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Abstract

In this paper we propose an extension of the well-
known OWA functions introduced by Yager to
interval-valued (IVFS) and Atanassov’s intuition-
istic (AIFS) fuzzy set theory. We first extend the
arithmetic and the quasi-arithmetic mean using the
arithmetic operators in IVFS and AIFS theory and
investigate under which conditions these means are
idempotent. Since on the unit interval the construc-
tion of the OWA function involves reordering the
input values, we propose a way of transforming the
input values in IVFS and AIFS theory to a new list
of input values which are now ordered.
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1. Introduction

Interval-valued fuzzy set (IVFS) theory [1, 2] is an
extension of fuzzy theory in which to each element
of the universe a closed subinterval of the unit in-
terval is assigned which approximates the unknown
membership degree. Another extension of fuzzy set
theory is intuitionistic fuzzy set (AIFS) theory in-
troduced by Atanassov [3]. In [4] it is shown that
the underlying lattice of Atanassov’s intuitionistic
fuzzy set (AIFS) theory is the same as for interval-
valued fuzzy set theory and that both are equiva-
lent to L-fuzzy set theory in the sense of Goguen [5]
w.r.t. a special lattice LI .
OWA functions were introduced by Yager [6] and

are used in a variety of applications and studied by
many researchers [7, 8, 9, 10]. In this paper we pro-
pose a generalization of the OWA functions to IVFS
and AIFS theory. Several attempts to generalize
the OWA function to IVFS or AIFS theory can be
found in the literature. Xu [11, 12] and Wei [13] ex-
tended the OWA function and related aggregation
functions to AIFS theory using a score and accuracy
function. This generalization however has several
flaws: the aggregation functions based on the total
order defined using the score and accuracy function
is not monotonous w.r.t. that order; furthermore,
these aggregation functions are not consistent with

the corresponding aggregation functions on the unit
interval. Yager [14] introduced a componentwise ex-
tension of the OWA function to AIFS theory, but
he gave no motivation why this is the best construc-
tion of an OWA function in AIFS theory. Beliakov
et al. [15] generalized the construction of Xu and
Wei using additive generators and characterized the
functions obtained by the generalized construction
which are consistent with the operations on the unit
interval. Since the definition of the OWA function
on the unit interval involves arithmetic operators
on the set of reals, we start in this paper from
arithmetic operators on the underlying lattice LI
of IVFS and AIFS theory and we investigate which
kind of OWA functions on LI that we can construct
using them. We first recall in Section 2 and 3 some
definitions that will be needed later. We recall the
axiomatic definition of the arithmetic operators on
LI and we give a characterization of these operators
in Section 4 and 5. In the next section we extend
the arithmetic mean and the quasi-arithmetic mean
to LI and in the subsequent section we extend the
OWA functions to LI . For the latter to be suc-
cessful we search for a way to extend the ordering
procedure of input values in [0, 1] to input values in
LI .

2. The lattice LI

Definition 2.1 We define LI = (LI ,≤LI ), where

LI = {[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≤ x2},
[x1, x2] ≤LI [y1, y2] ⇐⇒ (x1 ≤ y1 and x2 ≤ y2),

for all [x1, x2], [y1, y2] in LI .

Similarly as Lemma 2.1 in [4] it can be shown
that LI is a complete lattice.

Definition 2.2 [1, 2] An interval-valued fuzzy set
on U is a mapping A : U → LI .

Definition 2.3 [3] An intuitionistic fuzzy set on U
is a set

A = {(u, µA(u), νA(u)) | u ∈ U},

where µA(u) ∈ [0, 1] denotes the membership degree
and νA(u) ∈ [0, 1] the non-membership degree of u
in A and where for all u ∈ U , µA(u) + νA(u) ≤ 1.
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An intuitionistic fuzzy set A on U can be repre-
sented by the LI -fuzzy set A given by

A : U → LI :
u 7→ [µA(u), 1− νA(u)],

In Figure 1 the set LI is shown. Note that to
each element x = [x1, x2] of LI corresponds a point
(x1, x2) ∈ R2.

[0,0]

[1,1][0,1]
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x = [x1,x2]

x1
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Figure 1: The grey area is LI .

In the sequel, if x ∈ LI , then we denote its bounds
by x1 and x2, i.e. x = [x1, x2]. In some occasions,
we will also use the notation x = [x, x]. The length
x2−x1 of the interval x ∈ LI is called the degree of
uncertainty and is denoted by xπ. The smallest and
the largest element of LI are given by 0LI = [0, 0]
and 1LI = [1, 1]. Note that, for x, y in LI , x <LI y is
equivalent to x ≤LI y and x 6= y, i.e. either x1 < y1
and x2 ≤ y2, or x1 ≤ y1 and x2 < y2. We define for
further usage the set D = {[x1, x1] | x1 ∈ [0, 1]}.

3. Aggregation functions on LI

We denote from now on by N∗ the set N \ {0}. In
fuzzy set theory, aggregation functions are defined
as follows (see e.g. [16, 17, 18]).

Definition 3.1 An aggregation function A on [0, 1]
is a mapping A :

⋃
n∈N∗

[0, 1]n → [0, 1] with the follow-

ing properties:

(a1) A(x) = x, for all x ∈ [0, 1];
(a2) if xi ≤ yi for all i ∈ {1, 2, . . . , n}, then

A(x1, . . . , xn) ≤ A(y1, . . . , yn), for all n ∈
N∗ and for all (x1, . . . , xn), (y1, . . . , yn) in
[0, 1]n;

(a3) A
(

0, . . . , 0︸ ︷︷ ︸
n times

)
= 0, for all n ∈ N∗;

(a4) A
(

1, . . . , 1︸ ︷︷ ︸
n times

)
= 1, for all n ∈ N∗.

This definition is extended to interval-valued
fuzzy set theory as follows.

Definition 3.2 [19] An aggregation function A on
LI is a mapping A :

⋃
n∈N∗

(LI)n → LI with the fol-

lowing properties:

(A1) A(x) = x, for all x ∈ LI ;
(A2) if xi ≤LI yi for all i ∈ {1, 2, . . . , n}, then

A(x1, . . . , xn) ≤LI A(y1, . . . , yn), for all n ∈
N∗ and for all (x1, . . . , xn), (y1, . . . , yn) in
(LI)n;

(A3) A
(

0LI , . . . , 0LI︸ ︷︷ ︸
n times

)
= 0LI , for all n ∈ N∗;

(A4) A
(

1LI , . . . , 1LI︸ ︷︷ ︸
n times

)
= 1LI , for all n ∈ N∗.

Let A be an aggregation function on LI and N
an involutive negator on LI . The mapping A∗ :⋃
n∈N∗

(LI)n → LI defined by

A∗(x1, . . . , xn) = N (A(N (x1), . . . ,N (xn))),

for all n ∈ N∗ and x1, . . . , xn in LI , is an aggregation
function on LI , called the dual aggregation function
of A w.r.t. N .

Aggregation functions on LI can be constructed
in the following way. Let A1 and A2 be aggregation
functions on the unit interval. Define the mapping
A :

⋃
n∈N∗

(LI)n → LI by

A(x1, . . . , xn) = [A1((x1)1, . . . , (xn)1),
A2((x1)2, . . . , (xn)2)],

for all n ∈ N∗ and x1 = [(x1)1, (x1)2], . . . , xn =
[(xn)1, (xn)2] in LI . Then A is an aggregation func-
tion on LI if and only if A1 and A2 are aggregation
functions on [0, 1] and A1 ≤ A2.

Not all aggregation functions on L∗ can be con-
structed in this way. Consider for example the map-
ping A :

⋃
n∈N∗

(L∗)n → L∗ defined by, for any ag-

gregation function A on [0, 1], for all n ∈ N∗ and
x1, . . . , xn ∈ L∗,

A(x1, . . . , xn) = [A((x1)1, . . . , (xn)1),
max(A((x1)1, (x2)2, . . . , (xn)2),
A((x1)2, (x2)1, (x3)2, . . . , (xn)2),
. . . ,

A((x1)2, . . . , (xn−1)2, (xn)1))]

if n > 1, and A(x1) = [A((x1)1), A((x1)2)] if n = 1.
Then A is an aggregation function on LI which does
not belong to the previously mentioned class.

Definition 3.3 An aggregation function A on LI
is called representable if and only if there exist ag-
gregation functions A1 and A2 on [0, 1] such that

A(x1, . . . , xn) = [A1((x1)1, . . . , (xn)1),
A2((x1)2, . . . , (xn)2)],

for all n ∈ N∗ and for all x1 = [(x1)1, (x1)2], . . . ,
xn = [(xn)1, (xn)2] in LI .

507



Note that if a representable aggregation function
T on LI is a t-norm, then T is called t-representable
(see e.g. [20, 21]).

Definition 3.4 [19] Let n ∈ N \ {0, 1}. An n-
ary aggregation function A on LI is a mapping
A : (LI)n → LI with the following properties:

(A1’) if xi ≤LI yi for all i ∈ {1, 2, . . . , n}, then
A(x1, . . . , xn) ≤LI A(y1, . . . , yn), for all
(x1, . . . , xn), (y1, . . . , yn) in (LI)n;

(A2’) A
(

0LI , . . . , 0LI︸ ︷︷ ︸
n times

)
= 0LI ;

(A3’) A
(

1LI , . . . , 1LI︸ ︷︷ ︸
n times

)
= 1LI .

Note that any t-norm or t-conorm on LI is a bi-
nary aggregation function.
If A is an aggregation function on LI , then the

mapping An : (LI)n → LI defined by An(x1, . . . ,
xn) = A(x1, . . . , xn), for all (x1, . . . , xn) ∈ (LI)n is
an n-ary aggregation function on LI . Conversely, if
for all n ∈ N∗, An is an n-ary aggregation function
on LI , then the mapping A :

⋃
n∈N∗(LI)n → LI

defined by A(x1, . . . , xn) = An(x1, . . . , xn), for all
(x1, . . . , xn) ∈ (LI)n, for all n ∈ N∗, is an aggrega-
tion function on LI .

Example 3.1 Some examples of binary aggrega-
tion functions on LI are, for x, y in LI :

(i) AA1,A2(x, y) = [A1(x1, y1),max(A2(x1, y2),
A2(y1, x2))],

(ii) A∗A1,A2
(x, y) = [min(A1(x1, y2), A1(y1, x2)),

A2(x2, y2)],
(iii) A∗∗A1,A2

(x, y) = [min(A1(x1, y2), A1(y1, x2)),
max(A2(x1, y2), A2(y1, x2))],

(iv) AA1,A2,A3,A4(x, y) = [A3(A1(x1, y2),
A1(y1, x2)), A4(A2(x1, y2), A2(y1, x2))],

where A1, A2, A3 and A4 are aggregation functions
on [0, 1] satisfying A1 ≤ A2 and A3 ≤ A4.

Definition 3.5 Consider an aggregation function
A :

⋃
n∈N∗

(LI)n → LI . Then A is called idempo-

tent whenever A(x, . . . , x︸ ︷︷ ︸
n times

) = x, for all n ∈ N∗ and

x ∈ LI ;

4. Arithmetic operators on LI

Since we want to extend the OWA operators [6] to
LI , we need arithmetic operators on LI (or a super-
set of LI). We define for further usage the sets

L̄I = {[x1, x2] | (x1, x2) ∈ R2 and x1 ≤ x2},
D̄ = {[x1, x1] | x1 ∈ R};
L̄I+ = {[x1, x2] | (x1, x2) ∈ [0,+∞[2

and x1 ≤ x2},
D̄+ = {[x1, x1] | x1 ∈ [0,+∞[},

In general we consider two arithmetic operators
⊕ : (L̄I)2 → L̄I and ⊗ : (L̄I+)2 → L̄I satisfying the
following properties,

(add-1) ⊕ is commutative,
(add-2) ⊕ is associative,
(add-3) ⊕ is increasing,
(add-4) 0LI ⊕ a = a, for all a ∈ L̄I ,
(add-5) [α, α]⊕ [β, β] = [α+ β, α+ β], for all α, β

in R,
(mul-1) ⊗ is commutative,
(mul-2) ⊗ is associative,
(mul-3) ⊗ is increasing,
(mul-4) 1LI ⊗ a = a, for all a ∈ L̄I+,
(mul-5) [α, α] ⊗ [β, β] = [αβ, αβ], for all α, β in

[0,+∞[.

The conditions (add-1)–(add-4) and (mul-1)–
(mul-4) are natural conditions for any addition and
multiplication operators. The conditions (add-5)
and (mul-5) ensure that these operators are natu-
ral extensions of the addition and multiplication of
real numbers to L̄I .

In [22] it was incorrectly stated that (add-5) is
given by “[α, α] ⊕ [β, β] = [α + β, α + β], for all
α, β in [0,+∞[”. However, the latter condition to-
gether with the condition “[α, α]⊕ [−α,−α] = 0LI ,
for all α ∈ [0,+∞[” is equivalent to (add-5). Simi-
larly, (mul-5) can be weakened to “[α, α]⊗ [β, β] =
[αβ, αβ], for all α, β in [1,+∞[ or for all α ∈ [1,+∞[
and β = 1

α , or for α = 0 and for all β ∈ [0,+∞[”.
Sometimes we will assume that ⊕ and ⊗ sat-

isfy the following conditions instead of (add-5) and
(mul-5):

(add-5’) [α, α]⊕ b = [α + b1, α + b2], for all α ∈ R
and b ∈ L̄I ,

(mul-5’) [α, α]⊗ b = [αb1, αb2], for all α ∈ [0,+∞[
and b ∈ L̄I+.

These conditions ensure that adding or multiply-
ing an interval with an exact element (an interval
with only one element, in other words an interval
which does not contain any uncertainty) does not
modify the amount of uncertainty in the interval.

The mapping 	 is defined in [22] by, for all x, y
in L̄I ,

1LI 	 x = [1− x2, 1− x1], (1)
x	 y = 1LI 	 ((1LI 	 x)⊕ y). (2)

Similarly, the mapping � is defined by, for all x, y
in L̄I+,0,

1LI � x =
[

1
x2
,

1
x1

]
, (3)

x� y = 1LI � ((1LI � x)⊗ y). (4)

The properties of these operators are studied in
[22].

Example 4.1 We give some examples of arith-
metic operators satisfying the conditions (add-1)–
(add-5) and (mul-1)–(mul-5).
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• In the interval calculus (see e.g. [23]) the fol-
lowing operators are defined: for all x, y in L̄I ,

x⊕ y = [x1 + y1, x2 + y2],
x	 y = [x1 − y2, x2 − y1],
x⊗ y = [x1y1, x2y2], if x, y in L̄I+,

x� y =
[x1

y2
,
x2

y1

]
, if x, y in L̄I+,0.

It is easy to see that these operators satisfy
(add-1)–(add-5), (mul-1)–(mul-5), (add-5’),
(mul-5’), (1), (2), (3) and (4).
• In [24] the following operators are defined: for
all x, y in L̄I ,

x⊕LI y=[min(x1 + y2, x2 + y1), x2 + y2],
x	LI y=[x1 − y2,max(x1 − y1, x2 − y2)],
x⊗LI y = [x1y1,max(x1y2, x2y1)],

if x, y in L̄I+,

x�LI y =
[
min

(x1

y1
,
x2

y2

)
,
x2

y1

]
,

if x, y in L̄I+,0.

It was proven in [24] that these operators sat-
isfy (add-1)–(add-5), (mul-1)–(mul-5), (add-
5’), (mul-5’), (1), (2), (3) and (4). In [25] these
operators are used to define additive and multi-
plicative generators on LI and it is shown that
the only t-norms that can have a continuous
additive generator based on this addition are
pseudo-t-representable t-norms.

5. Characterization of the arithmetic
operators on L̄I

In this section we give a characterization of the ad-
dition operators that satisfy (add-1)–(add-5) and
(add-5’).
We define the set D̄′ = {[−x2, x2] | x2 ∈

[0,+∞[} and the mapping d : L̄I → D̄′ by d(x) =[
x1−x2

2 , x2−x1
2
]
, for all x ∈ L̄I .

[0,0]
x1

x2D̄′

x

[x1,x1]

[x2,x2]

[ x1+x2
2 , x1+x2

2 ]

[−x2,−x1]

d(x)

Figure 2: The elements d(x) and
[

x1+x2
2 , x1+x2

2

]
.

Theorem 5.1 Let ⊕D : (D̄′)2 ∪ (D̄ × L̄I) ∪ (L̄I ×
D̄)→ L̄I be a mapping which satisfies the following
conditions:

(D1) ⊕D is commutative,
(D2) for any x, y, z in D̄′, x⊕D y ≤LI (x⊕D z)⊕D

[|y2 − z2|, |y2 − z2|],
(D3) for any x = [x1, x1] ∈ D̄ and y ∈ L̄I , x⊕Dy =

y ⊕D x = [x1 + y1, x1 + y2].

Define a mapping ⊕ : (L̄I)2 → L̄I by, for all x, y in
L̄I ,

x⊕ y

=



x⊕D y, if (x, y) ∈ (D̄′)2

∪ (D̄ × L̄I) ∪ (L̄I × D̄),

(d(x)⊕D d(y))⊕D
[x1 + x2 + y1 + y2

2 ,

x1 + x2 + y1 + y2

2

]
, else.

(5)

If furthermore

(D4) for all (x, y, z) ∈ (D̄ ∪ D̄′)3, x ⊕ (y ⊕ z) =
(x⊕ y)⊕ z,

then ⊕ satisfies (add-1)–(add-5) and (add-5’).
Conversely, if ⊕ : (L̄I)2 → L̄I satisfies (add-

1)–(add-5) and (add-5’) and ⊕D is defined as
⊕D = ⊕

∣∣
(D̄′)2∪(D̄×L̄I)∪(L̄I×D̄), then (D1)–(D4) and

(5) are fulfilled.
Moreover, ⊕ is continuous iff ⊕D is continuous.

Theorem 5.1 shows that any addition operator ⊕
on L̄I which satisfies (add-5’) is completely deter-
mined by its action on D̄′.

6. The arithmetic and quasi-arithmetic
mean

In this section we will extend the arithmetic mean
and the quasi-arithmetic mean to LI . Before we do
so, we first give some additional properties of the
arithmetic operators on L̄I .

Lemma 6.1 Assume that ⊕ and ⊗ satisfy (add-
1)–(add-5), (mul-1)–(mul-5), (add-5’) and (mul-
5’). If for all α, β in R and c ∈ LI it holds that

c⊗ ([α, α]⊕ [β, β]) = (c⊗ [α, α])⊕ (c⊗ [β, β]),

then for all a and b in LI it holds that

a⊕ b = [a1 + b1, a2 + b2].

In a completely similar way we obtain the following
result.

Lemma 6.2 Assume that ⊕ and ⊗ satisfy (add-
1)–(add-5), (mul-1)–(mul-5), (add-5’) and (mul-
5’). If for all α, β in R and c ∈ L̄I+ it holds that

c⊗ ([α, α]⊕ [β, β]) = (c⊗ [α, α])⊕ (c⊗ [β, β]),

then for all a and b in L̄I+ it holds that

a⊕ b = [a1 + b1, a2 + b2].
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Theorem 6.3 Assume that ⊕ and ⊗ satisfy (add-
1)–(add-5), (mul-1)–(mul-5), (add-5’) and (mul-
5’). For all a, b in R and c ∈ LI it holds that

c⊗ ([a, a]⊕ [b, b]) = (c⊗ [a, a])⊕ (c⊗ [b, b]),

iff for all a and b in LI it holds that

a⊕ b = [a1 + b1, a2 + b2].

A similar result holds for L̄I . Furthermore:

Theorem 6.4 Assume that ⊕ and ⊗ satisfy (add-
1)–(add-5), (mul-1)–(mul-5), (add-5’) and (mul-
5’). For all a, b in R and c ∈ L̄I+ it holds that

c⊗ ([a, a]⊕ [b, b]) = (c⊗ [a, a])⊕ (c⊗ [b, b]),

iff for all a and b in L̄I it holds that

a⊕ b = [a1 + b1, a2 + b2].

Lemma 6.5 Assume that ⊕ and ⊗ satisfy (add-
1)–(add-5), (mul-1)–(mul-5), (add-5’) and (mul-
5’). If for all n ∈ N∗ and x ∈ L̄I it holds that

[n, n]⊗ x = x⊕ . . .⊕ x︸ ︷︷ ︸
n times

,

then for all a and b in L̄I and n ∈ N it holds that

([n, n]⊗ a)⊕ ([n, n]⊗ b) = [n, n]⊗ (a⊕ b).

Lemma 6.6 Assume that ⊕ and ⊗ satisfy (add-
1)–(add-5), (mul-1)–(mul-5), (add-5’) and (mul-
5’). If for a certain n ∈ N∗ and x ∈ L̄I it holds
that

[n, n]⊗ x = x⊕ . . .⊕ x︸ ︷︷ ︸
n times

, (6)

then also

[n, n]⊗ d(x) = d(x)⊕ . . .⊕ d(x)︸ ︷︷ ︸
n times

,

where d is the L̄I → D̄′ mapping defined in Section
5.

Lemma 6.7 Assume that ⊕ and ⊗ satisfy (add-
1)–(add-5), (mul-1)–(mul-5), (add-5’) and (mul-
5’). For all n ∈ N∗ and x ∈ L̄I it holds that

[n, n]⊗ x = x⊕ . . .⊕ x︸ ︷︷ ︸
n times

,

if and only if

[n, n]⊗ d(x) = d(x)⊕ . . .⊕ d(x)︸ ︷︷ ︸
n times

. (7)

Theorem 6.8 Assume that ⊕ and ⊗ satisfy (add-
1)–(add-5), (mul-1)–(mul-5), (add-5’) and (mul-
5’). If for all n ∈ N∗ and x ∈ L̄I (or x ∈ L̄I+) it
holds that

[n, n]⊗ x = x⊕ . . .⊕ x︸ ︷︷ ︸
n times

,

then
x⊕ y = [x1 + y1, x2 + y2],

for all x and y in L̄I .

In a similar way, we obtain the following results.

Theorem 6.9 Let a and b in D̄ with a <LI b.
Assume that ⊕ and ⊗ satisfy (add-1)–(add-5),
(mul-1)–(mul-5), (add-5’) and (mul-5’). If for all
n ∈ N∗ and x ∈ LI (resp. x ∈ {x | x ∈ L̄I and
x ≥LI a and x ≤LI b}) it holds that

[n, n]⊗ x = x⊕ . . .⊕ x︸ ︷︷ ︸
n times

,

then
x⊕ y = [x1 + y1, x2 + y2],

for all x and y in LI (resp. {x | x ∈ L̄I and x ≥LI a
and x ≤LI b}).

It is clear that for any choice of ⊕ and ⊗ satisfy-
ing (add-1)–(add-5) and (mul-1)–(mul-5) respec-
tively, the arithmetic mean AM defined by

AM(x1, . . . , xn) =
[ 1
n ,

1
n

]
⊗ (x1 ⊕ . . .⊕ xn),

for all n ∈ N∗ and x1, . . . , xn in LI , is an aggrega-
tion function on LI .

Lemma 6.10 The mapping AM defined above is
an idempotent aggregation function on LI if and
only if

[n, n]⊗ x = x⊕ . . .⊕ x︸ ︷︷ ︸
n times

,

for all n ∈ N∗ and x ∈ LI .

Theorem 6.11 The mapping AM defined above is
an idempotent aggregation function on LI if and
only if

x⊕ y = [x1 + y1, x2 + y2],
for all x and y in LI .

We try to extend the quasi-arithmetic means
[26, 27, 28] to LI . We consider a continuous, strictly
monotonic function f : LI → L̄I for which the in-
verse is also strictly monotonic. We explicitly re-
quire the monotonicity of the inverse because unlike
for R → R functions this does not follow from the
other two conditions. For example, the mapping

Φ(x) =
{[√

x1 + x1−
√
x1

1−x1
(1− x2), x2

]
, if x1 6= 1LI

1LI , if x = 1LI

is a continuous, increasing permutation of LI for
which the inverse is not increasing. On the other
hand if the inverse of a continuous, strictly mono-
tonic function f is monotonic, then the type of
monotonicity is the same for f−1 as for f , e.g. if
the inverse of a continuous, strictly increasing func-
tion is monotonic, then it is also increasing.

Let n ∈ N∗. Define the function

Mn
f (x1, . . . , xn)

= f−1 ([ 1
n ,

1
n

]
⊗ (f(x1)⊕ . . . f(xn))

)
,

for all x1, . . . , xn in LI .
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Theorem 6.12 Let f be a continuous, strictly
monotonic function with strictly monotonic inverse.
The mapping Mn

f defined above is an aggregation
function on LI if and only if

[n, n]⊗ f(0LI ) = f(0LI )⊕ . . .⊕ f(0LI )︸ ︷︷ ︸
n times

,

[n, n]⊗ f(1LI ) = f(1LI )⊕ . . .⊕ f(1LI )︸ ︷︷ ︸
n times

.

If we require that the quasi-arithmetic means are
idempotent, then we obtain the following result.

Theorem 6.13 Let f be a continuous, strictly
monotonic function with strictly monotonic inverse.
The mapping Mn

f defined above is an idempotent
aggregation function on LI if and only if

[n, n]⊗ f(x) = f(x)⊕ . . .⊕ f(x)︸ ︷︷ ︸
n times

,

for all x ∈ LI .

Corollary 6.14 Let f be a continuous, strictly
monotonic function with strictly monotonic inverse.
If for all α, β in R and c ∈ L̄I+ it holds that

c⊗ ([α, α]⊕ [β, β]) = (c⊗ [α, α])⊕ (c⊗ [β, β]),

and if range(f) ⊆ L̄I+, then the mapping Mn
f de-

fined above is an idempotent aggregation function
on LI .

Lemma 6.15 Let f : LI → L̄I be a continu-
ous, strictly monotonic function with strictly mono-
tonic inverse. Then for all α ∈ [0, 1] it holds
that (f([α, α]))1 = (f([α, 1]))1 and (f([α, α]))2 =
(f([0, α]))2 if f is increasing, or (f([α, α]))1 =
(f([0, α]))1 and (f([α, α]))2 = (f([α, 1]))2 if f is
decreasing.

Corollary 6.16 Let f : LI → L̄I be a continuous,
strictly monotonic function with strictly monotonic
inverse. Then f([0, 1]) = [(f(0LI ))1, (f(1LI ))2] if f
is increasing, and f([0, 1]) = [(f(1LI ))1, (f(0LI ))2]
if f is decreasing.

Corollary 6.17 Let f : LI → L̄I be a continu-
ous, strictly monotonic function with strictly mono-
tonic inverse. Then f is a bijection from LI to
{[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≥ (f(0LI ))1 and
x2 ≤ (f(1LI ))2] and x2 ≥

(f(1LI ))2−(f(0LI ))2
(f(1LI ))1−(f(0LI ))1

(x1 −
(f(0LI ))1) + (f(0LI ))2} if f is increasing, and
{[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≥ (f(1LI ))1 and
x2 ≤ (f(0LI ))2] and x2 ≥

(f(1LI ))2−(f(0LI ))2
(f(1LI ))1−(f(0LI ))1

(x1 −
(f(0LI ))1) + (f(0LI ))2} if f is decreasing.

Note that in Corollary 6.17 the range of f
is a triangle with corners f(0LI ), f(1LI ) and
[(f(0LI ))1, (f(1LI ))2] if f is increasing, and f(0LI ),
f(1LI ) and [(f(1LI ))1, (f(0LI ))2] if f is decreasing.

Theorem 6.18 Let f : LI → L̄I be a continuous,
strictly monotonic function with strictly monotonic
inverse. Then there exist strictly monotonic func-
tions f1, f2 : [0, 1]→ R with the same type of mono-
tonicity as f such that for all x ∈ LI ,

f(x) = [f1(x1), f2(x2)],

if f is increasing, and

f(x) = [f1(x2), f2(x1)],

if f is decreasing.

Theorem 6.19 Let f : LI → L̄I be a continuous,
strictly monotonic function with strictly monotonic
inverse and for which f(D) ⊆ D̄. Consider the
mapping Mf : ∪n∈N∗(LI)n → LI : (x1, . . . , xn) 7→
Mn

f (x1, . . . , xn), for all n ∈ N∗ and (x1, . . . , xn) ∈
LI . Then Mf is an idempotent aggregation func-
tion on LI if and only if

x⊕ y = [x1 + y1, x2 + y2],

for all x and y in {x | x ∈ L̄I and x ≥LI inf(f(0LI ),
f(1LI )) and x ≤LI sup(f(0LI ), f(1LI ))}.

Theorem 6.18 and Theorem 6.19 show that Mf

is an idempotent aggregation function iffMf is rep-
resentable. This is one of the aggregation functions
which can be obtained with the construction of Be-
liakov et al. [15]. They showed that in their class of
generalizations of the quasi-arithmetic mean to LI
the representable extension is the only one which is
compatible with the quasi-arithmetic mean on the
unit interval.

7. The OWA function

The OWA function on the unit interval is defined
as follows.

Definition 7.1 [6] Let n ∈ N∗. For any weight
vector w = (w1, . . . , wn) ∈ [0, 1]n such that

n∑
i=1

wi = 1

the ordered weighted averaging (OWA) function
OWAw : [0, 1]n → [0, 1] associated with w is de-
fined by

OWAw(x1, . . . , xn) =
n∑
i=1

wix(i)

where (x1, . . . , xn) ∈ [0, 1]n is reordered as x(1) ≤
. . . ≤ x(n).

In order to extend the OWA function to interval-
valued fuzzy sets, we must find a way to extend
the ordering of input values in [0, 1] to input val-
ues which are intervals and which therefore may be
incomparable.
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If we consider x1 = [x1, x1], . . . , xn = [xn, xn] in
LI as fuzzy truth values [29, 30], i.e. as mappings

xi : [0, 1]→ [0, 1] :
u 7→ 1, ∀u ∈ [x1, x2],
u 7→ 0, else,

and if we apply Zadeh’s extension principle, then
we obtain

x(i)(u) = sup{min(x1(u1), . . . , xn(un)) |
(u1, . . . , un) ∈ [0, 1]n and u = u(i)}

= [x(i), x(i)],

where x(i) denotes the i-th smallest element of
{x1, . . . , xn} and x(i) denotes the i-th smallest el-
ement of {x1, . . . , xn}.

Definition 7.2 Let n ∈ N∗. Assume that ⊕ and
⊗ satisfy (add-1)–(add-5), (mul-1)–(mul-5) and1

0LI ⊗x = 0LI for all x ∈ LI . For any weight vector
w = (w1, . . . , wn) ∈ (LI)n such that

n⊕
i=1

wi = 1LI

the ordered weighted averaging (OWA) function
OWAw : (LI)n → LI associated with w is defined
by

OWAw(x1, . . . , xn) =
n⊕
i=1

(wi ⊗ x(i))

where (x1, . . . , xn) ∈ (LI)n is transformed to
x(1) ≤LI . . . ≤LI x(n) using the above construction.

It is easy to see that the OWA function on the
unit interval is idempotent. We now check under
which conditions the OWA function on LI is idem-
potent.

Theorem 7.1 Assume that ⊕ is continuous and
satisfies (add-1)–(add-5) and (add-5’). Then for
all x and y in L̄I ,

x⊕ y ∈ D̄ ⇐⇒ x ∈ D̄ and y ∈ D̄.

As a consequence of Theorem 7.1 we have that
⊕ni=1wi = 1LI implies that wi ∈ D for all i ∈
{1, . . . , n}. In other words, the weights of an OWA
function on LI cannot contain any uncertainty (if a
continuous addition operator is used).
We say that a function f : (LI)n → LI is a join-

morphism if for all k ∈ {1, . . . , n} and (x1, . . . , xk−1,
xk, x

′
k, xk+1, . . . , xn) ∈ [0, 1]n+1 it holds that

f(x1, . . . , xk−1, sup(xk, x′k), xk+1, . . . , xn)
= sup(f(x1, . . . , xk−1, xk, xk+1, . . . , xn),

f(x1, . . . , xk−1, x
′
k, xk+1, . . . , xn))

If we replace sup by inf in the previous definition,
then we obtain the definition of a meet-morphism.

1Note that this condition is satisfied if ⊗ satisfies (mul-
5’).

Theorem 7.2 Let A be a binary aggregation func-
tion on LI which is idempotent and both a join- and
meet-morphism. If for all x1 and x2 in [0, 1] it holds
that

(A([x1, 1], [0, 0]))1 = (A([x1, 1], [0, 1]))1,

(A([0, x2], [0, 1]))2 = (A([0, x2], [1, 1]))2,

then there exist aggregation operators A1 and A2 on
([0, 1],≤) such that A1 ≤ A2 and

A(x, y) = [A1(x1, y1), A2(x2, y2)],

for all x and y in LI .

It remains an open problem whether Theorem 7.2
can be generalized to n-ary aggregation functions
with n > 2.
Define the mapping OWAw : (LI)n → LI by

OWAw(x1, . . . , xn)

=
n⊕
i=1

([wi, wi]⊗ x(i))

= [OWAw(x1, . . . , xn),OWAw(x1, . . . , xn)],

for all (x1, . . . , xn) ∈ (LI)n, where OWAw is the
OWA function defined on the unit interval as-
sociated with w = (w1, . . . , wn) ∈ [0, 1]n with∑n
i=1 wi = 1, and ⊕ is the representable addition

operator (the first example in Example 4.1). In
light of Theorem 6.11, Theorem 6.18, Theorem 6.19
and Theorem 7.2, we put the conjecture that the
only extension of the OWA function to LI using the
arithmetic operators on LI which is idempotent, is
the representable extension OWAw. Beliakov et al.
[15] have given a similar extension of the OWA func-
tion, but instead of extending the ordering mecha-
nism using Zadeh’s extension principle, they use a
total order based on the score and the accuracy of
elements of LI . This extension of the OWA function
is not representable. They have shown that in their
class of generalizations of the OWA function, this
extension is the only one which is consistent with
the OWA function on the unit interval.

8. Conclusion

In this paper we have extended several well-known
aggregation functions to LI , the underlying lat-
tice of interval-valued and Atanassov’s intuitionistic
fuzzy set theory. First we have shown that under
several different conditions the arithmetic operators
on LI are t-representable. This fact has been used
to prove that any extension of the arithmetic mean
and the quasi-arithmetic mean to LI using arith-
metic operators on LI is t-representable if and only
if it is idempotent. We have in general shown that
idempotent binary aggregation functions which are
join- and meet-morphisms and which satisfy some
additional properties are t-representable. We have
extended the ordering procedure of the input values
to LI and given a proposal for the construction of
the OWA function on LI .
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