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Abstract: The concept of q-rung orthopair fuzzy set (q-ROFS) is the extension of intuitionistic fuzzy set (IFS) 

in which the sum of the q
th

 power of the support for and the q
th

 power of the support against is bounded by one. 

Therefore, the q-ROFSs are an important way to express uncertain information in broader space, and they are 

superior to the IFSs and the Pythagorean fuzzy sets (PFSs). In this paper, the familiarity degree of the experts 

with the evaluated objects is incorporated to the initial assessments under q-rung orthopair fuzzy environment. 

For this, some aggregation operators are proposed to combine these two types of information. Their some 

important properties are also well proved. Furthermore, these developed operators are utilized in a multi criteria 

decision making approach and demonstrated with a real life problem of customers’ choice. Then, the 

experimental results are compared with other existing methods to show its superiority over recent research 

works.  

Keywords: Intuitionistic fuzzy set; Pythagorean fuzzy set; q-rung orthopair fuzzy set; MCDM problems; 

confidence levels. 

1. Introduction 

At present, multi-criteria decision making (MCDM) is a fast growing research field which provides the best 

possible option from the set of finite alternatives on the basis of certain criteria. But it is not possible to express 

the preferences more efficiently and precisely because of the complexity and various constraints subjected to the 

real world decision making problems. To cope with such situations, Zadeh (1965) introduced fuzzy sets (FSs) 

and which was further extended by Atanassov (1986) by introducing the concept of intuitionistic fuzzy set (IFS), 

which is characterized in such a way that the sum of the support for membership and support against 

membership is less than or equal to one. Due to this characteristic, IFS theory is one of the successful and 

powerful tools to deal with imprecise, vague and ambiguous information, and receives attention to many 

practitioners (Song and Chissom 1993; Chen 1996; De et al. 2001; Singh 2007; Joshi and Kumar 2012; Joshi 

and Kumar 2013; Joshi 2018; Joshi et al. 2018; Garg and Arora 2019; and et al.) to deal with real life situations. 

But, the aggregation of all the performances in dealing with real life problems is a very critical step to obtain 

decisions. Therefore, the aggregation operators obtain an important role during the information fusion process. 

For this, Xu and Yager (2006) presented the intuitionistic fuzzy weighted geometric (IFWG) operator and Xu 

(2007) presented intuitionistic fuzzy weighted average (IFWA) operator to add intuitionistic fuzzy numbers 

(IFNs). These are most basic and widely cited aggregation operators under intuitionistic fuzzy environment. 

Based on these operators, intuitionistic fuzzy ordered weighted geometric (IFOWG) operator and intuitionistic 

fuzzy hybrid geometric (IFHG) presented by Xu and Yager (2006), intuitionistic fuzzy ordered weighted 

average (IFOWA) operator and intuitionistic fuzzy hybrid average (IFHA) operator presented by Xu (2007), 

generalized IFWA, generalized IFWG, generalized IFOWA, generalized IFOWG presented by Zhao et. al. 

(2010). Wang and Liu (2011) presented intuitionistic fuzzy Einstein weighted geometric (IFEWG) operator and 

the intuitionistic fuzzy Einstein ordered weighted geometric (IFEOWG) operator. Later on, Wang and Liu 

(2012) proposed intuitionistic fuzzy Einstein weighted averaging (IFEWA) operator and the intuitionistic fuzzy 

Einstein ordered weighted averaging (IFEOWA) operator. Next, Zhao and Wei (2013) proposed the 

intuitionistic fuzzy Einstein hybrid geometric (IFEHG) operator and intuitionistic fuzzy Einstein hybrid 

averaging (IFEHA) operator on the basis of Einstein sum and Einstein product. Many practitioners such as Xu 

(2010), Tan and Chen (2010), Xia and Chen (2011), Xia and Xu (2013), Yu (2013), Cagman and Karatas 

(2013), Yu (2014), Ma and Zeng (2014), Delia and Cagman (2015), Joshi and Kharayat (2016), and etc have 

investigated the MCDM problems under the different aspects of intuitionistic fuzzy environments. Furthermore, 

a comprehensive study of intuitionistic fuzzy aggregation operators to solve MCDM problem has been compiled 

by Yu (2015) and Xu and Zhao (2016). 

The above studies are suitable under intuitionistic fuzzy environment only due to the limitation of the 

sum of membership grade and non-membership grade is bounded by one. But, in real life situations it is not 

always possible for the decision makers to provide preferences on this limitation. This type of situations is 

successfully handled with the Pythagorean fuzzy set (PFS) theory, proposed by Yager (2013) as an extension of 

IFS theory by relaxing the condition 10  ft  to 10 22  ft , where t and f represents the degrees of 

the satisfaction and dis-satisfaction of an object. This pioneering study is further studied by Yager and Abbasov 



 

(2013) and revealed the relationship between the Pythagorean fuzzy numbers (PFNs) and the complex numbers. 

In order to combine PFNs, Yager (2014) presented a Pythagorean fuzzy weighted average (PFWA) operator, a 

Pythagorean fuzzy weighted geometric (PFWG) operator, a Pythagorean fuzzy weighted power average 

(PFWPA) operator and a Pythagorean fuzzy weighted power geometric average (PFWPG) operator. Zhang and 

Xu (2014) proposed an extended technique for order preference by similarity to ideal solution (TOPSIS) method 

under Pythagorean fuzzy environment. Peng and Yang (2015) proposed the division and subtraction for PFNs 

and proved their some properties. Peng and Yang (2016) considered the inter-dependency among the PFNs and 

presented a Pythagorean fuzzy Choquet integral average (PFCIA) operator and a Pythagorean fuzzy Choquet 

integral geometric (PFCIG) operator. Garg (2016a) presented some operators namely, Pythagorean fuzzy 

Einstein weighted averaging (PFEWA), Pythagorean fuzzy Einstein ordered weighted averaging (PFEOWA), 

generalized PFEWA, and generalized GPFEOWA on the basis of Einstein sum and Einstein product. Garg 

(2016b) proposed a novel correlation coefficient and weighted correlation coefficient formulation to measure the 

relationship between two PFSs. Garg (2017a) further extended these operators in geometric aspect. Garg 

(2017b) proposed a confidence Pythagorean fuzzy weighted averaging (CPFWA) operator and a confidence 

Pythagorean fuzzy ordered weighted averaging (CPFOWA) operator along with their some desired properties. 

Zhang et. al. (2017) extended the generalized Bonferroni mean to the Pythagorean fuzzy environment and 

introduced the generalized Pythagorean fuzzy Bonferroni mean and the generalized Pythagorean fuzzy 

Bonferroni geometric mean. Joshi (2019) presented some generalized Pythagorean fuzzy average aggregation 

operators by incorporating the concept of the generalized parameter to the Pythagorean fuzzy set theory.   

With continuous complication of modeling human knowledge and the development of theory, Yager 

(2017) introduced a new concept called it q-rung orthopair fuzzy set (q-ROFS), in which the sum of the q
th

 

power of the support for membership and the q
th

 power of the support against membership is bounded to one, 

and further proved that the q-ROFS is more general because IFS and PFS are all its special cases. We have to 

also note that as the rung q raises the space of acceptable orthopairs raises and thus provides the observers more 

liberty in expressing their belief in order to support for membership degree. Therefore, the q-ROFSs express a 

wider range of fuzzy information and are more flexible and more suitable tool to handle the uncertain 

environment. Yager and Alajlan (2017) discussed basic properties of these q-ROFSs and use these sets in 

knowledge representation. Recently, Liu and Wang (2018) proposed the q-rung orthopair fuzzy weighted 

averaging (q-ROFWA) operator and the q-rung orthopair fuzzy weighted geometric (q-ROFWG) operator, and 

develop some methods based on these operators to solve the MCDM problems. Joshi et al. (2018) introduced 

the concept of q-rung orthopair fuzzy sets (q-ROFSs) in which the sum of the q
th

 exponent of the support for 

membership and the q
th

 exponent of the support against membership is bounded by one. Some of its important 

operations such as: negation, union and intersection are also presented. Jun et al. (2019) proposed a family of q-

rung orthopair fuzzy Muirhead mean operators for combining q-rung orthopair fuzzy information. Recently, 

Peng and Liu (2019) presented the information measures for q‐ROFSs such as: distance measure, similarity 

measure, entropy, and inclusion measure,  

Besides these surprisingly accomplishments under q-rung orthopair fuzzy environment, all of the 

existing efforts do not incorporate the familiarity degree in the information fusion step. The experts in a MCDM 

problem give performance of the alternatives on the basis of the mentioned criteria only i.e. the familiarity 

(called confidence levels) of experts with the evaluation objects is not included. So, it is must to incorporate the 

familiarity of observer in the original information under q-rung orthopair fuzzy environment. This type of 

shortcoming is focused in this study by incorporating the confidence levels of experts for their familiarity and 

awareness with the evaluated alternatives in the q-rung orthopair fuzzy information fusion step. To fuse these 

two types of information some confidence q-rung orthopair fuzzy aggregation operators namely, confidence q-

rung orthopair fuzzy weighted average (CFWAq), confidence q-rung orthopair fuzzy ordered weighted average 

(CFWOAq), confidence q-rung orthopair fuzzy weighted geometric (CFWGq), confidence q-rung orthopair 

fuzzy ordered weighted geometric (CFOWGq) operators are proposed. Their some important properties are well 

established. These defined operators are capable to explain the real life situation more perceptibly with the help 

of their parameterizations property (confidence levels) under q-rung orthopair fuzzy environment.    

Rest of the article is organised as follows. The coming section briefly reviews related to q-ROFSs. 

Then, some confidence q-rung orthopair fuzzy aggregation operators are developed in section 3. Section 4 

provides a MCDM approach based on the developed operators and illustrated with a real life problem of 

customers’ choice. The sensitivity analysis of proposed operators for different q-rung is discussed in section 5. 

Section 6 presents a detailed comparative analysis to show the feasibility and superiority of the proposed 

approach over the existing ones. In addition, some counter examples are also considered where existing methods 

fail but our approach can overcome their shortcomings. Finally, the conclusion of this study is summarized in 

section 7. 



 

2.2. q-rung orthopair fuzzy set 

Yager (2017) introduced the concept of q-rung orthopair fuzzy set (q-ROFS), as an extension of IFS 

theory and presented as follows: 

Definition 1 (Yager; 2017). A q-ROFS A in the universal set X is defined as an object of the following form

 XxxfxtxA AA  :)(),(, , where the functions ]1,0[: XtA
 and ]1,0[: XfA

 define the 

“support for membership” and the “support against membership” of the element Xx respectively, with the 

restriction )1(,1)()(0  qxfxt q

A

q

A . The degree of non-determinacy (uncertainty) for each element x 

of X in the q-ROFS A, is defined by   qq

A

q

AA xfxtx
1

)()(1)(  , where ]1,0[)( xA .  

For convenience, )(),( xfxt AA
 is called a q-rung orthopair fuzzy number (q-ROFN) and it can be 

written as ),( aa fta  . Liu and Wang (2018) presented the following score and accuracy function to compare 

two q-ROFNs.  

Definition 2 (Liu and Wang; 2018). Let ),( aa fta   and ),( bb ftb   be two q-ROFNs, then 

q
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q
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are the score functions and 
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are the accuracy functions of a and b. If )()( bSaS   then a is smaller than b, denoted by ba  , and if 

)()( bSaS  , then if )()( bHaH   then a is smaller than b, denoted by ba  . If )()( bHaH   then a 

and b represent the same information, denoted by .ba   

For any two q-ROFNs ),( aa fta   and ),( bb ftb  , the following basic laws are defined: 

1) ),( aa tfa  . 
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7)   qq

aa fta
1

)1(1,    for any 0 . 

These laws are exercised by Liu and Wang (2018) and proved that the following relations are valid for 

0,, 21  : 

1) abba  . 

2) abba  . 

3) baba   )( . 

4) 
 baba  )( . 

5) aaa )( 2121   . 

6) 2121  
 aaa . 

Based on the above laws and relations, Liu and Wang (2018) presented the following q-rung orthopair 

fuzzy weighted averaging (q-ROFWA) operator to combine q-ROFNs. 

Definition 3 (Liu and Wang; 2018). Let ),....,2,1(),( nifta
ii aai   be a collection of n q-ROFNs with 

weight vector 
T

nwwww ),....,,( 21  such that ]1,0[iw  and 1
1




n

i

iw , then the q-rung orthopair fuzzy 

weighted averaging (q-ROFWA) operator is  
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If the position of the collection of n q-ROFNs is also considered along with associated weight vector

T
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where ),....,2,1(),(
)()()( nifta

ii aai 


 is a permutation in descending order. 

3. q-rung orthopair fuzzy average aggregation operator under confidence levels 

In general, all the existing efforts do not incorporate the confidence levels of experts for their 

familiarity and awareness with the evaluated alternatives in the fusion of q-rung orthopair fuzzy information. 

Therefore, a series of q-rung orthopair fuzzy averaging and geometric aggregation operators are proposed here 

by incorporating the confidence levels of experts with the evaluated options. 

3.1. Confidence q-rung orthopair fuzzy weighted average operator 

Definition 4. Let   be the collection of n q-ROFNs ),....,2,1(),( nifta iii   and il  be the confidence 

levels of ia  with 10  il . If 
T

nwwww ),....,,( 21  is the weight vector of these q-ROFNs such that 

]1,0[iw  and 1
1




n

i

iw , then the mapping n

q :CFWA  defined as:  
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i
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
  

which is called the confidence q-rung orthopair fuzzy weighted average (CFWAq) operator. 

Theorem 1. Let ),....,2,1(),( nifta iii   be a collection of n q-ROFNs with confidence level ]1,0[il , 

and if 
T

nwwww ),....,,( 21  be the weight vector of ),....,2,1( niai   such that ]1,0[iw  and 

1
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iw , then their aggregated value by using  the CFWAq operator is also a q-ROFN and given by 
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Proof. The proof can be done by using mathematical induction on n. 

For 2n , we have 

)()(),,,(CFWA 2221112211 alwalwlalaq   

On the basis of operation laws of q-ROFNs, we have 
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Similarly, we can write   2222

2

1

2222 ,)1(1)(
lwqlwq

ftalw   

Then,  
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Let the result holds for kn   i.e. 
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Then, for 1 kn , and using the operational laws of q-ROFNs, we can write
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It confirms that for n = k +1, the result still holds. Therefore, the result is true for any number of q-ROFNs. 

Next, in order to show that the aggregated value obtained by the CFWAq operator is also a q-ROFN, 

the following analysis is carried out. 
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Therefore, the aggregated value obtained through the CFWAq operator is also a q-ROFN, which 

completes the proof. 

NOTE: Especially, if 1il , for every ni ,...,2,1 , then the CFWAq operator reduces to the q-ROFWA 

operator (Liu and Wang; 2018). 

Example 1. Let  6.0),8.0,5.0(1a ,  8.0),7.0,7.0(2a ,  5.0),5.0,6.0(3a  and 

 9.0),7.0,6.0(4a  are four q-ROFNs along with their confidence level. If  
Tw )2.0,3.0,1.0,4.0(  be 

their weight vector, then (suppose q = 4) 
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2) If *)()(  SS  , we can find  
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3.2. Confidence q-rung orthopair fuzzy ordered weighted average operator 

Definition 5. Let   be the collection of n q-ROFNs ),....,2,1(),( nifta iii   and il  be the confidence 

levels of ia  with 10  il . If 
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Proof. The proof is similar to the Theorem 1. 
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Similar to the CFWAq operator, the CFOWAq operator also satisfies the same property so these 

properties have been presented here without proof.   



 

Property 4. The CFOWAq operator is  

1) (Idempotent) If for every i,  lala ii ,,  i.e. fftt ii  ,  and lli  , then  

lalalala nnq  ),,...,,,,(CFOWA 2211  

2) (Bounded) If ),( maxmin

iiii alali fta 


 and ),( minmax

iiii alali fta 


, then for every i , 


 innqi alalalaa ),,...,,,,(CFOWA 2211 . 
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3.3. Confidence q-rung orthopair fuzzy weighted geometric operator 

Definition 6. Let ),....,2,1(),,(, nilftla iiiii   be the collection of n q-ROFNs with confidence level 
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Then, for 1 kn , and using the operational laws of q-ROFNs, we can write
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It confirms that for n = k +1, the result still holds. Therefore, the result is true for any number of q-ROFNs. 

Further to show that the aggregated value obtained by the CFWGq operator is also a q-ROFN, the 

following part is considered here. 
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Therefore, the combined value obtained through the CFWGq operator is also a q-ROFN, which 

completes the proof. 

Example 3. Let  6.0),5.0,5.0(1a ,  8.0),4.0,7.0(2a ,  9.0),7.0,6.0(3a  and 

 7.0),3.0,8.0(4a  are four q-ROFNs with their confidence level. If  
Tw )3.0,15.0,3.0,25..0(  be their 

weight vector, then (suppose q = 4) 
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Therefore, from theorem 3, we have 
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Property 5. The CFWGq operator satisfies the following properties: 

1)  (Idempotent) If for every i,  lala ii ,,  i.e. fftt ii  ,  and lli  , then  

l

nnq alalala  ),,...,,,,(CFWG 2211 . 

2) (Bounded) If ),( maxmin

iiii alali fta 


 and ),( minmax

iiii alali fta 


, then for every i , 


 innqi alalalaa ),,...,,,,(CFWG 2211 . 

3) ((Monotonic) Let ),....,2,1)(,(* ** nifta
ii aai   be a collection of n q-ORFNs such that *ii aa tt 

 

and
 *ii aa ff   for all i, then  

)*,,...,*,,*,(CFWG),,...,,,,(CFWG 22112211  nnqnnq lalalalalala . 

3.4. Confidence q-rung orthopair fuzzy ordered weighted geometric operator 

Definition 7. Let ),....,2,1(),,(, nilftla iiiii   be the collection of n q-ROFNs with confidence level 

il  such that 10  il . If 
T

n ),....,,( 21    is their associated weight vector with ]1,0[i  and 

1
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i

i , then the confidence q-rung orthopair fuzzy ordered weighted geometric (CFOWGq) operator is 

given as:  
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Theorem 4. Let ),....,2,1(),( nifta iii   be a collection of n q-ROFNs with confidence level ]1,0[il , 

and if 
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1
1




n

i

iw , then their aggregated value by using  the CFOWGq operator is also a q-ROFN and given by 

q
n

i

wlq
n

i

wl

nnq
ii ftlalala

1

1

)1(

1

)1(2211
)1()1( )1(1,)(),,...,,,,(CFOWG 







 







 

where ))(),...,2(),1(( n is a permutation of (1,2,…,3) such that for any i, )()1( ii aa   . 

Proof. Proof is similar to theorem 3. 

Example 4. Let four q-ROFNs with confidence levels
 

 7.0),5.0,6.0(1a ,  6.0),5.0,4.0(2a , 

 8.0),4.0,7.0(3a  and  7.0),6.0,7.0(4a  and if 
T)15.0,2.0,3.0,35.0(

 
be their associated 

weight vector, without loss of generality assume q = 4, then their respective scores are  
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47606.0 . 

Thus, by theorem 4, we have 
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Similar to the CFWGq operator, the CFOWGq operator also satisfies the same property so presented 

here without proof.   

Property 6. The CFOWGq operator is  

1) (Idempotent) If for every i,  lala ii ,,  i.e. fftt ii  ,  and lli  , then  

l

nnq alalala  ),,...,,,,(CFOWG 2211  

2) (Bounded) If ),( maxmin

iiii alali fta 


 and ),( minmax

iiii alali fta 


, then for every i , 


 innqi alalalaa ),,...,,,,(CFOWG 2211 . 

3) ((Monotonic) Let ),....,2,1)(,(* ** nifta
ii aai   be a collection of n q-ORFNs such that *ii aa tt 

 

and
 *ii aa ff   for all i, then  



 

)*,,...,*,,*,(CFOWG),,...,,,,(CFOWG 22112211  nnqnnq lalalalalala . 

4. An approach to MCDM problems under confidence levels 

In this section, a decision making approach is proposed to solve MCDM problems on the basis of 

developed operators. A real life customers’ choice problem is also considered to demonstrate the decision 

making approach effectively. 

4.1. MCDM approach under confidence levels 

Consider a decision making problem, in which the set of alternatives },...,,{ 21 mAAA  is estimated on 

the basis of the set of criteria },...,,{ 21 nccc . Let T

nwwww ),...,,( 21  is weight vector of the criterion set with 

njw j ,..,2,1,0   and 1
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individual assessment of each alternative against each criterion in the form of q-ROFNs and is denoted by 
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nj ,...,2,1  and pk ,...,2,1 . In order to incorporate the notion of confidence levels, the experts 

simultaneously also provide the degrees that they are familiar with the evaluated alternatives and assign the 

confidence levels )10(  k

ij

k

ij ll . To facilitate the developed operators in group decision making problems 

effectively, the following steps are carried out: 

Step 1: Establish the individual expert judgment related to each alternative against the mentioned criterion set in 

the form of q-ROFNs along with their confidence levels and then construct the corresponding expert’s judgment 

matrix 
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Step 2: Utilize the following form of the CFWAq operator (or the CFWGq operator) to combine all individual 

expert judgment matrix 
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Step 3: Aggregate the performance of each alternative of the matrix nmA ][  row wise to obtain the overall 

performance, by utilizing the following form of the q-ROFWA operator (or the q-ROFWG operator) for Ai 

),...,2,1( mi 
 
and is denoted by ai. 
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Then, calculate score of each aggregated value ),...,2,1( miai   and rank the aggregated values in descending 

order. 



 

4.2. Real life application to the customers’ choice problem 

To apply the developed approach effectively, a decision making problem with customers’ choice to 

purchase a laptop from four different options },,,{ 4321 AAAA  on the basis of the parameters },,,{ 4321 cccc  

where  )4,3,2,1( jc j  
stands for “processor”, “system memory”, “screen size” and “hard size” respectively. 

Let Tw )25.0,22.0,28.0,25.0(  be the weight vector of the parametric set. Let, three decision 

makers/experts },,{ 321 DDD
 
with weight vector T)3.0,3.0,4.0(  provide their individual assessment in 

the form of q-ROFNs )4,3,2,1,4,3,2,1(),,(  jilft k

ij

k

ij

k

ij  for each option and the corresponding 

assessments are presented in Table 1, Table 2 and Table 3 respectively.  

Then, the steps of the presented approach are executed to find the best suitable option and are 

demonstrated as follows: 

Step 1: The individual experts’ assessment matrix )3,2,1(),,(][ 44  klftA k

ij

k

ij

k

ij

k
 related to each option 

on the basis of the parametric set has been collected and presented in Table 1, Table 2 and Table 3 respectively. 

4.2.1. Based on confidence average aggregation operator 

Step 2: Utilize the CFWAq operator to combine all individual expert judgment matrix 

k

ij

k

ij

k

ij

k lftA ),,(][ 44  

into a collective one and corresponding combined expert judgment matrix 44][ A  is summarized in Table 4 

(without loss of generality we can assume 4q ). 

Step 3: Now, by utilizing the q-ROFWA operator to aggregate the performance of each alternative of the matrix 

44][ A  row wise for Ai ),...,2,1( mi 
 
and are summarized in Table 5 (without loss of generality we can 

assume 4q ). Finally, rank them on the calculate scores for each aggregated value ),...,2,1( miai   [see 

Table 5]. 

4.2.2. Based on confidence geometric aggregation operator 

Step 2: Utilize the CFWGq operator to add all individual expert judgment matrix and corresponding combined 

expert judgment matrix 44][ A  is presented in Table 6 (without loss of generality we can assume 4q ). 

Step 3: Then, apply the q-ROFWG operator to aggregate the performance of each alternative and rank them.  

All the corresponding results are depicted in Table 7 (without loss of generality we can assume 4q ).  

 

5. Sensitivity analysis 

Here, an investigation has been performed by the proposed CFWAq operator to analyze the discrepancy 

in the scores and the rankings of the alternatives with the flexibility and sensitivity of the parameter q. The 

corresponding results are summarized in Table 8.  

Table 8 clearly indicates that different score values are found corresponding to different values of the 

parameter q in the CFWAq operator. These discrepancies in score values did not make any effect on the ranking 

of the mentioned alternatives corresponding to the different values of q under consideration. Furthermore, scores 

of the overall combined values are relatively large when q is relatively small i.e. from 2 to 5, and scores become 

smaller in the increase of q. Thus, the approach of decision makers is more optimistic when q is from 2 to 5, and 

the pessimistic nature of decision makers reflects when q is large. Generally, different experts may fix different 

value to q as per their requirements. 

 

 

 

 

 



 

Table 1: q-rung orthopair fuzzy expert "" 1D  assessment matrix
 44

1][ A  

 
1c  2c  3c  

4c  

1A   92.0),5.0,6.0(   88.0),2.0,8.0(   79.0),7.0,5.0(   91.0),3.0,8.0(  

2A   8.0),6.0,6.0(   78.0),4.0,8.0(   81.0),5.0,6.0(   90.0),4.0,7.0(  

3A   89.0),4.0,7.0(   94.0),3.0,8.0(   91.0),5.0,6.0(   93.0),2.0,8.0(  

4A   81.0),5.0,7.0(   75.0),8.0,4.0(   76.0),7.0,5.0(   84.0),6.0,5.0(  

 

Table 2: q-rung orthopair fuzzy expert "" 2D  assessment matrix
 44

2][ A  

 
1c  2c  3c  

4c  

1A   9.0),5.0,7.0(   86.0),3.0,8.0(   78.0),7.0,6.0(   89.0),3.0,7.0(  

2A   78.0),5.0,6.0(   79.0),5.0,7.0(   8.0),5.0,5.0(   91.0),4.0,6.0(  

3A   9.0),4.0,8.0(   93.0),4.0,8.0(   88.0),6.0,7.0(   91.0),3.0,8.0(  

4A   79.0),5.0,6.0(   73.0),7.0,4.0(   78.0),6.0,6.0(   81.0),7.0,5.0(  

 

Table 3: q-rung orthopair fuzzy expert "" 3D  assessment matrix
 44

3][ A  

 
1c  2c  3c  

4c  

1A   91.0),6.0,6.0(   89.0),3.0,7.0(   8.0),4.0,6.0(   87.0),3.0,7.0(  

2A   81.0),6.0,7.0(   88.0),5.0,6.0(   84.0),6.0,6.0(   90.0),4.0,6.0(  

3A   91.0),4.0,8.0(   93.0),2.0,9.0(   81.0),5.0,6.0(   86.0),3.0,6.0(  

4A   81.0),5.0,6.0(   78.0),6.0,5.0(   80.0),6.0,6.0(   83.0),5.0,5.0(  

 

Table 4: q-rung orthopair fuzzy combined expert assessment matrix
 44][ A  using CFWAq operator 

 
1c  2c  3c  

4c  

1A  )5589.0,6228.0(  )3016.0,7557.0(  )6596.0,5360.0(  )3416.0,7312.0(  

2A  )6377.0,6047.0(  )5309.0,6925.0(  )5947.0,5492.0(  )4371.0,6332.0(  

3A  )4387.0,7514.0(  )3143.0,8298.0(  )5737.0,6171.0(  )2899.0,7480.0(  

4A  )6610.0,62581.0(  )7675.0,4096.0(  )7042.0,5349.0(  )6499.0,4776.0(  

 

 

 

 



 

Table 5: Aggregated values for each option and their scores using q-ROFWA operator 

Option Aggregated Values Scores Developed ranking 

1a  )4312.0,6884.0(  0.1900 4213 AAAA   

2a  )5349.0,6329.0(  0.0785 Thus 3A  is the best 

3a  )3822.0,7594.0(  0.3112 choice for customers 

4a  )6959.0,5293.0(  -0.1561  

 

 

Table 6: q-rung orthopair fuzzy combined expert assessment matrix
 44][ A  using CFWGq operator 

 
1c  2c  3c  

4c  

1A  )5250.0,6545.0(  )2635.0,7934.0(  )6176.0,6305.0(  )2915.0,7637.0(  

2A  )5090.0,6909.0(  )4461.0,7490.0(  )5123.0,6309.0(  )3900.0,6664.0(  

3A  )3896.0,7802.0(  )3214.0,8389.0(  )5192.0,6674.0(  )2646.0,7590.0(  

4A  )6537.0,6971.0(  )6862.0,5284.0(  )6102.0,6358.0(  )5902.0,5633.0(  

 

 

Table 7: Aggregated values for each option and their scores using q-ROFWG operator 

Option Aggregated Values Scores Developed ranking 

1a  )4862.0,7120.0(  0.2012 4213 AAAA   

2a  )4705.0,6865.0(  0.1731 Thus 3A  is the best 

3a  )4030.0,7641.0(  0.3144 choice for customers 

4a  )6417.0,5993.0(  -0.0405  

 

 

Table 8: Ranking using CFWAq operator for different values of q 

q )( 1aS  )( 2aS  )( 3aS  )( 4aS
 

Developed Ranking 

2 0.2598 0.084114 0.408133 -0.24416 4213 AAAA 
 

3 0.233666 0.088431 0.37102 -0.2057 4213 AAAA 
 

4 0.190079 0.078595 0.311283 -0.15611 4213 AAAA 
 

5 0.148163 0.064584 0.253662 -0.12083 4213 AAAA 
 

10 0.038285 0.016974 0.089175 -0.02325 4213 AAAA 
 

15 0.010747 0.004293 0.035368 -0.004 4213 AAAA 
 

 



 

Table 9: Comparison with some existing methods 

Method Operator used )( 1aS  )( 2aS  )( 3aS  )( 4aS
 

Developed Ranking 

Xu and Yager (2006) IFWG 0.2819 0.1607 0.3850 -0.1365 4213 AAAA 
 

Xu (2007) IFWA 0.3125 0.1781 0.4163 -0.0982 4213 AAAA 
 

Wang and Liu (2012) IFEWA 0.3020 0.1746 0.4099 -0.1050 4213 AAAA 
 

Yager (2014) PFWA 0.3426 0.2043 0.4067 -0.1098 4213 AAAA 
 

Garg (2016a) PFEWA 0.3325 0.1991 0.3896 -0.1195 4213 AAAA 
 

Liu and Wang (2018) q-ROFWA (q=3) 0.2922 0.1786 0.4142 -0.0924 4213 AAAA 
 

Liu and Wang (2018) q-ROFWA (q=5) 0.1746 0.2767 0.4142 -0.0488 4213 AAAA 
 

Proposed CFWAq (q=3) 0.2336 0.0884 0.3710 -0.2057 4213 AAAA 
 

 CFWGq (q=3) 0.2630 0.2258 0.3879 -0.0317 4213 AAAA 
 

 

6. Comparative analysis and superiority of presented approach over existing methods 

The above analysis finds the ranking 4213 AAAA   under different values of q. If the proposed 

approach is compared with the existing methods by assuming that all the decision makers/experts are taken to be 

definitely familiar i.e. 1k

ijl  for all i, j and k with the objects to be evaluated, then obtained results are 

summarized in Table 9. Therefore, the presented approach provides the same best suitable alternative as 

obtained by different existing average aggregation operators which verifies the proposed approach is practical 

and feasible. In order to show the supremacy of the presented approach over the existing operators the following 

analysis is taken in consideration.  

In some practical decisions, the IFNs have a disadvantage that the sum of the membership and non-

membership is not more than 1, i.e., 1 ft . The methods proposed by Xu and Yager (2006), Xu (2007) and 

Wang and Liu (2012) involved simple calculation but its scope of application is very narrow, it can only handle 

the real life problems expressed under intuitionistic fuzzy environment, however, the assessment (0.6, 0.5) 

provided by expert in above customers’ choice problem cannot fully express by these methods, so it will easily 

cause the distortion of the information. But the PFNs are more superior than the IFNs, because they require 

membership and non-membership must meet to 122  ft . The methods given by Yager (2014) and Garg 

(2016a) can address only the practical problems under Pythagorean fuzzy environment. However, the 

assessment (0.8, 0.7) cannot fully express by these methods as 17.08.0 22  , so it will also cause the 

misrepresentation of the information. The method introduced by Liu and Wang (2018) has been developed in 

the assumptions that all the experts are 100% familiar with the evaluated objects. But these types of limitations 

are not fully met in dealing with practical problems. In such cases proposed approach is superior to other recent 

research works. 

Furthermore, some contradictory examples are considered under the environment of q-ROFSs, where 

the existing operators are unable to find the best alternative while the presented approach can overcome their 

shortcoming. 

Example 5. Let consider a MCDM problem in which two alternatives A1 and A2 are evaluated on the basis of 

three criteria c1, c2 and c3 with weight vector
Tw )33.0,35.0,32.0( . Let an expert is asked to rank them and 

he gives his assessment in the form of q-ROFNs as follows: 



 










)339313.0,49145.0(

)726676.0,273324.0(

)528584.0,259944.0(

)36093.0,63907.0(

)719462.0,671957.0(

)497916.0,502084.0(
321

2

1

ccc

A

A  

 In order to find the best alternative, if the q-ROFWA operator is utilized for 1q  (operator reduced 

in IFWA operator) we get score values for alternatives as 008.0)( 1 AS  and 008.0)( 2 AS  

respectively. Thus, we fail to find the ranking as both alternatives have same score values. This happens because 

of the reality that the q-ROFWA operator pays no attention to familiarity of the expert with the alternatives. 

In other side, if we employed the proposed CFWAq operator for 1q  by counting the confidence 

levels of the expert as 









89.084.074.0

75.088.091.0

2

1

A

A
l  with the alternatives, we find scores 

10207.0)( 1 AS  and 13466.0)( 2 AS  for alternatives A1 and A2 respectively. Therefore, the ranking 

is 21 AA  . 

Example 6. Assume a decision making problem consisting of two different alternatives namely A1 and A2. Let 

these alternatives are evaluated against the criteria c1, c2 and c3 whose weight vector is .)33.0,35.0,32.0( Tw   

Let the decision maker provides his assessment in the form of q-ROFNs as follows: 










)369551.0,794008.0(

)470992.0,727329.0(

)62855.0,6094674.0(

)391182.0,780268.0(

)46004.0,73482.0(

)601775.0,631051.0(
321

2

1

ccc

A

A  

If the q-ROFWA operator is utilized for 2q  (operator reduced in PFWA operator) we get score 

values as 47736.0)( 1 AS  and 47736.0)( 2 AS  respectively. Thus, we can’t find the best alternative 

as both have same scores. This happens because of the fact that the q-ROFWA operator for 2q   (or PFWA 

operator) did not take attentions to the familiarity of the expert with the evaluated objects. If the proposed 

CFWAq operator for 2q  is applied here by adding the confidence levels of the expert as 











89.084.074.0

75.088.091.0

2

1

A

A
l  towards the evaluated objects, we find the scores 176372.0)( 1 AS  and 

164526.0)( 2 AS  for alternatives A1 and A2 respectively. Thus, the ranking is 21 AA  . 

Example 7. Consider a decision making problem having two different alternatives namely A1 and A2, which are 

estimated against the criteria c1, c2 and c3 whose weight vector is 
Tw )33.0,35.0,32.0( . Let the decision 

maker provides his assessment in the form of q-ROFNs and presented as 










)50855.0,628765.0(

)418213.0,66758.0(

)439574.0,656693.0(

)391182.0,545183.0(

)358232.0,560212.0(

)497916.0,634348.0(
321

2

1

ccc

A

A  

Now applying the q-ROFWA operator for 3q , we obtain scores as 158072.0)( 1 AS  and 

158072.0)( 2 AS  respectively. Thus, we are unable to find the best alternative on the basis of q-ROFWA 

operator. This is because of the statement that the q-ROFWA operator did not notice the confidence levels of 

expert.  



 

On the other side, if the proposed CFWAq operator is employed for 3q  by adding together the 

confidence levels of the expert as 









89.084.074.0

75.088.091.0

2

1

A

A
l

 

towards the alternatives, we obtain the scores 

084029.0)( 1 AS  and 074836.0)( 2 AS . Thus, 1A  is the best suitable alternative. 

Therefore, the presented analysis discussed so far has the following advantages over the existing 

methods. 

1) The presented approach suggests a broader range of imprecise and vague information in that 

environment where the sum of q
th

 power of support for membership degree and q
th

 power of support 

against membership degree is more than one. Due to this characteristic, the generalized theory can deal 

not only incomplete data but also the indeterminate and inconsistent data, which exist commonly in real 

world situations. Therefore, the scope of application of the developed operators is broader than the 

existing methods for solving and designing the real life situations. 

2) All the existing methods under q-rung orthopair fuzzy environment have been developed in the 

assumptions that all the experts are 100% familiar with the evaluated objects. But these types of 

limitations are not fully met in dealing with real life problems. In other side, proposed approach 

considered the situation where the experts are not fully familiar with evaluated objects. A comparison 

analysis (Table 9) conducted and provided the same ranking as obtained by different existing methods 

which verifies the proposed approach is practical and feasible. If we do not consider the confidence 

levels of experts for the familiarity with the evaluated objects, then our presented operators are reduced 

to the existing q-rung orthopair fuzzy aggregation operators. 

3) Further, the superiority of the presented study over the existing ones is provided with the help of some 

contradictory examples under the environment of q-ROFSs. In these situations existing operators are 

unable to find the best alternative while the presented approach can overcome their shortcoming and 

offered the best alternative. Table 8 analyzed the variation in the scores and the rankings of the 

alternatives with the flexibility and sensitivity of the parameter q. 

4) As both IFS and for PFS are special cases of q-ROFS. Therefore, proposed operators are more general 

because some of the existing operators for IFS and for PFS are special cases of the developed 

operators. Therefore, the proposed aggregation operators are better than the existing aggregation 

operators for IFNs and PFNs. Thus, they are more general and more suitable to solve MCDM problems 

more precisely. 

 

7. Conclusions 

The IFS theory and PFS theory are more suitable tools to express information under uncertain 

environment in MCDM problems. But, Yager (2017) pointed out that the q-ROFS is more general than the IFS 

and PFS. It is also notable that as the rung q increases the space of acceptable orthopairs increases and thus 

gives experts more freedom in expressing their belief about membership grade. Based on these advantages, 

some aggregation operators were proposed by different authors to add q-ROFNs. But these existing q-rung 

ortopairs aggregation operators are developed by assuming experts are surely familiar with evaluated objects i.e. 

all experts provided their assessment of the different alternative at the same level of confidence. This type of 

situations partially fulfilled in modelling real world problems. For this, the present study offers a series of 

confidence averaging and confidence geometric aggregation operator by incorporating the confidence levels of 

experts during evaluation step under q-rung orthopair fuzzy environment. Their some important properties are 

well established. These defined operators are capable to explain the real life situation more perceptibly with the 

help of experts’ confidence levels during evaluation and will resemble the much more real situations under q-

rung orthopair fuzzy environment. Finally, a detailed discussion has been carried out to illustrate the 

applicability and superiority of presented approach over the existing ones. 

Due to the broader space of acceptance of q-ROFS, we will make effort in future to apply the concept 

of q-ROFS to solve the real life problems such as fuzzy cluster analysis, uncertain programming and pattern 

recognition, and so on. In addition, we will also focus on developing some new aggregation operators for q-

ROFNs. 
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