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Abstract In this chapter, we present a propositional calculus for several interval-
valued fuzzy logics, i.e., logics having intervals as truth values. More precisely,
the truth values are preferably subintervals of the unit interval. The idea behind
it is that such an interval can model imprecise information. To compute the truth
values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use
operations from residuated lattices. This truth-functional approach is similar to the
methods developed for the well-studied fuzzy logics. Although the interpretation of
the intervals as truth values expressing some kind of imprecision is a bit problematic,
the purely mathematical study of the properties of interval-valued fuzzy logics and
their algebraic semantics can be done without any problem. This study is the focus
of this chapter.

1 Introduction

Classical logic is a two-valued logic: propositions in this logic are either true or
false. In the first case, the truth value 1 is attributed to the proposition, while in the
second case the attributed truth value is 0. Given the truth values of two propositions
p and q, it is possible to derive the truth values of the negation ‘not p’ (and ‘not q’),
the conjunction ‘p and q’, the disjunction ‘p or q’ and the implication ‘p implies
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q’. These formulas are denoted as ¬p, p&q, p∨ q and p→ q. The truth values are
calculated using the operations1 ¬, ∗, t and⇒. The truth tables of these operations
are given in Table 1.

Table 1 Truth tables of the operations in classical logic.

x y ¬x x∗ y xt y x⇒ y

0 0 1 0 0 1
0 1 1 0 1 1
1 0 0 0 1 0
1 1 0 1 1 1

For more complicated formulas the truth values can be computed in the same
way. For example, if p is true and q is false, then the truth value of (p∨q)→ ((p→
q)→ q) is calculated as follows: the truth value of p→ q is 1⇒ 0 = 0, so the truth
value of (p→ q)→ q is 0⇒ 0 = 1. The truth value of p∨ q is 1t 0 = 1. So we
conclude that the truth value of (p∨q)→ ((p→ q)→ q) is 1⇒ 1 = 1. Interestingly,
the truth value of this formula is always 1, even if other truth values are attributed to
p and q. Such formulas are called tautologies. If a formula φ is a tautology, this is
denoted as |= φ . More generally, for a set of formulas Γ , Γ |= φ means “no matter
what truth values are attributed to the propositions, if the truth values of the formulas
in Γ are 1, then the truth value of φ is 1”.

The two values 0 and 1, together with the defined operations, form a Boolean
algebra. Therefore we say that this Boolean algebra is the semantics of classical
logic. Saying that (p∨ q)→ ((p→ q)→ q) is a tautology in classical logic, is the
same as saying that (xt y)⇒ ((x⇒ y)⇒ y) = 1 is an identity in this Boolean
algebra (meaning “whatever value of the Boolean algebra we give to x and y, the
calculation of (xt y)⇒ ((x⇒ y)⇒ y) yields 1”). Now, identities in this Boolean
algebra are also identities in every other Boolean algebra (we say that this Boolean
algebra generates all Boolean algebras). Therefore classical logic does not only have
the Boolean algebra with two elements as semantics, but also the whole variety of
Boolean algebras: the general semantics of classical logic consist of all Boolean
algebras.

Interestingly it is also possible to describe classical logic without using seman-
tics. This is done with axioms and deduction rules, which allow to prove a formula
from a set of formulas. When a formula φ is provable from a theory Γ , this is de-
noted as Γ ` φ . Two important results in classical logic are soundness (if Γ ` φ ,
then Γ |= φ ) and completeness (if Γ |= φ , then Γ ` φ ). We write this shortly as
Γ ` φ iff Γ |= φ .

1 Note that we use different symbols, to distinguish the logical connectives from the corresponding
operations. Only for the negation we employ the same symbol.
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Now, for the truth values of several propositions one might prefer more than the
two options 0 (false) and 1 (true). Indeed, for vague propositions like ‘it is raining
hard’, it would be useful if one could attribute an intermediate truth value, some-
where between ‘false’ and ‘true’. This can be done using fuzzy set theory, in which
every element of the unit interval [0,1] serves as a truth value, instead of only 0 and
1. The operations for the negation, conjunction, disjunction and implication were
generalized to this setting. Later the structure of the unit interval was generalized
to an arbitrary bounded lattice to allow for incomparabilities among elements, and
triangular norms and conorms are quite common nowadays as generalized represen-
tations of logical conjunction and disjunction, respectively. An interesting class of
these generalizations, especially from the logical point of view, are MTL-algebras
[16]. In these structures, the operations modelling (strong) conjunction and impli-
cation are connected by the residuation principle. These MTL-algebras form the
general semantics of monoidal t-norm based logic (MTL, [16]), in the same way
Boolean algebras form the general semantics of classical logic. Similarly as for
classical logic, these general semantics can be restricted. Indeed, MTL is also sound
and complete w.r.t. standard MTL-algebras, i.e., MTL-algebras on the unit interval.
Therefore MTL is called a (formal) fuzzy logic. But it is definitely not the only
fuzzy logic. Indeed, by adding more axioms and/or deduction rules to the axioms
and deduction rule of MTL, we obtain other fuzzy logics. It is even possible to
retrieve classical logic in this way. Semantically speaking, this means that Boolean
algebras are special cases of MTL-algebras. Some well-known fuzzy logics, situated
between MTL and classical logic, are Hájek’s Basic Logic (BL) [24], Łukasiewicz
Logic (Ł) [30] and Gödel Logic (GL) [14, 22]. Also Intuitionistic Logic (IL) [25]
can be seen as a fuzzy logic. These logics are sound and complete w.r.t. BL-algebras,
MV-algebras (or, equivalently, Wajsberg algebras [20]), G-algebras and Heyting al-
gebras, respectively. We refer to [17] for a comprehensive overview of these and
other logics. Other general references on fuzzy logics are [6, 23, 24].

In [43], Zadeh introduced type-2 fuzzy sets, a generalization of fuzzy sets. The
idea behind these structures is that they provide a way to express incomplete as
well as graded knowledge; as opposed to fuzzy sets, which only express graded-
ness, not incompleteness. Unfortunately, type-2 fuzzy sets are quite complicated
to work with. Therefore often interval-valued fuzzy sets are used. These special
cases of type-2 fuzzy sets are easier to handle. Indeed, truth values in this setting
are closed subintervals of the unit interval, and such an interval is determined by
just two values: its lower and upper bound. The aim of this chapter is to develop
a logic that has intervals as truth values. The intended semantics are residuated
lattices on the set of closed subintervals of the unit interval. We call this set the
triangularization of the unit interval. A particular subset of this triangularization is
its so-called diagonal, consisting of those intervals for which the lower and upper
bound coincide. These intervals are called exact intervals and represent truth values
of propositions about which the knowledge is complete. Intuitively, the truth values
of formulas constructed with these propositions should be exact intervals as well
(because in these cases, the situation is similar to working with formulas in fuzzy
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logics). The semantics of so-called interval-valued fuzzy logics have already been
examined by different authors. Especially interval-valued triangular norms, triangu-
lar conorms and implicators have received ample attention. Most of these authors
[1, 2, 15, 21, 26] only consider interval-valued operations that map the diagonal on
the diagonal, although the most general definitions of triangular norms, triangular
conorms and implicators allow other operations as well [7, 10, 11, 28]. Generally
speaking, interval-valued operations do not satisfy as many properties as operations
on the unit interval. For example, standard interval-valued residuated lattices can
never satisfy prelinearity [8]. A lot of other properties can hold though. There are
even interval-valued implicators that satisfy all the Smets-Magrez axioms [9].

The three main sections of this chapter are conceived as follows:

• In Section 2 we elaborate the theory of interval-valued residuated lattices, which
include the intended semantics of interval-valued fuzzy logics.

• In Section 3 we give the definition of triangle algebras, which are algebraic struc-
tures describing interval-valued residuated lattices.

• In Section 4 we then introduce several interval-valued fuzzy logics and examine
their properties, in particular the soundness and completeness w.r.t. the intended
and the general semantics.

Before we continue, we recall some algebraic concepts that will be used in this
chapter.

• An algebra of type (n1,n2, . . . ,nm), with n1, n2, . . . , nm non-negative integers, is
a structure (A, f1, . . . , fm) in which A is a set, f1 an n1-ary operation on A, . . . and
fm an nm-ary operation on A. If ni is 0, then fi is a constant.

• A reduct of an algebra is an algebra on the same set, but in which some of the
operations are left out. An algebra A is an expansion of an algebra B if B is a
reduct of A .

• A subalgebra of an algebra A = (A, f1, . . . , fm) is an algebra on a subset A′ of A
in which all operations of A are restricted to A′. Of course, this is only possible
if A′ is closed under all these operations, i.e., if for every operation fi of A ,
fi(a1, . . . ,an) ∈ A′ whenever the arguments a1, . . . , an are in A′ (with n the arity
of fi).

• A morphism from an algebra A = (A, f1, . . . , fm) to an algebra B = (B,g1, . . . ,
gm) of the same type, is a mapping h from A to B such that h( fi(a1, . . . ,an)) =
gi(h(a1), . . . ,h(an)) for all operations fi of A and all a1, . . . , an in A (with n the
arity of fi).

• An embedding of an algebra A = (A, f1, . . . , fm) in an algebra B = (B,g1, . . . ,
gm) of the same type, is a morphism h from A to B such that h(a1) 6= h(a2)
whenever a1 6= a2.

• An isomorphism from an algebra A = (A, f1, . . . , fm) to an algebra B = (B,
g1, . . . ,gm) of the same type, is an embedding of A in B such that for every ele-
ment b of B, b = h(a) for some a in A.
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2 Interval-Valued Structures

The most general semantics of fuzzy logics do not only contain algebraic structures
on the unit interval, it consists of all residuated lattices. For interval-valued fuzzy
logics, the situation is comparable: the most general semantics are interval-valued
residuated lattices. In this section, we propose a definition of these structures.

2.1 Triangularizations of Partially Ordered Sets

Definition 1. [39] Given any partially ordered set (shortly: poset) P = (P,≤), we
can define its triangularization T(P) = (Int(P),�) in the following way:

• Int(P) = {[p1, p2] | (p1, p2) ∈ P2 and p1 ≤ p2},
• [p1, p2]� [q1,q2] iff p1 ≤ q1 and p2 ≤ q2, for all [p1, p2] and [q1,q2] in Int(P).

The elements of Int(P) are called the intervals of P .
The first and the second projection pr1 and pr2 are the mappings from Int(P) to P,
defined by pr1([x1,x2]) = x1 and pr2([x1,x2]) = x2, for all [x1,x2] in Int(P).
The vertical and the horizontal projection prv and prh are the mappings from Int(P)
to Int(P), defined by prv([x1,x2]) = [x1,x1] and prh([x1,x2]) = [x2,x2], for all [x1,x2]
in Int(P).

It is straightforward to verify that for any poset P , T(P) is also a poset. More-
over, the original poset (P,≤) is contained in T(P) in some way: indeed, the
mapping i : P→ Int(P) defined by i(p) = [p, p] for all p in P, is injective and
preserves the ordering (if p ≤ q, then i(p) = [p, p] � [q,q] = i(q)). The image
i(P) consists of the intervals [p1, p2] in Int(P) for which p1 = p2. The elements
of i(P) are called exact intervals. The subset i(P) of Int(P) is often referred
to as the diagonal of T(P). Note that prv = i ◦ pr1 and prh = i ◦ pr2, and that
i(P) = prv(Int(P)) = prh(Int(P)).

Example 1. The poset that will be of central interest in this chapter is T([0,1],≤):
the closed subintervals of the unit interval. This poset is complete and its order is
not linear. Its graphical representation as a triangle is shown in Figure 1. The diag-
onal is the hypothenuse of this triangle. Note that the shape of this representation is
triangular. This holds for all triangularizations of bounded linear posets, hence the
name ‘triangularization’.

2.2 Triangular Lattices

Recall that a lattice is a poset in which the supremum and infimum of every two
elements exist; on the other hand, often the following equivalent definition is also
used.
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[0,0]

[1,1][0,1]

[0,0]

[1,1][0,1]

x1

x2

x = [x1,x2]

x1

x2

Fig. 1 The lattice T([0,1],≤)

Definition 2. A lattice is an algebra (L,u,t) of type (2,2) such that u (‘meet’) and
t (‘join’) are idempotent, commutative and associative operations satisfying the
following absorption laws: for all x and y in L, xt (xu y) = x and xu (xt y) = x.
The lattice order ≤ is defined by x ≤ y iff xu y = x (or, equivalently, iff xt y = y),
for all x and y in L.

Because lattices can be seen as posets, we can consider their triangularizations.
One easily observes that the infimum (resp. supremum) on the triangularization of
a lattice is obtained by taking the infimum (resp. supremum) of the first and sec-
ond projections. More precisely: for any lattice L = (L,u,t), the infimum

d
and

supremum
⊔

on its triangularization T(L ) are given by

• [x1,x2]
d
[y1,y2] = [x1u y1,x2u y2],

• [x1,x2]
⊔
[y1,y2] = [x1t y1,x2t y2],

for all [x1,x2] and [y1,y2] in Int(L ). Note that we use big
d

- and
⊔

-symbols for the
intervals of the triangularization, and small u- and t-symbols for the elements of
the original lattice.

It can be verified that T(L ) is a lattice iff L is a lattice, that i (as defined in
Section 2.1) is a morphism from (L,u,t) to (Int(L ),

d
,
⊔
), and that the set i(L) of

exact intervals is therefore closed under
d

and
⊔

and forms a sublattice E (L ) =
(i(L),

d
,
⊔
).

On the other hand, T(L ) is bounded iff L is bounded. In this case, the smallest
(resp. greatest) element of L is usually denoted by 0 (resp. 1), and the smallest
(resp. greatest) element of T(L ) by [0,0] (resp. [1,1]). As we will see later on, the
element [0,1] will also play an important role, along with the projections prv and
prh.

For any triangularization (Int(L ),
d
,
⊔
) of a bounded lattice L = (L,u,t)

(with smallest element 0 and greatest element 1), we call (Int(L ),
d
,
⊔
,prv,prh,

[0,0], [0,1], [1,1]) the extended triangularization of L . Below, we show that ex-
tended triangularizations can be captured by a class of algebraic structures defined
only with identities: the variety of triangular lattices.
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Definition 3. [36] A triangular lattice2 is an algebra (L,u,t,ν ,µ,0,u,1) of type
(2,2,1,1,0,0,0) such that (L,u,t) is a bounded lattice with smallest element 0 and
greatest element 1 such that

(T.1) νx≤ x, (T.1′) x≤ µx,
(T.2) νx≤ ννx, (T.2′) µµx≤ µx,
(T.3) ν(xu y) = νxuνy, (T.3′) µ(xu y) = µxuµy,
(T.4) ν(xt y) = νxtνy, (T.4′) µ(xt y) = µxtµy,
(T.5) νu = 0, (T.5′) µu = 1,
(T.6) νµx = µx, (T.6′) µνx = νx,
(T.10) x = νxt (µxuu), (T.10′) x = µxu (νxtu).

The unary operators ν and µ are called the necessity and possibility operator, re-
spectively.

Note that from (T.10) it follows that for all x and y in L,

x = y whenever νx = νy and µx = µy. (1)

From (T.1) and (T.2), it is clear that in a triangular lattice, always ννx = νx. Sim-
ilarly, µµx = µx. Each of (T.3) and (T.4) implies that ν is an increasing operator.
In the same way, (T.3’) or (T.4’) force µ to be increasing too. Other properties that
follow easily are ν1 = 1 and µ0 = 0: ν1 = νµu = µu = 1 and µ0 = µνu = νu = 0.
Together with (T.1), (T.1’), (T.2), (T.2’), (T.3) and (T.4’), they mean that µ is a clo-
sure operator, and ν is an interior operator. Both are also lattice morphisms.
Note that (T.1’)–(T.4’) are conditions for µ , which is similar to the modal possibility
operator; they are dual to (T.1)–(T.4) for ν , which is similar to the modal necessity
operator. Only (T.4) and (T.3’) are different: in the modal setting, they are in general
not true; and one doesn’t want them to be true either (see e.g. [44]). In general, we
do not require dependency of µ on ν . The conditions (T.5) and (T.5’) express the
complete lack of knowledge about u: its necessity is 0, but its possibility is 1. The
conditions (T.6) and (T.6’) are known in modal logics as the S5-principles [31, 32].

Proposition 1. [36] Let (L,u,t,ν ,µ,0,u,1) be a triangular lattice. Then (L,u,t,
ν ,µ,0, u,1) is isomorphic to the extended triangularization of a bounded lattice.
Conversely, every extended triangularization of a bounded lattice is a triangular
lattice.

In the remainder, we will use the set of exact elements E(L ) of a triangular
lattice L = (L,u,t,ν ,µ,0,u,1) defined by {x ∈ L | νx = x}. It is closed under all
the defined (unary and binary) operators, and therefore E (L ) = (E(L ),u,t) (in
which the binary operators are restricted to E(L )) is a bounded lattice.

2 The reason we call the last two conditions (T.10) and (T.10’) instead of (T.7) and (T.7’) is that we
would like to keep the same notations as in the papers [36, 37, 38, 40, 42].
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2.3 Interval-Valued Residuated lattices

For most formal fuzzy logics the semantics require not only a partial order on the
set of truth values, but also some extra operations that model ‘AND’ (the strong
conjunction - the infimum being the weak conjunction) and ‘IMPLIES’ (the impli-
cation). A very commonly used structure – and also the basic structure that we will
use in this work – is that of residuated lattices.

Definition 4. A residuated lattice3 is a structure L = (L,u,t,∗,⇒,0,1) in which
u, t, ∗ and⇒ are binary operators on the set L and

• (L,u,t) is a bounded lattice with 0 as smallest and 1 as greatest element,
• ∗ is commutative and associative, with 1 as neutral element, and
• x∗ y≤ z iff x≤ y⇒ z for all x, y and z in L (residuation principle).

The binary operations ∗ and⇒ are called product and implication, respectively. We
will use the notations ¬x for x⇒ 0 (negation), x⇔ y for (x⇒ y)u (y⇒ x).

The following kinds of residuated lattices are used in this chapter.

Definition 5.

• An MTL-algebra [16] is a prelinear residuated lattice, i.e., a residuated lattice in
which (x⇒ y)t (y⇒ x) = 1 for all x and y in L.

• A BL-algebra [24] is a divisible MTL-algebra, i.e., an MTL-algebra in which
xu y = x ∗ (x⇒ y) for all x and y in L. The weaker property xu y = (x ∗ (x⇒
y))t (y∗ (y⇒ x)) is called weak divisibility.

• An MV-algebra [3, 4] is a BL-algebra in which the negation is an involution, i.e.,
(x⇒ 0)⇒ 0 = x for all x in L.

• A Boolean algebra [27] is an MV-algebra that is also a Heyting-algebra, i.e., in
which x∗ x = x for all x in L, or, equivalently, in which ∗= u.

In a residuated lattice, the operator ∗ is always a residuated t-norm, with ⇒ as
its residual implicator4. Conversely, if T is a residuated t-norm on a bounded lattice
(L,u,t), then (L,u,t,T, IT ,0,1) is a residuated lattice. Note however that not all
t-norms are residuated. In complete lattices (L,u,t), a t-norm T is residuated (and
therefore induces a residuated lattice) iff it satisfies T (x,supY ) = sup{T (x,y) | y ∈
Y}, for all x in L and Y ⊆ L [35].

Example 2. Let T be a t-norm on ([0,1],min,max). It is well-known (see, e.g., [17,
24] that

3 In the literature (e.g. in [26]), the name residuated lattice is sometimes used for structures more
general than what we call residuated lattices. In the most general terminology, our structures would
be called bounded integral commutative residuated lattices.
4 Recall that a triangular norm (t-norm, for short) on a poset (P,≤) with largest element 1, is a
binary, increasing, commutative and associative operator T : P2→ P that satisfies T (x,1) = 1, for
all x in P. If for every pair (x,y) in P2, sup{z ∈ P | T (x,z) ≤ y} exists, then the map IT defined
by IT (x,y) = sup{z ∈ P | T (x,z) ≤ y} is called the residual implicator of T . A t-norm T is called
residuated if it has a residual implicator satisfying IT (x,y) = max{z ∈ P | T (x,z) ≤ y}, in other
words if for any pair (x,y) in P2 the set {z ∈ P | T (x,z)≤ y} has a maximum.
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• T is residuated iff T is left-continuous,
• ([0,1],min,max,T, IT ,0,1) is an MTL-algebra5 iff T is left-continuous,
• ([0,1],min,max,T, IT ,0,1) is a BL-algebra iff T is continuous,
• ([0,1],min,max,T, IT ,0,1) is an MV-algebra iff T is conjugated to the Łukasie-

wicz t-norm TW , i.e., iff there exists a strictly increasing bijection φ : [0,1]→
[0,1] such that T (x,y) = φ−1(TW (φ(x),φ(y))), where TW (x,y) = max(0,x+ y−
1).

Several t-norms can be defined on triangularizations of bounded lattices. A class
that will be of great importance later on, consists of t-norms constructed from a t-
norm on and an element of the original lattice: if T is a t-norm on a lattice L =
(L,u,t) which has a greatest element 1, and t is an element of L, then TT,t , defined
by

TT,t([x1,x2], [y1,y2]) = [T (x1,y1),T (T (x2,y2), t)tT (x1,y2)tT (x2,y1)], (2)

for all [x1,x2] and [y1,y2] in Int(L ), is a t-norm on T(L ). These t-norms were
introduced by Deschrijver and Kerre in [11].

Recall that we are working towards a variety of algebraic structures suitable as
semantics for a logic with intervals as truth values. At this point it might seem a good
idea to choose residuated lattices on triangularizations (or, equivalently, residuated
lattices on triangular lattices). However, in these structures the set of exact intervals
is not necessarily closed under the product and implication. This counters the intu-
ition that the truth values of the propositions p&q and p→ q should be exact if the
truth values of p and q are exact. Therefore, residuated lattices on triangularizations
are too general to serve as the desired semantics. This leads us to the definition of
interval-valued residuated lattices.

Definition 6. [41]

• An interval-valued residuated lattice (IVRL) is a residuated lattice (Int(L ),
d
,⊔

,∗,⇒, [0,0], [1,1]) on the triangularization T(L ) of a bounded lattice L =
(L,u,t), in which the diagonal i(L) is closed under ∗ and ⇒, i.e., [x1,x1] ∗
[y1,y1] ∈ i(L) (with i the injection defined in Section 2.1) and [x1,x1]⇒ [y1,y1] ∈
i(L) for all x1 and y1 in L.

• When we add [0,1] as a constant, and prv and prh (as defined in Section 2.1) as
unary operators, the structure (Int(L ),

d
,
⊔
,∗,⇒,prv,prh, [0,0], [0,1], [1,1]) is

called an extended IVRL.

An IVRL in which L = ([0,1],min,max) is called a standard IVRL. An extended
IVRL in which L = ([0,1],min,max) is called a standard extended IVRL.

By Proposition 1, if (Int(L ),
d
,
⊔
,∗,⇒,prv,prh, [0,0], [0,1], [1,1]) is an ex-

tended IVRL, then it is also a triangular lattice. Now we show that the extra op-
erations ∗ and⇒ satisfy the following two properties, for all x and y in Int(L ):

5 Because ([0,1],min,max) is linear, every residuated lattice on this lattice is automatically an
MTL-algebra.
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• prv(x)∗prv(y)≤ prv(prv(x)∗prv(y)),
• prv(x)⇒ prv(y)≤ prv(prv(x)⇒ prv(y)).

Indeed, the first property is equivalent to prv(x)∗prv(y) = prv(prv(x)∗prv(y)), which
means that for any a and b in i(L), a∗b = prv(a∗b), in other words a∗b ∈ i(L). So
it tells us exactly that the diagonal i(L) is closed under ∗. And similarly, the second
property means the diagonal i(L) is closed under⇒ too.
These two properties suggest a way to describe these IVRLs, which seem suitable
as semantics for interval-valued fuzzy logic, using only identities. This leads us to
the next section, where we will introduce this variety (called triangle algebras) and
study its properties in detail.

3 Triangle algebras

In this section, we introduce a variety of structures called triangle algebras, and show
that they are isomorphic to extended IVRLs. Then, we investigate the product and
implication of triangle algebras and show that they are determined by their action on
the exact elements and by one specific product: u ∗ u. This characterization is used
to uncover the connections between properties on triangle algebras and properties
on their subalgebras of exact elements.

3.1 Definition and Connection with IVRLs

In the definition of a triangle algebra we want to combine the structure of a residu-
ated lattice and the structure of intervals (equipped with the order in Definition 1),
plus the desired property that the subset of exact intervals is closed under all defined
operations. This leads us to the following definition.

Definition 7. [41, 36] A triangle algebra is a structure (A,u,t,∗,⇒,ν ,µ,0,u,1)
of type (2,2,2,2,1,1,0,0,0) such that (A,u,t,ν ,µ,0,u,1) is a triangular lattice,
(A,u,t,∗,⇒,0,1) is a residuated lattice, and satisfying for all x and y in A,

(T.7′) νx∗νy≤ ν(νx∗νy),
(T.9) νx⇒ νy≤ ν(νx⇒ νy).

In other words, a structure (A,u,t,∗,⇒,ν ,µ,0,u,1) of type (2,2,2,2,1,1,0,0,0)
such that (A,u,t,∗,⇒,0,1) is a residuated lattice, and satisfying for all x and y in
A,
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(T.1) νx≤ x, (T.1′) x≤ µx,
(T.2) νx≤ ννx, (T.2′) µµx≤ µx,
(T.3) ν(xu y) = νxuνy, (T.3′) µ(xu y) = µxuµy,
(T.4) ν(xt y) = νxtνy, (T.4′) µ(xt y) = µxtµy,
(T.5) νu = 0, (T.5′) µu = 1,
(T.6) νµx = µx, (T.6′) µνx = νx,
(T.7†) νx∗νy≤ ν(νx∗νy),
(T.9) νx⇒ νy≤ ν(νx⇒ νy),
(T.10) x = νxt (µxuu), (T.10′) x = µxu (νxtu).

A triangle algebra (A,u,t,∗,⇒,ν ,µ,0A,uA,1A) is called a standard triangle alge-
bra iff (A,u,t) = T([0,1],min,max).

In a standard triangle algebra (A,u,t,∗,⇒,ν ,µ,0A,uA,1A) it holds that 0A = [0,0],
1A = [1,1], u = [0,1], ν [x1,x2] = [x1,x1] and µ[x1,x2] = [x2,x2] for all [x1,x2] in
Int([0,1],min,max) [41]. Because a triangle algebra is an expansion of both a tri-
angular lattice and a residuated lattice, the properties of these kinds of structures
remain valid in triangle algebras. The connections between triangle algebras and
several related algebraic structures from the literature are studied extensively in
[39, 41, 36]. In this chapter, we focus on the relationship with IVRLs.

Proposition 2. [41] Let (Int(L ),
d
,
⊔
,∗,⇒,prv,prh, [0,0], [0,1], [1,1]) be an ex-

tended IVRL. Then (Int(L ),
d
,
⊔
,∗,⇒,prv,prh, [0,0], [0,1], [1,1]) is a triangle al-

gebra. Conversely, let A = (A,u,t,∗,⇒,ν ,µ,0,u,1) be a triangle algebra. Then
A is isomorphic to an extended IVRL.

The isomorphism χ that is used in the proof of Proposition 2 is depicted graphi-
cally in Figure 2.

3.2 Characterization of Product and Implication. Decomposition
Theorem.

The following important proposition reveals that the implication⇒ and the product
∗ are completely determined by their action on the diagonal and the value of u∗u:

Proposition 3. [40] In a triangle algebra A = (A,u,t,∗,⇒,ν ,µ,0,u,1), it holds
that

• ν(x⇒ y) = (νx⇒ νy)u (µx⇒ µy),
• µ(x⇒ y) = (µx⇒ (µ(u∗u)⇒ µy))u (νx⇒ µy),
• ν(x∗ y) = νx∗νy,
• µ(x∗ y) = (νx∗µy)t (µx∗νy)t (µx∗µy∗µ(u∗u))

and therefore (by (T.10) and (T.10’))
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A

1

u

µx

x

νx

0

[0,0]

[0,1] [1,1]

[x1,x1] = prv([x1,x2])

[x2,x2] = prh([x1,x2])

χ(x) = [x1,x2]

χ

Triangle algebra
(A,u,t,∗,⇒,ν ,µ,0,u,1)

Isomorphic extended IVRL
(A′,u′,t′,∗′,⇒′,prv,prh, [0,0], [0,1], [1,1])

Fig. 2 The isomorphism χ from a triangle algebra to an extended IVRL.

x⇒ y

=
(((

µx⇒ (µ(u∗u)⇒ µy)
)
u (νx⇒ µy)

)
uu
)
t
(
(µx⇒ µy)u (νx⇒ νy)

)
=
(
((µx⇒ µy)u (νx⇒ νy))tu

)
u
((

µx⇒ (µ(u∗u)⇒ µy)
)
u (νx⇒ µy)

)

and

x∗ y =
((

(νx∗µy)t (µx∗νy)t (µx∗µy∗µ(u∗u))
)
uu
)
t (νx∗νy)

=
(
(νx∗νy)tu

)
u
(
(νx∗µy)t (µx∗νy)t (µx∗µy∗µ(u∗u))

)
.

Because of Proposition 3, the product and implication in triangle algebras are
always of a specific form, which implies that a triangle algebra is completely deter-
mined by its subalgebra of exact elements and the value u∗u (in triangle algebras, u
is a constant, playing the role of the interval [0,1] in IVRLs). Conversely, for a fixed
residuated lattice L and element α in that lattice, we can construct a triangle alge-
bra with L as subalgebra of exact elements and u∗u determined by µ(u∗u) = α .
So we can conclude that there is a one-to-one correspondence between triangle al-
gebras and couples (L ,α), in which α is an element of the residuated lattice L .
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This characterization implies that every property that can be imposed on triangle
algebras, can be formulated in terms of such couples.

In particular, any property defined in Definition 5 can be weakened, by imposing
it on E(A ) (instead of A ) only. We will denote this with the prefix ‘pseudo’. For
example, a triangle algebra is said to be pseudo-linear if its set of exact elements
is linearly ordered (by the original ordering, restricted to the diagonal). Another
example: a triangle algebra is pseudo-divisible if νxuνy = νx∗ (νx⇒ νy) for all x
and y in A (E(A ) consists exactly of the elements of the form νx).

It is well-known that MTL-algebras are isomorphic to subdirect products of
linear residuated lattices [16, 24]. This is a very useful result, as it implies that
identities valid in all linear residuated lattices are also valid in all MTL-algebras,
which significantly simplifies several proofs, and which is also needed for the chain-
completeness of the corresponding logic MTL (see Section 4). The ‘interval-valued
counterpart’ of this result is given below:

Theorem 1. [42] Every pseudo-prelinear triangle algebra A is isomorphic to a
subalgebra of the direct product of a system of pseudo-linear triangle algebras.

4 Interval-valued fuzzy logics

In Section 2 we have given the definition of interval-valued residuated lattices
(IVRLs), and in Section 3 we have introduced triangle algebras to capture their
structure by means of identities and/or inequalities. Using this characterization, we
give the definition of several (propositional) interval-valued fuzzy logics in Section
4.2. But first, in Section 4.1 we give an overview of the well-studied common fuzzy
logics, on which our interval-valued fuzzy logics are based, and mention their most
important properties. In Section 4.3 we then investigate which of these properties
hold for interval-valued fuzzy logics as well. In particular, we prove the soundness
and completeness with respect to the algebraic semantics and the deduction theo-
rem.

4.1 Formal fuzzy logics

Because in interval-valued fuzzy logics there will be more formulae, we make a dis-
tinction between formulae for fuzzy logics (FL-formulae) and formulae for interval-
valued fuzzy logics (IVFL-formulae).

Definition 8. FL-formulae are built up from a countable set of propositional vari-
ables (denoted by p, q, r, p1, p2, . . . ) and the constant 0. These symbols are FL-
formulae by definition. The other FL-formulae are defined recursively: if φ and ψ

are FL-formulae, then so are (φ ∧ψ), (φ ∨ψ), (φ&ψ) and (φ → ψ).
The set of FL-formulae is denoted by FFL.
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In order to avoid unnecessary brackets, we agree on the following priority rules:

• among the connectives, & has the highest priority; furthermore ∧ and ∨ take
precedence over→,

• the outermost brackets are not written.

The following notations are used: 1 for 0→ 0, ¬φ for φ → 0, φ 2 for φ&φ , φ n (with
n ∈ {3,4,5, . . .}) for (φ n−1)&φ (moreover, φ 0 is 1 and φ 1 is φ ), and φ ↔ ψ for
(φ → ψ)∧ (ψ → φ), for FL-formulae φ and ψ .

The FL-formulae φ&ψ , φ → ψ and ¬φ stand for what we understand intuitively
by ‘φ and ψ’ (strong conjunction), ‘φ implies ψ’ (implication) and ‘not φ ’ (nega-
tion).

It is impossible to list all true FL-formulae of a specific fuzzy logic, because
their number is not finite. Therefore axioms and deduction rules are used. In the
logics we deal with, an FL-formula is true if it is provable from the axioms using
the deduction rules. We will explain this in more detail. This method also allows to
prove FL-formulae from a given set of FL-formulae (usually called a theory). This
means that in the proof of an FL-formula not only axioms of the logic can be used
but also formulae of the theory. If an FL-formula φ is provable from a theory Γ in a
fuzzy logic L, this is denoted as Γ `L φ . The relation ` is called provability relation
or syntactic consequence.
It is often not very easy to find out if an FL-formula is true in a specific fuzzy logic.
A proof might be difficult to find and such a proof can become very long. This is
why soundness and completeness of (fuzzy) logics is so important. It provides a way
to determine if a formula is true or provable from a theory in a purely algebraic way.
Indeed, soundness and completeness of a fuzzy logic are two properties relative to a
class of algebraic structures. We call such a class a semantics of the fuzzy logic. To
explain this connection between formal logic and algebra in more detail, we need
some terminology first.

Definition 9. Let L = (L,u,t,∗,⇒,0,1) be a residuated lattice, Γ a theory (i.e., a
set of FL-formulae). An L -evaluation is a mapping e from the set of FL-formulae6

to L that satisfies, for each two formulae φ and ψ:

• e(φ ∧ψ) = e(φ)u e(ψ),
• e(φ ∨ψ) = e(φ)t e(ψ),
• e(φ&ψ) = e(φ)∗ e(ψ),
• e(φ → ψ) = e(φ)⇒ e(ψ) and
• e(0) = 0.

If an L -evaluation e satisfies e(χ) = 1 for every χ in Γ , it is called an L -model7

for Γ . We write Γ |=L φ if e(φ) = 1 for all L -models e for Γ . If Γ is empty, we
simply write |=L φ instead of /0 |=L φ . FL-formulae φ for which |=L φ are called
L -tautologies. The relation |= is called semantic consequence.

6 Note that an L -evaluation is completely determined by its action on the propositional variables.
7 Note that L -models for the empty set are just L -evaluations.
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Evaluations form a connection between the connectives of the logic and the al-
gebraic operators in residuated lattices. Note that e(1) = e(0→ 0) = e(0)⇒ e(0) =
0⇒ 0 = 1 and e(¬φ) = e(φ → 0) = e(φ)⇒ e(0) = ¬e(φ).
Now let C be a class of residuated lattices and L a fuzzy logic.

• We say L is sound w.r.t. C if for all Γ ⊆ FFL and φ ∈ FFL, Γ `L φ implies
Γ |=L φ for all L in C .

• We say L is complete8 w.r.t. C if for all φ ∈FFL, (|=L φ for all L in C ) implies
`L φ .

• We say L is strong complete w.r.t. C if for all Γ ⊆FFL and φ ∈FFL, (Γ |=L φ

for all L in C ) implies Γ `L φ .

We will illustrate these definitions in the following subsections.

4.1.1 Monoidal logic

Monoidal logic (ML) was introduced by Höhle in [26]. Its axioms9 are:

(ML.1) (φ → ψ)→ ((ψ → χ)→ (φ → χ)),
(ML.2) φ → (φ∨ψ),
(ML.3) ψ → (φ∨ψ),
(ML.4) (φ → χ)→ ((ψ → χ)→ ((φ∨ψ)→ χ)),
(ML.5) (φ∧ψ)→ φ ,
(ML.6) (φ∧ψ)→ ψ,
(ML.7) (φ&ψ)→ φ ,
(ML.8) (φ&ψ)→ (ψ&φ),
(ML.9) (φ → ψ)→ ((φ → χ)→ (φ → (ψ∧χ))),
(ML.10) (φ → (ψ → χ))→ ((φ&ψ)→ χ),
(ML.11) ((φ&ψ)→ χ)→ (φ → (ψ → χ)),
(ML.12) 0→ φ .

This means that for all possible choices of FL-formulae for φ , ψ and χ , the above
FL-formulae are provable in ML. For example, (0→ q)→ ((p&q)∨ (0→ q)) is
provable in ML, because it is an instance10 of the third axiom, with ψ = (0→ q)

8 For every logic L appearing in this chapter, completeness w.r.t. a class C of residuated lattices (or,
in the next sections, triangle algebras) implies that, for every finite theory Γ ⊆FFL and φ ∈FFL,
Γ `L φ if Γ |=L φ for all L in C . In other words, completeness implies ‘strong completeness for
finite theories’.
9 In [26] there are two axioms instead of the last one. In these two axioms the negation ¬ appears
(as a unary connective), but not the constant 0. In this work we have chosen another way, namely
to define the negation based on the constant 0 (instead of the other way around).
Moreover, also (φ&(ψ&χ))→ ((φ&ψ)&χ) was listed as an axiom. But FL-formulae of this form
can be proven from the other axioms, so it can be left out.
10 An instance of an axiom of ML is any FL-formula obtained by replacing φ , ψ and χ with FL-
formulae. For example, ((p1→ (p2∨0))&(p2∧q))→ (p1→ (p2∨0)) is an instance of (φ&ψ)→
φ .
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and φ = p&q.
To show that other FL-formulae are provable in ML, ML has one deduction rule.
This deduction rule is called modus ponens (MP) and states that if φ and φ → ψ

are provable then so is ψ . Now we can formally define what a proof in ML of an
FL-formula φ from a theory Γ is: it is a finite sequence of FL-formulae in which
every FL-formula is either an instance of an axiom of ML, an element of Γ or the
result of an application of the modus ponens to two FL-formulae appearing earlier
in the sequence. If such a proof exists, this is denoted as Γ `ML φ . If Γ is empty,
we simply write `ML φ instead of /0 `ML φ . An important result about ML is its
soundness and completeness w.r.t. residuated lattices.

Theorem 2. [26] Monoidal logic is sound and strong complete w.r.t. residuated lat-
tices. In other words: for all Γ ⊆FFL and φ ∈FFL, we have Γ `ML φ iff Γ |=L φ

for all residuated lattices L .

Each identity or inequality that is valid in residuated lattices can easily be trans-
formed into a scheme11 of FL-formulae that are provable in ML. Therefore we just
need to change such an identity or inequality to an equivalent ‘equal to 1 identity’.

• An example with an identity: x⇒ (yu z) = (x⇒ y)u (x⇒ z) holds in all resid-
uated lattices. This is equivalent with (x⇒ (yu z))⇔ ((x⇒ y)u (x⇒ z)) = 1,
which can be immediately transformed into the scheme (φ → (ψ∧χ))↔ ((φ →
ψ)∧ (φ → χ)) of FL-formulae that are provable in ML.

• An example with an inequality: x∗y≤ xuy holds in all residuated lattices. This is
equivalent with (x∗ y)⇒ (xu y) = 1, which can be transformed into the scheme
(φ&ψ)→ (φ ∧ψ) of FL-formulae that are provable in ML.

So there is a close connection between identities (and inequalities) in residuated
lattices and (schemes of) FL-formulae that are provable in ML.

ML enjoys a so-called local deduction theorem:

Theorem 3. [24] Let Γ ∪{φ ,ψ} be a set of FL-formulae. Then the following are
equivalent:

• Γ ∪{φ} `ML ψ ,
• there is an integer n such that Γ `ML φ n→ ψ .

This local deduction theorem, as well as the soundness and completeness of ML, re-
main valid in axiomatic extensions of ML. An axiomatic extension of ML is a logic
having the same axioms and deduction rule as ML, plus one or more other axioms.
Axiomatic extensions of ML are sound and complete w.r.t. residuated lattices that
satisfy the identities corresponding to the extra axioms.

11 A scheme of FL-formulae consists of all FL-formulae of a particular form (the instances of the
scheme). Note that the axioms of ML are schemes.
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4.1.2 Monoidal t-norm based logic

Monoidal t-norm based logic (MTL) [16] is an axiomatic extension of ML. The
extra axiom is (φ → ψ)∨ (ψ → φ). This axiom corresponds with the identity (x⇒
y)t(y⇒ x)= 1 (prelinearity) in residuated lattices. Therefore we have the following
soundness and completeness theorem.

Theorem 4. [16] Monoidal t-norm based logic is sound and strong complete w.r.t.
prelinear residuated lattices (MTL-algebras). In other words: for all Γ ⊆FFL and
φ ∈FFL, we have Γ `MT L φ iff Γ |=L φ for all MTL-algebras L .

The provability relation `MT L is defined in the same way as `ML, only now also
instances of the axiom (φ → ψ)∨ (ψ → φ) may appear in proofs of FL-formulae.
Because MTL-algebras are isomorphic to subdirect products of MTL-chains, the
strong completeness can be strengthened to so-called (strong) chain completeness,
i.e., (strong) completeness w.r.t. MTL-chains.

Theorem 5. [16] Monoidal t-norm based logic is sound and strong chain complete.
In other words: for all Γ ⊆FFL and φ ∈FFL, we have Γ `MT L φ iff Γ |=L φ for
all MTL-chains L .

Chain completeness and strong chain completeness are properties that remain valid
for axiomatic extensions of MTL. Important theorems about MTL that do not neces-
sarily remain valid for axiomatic extensions, are standard completeness and strong
standard completeness. Recall that standard MTL-algebras are MTL-algebras on the
unit interval.

Theorem 6. [29] Monoidal t-norm based logic is sound and strong standard com-
plete. In other words: for all Γ ⊆FFL and φ ∈FFL, we have Γ `MT L φ iff Γ |=L φ

for all standard MTL-chains L .

Because of this theorem, and because standard MTL-chains are induced by left-
continuous t-norms, we can say that MTL is ‘the logic of left-continuous t-norms’.

MTL enjoys the same local deduction theorem as ML:

Theorem 7. [24] Let Γ ∪{φ ,ψ} be a set of FL-formulae. Then the following are
equivalent:

• Γ ∪{φ} `MT L ψ ,
• there is an integer n such that Γ `MT L φ n→ ψ .

4.1.3 Basic logic

Basic logic (BL) [24] is an axiomatic extension of MTL (and therefore also of ML).
The extra axiom is (φ ∧ψ)→ (φ&(φ → ψ)). This axiom corresponds with the
identity (xu y)⇒ (x ∗ (x⇒ y)) = 1 in residuated lattices, in other words xu y ≤
x∗ (x⇒ y). This is equivalent with xu y = x∗ (x⇒ y) (divisibility) because xu y≥
x ∗ (x⇒ y) is valid in all residuated lattices. Because BL is an axiomatic extension



18 Bart Van Gasse, Chris Cornelis and Glad Deschrijver

of MTL and because divisible MTL-algebras are BL-algebras, we immediately have
the following soundness and completeness result.

Theorem 8. [24] Basic logic is sound and strong chain complete. In other words:
for all Γ ⊆FFL and φ ∈FFL, we have Γ `BL φ iff Γ |=L φ for all BL-chains L .

Note that BL is also (strong) complete w.r.t. all BL-algebras, which is a weaker
property than (strong) chain completeness. BL also satisfies standard completeness
(which is stronger than chain completeness), but not strong standard completeness.
This implies that the following theorem in general does not hold for infinite theories
Γ .

Theorem 9. [5] For all finite Γ ⊆FFL and φ ∈FFL, we have Γ `BL φ iff Γ |=L φ

for all standard BL-chains L .

Because standard BL-chains are induced by continuous t-norms, we can say BL is
‘the logic of continuous t-norms’.

The local deduction theorem is also valid for BL.

Theorem 10. [24] Let Γ ∪{φ ,ψ} be a set of FL-formulae. Then the following are
equivalent:

• Γ ∪{φ} `BL ψ ,
• there is an integer n such that Γ `BL φ n→ ψ .

4.1.4 Łukasiewicz logic

Łukasiewicz logic (Ł) is an axiomatic extension of BL (and therefore also of MTL
and ML). The extra axiom is ¬¬φ → φ , in which ¬φ is a short notation for φ → 0.
This axiom corresponds with the identity ¬¬x⇒ x = 1 in residuated lattices, in
other words ¬¬x≤ x. This is equivalent with ¬¬x = x (involutive negation) because
x ≤ ¬¬x is valid in all residuated lattices. Because Ł is an axiomatic extension of
MTL, we immediately have the following soundness and completeness result.

Theorem 11. [24] Łukasiewicz logic is sound and strong chain complete. In other
words: for all Γ ⊆FFL and φ ∈FFL, we have Γ `Ł φ iff Γ |=Ł φ for all MV-chains
L .

Note that Ł is also (strong) complete w.r.t. all MV-algebras, which is a weaker prop-
erty than (strong) chain completeness. Ł also satisfies standard completeness (which
is stronger than chain completeness), but not strong standard completeness. This im-
plies that the following theorem in general does not hold for infinite theories.

Theorem 12. [3, 24] For all finite Γ ⊆ FFL and φ ∈ FFL, we have Γ `Ł φ iff
Γ |=L φ for all standard MV-chains L .

Because standard MV-chains are induced by t-norms that are conjugated to the
Łukasiewicz t-norm, we can say that Ł is ‘the logic of the Łukasiewicz t-norm’.

The local deduction theorem is also valid for Ł.
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Theorem 13. [24] Let Γ ∪{φ ,ψ} be a set of FL-formulae. Then the following are
equivalent:

• Γ ∪{φ} `Ł ψ ,
• there is an integer n such that Γ `Ł φ n→ ψ .

4.1.5 Classical logic

Classical logic (CPC12) is an axiomatic extension of Ł (and therefore also of BL,
MTL and ML). The extra axiom is φ → (φ&φ). This axiom corresponds with the
identity x⇒ (x∗x) = 1 in residuated lattices, in other words x≤ x∗x. This is equiv-
alent with x = x∗ x (contraction) because x∗ x≤ x is valid in all residuated lattices.
Because CPC is an axiomatic extension of MTL, we immediately have the following
soundness and completeness result.

Theorem 14. [34] Classical logic is sound and strong chain complete. In other
words: for all Γ ⊆FFL and φ ∈FFL, we have Γ `CPC φ iff Γ |=L φ for all linear
Boolean algebras L .

Note that there is only one linear Boolean algebra (apart from the trivial one with one
element), namely the Boolean algebra with two elements, 0 and 1. Therefore CPC
cannot satisfy standard completeness, in the sense that CPC is not complete w.r.t.
Boolean algebras on the unit interval (because there are no such Boolean algebras).

The local deduction theorem is also valid for CPC. But because in CPC the FL-
formulae φ and φ n (with n a strictly positive integer) are equivalent (meaning `CPC
φ ↔ φ n holds13), the theorem can be strengthened.

Theorem 15. [34] Let Γ ∪{φ ,ψ} be a set of FL-formulae. Then the following are
equivalent:

• Γ ∪{φ} `CPC ψ ,
• Γ `CPC φ → ψ .

4.1.6 Other fuzzy logics

Apart from the examples in the previous sections, many other fuzzy logics can be
defined by adding axioms to ML, MTL,. . . Examples can be found in e.g. [6]). In
[6] it was proven that an axiomatic extension of MTL is strong standard complete
iff it has the real-chain embedding property, i.e., iff each countable MTL-chain in
its semantics is embeddable in a standard MTL-chain in its semantics.
12 The abbreviation, taken from [6], stands for ‘classical propositional calculus’.
13 In the logics we are concerned with in this work, we have the following property. If a subformula
of a formula is replaced by an equivalent subformula, the resulting formula is equivalent with the
original one. This can be proven using soundness and completeness. For example, in ML and
its axiomatic extensions (p1&p2)→ q is equivalent with (p2&p1)→ q because the subformulae
p1&p2 and p2&p1 are equivalent.
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4.2 Interval-Valued Monoidal Logic: Definition

As semantics of interval-valued fuzzy logics, we choose triangle algebras. Because
triangle algebras have more operators than residuated lattices, IVFL-formulae can
contain more connectives than FL-formulae.

Definition 10. [41] IVFL-formulae are built up from a countable set of propositional
variables (denoted by p, q, r, p1, p2, . . . ) and the constants 0 and u. These symbols
are IVFL-formulae by definition. The other IVFL-formulae are defined recursively:
if φ and ψ are IVFL-formulae, then so are (φ ∧ψ), (φ ∨ψ), (φ&ψ), (φ → ψ), �φ

and ♦φ . The set of IVFL-formulae is denoted by FIV FL. Note that FFL ⊆FIV FL.

In order to avoid unnecessary brackets, we agree on the following priority rules:

• unary operators always take precedence over binary ones, while
• among the connectives, & has the highest priority; furthermore ∧ and ∨ take

precedence over→,
• the outermost brackets are not written.

The same notations (1 is 0→ 0, . . . ) as for FL-formulae are used. Now we are ready
to introduce interval-valued monoidal logic (IVML) [41]. Its axioms are those of
ML, i.e., (ML.1)–(ML.12), complemented with axioms corresponding to 13 prop-
erties of triangle algebras:

(IV ML.1′) φ → ♦φ ,
(IV ML.2) �φ →��φ ,
(IV ML.3) (�φ∧�ψ)→�(φ∧ψ), (IV ML.3′) (♦φ∧♦ψ)→ ♦(φ∧ψ),
(IV ML.4) �(φ∨ψ)→ (�φ∨�ψ), (IV ML.4′) ♦(φ∨ψ)→ (♦φ∨♦ψ),
(IV ML.5) ¬�u, (IV ML.5′) ♦u,
(IV ML.6) ♦φ →�♦φ , (IV ML.6′) ♦�φ →�φ ,
(IV ML.7) �(φ → ψ)→ (�φ →�ψ),
(IV ML.9) (�φ →�ψ)→�(�φ →�ψ),
(IV ML.10) φ ↔ (�φ ∨ (♦φ ∧u)).

All instances of these axioms are by definition provable in IVML. To determine
which other IVFL-formulae are provable, there are three deduction rules: modus
ponens (MP, if φ and φ → ψ are provable in IVML, then so is ψ), generalization
(G, if φ is provable in IVML, then so is �φ ) and monotonicity of ♦ (M♦, if φ→ψ is
provable, then so is ♦φ → ♦ψ). Proofs in IVML and the provability relation `IV ML
are defined in the usual way, similarly as for ML (and the other fuzzy logics from
Section 4.1). If Γ is a theory, i.e., a set of IVFL-formulae, then a (formal) proof of
an IVFL-formula φ in Γ is a finite sequence of IVFL-formulae with φ at its end,
such that every IVFL-formula in the sequence is either an instance of an axiom of
IVML, an IVFL-formula of Γ , or the result of an application of a deduction rule to
previous IVFL-formulae in the sequence. If a proof for φ exists in Γ , we denote this
by Γ `IV ML φ .
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Definition 11. [41] Let A = (A,u,t,∗,⇒,ν ,µ,0,u,1) be a triangle algebra, Γ a
theory (i.e., a set of IVFL-formulae). An A -evaluation is a mapping e from the set
of IVFL-formulae to A that satisfies, for each two IVFL-formulae φ and ψ:

• e(φ ∧ψ) = e(φ)u e(ψ),
• e(φ ∨ψ) = e(φ)t e(ψ),
• e(φ&ψ) = e(φ)∗ e(ψ),
• e(φ → ψ) = e(φ)⇒ e(ψ),
• e(�φ) = νe(φ),
• e(♦φ) = µe(φ),
• e(0) = 0 and
• e(u) = u.

If an A -evaluation e satisfies e(χ) = 1 for every χ in Γ , it is called an A -model for
Γ . We write Γ |=A φ if e(φ) = 1 for all A -models e for Γ .

Soundness, completeness and strong completeness are defined similarly as for for-
mal fuzzy logics. We just have to replace ‘residuated lattice’ by ‘triangle algebra’
and ‘FL-formula’ by ‘IVFL-formula’.

Now we introduce some axiomatic extensions of IVML, by adding well-known
axioms. Note that these axioms are applied to IVFL-formulae of the form �φ

instead of to all IVFL-formulae. As the image of a triangle algebra (A,u,t,∗,
⇒,ν ,µ,0,u,1) under ν is the set E(A ) of exact elements14, this means that the
axioms schemes do not hold for all truth values, but only for exact truth values. This
is not a drawback. On the contrary, it is precisely what we want because the exact
truth values are easier to interpret and handle. Moreover, using Proposition 3, for
all axioms equivalent axioms can be found that only involve IVFL-formulae of the
form �φ and ♦φ , and u.

Definition 12. [38]

• Interval-valued monoidal t-norm based logic (IVMTL) is IVML extended with
the axiom scheme pseudo-prelinearity

(�φ →�ψ)∨ (�ψ →�φ).

• Interval-valued basic logic (IVBL) is IVMTL extended with the axiom scheme
pseudo-divisibility

(�φ ∧�ψ)→ (�φ&(�φ →�ψ)).

• Interval-valued Łukasiewicz logic (IVŁ) is IVBL extended with the axiom scheme
pseudo-involution

¬¬�φ →�φ .

14 Note that the image under µ is also E(A ). All axiom schemes in Definition 12 can also be given
in an equivalent way by changing �φ to ♦φ and/or �ψ to ♦ψ .
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• Interval-valued classical propositional calculus (IVCPC) is IVŁ extended with
the axiom scheme pseudo-contraction

�φ → (�φ&�φ).

4.3 Soundness and completeness

It is easy to check that IVML is sound w.r.t. the variety of triangle algebras, i.e.,
that if an IVFL-formula φ can be proven from a theory Γ in IVML (Γ `IV ML φ ),
then for every triangle algebra A and for every A -model e of Γ , e(φ) = 1 (in other
words: for every triangle algebra A , Γ |=A φ ). To show that IVML is also strong
complete (w.r.t. triangle algebras), i.e., that the converse of soundness also holds, a
general result from abstract algebraic logic (shortly AAL, see e.g. [19] for a survey)
can be applied. It proceeds by showing that IVML is an implicative logic (in the
sense of Rasiowa [33]). From this we can deduce (according to e.g. [18]) that IVML
is strong complete w.r.t. the variety of triangle algebras if it is sound w.r.t. it and if in
triangle algebras x = y if x⇒ y = 1 and y⇒ x = 1. Triangle algebras indeed satisfy
these conditions, so we can conclude that IVML is sound and strong complete w.r.t.
triangle algebras.

Theorem 16. (Soundness and strong completeness of IVML) [41] An IVFL-
formula φ can be deduced from a theory Γ in IVML iff for every triangle algebra
A and for every A -model e of Γ , e(φ) = 1.

A more basic proof for the completeness of IVML, using the Lindenbaum algebra
of IVML and inspired by a similar, commonly used procedure for formal fuzzy
logics, was given in [36].

Theorem 16 implies similar results for axiomatic extensions (e.g. the interval-
valued fuzzy logics in Definition 12), in the same way as the soundness and com-
pleteness of ML remains valid for axiomatic extensions. This can be seen by tak-
ing the set of all instances of the extra axioms as Γ in Theorem 16. In particular,
all extensions of IVML introduced in Section 4.2 are sound and (strong) complete
w.r.t. their corresponding subvariety of the variety of triangle algebras. For exam-
ple, IVBL is sound and complete w.r.t. the variety of triangle algebras satisfying
(νx⇒ νy)t (νy⇒ νx) = 1 and νxuνy≤ νx∗ (νx⇒ νy).

For IVMTL and its axiomatic extensions we can prove a stronger version of com-
pleteness, namely strong pseudo-chain completeness. This is similar to axiomatic
extensions of MTL being strong chain-complete. Together with Theorem 16, Theo-
rem 1 implies the following result:

Theorem 17. [42] For each set of IVFL-formulae Γ ∪φ , the following three state-
ments are equivalent:

• φ can be deduced from a theory Γ in IVMTL (Γ `IV MT L φ ),
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• for every pseudo-prelinear triangle algebra A and for every A -model e of Γ ,
e(φ) = 1,

• for every pseudo-linear triangle algebra A and for every A -model e of Γ ,
e(φ) = 1.

This completeness result remains valid for axiomatic extensions of IVMTL. The
reason is that Theorem 1 also holds for subvarieties of pseudo-prelinear triangle
algebras.

Using Theorem 6 and the real-chain embedding property, also the strong standard
completeness of IVMTL can be proven.

Theorem 18. [38] (Strong standard completeness) For each set of IVFL-formulae
Γ ∪{φ}, the following four statements are equivalent:

1. φ can be deduced from Γ in IVMTL (Γ `IV MT L φ ),
2. for every pseudo-prelinear triangle algebra A , Γ |=A φ (i.e., for every A -model

e of Γ , e(φ) = 1),
3. for every pseudo-linear triangle algebra A , Γ |=A φ ,
4. for every standard triangle algebra A , Γ |=A φ .

Because of Proposition 2, every standard triangle algebra is isomorphic to a stan-
dard extended IVRL, and every standard extended IVRL is a standard triangle alge-
bra. This result leads to the following corollary of Theorem 18.

Corollary 1. For each set of IVFL-formulae Γ ∪{φ}, the following statements are
equivalent:

1. φ can be deduced from Γ in IVMTL (Γ `IV MT L φ ),
2. for every standard extended IVRL A , Γ |=A φ .

So we can truly state that IVMTL is an interval-valued fuzzy logic. It is the logic of
the t-norms TT,t in (2), with T a left-continuous t-norm on the unit interval.

Finally, it is also possible to prove the local deduction theorem for IVML (and
its axiomatic extensions), which gives a connection between `L and→.

Theorem 19. [38] Let Γ ∪{φ ,ψ} be a set of IVFL-formulae, and L be an axiomatic
extension of IVML. Then the following are equivalent:

• Γ ∪{φ} `L ψ ,
• There is an integer n such that Γ `L (�φ)n→ ψ .

4.4 Interpretation

Interval-valued fuzzy logics as we introduced them, are truth-functional logics: the
truth degree of a compound proposition is determined by the truth degree of its
constituent parts. This causes some counterintuitive results, if we want to interpret
the element [0,1] of an IVRL as uncertainty regarding the actual truth value of a
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proposition. For example: suppose we don’t know anything about the truth value
of propositions p and q, i.e., e(p) = e(q) = [0,1]. Then yet the implication p→ q
is definitely valid: e(p→ q) = e(p)⇒ e(q) = [1,1]. However, if ¬[0,1] = [0,1] 15

(which is intuitively preferable, since the negation of an uncertain proposition is still
uncertain), then we can take q=¬p, and obtain that p→¬p is true. Or, equivalently
(using the residuation principle), that p&p is false. This does not seem intuitive, as
one would rather expect p&p to be uncertain if p is uncertain.
Another consequence of [0,1]⇒ [0,1] = [1,1] is that it is impossible to interpret the
intervals as a set in which the ‘real’ (unknown) truth value is contained, and X ⇒ Y
as the smallest closed interval containing every x⇒ y, with x in X and y in Y (as in
[15]). Indeed: 1 ∈ [0,1] and 0 ∈ [0,1], but 1⇒ 0 = 0 /∈ [1,1].
On the other hand, for t-norms it is possible that X ∗Y is the smallest closed interval
containing every x ∗ y, with x in X and y in Y , but only if they are t-representable
(described by the axiom µ(x ∗ y) = µx ∗ µy). However, in this case ¬[0,1] = [0,0],
which does not seem intuitive (‘the negation of an uncertain proposition is abso-
lutely false’).
These considerations seem to suggest that IVML and its axiomatic extensions are
not suitable to reason with uncertainty. This does not mean that intervals are not a
good way for representing degrees of uncertainty, only that they are not suitable as
truth values in a truth-functional logical calculus when we interpret them as express-
ing uncertainty. It might even be impossible to model uncertainty as a truth value in
any truth-functional logic. This question is discussed in [12, 13]. However, nothing
prevents the intervals in interval-valued fuzzy logics from having more adequate
interpretations.
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