
Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

1

Reconciliation of Object Interaction Models

George Spanoudakis and Hyoseob Kim

Department of Computing,
City University,

Northampton Square, London EC1V 0HB, UK
E–mail: gespan@soi.city.ac.uk, hkim69@soi.city.ac.uk

Abstract: This paper presents Reconciliation+, a
tool-supported method which identifies overlaps
between models of different object interactions
expressed as UML sequence and/or collaboration
diagrams, checks whether the overlapping elements
of these models satisfy specific consistency rules,
and guides developers in handling these
inconsistencies. The method also keeps track of the
decisions made and the actions taken in the process
of managing inconsistencies.

1. Introduction

The design of software systems using the use-case
driven approach [23] often results in the generation
of multiple object interaction diagrams (i.e.
sequence and/or collaboration diagrams). These
diagrams are constructed to model specific
interactions between the objects in a software
system and the actors in its environment, which are
required to deliver the functionality described by
the particular use case that the diagram describes.
These diagrams may be constructed independently
by different designers, may advocate specific
modelling angles and may reflect disparate
perceptions of the system by these designers. As a
result, they may have modelling inconsistencies.

Modelling inconsistencies occur when interaction
diagrams incorporate messages which overlap −
that is they invoke operations with the same
implementation − and model these messages in
ways that violate specific consistency rules.

As an example, consider an object-oriented design
model including the object interaction diagrams I1

and I2 in Figures 4 and 5. These diagrams show the
interactions between the classes of a library system,
which occur when the system is used to search for
library items by keywords referring to the author
and the title of an item, respectively. Assume also
the following consistency rule:

CR1: If a message mi overlaps with a message mj

then for every message mk dispatched by mi (mj)

there must exist a message mw dispatched by mj

(mi) such that mk and mw overlap.

Given the class diagram of Figure 6, it may be
reasonably assumed that the messages
7:actionPerformed(ActionEvent) in I1 and
10:actionPerformed(ActionEvent) in I2 overlap1.
This is because both of them invoke the operation
actionPerformed(e:ActionEvent) in the class
DatabaseActionListener. Given this overlap, these
two message violate CR1 since:

• 7:actionPerformed(ActionEvent) in I1 dispatches
the message 8:getText() that does not overlap
with any of the messages dispatched by
10:actionPerformed(ActionEvent), and

• 10:actionPerformed(ActionEvent) in I2 dispatches
the messages 11:getData(), and
12:formulateQuery() which do not overlap with
any of the messages dispatched by
7:actionPerformed(ActionEvent),

This paper describes a tool-supported method,
called "Reconciliation+", that we have developed to
support the detection of overlaps, checking of
consistency rules and handling of violations of
these rules (i.e., inconsistencies) in models of
software interactions expressed as sequence (or
collaboration) diagrams in UML [9].
Reconciliation+ has been developed as an extension
of a method developed by Spanoudakis and
Finkelstein to reconcile object-oriented models of
system structures [14]. The newly developed
extension:

(i) incorporates a flexible matching algorithm that
detects overlaps between messages which may
be not identically modelled in diagrams (e.g.

1 In this paper, we refer to messages by putting a number

indicating the order of their dispatch in the interaction
diagram they belong to before their signatures. This
number uniquely identifies a message in a diagram but
is not taken into account in any of the computations
described in the paper.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

2

messages with different signatures and
messages sent to instances of different classes),

(ii) allows the specification of a wide-range of
consistency rules, checks against overlapping
messages and allows developers to alter
existing consistency rules or add new ones,

(iii) incorporates alternative ways of handling the
detected violations of the rules and allows
developers to alter them or add new ways of
habdling, and

(iv) guides (as opposed to enforcing) developers in
selecting which rules to check and how to
handle their violations.

The process of reconciling interaction models is
driven by the enactment of an explicit process
model incorporated by the method.

The rest of the paper is structured as follows.
Section 2 presents an overview of Reconciliation+
and the prototype toolkit we have developed to
support it. Section 3 describes the specification and
enactment of the process model of the method.
Section 4 describes the algorithm for detecting
overlapping messages in different interaction
diagrams. Section 5 describes the specification of
consistency rules and the mechanism for detecting
violations of these rules. Section 6 describes the
scheme for specifying and executing different ways
of handling inconsistencies. Section 7 overviews
related work and, finally, Section 8 summarises the
method and outlines the current and future work on
it.

2. Overview of Reconciliation+

Reconciliation+ is supported by a toolkit whose
general architecture is shown in Figure 1. This
toolkit incorporates a tool that detects overlaps
between object interaction models and an engine
which enacts a process model that drives the
process of reconciling interaction diagrams. This
process model specifies:

(i) The tool that may be invoked to identify
overlaps in interaction models and the
conditions under which this tool may be
activated.

(ii) The consistency rules that can be checked
against interaction models and the conditions
under which these rules may be checked to
detect inconsistencies. The consistency rules
are expressed as queries. In this approach, the
queries retrieve the model elements that violate
the conditions that the rules require elements to
satisfy and therefore violate the rules.

(iii) Different ways of handling inconsistencies
(specified by inconsistency handling actions)
and the conditions under which each of these
ways may be applied.

Figure 1: Architecture of the Reconciliation+
toolkit

The process model of the method is enacted by a
process enactment engine. This engine interprets
the process model, presents the available options to
the developers, acts according to the option selected
(or other instructions given by them), and keeps a
trace of the enacted process.

The toolkit of the method has been implemented on
the top of Rational Rose (a CASE tool supporting
UML) using its API. The models to be reconciled
are stored as collections of UML class models and
sequence diagrams in a model repository managed
by Rose. The process model of the method and the
traces of the enacted processes are also represented
as UML class models in the Rose repository.

3. Specification and enactment of
Reconciliation+ processes

3.1 The process meta-model

The process model of Reconciliation+ is specified
in UML as an instance of an extended version of
the NATURE process meta-model [11,13]. A
specification of this meta-model in UML is shown
in Figure 2.

Toolkit
Process

Enactment
Engine

Process
M odel(s)

UM L
M odel(s)

Process
Enactment

Trace

data
flow

control
flow

Over lap
Detection

Tool

Developer

Rose model repository

Rose API

method
invocation

Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

3

According to the Nature meta-model (see non-grey
classes in Figure 2) a process is described as a
graph of contexts. A context represents the decision
to pursue a specific goal (intention) in a given
situation. A situation is a condition over the state of
the software model being manipulated by the
process. Contexts are distinguished into:

Figure 2: Process Meta-Model in UML

• executable contexts – these are contexts whose
intentions that can be directly pursued by taking
an action which changes the state of the software
model

• plan contexts – these are contexts whose
intentions are decomposed into a set of sub-goals
which have to be pursued in a specific order

• choice contexts – these are contexts whose
intentions are refined into one or more alternative
goals and can therefore be satisfied by pursuing
any of these goals

To be able to specify the process of
Reconciliation+, we had to extend the Nature
process meta-model in order to establish: (1) a
scheme for specifying situations for processes
which are enacted upon UML models, and (2) a
scheme for specifying the types of actions required
for detecting and handling inconsistencies. These
extensions were necessary since the Nature meta-
model does not determine how to specify context
situations and actions. The extensions introduced
are described in the following.

3.2 Specification of situations

In the extended meta-model, a situation is a query
that is specified as an ordered sequence of querying
set operations. As shown in Figure 2, a querying set
operation can be:

(i) a UnarySetOperation − These operations can be
used to retrieve: (a) sets of elements (or
primitive data values) from a UML model which
are associated with a model element e via the
different kinds of associations or attributes
defined by the UML meta-model for the type of
e, or (b) the elements of a set which satisfy a
specific condition (SelectOperation). A unary
set operation is applied to each of the elements
of its arg1 set and returns the union of the
elements retrieved for each of them in its result
set.

The extended meta-model defines a taxonomy
of unary set operations for all the different types
of model elements which are defined in the
UML meta-model. Figure 3 shows a part of this
taxonomy which includes the operations
available for retrieving model elements and data
values associated with UML classes. As an
example, consider the operation GetAssociations
in this taxonomy. This operation retrieves the
associations which relate the classes in its arg1
set with other classes, creates instances of the
process meta-model class ModelElement to
represent them, and inserts these elements into
its arg2 set (by associating the newly created
model elements with this set − see the
association end element in Figure 2).

Figure 3: Part of the taxonomy of unary set
operations

(ii) a BinarySetOperation − These operations
realise the operations of set union, intersection
and difference. Binary set operations are applied
to the sets that constitute their arg1 and arg2
sets and generate a result set according to the

+descendant

ExternalActionContext
action_script : String

Intern alActionContext

InternalAction
1..1

1..*

+executes

1..1

1..*

ActionOperation

1..1

+operation

1..1

0..1

+next

0..1

Update
newValue : String

UnarySetOperation

ConsistencyCheckContext

InconsistencyHand lingContext

ExecutableContext

ChoiceCo ntext

1..1+continueFrom 1..1

PlanContext

Situation

ModelElement
element_type : String

BinarySetOperation

Context

0..*

1..*

+choiceContext

0..*

+option 1..*

1..*1..*

1..1+situation 1..1

Delete

SaveOperation
withName : String
inPackage : String

Modificatio nOperation
feature : String
elementType : String

ModelElementSet

0..* +element0..*

+arg2

1..1
+scope
1..1

+deletes

+saves

+modifies
Add

+adds

QueryingSetOperation
opname : String

+result
+arg1

Query

1..1+operation 1..1

SelectOperation

feature : {Name, Value}
roperator : {equal_to, not_equal_to, less_than, greater_than}
value : String
element_type : String

UnarySetOperation
(fro m Un arySetOp eration s)

RetrieveSetOperation
(fro m Un arySetOp eration s)

ClassRSOperators
(from Una rySe tOperations)

GetSuperclasses
(from UnarySetOperations)

GetAllInstances
(from Un arySetOp eration s)

GetAttributes
(fro m Un arySetOp eration s)

GetOperations
(from Un arySetOp era tio ns)

GetAssociations
(from UnarySetOperatio ns)

GetSubclasses
(from Un arySetOp era tio ns)

GetOppositeEnds
(from Una rySe tOperations)

GetOppositeEndsWithName

endname : type = String GetReceivedMessages
(from UnarySetOperatio ns)

GetEndClassesWithName
(from UnarySetOperatio ns)

GetDispatchedMessages
(from UnarySetOpera tio ns)

GetAllOppositeEndsWithName

endname : type = String

GetAllOppositeEnds
(from UnarySetOperations)

GetAllSubclasses
(fro m Un arySetOp eration s)

GetAllAssociations
(from UnarySe tOperations)

GetAllOperations
(from UnarySetOperatio ns)

GetAllAttributes
(fro m Una rySetOperation s)

GetInstances
(fro m Una rySetOperation s)

GetAllSuperclasses
(from Un arySetOp eration s)

SequenceDiagramRSOperators
(from UnarySetOpera tio ns)

Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

4

standard definitions of their underlying
mathematical operations.

The operations of a situation are executed in the
order in which they appear in it. An operation may
take as an argument any of the sets generated by an
operation appearing before it in a situation. A
situation is considered to be satisfied if the result
set of the last of its operations is not empty.
Examples of situations specified according to this
meta-model are given in Section 6 below.

3.3 Specification of actions

Actions are defined for executable contexts and can
be specified either as executable script file names
(see attribute action_script of meta-class
ExternalActionContext in Figure 2), or as instances
of the meta-class InternalAction. An executable
context may be an ExternalActionContext or an
InternalActionContext depending on whether it
includes an action of the former or the latter kind.

External actions are used to invoke tools (e.g. the
tool that detects overlaps). Internal actions are used
to specify consistency rules (in the operational form
that we discuss in Section 5), and ways of handling
inconsistencies.

Similarly to situations, internal actions are specified
as sequences of action operations (see meta-class
ActionOperation in Figure 2). The taxomomy of the
different types of action operations is shown in
Figure 2. As shown in this figure, an action
operation may be a:

(a) querying set operation (see Section 3.2).
(b) model modification operation − This is an

operation which modifies (i.e., adds, deletes or
updates) elements of the retrieved sets (see
meta-class ModificationOperation in Figure 2).

(c) save operation − This is an operation which
saves retrieved sets of elements in the process
enactment trace (see meta-class SaveOperation
in Figure 2).

Sequences of internal action operations are
interpreted and executed by the process enactment
engine similarly to the set querying operations of
situations. Examples of internal actions used to
detect, and handle inconsistencies are given in
Sections 5 and 6, respectively.

3.4 Process enactment

The Reconciliation+ process model is enacted by an
engine which functions as a model interpreter [13].

The full algorithm implemented by the process
enactment engine of the method is beyond the
scope of this paper and may be found in [22]. In
this section, we give only an overview of the
enactment of process models in Reconciliation+.

The enactment of a model starts from the single
root choice context that every process model must
have. The situation of this context (and any other
context that is encountered as the enactment engine
traverses the process model) is evaluated by
executing its set querying operations. If the set
which results from the execution of the last of these
operations (called "situation set") is not empty, the
situation of the context is satisfied. If a situation is
satisfied, the enactment engine generates N
different possible decisions from its context where
N is the number of the elements of its evaluated
situation set.

A decision is a pair
<cont ext

i
, s i t uat i on_set _el ement

j
>

where
� cont ext i is the context whose situation is

satisfied, and
� si t uat i on_set _el ement j is an element of

the situation set of cont ext i .

The developer may select one of these decisions,
ask for tactical guidance or terminate the process. If
a decision
<cont ext

i
, s i t uat i on_set _el ement

j
> is

selected, the decision is recorded in the process
trace (see Figure 1). Subsequently:

• If cont ext
i
 is a choice context the enactment

engine: (1) retrieves the option contexts
associated with it, (2) inserts the
si t uat i on_set _el ement

j in the arg1 set of
the initial querying set operations of each of these
contexts, (3) evaluates the situation of each of
these contexts, (4) generates the possible
decisions for each of these contexts, and (5)
prompts the developer to make a new selection.

• If cont ext
i
 is an external action context the

enactment engine executes the file specified by
its attribute action_script and continues the
enactment of the process model from the context
associated with cont ext

i via the end
continueFrom (see Figure 2).

• If cont ext
i
 is an internal action context the

enactment engine executes the sequence of the
operations in its internal action and continues the

Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

5

enactment of the process model as in the case of
external action contexts.

Plan contexts are not used in the current process
model of the method and are not supported in the
current implementation. In cases where the
developer asks for tactical guidance, the enactment
engine identifies the decision before the last
decision recorded in the process trace and resumes
execution from the context of it. The developer may
abort the execution of the process model at any
point.

4. Detection of over laps

4.1 Basic algor ithmic formulation

The detection of overlaps between sequence
diagrams is formulated as an instance of the
weighted bipartite graph matching problem [10].
Assuming a pair of sequence diagrams modelling
two object interactions I i and I j, we construct an
interaction overlap graph:

IOG(I i, I j) = (V i ∪ V j, E(V i,V j))

This graph has two sets of vertices V i and V j.
Assuming (without loss of generality) that I i has
more messages than I j, V i and V j are defined as:

V i ≡ Messages(I i) and V j ≡ Messages(I j) ∪ DVk

where DVk is a set of k special vertices representing
dummy messages (k = |Messages(I i)| −
|Messages(I j)|). Vi and Vi are disjoint sets since
each message must belong to only one interaction
(see [9]). Thus, IOG(I i,I j) is a bipartite graph.

The set of the edges E(V i,V j) includes only edges
which connect the messages of I i with the messages
of I j:

E(V i,V j) = { (ni ,nj, b0(¬ov(mes(ni),mes(nj)))) |
(ni ∈ V i) and (nj ∈ V j)}

An edge (ni,nj,b0(¬ov(mes(ni),mes(nj)))) designates
the assumption that the messages represented by the
nodes ni and nj (these are mes(ni) and mes(nj))
overlap with each other and is weighted by a degree
of belief in the falsity of this assumption
b0(¬ov(mes(ni),mes(nj))). The overlap relation is
denoted by the predicate ov(mes(ni),mes(nj))).

The degrees of belief b0 are computed according to
the formula:

b0(¬ov(mi,mj)) =

ΣU⊆{ 1,…,6}(−1)|U|+1{ Πu∈U bu(¬ov(mi,mj))} (I)

The functions b1, …, b6 used in (I) are defined in
Section 4.2 below. After computing the beliefs b0

for all the edges of IOG(I i,I j), the overlaps between
the messages in I i and I j are detected in a two-step
process. First, the most likely candidate overlaps
are identified by selecting a subset O(V i,V j) of
E(V i,V j) which is a total morphism between V i and
V j and minimises the function:

� b0(¬ov(mes(nu),mes(nw))) (II)

 (nu, nw, b0(¬ov(mes(nu),mes(nw)))) ∈ O(Vi,Vj)

The morphism O(V i,V j) is selected using an
algorithm known as the Hungarian method [10]. In
the second step, O(V i,V j) is further restricted to
include only the edges (nu, nw, b0(¬ov
(mes(nu),mes(nw))) whose non overlap belief does
not exceed a particular threshold value bt, that is:

b0(¬ov(mes(nu),mes(nv))) ≤ bt

4.2 Under lying belief functions

The functions b1, …, b6 used in (I) are computed
according to six indicators of the non existence of
overlap relations between messages, namely the
indicator of non-equivalent message operations,
and the indicators of different message senders,
receivers, stereotypes, activators and activations.
These functions are defined in the following.

4.2.1 Belief due to non-equivalent operations:
b1

b1 is the belief in the non existence of an overlap
between two messages mi and mj computed due the
non equivalent operations indicator. According to
this indicator, two messages do not overlap if they
invoke operations which do not override the same
most general operation in a class model. b1 is
defined as follows:

Definition 1: The functional form of b1 is:
b1(¬ov(mi,mj)) = α1 × d1(mi,mj)
b1(ov(mi,mj)) = 0

where
� d1(mi,mj) = (|Ops(oi) − Ops(oj)| + |Ops(oj) −

Ops(oi)|) / |Ops(oi) ∪ Ops(oj)|
� oi is the operation invoked by mi and oj is the

operation invoked by mj

� Ops(oi) is the set of operations having the same
signature with oi which are defined in the
superclasses of the class that defines oi and which
do not override any operation with the same
signature as oi

Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

6

� α1 is the expected ratio of messages mi and mj

with non-equivalent operations which do not
overlap (0 ≤ α1 ≤ 1)

In single inheritance class models, Ops(oi) and
Ops(oj) are always singleton sets and, therefore, b1

is always equal to α1 or 0. In multiple inheritance
class models, where there may be ambiguities
regarding the most general operation that is
overridden by an operation, each of Ops(oi) and
Ops(oj) may have more than one elements (see for
example). In such cases, b1 can take any value in
the range [0,…, α1].

4.2.2 Belief due to different message senders: b2

b2 is the belief in the non existence of an overlap
between two messages mi and mj computed due to
the indicator of different senders. According to this
indicator, two messages do not overlap if they are
sent by objects which are instances of different
classes (called "senders" in UML). b2 is defined as
follows:

Definition 2: The functional form of b2 is:
b2(¬ov(mi,mj)) = α2 × d2(si,sj)
b2(ov(mi,mj)) = 0

where
� si is the class of the object that sends mi and sj is

the class of the object that sends mj

� d2(ci, cj) = ����
x ∈ NCSij SD(x)-1 / ����

y ∈ ASSij SD(y)-1 if
ci and ci are specified in the models

� d2(ci, cj) = 1 if ci or ci is not specified in the
models

� NCSij is the set difference of the superclasses of ci

and cj

� SD(x) is the maximum length (number of links)
of the paths connecting a class x with the most
general class of its generalisation hierarchy,
called specialisation depth of x

� α2 is the expected ratio of messages mi and mj

with different senders which do not overlap (0 ≤
α2 ≤ 1)

b2 measures the belief in the non-identity of two
classes based on the number of their non common
superclasses and the relative depth of them in the
generalisation graph(s) of the models.

4.2.3 Belief due to different message receivers: b3

b3 is the belief in the non existence of an overlap
between two messages mi and mj computed due to
the indicator of different receivers. According to
this indicator, two messages do not overlap if they
are received by objects which are instances of

different classes (called "receivers" in UML).
Similarly to b2, b3 is defined as follows:

Definition 3: The functional form of b3 is:
b3(¬ov(mi,mj)) = α3 × d2(ri,rj)
b3(ov(mi,mj)) = 0

where
� ri is the class of the object that receives mi and rj

is the class of the object that receives mj

� d2 is as defined in Definition 3 above
� α3 is the expected ratio of messages mi and mj

with different receivers which do not overlap (0 ≤
α3 ≤ 1)

4.2.4 Belief due to different message
stereotypes: b4

b4is the belief in the non existence of an overlap
between two messages mi and mj computed due to
the indicator of different stereotypes. According to
this indicator, two messages do not overlap if they
are have different stereotypes and, therefore, they
belong to semantically different groups of
messages. b4 is defined as follows:

Definition 4: The functional form of b4 is:
b4(¬ov(mi,mj)) = α4 × d4(mi,mj)
b4(¬ov(mi,mj)) = 0

where
� d4(mi,mj) = (|Stypes(mi) − Stypes(mj)| +

|Stypes(mj) − Stypes(mi)|) / |Stypes(mi) ∪
Stypes(mj)|

� Stypes(mi) and Stypes(mj) are the sets of the
stereotypes of the messages mi and mj,
respectively

� α4 is the expected ratio of messages mi and mj

with different stereotypes which do not overlap
(0 ≤ α4 ≤ 1)

b4 measures a belief based on the number of the non
common stereotypes of two messages.

4.2.5 Belief due to different message activators:
b5

b5 is the belief in the non existence of an overlap
between two messages mi and mj computed due to
the indicator of different activators. According to
this indicator, two messages do not overlap if they
are dispatched by non overlapping messages (called
"activators" in UML) or equivalently (in terms of
our definition of message overlaps) in the course of
execution of operations with different
implementations. b5 is defined as follows:

Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

7

Definition 5: The functional form of b5 is:
b5(¬ov(mi,mj)) = α4 × Σ U⊆{ 1,…,4} (–1)|U|+1{ Πu∈U

bu(¬ov(mi,mj))}
b5(ov(mi,mj)) = 0

where
� bu (u=1,…,4) are as defined in Definitions 1-4
� α5 is the expected ratio of messages mi and mj

with different activators which do not overlap (0
≤ α5 ≤ 1)

b5 is an approximation of b6 used to avoid a double
full analysis of activators in detecting overlaps.

4.2.6 Belief due to different message
activations: b6

b6 is the belief in the non existence of an overlap
between two messages mi and mj computed due to
the indicator of different activations. According to
this indicator, two messages do not overlap if they
dispatch non overlapping messages (called
"activations" in UML) or, equivalently (in terms of
our definition of overlap), they invoke operations
with different implementations. b6 is defined as
follows:

Definition 6: The functional form of b6 is:
b6(¬ov(mi,mj)) = α6 × d6(mi,mj)
b6(ov(mi,mj)) = 0

where
� d6(mi,mj) = (min X ∈Morphisms(i,j) (����(mu,mv)∈X

bo(¬ov(mu,mv)) + max(|A i| − |A j|, |A j|
− |A i|)) / max(|A i|, |A j|)

if A i ≠ ∅ and A j ≠ ∅
d6(mi,mj) = 1 if A i = ∅ or A j = ∅.

� A i and A j are the sets of the messages which are
dispatched by the messages mi and mj,
respectively.

� M(i,j) is the set of all the total morphisms from
the messages in A i to the messages in A j if |A i| ≤
|A j| or the set of all the onto morphisms from the
messages in A i to the messages in A j if |A j| < |A i|.

� bo(¬ov(mu,mv)) is as defined by formula (I).
� α6 is the expected ratio of messages mi and mj

with different activators which do not overlap (0
≤ α6 ≤ 1)

b6 measures a belief based on a recursive check for
overlaps between the messages which are
dispatched by the messages of concern.

4.2.7 Proper ties of used belief functions

As we prove in [21], the functions b1,…,b6 are all
distance metrics. They also satisfy the axioms that

define Dempster-Shafer basic probability
assignments [19] and, as a consequence, they are
legitimately interpreted as probability assignments
of this kind. The main reason for this interpretation
is that b1,…,b6 have been defined so as to assign
measures of belief in the non existence of an
overlap relation between messages and not to the
existence of such relations, that is bi(ov(mu,mv)) =
0 for all i=1,…,6. This is because of the indicators
underlying these functions. More specifically, it has
to be appreciated that while the presence of these
indicators in the case of two messages does indicate
that an overlap relation between them is unlikely,
the absence of the indicators does not provide
evidence that such an overlap relation exists
between the messages.

Consider, for instance, the indicator of different
receivers. When two messages have different
receivers in interaction diagrams, it is more
plausible to assume that they invoke operations
with different implementations than to assume that
they invoke operations with the same
implementation. However, when two messages
have the same receiver we cannot conclude that an
overlap relation between them exists. Similar
arguments apply for the other indicators.

The functions bi (i=1,…,6) have been defined so as
to: bi(ov(mu,mv)) + bi(¬ov(mu,mv)) ≤ 1. Belief
functions that have this property of assigning a total
belief of possibly less than 1 to a proposition and its
negation are valid as Dempster-Shafer basic
probability assignments but not as classical
probability functions for which it must always be
that Prob(E) + Prob(¬E) = 1 [16].

As we prove in [21], the functional form of b0 is
derived from the combination of the belief
functions b1, …,b6 using the rule of the orthogonal
sum of the Dempster-Shafer theory and measures
the belief jointly committed to ¬ov(mi,mj) by these
functions. b0 has also been proved to be a distance
metric (see [21]). These properties of b0 guarantee
the following intuitively plausible relations between
its outputs:

� b0(¬ov(mi,mk)) ≤ b0(¬ov(mi,mj)) + b0(¬ov
(mj,mk)) (due to triangularity of distance metrics)

� b0(¬ov(mi,mj)) = b0(¬ov(mj,mi)) (due to
symmetry of distance metrics)

� b0(¬ov(mi,mj) ∧ ov(mj,mi)) = 0 (due to axiomatic
foundation of Dempster-Shafer basic probability
assignments)

Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

8

Finally, the measure that results from the
minimisation of formula (II) is an upper bound of:

b0(∨∨∨∨ ¬ov(mes(nu),mes(nv))
 (nu, nw, b0(mes(nu),mes(nw))) ∈ O(Vi,Vj)

This is the belief in the proposition that at least one
of the overlap relations in O(V i,V j) is wrong.

4.3 Example of detection of optimal over lap
morphism

As an example of detecting overlaps consider the
sequence diagrams I1 and I2 in Figures 4 and 5,
respectively. These diagrams specify interactions
between the objects in a library system which occur
when a user uses it to search for a library item by
keywords referring to the title (I1) or to the author
of an item (I2).

Figure 4: Interaction diagram I1- SearchByTitle

Figure 5: Interaction diagram I2- SearchByAuthor

I1 and I2 assume the event-driven GUI
implementation model of the Java 1.1 Abstract
Window Toolkit [20]. More specifically, in I1 the
class SearchForm has been declared as a subclass

of the Java AWT component Panel (see Figure 6)
and has a text field to let the user to type in the
keywords that should be searched within the titles
of items. In I2, the class SearchByAuthor
incorporates a panel composed of a text field and a
button that enable the user type in the author
keywords and initiate the search.

When a search is initiated the system gets the
search keywords from the appropriate UI
component (see messages 8:getText() in I1 and
11:getData() in I2). formulates a query (see
message 12:formulateQuery() in I2), and forwards
this query to a database driver to execute it (see
messages 9:executeQuery(SQLSt) in I1 and
13:executeQuery(SQLStatement) in I2).

Figure 6: Generalisation graph of the classes in
I1 and I2

Figure 7: Part of the Reconciliation+ process
model

7: actionPerformed(ActionEvent)

m : Manager sefo :
SearchForm

 : TextField : Button : DBHandler

1: new(m)

8: getText()

2: TextField("book-title")

4: Button("search")

9: executeQuery(SQLSt)

6: setVisible(True)

3: addActionListener(m)

5: addActionListener(m)

o1 :
Manager

c1 : Search
ByAuthor

f1 : Search
Form

tf : TextField bt : Button : Panel :
DBHandler

1: create(o1)
2: new(o1)

10: actionPerformed(ActionEvent)

11: getData()

3: TextFileld("author_name")

4: Button("search")

5: Panel()

6: add(bt, pos2)

7: add(f1,pos3)

13: executeQuery(SQLStatement)

12: formulateQuery()

9: actionPerformed(e)

8: addActionListener(f1)

SearchByAuthor

formulateQuery()

SearchForm

new()
getData()

DBHandler

executeQuery(statement : String)

Manager

formulateQuery()

Button

Button()
Button(label : String)
addNotify() : void
getLabel() : String
setLabel(label : String) : void
setActionCommand(command : String) : void
getActionCommand() : String
addActionListener(l : ActionListener) : void
removeActionListener(l : ActionListener) : void
eventEnabled(e : AWTEvent) : boolean
processEvent(e : AWTEvent) : void
processActionEvent(e : ActionEvent) : void
paramString() : String
writeObject(s : ObjectOutputStream) : void
readObject(s : ObjectInputStream) : void

Panel

Panel()
Panel(layout : LayoutManager)
addNotify() : void

TextField

ActionListener

actionPerformed(e : ActionEvent) : void

<<Inter face>>

TextComponent

TextComponent(text : String)
removeNotify() : void
setText(t : String) : void
getText() : String
getSelectedText() : String
isEditable() : boolean
setEditable(b : boolean) : void
getSelectionStart() : int
setSelectionStart(selectionStart : int) : void
getSelectionEnd() : int
setSelectionEnd(selectionEnd : int) : void
select(selectionStart : int, selectionEnd : int) : void
selectAll() : void
setCaretPosition(position : int) : void
getCaretPosition() : int
addTextListener(l : TextListener) : void
removeTextListener(l : TextListener) : void
eventEnabled(e : AWTEvent) : boolean
processEvent(e : AWTEvent) : void
processTextEvent(e : TextEvent) : void
paramString() : String
writeObject(s : java.io.ObjectOutputStream) : void
readObject(s : ObjectInputStream) : void

Container

Component
EventListener

<<Interface>>

DatabaseActionListener

actionPerformed(e : ActionEvent) : void

+situation

?Overlap Mo rphismExists
(from Situations)

?NonIdenticalActivations
(from Si t_? Inconsis ten tAc tiv ations)

?DispatchedByMes2WithoutCounterparts
(from Si t_?Dis patchedByM es 2WithoutCounterpar ts)

Reconcile_Overlapping_Messages_In

+situation

Reconcile_Non_Identical_Act ivations_Of

+op tion

IdentifyMessagesWithoutCounterparts
(f rom Act ion_IdentifyM ess agesWithoutCounterpar ts)

Reconcile_Sequence_Diagrams_In

+option

AddMessage
(from Ac tion_AddMess age)

Handle_Activated_By_Message2_With _No _Counterpart
(f rom Contexts)

+situation
+option

Check_For_Messages_Without_Co unterparts_Dispatched_By
(from Contex ts)

+option

+co ntinueFrom

+executes

Find_Overlaps_Between_Sequence_Diagrams_In
action_script = c:\george\research\reconciliation\similarity\dsd2_v2_4.ebs

+op tion

+continueFrom

Add_Counterpart_In_Activation_Of_Message_1
(from Contexts)

+op tion

+continueFrom

+executes

Record_Message_Without_Coun terpart
(from Contexts)

+op tion

NoExtraConditions

(f rom Sit_?NoEx traCond itions)

+situation

+situation
+situation

+situation

Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

9

The detection of overlaps can be activated during
the enactment of the Reconciliation+ process model
by selecting the executable context
Find_Overlaps_Between_Sequence_Diagrams_In
shown in Figure 7. This figure shows part of the
Reconciliation+ process model (the choice contexts
are grey and the executable contexts are white).

Figure 8: Screenshot of Overlap Detector

Find_Overlaps_Between_Sequence_Diagrams_In is
instantiated for a default package of the underlying
tool repository that includes the models to be
reconciled and is an external action executable
context that invokes the overlap detector.

As shown in Figure 8, the overlaps detected
between the messages of I1 and I2 are:
� ov(1:new(m), 2:new(o1)) − b1 = 0, b2 = 0.21, b3

= 0, b4 = 0, b5 = 1, b6 = 0.93, and b0 = 0.559
� ov(4:Button("search"), 4:Button("search")) − b1

= 0, b2 = 1, b3 = 0, b4 = 0, b5 = 0.52, b6 = 1, and
b0 = 0.564

� ov(7:actionPerformed(ActionEvent),
10: actionPerformed(ActionEvent)) − b1 = 0, b2

= 0.61, b3 = 0.21, b4 = 0, b5 = 0.48, b6 = 0.72,
and b0 = 0.48

� ov(9:executeQuery(SQLSt),
13: executeQuery(SQLStatement)) − b1 = 0, b2 =
0.21, b3 = 0, b4 = 0, b5 = 0.1, b6 = 1, and b0 =
0.48

The above relations were detected using a threshold
value of 0.6 for bt and the αi values shown in Figure
8.

The overlaps detected by the Overlap Detector are
represented in the process enactment trace as shown
in Figure 9. Each of the detected overlap relations
is represented by an object which is associated with
the messages involved in the relation. This object
also stores the measures generated by the functions
b1, …, b6 as values of specific attributes of its own.

Figure 9: Optimal morphism in the process
execution trace

For example, the object
"actionPerformed(ActionEvent)<->
actionPerformed(ActionEvent)" represents the overlap
relation between the so called messages of I1 and I2,
and is associated with objects that represent these
two messages (they appear with their internal
identifiers in Figure 8). It also stores their d3

distance (as the value of its attribute drg) and is
associated with an object that represents the
selected optimal morphism between I1 and I2

(called "OptimalMorphism"). All these objects are
stored in a special package of the tool repository
called "ExecutionClasses" which is used to store
information generated during the enactment of the
process model of the method.

5. Specification of consistency rules and
detection of inconsistencies

In our method, consistency rules are specified as
internal actions of a special kind of executable
internal action contexts, called "consistency check
contexts". These contexts are instances of the meta-
class ConsistencyCheckContext in Figure 2.

As we discussed in Section 3.1, an internal action
can generally be specified as a sequence of set,
save, or modification operations. In the case of
consistency check contexts, however, the internal
actions are restricted not to include any
modification operations. This restriction guarantees
that the execution of a consistency check will not
modify the contents of the underlying models.

39969BC20051
type : string = SequenceDiagram
OwnerName : string = 39EEDBEC01B3

3996B7680213
OwnerName : string = 39969BC20051
type : string = Message

actionPerformed(ActionEvent)<->actionPerformed(ActionEvent)_(a)
type : string = Mapping
used_by_simAnalyser : boolean = True
used_by_overlapAssesser : boolean
do = 0
ds = 0
drg = 0.2142857
dsg = 0.6129032
da = 0.4798658
dac = 0.7238937
Bo = 0.4806491

+message2

+mapping

3AF70CF4028E
OwnerName : string = 39969BAD00F1
type : string = Message

+mapping

+message1

39969BAD00F1
OwnerName : string = 39EECE560266
type : string = SequenceDiagram

OptimalMorphism
type : string = Morphism
dsd = 0.7402988

+mapping

+diagram1

+diagram2

Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

10

Furthermore, the last operation in the sequence of
operations that specify a consistency rule must be a
SaveOperation. Save operations save a set in the
process execution trace (i.e. the special package
called "ExecutionClasses"). In the case of an action
that specifies a consistency rule, this set includes
the model elements (messages) which breach the
rule. This restriction realises a well-formedness rule
for the Reconciliation+ process models which
guarantees that the results of a consistency check
will always be made temporarily available to the
enactment of the process2.

Figure 10: Specification of action
IdentifyMessagesWithoutCounterparts

Next, we give an example of a consistency rule
specified according to the scheme outlined above
and show when exactly it may be checked in the
overall process of Reconciliation+ and the results of
its checking.

5.1 Specification of consistency rules: an
example

As an example of a consistency rule specified
according to the scheme outlined above, consider
again the rule CR1. As discussed in Section 1, CR1
requires that for each message x activated by a
message mi which overlaps with a message mj there
must be a message y activated by mj that overlaps
with x and vice versa.

2 They can also become permanently available through

an inconsistency handling action that saves an
inconsistency recorded in the process trace in a special
package called Inconsistencies whose contents persist
the completion of a process enactment session.

In the process model of Reconciliation+, CR1 is
specified as the action
IdentifyMessagesWithoutCounterparts of the
consistency check context
Check_For_Messages_Without_Counterparts_Disp
atched_By shown in Figure 7. To check this rule
against a pair of overlapping messages, the
developer can select a decision that applies
Check_For_Messages_Without_Counterparts_Disp
atched_By to the object that represents the overlap
relation detected these messages (see Figure 9).
This overlap relation will be referred to as the
"selected overlap object" in the following.

As shown in Figure 10,
IdentifyMessagesWithoutCounterparts is specified
as a sequence of the following operations:

1. imwnc-o1 − imwnc-o1 is an instance of the
unary set operation GetEndClassesWithName
which returns in its result set the classes which
are attached to the opposite association ends of
the classes in its arg1 set having the same
name as the value of its attribute endname. The
arg1 set of imwnc-o1 always includes the
selected overlap object. Thus, imwnc-o1
retrieves the message2 of the overlap relation
represented by it (for example the object
"3996B7680213" in Figure 9).

2. imwnc-o2 − imwnc-o2 is an instance of the
unary set operation GetActivation.
GetActivation returns in its result set the union
of the sets of the messages which are activated
by the messages in its arg1 set. Thus, imwnc-
o2 retrieves the messages which are dispatched
by the message2 of the selected overlap object.

3. imwnc-o3 − imwnc-o3 is an instance of the
unary set operation GetEndClassesWithName
and retrieves the objects that represent the
overlap relations detected for the messages
dispatched by message2 of the selected overlap
object.

4. imwnc-o4 − imwnc-o4 is an instance of the
unary set operation GetEndClassesWithName
and retrieves the messages activated by
message1 of the selected overlap object and
which overlap with the messages activated by
the message2 of this object.

5. imwnc-o5 − imwnc-o5 is an instance of the
unary set operation GetEndClassesWithName
and retrieves the message1 of the selected
overlap object.

6. imwnc-o6 − imwnc-o6 is an instance of the
operation GetActivation and retrieves the set of

IdentifyMessagesWithoutCounterparts

imw nc-o1-s1

imw nc-o5
opname : type = GetEndClassesWithName
endname = message1

+arg1

imw nc-o5-s1+result

inwn c-o3-s1

imw nc-o4
opname : type = GetEndClassesWithName
endname : type = message1

+arg1

+next

imw nc-o1
opname : type = GetEndClassesWithName
endname : type = message2

+operation +arg1

imwnc-o1-s2
+result

imwnc-o6
opname : type = GetActivation

+next +arg1

imw nc-o4-s1
+result

imwnc-o6-s1
+result

imw nc-o8
opname : type = GetEndClassesWithName
endname = mapping+arg1

imw nc-o8-s1

+result

imwnc-o3
opname : type = GetEndClassesWithName
endname : type = mapping

+result

+next

imwnc-o2
opname : type = GetAct ivation

+next

+next

+arg1

imwnc-o7
opname : type = SetDifference

+next

+arg2

+arg1

+next

imwnc-o9
opname : type = GetEndClassesWithName
endname : type = message2

+next+arg1

imwnc-o9-s1

+result

imwnc-o2-s2

+arg1

+result

imwnc-o7-s1+result

imwnc-o10
opname : type = SetDifference

+next

+arg2

+arg1

imwnc-o11
opname : type = Save
withname = DMWNC_mes1_set
inpackage : type = ExecutionClasses

+saves

+next

imwnc-o10-s1

+result

imwnc-o12
opname : type = Save
withname : type = DMWNC_mes2_set
inpackage : type = ExecutionClasses

+next
+saves

Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

11

messages which are activated by message1 of
the selected overlap object.

7. imwnc-o7 − imwnc-o7 is an instance of the
binary set operation SetDifference which
returns the set difference between its arg1 and
arg2 set in its result set. Thus, imwnc-o7
returns the messages which have are directly
dispatched by the message1 of the selected
overlap object and do not overlap with any of
the messages which are directly dispatched by
the message2 of this object.

8. imwnc-o8 − Similarly to imwnc-o4, imwnc-o8
retrieves the overlap relations detected for the
messages which are directly dispatched by the
message1 of the selected overlap object.

9. imwnc-o9 − Similarly to imwnc-o3, imwnc-o9
retrieves the messages which overlap with the
messages dispatched by the message1 of the
selected overlap object.

10. imwnc-o10 − Similarly to imwnc-o7, imwnc-o10
returns the messages which are directly
dispatched by the message2 of the selected
overlap object and which do not overlap with
any of the messages dispatched by the
message1 of this object.

11. imwnc-o11 − imwnc-o11 is an instance of the
SaveOperation which saves with the name
indicated by the value of its attribute withname
and in the package indicated by the value of its
attribute inpackage its saves set. Thus, imwnc-
o11 saves in the package ExecutionClasses the
set of the messages which are dispatched by
message1 of the selected overlap object and do
not overlap with any of the messages
dispatched by the message2 of this object. The
name of the saved set is DMWNC_mes1_set.

12. imwnc-o12 − Similarly to imwnc-o11, imwnc-
o12 saves in the package ExecutionClasses the
set of the messages which are dispatched by
message2 of the selected overlap object and do
not overlap with any of the messages which are
dispatched by the message1 of this object. The
name of the saved set is DMWNC_mes2_set.

5.2 Execution of consistency rules

A consistency check context becomes available for
selection only in certain parts of the reconciliation
process (as determined by the process model) and
when the situation associated with it is satisfied.

Following the process model of Figure 7, the
consistency check context
Check_For_Messages_Without_Counterparts_Disp
atched_By, for example, may be selected for an

overlapping pair of messages only after a designer
has selected:

1) the executable context
Find_Overlaps_Between_Sequence_Diagrams_
In to detect overlaps relations in the sequence
diagrams to be reconciled

2) the choice context
Reconcile_Overlapping_Messages_In to start
the reconciliation of the overlapping messages
detected in these sequence diagrams, and

3) the choice context
Reconcile_Non_Identical_Activations_Of to
start the reconciliation of the overlapping
messages in these sequence diagrams with
potentially non identical activations

The selection of
Check_For_Messages_Without_Counterparts_Dispatche
d_By for the object representing the overlap
between the messages
7:actionPerformed(ActionEvent) in I1 and
10:actionPerformed(ActionEvent)) in I2 generates
the following sets of non overlapping messages in
the process enactment trace:
� DMWNC_mes1_set = { getText()}
� DMWNC_mes2_set = { getData(),

formulateQuery()}

6. Handling of Inconsistencies

Similarly to the consistency checks, the ways of
handling inconsistencies are specified as internal
actions of a special kind of executable contexts,
called inconsistency handling contexts (see Figure
2). In this section, we discuss how the situations
which determine when these contexts become
available and the actions which determine how the
inconsistencies can be dealt with are specified.

The process model of Reconciliation+ incorporates
contexts for handling inconsistencies which arise as
violations of different consistency rules. And in
cases where there are more than one possible ways
of handling the violations of a particular rule, it
includes contexts for each of these ways. These
contexts are options of choice contexts in the
process model which exist to group the different
ways of handling a particular kind of
inconsistencies. The situations of these choice
contexts are defined in a way that makes them
selectable only if there have been recorded
violations of the relevant rule in the process
enactment trace.

Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

12

As an example, consider the inconsistencies
recorded as violations of the rule specified by the
internal action of
Check_For_Messages_Without_Counterparts_Dispatche
d_By. As we discussed in Section 5.1, the internal
action of this context detects and keeps a record of
messages which violate the rule CR1. The process
model defines four contexts for handling these
violations, including the contexts:

1) Record_Message_Without_Counterpart, and
2) Add_Counterpart_In_Activation_Of_Message_1.

Figure 11: Specification of situation
?DispatchedByMes2WithoutCounterparts

As shown in Figure 7, these contexts are options
available from the choice context
Handle_Activated_By_Message2_With_No_Counterpart
which becomes available only if there are messages
that violate CR1. The satisfiability of this condition
is checked when the process enactment engine
executes the sequence of the operations of the
situation ?DispatchedByMes2WithoutCounterparts of
this context shown in Figure 11. As shown in this
figure, ?DispatchedByMes2WithoutCounterparts is
satisfied only if there is a class called
"DMWNC_mes2_set" in the package
"ExecutionClasses" of the repository of the
Reconciliation+ toolkit representing a non empty
set of messages that violate CR1. Note that, as we
discussed in Section 5.1, this set is generated by the
action of the context
Check_For_Messages_Without_Counterparts_Dispatche
d_By.

As we discussed in Section 3.4,
Handle_Activated_By_Message2_With_No_Counterpart
can be applied to any of the messages in the set
DMWNC_mes2_set. These alternative applications
are generated as decisions and are proposed to the
developer by the process enactment engine. For
example, the options generated from
Handle_Activated_By_Message2_With_No_Counterpart
in the case of the overlap relation between the

messages 7:actionPerformed(ActionPerformed)
and 11:actionPerformed(ActionEvent) of the
sequence diagrams shown in Figures 4 and 5 are
shown in Figure 12. This figure shows a snapshot
of the process enactment engine.

Figure 12: Snapshot of process enactment engine

When one of these decisions is selected, the two
alternative contexts for handling this kind of
inconsistencies Record_Message_Without_Counterpart
and Add_Counterpart_In_Activation_Of_Message_1
also become options available for selection. This is
because none of these contexts has any extra
conditions in its situation.

Figure 13: Specification of action AddMessage

Add_Counterpart_In_Activation_Of_Message_1 can be
selected to create a copy of a message in the
activation of a message mj that does not have an
overlapping counterpart in the activation of a
message mi that overlaps with it and add it to the
activation of mi.

Ac tivationsOfMes2WithNoCounterparts

dbm2nc-o5-s1

dbm2nc-o6
opname : type = GetEndClassesWithName
endname : type = element

+arg1

+result

dbm2nc-o4-s1

dbm2nc-o5
opname : type = Select
feature = name
roperator : type = equal_to
value = DMWNC_mes2_set
elementtype : type = Class

+arg1

+result

+next

dbm2nc-o3-s1

dbm2nc-o4
opname : type = GetPackageClasses

+arg1

+result
+next

dbm2nc-o2-s1

dbm2nc-o3
opname : type = Select
feature = name
roperator : type = equal_to
value : type = ExecutionClasses
elementtype = Package

+arg1

+result

+next

?DispatchedB yMes2WithoutCounterparts

dbm2nc-o2
opname : type = GetModelPackages

+result

+next

dbm2nc-o1-s1
dbm2nc-o1

opname : type = SetUnion

+operation

+next

+arg1

+arg2

+result

ama-o7
opname : type = Add
feature = message
elementtype : type = SequenceDiagram

ama-o2-s1

AddMessage

ama-o2
opname : type = GetModelPackages

+result

ama-o3-s1

ama-o3
opname : type = Select
feature = name
roperator = equal_to
value = ExecutionClasses
elementtype = Package

+next
+arg1

+result

ama-o1
opname : type = SetUnion

+op eration

+next

ama-o4
opname : type = GetPackageClasses

+arg1

+next

ama-o4-s1+result

ama-o1-s1

+arg1

+arg2

+result

ama-o5
opname : type = Select
feature = name
roperator = equal_to
value = OptimalMorphism
elementtype = Class+next

+arg1

ama-o6-s1

+adds

+modifies

ama-o5-s1
+result

ama-o6
opname : type = GetEndClassesWithName
endname = diagram1

+next

+result

+next

+arg1

Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

13

Record_Message_Without_Counterpart can be
activated to make a persistent record (i.e. a record
saved after the end of the on-going process
enactment trace) of the inconsistency. In the
following, we explain the specification of the action
of the former context that realises the former way
of handling the inconsistency.

The specification of the action AddMessage of
Add_Counterpart_In_Activation_Of_Message_1 is
shown in Figure 13. According to this specification,
in executing AddMessage, the process enactment
engine first locates the sequence diagram of
message mi in the overlap relation (mi,mj) (see
operations ama-o2 to ama-o6), and then adds (see
operation ama-o7) to the set of the messages of this
diagram a copy of the message without the
counterpart (that is the element of the set ama-o1-
s1). ama-o7 is an instance of the operation type
AddMessage and is used to add copies of the
message in its arg1 set to each of the sequence
diagrams which belong to its modifies set.

7. Related Work

A considerable body of research has been
concerned with the problem of detecting
inconsistencies in software models and
documentation. This work has generated techniques
for detecting inconsistencies in structured and text-
based [1,3,4,12], object-oriented [2,6,18], state-
based [7,8], and formal software models [5,17].

Some of the proposed techniques focus on object-
oriented models. Glinz [6], for example, has
developed a technique that checks behavioural
software models expressed as statecharts for
deadlocks, reachability and mutual exclusiveness of
states. Cheung et al [2] have developed a technique
that checks whether the sequence of the execution
of operations that is implied by a UML statechart
diagram is compliant with the sequence of the
executions of operations implied by a UML
sequence diagram. Zisman et al [18] have
developed a consistency link generator which
checks whether UML software models satisfy
specific consistency rules. These rules are
expressed in XML [2] and the consistency checking
is performed using a tool developed using and
XML development platform.

A critical survey of all the above techniques may be
found in [15].

8. Conclusions and Fur ther Work

In this paper, we presented Reconciliation+, a tool
supported method developed to guide developers in
reconciling models of the behaviour of software
systems expressed as UML object interaction
diagrams. The method provides a mechanism for
detecting overlaps between messages in interaction
models, a scheme for specifying consistency rules
that overlapping messages must satisfy, and a
scheme for specifying ways of handling violations
of these rules. The rules and the ways of handling
inconsistencies are specified as parts of a process
model that is enacted by the method to drive the
reconciliation of interaction diagrams. The method
is extensible and configurable. This is because
developers may add both consistency check and
inconsistency handling contexts to its process
model. The can also alter the situations of existing
contexts.

Currently, we are evaluating the prototype
developed for the method in an industrial case
study. We are also studying properties of the
schemes for expressing the consistency rules and
the inconsistency handling contexts in the method.
Future work will focus on expanding the built-in
process models of the method to enable the capture
of rationale for the selection of specific
inconsistency handling actions.

Acknowledgements

The work presented in this paper has been funded
by the British Engineering and Physical Sciences
Research Council (IMOOSD project, EPSRC grant
No. GR/M57422).

References

1. Boehm, B, In, H, "Identifying Quality
Requirements Conflicts", IEEE Software,
(1996), 25-35.

2. Cheung K., Chow K., Cheung T., Consistency
Analysis on Lifecycle Model and Interaction
Model, Proc. of the Int. Conference on Object-
Oriented Information Systems (OOIS '98), 1998,
427-441.

3. Easterbrook, S., "Handling Conflict between
Domain Descriptions with Computer-Supported
Negotiation", Knowledge Acquisition, Vol. 3,
(1991), 255-289.

4. Emmerich W., Finkelstein, F. Montangero, C.,
Antonelli, S., Armitage, S., "Managing
Standards Compliance". IEEE Transactions on
Software Engineering, Vol. 25, No. 6, 1999.

5. Finkelstein, A., Gabbay, D., Hunter, A., Kramer,
J., and Nuseibeh, B., "Inconsistency Handling In

Draft – An updated version of this paper has appeared in the Proceedings of the 7th International
Conference on Object Or iented Information Systems

14

Multi-Perspective Specifications", IEEE
Transactions on Software Engineering, 20, 8,
(1994), 569-578.

6. Glinz M., "An Integrated Formal Model of
Scenarios Based on Statecharts" Proc. of the 5th

European Software Engineering Conference,
LNCS 989, Springer-Verlag, 1995, 254-271.

7. Heimdahl M.P.E, Leveson N., "Completeness
and Consistency in Hierarchical State-Based
Requirements", IEEE Transactions in Software
Engineering, Vol. 22, No. 6, 1996, 363-377

8. Heitmeyer C., Jeffords R., Kiskis D.,
"Automated Consistency Checking
Requirements Specifications", ACM
Transactions on Software Engineering and
Methodology, Vol 5, No 3, 1996, 231-261.

9. OMG, Unified Modeling Language
Specification, V. 1.3a. Available from :
ftp://ftp.omg.org/pub/docs/ad/99-06-08.pdf.

10. Papadimitriou C., Steiglitz K., Combinatorial
Optimisation: Algorithms and Complexity,
Prentice-Hall Inc., 1982.

11. Pohl K. "Process-Centred Requirements
Engineering", Advanced Software Development
Series, J. Kramer (ed), Research Studies Press
Ltd., ISBN 0-86380-193-5, (1996), London

12. Robinson, W. and Fickas S. "Supporting Multi-
Perspective Requirements Engineering", In
Proc. of the IEEE Conference on Requirements
Engineering, IEEE Computer Society Press, Los
Alamitos, CA, (1994), 206-215.

13. Si-Said S, Rolland C, Grosz G, "MENTOR: A
Computer Aided Requirements Engineering
Environment", In Proc. of the 8th International
Conference on Advanced Information Systems
Engineering, Heraklion, Springer, (1996), 22-43

14. Spanoudakis G., and Finkelstein A.
"Reconciling requirements: a method for
managing interference, inconsistency and

conflict", Annals of Software Engineering,
Special Issue on Software Requirements
Engineering, 3, (1997), 459-475.

15. Spanoudakis G., Zisman A. "Inconsistency
Management in Software Engineering: Survey
and Open Research Issues", Handbook of
Software Engineering and Knowledge
Engineering, (ed) Chang S. K., World Scientific
Publishing Co., 2001 (to appear).

16. Kingman J., Taylor S., "Introduction to Measure
and Probability", Cambridge Uni. Press, 1996.

17. Lamsweerde A., Darimont R., & Letier E.,
"Managing Conflicts in Goal-Driven
Requirements Engineering", IEEE Transactions
on Software Engineering, Special Issue on
Managing Inconsistency in Software
Development, 1999.

18. Zisman A., Emmerich W., Finkelstein A.,
"Using XML to Specify Consistency Rules for
Distributed Documents", 10th Int. Workshop on
Software Specification and Design, 2000.

19. Shafer G., "A Mathematical Theory of
Evidence", Princeton University Press, 1976.

20. http://java.sun.com/j2se/1.3/docs/guide/awt/
21. Spanoudakis G.: "An Algorithm for Detecting

Overlaps between Models of Object
Interactions", Technical Report Series, TR-
2000/03, ISSN 1364-4009, Department of
Computing, City University, November 2000.

22. Spanoudakis G., Kim H.: "Evidential
Management of Inconsistencies in Object
Interaction Models", Technical Report Series,
TR-2000/04, ISSN 1364-4009, Department of
Computing, City University, December 2000.

23. Jacobson I., Christerson M., Jonsson P., and
Overgaard G..: "Object Oriented Software
Engineering: A Use Case Driven Approach".
Addison-Wesley, Reading, Massachusetts, 1992

