171 research outputs found

    Implication functions in interval-valued fuzzy set theory

    Get PDF
    Interval-valued fuzzy set theory is an extension of fuzzy set theory in which the real, but unknown, membership degree is approximated by a closed interval of possible membership degrees. Since implications on the unit interval play an important role in fuzzy set theory, several authors have extended this notion to interval-valued fuzzy set theory. This chapter gives an overview of the results pertaining to implications in interval-valued fuzzy set theory. In particular, we describe several possibilities to represent such implications using implications on the unit interval, we give a characterization of the implications in interval-valued fuzzy set theory which satisfy the Smets-Magrez axioms, we discuss the solutions of a particular distributivity equation involving strict t-norms, we extend monoidal logic to the interval-valued fuzzy case and we give a soundness and completeness theorem which is similar to the one existing for monoidal logic, and finally we discuss some other constructions of implications in interval-valued fuzzy set theory

    Quasi-arithmetic means and OWA functions in interval-valued and Atanassov's intuitionistic fuzzy set theory

    Get PDF
    In this paper we propose an extension of the well-known OWA functions introduced by Yager to interval-valued (IVFS) and Atanassov’s intuitionistic (AIFS) fuzzy set theory. We first extend the arithmetic and the quasi-arithmetic mean using the arithmetic operators in IVFS and AIFS theory and investigate under which conditions these means are idempotent. Since on the unit interval the construction of the OWA function involves reordering the input values, we propose a way of transforming the input values in IVFS and AIFS theory to a new list of input values which are now ordered

    Extending possibilistic logic over Gödel logic

    Get PDF
    In this paper we present several fuzzy logics trying to capture different notions of necessity (in the sense of possibility theory) for Gödel logic formulas. Based on different characterizations of necessity measures on fuzzy sets, a group of logics with Kripke style semantics is built over a restricted language, namely, a two-level language composed of non-modal and modal formulas, the latter, moreover, not allowing for nested applications of the modal operator N. Completeness and some computational complexity results are shown

    Interval-valued algebras and fuzzy logics

    Get PDF
    In this chapter, we present a propositional calculus for several interval-valued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter

    A new extension of fuzzy sets using rough sets: R-fuzzy sets

    Get PDF
    This paper presents a new extension of fuzzy sets: R-fuzzy sets. The membership of an element of a R-fuzzy set is represented as a rough set. This new extension facilitates the representation of an uncertain fuzzy membership with a rough approximation. Based on our definition of R-fuzzy sets and their operations, the relationships between R-fuzzy sets and other fuzzy sets are discussed and some examples are provided

    On strongly standard complete fuzzy logics: MTL∗QMTL^Q_* and its expansions

    Get PDF
    Finding strongly standard complete axiomatizations for t-norm based fuzzy logics (i.e. complete for deductions with infinite sets of premises w.r.t. semantics on the real unit interval [0, 1]) is still an open problem in general, even though results are already available for some particular cases like some infinitary logics based on a continuous t-norm or certain expansions of Monoidal t-norm based logic (MTL) with rational constant symbols. In this paper we propose a new approach towards the problem of defining strongly standard complete for logics with rational constants in a simpler way. We present a method to obtain a Hilbert-Style axiomatization of the logic associated to an arbitrary standard MTL-algebra expanded with additional connectives whose interpretations on [0, 1] are functions with no jump-type discontinuities.Authors are grateful to anonymous reviewers and acknowledge partial support of the Mineco project TIN2012-39348-C02-01.Peer Reviewe
    • …
    corecore