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Recently, resolving the decision making problem of evaluation and ranking the potential suppliers have become as a key strategic
factor for business firms. In this paper, two new intuitionistic fuzzy aggregation operators are developed: dependent intuitionistic
fuzzy ordered weighed averaging (DIFOWA) operator and dependent intuitionistic fuzzy hybrid weighed aggregation (DIFHWA)
operator. Some of their main properties are studied. A method based on the DIFHWA operator for intuitionistic fuzzy multiple
attribute decision making is presented. Finally, an illustrative example concerning supplier selection is given.

1. Introduction

As extension of Zadeh’s fuzzy set [1] whose basic component
is only a membership function, Atanassov [2–4] introduced
the concept of intuitionistic fuzzy set (IFS). Bustince and
Burillo [5] showed that IFS are vague sets [6]. IFS has been
proven to be highly useful to deal with uncertainty and
vagueness, and a lot of work has been done to develop
and enrich the IFS theory [7, 8]. In many complex decision
making problems, the decision information provided by the
decision maker is often imprecise or uncertain [9] due to
time pressure, lack of data, or the decision maker’s limited
attention and information processing capabilities.Thus, IFS is
a very suitable tool to be used to describe imprecise or uncer-
tain decision information. Recently, some approaches were
investigated to multiple attribute decision making (MADM)
problems based on intuitionistic fuzzy sets [10–14]. One of the
important things of the MADM problems is to aggregate the
information provided by the experts. Aggregating intuition-
istic fuzzy information has received more andmore attention
in recent years. Xu and Yager [15] developed some geometric
aggregation operators based on intuitionistic fuzzy sets, such
as intuitionistic fuzzy weighed geometric (IFWG) operator,

intuitionistic fuzzy ordered weighed geometric (IFOWG)
operator, intuitionistic fuzzy hybrid geometric (IFHG) oper-
ator and applied them to multiple attribute decision making.
Xu [16] also developed some intuitionistic fuzzy aggregation
operators, such as the intuitionistic fuzzy weighed averag-
ing (IFWA) operator, intuitionistic fuzzy ordered weighed
averaging (IFOWA) operator, and intuitionistic fuzzy hybrid
averaging (IFHA) operator, Xu and Yager [17] developed
an operator called dynamic intuitionistic fuzzy weighed
averaging (DIFWA) operator and procedure to deal with the
situations where all the attribute values are collected at dif-
ferent periods. Wei [18] proposed the dynamic intuitionistic
fuzzy weighed geometric (DIFWG) operator and induced
intuitionistic fuzzy ordered weighed geometric (I-IFOWG)
operator [19]. Zhao et al. [20] proposed the generalized
intuitionistic fuzzy weighed averaging (GIFWA) operator,
generalized intuitionistic fuzzy ordered weighed averaging
(GIFOWA) operator, and generalized intuitionistic fuzzy
hybrid averaging (GIFHA) operator. Based on the correlation
properties of the Choquet integral, Xu [21] and Tan and
Chen [22] proposed the intuitionistic fuzzy Choquet integral
operator, respectively. Xia and Xu [23] developed a series of
intuitionistic fuzzy point aggregation operators based on the
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idea of generalized aggregation. Xu and Yager [24] developed
an intuitionistic fuzzy Bonferroni mean (IFBM) and applied
the weighed IFBM to MADM. Xu [25] developed a series
of intuitionistic fuzzy aggregation operators, whose weighing
vectors depend upon the input arguments and allow values
being aggregated to support and reinforce each other. Xu
and Wang [26] developed the intuitionistic fuzzy induced
generalized aggregation operators. On the basis of the idea
of the ordered weighed averaging distance (OWAD) operator
[27, 28], Zeng and Su [29] developed an intuitionistic fuzzy
ordered weighed distance (IFOWD) operator. Zeng [30]
developed the intuitionistic fuzzy hybrid weighed distance
measure, and presented a consensus reaching process for
group decision making with intuitionistic fuzzy preference
information. Yu [31] developed the intuitionistic fuzzy prior-
itized weighed average (IFPWA) and the intuitionistic fuzzy
prioritized weighed geometric (IFPWG) operators. Yu [32]
developed some new aggregation operators for intuitionistic-
fuzzy information are proposed, including the intuitionistic
fuzzy geometric Heronian mean (IFGHM) operator and
the intuitionistic fuzzy geometric weighed Heronian mean
(IFGWHM) operator. Wei and Merigó [33] developed some
probability intuitionistic fuzzy aggregation operators. All the
above operators are based on the algebraic operational laws
of IFSs for carrying the combination process and are not
consistent with the limiting case of ordinary fuzzy sets [34].
Recently,Wang andLiu [35, 36] developed some intuitionistic
fuzzy aggregation operators based on Einstein operations.

However, most of the existing aggregation operators do
not take into account the relationship between the val-
ues being fused. Xu [37] proposed some dependent OWA
operators, in which the associated weights depend on the
aggregated arguments. The prominent characteristic of this
dependent OWA operator is that it can relieve the influence
of unfair arguments on the aggregated results. Further-
more, Xu [38] developed some dependent uncertain ordered
weighed aggregation operators, including dependent uncer-
tain ordered weighed averaging (DUOWA) operators and
dependent uncertain ordered weighed geometric (DUOWG)
operators, inwhich the associatedweights only depend on the
aggregated interval arguments. Wei and Zhao [39] developed
a dependent uncertain linguistic ordered weighed geometric
(DULOWG) operator to aggregate uncertain linguistic vari-
able. Liu [40] developed the intuitionistic linguistic general-
ized dependent ordered weighed average (ILGDOWA) oper-
ator and the intuitionistic linguistic generalized dependent
hybrid weighed aggregation (ILGDHWA) operator.

Nowadays, the problem of supplier selection has emerged
as an active research field where numerous research papers
have been published around this area within the last few
years. Supplier selection plays a key role in supply chain
management (SCM) and deals with evaluation, ranking, and
selection of the best option from a pool of potential suppliers
especially in the presence of conflicting attribute. In the
literature, supplier selection has been treated as a multiple
attribute decision making (MADM) and a wide range of
mathematical methods have been undertaken to provide the
problems with sufficient and more accurate solutions. In
this paper, motivated by the idea of dependent aggregation

operator proposed by Xu [37, 38], we develop some new intu-
itionistic fuzzy aggregation operators, including dependent
intuitionistic fuzzy ordered weighed averaging (DIFOWA)
operator and dependent intuitionistic fuzzy hybrid weighed
aggregation (DIFHWA) operator. Furthermore, we study
some of their main desirable properties. We also apply the
developed operators to multiple attribute decision making
(MADM) problems concerning the supplier selection with
intuitionistic fuzzy information.

2. Preliminaries

In this section, we introduce some basic concepts related
to intuitionistic fuzzy sets. Atanassov [2–4] introduced a
generalized fuzzy set called intuitionistic fuzzy set, shown as
follows.

An IFS in𝑋 is given by

𝐴 = {⟨𝑥, 𝜇
𝐴 (𝑥) , V𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑋} (1)

which is characterized by a membership function 𝜇
𝐴
: 𝑋 →

[0, 1] and a nonmembership function V
𝐴
: 𝑋 → [0, 1], with

the condition

0 ≤ 𝜇
𝐴 (𝑥) + V

𝐴 (𝑥) ≤ 1, ∀𝑥 ∈ 𝑋, (2)

where the numbers 𝜇
𝐴
(𝑥) and V

𝐴
(𝑥) represent, respectively,

the degree of membership and the degree of nonmembership
of the element 𝑥 to the set 𝐴.

For each IFS 𝐴 in𝑋, if

𝜋
𝐴 (𝑥) = 1 − 𝜇

𝐴 (𝑥) − V
𝐴 (𝑥) , ∀𝑥 ∈ 𝑋, (3)

then 𝜋
𝐴
(𝑥) is called the indeterminacy degree or hesitation

degree of 𝑥 to 𝐴.
For convenience, Xu and Yager [15] called 𝛼 = (𝜇

𝛼
, V
𝛼
) an

intuitionistic fuzzy value (IFV), where 𝜇
𝛼
∈ [0, 1], V

𝛼
∈ [0, 1],

and 𝜇
𝛼
+ V
𝛼
≤ 1. For convenience, letΩ be the set of all IFVs.

Let 𝛼 = (𝜇
𝛼
, V
𝛼
) be an IFV; Chen and Tan [41] introduced

a score function 𝑆, which can be represented as follows:

𝑆 (𝛼) = 𝜇
𝛼
− V
𝛼
, (4)

where 𝑆(𝛼) ∈ [−1, 1].
For an IFV 𝛼 = (𝜇

𝛼
, V
𝛼
), it is clear that if the deviation

between 𝜇
𝛼
and V

𝛼
gets greater, which means the value 𝜇

𝛼

gets bigger and the value V
𝛼
gets smaller, then the IFV 𝛼 gets

greater.
Later, Hong and Choi [42] noted that the score function

alone cannot differentiate many IFVs even though they
are obviously different. To make the comparison method
more discriminatory, an accuracy function𝐻 to evaluate the
degree of accuracy of the intuitionistic fuzzy value can be
represented as follows:

𝐻(𝛼) = 𝜇
𝛼
+ V
𝛼
, (5)

where𝐻(𝛼) ∈ [0, 1]. The larger the value of𝐻(𝛼), the higher
the degree of accuracy of the degree of membership of the
IFV 𝛼.



Mathematical Problems in Engineering 3

The score function 𝑆 and the accuracy function 𝐻 are,
respectively, defined as the difference and the sum of the
membership function 𝜇

𝐴
(𝑥) and the nonmembership func-

tion V
𝐴
(𝑥).

To rank IFVs, Xu and Yager [15] and Xu [16] developed a
method for the comparison between two IFVs, which is based
on the score function 𝑆 and the accuracy function𝐻:

(i) if 𝑆(𝛼
1
) < 𝑆(𝛼

2
), then 𝛼

1
< 𝛼
2
;

(ii) if 𝑆(𝛼
1
) = 𝑆(𝛼

2
), the

(1) if𝐻(𝛼
1
) < 𝐻(𝛼

2
), then 𝛼

1
< 𝛼
2
;

(2) if𝐻(𝛼
1
) = 𝐻(𝛼

2
), then 𝛼

1
= 𝛼
2
.

To aggregate intuitionistic preference information, Xu
[16] defined the following operations.

Definition 1 (see [16]). Let 𝛼 = (𝜇
𝛼
, V
𝛼
) and 𝛽 = (𝜇

𝛽
, V
𝛽
) two

IFVs; then

(1) 𝛼 ⊕ 𝛽 = (𝜇
𝛼
+ 𝜇
𝛽
− 𝜇
𝛼
⋅ 𝜇
𝛽
, V
𝛼
⋅ V
𝛽
);

(2) 𝛼 ⊗ 𝛽 = (𝜇
𝛼
⋅ 𝜇
𝛽
, V
𝛼
+ V
𝛽
− V
𝛼
⋅ V
𝛽
);

(3) 𝜆𝛼 = (1 − (1 − 𝜇
𝛼
)
𝜆
, V𝜆
𝛼
), 𝜆 > 0;

(4) 𝛼𝜆 = (𝜇
𝜆

𝛼
, 1 − (1 − V

𝛼
)
𝜆
), 𝜆 > 0.

Definition 2 (see [16]). Let 𝛼
𝑗
= (𝜇
𝛼𝑗
, V
𝛼𝑗
) (𝑗 = 1, 2, . . . , 𝑛)

be a collection of IFVs and an intuitionistic fuzzy weighed
averaging operator of dimension 𝑛 is amapping IFWA:Ω𝑛 →
Ω, if

IFWA
𝑤
(𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

= 𝑤
1
𝛼
1
⊕ 𝑤
2
𝛼
2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑤

𝑛
𝛼
𝑛

= (1 −

𝑛

∏

𝑗=1

(1 − 𝜇
𝛼𝑗
)

𝑤𝑗

,

𝑛

∏

𝑗=1

(V
𝛼𝑗
)

𝑤𝑗

) ,

(6)

where𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the weighing vector of 𝛼

𝑗
(𝑗 =

1, 2, . . . , 𝑛) such that𝑤
𝑗
∈ [0, 1], 𝑗 = 1, 2, . . . , 𝑛 and∑𝑛

𝑗=1
𝑤
𝑗
=

1.

The OWA operator introduced by Yager [43] is an
aggregation operator that provides a parameterized family
of aggregation operators between the maximum and the
minimum. Since its introduction, lots of extensions of the
OWA operator have been studied, such as the weighed OWA
(WOWA) [44], the hybrid averaging (HA) operator [45], the
ordered weighed averaging weighed averaging (OWAWA)
operator [46], and the immediate weighed OWA distance
(IWOWAD) operator [47]. It can be defined as follows.

Definition 3 (see [43]). AnOWA operator of dimension 𝑛 is a
mapping OWA: 𝑅𝑛 → 𝑅 that has an associated weighing𝑊
with 𝑤

𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝑤
𝑗
= 1, such that

OWA (𝑎
1
, . . . , 𝑎

𝑛
) =

𝑛

∑

𝑗=1

𝑤
𝑗
𝑏
𝑗
, (7)

where 𝑏
𝑗
is the 𝑗th largest of the 𝑎

𝑖
.

The OWA operator has been used in a wide range of
applications, such as engineering, neural networks, data
mining, decisionmaking, image process, and expert systems.
Consider that the OWA operator aggregates only the exact
inputs having been reordered; Xu [16] extended the OWA
operator to accommodate the situations where the input
arguments are intuitionistic fuzzy numbers and developed
the intuitionistic fuzzy ordered weighed averaging (IFOWA)
operator.

Definition 4 (see [16]). Let 𝛼
𝑗
= (𝜇
𝛼𝑗
, V
𝛼𝑗
) (𝑗 = 1, 2, . . . , 𝑛) be a

collection of IFVs and an intuitionistic fuzzy orderedweighed
averaging operator of dimension 𝑛 is a mapping IFOWA:
Ω
𝑛
→ Ω, if

IFOWA
𝑤
(𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

= 𝑤
1
𝛼
𝜎(1)

⊕ 𝑤
2
𝛼
𝜎(2)

⊕ ⋅ ⋅ ⋅ ⊕ 𝑤
𝑛
𝛼
𝜎(𝑛)

= (1 −

𝑛

∏

𝑗=1

(1 − 𝜇
𝛼𝜎(𝑗)

)

𝑤𝑗

,

𝑛

∏

𝑗=1

(V
𝛼𝜎(𝑗)

)

𝜔𝑗

) ,

(8)

where (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛)
such that 𝛼

𝜎(𝑗−1)
≥ 𝛼
𝜎(𝑗)

for all 𝑗; 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is

the weighing vector of IFOWA such that 𝑤
𝑗
∈ [0, 1], 𝑗 =

1, 2, . . . , 𝑛, and ∑
𝑛

𝑗=1
𝑤
𝑗
= 1.

3. Some Dependent Intuitionistic Fuzzy
Aggregation Operators

As an interesting and important research topic in IFS theory,
similarity measure between intuitionistic fuzzy set (IFS) has
been receiving more and more attention in recent years.
Recently, motivated by the idea of the TOPSIS of Hwang and
Yoon [48], Xu and Yager [49] introduced an intuitionistic
fuzzy similarity measure combining the distance measure as
follows.

Definition 5 (see [44]). Let 𝛼
1
= (𝜇
𝛼1
, ]
𝛼1
) and 𝛼

2
= (𝜇
𝛼2
, ]
𝛼2
)

be two IFVs and 𝛼
𝑐

2
= (]
𝛼2
, 𝜇
𝛼2
) the complement of 𝛼

2
; then

𝑠 (𝛼
1
, 𝛼
2
) =

{{

{{

{

0.5, 𝛼
1
= 𝛼
2
= 𝛼
𝑐

2

𝑑 (𝛼
1
, 𝛼
𝑐

2
)

𝑑 (𝛼
1
, 𝛼
2
) + (𝛼

1
, 𝛼
𝑐

2
)
, otherwise

(9)

is called the similarity measure between 𝛼
1
and 𝛼

2
, where

𝑑 (𝛼
1
, 𝛼
2
) =

1

2
(

𝜇
𝛼1
− 𝜇
𝛼2


+

]
𝛼1
− ]
𝛼2


+

𝜋
𝛼1
− 𝜋
𝛼2


) (10)

is the Hamming distance between 𝛼
1
and 𝛼

2
.

Definition 6. Let 𝛼
𝑗
= (𝜇
𝛼𝑗
, V
𝛼𝑗
) (𝑗 = 1, 2, . . . , 𝑛) be a collec-

tion of IFVs; the intuitionistic fuzzy arithmetic mean is
computed as

𝛼 =
1

𝑛
(𝛼
1
⊕ 𝛼
2
⊕ ⋅ ⋅ ⋅ ⊕ 𝛼

𝑛
) = (1 −

𝑛

∏

𝑖=1

(1 − 𝜇
𝑗
)
1/𝑛

,

𝑛

∏

𝑖=1

V1/𝑛
𝑗

) .

(11)
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In real-life decision making problems, the decision mak-
ing experts may have personal biases and some individuals
may give unduly high or unduly low preference values to their
preferred or repugnant objects. In such a case, we will assign
very lowweights to these false or biased opinions that is to say,
the closer a preference value (argument) is to the mid one(s),
the more the weight is. As a result, based on (8) and (10), we
define the IFOWA weights as

𝑤
𝑗
=

𝑠 (𝛼
𝜎(𝑗)

, 𝛼)

∑
𝑛

𝑗=1
𝑠 (𝛼
𝜎(𝑗)

, 𝛼)

. (12)

Obviously, 𝑤
𝑗
≥ 0 and ∑

𝑛

𝑗=1
𝑤
𝑗
= 1. In particular, if 𝛼

𝑖
= 𝛼
𝑗

for 𝑖, 𝑗 = 1, 2, . . . , 𝑛, then by (12), we have 𝑤
𝑗
= (1/𝑛) (𝑗 =

1, 2, . . . , 𝑛).

Theorem 7. Let 𝛼
𝑗
= (𝜇
𝑗
, V
𝑗
) (𝑗 = 1, 2, . . . , 𝑛) be a set of IFV

and 𝛼 the arithmetic mean of these IFV (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛))

is a permutation of (1, 2, . . . , 𝑛), such that 𝜎(𝑗 − 1) ≥ 𝜎(𝑗) for
all 𝑗 = 1, 2, . . . , 𝑛. If 𝑠(𝛼

𝜎(𝑗)
, 𝛼) ≥ 𝑠(𝛼

𝜎(𝑖)
, 𝛼), then 𝑤

𝑗
≥ 𝑤
𝑖
.

By (11), we have

IFOWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

=

𝑛

∑

𝑗=1

𝑠 (𝛼
𝜎(𝑗)

, 𝛼)

∑
𝑛

𝑗=1
𝑠 (𝛼
𝜎(𝑗)

, 𝛼)

𝛼
𝜎(𝑗)

=

∑
𝑛

𝑗=1
𝑠 (𝛼
𝜎(𝑗)

, 𝛼) 𝛼
𝜎(𝑗)

∑
𝑛

𝑗=1
𝑠 (𝛼
𝜎(𝑗)

, 𝛼)

.

(13)

Since

𝑛

∑

𝑗=1

𝑠 (𝛼
𝜎(𝑗)

, 𝛼) 𝛼
𝜎(𝑗)

=

𝑛

∑

𝑗=1

𝑠 (𝛼
𝑗
, 𝛼) 𝛼
𝑗
,

𝑛

∑

𝑗=1

𝑠 (𝛼
𝜎(𝑗)

, 𝛼) =

𝑛

∑

𝑗=1

𝑠 (𝛼
𝑗
, 𝛼) ;

(14)

then we can replace (13) by

IFOWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) =

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼) 𝛼
𝑗

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼)

. (15)

We call (15) a dependent intuitionistic fuzzy ordered
weighed averaging (DIFOWA) operator, which is a gen-
eralization of the dependent ordered weighed averaging
(DOWA) operator [37]. Consider that the aggregated value
of the DIFOWA operator is independent of the ordering;
thus it is also a neat operator. From (15) we know that
all the associated weights of the DIFOWA operator only
depend on the aggregated IFVs and can relieve the influence
of unfair arguments on the aggregated results by assigning
low weights to those “false” and “biased” ones and thus
make the aggregated results more reasonable in the practical
applications.

Similar to the DOWA operator, the DIFOWA operator
has the following properties.

Theorem 8 (commutativity). Let (𝛼
1
, 𝛼


2
, . . . , 𝛼



𝑛
) be any per-

mutation of (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
); then

DIFOWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) = DIFOWA (𝛼



1
, 𝛼


2
, . . . , 𝛼



𝑛
) .

(16)

Proof. Let

DIFOWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) =

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼) 𝛼
𝑗

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼)

,

DIFOWA (𝛼


1
, 𝛼


2
, . . . , 𝛼



𝑛
) =

∑
𝑛

𝑗=1
𝑠 (𝛼


𝑗
, 𝛼) 𝛼


𝑗

∑
𝑛

𝑗=1
𝑠 (𝛼


𝑗
, 𝛼)

.

(17)

Since (𝛼


1
, 𝛼


2
, . . . , 𝛼



𝑛
) is any permutation of (𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
),

we have
𝑛

∑

𝑗=1

𝑠 (𝛼
𝑗
, 𝛼) 𝛼
𝑗
=

𝑛

∑

𝑗=1

𝑠 (𝛼


𝑗
, 𝛼) 𝛼


𝑗
,

𝑛

∑

𝑗=1

𝑠 (𝛼
𝑗
, 𝛼) =

𝑛

∑

𝑗=1

𝑠 (𝛼
𝑗
, 𝛼) .

(18)

Thus

DIFOWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) = DIFOWA (𝛼



1
, 𝛼


2
, . . . , 𝛼



𝑛
) .

(19)

Theorem9 (idempotency). Let 𝛼
𝑗
= 𝛼
∗
(𝑗 = 1, 2, . . . , 𝑛); then

DIFOWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) = 𝛼
∗
. (20)

Proof. Since 𝛼
𝑗
= 𝛼
∗ for all 𝑗, we have

DIFOWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) =

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼) 𝛼
𝑗

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼)

=

∑
𝑛

𝑗=1
𝑠 (𝛼
∗
, 𝛼) 𝛼
∗

∑
𝑛

𝑗=1
𝑠 (𝛼
∗, 𝛼)

= 𝛼
∗
.

(21)

This completes the proof of Theorem 9.

Theorem 10 (boundedness). The IFDOWA operator lies
between the max and min operators; that is,

min (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) ≤ DIFOWA (𝛼1, 𝛼2, . . . , 𝛼n)

≤ max (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) .

(22)

Proof. Let

𝑎 = min (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) , 𝑏 = max (𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
) .

(23)

Since 𝑎 ≤ 𝛼
𝑗
≤ 𝑏, we have

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼) 𝑎

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼)

≤

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼) 𝛼
𝑗

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼)

≤

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼) 𝑏

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼)

.

(24)
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That is,

𝑎 ≤

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼) 𝛼
𝑗

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼)

≤ 𝑏; (25)

thus

min (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) ≤ DIFOWA (𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
)

≤ max (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) .

(26)

The IFWA operator only considers the weight of the
aggregated IFVs, and in IFDOWA operator, we assumed that
all of the IFVs being aggregated were of equal importance.
However, in many cases, the importance degrees should not
be treated as equally important and thus need to be assigned
different weights. Here, we will consider the effect on the
dependent operations of having differing importance of the
objects. So, inwhat follows, wewill develop a new aggregation
operator to process this case.

Definition 11. Let 𝛼
𝑗
= (𝜇
𝑗
, V
𝑗
) (𝑗 = 1, 2, . . . , 𝑛) be a collection

of the IFV and DIFHWA:Ω𝑛 → Ω. If

DIFHWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) =

𝑛

∑

𝑗=1

𝑤
𝑗
�̇�
𝜎(𝑗)

=

∑
𝑛

𝑗=1
𝑠 (𝛼
𝜎(𝑗)

, 𝛼) �̇�
𝜎(𝑗)

∑
𝑛

𝑗=1
𝑠 (𝛼
𝜎(𝑗)

, 𝛼)

,

(27)

where �̇�
𝑗
= 𝑛𝜔
𝑗
𝛼
𝑗
, (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation of

(1, 2, . . . , 𝑛), such that �̇�
𝜎(𝑗−1)

≥ �̇�
𝜎(𝑗)

for all 𝑗 = 1, 2, . . . , 𝑛

and 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 is the weight vector of 𝛼

𝑗
=

(𝜇
𝑗
, V
𝑗
) (𝑗 = 1, 2, . . . , 𝑛) with 𝜔

𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝜔
𝑗

=

1; then DIFHWA is called the dependent intuitionistic
fuzzy hybrid weighed aggregation operator. In particular, if
𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)

𝑇, then DIFHWA is reduced to the
DIFOWA operator.

Since
𝑛

∑

𝑗=1

𝑠 (𝛼
𝜎(𝑗)

, 𝛼) �̇�
𝜎(𝑗)

=

𝑛

∑

𝑗=1

𝑠 (𝛼
𝑗
, 𝛼) �̇�
𝑗
,

𝑛

∑

𝑗=1

𝑠 (𝛼
𝜎(𝑗)

, 𝛼) =

𝑛

∑

𝑗=1

𝑠 (𝛼
𝑗
, 𝛼) .

(28)

So we can replace (27) by

DIFHWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) =

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼) �̇�
𝑗

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼)

. (29)

From (29), we can see that the DIFHWA operator can not
only consider the object weight but also relieve the influence
of unfair arguments on the aggregated results by assigning
low weights to those “false” and “biased” ones.

Theorem 12. The DIFOWA operator is a special case of the
DIHHWA operator.

Proof. Let 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇; then �̇�

𝑗
= 𝛼
𝑗
for all 𝑗 =

1, 2, . . . , 𝑛, and we have

DIFHWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) =

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼) �̇�
𝑗

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼)

=

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼) 𝛼
𝑗

∑
𝑛

𝑗=1
𝑠 (𝛼
𝑗
, 𝛼)

= DIFOWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) .

(30)
This completes the proof of Theorem 12.

4. An Approach to Multiple Attribute Decision
Making Based on the DIFHWA Operator

For the multiple attribute decision making problems, in
which both the attribute weights and the expert weights take
the form of real numbers, and the attribute preference values
take the form of IFVs, we will develop an approach based on
the IFWAandDIFHWAoperators tomultiple attribute group
decision making based on intuitionistic fuzzy information
processing.

Let𝐴 = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
} be a discrete set of alternatives,

let 𝐺 = {𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑛
} be the set of attributes, let 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the weighing vector of the attribute,

where 𝑤
𝑗
∈ [0, 1], ∑𝑛

𝑗=1
𝑤
𝑗
= 1, 𝐷 = {𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑡
} be

the set of decision makers, and, 𝜆 = (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑡
) be the

expert weight, with 𝜆
𝑘
∈ [0, 1] and ∑

𝑡

𝑘=1
𝜆
𝑘
= 1. Suppose

that 𝑅(𝑘) = (𝑟
(𝑘)

𝑖𝑗
)
𝑚×𝑛

(𝑘 = 1, 2, . . . , 𝑡) is the decision matrix,
where 𝑟(𝑘)

𝑖𝑗
= (𝜇
(𝑘)

𝑖𝑗
, ](𝑘)
𝑖𝑗
) takes the form of the IFV, given by the

decision maker 𝐷
𝑘
∈ 𝐷, for alternative 𝐴

𝑖
∈ 𝐴 with respect

to the attribute 𝐺
𝑗
∈ 𝐺. The methods involve the following

steps.

Step 1. Utilize the decision information given in matrix 𝑅(𝑘)
and the IFWA operator

𝑟
(𝑘)

𝑖
= IFWA

𝑤
(𝑟
(𝑘)

𝑖1
, 𝑟
(𝑘)

𝑖2
, . . . , 𝑟

(𝑘)

𝑖𝑛
) ,

𝑖 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . , 𝑡

(31)

to derive the individual overall preference value 𝑟
(𝑘)

𝑖
of the

alternative 𝐴
𝑖
.

Step 2. Utilize (9)–(11) to calculate the degree of similarity
𝑠(𝑟
(𝑘)

𝑖
, 𝑥
𝑖
):

𝑠 (𝑟
(𝑘)

𝑖
, 𝑥
𝑖
) =

{{{

{{{

{

0.5, 𝑟
(𝑘)

𝑖
= 𝑥
𝑖
= 𝑥
𝑐

𝑖
,

𝑑 (𝑟
(𝑘)

𝑖
, 𝑥
𝑐

𝑖
)

𝑑 (𝑟
(𝑘)

𝑖
, 𝑥
𝑖
) + 𝑑 (𝑟

(𝑘)

𝑖
, 𝑥
𝑐

𝑖
)

, otherwise,

(32)

where 𝑥
𝑖
is mean of the (𝑟(1)

𝑖
, 𝑟
(2)

𝑖
, . . . , 𝑟

(𝑡)

𝑖
).
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Table 1: Intuitionistic fuzzy decision matrix 𝑅(1).

𝐺
1

𝐺
2

𝐺
3

𝐺
4

𝐺
5

𝐴
1

(0.4, 0.5) (0.5, 0.2) (0.6, 0.2) (0.8, 0.1) (0.7, 0.3)
𝐴
2

(0.6, 0.2) (0.7, 0.2) (0.3, 0.4) (0.5, 0.1) (0.7, 0.3)
𝐴
3

(0.7, 0.3) (0.8, 0.1) (0.5, 0.5) (0.3, 0.2) (0.6, 0.3)
𝐴
4

(0.3, 0.4) (0.7, 0.1) (0.6, 0.1) (0.4, 0.3) (0.9, 0.1)
𝐴
5

(0.8, 0.1) (0.3, 0.4) (0.4, 0.5) (0.7, 0.2) (0.5, 0.2)

Table 2: Intuitionistic fuzzy decision matrix 𝑅(2).

𝐺
1

𝐺
2

𝐺
3

𝐺
4

𝐺
5

𝐴
1

(0.5, 0.3) (0.6, 0.1) (0.7, 0.3) (0.7, 0.1) (0.8, 0.2)
𝐴
2

(0.7, 0.2) (0.6, 0.2) (0.4, 0.4) (0.6, 0.2) (0.7, 0.3)
𝐴
3

(0.5, 0.3) (0.7, 0.2) (0.6, 0.3) (0.4, 0.2) (0.6, 0.1)
𝐴
4

(0.5, 0.4) (0.8, 0.1) (0.4, 0.2) (0.7, 0.2) (0.7, 0.3)
𝐴
5

(0.7, 0.3) (0.5, 0.4) (0.6, 0.3) (0.6, 0.2) (0.5, 0.1)

Step 3. Utilize the DIFHWA operator:

𝑟
𝑖
= DIFHWA (𝑟

(1)

𝑖
, 𝑟
(2)

𝑖
, . . . , 𝑟

(𝑡)

𝑖
)

=

∑
𝑡

𝑘=1
𝑠 (𝑟
(𝑘)

𝑖
, 𝑥
𝑖
) (𝑡𝜆
𝑘
𝑟
(𝑘)

𝑖
)

∑
𝑡

𝑘=1
𝑠 (𝑟
(𝑘)

𝑖
, 𝑥
𝑖
)

(33)

to derive the collective overall preference values 𝑟
𝑖
(𝑖 =

1, 2, . . . , 𝑚) of the alternative 𝐴
𝑖
.

Step 4. Rank all the alternatives 𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑚) and

select the best one(s) in accordance with the collective overall
preference values 𝑟

𝑖
(𝑖 = 1, 2, . . . , 𝑚).

Step 5. End.

5. Illustrative Example

In this section, we discuss a problem concerning a man-
ufacturing company, searching the best global supplier for
one of its most critical parts used in assembling process
(adapted from Chan and Kumar [50]). The attributes which
are considered here in selection of five potential global
suppliers 𝐴

𝑖
(𝑖 = 1, 2, 3, 4, 5) are (1) 𝐺

1
: overall cost of

the product; (2) 𝐺
2
: quality of the product; (3) 𝐺

3
: service

performance of supplier; (4) 𝐺
4
: supplier’s profile; and (5)

𝐺
5
: risk factor. The five alternatives are to be evaluated

using IFVs by four decision makers (whose weighing vector
𝜆 = (0.3, 0.2, 0.3, 0.2)

𝑇) under the above five attributes
(whose weighing vector 𝑤 = (0.2, 0.15, 0.2, 0.3, 0.15)

𝑇),
and construct, respectively, the intuitionistic fuzzy decision
matrices as listed in Tables 1, 2, 3, and 4.

To get the best alternative(s), the following steps are
involved.

Table 3: Intuitionistic fuzzy decision matrix 𝑅(3).

𝐺
1

𝐺
2

𝐺
3

𝐺
4

𝐺
5

𝐴
1

(0.6, 0.3) (0.5, 0.2) (0.6, 0.4) (0.8, 0.1) (0.7, 0.3)
𝐴
2

(0.8, 0.2) (0.5, 0.3) (0.6, 0.4) (0.5, 0.2) (0.6, 0.3)
𝐴
3

(0.6, 0.1) (0.8, 0.2) (0.7, 0.3) (0.4, 0.2) (0.8, 0.1)
𝐴
4

(0.6, 0.3) (0.6, 0.1) (0.5, 0.4) (0.9, 0.1) (0.5, 0.2)
𝐴
5

(0.8, 0.1) (0.6, 0.2) (0.7, 0.3) (0.5, 0.2) (0.7, 0.1)

Table 4: Intuitionistic fuzzy decision matrix 𝑅(4).

𝐺
1

𝐺
2

𝐺
3

𝐺
4

𝐺
5

𝐴
1

(0.3, 0.4) (0.9, 0.1) (0.8, 0.1) (0.5, 0.5) (0.4, 0.6)
𝐴
2

(0.7, 0.1) (0.7, 0.3) (0.4, 0.2) (0.8, 0.2) (0.3, 0.1)
𝐴
3

(0.4, 0.1) (0.5, 0.2) (0.8, 0.1) (0.6, 0.2) (0.6, 0.3)
𝐴
4

(0.8, 0.2) (0.5, 0.1) (0.6, 0.4) (0.7, 0.2) (0.7, 0.2)
𝐴
5

(0.6, 0.1) (0.8, 0.2) (0.7, 0.2) (0.6, 0.3) (0.8, 0.1)

(1) Calculate the comprehensive evaluation values 𝑟(𝑘)
𝑖
:

𝑟
(1)

1
= (0.651, 0.207) , 𝑟

(1)

2
= (0.483, 0.187) ,

𝑟
(1)

3
= (0.579, 0.250) , 𝑟

(1)

4
= (0.607, 0.183) ,

𝑟
(1)

5
= (0.610, 0.232) , 𝑟

(2)

1
= (0.674, 0.172) ,

𝑟
(2)

2
= (0.608, 0.244) , 𝑟

(2)

3
= (0.548, 0.212) ,

𝑟
(2)

4
= (0.641, 0.220) , 𝑟

(2)

5
= (0.596, 0.235) ,

𝑟
(3)

1
= (0.678, 0.215) , 𝑟

(3)

2
= (0.631, 0.244) ,

𝑟
(3)

3
= (0.654, 0.170) , 𝑟

(3)

4
= (0.727, 0.182) ,

𝑟
(3)

5
= (0.663, 0.170) , 𝑟

(4)

1
= (0.641, 0.280) ,

𝑟
(4)

2
= (0.653, 0.167) , 𝑟

(4)

3
= (0.610, 0.161) ,

𝑟
(4)

4
= (0.684, 0.207) , 𝑟

(4)

5
= (0.693, 0.177) .

(34)

(2) Calculate the degree of similarity 𝑠(𝑟(𝑘)
𝑖
, 𝑥
𝑖
):

𝑠 (𝑟
(1)

1
, 𝑥
1
) = 0.961, 𝑠 (𝑟

(2)

1
, 𝑥
1
) = 0.919,

𝑠 (𝑟
(3)

1
, 𝑥
1
) = 0.965, 𝑠 (𝑟

(4)

1
, 𝑥
1
) = 0.868,

𝑠 (𝑟
(1)

2
, 𝑥
2
) = 0.750, 𝑠 (𝑟

(2)

2
, 𝑥
2
) = 0.899,

𝑠 (𝑟
(3)

2
, 𝑥
2
) = 0.862, 𝑠 (𝑟

(4)

2
, 𝑥
2
) = 0.890,

𝑠 (𝑟
(1)

3
, 𝑥
3
) = 0.866, 𝑠 (𝑟

(2)

3
, 𝑥
3
) = 0.943,

𝑠 (𝑟
(3)

3
, 𝑥
3
) = 0.900, 𝑠 (𝑟

(4)

3
, 𝑥
3
) = 0.949,

𝑠 (𝑟
(1)

4
, 𝑥
4
) = 0.928, 𝑠 (𝑟

(2)

4
, 𝑥
4
) = 0.898,
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𝑠 (𝑟
(3)

4
, 𝑥
4
) = 0.938, 𝑠 (𝑟

(4)

4
, 𝑥
4
) = 0.906,

𝑠 (𝑟
(1)

5
, 𝑥
5
) = 0.962, 𝑠 (𝑟

(2)

5
, 𝑥
5
) = 0.919,

𝑠 (𝑟
(3)

5
, 𝑥
5
) = 0.965, 𝑠 (𝑟

(4)

5
, 𝑥
5
) = 0.868.

(35)

(3) Calculate the comprehensive evaluation value of each
alternative:
𝑟
1
= (0.665, 0.211) , 𝑟

2
= (0.592, 0.213) ,

𝑟
3
= (0.603, 0.197) , 𝑟

4
= (0.667, 0.197) ,

𝑟
5
= (0.643, 0.200) .

(36)

(4) Calculate the score function 𝑆(𝑟
𝑖
) and rank 𝑟

𝑖
(𝑖 =

1, 2, . . . , 5).
Since

𝑆 (𝑟
1
) = 0.454, 𝑆 (𝑟

2
) = 0.379,

𝑆 (𝑟
3
) = 0.406, 𝑆 (𝑟

4
) = 0.467,

𝑆 (𝑟
5
) = 0.443.

(37)

Then
𝑆 (𝑟
4
) ≻ 𝑆 (𝑟

1
) ≻ 𝑆 (𝑟

5
) ≻ 𝑆 (𝑟

3
) ≻ 𝑆 (𝑟

2
) . (38)

(5) Rank all the alternatives.
According to the ranking of score function 𝑆(𝑟

𝑖
), the

ranking is
𝐴
4
≻ 𝐴
1
≻ 𝐴
5
≻ 𝐴
3
≻ 𝐴
2
. (39)

Thus the best alternative is 𝐴
4
.

6. Conclusion

In this paper, we have investigated the multiple attribute
decision making (MADM) problems in which both the
attribute weights and the expert weights take the form of real
numbers and attribute values take the form of intuitionistic
fuzzy information. Motivated by the ideal of dependent
aggregation operator, we develop two dependent intuitionis-
tic fuzzy aggregation operators: the dependent intuitionistic
fuzzy ordered weighed averaging (DIFOWA) operator and
the dependent intuitionistic fuzzy hybrid weighed aggrega-
tion (DIFHWA) operator, in which the associated weights
only depend on the aggregated intuitionistic fuzzy numbers.
Furthermore, some desirable properties of the DIFOWA
operator, such as commutativity and idempotency, are stud-
ied. Based on the DIFHWAoperator, an approach tomultiple
attribute group decision making with intuitionistic fuzzy
information is proposed. Because the associated weights only
depend on the aggregated input arguments, the method can
relieve the influence of unfair input arguments on the aggre-
gated results by assigning low weights to those “false” and
“biased” ones. Finally, an illustrative example concerning the
supplier selection is given to verify the developed approach.
In the future, we will continue working in the extension and
application of the developed operators to other domains.
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