356,366 research outputs found

    Design: One, but in different forms

    Full text link
    This overview paper defends an augmented cognitively oriented generic-design hypothesis: there are both significant similarities between the design activities implemented in different situations and crucial differences between these and other cognitive activities; yet, characteristics of a design situation (related to the design process, the designers, and the artefact) introduce specificities in the corresponding cognitive activities and structures that are used, and in the resulting designs. We thus augment the classical generic-design hypothesis with that of different forms of designing. We review the data available in the cognitive design research literature and propose a series of candidates underlying such forms of design, outlining a number of directions requiring further elaboration

    SciTech News Volume 71, No. 3 (2017)

    Get PDF
    Columns and Reports From the Editor.........................3 Division News Science-Technology Division....5 Chemistry Division....................8 Conference Report, Marion E, Sparks Professional Development Award Recipient..9 Engineering Division................10 Engineering Division Award, Winners Reflect on their Conference Experience..15 Aerospace Section of the Engineering Division .....18 Architecture, Building Engineering, Construction, and Design Section of the Engineering Division................20 Reviews Sci-Tech Book News Reviews...22 Advertisements IEEE..........................................

    Reconciliation of object interaction models

    Get PDF
    This paper presents Reconciliation+, a tool-supported method which identifies overlaps between models of different object interactions expressed as UML sequence and/or collaboration diagrams, checks whether the overlapping elements of these models satisfy specific consistency rules, and guides developers in handling these inconsistencies. The method also keeps track of the decisions made and the actions taken in the process of managing inconsistencies

    Data-driven through-life costing to support product lifecycle management solutions in innovative product development

    Get PDF
    Innovative product usually refers to product that comprises of creativity and new ideas. In the development of such a new product, there is often a lack of historical knowledge and data available to be used to perform cost estimation accurately. This is due to the fact that traditional cost estimation methods are used to predict costs only after a product model has been built, and not at an early design stage when there is little data and information available. In light of this, original equipment manufacturers are also facing critical challenges of becoming globally competitive and increasing demands from customer for continuous innovation. To alleviate these situations this research has identified a new approach to cost modelling with the inclusion of product lifecycle management solutions to address innovative product development.The aim of this paper, therefore, is to discuss methods of developing an extended-enterprise data-driven through-life cost estimating method for innovative product development

    Agile, Web Engineering and Capability Maturity ModelI ntegration : A systematic literature review

    Get PDF
    Context Agile approaches are an alternative for organizations developing software, particularly for those who develop Web applications. Besides, CMMI (Capability Maturity Model Integration) models are well-established approaches focused on assessing the maturity of an organization that develops software. Web Engineering is the field of Software Engineering responsible for analyzing and studying the specific characteristics of the Web. The suitability of an Agile approach to help organizations reach a certain CMMI maturity level in Web environments will be very interesting, as they will be able to keep the ability to quickly react and adapt to changes as long as their development processes get mature. Objective This paper responds to whether it is feasible or not, for an organization developing Web systems, to achieve a certain maturity level of the CMMI-DEV model using Agile methods. Method The proposal is analyzed by means of a systematic literature review of the relevant approaches in the field, defining a characterization schema in order to compare them to introduce the current state-of-the-art. Results The results achieved after the systematic literature review are presented, analyzed and compared against the defined schema, extracting relevant conclusions for the different dimensions of the problem: compatibility, compliance, experience, maturity and Web. Conclusion It is concluded that although the definition of an Agile approach to meet the different CMMI maturity levels goals could be possible for an organization developing Web systems, there is still a lack of detailed studies and analysis on the field

    Qualitative software engineering research -- reflections and guidelines

    Full text link
    Researchers are increasingly recognizing the importance of human aspects in software development and since qualitative methods are used to, in-depth, explore human behavior, we believe that studies using such techniques will become more common. Existing qualitative software engineering guidelines do not cover the full breadth of qualitative methods and knowledge on using them found in the social sciences. The aim of this study was thus to extend the software engineering research community's current body of knowledge regarding available qualitative methods and provide recommendations and guidelines for their use. With the support of an epistemological argument and a literature review, we suggest that future research would benefit from (1) utilizing a broader set of research methods, (2) more strongly emphasizing reflexivity, and (3) employing qualitative guidelines and quality criteria. We present an overview of three qualitative methods commonly used in social sciences but rarely seen in software engineering research, namely interpretative phenomenological analysis, narrative analysis, and discourse analysis. Furthermore, we discuss the meaning of reflexivity in relation to the software engineering context and suggest means of fostering it. Our paper will help software engineering researchers better select and then guide the application of a broader set of qualitative research methods.Comment: 30 page

    Cloud engineering is search based software engineering too

    Get PDF
    Many of the problems posed by the migration of computation to cloud platforms can be formulated and solved using techniques associated with Search Based Software Engineering (SBSE). Much of cloud software engineering involves problems of optimisation: performance, allocation, assignment and the dynamic balancing of resources to achieve pragmatic trade-offs between many competing technical and business objectives. SBSE is concerned with the application of computational search and optimisation to solve precisely these kinds of software engineering challenges. Interest in both cloud computing and SBSE has grown rapidly in the past five years, yet there has been little work on SBSE as a means of addressing cloud computing challenges. Like many computationally demanding activities, SBSE has the potential to benefit from the cloud; ‘SBSE in the cloud’. However, this paper focuses, instead, of the ways in which SBSE can benefit cloud computing. It thus develops the theme of ‘SBSE for the cloud’, formulating cloud computing challenges in ways that can be addressed using SBSE

    An Exploratory Study of Forces and Frictions affecting Large-Scale Model-Driven Development

    Full text link
    In this paper, we investigate model-driven engineering, reporting on an exploratory case-study conducted at a large automotive company. The study consisted of interviews with 20 engineers and managers working in different roles. We found that, in the context of a large organization, contextual forces dominate the cognitive issues of using model-driven technology. The four forces we identified that are likely independent of the particular abstractions chosen as the basis of software development are the need for diffing in software product lines, the needs for problem-specific languages and types, the need for live modeling in exploratory activities, and the need for point-to-point traceability between artifacts. We also identified triggers of accidental complexity, which we refer to as points of friction introduced by languages and tools. Examples of the friction points identified are insufficient support for model diffing, point-to-point traceability, and model changes at runtime.Comment: To appear in proceedings of MODELS 2012, LNCS Springe
    • 

    corecore