163 research outputs found

    Aggregation operators in group decision making: Identifying citation classics via H-classics

    Get PDF
    To analyze the past, present and future of a particular research field, classic papers are usually studied because they identify the highly cited papers being a relevant reference point in that specific research area. As a result of the possible mapping between high quality research and high citation counts, highly cited papers are very interesting. The objective of this study is to use the H-classics method, which is based on the popular h-index, to identify and analyze the highly cited documents published about aggregation operators in the research area of group decision making. According to the H-classics method, this research area is represented by 87 citation classics, which have been published from 1988 to 2014. Authors, affiliations (universities/institutions and countries), journals, books and conferences, and the topics covered by these 87 highly cited papers are studied.The authors would like to thank FEDER financial support from the Projects TIN2013-40658-P and TIN2016- 75850-P

    Pythagorean 2-tuple linguistic power aggregation operators in multiple attribute decision making

    Get PDF
    In this paper, we investigate the multiple attribute decision making problems with Pythagorean 2-tuple linguistic information. Then, we utilize power average and power geometric operations to develop some Pythagorean 2-tuple linguistic power aggregation operators: Pythagorean 2-tuple linguistic power weighted average (P2TLPWA) operator, Pythagorean 2-tuple linguistic power weighted geometric (P2TLPWG) operator, Pythagorean 2-tuple linguistic power ordered weighted average (P2TLPOWA) operator, Pythagorean 2-tuple linguistic power ordered weighted geometric (P2TLPOWG) operator, Pythagorean 2-tuple linguistic power hybrid average (P2TLPHA) operator and Pythagorean 2-tuple linguistic power hybrid geometric (P2TLPHG) operator. The prominent characteristic of these proposed operators are studied. Then, we have utilized these operators to develop some approaches to solve the Pythagorean 2-tuple linguistic multiple attribute decision making problems. Finally, a practical example for enterprise resource planning (ERP) system selection is given to verify the developed approach and to demonstrate its practicality and effectiveness

    A Method Based on Intuitionistic Fuzzy Dependent Aggregation Operators for Supplier Selection

    Get PDF
    Recently, resolving the decision making problem of evaluation and ranking the potential suppliers have become as a key strategic factor for business firms. In this paper, two new intuitionistic fuzzy aggregation operators are developed: dependent intuitionistic fuzzy ordered weighed averaging (DIFOWA) operator and dependent intuitionistic fuzzy hybrid weighed aggregation (DIFHWA) operator. Some of their main properties are studied. A method based on the DIFHWA operator for intuitionistic fuzzy multiple attribute decision making is presented. Finally, an illustrative example concerning supplier selection is given

    Generalized Hamacher aggregation operators for intuitionistic uncertain linguistic sets: Multiple attribute group decision making methods

    Full text link
    © 2019 by the authors. In this paper, we consider multiple attribute group decision making (MAGDM) problems in which the attribute values take the form of intuitionistic uncertain linguistic variables. Based on Hamacher operations, we developed several Hamacher aggregation operators, which generalize the arithmetic aggregation operators and geometric aggregation operators, and extend the algebraic aggregation operators and Einstein aggregation operators. A number of special cases for the two operators with respect to the parameters are discussed in detail. Also, we developed an intuitionistic uncertain linguistic generalized Hamacher hybrid weighted average operator to reflect the importance degrees of both the given intuitionistic uncertain linguistic variables and their ordered positions. Based on the generalized Hamacher aggregation operator, we propose a method for MAGDM for intuitionistic uncertain linguistic sets. Finally, a numerical example and comparative analysis with related decision making methods are provided to illustrate the practicality and feasibility of the proposed method

    On extending generalized Bonferroni means to Atanassov orthopairs in decision making contexts

    Full text link
    Extensions of aggregation functions to Atanassov orthopairs (often referred to as intuitionistic fuzzy sets or AIFS) usually involve replacing the standard arithmetic operations with those defined for the membership and non-membership orthopairs. One problem with such constructions is that the usual choice of operations has led to formulas which do not generalize the aggregation of ordinary fuzzy sets (where the membership and non-membership values add to 1). Previous extensions of the weighted arithmetic mean and ordered weighted averaging operator also have the absorbent element 〈1,0〉, which becomes particularly problematic in the case of the Bonferroni mean, whose generalizations are useful for modeling mandatory requirements. As well as considering the consistency and interpretability of the operations used for their construction, we hold that it is also important for aggregation functions over higher order fuzzy sets to exhibit analogous behavior to their standard definitions. After highlighting the main drawbacks of existing Bonferroni means defined for Atanassov orthopairs and interval data, we present two alternative methods for extending the generalized Bonferroni mean. Both lead to functions with properties more consistent with the original Bonferroni mean, and which coincide in the case of ordinary fuzzy values.<br /

    Algorithms for possibility linguistic single-valued neutrosophic decision-making based on COPRAS and aggregation operators with new information measures

    Get PDF
    The objective of this work is to introduce the concept of the possibility linguistic single-valued neutrosophic set (PLSVNS) for better dealing with the imprecise and uncertain information during the decision-making process. The prominent characteristics of this set are that it considers two distinctive sorts of information such as the membership, indeterminacy, non-membership degrees, and their corresponding possibility degree. In it, first, we stated some operational laws, score and accuracy functions, comparison laws between the pairs of the set. Then, we define weighted averaging and geometric aggregation operators (AOs) to collaborate the PLSVNSs into a single one. Further, we present two algorithms based on a complex proportional assessment (COPRAS) method and AOs based method under PLSVNS information to solve the decision-making problems. In these methods, the information related to weights of decision makers and criteria is determined with the help of a distance and entropy measures. Finally, a practical real-life example is provided to expose the materialness and the viability of our work

    Defining Bonferroni means over lattices

    Full text link
    In the face of mass amounts of information and the need for transparent and fair decision processes, aggregation functions are essential for summarizing data and providing overall evaluations. Although families such as weighted means and medians have been well studied, there are still applications for which no existing aggregation functions can capture the decision makers\u27 preferences. Furthermore, extensions of aggregation functions to lattices are often needed to model operations on L-fuzzy sets, interval-valued and intuitionistic fuzzy sets. In such cases, the aggregation properties need to be considered in light of the lattice structure, as otherwise counterintuitive or unreliable behavior may result. The Bonferroni mean has recently received attention in the fuzzy sets and decision making community as it is able to model useful notions such as mandatory requirements. Here, we consider its associated penalty function to extend the generalized Bonferroni mean to lattices. We show that different notions of dissimilarity on lattices can lead to alternative expressions.<br /
    corecore