246,426 research outputs found

    Optimization of stand-alone photovoltaic system by implementing fuzzy logic MPPT controller

    Get PDF
    A photovoltaic (PV) generator is a nonlinear device having insolation-dependent volt-ampere characteristics. Since the maximum-power point varies with solar insolation, it is difficult to achieve an optimum matching that is valid for all insolation levels. Thus, Maximum power point tracking (MPPT) plays an important roles in photovoltaic (PV) power systems because it maximize the power output from a PV system for a given set of condition, and therefore maximize their array efficiency. This project presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on a comparative study between most conventional controller namely Perturb and Observe (P&O) algorithm and is compared to a design fuzzy logic controller (FLC). The introduction of fuzzy controller has given very good performance on whatever the parametric variation of the system

    Approximate reasoning with fuzzy-syllogistic systems

    Get PDF
    The well known Aristotelian syllogistic system consists of 256 moods. We have found earlier that 136 moods are distinct in terms of equal truth ratios that range in τ=[0,1]. The truth ratio of a particular mood is calculated by relating the number of true and false syllogistic cases the mood matches. A mood with truth ratio is a fuzzy-syllogistic mood. The introduction of (n-1) fuzzy existential quantifiers extends the system to fuzzy-syllogistic systems nS, 1<n, of which every fuzzy-syllogistic mood can be interpreted as a vague inference with a generic truth ratio that is determined by its syllogistic structure. We experimentally introduce the logic of a fuzzy-syllogistic ontology reasoner that is based on the fuzzy-syllogistic systems nS. We further introduce a new concept, the relative truth ratio rτ=[0,1] that is calculated based on the cardinalities of the syllogistic cases

    A review of computer assisted detection/diagnosis (CAD) in breast thermography for breast cancer detection

    Get PDF
    Breast cancer is the leading type of cancer diagnosed in women. For years human limitations in interpreting the thermograms possessed a considerable challenge, but with the introduction of computer assisted detection/diagnosis (CAD), this problem has been addressed. This review paper compares different approaches based on neural networks and fuzzy systems which have been implemented in different CAD designs. The greatest improvement in CAD systems was achieved with a combination of fuzzy logic and artificial neural networks in the form of FALCON-AART complementary learning fuzzy neural network (CLFNN). With a CAD design based on FALCON-AART, it was possible to achieve an overall accuracy of near 90%. This confirms that CAD systems are indeed a valuable addition to the efforts for the diagnosis of breast cancer. Lower cost and high performance of new infrared systems combined with accurate CAD designs can promote the use of thermography in many breast cancer centres worldwide

    An introduction to DSmT

    Get PDF
    The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this introduction, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT), developed for dealing with imprecise, uncertain and conflicting sources of information. We focus our presentation on the foundations of DSmT and on its most important rules of combination, rather than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout this presentation to show the efficiency and the generality of this new approach

    Exploring Constrained Type-2 fuzzy sets

    Get PDF
    Fuzzy logic has been widely used to model human reasoning thanks to its inherent capability of handling uncertainty. In particular, the introduction of Type-2 fuzzy sets added the possibility of expressing uncertainty even on the definition of the membership functions. Type-2 sets, however, don’t pose any restrictions on the continuity or convexity of their embedded sets while these properties may be desirable in certain contexts. To overcome this problem, Constrained Type-2 fuzzy sets have been proposed. In this paper, we focus on Interval Constrained Type-2 sets to see how their unique structure can be exploited to build a new inference process. This will set some ground work for future developments, such as the design of a new defuzzification process for Constrained Type-2 fuzzy systems

    Formalizing Financial Decision-Making Process: Classical or Fuzzy Approach?

    Get PDF
    The importance and the complexity of financial decision-making process are the reasons why so much work has been invested over the years in formulating methods that would realistically treat this issue. The requirement for adequate and effective methods and procedures is justified by very high complexity of the real situation, making it more difficult to fit into restrictive hypotheses on which mathematical models are often based. Financial decision-making represents a field where decision support systems can be successfully implemented, especially knowledge based decision support systems and intelligent decision support systems. This paper presents the most important features of two decision support systems, a classical system and a system based on fuzzy logics. The performances of these two models are compared and the advantages achieved through the introduction of fuzzy concepts into the classical decision support systems determined

    On the Synthesis of fuzzy neural systems.

    Get PDF
    by Chung, Fu Lai.Thesis (Ph.D.)--Chinese University of Hong Kong, 1995.Includes bibliographical references (leaves 166-174).ACKNOWLEDGEMENT --- p.iiiABSTRACT --- p.ivChapter 1. --- Introduction --- p.1Chapter 1.1 --- Integration of Fuzzy Systems and Neural Networks --- p.1Chapter 1.2 --- Objectives of the Research --- p.7Chapter 1.2.1 --- Fuzzification of Competitive Learning Algorithms --- p.7Chapter 1.2.2 --- Capacity Analysis of FAM and FRNS Models --- p.8Chapter 1.2.3 --- Structure and Parameter Identifications of FRNS --- p.9Chapter 1.3 --- Outline of the Thesis --- p.9Chapter 2. --- A Fuzzy System Primer --- p.11Chapter 2.1 --- Basic Concepts of Fuzzy Sets --- p.11Chapter 2.2 --- Fuzzy Set-Theoretic Operators --- p.15Chapter 2.3 --- "Linguistic Variable, Fuzzy Rule and Fuzzy Inference" --- p.19Chapter 2.4 --- Basic Structure of a Fuzzy System --- p.22Chapter 2.4.1 --- Fuzzifier --- p.22Chapter 2.4.2 --- Fuzzy Knowledge Base --- p.23Chapter 2.4.3 --- Fuzzy Inference Engine --- p.24Chapter 2.4.4 --- Defuzzifier --- p.28Chapter 2.5 --- Concluding Remarks --- p.29Chapter 3. --- Categories of Fuzzy Neural Systems --- p.30Chapter 3.1 --- Introduction --- p.30Chapter 3.2 --- Fuzzification of Neural Networks --- p.31Chapter 3.2.1 --- Fuzzy Membership Driven Models --- p.32Chapter 3.2.2 --- Fuzzy Operator Driven Models --- p.34Chapter 3.2.3 --- Fuzzy Arithmetic Driven Models --- p.35Chapter 3.3 --- Layered Network Implementation of Fuzzy Systems --- p.36Chapter 3.3.1 --- Mamdani's Fuzzy Systems --- p.36Chapter 3.3.2 --- Takagi and Sugeno's Fuzzy Systems --- p.37Chapter 3.3.3 --- Fuzzy Relation Based Fuzzy Systems --- p.38Chapter 3.4 --- Concluding Remarks --- p.40Chapter 4. --- Fuzzification of Competitive Learning Networks --- p.42Chapter 4.1 --- Introduction --- p.42Chapter 4.2 --- Crisp Competitive Learning --- p.44Chapter 4.2.1 --- Unsupervised Competitive Learning Algorithm --- p.46Chapter 4.2.2 --- Learning Vector Quantization Algorithm --- p.48Chapter 4.2.3 --- Frequency Sensitive Competitive Learning Algorithm --- p.50Chapter 4.3 --- Fuzzy Competitive Learning --- p.50Chapter 4.3.1 --- Unsupervised Fuzzy Competitive Learning Algorithm --- p.53Chapter 4.3.2 --- Fuzzy Learning Vector Quantization Algorithm --- p.54Chapter 4.3.3 --- Fuzzy Frequency Sensitive Competitive Learning Algorithm --- p.58Chapter 4.4 --- Stability of Fuzzy Competitive Learning --- p.58Chapter 4.5 --- Controlling the Fuzziness of Fuzzy Competitive Learning --- p.60Chapter 4.6 --- Interpretations of Fuzzy Competitive Learning Networks --- p.61Chapter 4.7 --- Simulation Results --- p.64Chapter 4.7.1 --- Performance of Fuzzy Competitive Learning Algorithms --- p.64Chapter 4.7.2 --- Performance of Monotonically Decreasing Fuzziness Control Scheme --- p.74Chapter 4.7.3 --- Interpretation of Trained Networks --- p.76Chapter 4.8 --- Concluding Remarks --- p.80Chapter 5. --- Capacity Analysis of Fuzzy Associative Memories --- p.82Chapter 5.1 --- Introduction --- p.82Chapter 5.2 --- Fuzzy Associative Memories (FAMs) --- p.83Chapter 5.3 --- Storing Multiple Rules in FAMs --- p.87Chapter 5.4 --- A High Capacity Encoding Scheme for FAMs --- p.90Chapter 5.5 --- Memory Capacity --- p.91Chapter 5.6 --- Rule Modification --- p.93Chapter 5.7 --- Inference Performance --- p.99Chapter 5.8 --- Concluding Remarks --- p.104Chapter 6. --- Capacity Analysis of Fuzzy Relational Neural Systems --- p.105Chapter 6.1 --- Introduction --- p.105Chapter 6.2 --- Fuzzy Relational Equations and Fuzzy Relational Neural Systems --- p.107Chapter 6.3 --- Solving a System of Fuzzy Relational Equations --- p.109Chapter 6.4 --- New Solvable Conditions --- p.112Chapter 6.4.1 --- Max-t Fuzzy Relational Equations --- p.112Chapter 6.4.2 --- Min-s Fuzzy Relational Equations --- p.117Chapter 6.5 --- Approximate Resolution --- p.119Chapter 6.6 --- System Capacity --- p.123Chapter 6.7 --- Inference Performance --- p.125Chapter 6.8 --- Concluding Remarks --- p.127Chapter 7. --- Structure and Parameter Identifications of Fuzzy Relational Neural Systems --- p.129Chapter 7.1 --- Introduction --- p.129Chapter 7.2 --- Modelling Nonlinear Dynamic Systems by Fuzzy Relational Equations --- p.131Chapter 7.3 --- A General FRNS Identification Algorithm --- p.138Chapter 7.4 --- An Evolutionary Computation Approach to Structure and Parameter Identifications --- p.139Chapter 7.4.1 --- Guided Evolutionary Simulated Annealing --- p.140Chapter 7.4.2 --- An Evolutionary Identification (EVIDENT) Algorithm --- p.143Chapter 7.5 --- Simulation Results --- p.146Chapter 7.6 --- Concluding Remarks --- p.158Chapter 8. --- Conclusions --- p.159Chapter 8.1 --- Summary of Contributions --- p.160Chapter 8.1.1 --- Fuzzy Competitive Learning --- p.160Chapter 8.1.2 --- Capacity Analysis of FAM and FRNS --- p.160Chapter 8.1.3 --- Numerical Identification of FRNS --- p.161Chapter 8.2 --- Further Investigations --- p.162Appendix A Publication List of the Candidate --- p.164BIBLIOGRAPHY --- p.16

    Optimization of stand-alone photovoltaic system by implementing fuzzy logic MPPT controller

    Get PDF
    A photovoltaic (PV) generator is a nonlinear device having insolation-dependent volt-ampere characteristics. Since the maximum-power point varies with solar insolation, it is difficult to achieve an optimum matching that is valid for all insolation levels. Thus, Maximum power point tracking (MPPT) plays an important roles in photovoltaic (PV) power systems because it maximize the power output from a PV system for a given set of condition, and therefore maximize their array efficiency. This project presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on a comparative study between most conventional controller namely Perturb and Observe (P&O) algorithm and is compared to a design fuzzy logic controller (FLC). The introduction of fuzzy controller has given very good performance on whatever the parametric variation of the system

    Design of stable adaptive fuzzy control.

    Get PDF
    by John Tak Kuen Koo.Thesis (M.Phil.)--Chinese University of Hong Kong, 1994.Includes bibliographical references (leaves 217-[220]).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Introduction --- p.1Chapter 1.2 --- "Robust, Adaptive and Fuzzy Control" --- p.2Chapter 1.3 --- Adaptive Fuzzy Control --- p.4Chapter 1.4 --- Object of Study --- p.10Chapter 1.5 --- Scope of the Thesis --- p.13Chapter 2 --- Background on Adaptive Control and Fuzzy Logic Control --- p.17Chapter 2.1 --- Adaptive control --- p.17Chapter 2.1.1 --- Model reference adaptive systems --- p.20Chapter 2.1.2 --- MIT Rule --- p.23Chapter 2.1.3 --- Model Reference Adaptive Control (MRAC) --- p.24Chapter 2.2 --- Fuzzy Logic Control --- p.33Chapter 2.2.1 --- Fuzzy sets and logic --- p.33Chapter 2.2.2 --- Fuzzy Relation --- p.40Chapter 2.2.3 --- Inference Mechanisms --- p.43Chapter 2.2.4 --- Defuzzification --- p.49Chapter 3 --- Explicit Form of a Class of Fuzzy Logic Controllers --- p.51Chapter 3.1 --- Introduction --- p.51Chapter 3.2 --- Construction of a class of fuzzy controller --- p.53Chapter 3.3 --- Explicit form of the fuzzy controller --- p.57Chapter 3.4 --- Design criteria on the fuzzy controller --- p.65Chapter 3.5 --- B-Spline fuzzy controller --- p.68Chapter 4 --- Model Reference Adaptive Fuzzy Control (MRAFC) --- p.73Chapter 4.1 --- Introduction --- p.73Chapter 4.2 --- "Fuzzy Controller, Plant and Reference Model" --- p.75Chapter 4.3 --- Derivation of the MRAFC adaptive laws --- p.79Chapter 4.4 --- "Extension to the Multi-Input, Multi-Output Case" --- p.84Chapter 4.5 --- Simulation --- p.90Chapter 5 --- MRAFC on a Class of Nonlinear Systems: Type I --- p.97Chapter 5.1 --- Introduction --- p.98Chapter 5.2 --- Choice of Controller --- p.99Chapter 5.3 --- Derivation of the MRAFC adaptive laws --- p.102Chapter 5.4 --- Example: Stabilization of a pendulum --- p.109Chapter 6 --- MRAFC on a Class of Nonlinear Systems: Type II --- p.112Chapter 6.1 --- Introduction --- p.113Chapter 6.2 --- Fuzzy System as Function Approximator --- p.114Chapter 6.3 --- Construction of MRAFC for the nonlinear systems --- p.118Chapter 6.4 --- Input-Output Linearization --- p.130Chapter 6.5 --- MRAFC with Input-Output Linearization --- p.132Chapter 6.6 --- Example --- p.136Chapter 7 --- Analysis of MRAFC System --- p.140Chapter 7.1 --- Averaging technique --- p.140Chapter 7.2 --- Parameter convergence --- p.143Chapter 7.3 --- Robustness --- p.152Chapter 7.4 --- Simulation --- p.157Chapter 8 --- Application of MRAFC scheme on Manipulator Control --- p.166Chapter 8.1 --- Introduction --- p.166Chapter 8.2 --- Robot Manipulator Control --- p.170Chapter 8.3 --- MRAFC on Robot Manipulator Control --- p.173Chapter 8.3.1 --- Part A: Nonlinear-function feedback fuzzy controller --- p.174Chapter 8.3.2 --- Part B: State-feedback fuzzy controller --- p.182Chapter 8.4 --- Simulation --- p.186Chapter 9 --- Conclusion --- p.199Chapter A --- Implementation of MRAFC Scheme with Practical Issues --- p.203Chapter A.1 --- Rule Generation by MRAFC scheme --- p.203Chapter A.2 --- Implementation Considerations --- p.211Chapter A.3 --- MRAFC System Design Procedure --- p.215Bibliography --- p.21
    corecore