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1 Introduction

Various uncertainties in real world applications can bring difficulties in deter-

mining the crisp membership functions of type-1 fuzzy sets [25]. They involve

not only vagueness (lack of sharp class boundaries), but also ambiguity (lack of

information). Hence many extensions have been developed to represent these

uncertainties in membership values, such as interval-valued fuzzy sets [35],

Atanassov intuitionistic fuzzy sets [1], shadowed sets [32] and type-2 fuzzy

sets [25]. These models introduce intervals, multiple parameters, and fuzzy

sets to describe the uncertain membership functions of fuzzy sets. However,

intervals and multiple parameters in interval-valued fuzzy sets, Atanassov intu-

itionistic fuzzy sets and shadowed sets do not recognise the difference between

values within their intervals or shadowed zone. A type-2 fuzzy set describes

its memberships using type-1 fuzzy sets, but it needs precise crisp values to

describe its secondary memberships. Here, we adopt rough sets to approx-

imate the uncertain fuzzy membership function of a fuzzy set. Rough sets

provide a different model in representing ambiguity of sets, and the com-

bination of fuzzy sets with rough sets has received intensive investigations

[4,10,14–16,18–21,23,27,28,31–34,38,39,41,50,51]. However, most works focus

on the fuzzy equivalence relations. So far as we know, there is no published

work applying rough sets to approximate the membership functions of fuzzy

sets.

Section 2 of this paper presents a brief overview of interval-valued fuzzy sets,

Atanassov intuitionitic fuzzy sets, shadowed sets, type-2 fuzzy sets, rough sets

and grey sets, defining the ideas and concepts that will be required for the

rest of the paper. This section introduces the ideas informally to establish
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the semantics and then makes more formal definitions. Establishment of the

semantics allows us to see what the definitions really mean, and also to grasp

the differences. Section 3 defines R-fuzzy sets and gives some examples whilst

Section 4 investigates the relationships between R-fuzzy sets and other fuzzy

sets. Finally, Section 5 discusses the results.

1.1 Motivation

We use the voting model to generate membership functions across a set of

populations. By performing various operations on this set of votes we obtain

different fuzzy representations. At this point we are using just one criterion.

• The mean, mode or median of those membership functions give various ways

of obtaining a conventional fuzzy set.

• The lower and upper bounds of the membership functions give interval

valued fuzzy sets.

• If the question “what values would you not permit as a member” is also

asked and used to derive a non-membership function we obtain Atanassov

Intuitionistic Fuzzy Sets if we use the mean, mode or median; and by taking

the interval given by the lower and upper bound of the voting sets we obtain

Interval Valued Atanassov Intuitionistic Fuzzy Sets.

• The distribution of membership functions may be used to derive a fuzzy set

to give type-2 fuzzy sets.

• Taking the higher values of membership functions as 1 and lower values as

0, and leaving anything in between as [0,1], we get shadowed sets.

• By taking those membership function values shared by all the voters as the

lower approximation, and those values voted by at least one voter as the
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upper approximation, we get R-Fuzzy sets; the topic of this paper.

If we generate membership functions over a set of criteria we obtain L-fuzzy

sets. The usual operations of conjunction and disjunction, along with others,

may be the derived from the basic single criteria operations. So a conventional

L-fuzzy set would have a vector of real numbers as its membership function.

This membership function would be a precise vector with the representational

accuracy available. Similarly, an interval valued L-fuzzy set would have a vec-

tor of intervals. It is important for the following that we understand that the

vector has a fixed number of components in its representation of any given

set. The accuracy of this vector in representing any criterion is governed by

the accuracy of the representation used to measure the individual criteria.

By the nature of fuzziness, it is not always possible for people to give an

accurate value for the membership value. However, it is feasible to give a set

of permitted values in most cases. For example, if the membership of specific

person in the set “tall” is to be evaluated , 30-40 voters may be in favour of

{0.5,0.6,0.7} and some other voters may take {0.6, 0.7, 0.8} as their choice of

the values. Here, every voter is in favour of 0.6 and 0.7. Then we can represent

the membership value of this person to be “tall” as ({0.6, 0.7}, {0.5, 0.6, 0.7,

0.8}). Different from type-2, we do not need a precise secondary membership

here, so there is no need to go for type-3 which is needed to resolve the

remaining imprecision of type-2. Compared with interval-valued fuzzy sets,

we are not saying that 0.65 has to be a valid or candidate membership value

unless we assume continuity. Hence we have a different form of information to

interval-valued fuzzy sets. In this example we see that the inner approximation

and the outer approximation may be represented as intervals. We may obtain

a rough set membership function as ({0.5, 0.8}, {0.5, 0.6, 0.7, 0.8}) where the
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lower approximation is disjoint and the central values would definitely not be

considered as candidates for the lower approximation.

2 Basic Definitions

We first need to more formally define some relevant concepts in order to place

the work into context and also to provide the necessary material to build the

later work on.

Definition 1 (Fuzzy sets[52]) Let U denote a universe of discourse. Then

a fuzzy set A in U is defined as a set of ordered pairs

A = {〈x, µA(x)〉 | x ∈ U}

where µA : U −→ [0, 1] is the membership function of A and µA(x) is the grade

of belongingness of x in A.

The membership function value [22] can be any real number between 0 and 1

which implies the vagueness caused by lack of sharp class boundaries. How-

ever, it is not always possible to give a crisp value for the membership. For

instance, if the information about some membership values is not complete, a

crisp value will be impossible to determine. Under such situations, the mem-

bership representation in definition 1 has to be modified to consider the sec-

ondary uncertainty involved. There have been several extensions of fuzzy sets

to accommodate the uncertainties in fuzzy membership values. If the uncertain

membership values of a fuzzy set could be represented as intervals between 0

and 1, then we get the so called interval-valued fuzzy sets.

Definition 2 (Interval-valued fuzzy set[35]) Let D[0, 1] be the set of all
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closed subintervals of the interval [0,1]. U is the universe of discourse, x is an

element and x ∈ X. An interval-valued fuzzy set in U is given by set A

A = {〈x,MA(x)〉 | x ∈ U}

with MA : U → D[0, 1].

The membership of an individual element is thus characterised as an interval

instead of a single value in fuzzy sets. Interval-valued fuzzy sets provide a sim-

ple and efficient representation of the uncertain membership values of a fuzzy

set [8]. Similar to interval-valued fuzzy sets, Atanassov intuitionistic fuzzy

sets [1] provide another model for representing uncertainties in membership

values of a fuzzy set.

Definition 3 (Atanassov intuitionistic fuzzy sets[1]) An Atanassov in-

tuitionistic fuzzy set A in U is given by

A = {〈x, µA(x), νA(x)〉 | x ∈ U}

where

µA : U → [0, 1] , νA : U → [0, 1]

and

0 ≤ µA(x) + νA(x) ≤ 1 ∀x ∈ U.

For each x, the numbers µA(x) and νA(x) are the degree of membership and

degree of non-membership of x in A respectively.

An Atanassov intuitionistic fuzzy set becomes a fuzzy set when νA(x) = 1 −

µA(x). It can also be converted to an equivalent interval-valued fuzzy set.

However, there are some semantic differences [7] between these two models.
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If the membership function of a fuzzy set involves uncertainties, it is reasonable

to represent the membership function using a fuzzy set. We have a special fuzzy

set whose membership function is described by fuzzy sets as well. Such a fuzzy

set is called type-2 fuzzy set [25]. It is a general extension to fuzzy sets, and

interval-valued fuzzy sets can be considered as a special case of type-2 fuzzy

sets [8].

Definition 4 (type-2 fuzzy sets[25]) A type-2 fuzzy set A, is characterized

by a type-2 membership function µA(x, u), where x ∈ U and u ∈ Jx ⊆ [0, 1],

Jx is a finite discretised set which limits the values of u ⊆ [0, 1], i.e.,

A = {〈(x, u), µA(x, u)〉 | ∀x ∈ U,∀u ∈ Jx ⊆ [0, 1]}

in which µA : U × Jx −→ [0, 1]. A can also be expressed as

A =
∫

x∈U

∫

u∈Jx

µA(x, u)/(x, u) Jx ⊆ [0, 1]

where
∫ ∫

denotes union over all admissible x and u. For discrete universes of

discourse
∫

is replaced by
∑

.

Rough sets take a different route from fuzzy sets in representing uncertainties.

It represents an uncertain set by means of approximations in information

systems. An information system is described by a pair (U, A), where U is a

non-empty, finite set of objects called the universe and A is a non-empty, finite

set of attributes. Every attribute a ∈ A of an object has a value. An attribute’s

value must be a member of the set Va which is called the value set of attribute

a (a : U → Va).

Definition 5 (Approximation[30]) Λ = (U, A) is a given information sys-

tem, X ⊆ U is a set. For a given set B ⊆ A, the set X is approximated with
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two sets B∗(X) and B∗(X)

B∗(X) =
⋃

x∈U

{B(x) : B(x) ⊆ X}

B∗(X) =
⋃

x∈U

{B(x) : B(x) ∩ X 6= ∅}

here, B(x) refers to an equivalence class containing x. B∗(X) and B∗(X) are

called the B-lower and B-upper approximations of X, respectively.

The B-lower approximation contains objects that are known to be members of

X. The objects in the set of the B-upper approximation are possible members

of X. In this paper, we adopt the set-oriented interpretation of rough sets

[19,26,29,47,50] and define a rough set as a pair of definable sets [19].

Definition 6 (Rough sets[50]) Let the pair apr = (U, B) be an approxima-

tion space on U and U/B denotes the set of all equivalence classes of B. The

family of all definable sets in approximation space apr is denoted by Def(apr).

Given two subsets A,A ∈ Def(apr) with A ⊆ A, the pair (A,A) is called a

rough set.

Here, A is the lower approximation of X = (A,A), and A is the upper ap-

proximation of X. The boundary region could be derived as A−A. If A = A,

then (A,A) is a definable set. For an element x ∈ U, we have:

• if x ∈ A then x ∈ (A,A)

• if x ∈ U − A then x /∈ A

• if x ∈ A and x /∈ A then x has unknown relation with (A,A)

It should be noted that different views exist for rough sets interpretation, so

do their properties. A comprehensive review was given by Yao in [50]. Here, we

adopt the Iwinsky type set-oriented rough sets [19], although there are other
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similar definitions of set-oriented rough sets, such as the P-rough sets defined

by Pawlak [29,50] and the disjoint pair [26].

Rough sets and fuzzy sets are two different theories capturing two distinct

aspects of imperfection in knowledge: indiscernibility and vagueness[14]. How-

ever, as a concept induced from fuzzy sets, shadowed sets [32] have a close

relationship with rough sets as well. Considering a fuzzy set A ∈ U, we elevate

those membership values that are high enough to 1 and reduce those substan-

tially low membership values to 0, and represent those values in between as

[0, 1], then we have transformed the fuzzy set to a shadowed set [32].

A : U −→ {0, 1, [0, 1]}

Here, each element x is associated with 0, 1 or [0, 1]. The elements for which

A(x) attains 1 constitute its core, and the elements where A(x) = [0, 1] form a

shadow where uncertainty exists. Shadowed sets do not require precise mem-

bership values, and partition the elements of a fuzzy set into three categories:

Yes (1), No (0) and Unknown ([0, 1]). In this sense, shadowed sets are concep-

tually close to rough sets.

As a different model for uncertainty representation, grey systems [9] provide

another route to uncertainty modelling. In grey systems, the information is

classified into three categories: white with completely certain information, grey

with insufficient information, and black with totally unknown information. A

grey number is a number with clear upper and lower boundaries but which

has an unknown position within the boundaries[24]. Combining fuzzy sets

and grey systems, we proposed grey sets as a general model for uncertainty
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representation[46,48,49].

Definition 7 (Grey sets[49]) For a set A ⊆ U, if the characteristic func-

tion value of x with respect to A can be expressed with a continuous grey num-

ber v± = [v−, v+] ∈ D[0, 1]± or a discrete grey number v± = {v−, v1, v2, . . . , vk, v
+} ∈

D[0, 1]±

χG : U → D[0, 1]±

then A is a grey set.

Here, D[0, 1]± refers to the set of all grey numbers within the interval [0,1]. A

grey number is different from an interval or a set in that it is a single number

represented by an interval or a set [42]. Some recent research has linked grey

sets with rough sets and proposed grey rough sets [40] for interval data. Al-

though grey sets provide an alternative model for uncertainty representation,

they have a close relationship with fuzzy sets [46,48,49] and can be considered

as an extension of fuzzy sets.

The dilemma of excessive precision in describing imprecise phenomena [32]

has been resolved to some extent by interval-valued fuzzy sets, Atanassov

intuitionistic fuzzy sets, shadowed sets, grey sets and type-2 fuzzy sets, but

some outstanding questions remain. Interval-valued fuzzy sets, Atanassov in-

tuitionistic fuzzy sets, shadowed sets and grey sets provide a convenient rep-

resentation of the uncertainty involved in the membership values of a fuzzy

set. However, the values within an interval may not be equally distributed as

implied by interval-valued fuzzy sets. Some values may have a definite rela-

tionship with the membership values concerned, and some others may involve

uncertainties. For example, some weather conditions are cold for everyone in-
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volved, but some other weather conditions may be considered as cold only by

some individuals. Therefore, different people may give different temperatures

as their understanding of “cold”. There are both similarities and differences

in their perceptions. It means that the fuzzy membership values for a descrip-

tive object may not be representable by a single value or a single interval. An

informative representation of a descriptive term should satisfy not only the

requirements of imprecise representation, but also convey both the common

perceptions and individual perceptions. Type-2 fuzzy sets have gone one step

further to replace the crisp membership values of a fuzzy set with type-1 fuzzy

sets. However, the secondary membership function of a type-2 fuzzy set is still

described using crisp values, so we go back to the same dilemma. This dilemma

exists even if we go to type-n fuzzy sets. However, as we regress downwards

in our pursuit of precision we do get closer to an agreed model but at the ex-

pense of very heavy computation and complexity of representation. To solve

this dilemma, it is necessary to describe the fuzzy membership function of a

fuzzy set using a different model than fuzzy sets.

Fuzzy sets and rough sets are two different models of uncertainty representa-

tion [14]. Fuzzy sets focus on the ill-definition of the boundary of a concept by

means of set characteristic functions. Rough sets highlight the indiscernibility

between objects through equivalence relations. There have been many studies

in the combination of these two models, such as fuzzy rough sets[14,23,27,51].

However, fuzzy rough sets adopt fuzzy sets to describe rough sets, and their

representation is based on two fuzzy sets. A similar situation is true with rough

fuzzy sets [51] as well. Most existing combination models define their sets by

two fuzzy sets in the end. Here, we combine these two models in a different
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way, we describe the membership function of a fuzzy set using rough sets.

3 R-fuzzy sets

In general, a rough set is defined in a finite universe. It is necessary to discretise

a continuous interval in [0,1] into a discrete set. For a discrete set of values in

[0,1], we define a granule to measure its discretisation.

Definition 8 (Granule of a subset of values) Let Jx = {v1, v2, . . . , vn} be

a subset of values in [0,1] and vi ≤ vj if i ≤ j. The greatest difference ∆Jx

between two adjacent elements vi and vi+1 (i < n) is called the granule of Jx:

∆Jx
= max{|v2 − v1|, |v3 − v2|, . . . , |vn − vn−1|}

Obviously, if Jx = [v1, v1], then we have ∆Jx
= 0.

Definition 9 Let A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bk} be two subsets

of ordered values, where a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bk. We define

• A ≤ B iff a1 ≤ b1 and an ≤ bk

• A < B iff A ≤ B but A 6= B

• A ≈ B iff A ≤ B and B ≤ A

It should be noted here that A ≈ B is different from A = B. A ≈ B restricts

only the bounds of the two sets, but they may contain other elements which

are different between the two sets.
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Let pair apr = (Jx, B) be an approximation space on a set of values Jx =

{v1, v2, . . . , vn} and Jx/B denotes the set of all equivalence classes of B. The

family of all definable sets in approximation space apr is denoted by Def(apr).

Given two subsets M,M ∈ Def(apr) with M ⊆ M , the pair (M,M) is obvi-

ously a rough set according to Definition 6. Therefore, a subset of values could

be approximated with a rough set when its exact boundary is not possible to

be precisely identified using Jx/B.

Considering Jx as the universe of discrete values of possible fuzzy member-

ship after discretisation of [0,1], we have Jx ⊆ [0, 1]. Under this situation, the

granule ∆Jx
of Jx has significant influence on the approximation of a subset

of values in [0, 1]. For the approximated membership values, its rough approx-

imation (M,M) could be different with a different discretisation. However, it

converges to a pair of intervals when its granule ∆Jx
approaches 0:

lim
∆Jx−→0

(M,M) = ([x1, x2], [y1, y2])

where x1 = inf M∆Jx→0, x2 = sup M∆Jx→0, y1 = inf M∆Jx→0 and y2 =

sup M∆Jx→0.

Now, we can define R-fuzzy sets.

Definition 10 (R-fuzzy sets) Let the pair apr = (Jx, B) be an approxima-

tion space on a set of values Jx = {v1, v2, . . . , vn} ⊆ [0, 1] and Jx/B denotes

the set of all equivalence classes of B. (MA(x),MA(x)) be a rough set in apr.

A R-fuzzy set A, is characterized by a rough set as its membership function

(MA(x),MA(x)), where x ∈ U, i.e.,

A = {
〈

x, (MA(x),MA(x))
〉

| ∀x ∈ U,MA(x) ⊆ MA(x) ⊆ Jx}
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A can also be expressed as

A =
∑

x∈U

(MA(x),MA(x))/x

where
∑

denotes union over all admissible x.

Similar to type-2 fuzzy sets and interval-valued fuzzy sets, a R-fuzzy set de-

scribes its membership using a set itself. Membership of R-fuzzy sets is a set

of values satisfying its membership description. Therefore, the membership

values of a R-fuzzy set usually contains more than one value although a single

valued set is possible.

For each xi ∈ U, there is an associated membership description d(xi) describ-

ing the belongingness of xi to a set A ⊆ U. Jx is a given subset of values with

possible membership values of a R-fuzzy set A ⊆ U. C is a set of available

evaluation criteria. Each value v ∈ Jx is evaluated by cj ∈ C to determine if

it fits with d(xi) for xi with respect to A. The result of the evaluation is Yes

or No, and we can represent this evaluation as:

v
(d(xi),cj)
−→ Y es or v

(d(xi),cj)
−→ No

For each pair (d(xi), cj) where xi ∈ U and cj ∈ C, a set Mcj
(xi) ⊆ Jx is

constructed:

Mcj
(xi) = {v | v ∈ Jx, v

(d(xi),cj)
−→ Y es}

The lower and upper approximations of the rough set M(xi) for the member-

ship function described by d(xi) are

M(xi) =
⋂

j

Mcj
(xi)

M(xi) =
⋃

j

Mcj
(xi)
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Then the rough set approximating the uncertain membership d(xi) for xi is

constructed as

M(xi) =





⋂

j

Mcj
(xi),

⋃

j

Mcj
(xi)





For a given d(xi), it is obvious that M(xi) depends on Jx. For the same d(xi),

Ma(xi) and Mb(xi) are two R-fuzzy memberships constructed for A ⊆ U from

Ja
x and J b

x using the same criteria set C. Ma(xi) and Mb(xi) may be different

if Ja
x 6= J b

x. For the same C, however, Ma(xi) = Mb(xi) holds if Ja
x = J b

x.

Particularly, both Ma(xi) and Mb(xi) converge to the same representation

when their granule ∆Jx
approaches 0.

lim
∆Ja

x
→0

Ma(xi) = lim
∆

Jb
x
→0

Mb(xi)

In addition to Jx, a change of the criteria set C brings a different M(xi) as

well. Considering v
(d(xi),cj)
−→ Y es, it is possible for a different C to produce a

different Mcj
(xi) and hence a different M(xi). Therefore, a R-fuzzy set A ⊆ U

can only be constructed when Jx and C are known.

Different people may have different perceptions about the same object. The

set of perceptions of people is one example of the criteria set C, and each

person has their own criteria cj ∈ C in evaluating a given object. R-fuzzy sets

provide a very convenient model to deal with such situations.

Example f1, f2, f3, f4, f5, f6, f7, f8, f9, f10 are 10 flights whose noise levels are

recorded at an airport. Their corresponding noise levels are 10, 20, 30, 50, 40,

70, 20, 80, 30 and 60 (dBA). p1, p2, p3, p4, p5 and p6 are 6 people at the same

location. They gave their evaluations on the disturbances of these flights as

shown in Table 1. Here, VN, BN, AC and NN refer to very noisy (VN), a bit

noisy (BN), acceptable (AC) and not noisy (NN).
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Table 1

Human perception of noise

person f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

p1 NN NN NN AC AC BN NN VN NN BN

p2 NN NN AC AC AC BN NN VN AC BN

p3 NN AC AC BN AC VN AC VN AC BN

p4 NN NN NN AC AC BN NN VN NN BN

p5 NN AC AC AC AC BN AC VN AC BN

p6 NN NN AC AC AC VN NN VN AC BN

To construct a fuzzy set, we use noise level to establish its membership func-

tion. We apply the following simple linear function:

µ(fi) =
li − lmin

lmax − lmin

Here, li refers to the noise level of fi, lmax and lmin represent the maximum and

minimum value of li. Therefore, we get the precise fuzzy membership values

for the 10 flights:

µ(f1) = 0, µ(f2) = 0.14, µ(f3) = 0.29, µ(f4) = 0.57, µ(f5) = 0.43

µ(f6) = 0.86, µ(f7) = 0.14, µ(f8) = 1, µ(f9) = 0.29, µ(f10) = 0.71

However, it is not always possible to know the exact noise level of flights,

and furthermore, people do not need to know the exact noise level in their

communication. It raises a question to fuzzy sets: how to express the fuzzy
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membership function if we do not know the exact noise level? For example,

if we know a flight f11 whose noise is acceptable, how to describe it using

fuzzy memberships? The traditional fuzzy sets will simply assign a precise

membership value to it, such as 0.57 by P1. However, Table 1 reveals that

each person may give a different answer to this question. For example, P5 may

get 0.29 instead. It is the difference in the perception of people that makes their

answers different. The difference in perception may cause misunderstanding

in communication of our fuzzy concepts, so it is important to conserve it in

our fuzzy membership. We can do this using R-fuzzy sets. In this example, Jx

is the set of all membership values in the 10 recorded flights. Therefore, we

have

Jx = {0, 0.14, 0.29, 0.43, 0.57, 0.71, 0.86, 1}

We know that f11 is an “acceptable” flight, hence d(f11) =“acceptable” and

its membership has to satisfy this description. Here, the evaluation criteria

is decided by each person, C = {p1, p2, p3, p4, p5, p6}. Each value v ∈ Jx is

evaluated by pj ∈ C to determine if it fits with d(f11) for f11 ∈ U.

v
(d(f11),pj)
−→ Y es

For each pi ∈ C, there is a corresponding row in Table 1. For those columns

with a matching description with d(f11)=“AC”, its corresponding flights will

give the membership values according to their noise levels. Then we can con-

struct a subset of values Mpj
(f11) ⊆ Jx according to Table 1.

Mp1
(f11) = {0.43, 0.57}, Mp2

(f11) = {0.29, 0.43, 0.57}

Mp3
(f11) = {0.14, 0.29, 0.43, 0.57}, Mp4

(f11) = {0.43, 0.57}

Mp5
(f11) = {0.14, 0.29, 0.43, 0.57}, Mp6

(f11) = {0.29, 0.43, 0.57}

The lower and upper approximations of the rough set M(f11) for the mem-
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bership function described by d(f11) are

M(f11) =
⋂

j

Mpj
(f11) and M(f11) =

⋃

j

Mpj
(f11)

Then the rough set approximating the uncertain membership d(f11) is con-

structed as

M(f11) =





⋂

j

Mpj
(f11),

⋃

j

Mpj
(f11)





Therefore, we have

M(f11) = ({0.43, 0.57}, {0.14, 0.29, 0.43, 0.57})

The results suggest that the membership values 0.43 and 0.57 are agreed by

all people that their corresponding flights are “Acceptable”. In addition to

this, the flights associated with values 0.14 and 0.29 are also considered as

“Acceptable” by some people although others may consider it as “Not Noisy”

rather than “Acceptable”.

To define the membership value of f11, traditional type-1 fuzzy sets will take

a value like average value to represent it:

µ(f11) =
1

23

∑

(0.57 + 0.43 + 0.29 + 0.57 + 0.43 + 0.29 + 0.14

+0.29 + 0.43 + 0.14 + 0.29 + 0.57 + 0.43 + 0.14 + 0.29 + 0.57

+0.43 + 0.14 + 0.29 + 0.29 + 0.57 + 0.43 + 0.29)

= 0.36

Obviously, this result suggests that 0.57 is not appropriate to describe “Ac-

ceptable”, however, the data in Table 1 shows that every one agrees on the

validity of 0.57 as a description for “Acceptable”. Another possible solution

here is to apply interval-valued fuzzy sets. Considering the lower and upper
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bounds of the membership values for “Acceptable” in Table 1, “Acceptable”

can be represented by [0.14, 0.57]. It does include all possibilities now, but one

cannot tell which values are shared by all people. This important information

is lost as a result of interval-valued fuzzy sets. Intuitionistic fuzzy sets share

the same problems. For type-2 fuzzy sets, the limited number of flights here

is not enough to setup a reliable membership distribution, and furthermore,

the computational complexity is much higher than other models. Shadowed

sets would consider “Acceptable” as unknown, so it cannot help this situation.

Obviously, R-fuzzy sets provide a unique tool here.

For rough set M(f11), the lower approximation of membership values rep-

resents those values agreed by each person. If a value belongs to the lower

approximation, then the value definitely satisfies its membership description.

However, M(f11) does not exclude the existence of other possible perceptions

not shared by other people, and it represents them by means of the upper

approximation of membership values. A value in the upper approximation

indicates that it is possible for the value to belong to the described mem-

bership depending on different individuals. Therefore, M(f11) recognises and

conserves the diversity of perceptions in its fuzzy membership representations.

This kind of information may be important for airports and the residences in

their vicinity. A model ignoring the diversity of perceptions may give false

noise exposure annoyance than it is in the real world [17]. As aforementioned,

a model using type-2 fuzzy sets here loses information on the applicability of

flights associated with 0.57, and a model with interval-valued fuzzy sets does

not differentiate the applicability between 0.57 and 0.14. In real world airport

operations, a target of 0.57 is much more applicable than 0.36 or 0.14. A rep-

19



resentation using R-fuzzy sets is especially beneficial when different airports

are involved. The aircraft noise perceptions could be significantly different be-

tween two airports even if their geographical locations are not far away from

each other, and a representation using R-fuzzy sets could naturally reveal the

difference. Obviously, this application could be extended into other areas such

as communications between different communities with different geographical

locations or subjects.

A R-fuzzy set describes its membership function with a rough set. The involve-

ment of rough approximations in membership functions provides the capability

for R-fuzzy sets to represent some situations, which are difficult to model by

other fuzzy sets. Other techniques have been used to model aircraft noise as it

is highly relevant to modern society and especially to those living and working

near airports [43–45].

Example U = {x1, x2, . . . , xn} is a set of voters for party A and party B. The

political preference of voters can be represented as a set: {support A, close to

A, slightly bias to A than B, no preference, slightly bias to B than A, close to

B, support B}. We can convert this preference set into a set of values

Jx = {1, 0.84, 0.67, 0.5, 0.34, 0.17, 0}

If we know the exact preference of each voter, then we can represent their

preference using a fuzzy set

S =
∑

x∈U

v/x v ∈ Jx

Sometimes, we may not know the exact preference for some voters. For ex-

ample, we know that x2 has a preference to a party although they are not a
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supporter of any party. Under this situation, x2 may prefer A or B but we

have no certain information on this, but we do know that they are neither a

supporter of a party nor a voter without preference. Considering the existing

fuzzy set models, such as type-1 fuzzy sets, type-2 fuzzy sets, interval-valued

fuzzy sets, Atanassov intuitionistic fuzzy sets and shadowed sets, none of these

could represent this situation. However, the proposed R-fuzzy sets can easily

represent it:

S =
∑

x∈U

(M(x),M(x))/x

For the aforementioned x2 ∈ U, the uncertain membership description d(x2) =“x2

prefers one party but does not support any party”. Considering two possible

preferences: a for party A and b for party B, we have two elements in the

criteria set C = {a, b}. Each value v ∈ Jx is evaluated by cj ∈ C to determine

if it fits with d(x2).

v
(d(x2),cj)
−→ Y es

For each element cj ∈ C, a set Mcj
(x2) ⊆ Jx is constructed:

Ma(x2) = {0.84, 0.67}, Mb(x2) = {0.34, 0.17}

The lower and upper approximations of rough set M(x2) for the membership

function described by d(x2) are

M(x2) =
⋂

j

Mcj
(x2) and M(x2) =

⋃

j

Mcj
(x2)

Then we have

M(x2) = (∅, {0.84, 0.67, 0.34, 0.17})

Considering a different criteria set C = {h, s} where h refers to a high pref-

erence and s represents a preference which is at least weak, for the same
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description d(x2) we have

Mh(x2) = {0.84, 0.17}, Ms(x2) = {0.84, 0.67, 0.34, 0.17}

Then

M(x2) = ({0.84, 0.17}, {0.84, 0.67, 0.34, 0.17})

Clearly, the criteria set has a significant influence on the approximation of the

membership of a R-fuzzy set.

Both examples demonstrate that the proposed R-fuzzy sets can represent some

situations that are difficult to be expressed using the existing extensions of

fuzzy sets. R-fuzzy sets provide a new alternative in expressing uncertain fuzzy

memberships of a fuzzy set. Its difference from other fuzzy sets inevitably in-

troduces different operations into R-fuzzy sets. The membership of an element

in a R-fuzzy set is defined as a rough set, hence its operation result is defined

by the pair of definable sets for the rough approximation of its membership.

Definition 11 A and B are two R-fuzzy sets of a universe U, ∀x ∈ U

• A ⊆ B iff MA(x) ≤ MB(x) and MA(x) ≤ MB(x)

• A = B iff MA(x) = MB(x) and MA(x) = MB(x)

• M¬A(x) = Jx − MA(x) and M¬A(x) = Jx − MA(x)

• MA∪B(x) = {m ∈ MA(x)∪MB(x) | m ≥ max{inf MA(x), inf MB(x)}} and

MA∪B(x) = {m ∈ MA(x) ∪ MB(x) | m ≥ max{inf MA(x), inf MB(x)}}

• MA∩B(x) = {m ∈ MA(x) ∪ MB(x) | m ≤ min{sup MA(x), sup MB(x)}}

and MA∩B(x) = {m ∈ MA(x)∪MB(x) | m ≤ min{sup MA(x), sup MB(x)}}

• M⊥A(x) = M⊥A(x)

• (M⊘A(x),M⊘A(x)) ∈ {({0}, {0}), ({1}, {1}), (∅, Jx)}

• M∞A(x) = lim∆Jx→0 MA(x) and M∞A(x) = lim∆Jx→0 MA(x)
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• |M∠A(x)| = 1 and M∠A(x) ≤ M∠A(x)

• M3A(x) = ∅ and M3A(x) 6= ∅

Here, ¬A is the complement set of A in U, ⊥A has no unknown membership

values, ⊘A represents a set satisfying three-valued logic [6], ∞A is a set with

continuous membership representation and ∠A has one single known mem-

bership value and each unknown membership value is known to be greater

than the known value. With these operation definitions, we can consider the

relationship between R-fuzzy sets and other fuzzy sets.

R-fuzzy sets are different from ordinary fuzzy sets in that their membership

values are expressed with a set rather than a value. Because of this set represen-

tation, its operation has to consider the involvement of the set as well. If c1 and

c2 are two criteria, or information sources, then ordinary fuzzy sets can be rep-

resented as c1(A(x)) and c2(A(x)), and the corresponding R-fuzzy sets are rep-

resented as c1c2(A(x)). In Definition 11, the definitions of ∪ and ∩ are the op-

erations between two R-fuzzy sets rather than two ordinary fuzzy sets. There-

fore, our definition is about c1c2(A(x))∪c1c2(B(x)). For example let us assume

c1(A(x)) = {0.1}, c2(A(x)) = {0.3}, c1(B(x)) = {0.2}, and c2(B(x)) = {0.4}.

Then accordingly, MA(x) = {0.1, 0.3} and MB(x) = {0.2, 0.4}. It follows that

c1((A ∪ B)(x)) = {max(0.1, 0.2)} = {0.2} and c2((A ∪ B)(x)) = {0.4} if c1

and c2 follow the rules of classical fuzzy set theory and we ignore the inter-

actions in R-Fuzzy sets. Thus, MA∪B(x) = {0.2, 0.4}. However, according to

Definition 11, MA∪B(x) = {0.2, 0.3, 0.4}. If c1 and c2 are used to evaluate A

and B, then there is no reason why c1(A(x)) ∪ c2(B(x)) cannot be included

in c1c2(A(x)) ∪ c1c2(B(x)). If situations like this are included, we would have

M c1c2(A)∪c1c2(B)(x) = {0.2, 0.3, 0.4}. Obviously, c1c2(A(x)) ∪ c1c2(B(x)) is dif-

ferent from c1c2(A(x) ∪ B(x)). They are two different concepts and cannot

23



be mixed. This example could also be examined intuitively by asking what

could be the set of possible memberships given the sets of possible member-

ships in the constituent sets. Interpreting possible memberships for ∪, then

from c1(B(x)) = {0.2} gives a possible membership and c2(A(x)) = {0.3} is

another so c1c2(A ∪ B(x)) = {0.3} is a possible membership. Hence R-Fuzzy

sets capture this, whereas a reductionist approach misses this value.

4 Relationship between R-fuzzy sets and other fuzzy sets

A R-fuzzy set can represent some situations that are difficult to represent

using other fuzzy sets, hence it is different from those. However, it overlaps

with other fuzzy sets under some special situations.

Theorem 1 A R-fuzzy set A is a type-1 fuzzy set iff A satisfies both ∠A and

⊥A.

Proof From definition 11, if A satisfies both ∠A and ⊥A, we have |MA(x)| =

1 and MA(x) = MA(x). Hence, |MA(x)| = |MA(x)| = 1, and we have

A =
∑

x∈U

({µ(x)}, {µ(x)})/x

Both lower and upper approximations contain only a single element which is

the same, so this is actually a crisp value, and is equivalent to a single value.

Then we have

A =
∑

x∈U

µ(x)/x

Obviously, it is a type-1 fuzzy set.

If A is a type-1 fuzzy set, we can replace its single membership value with a
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pair of identical single element sets

A =
∑

x∈U

({µ(x)}, {µ(x)})/x

Thus, |MA(x)| = 1 and MA(x) = MA(x). From definition 11, A satisfies both

∠A and ⊥A.

Theorem 2 A R-fuzzy set A is an Atanassov intuitionistic fuzzy set iff A

satisfies both ∠A and ∞A.

Proof If A satisfies both ∠A and ∞A, we have |MA(x)| = 1 and ∆Jx
→ 0.

Hence, MA(x) = lim∆Jx→0 MA(x) = [inf MA(x), sup MA(x)], and we have

A = {
〈

x, ({µ(x)}, [inf MA(x), sup MA(x)])
〉

| ∀x ∈ U}

For ∠A, we have M∠A(x) ≤ M∠A(x), thus

A = {
〈

x, ({µ(x)}, [µ(x), sup MA(x)])
〉

| ∀x ∈ U}

The non-membership of set A could be derived from its membership:

(1 − sup MA(x), [1 − sup MA(x), 1 − µ(x)])

The approximations of membership and non-membership overlap in their

boundary area. If the lower approximations of membership and non-membership

are fixed, then their upper approximations are fixed as well. Hence, we can

represent the same set with the low approximations of membership and non-

membership.

A = {
〈

x, µ(x), 1 − sup MA(x)
〉

| ∀x ∈ U}

Here, µ(x) ∈ [0, 1], µ(x) ≤ sup MA(x) ≤ 1, we have

µ(x) + (1 − sup MA(x)) ≤ 1
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Obviously, A is an Atanassov intuitionistic fuzzy set.

If A is an Atanassov intuitionistic fuzzy set, we can replace its single non-

membership value with an approximation of the upper membership values

A =
∑

x∈U

({µ(x)}, [µ(x), 1 − ν(x)])/x

Thus, |MA(x)| = 1 and ∆Jx
→ 0. From definition 11, A satisfies both ∠A and

∞A.

Theorem 3 A R-fuzzy set A is an interval-valued fuzzy set iff A satisfies both

⊥A and ∞A.

Proof For ⊥A and ∞A, we have MA(x) = MA(x) = S(x) and ∆Jx
→ 0.

Hence, S(x) ∈ D[0, 1], and we have

A = {〈x, (S(x), S(x))〉 | ∀x ∈ U}

Both lower and upper approximations contain exactly the same elements, so

this is actually a crisp set. Then we have

A = {〈x, S(x)〉 | ∀x ∈ U}

Obviously, it is an interval-valued fuzzy set.

If A is an interval-valued fuzzy set, we can replace its crisp membership set

(interval) with a pair of identical sets

A = {〈x, (S(x), S(x))〉 | ∀x ∈ U}

Thus, MA(x) = MA(x) = S(x) and ∆Jx
→ 0. From definition 11, A satisfies

both ⊥A and ∞A.
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Interval-valued fuzzy sets [35,36] and Atanassov intuitionistic fuzzy sets [1–

3] have been proven to be mathematically equivalent [5,11–13,37]. However,

they emerged from different grounds and thus they have associated different

semantics [7]. Theorem 2 and 3 show their different interpretations in R-fuzzy

sets. Interval-valued fuzzy sets can be considered as a special case of type-2

fuzzy sets where the secondary grades are all equal to 1 [8,25]. It proves that

all elements in the interval belong to the lower approximation of membership

in R-fuzzy sets. For Atanassov intuitionistic fuzzy sets, its known membership

is a single value, and the interval between the membership and possibility

derived from the non-membership is considered as hesitation or uncertainty of

the membership. Therefore, the interval represents the upper approximation

in R-fuzzy sets, and the lower approximation of an Atanassov intuitionistic

fuzzy set is represented as a set with a single element in R-fuzzy sets. When

the lower approximation is empty, we get a grey set[46,48,49].

Theorem 4 A R-fuzzy set A is a grey set iff A satisfies 3A and |MA∩MA| =

1.

Proof If A satisfies 3A, we have MA(x) = ∅ and MA(x) 6= ∅. Considering

|MA(x) ∩ MA(x)| = 1, MA(x) represents a set with a single number vw(x).

The single number vw(x) can only come from one element of MA(x), we have

inf MA(x) ≤ vw(x) ≤ sup MA(x)

Then, MA(x) ∈ D[0, 1]± is a grey number. Hence, A is a grey set.

If A is a grey set, then MA(x) is a grey number. This grey number could be

approximated by a rough set (MA(x),MA(x)). The underlying white number

is not known, we have MA(x) = ∅ and MA(x) 6= ∅. From definition 11, this
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satisfies 3A. According to the nature of grey numbers, there is only a single

white number underlying a grey number, hence we have |MA ∩ MA| = 1.

Shadowed sets can be proved to be a special case of R-fuzzy sets as well.

Theorem 5 A R-fuzzy set A is a shadowed set iff A satisfies both ⊘A and

∞A.

Proof If A satisfies ⊘A, we have

(MA(x),MA(x)) ∈ {({0}, {0}), ({1}, {1}), (∅, Jx)}

For ∞A, we have

Jx = [0, 1]

Thus

(MA(x),MA(x)) ∈ {({0}, {0}), ({1}, {1}), (∅, [0, 1])}

Obviously, for each x ∈ U, there are only three situations for their fuzzy

membership values:

A : U −→ {0, 1, [0, 1]}

Clearly, this is a shadowed set.

If A is a shadowed set, we have

A : U −→ {0, 1, [0, 1]}

Represent this mapping in rough sets

A : U −→ {({0}, {0}), ({1}, {1}), (∅, [0, 1])}

Therefore, we have

(MA(x),MA(x)) ∈ {({0}, {0}), ({1}, {1}), (∅, [0, 1])}
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Obviously, it satisfies both ⊘A and ∞A.

It should be noted that we use (∅, [0, 1]) rather than ([0, 1], [0, 1]) to repre-

sent unknown values. There is a difference between the two representations.

([0, 1], [0, 1]) can be interpreted as we know for sure that each value in [0,1] sat-

isfies some description for the membership. It does not give the accurate mean-

ing of the shadowed zone defined by Witold Pedrycz in [32]. With (∅, [0, 1]),

it is clear that we know nothing about the value but its domain.

Interval-valued fuzzy sets could be considered as a special case of type-2 fuzzy

sets, so theorem 3 gives some indication of the relationship between R-fuzzy

sets and type-2 fuzzy sets under special situations. In fact, R-fuzzy sets and

type-2 fuzzy sets are two different extensions to fuzzy sets, and they can not

simply replace each other.

5 Conclusions

The fuzzy membership function of a fuzzy set has great significance in defining

a fuzzy set. It is not possible to give a precise membership value sometimes.

The uncertainties in fuzzy membership values have brought in various exten-

sions of fuzzy sets, such as interval-valued fuzzy sets, Atanassov intuitionistic

fuzzy sets, shadowed sets, type-2 fuzzy sets etc. Here, we defined R-fuzzy

sets as a new extension of fuzzy sets, and derived its relationships with other

fuzzy sets. Our results prove that R-fuzzy sets provide new facility in repre-

senting some situations which are difficult to describe in other models. The

proposed R-fuzzy sets provide a new semantic context for the difference be-

29



tween interval-valued fuzzy sets and Atanassov intuitionistic fuzzy sets also.

Although they are mathematically equivalent in operation, R-fuzzy sets give

a different perspective.
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