   
Pre     Post1    Post2

 
Pre    Post1    Post2 

  
Pre         Post 

 
Pre       Post 

 
HMPD 

  
 1 
2 
3 
4 
5 

5.4 
2.5 

47.0 
-16.3 
-0.5 

-4.1 
34.7 
25.9 
-9.5 
4.6 

11.3 
15.8 
29.0 
2.7 
6.4 

12.6 
17.5 
40.1 
11.7 
9.6 

15.0 
52.0 
25.2 
14.7 
7.8 

21.8 
31.7 
38.1 
6.8 

10.9  

-28.7 
-29.8 
48.9 
74.6 
53.0 

-6.3 
-35.8 
14.5 
35.0 
12.4 

154.1 
87.6 

134.4 
106.3 
180.9 

172.5 
120.2 
126.2 
93.2 

181.1 
 X  

SD 
7.6 

23.6 
10.3 
19.2 

13.1 
10.2     

23.6 
49.2 

4.0 
26.6   

       
Canon 1 

2 
3 
4 
5 

  2.7 
15.4 
  8.8 
16.0 
 8.8 

-11.3 
 13.6 
 13.5 
 19.8 
  9.5 

-10.4 
    9.2 
  16.0 
    9.0 
  -3.2 

   7.1 
10.4 
20.5 
11.4 
17.4 

13.7 
12.8 
  8.7 
11.3 
10.5 

12.3 
17.4 
11.9 
  8.6 
16.3 

 

 -32.4 
   23.6 
-217.3 
   73.8 
     8.0 

 -65.5 
    8.0 
-148.8 
   31.7 
     9.8 

137.0 
145.4 
112.4 
131.7 
121.1 

143.9 
121.1 
146.0 
121.4 
130.1 

 X  
SD 

10.3 
 5.5 

  9.0 
12.0 

   4.1 
 10.7        -28.9 

   112.0 
-33.0 
74.4   

       
VR6 1 

2 
3 
4 
5 

14.2 
9.3 
15.9 
11.5 
1.8 

  3.7 
  0.0 
15.5 
21.2 
 -7.3 

   1.6 
   1.1 
 11.4 
  -1.7 
-11.4 

 13.7 
 11.8 
   6.8 
 11.3 
 11.1 

 16.5 
 12.1 
 11.2 
 12.9 
 10.3 

 10.4 
 15.0 
 10.7 
 11.8 
   7.5 

 

   -57.1 
     -0.2 
    30.3 
    16.4 
    21.7 

  -65.5 
     8.0 
-148.8 
   31.7 
     9.8 

158.7 
133.5 
123.2 
125.7 
155.0 

174.8 
113.1 
62.6 
120.1 
155.0 

 X  
SD 

10.5 
  5.5 

  6.6 
11.6 

   0.2 
   8.2           2.2 

    35.0 
  -33.0 
   74.4   
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Figure 61 Stereoaccuracy ηce for each HMD condition at the viewing distance of 1500 mm for 
the Howard-Dolman task and the Virtual-HD task. The results are ordered in the same manner 
that they were performed in the experiment (i.e., H-D Pretest, V-HD Pretest, H-D Posttest 1, V-
HD Posttest, and H-D Posttest 2).  Combined accuracy for each HMD condition illustrated along 
with their biases. The center points represent the mean of stereoaccuracy as calculated from the 
CE, viewing depth 1500 mm, and interpupillary eye distance (IPD) of the observer. The error 
bars represent the 95% Confidence Interval of the means. 
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 As expected the participants performed at the stereoacuity limit for real world viewing, 

20 arc seconds. Participants in all groups were not different from each other in stereoacuity as 

measured by the H-D task. Importantly, there are no changes from baseline over repeated trials 

within any HMD group. 

 The predicted resolution in arc seconds for each display is: 246, HMPD-1; 288, VR6; and 

348, Canon. Table 30 lists the stereoacuity values and overall stereoacuity means and standard 

deviations for each participant within an HMD type. All HMDs performed better than the limit 

of the microdisplay used in the HMD. This result is shown graphically in Figure 62.  
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Table 30 Stereoacuity (ηve) in arc seconds per participant as a function of HMD for the Howard-
Dolman task and Virtual-Dolman task 

 

  Howard-Dolman Task Virtual-Dolman Task 
    

HMD 
Subjects 

 
M 
 

M 
 

     

HMPD-1 

1 
2 
3 
4 
5 

11.96 
16.60 
38.04 
11.14 
  9.08

14.25 
49.35 
23.93 
13.96 
  7.42 

20.69 
30.09 
36.13 
  6.47 
10.33

151.64 
86.26 
132.32 
104.64 
178.06 

169.77 
118.31 
124.26 
91.71 
178.28 

 X  
SD 

17.36 
11.88

21.78 
16.50 

20.74 
12.61

130.58 
  36.53 

136.46 
   36.53 

    

Canon 

1 
2 
3 
4 
5 

  6.78 
  9.87 
19.42 
10.78 
16.48

13.02 
12.18 
  8.21 
10.76 
  9.99 

11.65 
16.49 
11.30 
  8.11 
15.44

135.32 
143.57 
110.99 
130.08 
119.60 

142.08 
140.38 
144.16 
119.87 
128.46 

 X  
SD 

12.67 
5.15 

10.83 
1.88 

12.60 
3.39 

127.91 
12.85 

134.99 
10.42 

    

VR6 

1 
2 
3 
4 
5 

13.03 
11.23 
  6.43 
10.74 
10.24

15.63 
11.46 
10.59 
12.21 
  9.46 

  9.86 
14.22 
10.15 
11.17 
  6.93

156.67 
131.87 
121.60 
120.55 
171.14 

172.63 
111.68 
  61.78 
136.53 
153.07 

 X  
SD 

10.33 
  2.42

11.87 
  2.34 

10.47 
  2.63

140.37 
  22.53 

127.14 
  42.84 
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Figure 62 Stereoacuity ηve means and 95% Confidence Interval for the participants’ HMD 
grouped responses on the Howard-Dolman and Virtual-HD tasks performed at the different 
depths (800, 1500, 3000 mm) and on the separate Pre and Posttest trials. The mean averages 
illustrate that stereoacuity is similar across HMDs. The reference line at 20 arc seconds 
represents average responding in the population at large. The predicted stereoacuity for the 
HMPD is 240 arc seconds. 
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 Table 31 displays the percent correct in identifying whether the initial starting position 

for the octahedron was in the front or the back of the fixed cylinder. As discussed in Chapter 4, 

stereopsis is based on relative disparities. These disparities allow the user to discriminate objects 

which are closer to the observer from those that are further away from a fixed point.  If the 

participants were truly using disparity as a cue for distance perception, then they should be able 

to discriminate the front and back initial positions of the octahedron relative to the fixed cylinder 

at above chance levels. However, this discrimination is also limited by the resolvable depth range 

of each respective HMD. Because this discrimination assessment is a 2AFC design, the threshold 

is set at 75 percent.  

Table 31 Percent correct for front and back responses as a function of HMD for the Virtual-
Dolman task 

 

  Virtual-Dolman Task 
   

HMD 
 

M 
 

     Trial 1          Trial 2 

HMPD-1 X
SD

0.75 
0.18 

0.78 
0.11 

    
Canon X

SD
0.62 
0.20 

0.65 
0.12 

    
VR6 X

SD
0.58 
0.15 

0.50 
0.26 
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 The data from Table 31 are graphically displayed in Figure 63 Participants are at 

threshold when discerning front and back locations of the octahedron while wearing the HMPD-

1. In each of the other two HMD groups, participants consistently responded below the 

threshold.  
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Figure 63 Percent correct for front and back judgments on both trials of the V-HD task grouped 
over HMD type. The mean and 95% CI are given. The reference line at 75% represents the 
detection threshold for a 2AFC design.  
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 Table 32 shows the dark focus measures for each individual with their respective HMD 

cohort. Within each HMD group, the dark focus values are consistent. A One-Way Analysis of 

Variance showed that there was a difference in dark focus over the HMD types on each trial,  

Dark Focuspre, F(2, 12) = 13.39, p = .001, ηe = .83, Dark FocusPost1= 10.87, p = .001, ηe = .80, 

Dark FocusPost2 = 20.84, p = .001, ηe
6 = .88. A Tukey HSD post hoc analysis confirmed that the 

dark focus of participants in the HMPD-1 group were significantly different than those of the 

other two HMD conditions. The dark focus measured for participants in the Canon and VR6 

groups were not different from each other nor were they different over trial. As reported in 

experiment 1, the participants in the HMD-1 experience a significant downward shift in dark 

focus from their baseline score on Trial 2. These results are graphically displayed in Figure 64. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

6 ηe is used to distinguish the effect size Eta from the Stereoacuity value. 
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Table 32 Mean dark focus in Diopters per participant as a function of HMD and testing 
condition. 

 

  Dark Focus 
  Diopters 

HMD  
M  
 

    Pre       Post1      Post2
 
HMPD-1 

1 
2 
3 
4 
5 

1.2 
1.4 
1.4 
1.4 
1.7 

1.1 
0.9 
1.0 
0.8 
1.2 

1.5 
0.6 
1.1 
1.2 
1.2 

 X  
SD 

1.4 
0.2 

1.0 
0.1 

1.1 
0.3 

   
Canon 1 

2 
3 
4 
5 

2.2 
2.5 
2.4 
2.2 
2.3 

2.0 
3.2 
2.3 
1.7 
2.3 

2.2 
2.9 
2.5 
2.4 
2.5 

 X  
SD 

2.3 
0.1 

2.3 
0.6 

2.5 
0.3 

   
VR6 1 

2 
3 
4 
5 

2.7 
2.2 
1.5 
2.4 
2.2 

2.2 
3.0 
1.4 
2.3 
2.2 

1.7 
2.8 
1.9 
2.2 
2.1 

 X  
SD 

2.2 
0.5 

2.2 
0.6 

2.1 
0.4 
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Figure 64 Overall dark focus means for Pretest and Posttest trials. The 95% Confidence Interval 
for each dark focus mean is given. The average dark focus in Diopters measured after 
participants performed the Virtual-HD task while wearing the Canon or the VR6 is significantly 
different from the dark focus of those who performed the task wearing the HMPD-1. They are no 
different from each other and show no shift from baseline.  
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 SSQ scores are presented in Table 33. Participants from each HMD type presented with 

Oculomotor subscore on the SSQ. A score of 20 or greater signaled that the VE exposure was 

having an effect on the user. The general trend in the data showed that participants from each 

HMD condition do experience elevated scores on the SSQ Oculomotor subtest after the first 

virtual environment exposure. These symptoms either became worse or lessened through the 

course of the experiment. More data is needed to make further conclusions. 

Table 33 Cybersickness scores for the oculomotor subset per participant for HMD type and 
testing condition 

 

  SSQ 
   

HMD  
  

OD  
 

    Post1       Post2      

 
HMPD-1 

1 
2 
3 
4 
5 

23 
61 
0 
30 
8 

0 
23 
0 
30 
0 

   

Canon 

1 
2 
3 
4 
5 

30 
23 
98 
0 
0 

45 
23 
106 
0 
0 

   

VR6 

1 
2 
3 
4 
5 

30 
68 
38 
15 
0 

8 
83 
53 
15 
0 
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7.3.4 Conclusion of HMD Comparison  

 The results of this experiment showed that the V-HD task in conjunction with the H-D 

task provide a method for assessing HMD of differing types (e.g., immersive versus see-though) 

and parameters (e.g., fixed focal plane versus variable) with respect to their documented 

specifications. For example, based upon the fixed IPD and larger pixel size of the Canon, we 

expected that the CE measured would have higher variability caused by inaccurate positioning of 

the octahedron with respect to the cylinder’s fixed distance over successive repetitions. This 

pattern of results was shown in the analysis. 

 The resolvable depth limits for each HMD predicted the direction of percent correct 

responding for front and back judgments on whether the octahedron was positioned in front of or 

behind the cylinder at the start of each repetition. More specifically, the subpixel resolution step 

was finer for the HMPD-1; consequently, participants were able to judge front and back starting 

locations of the octahedron with respect to the cylinder’s fixed distance at threshold or 75%. We 

expect that with a higher resolution display, such as the HMPD-2, the percent correct outcomes 

should be well above the threshold. However, participants tested while wearing either of the 

other types of HMDs performed below threshold for this metric possibly suggesting that other 

cues to depth (e.g., stimulus size) were being used to perform the task. The resolvable depth also 

predicted ranges based on pixel and sub pixel resolution that an HMD could achieve given 

optimal viewing conditions. For each HMD, participants achieved subpixel perfromance between 

½ and ¼ the size of a pixel as measured by the microdisplay properties of each HMD.  

 The stereoacuity metric showed that all HMDs performed better than the resolution limit 

imposed by their microdisplay. The average stereoacuity across all HMD types was similar 

despite the increased resolution of the HMPD-1 and the alignment of the optical image plane 
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with the 3D image plane. The Canon also performed better than expected given the information 

in the owner’s manual. These results further support benchmarking for HMDs with a user-in-the-

loop methodology. However, because the HMPD-1 was built in-house, the potential sources of 

performance degradations are more easily pinpointed. For example, the results of experiment 1 

of this chapter clearly show that the HMD fails to perform optimally at distances away from its 

designed focal plane of optical infinity. We may be able to attribute the improvement in the 

Canon to the optical design, which aligns the optical axis with the display axis to reduce parallax 

or the mismatch between the cameras FOV and the FOV of the eye. This alignment may allow 

for a more accurate depth image to be presented to the user (Biocca & Rolland, 1998; Keller & 

Colluci, 1998).  

 Localization errors are generally thought to occur due to a bias toward dark focus when 

the stimuli in the environment are inadequate (Owen, 1984).  However, there was no change in 

dark focus for participants who performed the V-HD task wearing either the Canon or the VR6. 

On average the participants spent less than 15 minutes per V-HD trial. This duration may not be 

long enough or the stimuli are too simplistic to cause a shift in dark focus. The suboptimal focal 

plane settings may have introduced more blurring of the image across the 800 and 1500 mm 

depths for the user wearing the HMPD-1. However, we should have observed greater dark focus 

shifts at 800 mm in comparison to the shift found at 1500 mm, which does not occur.  

 Although all HMD types show some form of cybersickness across participants, the small 

sample size of the experiment precludes any further analysis. However, these findings do 

indicate next steps for future work, such as probing the mismatch between the focal plane and 

the image plane with real and virtual objects. With a larger sample size, the effects of 

cybersickness on performance of the V-HD task and the shift in dark focus as a measure of 
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cybersickness or eye strain may prove important for extending the current capabilities of the test 

to encompass usability.    
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CHAPTER 8 HMPD-2: STEREOACUITY, DARK FOCUS, AND DARK 
CONVERGENCE FOR HMPD-2 

8.1 Introduction 

 The methodology developed in Chapter 7 was extended to include a measure of dark 

convergence, distance where a person converges when there are no stimuli in the viewing area. 

Owens & Leibowitz (1976) showed that persons with a near dark convergence underestimate 

depth more than those persons with a far dark focus. Further, they showed that under scotopic 

lighting conditions, vergence and accommodation are decoupled and shifted toward different 

resting points. Thus, dark vergence, and not dark accommodation should change under the 

degraded viewing conditions of the virtual environment. Dark vergence would be a better metric 

to evaluate the HMPD-2, where the optics are designed an optimized to change focal planes.  

 We are also replicating the work of Chapter 7 to show that the V-HD task is reliable 

enough to estimate the stereoacuity of a higher resolution microdisplay (800 x 600) with a 

resolution of 2.6 arc minutes or 156 arc seconds. The resolvable depth for the HMPD-2 is also 

finer than that of the HMPD-1. Finally, while the microdisplays assessed in Chapter 7 were all 

LCDs, this microdisplay is an OLED with higher brightness and better contrast. 
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8.2 Hypotheses 

Given the current VE system setup, we can make the following predictions: 

 

Hypothesis 1: We expect the precision errors (VEr) to fall within the resolvable depth 

ranges for the HMPD-2 at each respective viewing distance. Stereoacuity is limited 

by the resolution of the display and should be roughly 156 arc seconds or 2.6 arc 

minutes.  

Hypothesis 2: Given that the HMDP-2 is optimized for viewing at each depth and we 

are aligning the optical image with the rendered image on the depth plane, we expect 

no shifts of dark focus or dark convergence across trials. Additionally, we do not 

expect adaptation changes as reflected in performance on the Howard-Dolman depth 

test.   

Hypothesis 3: Based on the resolvable depth, the percent correct on identifying the 

front or back initial positions of the octahedron with respect to the cylinder on each 

repetition should be well above threshold.    

Hypothesis 4: Given the exposure time in the virtual environment is less than 15 

minutes per testing condition, we hypothesize that participants will experience low 

cybersickness scores on the SSQ. 
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8.3 Method for Evaluating the HMPD-2 over Three Viewing Distances  

Participants 

This research was approved by the Institutional Review Board (IRB) of the University of Central 

Florida. The IRB protocol and consent forms are listed in Appendix A. Five participants (all 

male, mean age = 30.6, SD = 5.36) performed the experiment using the HMPD-2. Each 

participant in this experiment was either corrected for or had 20/20 vision. Glasses or contacts 

were worn during each part of the experiment. 

VE System  

We used the HMPD-2, which currently has a 40 degree FOV. The microdisplays for the HMD 

were off-the-shelf OLEDs manufactured by eMagin with a resolution of 800 x 600.  Software ran 

on a computer system with Microsoft XP Pro and a dual processor graphics card. We used the 

quarter ARC display. Based on the results reported in Chapter 6, only the ScotchliteTM 3M Film 

Silver (Cubed) panels were used in the experiment.  

Experimental Design 

 The experimental design was similar to that used with the HMPD-1. Participants were 

randomly placed in a viewing distance sequence (e.g., 800, 1500, and 3000). Only one 

participant’s viewing distance order overlapped with another participant. This order was 1500, 

800, 3000.  Each viewing distance was presented on a different day to minimize order effects. 
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Each participant performed the Howard-Dolman peg test three times during the experiment, 

before VE exposure, after the first VE exposure, and after the second VE exposure. Each trial 

consisted of 10 repetitions. The response variables of CE, |CE|, VEr and η were calculated from 

each test trial for the real world and virtual viewing condition. A repeated measures ANOVA 

was performed using only the |CE| and VEr values. A repeated measures ANOVA was 

performed using only the |CE| and VEr values. 

 Dark focus and dark convergence were also measured before VE exposure, after the first 

VE exposure, and after the second VE exposure. The metric for dark focus is Diopters and that 

of convergence is the meter-angle. Each was evaluated for changes after each VE exposure. 

 In addition to calculating the response variables of CE, |CE|, VEr, and η, the % correct for 

evaluating whether the octahedron was in front of or behind the cylinder at the start of each 

stimulus presentation was computed. The octahedron appeared equal times to the right or to the 

left of the fixed target and an equal number of times in front or behind the object. Thus, the front 

or back judgments constituted a 2AFC design. Participants performed the Virtual Howard-

Dolman two times in the experiment. There were a total of 32 responses per trial.   

 After each exposure in the VE, the participants also filled out the SSQ, also listed in 

Appendix B. The total sickness score and subscore for oculomotor effects were compared for 

each condition. Another questionnaire was administered to monitor general health and eye 

fatigue. This questionnaire is also listed in Appendix B, but the results are not reported since the 

SSQ provided more information about participant health status. 
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Procedure 

 The procedure for this experiment is outlined in Chapter 7.2.2. There are three changes to 

the procedure. The code was re-evaluated for accommodating the new resolution and resolvable 

depth for the HMPD-2. Thus, we changed the gross and fine adjustments to reflect the finer 

resolution of the HMPD-2. Table 34 gives these new values.  

 

Table 34 Gross and fine adjustments for the input device 

 
Viewing Distance 
(mm) 

Gross Adjustment 
(mm) 

Fine Adjustment 
(mm) 

800 15 1.5 
1500 50 5 
300 200 20 

 

 We also changed the stimulus presentation depth interval to reflect the distance change 

for each viewing distances. This was done to ensure that the participant could perceive the 

movement of the octahedron when turning the fine and gross adjustors. For the 800 mm viewing 

distance, the octahedron could appear anywhere within a ± 50 mm range, where the center of this 

range was considered the nominal distance. The range was increased to a ± 75 mm range for the 

1500 mm viewing distance and to a ± 300 mm range for the viewing distance of 3000 mm. These 

values were chosen based on the linear magnification, or the ratio of the object size to the image 

size. 

 The dark vergence was measured using a horizontal grating and a red flashing light 

affixed to a support at the observer’s eye height. Figure 65 gives an example of the setup. With 

the horizontal grating covering his preferred eye, the participant saw the flashing as a vertical 

line. The red light appeared as a red dot in the uncovered eye. Participants adjusted their distance 
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until the dot and the horizontal line were aligned one on top of each other. The distance from the 

wall to the participant’s eye was measured in millimeters. This distance was converted to meter-

angles by computing the reciprocal of the measured distance (i.e., 1/distance in meters). 

 
 
 
 

           

 

Figure 65 Participant performing the dark convergence test 

8.4 Results of HMPD-2 over the Three Viewing Distances 

 Table 35 gives the CE means and the standard deviations for each participant at each 

viewing distance and for both testing environments. For the H-D task, the overall bias was 

minimal at the 800 and 1500 mm viewing depths, MH-D800 = 0.24 mm, SD = 3.55 and MH-D1500 = 

-0.89, SD = 4.00. The overall bias for the 3000 mm viewing distance was negative and more 

variable, MH-D1500 = -7.36 mm, SD = 6.88. For the V-HD task, the variability in responding 

increased over distance for each pretest and posttest outcomes.  
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Table 35 Constant errors (mm) per participant (HMPD-2) as a function of depth for the Howard-
Dolman task and Virtual-Dolman task 

 

  Howard-Dolman   Virtual-Dolman  
       
 

Depth  
(mm) 

Subjects 
 

M 
 

SD 
  

M 
 

SD 
 

   
Pre     Post1    Post2 

 
Pre    Post1    Post2 

  
Pre       Post 

 
Pre       Post 

 
800 

  
 1 
2 
3 
4 
5 

 
 2.6 
-6.9 
 1.4 
-0.5 
 1.4 

 
  3.6 
 -6.3 
  2.1 
  0.4 
  3.1 

 
  1.2 
 -4.9 
  0.8 
  0.5 
  5.1 

 
 1.6 
 4.0 
 1.4 
-0.5 
 1.4 

 
1.8 
2.4 
1.5 
1.6 
2.5 

 
1.7 
2.7 
1.3 
1.3 
3.7 

  
 0.1 
 3.6 
-3.0 
 3.1 
 6.1 

 
 0.0 
 3.5 
-3.0 
 3.9 
 7.7 

 
5.2 
3.7 
3.5 
4.4 
3.3 

 
5.5 
3.1 
1.3 
4.6 
6.1 

 X  
SD 

-0.4 
 3.8 

  0.6 
  4.0 

  0.5 
  3.6      2.0 

 3.5 
 2.4 
 4.1   

       
1500 1 

2 
3 
4 
5 

-0.1 
-3.3 
 2.3 
-2.5 
 0.3 

   2.3 
-12.9 
   3.3 
   0.0 
 - 1.6 

   1.0 
  -4.7 
   1.7 
  -0.7 
   1.5 

3.1 
3.3 
1.3 
1.8 
2.3 

2.2 
10.5 
0.9 
2.4 
4.2 

1.4 
2.9 
1.1 
1.8 
3.2 

 -8.9 
12.1 
 -3.4 
  1.2 
15.6 

-7.5 
 4.2 
-1.6 
-1.0 
 1.0 

27.3 
20.3 
14.2 
12.7 
18.8 

29.0 
17.2 
12.5 
11.3 
16.7 

 X  
SD 

-0.7 
 2.3 

  -1.8 
   6.5 

  -0.2 
   2.7       3.3 

10.3 
-1.0 
 4.3   

       
3000 1 

2 
3 
4 
5 

  -8.7 
-19.0 
   2.9 
  -9.4 
  -5.3 

  -4.6 
-17.2 
   0.8 
-16.7 
  -6.4 

  -1.1 
-14.3 
  -0.5 
  -7.8 
  -3.1 

8.5 
8.1 
3.2 
8.5 
8.9 

7.1 
6.4 
3.4 
6.6 
4.9 

5.6 
2.9 
2.9 
4.4 
2.0 

 -34.7 
  23.1 
-17.8 
 10.0 
-10.3 

-17.5 
 24.8 
   5.7 
 32.2 
-11.6 

69.3 
44.8 
39.3 
18.4 
54.4 

67.9 
40.5 
37.9 
39.6 
39.8 

 X  
SD 

  -7.9 
   7.9 

  -8.8 
   7.9 

  -5.4 
   5.8       -5.9 

  22.8 
   6.7 
  21.8   
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 The Log transformed |CE| vales are given in Table 36. A repeated measures ANOVA (3 

Viewing Depths x 3 Trials) performed on the log transformed H-D |CE| showed no significant 

main effect of Viewing Distance or Trial. This result is shown graphically in Figure 66. The 

repeated measures ANOVA (3 Viewing Distances x 2 Trials) for the V-HD task showed a main 

effect of depth, F(2, 8) = 7.62, p = .014, ρI = .69. Post Hoc analysis using the Bonferroni post hoc 

criterion for significance confirmed that the participants are least accurate performing at the 3000 

mm viewing distance, (M3000Pre= 18.19 mm, 95% CI = 9.54 to 33.11 and M3000Post= 16.59 mm, 

95% CI = 7.58 to 36.31). There was no effect of Trial.  
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Table 36  Log transformed absolute constant errors |CE| for each participant and group means as 
a function of depth for the Howard-Dolman task and Virtual-Dolman task 

 

  Howard-Dolman  Virtual-
Dolman  

     

Depth  
(mm) 

Subjects 
 

Log 
  

Log 
 

  
Pre     Post1    Post2 

  
Pre         Post 

 
800 

 
1 
2 
3 
4 
5 

 
  0.56 
  0.90 
  0.38 
  0.18 
  0.38 

 
 0.66 
 0.86 
 0.49 
 0.15 
 0.61 

 
 0.34 
 0.77 
 0.26 
 0.18 
 0.79  

 
0.05 
0.66 
0.60 
0.61 
0.85 

 
0.01 
0.65 
0.60 
0.69 
0.94 

 X  
SD 

  0.48 
  0.27 

 0.56 
 0.27 

 0.47 
 0.29  

0.56 
0.30 

0.58 
0.34 

Geometric X  3.01 3.63 2.95  3.63 3.80 
     
1500 1 

2 
3 
4 
5 

0.04 
0.63 
0.52 
0.54 
0.11 

0.52 
1.14 
0.63 
0.00 
0.41 

0.30 
0.76 
0.43 
0.23 
0.40 

 0.99 
1.12 
0.64 
0.35 
1.22 

0.93 
0.71 
0.42 
0.29 
0.29 

 X  
SD 

0.37 
0.27 

0.54 
0.41 

0.42 
0.20  0.86 

0.36 
0.53 
0.28 

Geometric X  2.34 3.46 2.63  7.24 3.38 
     
3000 1 

2 
3 
4 
5 

0.99 
1.30 
0.59 
1.02 
0.80 

0.75 
1.26 
0.26 
1.25 
0.87 

0.32 
1.18 
0.18 
0.94 
0.61 

 1.55 
1.38 
1.27 
1.04 
1.05 

1.27 
1.41 
0.82 
1.52 
1.10 

 X  
SD 

0.94 
0.26 

0.87 
0.88 

0.65 
0.42  1.26 

0.22 
1.22 
0.27 

Geometric X  8.70 7.41 4.46  18.19 16.59 
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Figure 66 Log transformed means for the absolute constant error |CE| for testing condition, 
Howard-Dolman or Virtual-HD, at each viewing distance (800, 1500, and 3000 mm). The results 
are ordered in the same manner that they were performed in the experiment (i.e., H-D Pretest, V-
HD Pretest, H-D Posttest 1, V-HD Posttest, and H-D Posttest 2). The center points represent the 
log mean of the absolute CE for the grouped means. The error bars represent the 95% 
Confidence Interval of the log means. 
 

 

 

 

 

 

 



208 

 The |CE| results were pooled over Trial, but not Viewing Distance, to determine if the 

participants were more accurate in performing the H-D task than they were performing the V-HD 

task. A repeated measures ANOVA (3 Viewing Distances x 2 Environments) showed that there 

was a main effect of Viewing Distance, F(2, 8) = 11.24, p. = .005, ρI = .77 and Environment, F(1, 

4) = 16.26, p = .016, ρI = .88. There was no significant interaction. These results are presented 

graphically in Figure 67. The overall geometric means for each condition are: M800 = 3.68 mm, 

95%CI = 1.83 to 5.67, M1500 = 4.96 mm, 95% CI = 2.99 to 8.22 and M3000= 17.46 mm, 95% CI = 

12.45 to 24.35.  
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Figure 67 Combined log means of the absolute constant error |CE| for the different viewing 
distances (800, 1500, 3000 mm) representing the Howard-Dolman task and the Virtual-HD task. 
The center points signify the log mean of the absolute |CE| pooled over all subjects. The error 
bars represent the 95% Confidence Interval of the log means. 
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 Table 37 shows the untransformed VEr for each of the participants over viewing 

distances and testing environments. The results are presented graphically in Figure 68. For both 

the H-D task and the V-HD task, precision is decreased when viewing distance is increased. 

However, VEr also corresponds to the resolvable depth computed for pixel resolution as shown 

in Table 38. Table 38 shows all values of the VEr are precise to within 1/4 of a subpixel 

resolution.  
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Table 37 Untransformed variable error VEr (mm) values per participant and group means as a 
function of depth for the Howard-Dolman task and Virtual-Dolman task 

 

  Howard-Dolman Task  Virtual-Dolman Task 
     

Depth  
(mm) 

Subjects 
 

Magnitude 
  

Magnitude 
 

  Pre       Post 1   Post 2       Pre             Post 
 
800 

1 
2 
3 
4 
5 

1.56 
3.78 
1.36 
1.12 
0.92 

1.69 
2.24 
1.45 
1.50 
2.39 

1.60 
2.59 
1.25 
1.20 
3.53 

 

5.12 
3.64 
3.44 
4.32 
3.21 

5.41 
3.08 
1.25 
4.54 
6.05 

 X  
SD 

1.75 
1.16 

1.85 
0.43 

2.03 
1.01  3.95 

0.78 
4.06 
1.93 

     
1500 1 

2 
3 
4 
5 

2.91 
3.13 
1.19 
1.69 
2.15 

2.10 
9.97 
0.90 
2.32 
3.98 

1.34 
2.72 
1.00 
1.68 
3.04 

 

26.84 
19.96 
14.01 
12.47 
18.54 

28.53 
16.90 
12.34 
11.07 
16.47 

 X  
SD 

2.21 
0.82 

3.86 
3.59 

1.96 
0.88  18.37 

5.66 
17.06 
6.89 

     
3000 1 

2 
3 
4 
5 

8.10 
7.64 
3.08 
8.05 
8.41 

6.74 
1.99 
3.19 
6.29 
4.69 

5.28 
2.72 
2.73 
4.17 
1.87 

 

68.20 
44.11 
38.71 
18.09 
53.53 

82.93 
39.07 
37.34 
38.99 
39.21 

 X  
SD 

7.06 
2.24 

4.58 
2.02 

3.35 
1.36  44.53 

18.54 
47.51 
19.82 
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Figure 68 Variable error (VEr) values for each participant performing the Howard-Dolman task 
or the Virtual-HD task at the different viewing distances (800, 1500, 3000 mm). The results are 
ordered in the same manner that they were performed in the experiment (i.e., H-D Pretest, V-HD 
Pretest, H-D Posttest 1, V-HD Posttest, and H-D Posttest 2). The height of the bar represents the 
magnitude of the VEr. The log transform of these values were used in the inferential statistics 
analysis. The actual values are shown in Table 36.  
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Table 38 Predicted stereoacuity and resolvable depth in mm for the HMPD-2 as a function of 
pixel size and viewing depth. 

 

 

  Resolvable  Depth 
(mm) 

Pixel Size Depth (mm)  

1 
800

1500
3000

14.98 
53.30 
214.79 

 
1/2 

800
1500
3000

7.49 
26.64 
107.29 

1/4 
800

1500
3000

3.74 
13.32 
53.63 

1/10 
800

1500
3000

1.50 
5.33 
21.45 
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 The log transformed VEr data are presented in Table 39 and are graphically displayed in 

Figure 69. Visual inspection shows that there is a main effect for distance viewed for the V-HD 

task. A repeated measures ANOVA confirmed this result, F(2, 8) F = 166, p = .001, ρI = .98. 

Also, a paired samples t-test showed that the H-D pretest for 3000 mm is significantly different 

from the posttest2, t(4) = 3.26, p = .031.  There were no other within groups’ differences at either 

the 800 mm viewing distance or the 1500 mm distance. Further, there is no significant difference 

between the H-D 800 mm viewing distance and the H-D 1500 mm distance.  
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Table 39 Log transformed variable errors (VEr) for each participant and group means as a 
function of depth for the Howard-Dolman task and Virtual-Dolman task 

 

  Howard-Dolman  Virtual-Dolman  
     

Depth  
(mm) 

Subjects 
 

Log 
  

Log 
 

   
Pre        Post1        Post2 

  
Pre           Post 

 
800 

 
1 
2 
3 
4 
5 

 
0.41 
0.68 
0.37 
0.33 
0.28 

 
0.43 
0.51 
0.39 
0.40 
0.53 

 
0.41 
0.55 
0.35 
0.34 
0.66 

 

 
0.79 
0.67 
0.65 
0.73 
0.62 

 
0.81 
0.61 
0.35 
0.74 
0.85 

 X  
SD 

0.41 
0.16 

0.69 
0.07 

0.46 
0.14  0.69 

0.07 
0.67 
0.20 

Geometric X  2.57 4.89 2.88  4.89 4.67 
     
1500 1 

2 
3 
4 
5 

0.59 
0.62 
0.34 
0.43 
0.50 

0.49 
1.04 
0.28 
0.52 
0.70 

0.37 
0.57 
0.30 
0.43 
0.61 

 

1.44 
1.32 
1.18 
1.13 
1.29 

1.47 
1.25 
1.13 
1.08 
1.24 

 X  
SD 

0.50 
0.11 

0.61 
0.28 

0.46 
0.13  1.27 

0.12 
1.23 
0.15 

Geometric X  3.16 4.07 2.88  18.62 29.51 
     
3000 1 

2 
3 
4 
5 

0.96 
0.94 
0.61 
0.96 
0.97 

0.89 
0.48 
0.62 
0.86 
0.76 

0.80 
0.57 
0.57 
0.71 
0.46 

 

1.84 
1.65 
1.60 
1.28 
1.74 

1.92 
1.60 
1.58 
1.60 
1.60 

 X  
SD 

0.89 
0.16 

0.72 
0.17 

0.62 
0.13  1.62 

0.21 
1.66 
0.15 

Geometric X  7.76 5.25 4.17  41.67 45.71 
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Figure 69 Log variable error (VEr) means and 95% Confidence Intervals for grouped responses 
on the Howard-Dolman task performed at the different depths (800, 1500, 3000 mm) and on the 
separate trials (Pre, Posttest 1, and Posttest 2). There are no significant differences on responses 
across depths or trials on the Howard-Dolman task. However, there is a significant main effect of 
depth for the V-HD task. 
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 The sign of the stereoacuity value gives an indication of the convergence angle related to 

the fixed object. As discussed previously, when the convergence angle relating to the fixated 

object is bigger than that of the moveable object, stereoaccuracy will take on a negative value. 

The negative bias across all viewing distances shown in Table 40 suggests that the fixed target is 

being perceived as closer to the observer. This effect is opposite when performing the V-HD 

task, namely the cylinder is perceived as further away than its fixed location.  These results show 

more variability between trials than in the previous experiments. Also, the variability of the VEr 

for the 800 mm viewing distance, regardless of testing environment, is quite high relative to the 

other viewing distances. Figure 70 depicting the grouped mean stereoaccuracy with their 

respective 95% CI graphically illustrates this pattern.   
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Table 40 Stereoaccuracy (ηce) in arc seconds per participant as a function of depth for the 
Howard-Dolman task and Virtual-Dolman task 

 

  Howard-Dolman   Virtual-Dolman  
       
 

Depth  
(mm) 

Subjects 
 

M 
 

SD 
  

M 
 

SD 
 

   
Pre     Post1    Post2

 
Pre    Post1    Post2 

  
Pre       Post 

 
Pre       Post 

 
800 

  
 1 
2 
3 
4 
5 

 
 32.5 
-91.7 
 18.0 
 -5.9 
 18.4 

 
 45.0 
-83.7 
 27.1 
  4.8 
 38.1 

 
 15.0 
-65.1 
 10.3 
   5.9 
 62.7 

 
20.6 
52.9 
18.4 
14.0 
13.3 

 
22.2 
31.3 
19.6 
18.8 
30.9 

 
21.1 
36.2 
17.0 
15.1 
45.8 

  
   2.7 
 78.2 
-62.5 
 59.5 
122.2 

 
   0.5 
 75.6 
-62.8 
  74.9 
153.7 

 
105.6 
  79.9 
  73.2 
  84.9 
  65.3 

 
111.7 
  66.4 
  26.5 
  89.2 
122.8 

 X  
SD 

-5.7 
50.0 

6.2 
52.5 

5.8 
45.7     

40.0 
71.6 

48.4 
82.4  

 

       
1500 1 

2 
3 
4 
5 

  -0.4 
-15.9 
 10.4 
-11.0 
   1.3 

 10.1  
-62.1 
 15.0 
   0.0 
 -7.0 

   4.4 
-22.6 
   7.7 
  -3.1 
   6.6 

8.4 
9.8 
3.5 
4.8 
6.2 

  6.0 
 31.3 
   2.7 
   6.7 
 11.4 

3.9 
8.6 
3.0 
4.8 
8.7 

 -51.2 
 76.4 
-20.0 
   7.1 
  90.1 

-43.6 
 26.3 
 -9.8 
 -5.5 
  5.6 

54.6 
44.5 
29.4 
25.4 
37.7 

58.0 
37.6 
25.9 
22.5 
33.5 

 X  
SD 

-3.1 
10.4 

-8.8 
31.0 

-1.4 
12.6     

20.5 
61.1 

-5.4 
25.5 

  

       
3000 1 

2 
3 
4 
5 

-11.2 
-26.1 
   3.8 
-12.0 
  -6.9 

  -5.9 
-23.6 
   1.1 
-21.3 
  -8.3 

  -1.4 
-19.6 
  -0.7 
  -9.9 
  -4.0 

  6.8 
  6.9 
  2.6 
10.7 
10.9 

5.7 
5.5 
2.7 
7.6 
5.7 

4.5 
2.4 
2.3 
4.7 
2.1 

 -51.7 
 36.5 
-27.0 
 14.6 
-15.3 

-26.0 
 39.3 
  8.6 
 47.3 
-17.3 

 35.8 
 24.6 
 20.6 
  9.3 
 28.1 

35.8 
22.2 
19.9 
20.1 
20.6 

 X  
SD 

-10.5 
10.8 

-11.6 
10.5 

-7.1 
7.9     

-8.6    
34.7 

10.4 
32.8   
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Figure 70 Stereoaccuracy ηce for each viewing distance (800, 1500, and 3000 mm) for the 
Howard-Dolman task and the Virtual-HD task. The results are ordered in the same manner that 
they were performed in the experiment (i.e., H-D Pretest, V-HD Pretest, H-D Posttest 1, V-HD 
Posttest, and H-D Posttest 2).  Pooled differences in stereoaccuracy are illustrated along with 
their biases. The center points represent the mean of stereoaccuracy as calculated from grouping 
data over participants for each viewing depth (800, 1500, or 3000 mm). The error bars represent 
the 95% Confidence Interval of the means. A zero value for stereoaccuracy suggests that the 
participants were able to perfectly align the test objects.   
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 Table 41 shows the stereoacuity values attained for each viewing distance per participant. 

The results show that participants achieve 20 arc seconds or less on the H-D task across each 

viewing distance. Also, their stereoacuity levels as measured by the V-HD task are better than 

the 156 arc seconds predicted by the resolution of the microdisplay. The results are graphically 

depicted in Figure 73.  

 When performing the H-D task, the trend for stereoacuity is to improve with viewing 

distance (MH-D800 = 23.86, SD = 11.30, MH-D1500 = 12.22, SD = 10.68, MH-D3000 = 6.15, SD = 

3.04). This result is similar to that found with the HMPD-1 in Chapter 7. However, there is no 

decreasing trend for stereoacuity with increasing viewing distance when performing the V-HD 

task (MV-HD800 = 81.46, SD = 27.01, MV-HD1500 = 104.80, SD = 34.70, MV-HD3000 = 69.6, SD = 

23.05).   As shown in Figure 71, the means are comparable and present with similar variability as 

shown by the 95% CIs.  
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Table 41 Stereoacuity (ηve) in arc seconds per participant as a function of depth for the Howard-
Dolman task and Virtual-Dolman task 

 

  Howard-Dolman Task Virtual-Dolman Task 
    

Depth  
(mm) 

Subjects 
 

M 
 

M 
 

     
800 1 

2 
3 
4 
5 

19.51 
50.21 
17.48 
13.30 
12.60

  21.05 
  29.73 
  18.63 
  17.80 
  29.32 

19.98 
34.36 
16.10 
14.32 
43.44 

  103.95 
   78.64 
   72.07 
   83.60 
   64.23 

109.94 
  67.49 
  26.08 
  87.75 
120.84 

 X  
SD 

22.62 
15.69

  23.31 
    5.80 

25.64 
12.69     80.50 

   14.99 
  82.42 
  37.61 

     
1500 1 

2 
3 
4 
5 

12.80 
15.07 
  5.38 
  7.42 
  9.43

    9.22 
  47.99 
    4.08 
  10.21 
  17.48 

  5.89 
13.10 
  4.55 
  7.36 
13.36 

 155.00 
126.28 
  83.50 
  72.02 
107.09 

164.78 
106.89 
  73.55 
  63.96 
  95.14 

 X  
SD 

10.02 
  3.93

  17.80 
  17.54 

  8.85 
  4.12  100.86 

  39.57 
100.86 
  39.57 

     
3000 1 

2 
3 
4 
5 

10.47 
10.49 
  4.04 
10.25 
10.88

    8.72 
    2.73 
    4.19 
    8.01 
    6.07 

6.83 
3.74 
3.58 
5.30 
2.42 

 101.59 
  70.87 
  58.55 
  26.54 
  79.75 

  99.59 
  87.37 
  56.48 
  57.18 
  58.41 

 X  
SD 

  9.23 
  2.91

    5.94 
    2.52 

4.37 
1.71    67.46 

  27.76 
  71.81 
  20.26 

 

 

 

 

 

 

 



221 

 
St

er
eo

ac
ui

ty
 (a

rc
 s

ec
)

Depth (mm) 30001500800
V-HDH-DV-HDH-DV-HDH-D

160

140

120

100

80

60

40

20

0

20

156

6.5
12.2

23.8

69.6

104.8

81.5

Virtual-HD Task
Howard-Dolman Task

 

 

Figure 71 Stereoacuity ηve means and 95% Confidence Interval for the participants’ grouped 
responses on the Howard-Dolman and Virtual-HD task performed at the different depths (800, 
1500, 3000 mm) and on the separate Pre and Posttest trials. The mean averages illustrate the 
change in stereoacuity over the different viewing depths. The reference line at 20 arc seconds 
represents average responding in the population at large. The reference line at 156 arc seconds 
represents the predicted stereoacuity based on the HMPD-2 parameters.  
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 As expected, the means for the dark focus were relatively stable over each testing trial as 

shown in Table 42. Further, participants did not vary considerably from one another on the dark 

focus metric. Figure 72 shows the mean meter-angle measures for dark convergence with respect 

to the participant and viewing distance. While participants’ dark convergences are consistent 

with respect to their own repeated measures, there is wide variability between participants on the 

measure of dark convergence. There is evidence of participants separating into near and far dark 

convergence groups, which is reported in the literature (Owens, 1984). However, the variability 

precludes this response variable from adding meaning to the analysis. If the clustering is a true 

effect, the results do demonstrate that individual differences are important to quantify and control 

for when performing these types of tasks within a virtual environment. 
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Table 42 Mean dark focus in Diopters and dark convergence in Mean-Angles per participant as a 
function of depth and testing condition 

 

  Dark Focus Dark Convergence 
    

Depth  
(mm)  

M  
 

M  
 

    Pre       Post1      Post2   Pre      Post1     Post2 
 
800 

1 
2 
3 
4 
5 

1.9 
2.9 
1.4 
2.4 
1.9 

1.9 
3.2 
1.6 
1.9 
1.7 

2.4 
3.2 
1.6 
1.8 
2.6 

0.6 
0.7 
2.7 
0.9 
2.7 

0.4 
0.7 
2.4 
0.8 
2.0 

0.4 
0.7 
2.5 
0.7 
2.2 

 X  
SD 

2.1 
0.5 

2.0 
0.7 

2.3 
0.6 

1.5 
1.1 

1.3 
0.9 

1.3 
1.0 

    
1500 1 

2 
3 
4 
5 

2.0 
2.3 
1.5 
2.1 
1.9 

2.0 
2.6 
1.3 
2.3 
1.9 

1.9 
2.3 
1.3 
1.6 
1.8 

0.4 
0.8 
3.2 
1.2 
2.2 

0.4 
0.7 
2.7 
1.3 
1.8 

0.4 
0.8 
3.3 
1.1 
2.0 

 X  
SD 

1.9 
0.3 

2.0 
0.5 

1.8 
0.4 

1.6 
1.1 

1.4 
0.9 

1.5 
1.2 

    
3000 1 

2 
3 
4 
5 

1.8 
2.8 
1.4 
2.0 
1.5 

2.8 
2.4 
1.1 
1.9 
2.0 

2.6 
3.1 
1.2 
1.9 
1.4 

0.4 
0.7 
2.2 
1.1 
2.3 

0.4 
0.7 
2.8 
1.3 
2.2 

0.4 
0.7 
2.8 
1.1 
1.7 

 X  
SD 

1.9 
0.6 

2.0 
0.6 

2.0 
0.8 

1.3 
0.9 

1.5 
1.0 

1.4 
1.0 
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Figure 72 Dark vergence means per participant grouped over Pretest and Posttest at each viewing 
depth (800, 1500, 3000 mm). The 95% Confidence Interval for each vergence mean is given. 
The mean averages illustrate that participants do not change in dark vergence over the different 
viewing depths.  
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 Table 43 displays the front and back discriminability of the participants across viewing 

distances and trials. Given that the threshold for the 2AFC design is 75 %, the participants 

performed well above this limit. The means as shown in Table 43 did not go bellow 90 %, even 

for the viewing distance of 3000 mm. The data from Table 42 are graphically displayed in Figure 

73. 

 

Table 43 Percent correct for front and back responses as a function of HMD for the Virtual-
Dolman task 

 

  Virtual-Dolman Task 
   

Depth 
mm  

M 
 

     Trial 1          Trial 2 

800 X
SD

0.95 
0.01 

0.93 
0.04 

    

1500 X
SD

0.96 
0.03 

0.94 
0.03 

    

3000 X
SD

0.96 
0.02 

0.90 
0.12 
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Figure 73 Percent correct for front and back judgments on both trials of the V-HD task grouped 
over HMD type. The mean and 95% CI are given. The reference line at 75% represents the 
detection threshold for a 2AFC design.  
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 As expected, Table 44 shows that very few participants in this study experienced 

cybersickness. In fact, the same subject experienced different levels of cybersickness across the 

viewing distances. Inspection of VEr scores in Table 44 shows that participant 2 shifted from a 

CE of -3.3, SD = 3.3 to 12.9, SD = 10.05. This shift corresponds to the highest reported values of 

cybersickness for the experiment. With more data a more causative link between performance of 

the user and level of cybersickness could be achieved.  

Table 44 Cybersickness scores for the oculomotor subset per participant for HMD type and 
testing condition 

 

  SSQ 
   

Depth  
  

OD  
 

    Post1       Post2      

 
800 

1 
2 
3 
4 
5 

0 
30 
8 
8 
0 

0 
15 
0 
0 
0 

   

1500 

1 
2 
3 
4 
5 

0 
45 
0 
0 
0 

0 
53 
8 
0 
0 

   

3000 

1 
2 
3 
4 
5 

0 
15 
8 
0 
0 

0 
0 
8 
0 
0 
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8.5 HMPD-2 Error Metrics and Viewing Distance Conclusion 

 The results of the V-HD task show that participants achieved stereoacuity levels at each 

viewing distance which were less than the predicted stereoacuity set by the microdisplay, MV-

HD800 = 81.46, SD = 27.01, MV-HD1500 = 104.8, SD = 34.7, and MV-HD3000 = 69.63, SD = 23.02. 

The participants VEr suggest that the resolvable depth for this HMD is ¼ subpixel resolution. 

How this result extends to usability or task based performance is unclear; however the results do 

suggest that we are correct in assessing the HMD, the graphics, and the user as an interdependent 

system. Thus, these metrics have allowed for multiple conservative views of the data to show 

where the technology limits occur versus where individual differences of the user play a role in 

overall outcomes.  

 For example, out of 5 participants, participant 2 experienced cybersickness on a scale 

suggestive of visual disturbances. Concomitant with the increased levels of cybersickness are 

shifts in performance on the H-D task. Although we do not have a causative link between 

cybersickness and possible adaptive responses on the H-D task, we are now building the 

capability of appropriately attributing error in the VE system to a more specific cause (e.g., user 

versus technology). Given that cybersickness may follow a pareto distribution whereby 20% of 

those exposed to virtual environments exhibit 80% of the cybersickness symptoms, the ability for 

the V-HD task to identify those individuals most susceptible to cybersickness before data 

analysis is critical to the overall assessment of the virtual environment (Kennedy, Kennedy, & 

Drexler, 2006).  

 Further, participants for this experiment reported less cybersickness over all the studies 

reported. This suggests that although there may be mechanical issues associated with this 

prototype display, the design of this display is moving in a direction capable of supporting a 
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broader range of tasks without compromising the user. As evidenced by the percent correct 

responding on front and back for the octahedron stimuli, participants in this study were clearly 

able to discern the front and back position of the object as presented on a curved surface of 

retroreflective material. All participants were able to discern depth into the plane of the 

retroreflective material and out of the plane of the material. For example, at the 3000 mm 

viewing distance, the virtual octahedron could be placed 30 cm into real space with out 

disruption of the space continuum. Alternatively, the space 30 cm into the plane of the material 

was discerned equally.  

 We plan to explore this result further with real and virtual objects to determine if the 

users perceive the material as a continuous space with real objects placed into view. Continuing 

this approach of methodologically evaluating the complete virtual environment system will allow 

us to scope out the best use of such systems over a wider range of tasks.  

 Although dark convergence did not provide a means of determining the source of 

localization errors in this study, we do have evidence of clustering of participants into far and 

near dark convergence. This dichotomy may assist in naturally classifying participants to provide 

better controls for experiments or to provide more meaning to the data analysis. As argued 

throughout this work, extending current virtual environment design to the domain of cognitive 

rehabilitation is more than choosing the correct HMD. As researchers, we have to identify all 

potentially confounding variables to assure that the rehabilitation protocols we follow are 

delivering the appropriate remediation for that given population.      
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CHAPTER 9 HEM TESTBED: FEASIBILITY STUDY FOR COGNITIVE 
REHABILITATION  

9.1 Introduction 

 Szekeres, Ylvisaker, & Holland (1985) encouraged rehabilitation specialists “to generate 

novel intervention procedures while measuring their value against patient progress, not academic 

acceptability” (p 220). This statement is telling of the disconnect that sometimes exists between 

research for academia (e.g., push to publishing) versus the practical application of the basic 

research in a clinical setting. For example, how practical is a VE rehabilitation solution for 

private practice? The answer to that question depends on many factors, such as type of practice 

(e.g., physical versus physical rehabilitation) and needed equipment. However, how does a 

practitioner know what type of VE system they need?  The answer lies with the universities, 

especially those that support technology transfer.  

 While technology can lead to profit for universities (Pounds, 2004), the transfer of such 

technology can lead to community business partnerships that supply direction and focus to 

developing the product further (Nature Editorial, 2006). Given that TBI is a serious community 

problem, it will need a supportive community effort to match the high-tech potential of 

university laboratories with the practical goal of independent rehabilitation specialists. Thus, VE 

technology developed for cognitive rehabilitation should not be inaccessible to the private 

practitioner. Although, most business models have as their main goal increased revenue, the 

guiding principles of such a community collaboration should be accessibility and financial 

independence such that the monies received continue to support existing technology 

development while encouraging innovation.  
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 As first steps to building this community partnership, the Human Experience Modeler 

(HEM), developed at the University of Central Florida, was designed as a testbed to evaluate 

technologies of virtual, augmented and mixed reality that may enhance cognitive rehabilitation 

effectiveness (Fidopiastis et al., 2006). As Rizzo et al. (2005) acknowledged, a trial and error 

approach to VE design for rehabilitation is commonly employed due to the lack of appropriate 

methodologies for evaluating user interactions. The authors also contend that the expense and 

ever changing technology poses a challenge for proper benchmarking of VE systems for use with 

clinical populations.  

 The HEM provides a testbed with which to establish benchmarks for different system 

technologies and potential types of user interaction. The goal of such technology is forward 

looking from specific applications of cognitive remediation to more advanced transfer of training 

protocols. In both cases, benchmarking of the VE system supports the experimental design 

nature of cognitive rehabilitation approaches. As argued previously, without benchmarking, 

separating system error from the user is impossible and may lead to inappropriate conclusion 

about the technology or the rehabilitation method under study.  

 In this chapter we review results of a pilot study completed with the current version of the 

HEM. The goal of this initial study was to test the integrated components of the HEM and assess 

its feasibility for presenting contextualized environments that are personally meaningful to the 

patient (e.g., a room in the patient’s home). The user interactions in such environments are more 

complex and require more realism than other rehabilitation tasks (e.g., pain distraction). The 

contextualization and the level of experimental control afforded by utilizing a VE framework 

allows researchers a unique opportunity to further explore transfer of training issues with brain 

injured populations.  
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 This work is an extension of Zhang et al. (2003)’s meal preparation study. The authors 

built a fully immersive generic kitchen as shown in Figure 74a. The participant was given a 

scripted task and procedurally followed the steps for preparing a can of soup.  

Figure 74 Fully immersive generic kitchen versus the HEM mixed reality kitchen 

 a Model of Zhang et al.’s virtual kitchen        b Chroma-key kitchen for HEM 

         

 

Within the HEM version of the task, the participant’s home kitchen was modeled using both 

virtual and real objects as shown in Figure 74b. The resulting mixed reality environment was 

viewed through the Canon Coastar previously discussed. Further differences between the studies 

are outlined in the next section. 
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9.2 HEM Breakfast Meal Preparation Methods 

Participant 

 The participant for this study was a right-handed, 48 year old, Caucasian male who 

suffered an aneurysm in 2004 and presented with left frontal lobe damage. Prior to participating 

in the experiment, the participant was administered the following test battery from a 

speech/language pathologist and a psychologist: Boston Diagnostic Aphasia Examination 3rd 

Edition (BDAE-III), Cognitive Linguistic Quick Test(CLQT), oral peripheral examination, 

hearing screening, Mini-Mental Status Exam (MMSE), Repeatable Battery for the Assessment of 

Neuropsychological Status (RBANS), Wechsler Adult Intelligence Scale 3rd Edition (WAIS-III), 

and the Comprehensive Trail-Making Test (CTMT). The participant’s testing showed attention, 

memory, and executive functioning impairments consistent with frontal lobe damage. However, 

his ability to manipulate and process visuospatial stimuli remained intact.  The participant’s 

testing showed attention, memory, and executive functioning impairments consistent with frontal 

lobe damage. However, his ability to manipulate and process visuospatial stimuli remained 

intact. The participant was independent in his personal activities of daily living (ADLs) in his 

home but was not engaged in his meal preparation.  

Instrumentation 

 The HEM is a virtuality system based on mixed reality (MR), which allows modeling of a 

complete real world setting (Hughes, Stapleton, Hughes, & Smith, 2005). As a first step, the 

spatial, audio, and visual environment of a location is captured utilizing 3D laser, image, and 
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acoustical recordings to accurately reproduce a space and its multi-sensory signature. Once 

captured, this real environment can be rendered within a mixed reality (a mixture of real and 

virtual objects and environmental conditions). Specifically, images are processed by the Mixed 

Reality Software Suite (MRSS), software tools developed for creating dynamic and interactive 

mixed reality experiences (O’Connor & Hughes, 2005). 

 The MRSS system is made up of four subsystems: three rendering engines simulate the 

multimodal simulation (Visual, Audio and Special Effects) while a fourth engine drives the 

integration and creates an interactive, non-linear scenario (story) of the chosen human 

experience. The output of the MRSS system is a mixed synthetic and real setting where an 

integrated system of sensors in the environment captures the user’s performance for replay.  

Peripheral and environmental perception is rendered with a combination of 3D sensory displays 

such as the Canon Coastar, audio earbuds (earphones for Mixed Reality), surround sound and 

spatially registered audio, special effects (e.g., breezes and opening/closing doors) haptic vests 

and olfactory stimulation. 

HEM Implementation  

 For this study, a depth camera (3DV Systems DMC100) and a 3D laser scanner (Riegl 

LMS420i) were used to capture the participant’s home kitchen.  The scanners output was edited 

in 3D Studio Max. The graphical representation of the kitchen, including the textures and 

appliance overlays, were imported into the MRSS. These images were seen through the Canon 

HMD discussed earlier. 

 In addition to the 3D graphics, parts of the real kitchen were reconstructed out of 

plywood to match the same dimensions and location of real stationary components of the kitchen 

(e.g., cupboards). Figure 75a shows a picture of the participant’s own kitchen. The reconstructed 
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mock kitchen painted green for chroma-keying is represented in Figure 75b. There were some 

differences in the dimensions, brand of appliances, and number of fixtures between the mixed 

reality and real kitchen. Otherwise the spatial layout of target locations and target items was 

identical to the participant’s own kitchen as shown in Figure 75c.  

 Nonessential areas such as the stove, microwave, and dishwashing machine were all 

virtually represented in the MR kitchen. Essential areas, such as the plate and cup cabinets along 

with the silverware drawer were fully functional as were the pantry door and refrigerator. The 

refrigerator contained milk and other non-target items, for example orange juice. As well, the 

pantry contained non-task relevant boxed items such as cake mix.  

  

Figure 75 (a) Participant’s actual kitchen. (b) Chroma-keyed mock-up. (c) Schematic of locations 
of target items and typical starting position of the participant.  

MR Training Procedure  

This study was approved by the IRB for the University of Central Florida. The protocols 

are listed in Appendix A. The participant was videotaped performing meal preparation in his 

own home at his regular breakfast hour. This single measure baseline followed a modified 

“Goal-Plan-Do-Review” or executive function map (Ylvisaker, 1998) where by the participant 

verbalized and wrote down a list of steps and materials needed to accomplish his goal. He was 

then asked to perform the cereal making task with the assistance of the therapist. The participant 
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was free to perform each identified step in any order, which was different from the Zhang et al 

procedure.  

 During each MR training session, the participant was fitted with the Canon, which was 

coupled with an IS900 wireless mini tracker. The participant was presented with the same 

protocol as was performed at home. There were 5 training sessions conducted over consecutive 

days. The Tracker Reviewer, a Java based software capturing the tracked movements of the 

participant, was started once the participant signaled that he was ready to begin. The facilitator 

remained in the virtual kitchen with the participant for the entire meal preparation.  In addition, 

the facilitator monitored the participant’s view of the MR on a display placed out of the line of 

sight of the participant. Once the participant had completed the cereal preparation task in MR, 

the SSQ was administered. 

 Upon completing the MR training, the participant was videotaped in his own home 

performing the cereal making task. The participant generated the script sequence and proceeded 

to make breakfast. Only one post-training home session was recorded due to time constraints.  

9.3 HEM Transfer of Training Results  

 Location errors, time to locate target items, total time to complete the task, order of item 

retrieval, and number of cues were recorded in the real and simulated kitchen. In addition, total 

efficiency of movement was captured from the head tracker via Tracking Reviewer. Analysis of 

the overall location errors (total errors = 42) showed that the participant had the most difficulty 

remembering where the cereal (17 total errors) and the bowls (13 total errors) were kept in both 

his real kitchen and in the MR Kitchen.  
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 Table 45 displays the time in seconds that the participant needed to locate a target item. 

Time was measured starting from when the participant verbalized what item he was about to 

retrieve and ending at the time he found the item in its appropriate location within the kitchen. 

The numbers in parentheses represent the order that each item was retrieved. Item retrieval order 

during the actual breakfast making task never matched the preplanning script. However, the 

participant’s performance retrieval order (bowl, spoon, milk, and cereal) was the same for 3 out 

of the 5 MR training sessions and the post-test home session.  

Table 45 Time in seconds to locate target items; order retrieved; and time to complete all tasks.   

Location Target Pre MR 1 MR 
2 

MR 3 MR 
4 

MR 
5 

Post 

Pantry Cereal 58(1) 112 (4) 76(4) 119 (4) 80(2) 18(3)   8 (4) 
Cabinet Bowl 13(2)   38 (1) 26(1)   43 (1) 28(3) 27(1) 18 (1) 
Refrigerator Milk 14(3)   44 (3) 24(3)   12 (3)   7(1) 14(4) 14 (3) 
Drawer Spoon  3 (4)  15  (2) 15(2)     3 (2)   6(5) 5 (2)   3 (2) 
Counter Make Cereal 73(5) 120 (5) 84 5)   41 (5) 40(4) 37(5) 51 (5) 
 Total Time (s) 240 379 315 341 236 177 158 
 Total Time 

(m:s) 4:00 6:19 5:15 5:41 3:56 2:57 2:38 

  

 Table 45 also shows that the participant took 4 minutes to prepare cereal in his own home 

during the pre-test, while he took over 6 minutes to make breakfast during the initial MR training 

session. By the end of the last MR training session, the breakfast task was performed in half this 

time. The participant’s fastest cereal preparation time (2 minutes and 38 seconds) was achieved 

in his home during the post-test session. This result is shown graphically in Figure 76. 
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Figure 76 Time to complete the breakfast making task for all conditions 

Figure 77 displays the captured tracking data of the participant as he prepared cereal in 

the MR kitchen during the first day of training and the last day of training. The overall track data 

visually highlights differences in movement behavior from an efficiency standpoint between the 

initial MR training and the final MR training session. The track in Figure 77a is very similar to 

the one presented in Figure 78a, a line drawing representation of the participant’s track during 

the pre-testing home session, suggesting that the participant carried over errors in his searching 

behavior to the MR kitchen. Interestingly, in the MR kitchen, the nontarget areas were virtually 

represented. While the participant can open the target cabinet to find the bowls inside, the 

nontarget virtual cabinets only display the texture seen in the real kitchen.  

 Figure 78b shows that the participant makes fewer location errors and more efficiently 

completes the task during his final training session in the MR kitchen. In his own kitchen during 

Total Time to Complete Cereal Making Task 

240

158

315

177

236

379

341

0

50

100

150

200

250

300

350

400

Pre     VE 1 VE 2 VE 3 VE 4 VE 5 Post    

Session

T
ot

al
 T

im
e 

(S
ec

on
ds

)

Total Time 



239 

the post-test, the participant demonstrates more continuous movements between steps with less 

searching behavior as evidenced by the line drawing track shown in Figure 78b.  

 

a.           b.  

Figure 77 (a) Tracker Reviewer data from the participant’s first MR training session; retrieval 
order was bowl, spoon, milk, cereal. (b) Tracker Reviewer data form participant’s last MR 
trainings session; retrieval order was bowl, spoon, cereal, milk. Participant made cereal in 
different locations on each day.  

 

 

a.           b.      

 
Figure 78 (a) Track at home during pre-training; order was cereal, bowl, milk, and spoon. (b) 
Track of post-training; order was bowl, spoon, milk, and cereal. Participant made cereal in same 
location each day.   
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9.4 HEM Conclusion 

The participant’s improvement over the 5 MR training sessions is evidence that the HEM 

mixed reality environment was an ecologically-valid environment within which a brain damaged 

adult could learn new information applicable to his home environment.  Transfer of learning 

from the MR environment to his home environment was evidenced in decreased time spent on 

task, decreased number of location errors, and decreased wandering behavior.  Research 

questions such as the degree and extent of replication needed for transfer of learning are 

currently being explored.  

The Tracker Reviewer allowed us to capture the participant’s internalized learning 

process that may have been undetected by traditional rehabilitative methods.  More specifically, 

we were able to capture the implicit ordering effects of the participant who had no memory that 

he was performing the task similarly on each trial. The ability to scientifically visualize the 

process and then to track that process permitted analysis of emergent trends in the participant’s 

performance. For example, the order of retrieval of target items possibly suggests that the 

training assisted the patient in developing an internal script which then carried over to the home 

environment.  Although further research in this area is needed, the results are encouraging. 

Additionally, the HEM mixed reality environment afforded the interactive human component in 

a flexible arena in which the participant could safely explore his functional capabilities. However 

there are some drawbacks to the current setup. 

 The current VE system setup is not easily reconfigurable for accommodating other 

participants. Although it is true that cabinetry and counter tops come in standard sizes, this 

plywood configuration would be difficult to alter. We are currently investigating new materials 

to enhance the changeability of the environment before we attempt testing different technologies 
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and levels of contextualization. Also, the participant’s memory impairment singly determined 

applicability of some features of the HEM.   

 For example, the HEM has after-action review features that allow the participant to 

review his or her performance. When performing the after-action review, the participant became 

extremely emotional when watching himself struggle to perform the task. In addition to his 

memory impairment and the length of the after-action review process, we did not utilize this 

feature on subsequent training trials. Although adequate for the task, the HMD caused some 

visual problems that the participant was unable to report. For example, when reaching for some 

items he would misjudge the distance and most likely would overshoot the target and collide 

with mock setup. Although minor, with other patients this misperception of space could be an 

issue. Unrelated to the HEM another potential problem was the administration of the SSQ. 

 The SSQ is a pretest posttest type of questionnaire. In our procedure, we removed the 

HMD and allowed the participant to take his bowl of cereal to a table area to eat.  During the 

time it took him to sit down, memory of the training session was already degrading. He could not 

remember difficulties that he experienced during the training. For example, during one training 

set, after retrieving the bowls and setting them on the counter, he did not see them after he 

retrieved another item. His solution was to retrieve another set of bowls; however, we were 

unsure of why he was unable to locate the bowls he retrieved initially. We could not determine if 

he was experiencing visual problems with the display or just forgot where he had placed them. 

Similarly, although the SSQ can be thought of as a “current state” monitoring assessment, we 

could not determine if the participant was reporting about his status with respect to his TBI 

symptoms or the VE exposure. Thus, a cybersickness assessment that did not rely on verbal 
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report may be appropriate for some patient populations. This issue also supports the need for 

baseline metrics for participants performing any type of training within a VE.   

 The results of this pilot are encouraging and suggest that the HEM will provide a 

standard environment within which to perform technology comparison studies along with 

benchmarking and quantifying multimodal interactions. The goal of such work is to provide 

guidance on how best to design VE rehabilitation spaces to maximize transfer of training 

potentials for each individual, regardless of their rehabilitation needs. In addition, the optimized, 

scaled version of the optimal training system could be offered commercially to reach more 

rehabilitation providers and consequently more person with TBI.  
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CHAPTER 10 HMD ASSESSMENT, USABILITY & COGNITIVE 
REHABILITATION 

10.1 Overall Results Summary  

 This work encompasses many fields of research: HMD Design, Human Factors 

approaches to VE Design, and VE based Cognitive Rehabilitation. The combined effort of this 

work is to bring the theoretical best practices of these fields together to create a VE rehabilitation 

environment that is safe and acceptable to the end user, while ensuring the validity and reliability 

of the outcome metrics employed by the rehabilitation protocol. The foundational links that unify 

these currently self-governing fields within a common framework is that of VE technology 

benchmarking and user performance baselines. These metrics should be obtained early in the VE 

design cycle to guide and support the decision making process that culminates into a final VE 

application.  

 More specifically, we argue that current user-centered design approaches are too high 

level to support the empirical nature of VE rehabilitation. When building a specific rehabilitation 

application, it is appropriate to introduce sensory performance assessments after the initial task 

analysis is performed. However, general sensory baselines attained via a user-in-the-loop 

methodology are the responsibility of the device manufacturer. The goal of the therapist is not to 

determine the individual limits of the technology from a user perspective, but to define the 

integrative effects of technology as they assist or detract from user performance in a 

rehabilitation scenario.  We provide two examples of benchmarking prototype see-through 

projection displays through the use of resolution visual acuity and stereoacuity measures of 

human observers.  
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 As outlined in Chapter 4, a modified Landolt C test was designed following accepted 

standardized guidelines and was used to measure resolution visual acuity of participants who 

performed the assessment while wearing the HMPD-1. The results confirmed that the 

microdisplay resolution of 4.1 arc minutes constrained the users’ rVA to that value as well. 

However, in the case of both the Canon and the VR6 displays while the resolutions of 5.83 and 

4.78 arc minutes were predicted, we measured resolutions of 11.66 and 9.56 respectively. By 

assessing the user’s rVA under real world viewing conditions we were able to compare for 

changes in rVA caused by the VE exposure. More importantly, we could directly measure the 

user’s rVA. Thus the modified Landolt C assessment provides additional controls for modifying 

potential confounding variables that may affect the final outcome of the analysis.  

 In an extension of the study recapped above, we added optotypes of varying contrast to 

assess the interplay of the HMPD-1 characteristics with those of two types of retroreflective 

materials currently used to project the virtual image back to the user as explained in Chapter 5.  

The low contrast version of the modified Landolt C test allowed us to screen participants prior to 

performing the assessment in the VE. We found that persons who had LASIK surgery or had a 

prior injury to the retina of one eye could not perform the real world viewing portion of this test. 

As noted, these participants had passed the high contrast version of the test, the results of which 

determined the limiting rVA of the HMPD-1.  Additionally this study showed that participants 

performed poorest when viewing the optotypes on the beaded retroreflective material. This result 

provided guidelines for optimizing the VE system (e.g., HMD, retroreflective material, and 

computer software) for applications that require viewing of low contrast targets (i.e., medical). 

However, the results have application to cognitive rehabilitation as well. Assuming that the 
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patient can perform the test, understanding their rVA limitations given the VE system setup is 

paramount to understanding the effectiveness of the VE based protocol.  

 In the next series of studies, we outlined a methodology for attaining stereoacuity 

measures for real world (HD-task) and virtual world (V-HD task) viewing. The V-HD test was 

administered over different HMDs to compare the specifications given in the owner’s manual 

with those measured by the assessment. The metrics derived from the assessment (i.e., CE, |CE|, 

VEr, η, % correct for front and back) served the dual purpose of identifying potential user 

characteristics for future research and profiling the capabilities of each HMD.  

 User individual characteristic such as dark focus and dark convergence could assist in 

signaling cybersickness or adaptation effects that may affect the outcome of the assessment. 

Although the sample sizes used in each experiment were too few to gauge the merit of including 

these measures, there were indications such as significant shifts in dark focus and clustering of 

participants within high and low groupings of dark convergence that suggest their importance as 

test metrics. The variability in individual responding during the V-HD test suggests that higher 

sample sizes are needed to understand these differences from a usability perspective. However, 

as an assessment for HMD performance, this methodology is an excellent example of user-

centered approaches.  

 The V-HD assessment was able to quantify stereoacuity limitations in a range of HMDs. 

Each of which performed better than the predicted resolution based on their respective 

microdisplays pixel size. As argued in Chapter 3, the VE technology, the computer graphics, and 

the user are sustained in an interdependent relationship that ultimately defines the quality of the 

resulting VE application. The fact that all HMDs achieve subpixel resolution at the ½  level or 

better points to future research on the interdependence of computer graphics techniques with 
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respect to image resolution. We attribute the improved resolution as a result of antialiasing 

techniques that improve visibility of the edges of a rendered object. One could test this 

hypothesis by varying the amount of aliasing within each V-HD stimuli. Such studies will assist 

in improving the V-HD design and allow us to understand more of what information (e.g., 

lighting, contrast, and aliasing) most affects the perceptibility of the user.  

 Figure 79 shows the overall stereoacuity measured for each HMD tested, including the 

HMPD-2. The HMPD-2 has the best resolution (2.63 arc minutes or 157 arc seconds), and 

achieves better than 157 arc seconds on the overall stereoacuity measured. Each HMD performs 

better than the resolution of their respective microdisplay would predict.  
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Figure 79 Overall stereoacuity for all HMDs tested 
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 Without knowledge that the performance of the HMPD-1 is compromised by the manner 

in which we set the focal plane, the results suggest that the HMPD-1, Canon, and VR6 have 

equivalent stereoacuity. Thus, one may think that users should perform well on depth 

discrimination tasks regardless of these three HMDs. However, the percent correct front and 

back for identifying the initial position of the octahedron with respect to the cylinder, as depicted 

in Figure 80, shows that participants perform below the threshold when wearing the Canon or the 

VR6.  Participants wearing the HMPD-2 are 95% accurate in their responses. This result has not 

been further investigated. However, the HMPD-2 distinguishes itself with a much higher visual 

acuity capability, contributing to better sharpness of the image. Also, HMPD-1 has been shown 

to be superior to Canon and VR6 in resolution visual acuity, while their stereoacuity is 

equivalent. Therefore the results indicate that resolution visual acuity may be a main contributor 

to maximizing the percent correct for front and back.  
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 The calibration results presented in Chapter 5 strongly advocate for improved 

collaboration between optical, optomechanical, and perception scientists in assembling the 

displays. Specifically, our experience with user-centered studies lead to the need for the 

optomechanical design assembly team to measure the FBO of the microdisplay before assembly, 

so that the center of the viewport can be computed and mechanically localized, centered on the 

optical axis. Measuring these values cannot be an end user assignment because it will lead to an 

incorrect optomechnical assembly.  

 Additionally, we showed how the tilting of the lenses after an alignment not done to 

specification caused eye strain and inability to fuse the images. We corrected the lens tilt using a 

customized procedure that only guaranteed that the lenses were facing in the same direction as 

one another. We may achieve better stereoacuity with the HMPD-2 display with a built in 

optomechnical adjustment that would allow more precise calibration. Not performing a 

calibration procedure for the HMD at all, as is commonly done, would introduce errors that 

although are attributable to the HMD are not part of the HMD design specification. Calibration 

and proper alignment of the HMD are necessary for ensuring the safety of the persons with TBI 

and improving the reliability of the outcomes measured within a VE based rehabilitation setting.  

 Finally, we presented results from a pilot study introducing a new cognitive rehabilitation 

VE system called the Human Experience Modeler (HEM). This study demonstrated the 

capability of the integrated HEM technology in delivering a contextualized VE consisting of 

high level computer graphics overlaid onto a real world fabrication of the participant’s kitchen. 

The goal of this study was to determine the feasibility of constructing such personalized 

environments and to conduct a pilot study with one participant who presented with anterograde 
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amnesia (new memories are not transferred to long-term memory) to demonstrate the efficacy of 

such a system.  

 A depth camera and a 3D laser scanner captured the volumetric data necessary to 

reconstruct the physical space of the kitchen within the modeling software 3D Studio Max. 

Subtleties of the kitchen such as proper reflections off objects were captured with digital 

photography. For example, when the observer moved to the sink area as pictured in Figure 75a, 

he or she could look out the window and see the bougainvillea flowers located outside. Because 

this was our first effort in constructing such a VE, we used this pilot to evaluate the methodology 

of capturing the real space and converting it into a mixed reality paradigm.  

 The capture of the individual’s home was completed within four hours; however, 

accurate modeling of the environment was a week long process. Although preliminary, the 

upfront investment of the reconstruction process may not be cost effective to support 

individualized training that is less than a week’s time in duration. To support more long-term 

rehabilitation protocols, the physical construction of the environment must be more flexible to 

accommodate multiple users and their personalized living spaces.  

 The results of the pilot study suggest that the participant was constructing an internalized 

script of the breakfast item retrieval sequence and transferring that script to the home 

environment.  Thus, the work potentially shows that persons thought to be unable to store new 

memories are capable of learning in a contextualized VE. For a patient with anterograde amnesia 

to exhibit transfer of training to the home is an exciting neuropsychological event and suggests 

that the MR kitchen paradigm provides an appropriate experimental setting for further evaluation 

of this result. More research is also needed to understand the level of contextualization necessary 

to support such learning. The HEMs ability to integrate multimodal inputs will be critical in 
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determining contextualization levels as well as expanding the project to include more complex 

personal spaces (i.e., one’s favorite fishing hole).  

10.2 Looking Forward 

 This work approaches the question of VE Design for cognitive rehabilitation from a 

multidimensional point of view. First, we must ensure that the base VE is correctly perceived by 

the human observer. We provide an HMD assessment to quantify the strengths and weaknesses 

of the VE system. These constraints allow us to understand limitations in our experimental 

analysis. However, the two assessments presented, rVA and stereoacuity, only evaluate 

conditions where the environment is stationary. An additional module to the HMD assessment 

should evaluate resolvability of elements of a scene in motion.   

 Dynamic visual acuity (DVA) is the observer’s ability to resolve the details of an object 

when there is relative motion between a fixated target and the observer. DVA has been used as a 

predictor for performance for tasks where both the objects of interest and the observer are in 

motion, such as when simply walking or when playing a sport. Given a world built of pixels, 

understanding how FOV, pixel size, etc. affect DVA of the user may provide more information 

about the interaction between computer graphics techniques and user interaction. One of the 

problems in constructing a DVA assessment for VE is the lack of standardization of real world 

assessments (Banks, Moore, Liu, & Wu, 2004). Thus, elucidating these methodologies is a next 

step to improving the current HMD assessment battery.   

 Adding a real versus virtual condition to the experiment performed in chapter 8 is 

underway. Given that participants can extend space into and off of the plane of the retroreflective 

material, we would like to know how far off the retroreflective material an object can be 
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presented and still be accurately perceived in depth. This work will allow us to understand better 

the limitations of having retroreflective material in the environment. These results can then be 

compared with the newest mobile HMD which integrates the retroreflective material inside the 

HMD.  

 Finally, we plan to integrate the HMD assessment with the HEM testbed to provide 

sensory baselines for different populations of VE users while performing tasks wearing different 

types of HMDs. By benchmarking the HEM technology, we can extend the MR rehabilitation 

paradigm to include new imaging technologies such as functional Near Infrared Brain Imaging 

(fNIR). Unlike fMRI (functional magnetic resonance imaging), which requires a stationary 

person to be exposed to a high force field magnet, the fNIR is portable and allows the 

participant’s brain to be imaged while performing a task. The imaging capability of the fNIR 

comes from an infrared light in the range of 600 to 900 nm that penetrate the skull (Son & 

Yaziei, 2005). This non-invasive brain imaging technique may provide needed brain functioning 

data to understand how the HEM supports cognitive rehabilitation through cortical neuronal 

plasticity. The end result of such a methodological and cohesive plan of study, which enlists 

multiple field experts, is to expedite a cost effective, reliable, and valid rehabilitation solution to 

the TBI community.  
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APPENDIX A: IRB Forms 
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Informed Consent Form 
Please read this consent document carefully before you decide to participate in this study. 

Project title:  “Analysis and Development of a Full Immersion Projective Head-mounted Display for 
Dismounted Infantry Training”          
  

Purpose of the research study:   The purpose of this study is to measure visual performance in head 
mounted displays.   We shall measure visual acuity as well as depth perception in head mounted displays  
using standard practice procedures such as the Landolt C visual acuity test.       
              

What you will be asked to do in the study: You will be asked to look into a pupillometer and to adjust 
a button until you see clearly a circle of light.  The pupillometer is used to measure the distance between 
your two eyes.  We shall then measure your visual acuity on a standard monitor. You will be asked to 
look at a letter C displayed in the center of the display.  You will be asked to tell us whether the C is up, 
down, side right or side left using a 4 button device.  Following your answer you will be presented 
another C and so on for up to 30 trials.  You will then be asked to wear a head-mounted display and we 
shall measure your visual acuity again using the same display of a C.  For depth experiments, we shall 
first measure your ability to discriminate depth on a standard 2 rod device, where you will be asked to 
pull a string until the two rods are perceived at the same depth.  In the head mounted display, you will 
then use a two-button device to similarly place the two objects (rods, cubes, pyramids) at the same 
perceived depth.  30 trials will be required.         
Time required:   One (1) hour maximum per session.  A complete experiment may require several hours 
to be distributed over several weeks (e.g. 10 weeks for 30 hours total).     
    

Risks: You may experience eye fatigue.  Because of the see-through nature of the head mounted display. 
No other effects are expected and eye fatigue is also rare.  There will be rest periods during the 
experiment to further lessen eye strain.  If eye fatigue is experienced, you may stop the experiment 
immediately.         
Benefits / Compensation:  There is no compensation for participation in this experiment.  
   

Confidentiality: Your identity will be kept confidential.  Your information will be assigned a code 
number.  The list connecting your name to this number will be kept in a locked file in my faculty 
supervisor's office.  When the study is completed and the data have been analyzed, the list will be 
destroyed.  Your name will not be used in any report.       
        

Voluntary participation: Your participation in this study is voluntary.  There is no penalty for not 
participating.  
Right to withdraw from the study: You have the right to withdraw from the study at any time without 
consequence.            
         

Whom to contact if you have questions about the study:  Cali Fidopiastis, Graduate Student, School 
of Optics, Building 53, Orlando, FL 32816; (407) 823-6854.  Dr. Jannick Rolland, Faculty Supervisor, 
School of Optics.  The telephone number is: (407) 823-6870.    
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Whom to contact about your rights in the study:  UCFIRB Office, University of Central Florida 
Office of Research, Orlando Tech Center, 12443 Research Parkway, Suite 207, Orlando, FL 32826.  The 
phone number is (407) 823-2901.         
         

  I have read the procedure described above. 
         
  I voluntarily agree to participate in the procedure. 

      /     

Participant     Date 

  I would like to receive a copy of the final "interview" manuscript submitted to the 
instructor. 

  I would not like to receive a copy of the final "interview" manuscript submitted to 
the instructor. 

      /     

Principle Investigator    Date 
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Informed Consent Form 
Please read this consent document carefully before you decide to participate in this study. 
Project title:  “Analysis and Development of a Full Immersion Projective Head-mounted Display for 
Dismounted Infantry Training”           
Purpose of the research study:   The purpose of this study is to measure visual performance in head-
mounted displays.   More specifically, we shall measure depth perception in a projective head-mounted 
display (HMPD) using standard vision tests such as the Howard-Dolman depth perception test.  
      

In this study you will be asked to perform a series of vision tests under normal viewing 
conditions and while wearing the HMPD. There are four vision tests that you will perform: Dark 
Focus, Dark Convergence, Visual Acuity, and Depth Perception. The first test is the Howard-
Dolman Depth perception test under normal viewing conditions. While performing this test, you 
will sit in a chair 5.5 meters away from the Howard-Dolman apparatus. Within the apparatus are 
two rods. One rod will remain stationary, while the other will be moved randomly in the front or 
the back of the stationary rod. Your task is to align the rods using two strings that you will hold 
in each hand. You will be given 10 presentations of this task. For the Dark Focus measure, you 
will be given a stigmatoscope, which looks like a hand held telescope. Place the view piece up to 
one of your eyes. Within the scope, you will see a small circular light. Your task is to adjust the 
barrel of the telescope until the light comes into clear focus.  This procedure will be repeated 4 
times. For the Dark Convergence test, you will stand 6 meters from a flashing red circular light 
that is located on the wall in front of you at eye height. Over your preferred eye, you will hold a 
horizontal grating. You will see the red light as a dot in your uncovered eye and as a straight line 
in your lens covered eye. You will be asked to walk toward the light until the dot and line are 
over one another. We will measure the distance that you are away from the light at this point. 

 Next, you will perform a visual acuity test in the virtual environment. However, before 
being fitted with the HMPD, you will be asked to look into a pupillometer. The experimenter will 
measure the distance between your two eyes, interpupillary distance (IPD). You will then be fitted with 
the HMPD. You will be asked and to look at a string of 11 letter C’s displayed in the center of the 
display.  You will be asked to tell us whether the gap in the C is facing up, down, side right or side left.  
Following your answers you will be presented another string of C’s of a different size. This procedure 
will repeat for 4 strings. For the virtual depth experiments, you will perform a similar test as the Howard-
Dolman depth perception test, except a scroll device will be used to place the two objects (rods, cubes, 
pyramids) at the same perceived depth.  There will be 64 presentations of the stimulus presented in a 
single trial. You will perform two trials. At the end of each trial, we will remove the HMPD and you will 
perform the Dark Focus, Dark Convergence, and Howard-Dolman tasks again. At the conclusion 
of the experiment, you will be given a simulator sickness questionnaire. We will also setup 
another time for you to return at another time to perform the experiment again.     

Time required:   One (1) hour maximum per session.  A complete experiment requires two sessions 
separated by at least 3 hours.          
Risks: You may experience eye fatigue.  Because of the see-through nature of the head mounted display. 
No other effects are expected and eye fatigue is also rare.  There will be rest periods during the 
experiment to further lessen eye strain.  If eye fatigue is experienced, you may stop the experiment 
immediately.         
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Benefits / Compensation:  Extra credit will be given once you have completed both experimental days. 
Otherwise, there is no compensation for participation in this experiment.     
Confidentiality: Your identity will be kept confidential.  Your information will be assigned a code 
number.  The list connecting your name to this number will be kept in a locked file in my faculty 
supervisor's office.  When the study is completed and the data have been analyzed, the list will be 
destroyed.  Your name will not be used in any report.       
        

Voluntary participation: Your participation in this study is voluntary.  There is no penalty for not 
participating.  
Right to withdraw from the study: You have the right to withdraw from the study at any time without 
consequence.            
         

Whom to contact if you have questions about the study:  Cali Fidopiastis, Graduate Student, School 
of Optics, Building 53, Orlando, FL 32816; (407) 823-6854.  Dr. Jannick Rolland, Faculty Supervisor, 
College of Optics and Photonics.  The telephone number is: (407) 823-6870.    
Whom to contact about your rights in the study:  UCFIRB Office, University of Central Florida 
Office of Research, Orlando Tech Center, 12443 Research Parkway, Suite 207, Orlando, FL 32826.  The 
phone number is (407) 823-2901.         
         

  I have read the procedure described above. 
         
  I voluntarily agree to participate in the procedure. 

      /     

Participant     Date 

  I would like to receive a copy of the final "interview" manuscript submitted to the 
instructor. 

  I would not like to receive a copy of the final "interview" manuscript submitted to 
the instructor. 

      /     

Principle Investigator    Date 
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Informed Consent Form 
Please read this consent document carefully before you decide to participate in this study. 
Project title:  “Transfer of Training Outcomes When Using a Virtual Reality Trainer For Brain 
Injury Rehabilitation” 

Purpose of the research study:   The purpose of this study is to demonstrate feasibility of the 
Human Experience Modeler, a virtual environment for cognitive rehabilitation currently under 
development at the Media Convergence Laboratory here at UCF.  In this pilot study, we will 
study different methodologies for constructing a 3D graphical display of your kitchen and the 
effects of an After Action Review on learning.  
What you will be asked to do in the study:  On day one of the study, you will meet with Dr. 
Jeff Bedwell, a Clinical Psychologist at UCF, who will perform a series of neuropsychological 
evaluations to establish more information about your cognitive deficits.  On day two of the study, 
you will familiarize yourself with the HEM technology.  For the familiarization process, you will 
enter the staging area where the HEM (multi-modal display, along with audio and sensory 
technology) is setup.  You will be fitted with either the video or optical see through HMD. Prior 
to fitting, the interpupillary distance (IPD) of your eyes will be measured using a pupillometer. 
The HMD eye pieces will be adjusted to that IPD to minimize the potential for eye strain. Within 
the HEM, you will see a generic kitchen setup.  You will be asked to perform different tasks such 
as locating appliances (e.g., the stove or the refrigerator).  Each task will utilize a different a 
visual cuing mode.  Once each task is completed, you will verbally report your comfort level on 
interacting within the HEM.  On your next visit, the training sessions will begin where you will 
view a replica of your own kitchen.  In your kitchen, you will perform the task of making your 
favorite breakfast, which will include organizing the ingredients, cooking the food, and serving it 
to your family. 

You will receive HEM therapy two times a week for four weeks.  During each training 
session, you will be given a task list for making your favorite breakfast, eggs over easy. 
Following each training session, your therapist, Dr. Whiteside, will review your performance 
with the After Action Review.  

In order to assess transfer to the home environment, following the completion of 4 weeks 
of training, we will conduct a brief in home observation to videotape execution of the breakfast 
making task.  Also, you and your family members will be asked to keep a diary of your ability to 
execute the task during the subsequent four weeks.  Diaries will then be collected and reviewed 
for the post testing assessments.  
Time required:  Each session will be 35 minutes maximum per session.  The training will be 
conducted twice per week for 4 weeks.  We will also do a 4 week post training follow up.  

 
Risks: One drawback of virtual environment research has been simulator sickness. Simulator 
sickness has some similar bodily sensations as motion sickness. For example, you may 
experience nausea or dizziness. Current research has shown that simulator sickness is related to 
the amount of time that you spend performing a task in the virtual environment. To prevent you 
from feeling simulator sickness we will monitor your sickness level using a Simulator Sickness 
Questionnaire. In addition, you will be required to take 5-minute breaks throughout the training 
session. Further, your HEM training sessions will be limited to a maximum of 35 minutes. The 
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Simulator Sickness Questionnaire will be given to you following the HEM training to continue 
monitoring for any adverse effects.  
You may also experience eye fatigue.  Because of the see-through nature of the head mounted 
display. No other effects are expected and eye fatigue is also rare.  There will be rest periods 
during the experiment to further lessen eye strain.  If you experience eye fatigue, motion 
sickness, or discomfort, you may stop the experiment immediately.  

In addition, we recognize that the simulation setup is identical to your home environment; 
however, this similarity does not mean that all tasks performed in the study can be immediately 
performed at home competently and without supervision from a family member.  As with any 
learning, transferring training to the actual task takes time and patience. There is a risk of bodily 
injury and property damage if you try to perform the kitchen tasks presented in your training 
without first demonstrating that you can complete these tasks in your own kitchen independently 
using safe procedures.    

Benefits / Compensation:  There is no compensation for participation in this experiment.  

Confidentiality: Your identity will be kept confidential.  Your information will be assigned a 
code number.  The list connecting your name to this number will be kept in a locked file in the 
supervisor's office.  When the study is completed and the data have been analyzed, the list will 
be destroyed.  Your name will not be used in any report.  Further any video taped material will 
also be erased upon completion of the entire study.  

 Voluntary participation: Your participation in this study is voluntary.  There is no penalty for 
not participating. 

Right to withdraw from the study: You have the right to withdraw from the study at any time 
without consequence. 

If you believe you have been injured during participation in this research project, you may file a 
claim with UCF Environmental Health & Safety, Risk and Insurance Office, P.O. Box 163500, 
Orlando, FL 32816-3500 (407) 823-6300.  The University of Central Florida is an agency of the 
State of Florida for purposes of sovereign immunity and the university’s and the state’s liability 
for personal injury or property damage is extremely limited under Florida law.  Accordingly, the 
university’s and the state’s ability to compensate you for any personal injury or property damage 
suffered during this research project is very limited. 

Whom to contact if you have questions about the study:  Cali Fidopiastis, Graduate Student, 
School of Optics, Building 53, Orlando, FL 32816; (407) 823-6854.  Dr. Janet Whiteside, 
Communicative Disorders Clinic.  The telephone number is: (407) 249-4770.    

Whom to contact about your rights in the study:  UCFIRB Office, University of Central Florida 
Office of Research, Orlando Tech Center, 12443 Research Parkway, Suite 207, Orlando, FL 
32826.  The phone number is (407) 823-2901.        

  I have read the procedure described above. 
         
  I voluntarily agree to participate in the procedure. 

      /     
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Participant     Date 

  I would like to receive a copy of the final "interview" manuscript submitted to the 
instructor. 

  I would not like to receive a copy of the final "interview" manuscript submitted to 
the instructor. 

      /     

Principle Investigator    Date 
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APPENDIX B: Questionnaires  
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Simulator Sickness Questionnaire (SSQ) 
 
Developed by Robert S. Kennedy & colleagues under various projects.  For additional information contact: 
Robert S. Kennedy, RSK Assessments, Inc., 1040 Woodcock Road, Suite 227, Orlando, FL 32803  (407) 894-5090 
 

Subject Number:     Date:      
 
 
 PRE-EXPOSURE BACKGROUND INFORMATION 
 
1. How long has it been since your last exposure in a simulator?                days 
 How long has it been since your last flight in an aircraft?                     days  
 How long has it been since your last voyage at sea?                     days  
 How long has it been since your last exposure in a virtual environment?                     days  
2. What other experience have you had recently in a device with unusual motion? 
                                                                                   
 PRE-EXPOSURE PHYSIOLOGICAL STATUS INFORMATION 
 
3. Are you in your usual state of fitness? (Circle one)     YES        NO 
 If not, please indicate the reason:                                             
4. Have you been ill in the past week? (Circle one)         YES        NO 
 If "Yes", please indicate: 
 a) The nature of the illness (flu, cold, etc.):                           
 b) Severity of the illness: Very                                   Very 
       Mild                                   Severe 
 c) Length of illness:                                    Hours  /  Days 
 d) Major symptoms:                                                        
 e) Are you fully recovered?      YES     NO 
5. How much alcohol have you consumed during the past 24 hours? 
          12 oz. cans/bottles of beer             ounces wine              ounces hard liquor 
6. Please indicate all medication you have used in the past 24 hours.  If none, check the  
 first line: 
 a)   NONE                       
 b)   Sedatives or tranquilizers                                     
 c)   Aspirin, Tylenol, other analgesics                                    
 d)   Anti-histamines                                          
 e)   Decongestants                                       
 f)   Other (specify):                                          
7. a)   How many hours of sleep did you get last night?            hours 
 b)   Was this amount sufficient? (Circle one)     YES     NO 
8. Please list any other comments regarding your present physical state which 
 might affect your performance on our test battery. 
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Baseline (Pre) Exposure Symptom Checklist 
 
Instructions: Please fill this out BEFORE you go into the virtual environment.  Circle how 

much each symptom below is affecting you right now.   
 
 

# Symptom Severity 
1. General discomfort None Slight Moderate Severe 
2. Fatigue None Slight Moderate Severe 
3. Boredom None Slight Moderate Severe 
4. Drowsiness None Slight Moderate Severe 
5. Headache None Slight Moderate Severe 
6. Eye strain None Slight Moderate Severe 
7. Difficulty focusing None Slight Moderate Severe 
8a. Salivation increased None Slight Moderate Severe 
8b. Salivation decreased None Slight Moderate Severe 
9. Sweating None Slight Moderate Severe 
10. Nausea None Slight Moderate Severe 
11. Difficulty concentrating None Slight Moderate Severe 
12. Mental depression None Slight Moderate Severe 
13. “Fullness of the head” None Slight Moderate Severe 
14. Blurred Vision None Slight Moderate Severe 
15a. Dizziness with eyes open None Slight Moderate Severe 
15b. Dizziness with eyes closed None Slight Moderate Severe 
16. *Vertigo None Slight Moderate Severe 
17. **Visual flashbacks None Slight Moderate Severe 
18. Faintness None Slight Moderate Severe 
19. Aware of breathing None Slight Moderate Severe 
20. ***Stomach  awareness None Slight Moderate Severe 
21. Loss of appetite None Slight Moderate Severe 
22. Increased appetite None Slight Moderate Severe 
23. Desire to move bowels None Slight Moderate Severe 
24. Confusion None Slight Moderate Severe 
25. Burping None Slight Moderate Severe 
26. Vomiting None Slight Moderate Severe 
27. Other  

 
 
* Vertigo is experienced as loss of orientation with respect to vertical upright. 
** Visual illusion of movement or false sensations of movement, when not in the simulator, car, or aircraft. 
*** Stomach awareness is usually used to indicate a feeling of discomfort which is just short of nausea. 
 
 

STOP HERE!  The test director will tell you when to continue. 
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POST 00 Minutes Exposure Symptom Checklist 
 
Instructions:  Circle how much each symptom below is affecting you right now.  
 

# Symptom Severity 
1. General discomfort None Slight Moderate Severe 
2. Fatigue None Slight Moderate Severe 
3. Boredom None Slight Moderate Severe 
4. Drowsiness None Slight Moderate Severe 
5. Headache None Slight Moderate Severe 
6. Eye strain None Slight Moderate Severe 
7. Difficulty focusing None Slight Moderate Severe 
8a. Salivation increased None Slight Moderate Severe 
8b. Salivation decreased None Slight Moderate Severe 
9. Sweating None Slight Moderate Severe 
10. Nausea None Slight Moderate Severe 
11. Difficulty concentrating None Slight Moderate Severe 
12. Mental depression None Slight Moderate Severe 
13. “Fullness of the head” None Slight Moderate Severe 
14. Blurred Vision None Slight Moderate Severe 
15a. Dizziness with eyes open None Slight Moderate Severe 
15b. Dizziness with eyes closed None Slight Moderate Severe 
16. *Vertigo None Slight Moderate Severe 
17. **Visual flashbacks None Slight Moderate Severe 
18. Faintness None Slight Moderate Severe 
19. Aware of breathing None Slight Moderate Severe 
20. ***Stomach  awareness None Slight Moderate Severe 
21. Loss of appetite None Slight Moderate Severe 
22. Increased appetite None Slight Moderate Severe 
23. Desire to move bowels None Slight Moderate Severe 
24. Confusion None Slight Moderate Severe 
25. Burping None Slight Moderate Severe 
26. Vomiting None Slight Moderate Severe 
27. Other  

 
*   Vertigo is experienced as loss of orientation with respect to vertical upright. 
**  Visual illusion of movement or false sensations of movement, when not in the simulator, car or aircraft. 
*** Stomach awareness is usually used to indicate a feeling of discomfort which is just short of nausea. 
 

POST-EXPOSURE INFORMATION 
 
1. While in the virtual environment, did you get the feeling of motion (i.e., did you experience 

a compelling sensation of self motion as though you were actually moving)?  (Circle one) 
 
    YES   NO  SOMEWHAT 
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2. On a scale of 1 (POOR) to 10 (EXCELLENT) rate your performance in the virtual 
environment:          
 
3. a. Did any unusual events occur during your exposure? (Circle one)    YES   NO 
 b. If YES, please describe                                                                                                 
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Participant Information Questionnaire 
 
Please circle or fill in the appropriate answer 
 
1) Gender: Female  Male 
 
2) Age (in years): _______________ 
 
3) How many hours of sleep did you get last night? ________________ 
  

Do you feel rested? YES NO 
 
4) Indicate all medications/substances you have used in the past 24 hours: 
 

CIRCLE ALL THAT APPLY 
 
 0   -    None 

1   -    Sedatives or tranquilizers 
2   -    Aspirin, Tylenol, other analgesics 
3   -    Antihistamines 
4   -    Decongestants 
5   -    Other Please list _________________________________________ 

 
5) Have you had caffeine in the last 2 hours?  YES  NO 
 If yes, about how many ounces? ______________  
 
6) Have you ever experienced motion sickness or car sickness? YES NO 
 
7) How susceptible are you to motion sickness or car sickness? 

0  1  2  3  4  5 
Not at all            Mildly         Average          Highly 

 
8) How many hours per day do you use a computer? _______________ 
 
9) How many hours per day do you watch television? _______________ 
 
10) How many hours per week do you play video games? ______________ 
11) How many hours per week do you spend reading? _________________ 
 
12) How much experience do you have with virtual environments? 

0  1  2  3  4  5 
Not at all         Very Little         Average             A Lot 

 
13) What is your occupation? __________________ 
 
14) How often during an average work day do you feel eye strain? 
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0  1  2  3  4  5 
Not at all         Very Little         Average             A Lot 

 
15) During an average work day, do you feel that you focus on near objects (about 2 meters 

away) more than objects that are far away (6 meters or more)? 
 

1  2  3  4  5 
 Strongly Disagree            Agree              Strongly Agree 
 
16) How much of your day (in percent) is spent viewing 
       Near objects (about 2 meters away)?   _______ 
       Far Objects (6 meters or more away)? _______ 
          
           Total should equal 100% 
 
 
17) Do you have normal or corrected to normal 20/20 vision?  YES  NO 
    If yes, do you wear glasses or contact lenses? ____________ 
     Are you near or far sighted? _____________ 
 
18) Have you ever had eye surgery? YES  NO 
 
 If yes, please explain (e.g., LASIK surgery) ______________________________ 
 
 
19) Do you have a history of epilepsy or seizures? YES  NO 
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