23,882 research outputs found

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    Gossip and Distributed Kalman Filtering: Weak Consensus under Weak Detectability

    Full text link
    The paper presents the gossip interactive Kalman filter (GIKF) for distributed Kalman filtering for networked systems and sensor networks, where inter-sensor communication and observations occur at the same time-scale. The communication among sensors is random; each sensor occasionally exchanges its filtering state information with a neighbor depending on the availability of the appropriate network link. We show that under a weak distributed detectability condition: 1. the GIKF error process remains stochastically bounded, irrespective of the instability properties of the random process dynamics; and 2. the network achieves \emph{weak consensus}, i.e., the conditional estimation error covariance at a (uniformly) randomly selected sensor converges in distribution to a unique invariant measure on the space of positive semi-definite matrices (independent of the initial state.) To prove these results, we interpret the filtered states (estimates and error covariances) at each node in the GIKF as stochastic particles with local interactions. We analyze the asymptotic properties of the error process by studying as a random dynamical system the associated switched (random) Riccati equation, the switching being dictated by a non-stationary Markov chain on the network graph.Comment: Submitted to the IEEE Transactions, 30 pages

    ZASTOSOWANIE METODY POCHODNEJ TOPOLOGICZNEJ W ELEKTRYCZNEJ TOMOGRAFII IMPEDANCYJNEJ

    Get PDF
    In the field of shape and topology optimization the new concept is the topological derivative of a given shape functional. The asymptotic analysis is applied in order to determine the topological derivative of shape functionals for elliptic problems. The topological derivative (TD) is a tool to measure the influence on the specific shape functional of insertion of small defect into a geometrical domain for the elliptic boundary value problem (BVP) under considerations. The domain with the small defect stands for perturbed domain by topological variations. This means that given the topological derivative, we have in hand the first order approximation with respect to the small parameter which governs the volume of the defect for the shape functional evaluated in the perturbed domain. TD is a function defined in the original (unperturbed) domain which can be evaluated from the knowledge of solutions to BVP in such a domain. This means that we can evaluate TD by solving only the BVP in the intact domain. One can consider the first and the second order topological derivatives as well, which furnish the approximation of the shape functional with better precision compared to the first order TD expansion in perturbed domain. In this work the topological derivative is applied in the context of Electrical Impedance Tomography (EIT). In particular, we are interested in reconstructing a number of anomalies embedded within a medium subject to a set of current fluxes, from measurements of the corresponding electrical potentials on its boundary. The basic idea consists in minimize a functional measuring the misfit between the boundary measurements and the electrical potentials obtained from the model with respect to a set of ball-shaped anomalies. The first and second order topological derivatives are used, leading to a non-iterative second order reconstruction algorithm. Finally, a numerical experiment is presented, showing that the resulting reconstruction algorithm is very robust with respect to noisy data.W dziedzinie optymalizacji kształtu i topologii zaproponowano nową koncepcję pochodnej topologicznej danego funkcjonału kształtu. Zastosowano asymptotyczną analizę w celu określenia pochodnej topologicznej funkcjonału kształtu dla zagadnień eliptycznych. Pochodna Topologiczna – PT (ang. the topological derivative – TD) jest miarą wpływu wtrącenia w postaci małego defektu na funkcjonał kształtu w badanym obszarze dla eliptycznego zagadnienia brzegowego. Obszar z małym defektem traktowany jest jako obszar zaburzony przez zmiany topologii. Oznacza to, że dana pochodna topologiczna stanowi aproksymację pierwszego rzędu ze względu na mały parametr, który określa objętość defektu dla obliczanego funkcjonału kształtu w zaburzonym obszarze. PT jest funkcją zdefiniowaną w obszarze niezaburzonym, który może być wyznaczony na podstawie znajomości rozwiązania zagadnienia brzegowego w tym (niezaburzonym) obszarze. Oznacza to że PT może być wyznaczona poprzez rozwiązanie zagadnienia brzegowego w obszarze niezaburzonym. Można rozważyć pierwszego jak również drugiego rzędu pochodną topologiczną, zapewniającą aproksymację funkcjonału kształtu ze znacznie lepszą precyzją w porównaniu do PT pierwszego rzędu rozwinięcia w obszarze zaburzonym. W niniejszej pracy PT jest zastosowana w kontekście Elektrycznej Tomografii Impedancyjnej (ETI). W szczególności jesteśmy zainteresowani w rekonstrukcji pewnej liczby anomalii wewnątrz obszaru, na podstawie pomiarów potencjału na brzegu rozpatrywanego obszaru. Podstawowa idea zawarta jest w minimalizacji funkcjonału, będącego miarą niedopasowania między pomiarami potencjału na brzegu obszaru a potencjałem elektrycznym uzyskanym na podstawie modelu matematycznego uwzględniającego zbiór anomalii o kształcie kuli. Zastosowanie pierwszego i drugiego rzędu pochodnej topologicznej prowadzi do nieiteracyjnego algorytmu rekonstrukcyjnego drugiego rzędu. W zakończeniu artykułu przedstawiono eksperyment numeryczny, wykazujący, że zaproponowany algorytm obrazowania jest bardzo odporny na zaszumione dane pomiarowe
    corecore