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ABSTRACT 

During the past several years, fuzzy neural system (FNS), an integration of 
fuzzy systems and neural networks, has emerged as an active area of research. Its 
goal is to combine their individual strength and eliminate their weakness such that 
better results can be obtained. Three areas that are essential to the development of 
FNS have been chosen to study in this research. They are fuzzification of 
competitive learning (CL) networks, capacity analysis of fuzzy associate memory 
(FAM) and fuzzy relational neural system (FRNS) models, and development of a 
FRNS identification algorithm capable for both structure determination and 
parameter estimation. 

The effectiveness of the FNS approach to overcome shortcomings of 
conventional learning algorithm has been demonstrated through fuzzifying the 
competitive learning methodologies. By fuzzification of the concept win in the 
competition process, a fuzzy competitive learning paradigm is developed and three 
CL algorithms have been fuzzified accordingly. The main idea is to let every neuron 
learn in a graded manner via the fuzzy win membership which is formulated as a non-
increasing function of the closeness information. As demonstrated by the 
experimental results, the proposed FCL networks are superior to the crisp 
counterparts in avoiding neuron underutilization, training and testing performances, 
particularly in overlapping data sets, and interpretation of the trained networks. 

The second area of research was motivated by the poor understanding on the 
storage property of two existing FNS models, FAM and FRNS. It has been assumed 
that the capacity of a FAM matrix is one rule only while that of a fuzzy relation is 
bounded by a pairwisely disjoint condition. Rigorous analysis of their storage 
capacity showed that the capacity of a FAM matrix can be more than one rule. By 
generalizing the usual max-min composition of the FAM model to a max-bounded-
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product one, the capacity can be enhanced to store up a set of semi-overlapped fuzzy 
rules, which is typical in general applications. By performing similar analysis of the 
FRNS model, it can be shown that the current understanding on the storage capacity 
is too conservative; again the model is, too capable of storing a set of semi-
overlapped fuzzy rules. The impact of this study is that the storage requirement of 
the FAM model can be substantially reduced and both models consisting of one 
matrix/relation only are good enough in most applications. 

A common application of FRNS is to model nonlinear dynamic system and a 
numerical algorithm is usually called for identification purposes. While the system 
identification process should determine both the structure and the parameters of 
FRNS, most works are devoted to parameter estimation with the structure 
determined by a trial-and-error process and only little work has attempted to 
determine the structure from the training data. In view of the success of evolutionary 
computation methods in determining the topology of neural networks, an 
^olutionary identification (EVIDENT) algorithm for FRNS is developed. Through 
the experiments with various benchmarking data sets, the effectiveness of EVIDENT 
in both structure and parameter identifications is demonstrated. 
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Chapter 1 

Introduction 

1.1 Integration of Fuzzy Systems and Neural Networks 
Over the last decade or so, significant advances have been made in two distinct fields 
of interest : fuzzy systems and neural networks. Fuzzy system (FS) goes by names 
like fuzzy logic system, fuzzy logic controller, fuzzy control system, and fuzzy model 
which make it tightly-coupled with control applications. In fact, fuzzy control has 
been one of the most active and fruitful areas of research in the application of fuzzy 
set theory [71]. Its applications have been found with impressive success in areas 
ranging from industry process control to consumer electronic product design [104]. 
Unlike classical control methodology which requires a precise mathematical model to 
describe the system, the fuzzy approach utilizes a set of linguistic rules in the form of 
IF-THEN logical statement, having its antecedents and consequents encoded with 
fuzzy concepts such as fairly small, medium high, etc. Thus human-oriented control 
rules which appear very useful in controlling complex and ill-posed processes can be 
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Chapter 1 Introduction 

incorporated into the fuzzy systems conveniently. Thus, fuzzy systems are rule-based 
and are usually viewed as early examples of expert systems. 

The operations of fuzzy systems are usually described by a fuzzy inference 
process consisting of the following steps. 
1. Fuzzification : Compare the crisp inputs with the antecedent fuzzy terms of the 

rules to obtain the membership values of each fuzzy term. 
2. Fuzzy Matching : Combine the membership values rule wisely using a specific t-

norm operator [35], usually minimum or algebraic product, to get the degree of 
match for each rule. 

3. Fuzzy Aggregation : Clip the consequent fuzzy term of each rule to the degree of 
match and aggregate the qualified consequents using a ^-norm operator [35], e.g., 
maximum, to form the overall output fuzzy set. 

4. Defuzzification : Produce a crisp output that best represents the overall output 
fuzzy set. 

Fuzzification and defuzzification are employed because in most practical applications 
crisp inputs and outputs are used. Such a fuzzy inference mechanism has been 
devised to model human's knowledge representation scheme, i.e., fuzzy terms, and 
logical reasoning via fuzzy matching and aggregation. It processes information in a 
parallel and distributed manner and allows the fuzzy systems to be interpreted 
linguistically. 

Neural networks (NN) have been studied for many years in the hope of 
achieving human-like perceptual and recognition performance. The progress has been 
slow until the last decade, new network models and learning algorithms have been 
developed and the field becomes active again. Neural networks also go by many 
names, e.g., connectionist systems, neural information processing systems, and 
parallel distributed processing systems. They typically consist of many simple 
computational elements called neurons or nodes that are highly interconnected with 
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Chapter 1 Introduction 

each other as biological neural systems do. Input patterns are processed in a parallel 
and distributed fashion where each node computes its outputs according to a certain 
nonlinear activation function. There exists a number of ways to classify NN models. 
According to their learning mechanisms, NNs can be roughly categorized as 
supervised, self-organizing, and memory models. Among the supervised models, 
Rumelhart et a/.'s multilayer feedforward network [101], also known as back-
propagation network, may well be recognized as the most widely-used one. It is 
characterized by a layered feedforward architecture where layers of neurons are 
connected hierarchically. It maps sets of input patterns into sets of output patterns 
and the desired input-output mapping is usually determined by external, supervised 
adjustment of the network's interconnecting links or weights via the well-known back-
propagation algorithm [101]. Such networks have demonstrated the ability to learn 
from examples and adapt to changes in the environment. On the other hand, self-
organizing NN models such as the Kohonen map [63] and adaptive resonance theory 
(ART) one [46,47] attempt to "cluster" or average portions of the training data into 
representative groups in an unsupervised manner. Neurons in the network compete 
with each other to be specific detectors of different patterns and hence the involved 
learning algorithms are usually known as competitive learning. These models have 
appeared to be very useful in problems like feature detection [102], vector 
quantization [1] and pattern classification [64] where the labels of training patterns are 
unknown. Memorizing and learning are intricately connected [49]. In the first place, 
an activity pattern must be stored in memory through a learning or encoding process. 
When a particular activity pattern is learned, it can be recalled later when the network 
is presented with a stimulus that may be the original version, a noisy version or an 
incomplete description of the key pattern. As such, models of this category are 
usually termed as associative memories and the Hopfield model [52] and Kosko's 
BAM model [66] are undoubtedly the most well-known ones. As all these NN 

3 



Chapter 1 Introduction 

models process data rather than symbols or rules, interpretation of the networks is still 
a non-trivial task. Nevertheless, NNs have evolved a new paradigm of computation 
that contrasts sharply with the traditional sequential and programming approach. 

Table 1.1 Differences of Fuzzy Systems and Neural Networks 

Fuzzy Systems Neural Networks 
• tightly coupled with control • tightly coupled with pattern 

applications recognition 
• rule based systems • pattern based systems 
• high level information processing • low level information processing 

tools tools 
• imitating human's logical inference • imitating human's brain structure 

and knowledge representation and learning abilities 
abilities 

n no learning at all • can leam from experience 
• easy to interpret • not easy to interpret 

Table 1.2 Similarities of Fuzzy Systems and Neural Networks 

O parallel and distributed processing of information 
O model-free estimator 
O universal approximator 
O generalize to unseen information 
O fault-tolerance 
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Chapter 1 Introduction 

Although FS and NN are quite different from each other as discussed and 
summarized in Table 1.1, there exists a lot of similarities between them equally. As 
listed in Table 1.2, both models process information in a parallel and distributed 
manner [75]. Both are model-free estimators, i.e., they estimate a function without a 
mathematical model of how outputs depend on inputs [67]. Both are universal 
approximators, i.e., they are capable of approximating any nonlinear function over a 
compact set to any degree of accuracy [112]. Both generalize to unseen information 
and have good fault-tolerance capability [65]. In summary, fuzzy systems are 
generally advantageous in knowledge representation and logical reasoning under 
cognitive uncertainty while neural networks are distinguished for their leamability, 
parallelism, and adaptability to changing environments. Consequently, they are indeed 
complementary techniques to realize intelligent systems for various applications. In 
fact, the integration of these two fields has given birth to a new class of intelligent 
system models called fuzzy neural system (FNS). It is generally defined as models 
synthesized by the theoretical, conceptual, and/or functional components of fuzzy 
systems and neural networks. Its goal is to combine their strengths and eliminate their 
individual weaknesses in different problem domains. 

Many FNS models have been proposed in the last few years, for instance, see 
the collected papers in [7]. To name a few, the fuzzy associative memory (FAM) [67] 
is one of the earliest attempts to use layered network architecture to implement fuzzy 
systems. The model is characterized by a two-layer heteroassociative feedforward 
network that stores discrete fuzzy rule pattern pair in its weight matrix using 
correlation-minimum or correlation-product encoding method. It has been 
successfully applied to problems like backing up a truck-and-trailer [65], target 
tracking [67, Ch.ll], and voice cell control in asynchronous transfer mode (ATM) 
networks [81] where distinctive features like modularity, robustness, and adaptability 
have been demonstrated. The other well-known example is the fuzzy ART model 

5 



Chapter 1 Introduction 

[11]. It replaces the crisp intersection operator used originally in the choice, search, 
and learning laws of the ART 1 model [46] by a fuzzy one, i.e., minimum. Such a 
modification has led to an enhanced version of ART 1. As a result, fuzzy ART can 
learn stable categories in response to either analog or binary input patterns rather than 
just the binary ones. 

Owing to its mathematical richness and intimate connections with applications, 
fuzzy relational equation has been one of the most important areas in fuzzy set theory 
[32]. In [95,97], it has been shown that the equation is structurally similar to a two-
layer feedforward network and hence can be implemented by parallel hardware and 
incorporated with learning. Furthermore, the resultant model, termed, here, by a 
"fuzzy relational neural system" (FRNS), can be interpreted logically [95]. There 
exist many other FNS models exploiting different integration methodologies and a 
systematic overview will be given in Chapter 3. In brief, they can be divided into two 
major categories, namely, fuzzification of neural networks and layered network 
implementation of fuzzy systems. The former has been shown to be effective in 
enhancing the performance and information handling capability of conventional neural 
networks while the latter is generally advantageous in capturing and articulating fuzzy 
IF-THEN rules from numerical input-output training data and implementing them in 
an efficient manner. 
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Chapter 1 Introduction 

1.2 Objectives of the Research 
Interests in the synthesis of fuzzy neural systems have been diverse. Three of them 
have been identified in this study, namely, fuzzification of competitive learning 
algorithms, storage capacity analysis of FAM and FRNS models, and development of 
a FRNS identification algorithm capable for both structure determination and 
parameter estimation. They are essential to the development of FNS because the first 
corresponds to demonstrating the advantages of the new FNS's over the conventional 
NN models, the second contributes to the consolidation of the theoretical 
understandings of two existing FNS models, and the third addresses an important but 
not-yet-explored learning problem in FNS. 

1.2.1 Fuzzification of Competitive Learning Algorithms 

Competitive learning has been frequently used in self-organizing NN models. Its basic 
idea is to let the neurons compete according to some sort of distance metric for the 
current input pattern x^. If the jth neuron wins, its parametric vector m- is updated 
additively by some proportion of the difference vector —m” In other words, the 
winner takes all the responsibility for learning the current input pattern. This learning 
mechanism however suffers from two major shortcomings. One is the neuron 
underutilization problem [1,46,102]. A frequently cited example is that neurons with 
parametric vectors far away from the training vectors never win, and therefore never 
learn. Thus the available network resources are not fully utilized. The other 
shortcoming of competitive learning is that information concerning the closeness of 
input patterns and competing neurons is not used during the winner-take-all training 
process but it contains rich information in enhancing the learning process [28]. It is 
expected that the quality of cluster centroids found by competitive learning will be 
improved if both shortcomings can be overcome [58]. Thus, the objective of this part 
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Chapter 1 Introduction 

of the research is to develop an effective FNS solution by fuzzifying the learning rule 
such that these two shortcomings can be addressed. 

1.2.2 Capacity Analysis of F A M and FRNS Models 

Central to a fuzzy system is a set of fuzzy IF-THEN rules that relates the antecedent 
fuzzy sets to the consequent fuzzy sets. A fuzzy system or a fuzzy neural system is 
therefore expected to encode the rules such that the set-to-set mapping defined by 
them can be realized. Despite its effectiveness using layered network architecture, the 
FAM model suffers from very low storage capacity, i.e., one rule pattern pair per 
weight matrix [67]. It results in consuming a large amount of hardware and 
computations (if serial machine is used) when the number of rules is large. Hence, the 
FAM model is limited to applications with small rulebases. 

The fuzzy relational equation, the mathematical framework of the FRNS 
model, is another tool for encoding fuzzy rules. Each equation corresponds to a 
single rule and a system of equations results when there is a set of rules. If the system 
of equations can be solved, then only one fuzzy relation is enough for implementing 
the set of rules properly. In that case, the storage capacity of the FRNS would be 
very high. Unfortunately, according to the current understandings [33,44,92,97], this 
requires the input fuzzy sets to be normal and pairwise disjoint which is almost 
impossible to satisfy in practical applications. In this part of the research, the storage 
capacity of these two FNS models is re-examined rigorously and high capacity 
encoding of fuzzy rules is sought where possible. The results would lead to a better 
theoretical understanding of the models and a reduction of their storage requirements. 
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Chapter 1 Introduction 

1.2.3 Structure and Parameter Identifications of FRNS 

Both structure determination and parameter estimation are required when the FRNS 
model is applied to nonlinear dynamic system identification. While parameter 
identification is referred to the learning of the fuzzy relation elements, structure 
identification is the determination of the system orders, time delays, and composition 
operators of the systems being modelled [91]. Little work has been done in the later 
area. Existing identification algorithms usually fix the system structure beforehand 
and identify the fuzzy relation elements subsequently. If the performance is not 
acceptable, the identification process is repeated with different system structures. 
Hence, the system structure is determined by a trial-and-error process. In view of 
such a deficiency, a FRNS identification algorithm capable for both structure 
determination and parameter estimation is developed in the last part of the research. 
The new algorithm would identify the full systems being modelled without the 
intervention of human beings. 

1.3 Outline of the Thesis 
The thesis is made up of eight chapters. In Chapter 2，we first review the conceptual 
and mathematical background of fuzzy set theory. A brief description of the basic 
components of a fuzzy system is then followed. 

In Chapter 3, a categorization of existing fuzzy neural system models is 
presented. We focus on two major categories : i) fuzzification of neural networks; 
and ii) layered network implementation of fuzzy systems. Representative models of 
each category are reviewed and their advantages and integration methodologies are 
highlighted. The significance of the three areas of research is then elaborated. 
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With the background provided in Chapters 1-3, the achievements of this 
research are reported in the subsequent chapters. In Chapter 4, the fuzzification of 
three existing competitive learning algorithms is described. The superiority of the 
new algorithms in avoiding neuron underutilization, classification and their 
generalization performance is then demonstrated through various data sets. Issues in 
controlling the fuzziness of the algorithms and interpreting the trained networks are 
also addressed. 

Chapters 5 & 6 are devoted to report the storage capacity analysis of the FAM 
and FRNS models. In Chapter 5, after a brief review of the FAM model, a perfect 
recall theorem for encoding multiple rules instead of a single rule by a single weight 
matrix is derived. We then extend the results to higher capacity encoding and state 
the capacity. The chapter ends with a discussion on rule modifications and inference 
performance. 

In Chapter 6, backgrounds on the subject of fuzzy relational equations and 
their mapping to layered network architecture are introduced first. We demonstrate 
that the usual understandings of the solvable conditions of a set of max-t equations 
have been too conservative. Furthermore, the results are extended to the min->s type 
equations and applied to existing approximate resolution methods. The theorems are 
then elaborated from a system capacity perspective and the inference performance is 
reported finally. 

In Chapter 7，an evolutionary identification algorithm called EVIDENT for the 
FRNS model as applied to nonlinear dynamic system modelling is developed. Its 
effectiveness in identifying nearly optimal system structure and a better parametric 
solution, as compared with existing identification algorithms, is demonstrated through 
three benchmarking data sets. The last chapter concludes the thesis by summarizing 
the contributions of the present work, and gives suggestions on potential areas for 
further investigations. 
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Chapter 2 

A Fuzzy System Primer 

In this chapter, we briefly review some of the basic concepts and theories of 
fuzzy sets and systems which will be referred in the rest of the thesis. A more detailed 
discussion can be found in [34,60,123]. 

2.1 Basic Concepts of Fuzzy Sets 
In classical set theory, a set A of a universe of discourse U is characterized by an 
indicator function 

'1 if MG A 
lJuG\]) = \ (2.1) 

[0 if w 茫 A 
However, such a crisp approach to model physical phenomena in the real world is not 
always adequate. It is particularly so when the definition of a concept or the meaning 
of a word is encountered. For examples, what constitutes a "tall person". In view of 
this, Zadeh [118] introduced the idea of fuzzy sets, where the transition between full 
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Chapter 2 A Fuzzy System Primer 

membership and no membership is gradual rather than abrupt. A formal definition 
goes as follows. 
Definition 2.1 

Fuzzy Set: Let U be a collection of objects and be called the universe of discourse. It 
can be discrete, e.g., U = or continuous, e.g., U =识.A fuzzy set A in 
U is characterized by a membership function 

—[0，1] (2.2) 

which associates with each element of U a real number in [0,1]. Thus, membership of 
a (fuzzy) set is no longer either/or, but is a matter of degree. When U is continuous, 
the fuzzy set A is usually written concisely as 

A = f (2.3) 
JweU 

to denote A consisting (j) of all the associations (/) of and u for all wgU. 
When U is discrete, it is represented as A = )I/ = 1,2,---,/} or 

A = �� (2.4) 

where the consisting symbol is replaced by E. 
Let's take the concept "tall" as an example of fuzzy set A. With U defined by 

the range of height of 150cm to 200cm, the degree to which someone's height x cm 
can be called "tall" is jî ûCx) and the membership function |Li,“„ is depicted in Fig.2.1. 
Similarly, the concept "short" can be represented in a discrete way as Fig.2.2. 
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Here are the some of the properties of fuzzy sets. 
Definition 2.2 

Support, Nucleus and Height : The support of a fuzzy set A is the crisp set that 
contains all elements of A with non-zero membership degree. Formally, 

Support (A) = {ue > O} (2.5) 
Closely connected to the support of a fuzzy set is nucleus. The nucleus of a fuzzy set 
A is the crisp set that contains all values with full membership degree. Formally, 

Nucleus(A) = {ue = l} (2.6) 
The height of a fuzzy set A is defined as 

Height( A) = (2.7) 

Definition 2.3 

Normal and Singleton Fuzzy Set : A fuzzy set A is called normal if Height{A)=\. If 
the support of a fuzzy set A is a single point in U at which A is called a 
singleton fuzzy set. 

Fuzzy sets can also be defined in the product space of multiple universes of 
discourse and they are usually called fuzzy relations. 

Definition 2.4 

Fuzzy Relation : Let U and V be two universes of discourse. A fuzzy relation is a 
fuzzy set in the product space UxV; that is, R has the membership function ja尺0,v)， 

where MG U and VE V. Similarly, an n-ary fuzzy relation is a fuzzy set in the 
product space Uj x •••xU„ and is expressed as 

" U i x . . . x u „ = { ( l ^ / > i , . " ’ 0，（¥.", 0 ) l ( � . " , 0 e U i X � x U j (2.8) 
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2.2 Fuzzy Set-Theoretic Operators 
In classical set theory, the union, intersection and complement of sets are simple 
operations that are unambiguously defined. Due to the graded transition between full 
membership and no membership in fuzzy sets, the interpretations of fuzzy union, 
intersection and complement are not so simple. 

Definition 2.5 

Intersection, Union, and Complement : Let A and B be two fuzzy sets in U. Their 
intersection ANB and union Akj B are fuzzy sets in U with membership functions 
defined for all w g U by 

= (2.9) 
and 

召⑷二 m a x { M …，M …} (2.10) 
respectively. Usually, the fuzzy intersection operator is denoted by 八 while the 
fuzzy union operator is denoted by v. The complement A of A is a fuzzy set in U 
defined for all w e U by 

= (2.11) 

These are very simple extensions of the classical operators. The generalized operators 
for fuzzy intersection and union are r-norm and 5-norm respectively. 

Definition 2.6 

t-norm : A two place function 广[0，l]x[0,l]4[0，l] is called t-novm iff for any 
p,q,r e[0,l]: 
(i) = 
(ii) p, < p� t{p\q) < t{p'\q) (monotonicity); 
(iii) t(p,q) = t(q,p) (commutativity); 
(iv) t(p,t(q,r)) 二 t(J�p,q\r�(associativity); and 
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(V) t{0,p) = 0 (existence of 0). 
Examples of r-norm operators include minimum, algebraic product, bounded product, 
and drastic product and their operations are defined for p,q G [0,1] as 

八 ” min{p,(7} ( 2 . 1 2 ) 

P.Q二 M (2.13) 
p®q = m2ix{0,p + q-\) (2.14) 

p = i 
pxq = <q if p = l (2.15) 

0 ifp,q<l 
respectively. It has been pointed out that minimum is the largest r-norm, followed by 
algebraic product, bounded product, and drastic product [80], i.e., 

I V , � , 鳴 ® 《 叫 知 （2.16) 
This relationship has been depicted in Fig.2.3. 
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Figure 2.3 Fuzzy Intersection of X and Y. Solid line (—)： 

minimum, dotted line (...) : algebraic product, dash line ( - - ) : 
bounded product, open circle (oo) : drastic product. 
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Definition 2.7 

s-norm : A two place function 5:[0,l]x[0,l]-^[0,l] is called 5-norm iff for any 

(i) s(p,0) = p\ 
(ii) < p� ^ s{p\q) < s(p\q) (monotonicity); 
(iii) s(p,q) = s(q,p) (commutativity); 
(iv) s{p,s(q,r)) = s(s(p,q),r) (associativity); and 
(v) s{l,p) = l (existence of 1). 
Examples of 5-norm operators includes maximum, algebraic sum, bounded sum, and 
drastic sum and their operations are defined for [0,1] as 

；? v g 二 max{p,g} (2.17) 
piq 二 p + q_pq (2.18) 

p ® q 二 + (2.19) 

P IFQ = ^ 

p + q = \ q i f p = 0 (2.20) 

1 ifp,q>0 
respectively. As shown in Fig.2.4, the following relationship [80] 

I V g 非 从 斗 ( 2 . 2 1 ) 
holds true. 
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Universe of Discourse 

Figure 2.4 Fuzzy Union of X and Y. Solid line (—) : maximum, 
dotted line (...) : algebraic sum, dash line (--) : bounded sum, 
open circle (oo) : drastic sum. 

Definition 2.8 

Cartesian Product : If are fuzzy sets in ！！”！]:，…，！!。respectively, the 
Cartesian product of ApA】，".，、is a fuzzy set in the product space Uj xU! . . . xU„ 
with membership function 

|LVA2.. .x4(�"2,-" ,O = min{>^i(^0,^M"2)’ ." ,^^(O} (2.22) 
or 

= (2.23) 
or 

= (2.24) 
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2.3 Linguistic Variable，Fuzzy Rule，and Fuzzy Inference 
Based upon the concepts of fuzzy sets, the notion of a linguistic variable which is the 
fundamental knowledge representation unit in fuzzy systems was established. In 
[120], Zadeh states : 

"By a linguistic variable we mean a variable whose values are words 
or sentences in a natural or artificial language. For example, age is a 
linguistic variable if its values are linguistic rather than numerical, i.e., 
young, not young, very young, quite young, old, not very old, and not 
very young, etc., rather than 20, 21, 22, 23,..." 

A linguistic variable is characterized by a quadruple 
〈X，T(X),U,Mx〉 

where X denotes the symbolic name of a linguistic variable, e.g., height, age, speed, 
temperature, error, and change-of-error, etc. T(X) is the set of linguistic values or 
terms, also known as fuzzy terms, that X can take and is also called the term set of X, 
e.g., T(temperature)= {cold, cool, comfortable, warm, hot}. U is the actual physical 
domain over which the linguistic variable X takes its quantitative crisp value, i.e., the 
universe of discourse. M^ is a semantic function which gives a "meaning" of a 
linguistic value in terms of the quantitative elements of X，i.e., 

M X : V X eT(X) —A (2-25) 
where A denotes a fuzzy set defined over U. In other word, M^ associates the 
linguistic terms with appropriate fuzzy sets. 

With the linguistic variables defined, human (expert) knowledge can then be 
expressed by fuzzy IF-THEN rules in the form of 

IF {fuzzy proposition) THEN {fuzzy proposition) 
For example in fuzzy control, the relationship between process state and control 
output variable can be described by 
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IF error is negative big (NB) and change-of-error is positive big (PB) 
THEN control is negative small (NS) 

which stands for the linguistic description rule 
"If it is the case that the current error is negative big and the current 
change-of-error is positive big, then this is a cause for a small 
decrease in the previous value of the control output.“ 

Here, error, change-of-error, and control are the linguistic variables and NB, PB, and 
NS are the corresponding linguistic terms. Such a rule is usually implemented by a 
fuzzy implication (relation) R and is defined as follows : 

where ”NB and PB” is a fuzzy set in UxV; R = (NB and PB) NS is a fuzzy 
implication (relation) in UxVxW; and denotes a fuzzy implication function. There 
are may ways in which a fuzzy implication can be defined. Indeed, nearly 40 distinct 
fuzzy implication functions have been described in the literature [72]. To name a few, 
the fuzzy relations 

R 二（I"xV)�（UxB) “ � (2.27) 
JUxV 

R=AxB 
‘ (2.28) 
= ( 力 / ( " ， 力 

R=AxB P (2.29) 
JUxV 

where A is a fuzzy set in U and 5 is a fuzzy set in V were proposed by Zadeh [121], 
Mamdani [77], and Larsen [70] respectively. In fuzzy control applications, 
Mamdani's minimum rule of fuzzy implication is undoubtly the most well-known one 
and will be revisited in next section. 
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Approximate reasoning is the best-known form of fuzzy logic on which fuzzy 
system is based [34]. It covers a variety of inference rules whose premises contains 
fuzzy propositions. There exist two important fuzzy inference rules, namely, 
generalized modus ponens (GMP) and generalized modus tollens (GMT), and they 
can be defined respectively by the inference procedures 

premise #1 : X is A’ 
premi se #2: If X is A then Y is 召 

consequence : Y is 5’ 
and 

premise #1 : Y is 
premise #2: If X is A then Y is ^ 
consequence : X is A' 

where X and Y are linguistic variables and A, A\ B, and 5, are the corresponding 
fuzzy terms. The GMP is closely related to forward data-driven inference which is 
particularly useful in fuzzy systems. On the other hand, the GMT is closely related to 
backward goal-driven inference which is commonly used in expert systems, especially 
in the realm of medical diagnosis [71]. With the implementation of premise #2 by a 
fuzzy implication (relation), Zadeh proposed a fuzzy inference mechanism called 
compositional rule of inference [119]. Let be a fuzzy relation in UxV for premise 
#2 of the GMP and A' be a fuzzy set in U. The compositional rule of inference asserts 
that the fuzzy set B，in V induced by A' is given by 

B'=AoR (2-30) 
where ’丨�"denotes the sup-min composition. Thus, 

|i5,(v) = A [iA^)) (2.31) 
If U is discrete, eq.(2.31) becomes 

(V) 二 MAX(|iyM，V) A . (2.32) 
ueU 

and "o" denotes the max-min composition. 
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2.4 Basic Structure of a Fuzzy System 
Having briefly reviewed the mathematical and conceptual backgrounds of fuzzy sets, 
we proceed to describe the basic structure of a fuzzy system. Basically, a fuzzy 
system consists of four principle components, namely, a fuzzifier, a fuzzy knowledge 
base, a fuzzy inference engine, and a defuzzifier, as shown in Fig.2.5. Their functions 
and operations are described as follows. 

Knowledge Base 

Database Rule Base 

Crisp Fuzzy F U Z Z V Fuzzy Crisp 
Fuzzifier ^ " Defuzzifier 

I叩ut Input Inference Engine output output 

Figure 2.5 Basic Structure of a Fuzzy System 

2.4.1 Fuzzif ier 

Since the observed data in most fuzzy system applications are crisp, they must be 
fuzzified before passing to the inference engine for further processing. Hence, the 
main function of a fuzzifier is to convert input point-wise data into suitable linguistic 
representations in the input universes of discourse. Depending on the inference 
mechanism adopted, two types of fuzzifiers have been proposed. One has already 
been mentioned in Chapter 1. It computes the membership values of the crisp input(s) 
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to each linguistic term of the rule antecedent, i.e., U ^ The second type 
of fuzzifiers on the other hand performs a mapping A m U . There are at 
least two possible choices of this mapping [112]. 
1. Singleton Fuzzifier : A is a singleton fuzzy set with support u', i.e., 

'1 if u = u 
= vy 4 , (2.33) 0 \/ u ^ u 

2. Non-singleton Fuzzifier : A is a normal fuzzy set with 
1 dXu = u 

^ 1 » 二 ， （2.34) 

[decreasing from 1 as u moves away from u 
The triangular and bell-shaped membership functions fall into this category. 

Among them, the singleton fuzzifier is a more popular choice though the non-
singleton one may be useful if the inputs are corrupted by noise [112]. 

2.4.2 Fuzzy Knowledge Base 

As represented in Fig.2.5，the knowledge base provides the necessary information for 
fuzzifier, inference engine, and defuzzifier. It consists of a data base and a rule base. 
The data base consists of information such as 
• the universes of discourse which are either continuous or discrete. If they are 

continuous, a process of discretization and normalization is usually required for 
effective digitial processing by computer [71]. 

• the membership functions of fuzzy sets taken by the linguistic terms of fuzzy 
rules. They can be represented as a vector of numbers or a function such as the 
triangular, trapezoidal, or bell-shaped type. 
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On the other hand, the rule base consists of a collection of fuzzy IF-THEN rules : 
Rule⑴：IF Xi is and X^ is 4 ” and …and is A?) THEN Y is B � 
Rule�IF Xi is 4(2) and X^ is A f and …and X„ is A f THEN Y is B � 

isA^'^and X 2 is Af) and …and X„ is A^'' THEN Y is B' ' ' 
where are the linguistic input variables, Y is the linguistic output 
variable, and Ai('),Af，"-,i4f are the linguistic terms of the iih fuzzy rule. It 
corresponds to the modelling of multiple-input-single-output (MISO) fuzzy systems 
and can be easily extended to cater for the multiple-input-multiple-output (MIMO) 
fuzzy systems. Furthermore, it is general enough to include other types of fuzzy rules, 
e.g., rules with "or" connectives, unless rules, non-fuzzy rules, and rules with 
incomplete IF-part [112]. Hence, we will focus on the fuzzy rules with "and" 
connectives depicted above in this thesis. 

2.4.3 Fuzzy Inference Engine 

In Section 2.3, we have already reviewed the fuzzy inference with a single rule. We 
continue in this section to describe the fuzzy inference with a set of fuzzy rules that 
characterizes a fuzzy system. There exist two types of fuzzy inference, namely, 
composition based inference and individual-rule based inference [34]. 

In composition based inference, the fuzzy relations representing the meaning 
of each individual rule are aggregated into one fuzzy relation describing the meaning 
of the overall set of rules. Then inference takes place by the composition between the 
fuzzy inputs (or fuzzified inputs from the second type of fuzzifiers) and the 
aggregated fuzzy relation. The output fuzzy set, as a result of the composition, 
describes the value of the system output. Let's take a look at an example. For the 
following set of L fuzzy rules 
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Rule �:IF 五 is zero and AE is zero THEN C is zero • • 
• • 
• • 

Rule ⑴：IF £ is and AE is Af THEN C is B� • • 
• • 
• • 

Rule�L�: IF £ is zero and AE is PS THEN C is NS 
the /th rule can be implemented by a fuzzy relation in terms of the Mamdani type 
implication function as 

(u,,,V) 二 m i n { � , . ) ( u , ) , K)，� , ) ( v ) } (2 ^^^ 
Vmi GUi,W2 GU2,ve V 

It is then aggregated with other fuzzy relations by fuzzy union to form a single fuzzy 
relation 

L 

尺 m i a x 尺�（Wi,M2,v) V^ e ！！”以之 e U2，v e V (2.36) 
representing the meaning of the set of fuzzy rules. With the fuzzy inputs in Uj x U! 
represented by their cartesian product as 

(叫，"2) = — ( 2 . 3 7 ) 

the inference output according to the compositional rule of inference is 
(V) = , "2) A ( � " 2 , V)} (2.38) 

"1，"2 

The major disadvantage of composition based inference is to store all the relation 
elements v). Also, the computational costs of computing and 
performing the compositional rule of inference are very high if parallel hardware is not 
available. As such, the individual-rule based inference discussed in Section 1.1 is 
usually perferred traditionally, particularly in fuzzy control applications. 

In individual-rule based inference, the rules are fired individually before their 
outputs are aggregated to form the overall output. The firing process can be 
described by two steps : i) computing the degree of match between the crisp input and 
the rule-antecedent's fuzzy sets via the first type of fuzzifiers; and ii) "clipping" the 
rule-consequent's fuzzy sets to the degree to which the rule-antecedent has been 
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matched by the crisp input. The "clipped" output of each rule is then aggregated by 
some sort of fuzzy union operations to produce the final inference output. These two 
steps can be best illustrated by Fig.2.6 with respect to the example given for the 
composition based inference. It can be seen that the degrees of match between a crisp 
input E=6 and the zero fuzzy terms of Rule� and Rule�L�are both 0.5 while those 
between a crisp input AE = 1.5 and the zero fuzzy term of J^ule � and PS fuzzy term 
of Rule� are 0.7 and 0.3 respectively. By taking the minimum of the degrees of 
match for each rule, the "clipped" rule-consequent's fuzzy sets with heights 0.5 & 0.3 
respectively are shown on the right side of Fig.2.6. They are then aggregated using 
the maximum operator to produce the output fuzzy set for these two rules. The crisp 
output is generated by a defuzzification process to be discussed in section 2.4.4. Such 
an inference process is usually implemented by a lookup table approach. 

It has been pointed out that such kind of inference is equivalent to the 
composition based inference if Mamdani-type fuzzy implication is employed [34]. 
Furthermore, it is computationally efficient and requires little memory storage. 
Therefore, it is frequently adopted in many fuzzy system applications. 
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Rule Antecedent Rule Consequent 
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E 0 I + dE - ^ . C - 0 + 
I : aggregate . ‘ I 
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Fuzzy Set e - , 0 + • 

Crisp Output 

Figure 2.6 Individual-Rule Based Fuzzy Inference 
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2.4.4 Defuzzifier 

With the output fuzzy set in hand, the defuzzifier performs a mapping from fuzzy set 
in V to a crisp point v* G V, i.e., / :CG V ^ v* G V. Its goal is to produce a crisp 
output that best represents the output fuzzy set C. There exists a lot of 
defuzzification strategies, see, e.g. [34], and two popular choices are depicted below. 
1. Center of Gravity (COG) Defuzzifier : The widely used COG method regards the 

center of the area below the output fuzzy set as the crisp output. In the case of a 
discrete universe of discourse, the COG defuzzifier yields 

I 

(2.39) 

where I is the cardinality of V, i.e., the number of quantization levels at the 
output space. 

2. Height Defuzzifier : The height method on the other hand takes the nucleus value 
of each output fuzzy set and builds a weighted sum of them according to their 
fired values. This is a very simple method and is computationally efficient. Let 
c. and/. be the nucleus and fired values of the output fuzzy terms respectively in 
the /th rule. The height defuzzifier yields 

t c i . f i 
/ - t r (2.40) ^ - L I / , 

i=\ 

where L is the total number of fuzzy rules. 
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2.5 Concluding Remarks 
A brief introduction to fuzzy sets and systems is given in this chapter. We see that 
fuzzy set with its membership being a matter of degree is particularly advantageous in 
modelling concepts that are imprecise or vague in nature. This can be especially 
useful in problems like pattern classification where, frequently, objects are not clearly 
members of one class or another. We also see that fuzzy systems, as a result of a 
sequence of developments in fuzzy set theory, namely, fuzzy sets, linguistic variables, 
fuzzy rules, inference with a single rule, and inference with a system of fuzzy rules, 
provide an interface between human knowledge and numerical information processing 
and hence linguistic control/decision rules which are essential to the success of 
modelling complex or ill-posed systems can be incorporated into the model. There 
exists some variants of the fuzzy system described in Section 2.4. For example, 
Takagi and Sugeno [107] proposed to use the following fuzzy IF-THEN rules : 

Rule⑴：EFXi i s / l i� and X^ i s^ ' ) and …and i s A f , 
THEN / ) 二 a f + a f � + …+ 

where aHW/),…,辽I!) are real-valued parameters, •^”•.•’•^“ are the crisp inputs, and 
/ ) is the crisp system output due to the ith rule. The definition of the rule 
antecedent is the same as before. It can be seen that the rule consequent is not fuzzy, 
therefore it does not provide a natural framework to incorporate fuzzy rules from 
human experts. On the other hand, Pedrycz [88] proposed to use the fuzzy relational 
equations [103] to model fuzzy rules. We will discuss this variant in a greater detail 
in chapters 6 & 7. 
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Chapter 3 

Categories of Fuzzy Neural Systems 

3.1 Introduction 
Being motivated by the advances in theory and applications of fuzzy systems and 
neural networks, the interest in integrating these two fields has been rigorous and 
fascinating during the past few years. There are several reasons for this. First, the 
enormous success of commercial applications of fuzzy systems has led to a surge of 
curiosity about the utility of fuzzy technologies for scientific and engineering 
applications. Second, the synergism of fuzzy systems and neural networks has a 
sound technical basis, because these two techniques generally attack the design of 
intelligent systems from quite different aspects. As mentioned in Chapter 1，fuzzy 
systems are generally advantageous in knowledge representation and logical reasoning 
under cognitive uncertainty while neural networks are distinguished for their 
learnability, parallelism, and adaptability to changing environments. Consequently, 
they often complement each other. Third, there seems to be many ways to use either 
technology as a "tool" within the framework of a model based on the other. For 
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example, neural network which is well-known for its ability to represent functions can 
be used to provide good approximations to the membership functions of fuzzy 
systems. 

There have been many attempts to synthesize fuzzy neural system (FNS) 
models in the last few years and according to their integration methodologies, two 
major categories of FNS's can be identified. One is based on the fuzzification of 
conventional neural network models and the other is based on the implementation of 
fuzzy systems using neural networks. Based upon such a categorization of FNS 
models, the representative models in each category are briefly reviewed in this 
chapter. It is by no means an extensive survey of FNS models but rather serves as an 
overview of the major methodologies and merits of integrating fuzzy systems and 
neural networks. After that, the motivation of the proposed three areas of study is 
described. 

3.2 Fuzzification of Neural Networks 
Since its introduction in 1965, fuzzy set theory [118] has been continuously exploited 
by researchers to fuzzify (or generalize) existing algorithms or techniques such that 
their performances can be enhanced. In the field of pattern classification, for example, 
various well-known supervised and unsupervised training algorithms have been 
successfully fuzzified. In [57], a fuzzy perceptron algorithm was proposed to 
ameliorate the convergence problem of classical perceptron algorithm in nonseparable 
training data sets. The fuzzy /^-nearest neighbor algorithm [56] assigns fuzzy 
membership values rather than a particular class to the pattern being classified 
according to its distance from k nearest neighbors and those neighbors' fuzzy 
memberships in the possible class. As reported, the algorithm not only outperforms 
the original 众-nearest neighbor algorithm in classification rate, the resulting 
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membership values also provide a confidence measure of the classification. The fuzzy 
c-means algorithm [6,36] perhaps is the most notable fuzzy algorithm for pattern 
classification. As pointed out in [105], the fuzzy c-means algorithm is especially 
useful in applications where clusters touch or overlap. Furthermore, it is superior to 
its crisp counterpart in yielding more often the global optimum [109]. 

In view of the success of fuzzy pattern classification algorithms and the close 
relationship between neural networks and pattern classification, the first category of 
FNS models has been devised to fuzzify conventional NN models by incorporating 
different fuzzy concepts at various stages of the networks such that their 
performances are improved and their abilities to handle uncertain information are 
enhanced. According to the fuzzy concepts being employed, it can be divided into 
three subcategories, namely, fuzzy membership driven models, fuzzy operator driven 
models, and fuzzy arithmetic driven models. 

3.2.1 Fuzzy Membership Driven Models 

• A Fuzzy Version of Multilayer Feedforward Network 

In [85], Pal and Mitra proposed a FNS model based on the multilayered 
feedforward network. The fuzzification efforts include i) expressing the input 
features in terms of membership values to each of the three linguistic properties 
low (L), medium (M), and high (H); and ii) expressing the output vector in terms 
of fuzzy class membership values. Let x, be an ^-dimensional 
crisp input pattern belonging to the ith class of an c-class problem. The fuzzified 
input representation of is an 3/2-dimensional vector 

while the desired output representation of f 众 is 
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where e [0,1]. These modifications enable efficient modelling of fuzzy or 
uncertain patterns, with appropriate weights being assigned to the back-propagated 
errors employed during training. The fuzzified model as a result is distinctive in 
classifying fuzzy data with overlapping class boundaries and is able to perform 
fuzzy classification of input patterns [85]. 

• A Fuzzy Version of Kohonen Map 

In [78], Mitra and Pal applied their fuzzification methodology for multilayered 
feedforward network to the Kohonen map and proposed a fuzzy version of it. 
Self-organization takes place with respect to the fuzzified training patterns which is 
a concatenation of the membership values in eq.(3.1) and the fuzzy class 
membership values in eq.(3.2), i.e., 

As demonstrated in [78], the proposed model is capable of producing fuzzy 
partitioning of the output space and can thereby provide a more faithful 
representation for ill-defined or fuzzy data with overlapping classes. 

• Another Fuzzy Version of Kohonen Map 

Tsao et al. [110] have proposed a different fuzzy version of Kohonen map 
called fuzzy Kohonen clustering network. Their motivation was to address some 
intrinsic problems of the crisp model, namely, neither termination nor convergence 
is guaranteed, no model is optimized by the learning strategy, and the performance 
is sensitive to the initial condition, training data sequence, and training parameters 
such as the learning rate and the size of update neighborhood. Fuzzification was 
accomplished by integrating the fuzzy c-means (FCM) algorithm into the Kohonen 
map. This yields an optimization problem related to the FCM algorithm and takes 
use of the membership values from FCM to control of both the learning rate 
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distribution and update neighborhood. The proposed model can be considered as a 
Kohonen map implementation of the FCM algorithm and has been shown to 
improve the convergence as well as reduce the labelling errors of the crisp model. 

3.2.2 Fuzzy Operator Driven Models 

• Fuzzy ART 

Fuzzy ART [11], as proposed by Carpenter, Grossberg, and Rosen, is one of 
the earliest attempts to incorporate fuzzy concepts into conventional neural 
network models. It represents a fuzzification of the ART 1 model [46] that can 
learn stable categories only in response to binary input patterns. By replacing the 
intersection operator (n) in ART 1 by the min operator (A) of fuzzy set theory, the 
fuzzy ART model can learn stable categories in response to either binary or analog 
input patterns. It is indeed a generalization of ART 1 because it reduces to ART 1 
when binary input patterns are presented to the network. 

• Logic-Based Neural Networks 

In [96], Pedrycz introduced a FNS model consisting of logic-based neurons 
for realizing mechanisms of pattern matching and aggregation. It can be 
considered as a structural fuzzification of three-layer feedforward networks where 
all computations in the networks are driven by f norm and vnorm logic operations. 
Let be an input pattern and rj be a 
reference pattern in [0,1]". The hidden node, termed as reference neuron, is 
described by 

where w". is the interconnecting weight from ith input to jth hidden node,三 

denotes the fuzzy matching operator introduced in [93], and the s-t composition 
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corresponds to the fuzzy counterpart of the product-sum operation in conventional 
multilayer feedforward networks. The reference neuron is devised to realize 
matching of input pattern with regard to an associated reference pattern. The 
output neuron then summarizes the level of activations from the reference neurons 
using 

y = S \ v . t h } (3.5) 
片L J J 

where the interconnecting weight v̂  models the influence stemming from the jth 
reference neuron. As mentioned in [96], the model not only can cope with 
classification problems in which classes are distributed along several linearly 
nonseparable regions, it also provides a straight-forward interpretation regarding 
the shape of generated regions, the significance of particular features of the 
patterns, and the impact of the detected regions on the final classification. 

3.2.3 Fuzzy Ari thmetic Driven Models 

A detail discussion of this subcategory of FNS models can be found in Buckley and 
Hayashi's recent survey paper [9]. It is referred to the layered feedforward network 
whose inputs, outputs, and/or interconnecting weights are modelled by fuzzy numbers 
[55], i.e., fuzzy sets defined in the real number space. Three types of such FNS 
models have been defined : (i) networks with fuzzy weights only; (ii) networks with 
fuzzy input-output only; (iii) networks with both fuzzy weights and fuzzy input-
output. The corresponding learning algorithms, usually known as fuzzy back-
propagation, have also been developed. This subcategory of FNS models has been so 
far studied theoretically, e.g., proving their universal approximation capability, 
though, it should have great potential in fuzzy regression analysis and fuzzy expert 
systems. 
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3.3 Layered Network Implementation of Fuzzy Systems 
The second category of FNSs considers neural network as a leamable, parallel and 
distributed processing platform for the implementation of different fuzzy systems 
models. It takes use of a common feature of fuzzy systems and neural networks — 
distributed representation. In neural networks, as is well-known, knowledge is 
distributed among interconnecting weights and nodes, while in fuzzy systems, 
knowledge is distributively encoded by fuzzy rules, their fuzzy terms and the 
associated fuzzy sets. If appropriate mapping between fuzzy knowledge and network 
components exists, fuzzy systems can be realized by neural network architecture. 
Furthermore, learning ability can be introduced into the resulted FNS models. In 
what follows, the FNS models of this category are reviewed according to the types of 
fuzzy systems being implemented. They includes Mamdani's type which is essentially 
referred to systems using individual-rule based inference as depicted in Fig.2.6, Takagi 
and Sugeno's type which employs the crisp consequent fuzzy rules mentioned in 
Section 2.5, and fuzzy relation based type whose knowledge is encoded in fuzzy 
relation format. 

3.3.1 Mamdani 's Fuzzy Systems 

In [74], Lin and Lee proposed a FNS model that implements Mamdani's fuzzy systems 
using multilayer feedforward networks. The model consist of five layers whose 
functions correspond to the inference steps depicted in Fig.2.6. Nodes in layer one, 
i.e., the input nodes, are linguistic nodes which represent the input linguistic variables. 
They buffer the crisp input values. Layer five as the output layer denotes the output 
linguistic variables. It has two linguistic nodes for each output variable. One is to 
feed the desired crisp output into the network for training and the other is to produce 
the defuzzified system outputs. Nodes in layers two and four are term nodes which 
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act as membership functions to represent the fuzzy terms of the respective linguistic 
variables. Each node in layer three is a rule node which represents one fuzzy rule. Its 
incoming and outgoing links define the preconditions and consequents of the IF-THEN 
rules. Hence, for each rule node, there is at most one link (maybe none) from the 
term nodes of each linguistic node. Thus, all the layer-three nodes form a fiizzy 
rulebase. With such network model, the transfer functions of the nodes in each of the 
five layers are linear function, bell-shaped membership function, minimum function 
(computing the degree of match), minimum function (clipping the rule-consequent's 
fuzzy sets), and defuzzification function respectively. 

Based on the well-known back-propagation algorithm, a two-phase hybrid 
learning algorithm has been developed for the proposed FNS model. The algorithm 
determines the optimal centers and widths of the bell-shaped membership functions of 
term nodes in layers two and four. It also learns the fuzzy rulebase by deciding the 
existence of links between layers two and three and layers three and four. The model 
can be contrasted with the traditional fuzzy systems with its network structure and 
learning ability. It can be constructed from training examples by neural network 
learning techniques, and its structure can be trained to develop an appropriate fuzzy 
rulebase and find optimal input/output membership functions in an autonomous 
manner. 

3.3.2 Takagi and Sugeno's Fuzzy Systems 

The ANFIS fuzzy neural system model was proposed by Jang [54] to implement 
Takagi and Sugeno's fuzzy systems using layered network architecture. In the 
reported simulations, the model has yielded remarkable results as compared with 
Rumelhart et aLs multilayered feedforward networks and Fahlman and Lebiere's 
cascade-correlation learning networks [37]. It also consists of five layers where layer 
one computes the membership values, layer two produces the degree of match for 
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each rule by multiplying the incoming signals (i.e., taking the algebraic product [norm 
operation), layer three calculates the normalized degree of match, layer four weights 
the rule's crisp output by the normalized degree of match, and layer five computes the 
overall output as the summation of all weighted crisp outputs. Such an architecture 
had been formulated according the inference steps of the Takagi and Sugeno's fuzzy 
systems. Consider a rulebase consisting of two rules 

Rule�..W X, is Ai� and X^ is Af THEN 二 a? + af)又i 
Rule⑵：IF Xi is A(2) and X^ is THEN = 42) + 以尸义） 

Let /i & be the degrees of match for rules 1 & 2 respectively. The inference and 
defuzzification continue by computing 

尸义 � + y 2 ) = / i / ) + / 2 严 (3.6) 
fl + JL 

It can be seen that layer three corresponds to the computation of the normalized 
degrees of match f , Sl了” layer four determines the values of /！少⑴ � and layer 
five adds them to produce the final crisp output. Again, learning has been introduced 
into the network model to generate a set of Takagi and Sugeno's fuzzy rules from the 
available input-output data pairs. 

3.3.3 Fuzzy Relation Based Fuzzy Systems 

• Fuzzy Associative Memory (FAM) 

As already mentioned in Chapter 1, Kosko's FAM model [67] is characterized by a 
two-layer heteroassociative feedforward network that stores the discrete input-
output fuzzy set pair in its weight matrix. In order to avoid crosstalks, separate 
storage of the fuzzy pattern pairs was proposed. Therefore, the capacity of a FAM 
matrix has been assumed to be one rule only. Upon presenting an input fuzzy set, 
max-min or max-product compositions are carried out individually and the 
corresponding outputs are then superimposed to form the final output fuzzy set. 
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The overall FAM system therefore comprises a bank of FAM matrices followed by 
an appropriate superimposition operator, e.g., weighted sum or maximum. Hence, 
the FAM model is also based on individual-rule based inference but it encodes the 
fuzzy knowledge in fuzzy relation (matrix) format. Unlike the previous two FNS 
models, learning takes place to define the associations between input and output 
fuzzy sets by a clustering process. Once they are learned, they can be directly 
implemented with layered network architecture. The model has been successfully 
applied to problems like backing up a truck-and-trailer [65], target tracking [67, 
Ch.ll] , and voice cell control in asynchronous transfer mode (ATM) networks 
[81] where distinctive features like modularity, robustness, and adaptability have 
been demonstrated. 

• Fuzzy Relational Neural System (FRNS) 

Fuzzy relational equations [103], in their generic form, are non-linear equations in 
which the relation R determines the mappings between the associated pairs of input 
and output fuzzy sets ( X . J . ) . Each equation corresponds to a single rule and a 
system of equations results when there is a set of rules. In [95,97], it has been 
shown that such equation is structurally similar to a two-layer feedforward 
network and hence can be implemented by parallel hardware and incorporated with 
learning ability. The resulted FRNS model therefore offers an efficient platform to 
capture the set-to-set mapping defined by the available fuzzy rules. Unfortunately, 
the rule storage property of the model is still poorly understood and its ability to 
perform structure identification when it is applied to model nonlinear dynamic 
systems is still lacking. 
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3.4 Concluding Remarks 
In this chapter, various FNS models under the categories of fuzzification of neural 
networks and layered network implementation of fuzzy systems have been briefly 
reviewed and their integration methodologies and advantages have been highlighted. 
It can be concluded that the current investigations along these two major approaches 
to synthesize FNS models have been quite extensive and the subject has reached a 
certain level of maturity. In order to advance its development, consolidating the 
theoretical understandings of existing FNS models seems to be an indispensable step. 
As such, the poorly established storage capacities of the FAM and FRNS models are 
re-examined in Chapters 5 & 6 respectively. The results not only have led to a better 
understanding of these two models, they have also contributed to the development of 
high capacity encoding schemes which in turn reduce the storage requirements of the 
models. 

Despite the considerable efforts in synthesizing the second category FNS 
models, the learning algorithms derived are mainly based on the back-propagation 
algorithm which is excellent in learning the layered network's interconnection 
parameters but not the network structure itself. It is particularly insufficient when 
these models are applied to identify nonlinear dynamic systems where structural 
parameters like system orders, time delays, and inference operators, have to be 
determined. Thus, algorithms capable for both structure and parameter identifications 
are much desirable. In view of such a need, an identification algorithm possessing this 
capability for the FRNS model is developed in Chapter 7. The methodology 
developed is expected to be applicable to other FNS models. 

Although there have been numerous attempts to fuzzify neural networks, such 
an approach to synthesize FNS models should be considered as a continuous effort in 
the development of FNS. It is because new neural network models are continuously 
proposed by researchers and there is always a possibility to fuzzify them such that 

40 



Chapter 3 Categories of Fuzzy Neural Systems 

their performances are enhanced. As such, we have included such kind of study in 
this research. In particular, due to their simplicity in implementation and popularity in 
applications, we work on the fuzzification of competitive learning networks, aiming at 
addressing two important problems of the model. The values and derivations of the 
fuzzy competitive learning algorithms are described in the next chapter. 
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Chapter 4 

Fuzzification of Competitive 
Learning Networks 

4.1 Introduction 
Due to its simplicity, efficient hardware implementation, and adaptability to changing 
environment, competitive learning (CL) has been frequently suggested as an 
alternative approach to various sophisticated problems such as image segmentation 
[111], vector quantization [1], and pattern classification [61]. Generally speaking, the 
goal of competitive learning is to cluster or categorize the training patterns into 
representative groups such that patterns within a cluster are more similar to each 
other than patterns belonging to different clusters. It differs from traditional clustering 
algorithms that it is an on-line algorithm where adapting to changing environment is 
possible. Based on a "learn only if it wins", i.e. winner-take-all principle, neurons in a 
CL network compete to move to the centroids of similar patterns and consequently 
uncorrelated patterns will be encoded by different neurons. As mentioned in Chapter 
1, such an "exclusive" learning mechanism suffers from two major shortcomings, 
namely, neuron underutilization [1,46,102] and inefficient use of closeness 
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information [28]. If they can be overcome, better quality of cluster centroids found 
by competitive learning is expected. This part of the research was mainly motivated 
by two observations. One is that the closeness information can be formulated as fozzy 
membership and incorporated in the learning process to achieve graded control rather 
than crisp control of the competitive process. The other observation is that the basic 
form of CL is nothing more than an on-line version of the hard c-means algorithm. In 
view of the superiority of the fuzzy c-means algorithm [6,36], a corresponding 
fazzified CL procedure for this algorithm can be derived with the similar process and 
should perform better than its crisp counterpart. 

In this chapter, a fuzzy competitive learning (FCL) paradigm adopting a 
principle of "learn according to how well it wins" [19] is developed and based upon 
which three existing competitive learning algorithms, namely, the unsupervised 
competitive learning [49], learning vector quantization [61], and frequency sensitive 
competitive learning [1] are fuzzified to form a class of FCL algorithms. The three 
existing CL algorithms are firstly reviewed in the following section. Section 4.3 
describes the FCL paradigm, derives the three FCL algorithms, and comments on 
their algorithmic advantages. The stability of FCL algorithms is discussed in Section 
4.4 and a scheme to control the fuzziness parameter of the algorithms [16] is 
described in the subsequent section. Through the concept of "clusters as rules", the 
interpretation of FCL networks [18] is introduced in Section 4.6. The performance of 
the proposed FCL algorithms is reported, discussed and compared with the crisp CL 
performance through various data sets in Section 4.7. 
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4.2 Crisp Competitive Learning Algorithms 
Depending on the nature of applications, the available training patterns could be 
unlabelled or labelled and hence unsupervised and supervised competitive learning 
algorithms were proposed accordingly. In this section, three different CL algorithms 
of which two are unsupervised and one is supervised are reviewed. Among the two 
unsupervised algorithms, one was chosen from the so-called win-rate dependent type 
CL [1,29] which has been frequently proposed to overcome the neuron 
underutilization problem. For the sake of clarity, a general CL algorithm is described 
below and then the three CL algorithms are described as variations. 

General Crisp Competitive Learning Algor i thm 
Step 1 Initialization 

-Set the number of competing neurons c. 
-Initialize the neuron's parametric vectors &y(0);/=l”..,c. 

Step 2 Distance Computation 
-For input pattern x ” compute the distances D .̂ = d{Xj^,m.(t)) for all 

competing neurons i. Different algorithms may employ different distance 
metric to suit their applications. However, Euclidean distance metric is the 
most popular one. 

Step 3 Competition 
-Determine the winning neuron; having D坊=min 

Step 4 Learning 
-Update the winning neuron's parametric vector as 

m.{t +1) 二 m . ( 0 + -m . ( 0 ] 
where a ( 0 is the learning rate which is usually monotonically decreasing 
and 7 . (0 is a scaling function specifying the sign and magnitude of the 
difference vector being updated by neuron j. In fact, existing CL algorithms 
are mainly different in the formulation of / / O 

Step 5 Termination : 
-Repeat steps (2)-(4) until the terminating criterion is met. 
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Such a crisp CL algorithm is usually associated with a layered feedforward 
network. As shown in Fig.4.1, the bottom two layers are used to implement the 
distance computation step while the winner-take-all net is used to determine the 
winner, i.e., the neuron nearest to the input pattern. 

Network's Outputs 

「 t t t 
I Winner-Take-All Net Competition Layer 

丨I D D 丄 D kc 
[ 米 米 ※ 米 Distance Layer 

I 一 Interconnecting Weights 

X (Parametric Vectors) 

米米米 ^ ^ Input Layer 
本 本 本 

Input Pattern 

Figure 4.1 A Crisp Competitive Learning Network. The distance layer 
computes the distances Z),, between input pattern and competing 
neuron's parametric vectors while the competition layer determines which 
neuron is nearest to the input pattern, i.e. smallest •，and produces a +1 
output for it and zero outputs for the losing neurons. The network outputs 
are used to adjust the winning neuron's parametric vector. 
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4.2.1 Unsupervised Competitive Learning Algor i thm 

The unsupervised competitive learning (UCL) algorithm is the simplest form of CL. 
As mentioned in the introductory section, it is only an on-line version of the hard c-
means algorithm. Recall that the goal of hard c-means algorithm is to group the input 
patterns into c clusters such that the total Euclidean distances between input patterns 
and their nearest cluster centroids are minimized. Suppose that there are N training 
patterns { x j and c clusters with parametric vectors 二 {汤」/ = 1,.••，(：}. The 
problem can be formulated as minimizing the within groups sum of squared error 

J{W,V) = j^J,(W,V) = (4.1) 
k=\ k=\ 1=1 

subjected to the constraints 
yk (4.2) 

i = l 

yk,i (4.3) 
where 

l y 二 { w J y ^ = l,...，Â ;/ = l，.",c} ( 4 . 4 ) 

w = j l ifD,=mmD, (4.6) 
[O otherwise 

By evaluating d J(W,V)/dm. =0, the updating rule for cluster centroids m. of the 
hard c-means algorithm would result. Here w,, is the crisp membership of pattern 
to cluster i and its binary value is determined by the nearest-neighbor rule in eq.(4.6). 
Consider now that the error function being minimized is half of the pattern based 
objective function, i.e., The UCL law can be readily obtained by the 
gradient descent method, viz 
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• 1 ) � � 

mj{t) + c[x, - mj(t)] if D,. = mm D,, —< (4. /) 

mj{t) otherwise 
Hence the UCL algorithm follows the general CL algorithm with the scaling function 

7 , ( 0 - 1 (4.8) 
and distance function 

Dki (4.9) 

As mentioned, the UCL algorithm suffers from the problem of neuron underutilization 
[1,46,102]. A simple example is shown in Fig.4.2 where neurons with parametric 
vectors far away from the training pattern as those in the upper-right corner never win 
and learn and therefore are underused. 

r 
These neurons never win ！ 

• A A 
A 

A . A 
A 劣 O O ^ 

O O A A A O 

° o o o o o 
o 〇 

O Class A patterns 
米 Parametric vectors (neurons) 

A Class B patterns 

Figure 4.2 A Neuron Underutilization Example of UCL 
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4.2.2 Learning Vector Quantization Algor i thm 

Kohonen's learning vector quantization (LVQ) is a supervised type CL algorithm that 
works on labelled training patterns and aims at minimizing the misclassification rate. 
Competing neurons have to be labelled a prior to a specific class and the number of 
competing neurons should be equal to or greater than the number of classes 
considered. The LVQ algorithm may well be described by the general CL algorithm 
with the scaling function defined as 

j+1 ifCl(rn^) = Cl(x,) (4.10) 

where C/(-) denotes the class o/operator. Thus, LVQ adopts a reinforce-or-punish 
learning principle in the competitive process so as to move the winning neuron's 
parametric vector m. closer to the class centroid if the current training pattern is 
correctly classified and to move m. out of the misclassified region if is wrongly 
classified. To determine the winner of competition, the Euclidean distance metric is 
usually adopted by LVQ. After training, the network is simply a nearest-neighbor 
classifier where the neuron's parametric vectors are the class prototypes. 

The LVQ algorithm has been applied to numerous tasks. For examples, it has 
been used to fine tune the self-organizing feature map for pattern classification [63] 
and as a preprocessing stage for the probabilistic neural network [10] and the 
multilayer perceptron [108]. Despite its success, the algorithm is not free from 
problems. One is related to its convergence [4]. A simple example is depicted in 
Fig.4.3 where the parametric vectors m̂  and fh: are near to the patterns of different 
class. According to eq.(4.10), m, and in̂  will be moved away from the patterns as 
training proceeds. Hence, they are pushed towards and — respectively and 
divergence happens. In fact, the convergence of the LVQ algorithm requires the 
initial parametric vectors to be close to the solutions [4]. Therefore, the classical c-
means algorithm and samples picked from the training set are frequently used to 
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initialize the parametric vectors [62]. The other problem of LVQ is again neuron 
underutilization. As demonstrated by the example in Fig.4.4, all the class A 
parametric vectors are not close enough to win and learn the three class A training 
patterns on the right. Hence, those patterns will be misclassified and the network 
resource is underused. In fact, this is a problem common to winner-take-all type 
competitive learning algorithms and its occurrence essentially depends on the initial 

distribution of the parametric vectors. 

• 

m 2 m 1 

^ • 〇 〇 〇 ODOOO 1 A A A A丛A A 米 • 
0 

O Class A patterns 米 Class A parametric vector 

A Class B patterns • Class B parametric vector 

Figure 4.3 A Divergent Example of LVQ 

^ Q K O K O ^ A A A A——〇 O 〇 H ^ 
0 10 20 

O Class A patterns 米 Class A parametric vectors 

A Class B patterns 參 Class B parametric vectors 

Figure 4.4 A Neuron Underutilization Example of LVQ 
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4.2.3 Frequency Sensitive Competitive Learning Algor i thm 

The frequency sensitive competitive learning (FSCL) algorithm [1] was designed to 
address the neuron underutilization problem of the UCL algorithm. The algorithm 
simply incorporates the win-rate information into the distance metric so as to ensure 
that every neuron has a fair chance to win and learn. Specifically, let n^{t-\) be the 
number of times that neuron i won in the past t-1 learning competitions. The 
modified distance function is defined as 

D^ll 叉「柳Ih (卜 1) (4.11) 

Thus the more neuron i wins, the larger n.(t-1) is and the less likely it will win again. 
This gives other neurons a better chance to win in the coming competitions. Such a 
simple modification not only addresses the neuron underutilization problem, it also 
forces the competing neurons to learn approximately equal number of times. As 
pointed out by the authors of FSCL in [68], the algorithm is nothing but an 
implementation of Grossberg's conscience principle [46], and is similar to the 
conscience method of DeSieno [29]. 

4.3 Fuzzy Competitive Learning 
As described in the previous section, the rationale of CL is "learn only if it wins". 
Under competition, only one neuron will win and learn the current training pattern. 
Obviously, the concept win in this setting is a crisp one and has a very clear cut 
boundary. By considering win as a fuzzy set, every neuron to a certain degree wins, 
depending on its distance to the current training pattern. Hence it has to learn 
according to its win membership during the competition. In this way, a "learn 
according to how well it wins" fuzzy competitive learning (FCL) paradigm [19] 
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results, based upon which a class of FCL algorithms can be developed. In this 
section, we present the derivation of a fuzzy version of the three CL algorithms 
described in Section 4.2. Furthermore, we comment on the advantages of the derived 
fuzzy algorithms. Again for the sake of clarity, a general FCL algorithm is first 
described below and then the three FCL algorithms are described as variations. 

General Fuzzy Competitive Learning Algor i thm 
Step 1 Initialization 

-Set the number of competing neurons c. 
-Initialize the neuron's parametric vectors 汤_/=l”.”c. 

Step 2 Distance Computation 
- F o r input pattern compute the distances = d{Xj^,m.(t)) for all 

competing neurons i. Different algorithms may employ different distance 
metric to suit their applications. 

Step 3 Fuzzy Competition 
-Based on the computed distances D ,̂ , determine the win membership for 

each competing neuron i 
Step 4 Fuzzy Learning 

-Update EACH competing neuron's parametric vector as 
辟 J 二辟⑴+ a � ( ^ i J[又it 一辟� ] 

where a � is the learning rate and is a fuzzy scaling function of 
specifying the sign and magnitude of the difference vector being updated by 
neuron i 

Step 5 Termination 
-Repeat steps (2)-(4) until the terminating criterion is met. 

The implementation of the above algorithm is depicted in Fig.4.5. It can be seen that 
the distance layer is the same as that of the crisp competitive learning network in 
Fig.4.1 while the fuzzy competition layer here takes use of the computed distances 
D .̂ to determine the win memberships � i n [0,1] of the competing neurons. The 
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membership outputs would be fed back to the corresponding neurons to update the 
parametric vectors. 

Membership Outputs 

z 认 kl z z 
i A f 

I ^ ^ ^ I ^ ^ I ^ ^ ^ Fuzzy Competition 

丨（ J 丨 C J … ※丨 L a y e r 

I Fixed Weights 

I X 丨 （Unit Vectors) 

I 丨 I ( ) Distance Layer 

\ Interconnecting Weights 

) ( (Parametric Vectors) 

米米米 ^ ^ Input Layer 
本 秦 i 

Input Pattern x^ 

Figure 4.5 A Fuzzy Competitive Learning Network. The distance layer is 
the same as that of the crisp competitive learning network in Fig.4.1 and the 
fuzzy competition layer determines the win memberships in [0,1] of the 
competing neurons from the computed distances D,.. The membership 
outputs would be used to update the parametric vectors of the corresponding 
neurons. 
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4.3.1 Unsupervised Fuzzy Competitive Learning A lgor i thm 

In Section 4.2.1，we have already shown that the UCL law can be derived from the 
objective function of hard c-means algorithm using the steepest descent technique. 
Likewise, a fuzzy version of UCL law can be obtained from the fuzzy c-means 
algorithm as follows. It will be shown that the derived unsupervised fuzzy 
competitive learning (UFCL) algorithm implements the FCL paradigm described 
earlier. Recall from [6] that the fuzzy c-means algorithm is to find optimal cluster 
centers V = {汤,1/二 and fuzzy c-partition U = {\iJk = l,---,N',i = h-'-,c], i.e., 
membership function, which minimize the sum of fuzzy membership weighted squared 
error 

J、U,V、二 ,V、二 I±、[I真 (4.12) 
k=\ k=l M 

subjected to 

t 〜 二 1 V^ (4.13) 
二 1 

VkJ (4.14) 
where 

DHk?碎丨丨 （4.15) 

and m is a real quantity greater than one and its value specifies the nature of 
clustering, ranging from absolute hard clustering at m=l to increasingly fuzzier 
clustering as m increases. Here, the objective function consists of variables U and V. 
By fixing U and applying the gradient descent method to the pattern based objective 
function the UFCL law 

= (4-16) 

is resulted. Similarly, by fixing V and applying the method of Lagrangian multiplier to 
[/, the membership updating rule 
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2 f 1 y^i 

〜 = ⑷ i (4.17) 
C ( 1 、m-1 

y 丄 ^ n 
i=\ V w / 

is obtained. Hence, the UFCL algorithm follows the general fuzzy CL algorithm with 
membership defined by eq.(4.17) and 

z 感 r (4.18) 
=11 无厂对 oil (4.19) 

From the derived algorithm, it can be seen that every neuron is responsible for 
learning the current training pattern. However, closer the neuron is to the pattern, 
larger its win membership is and more it has to learn. With such UFCL algorithm, 
the two shortcomings of crisp CL paradigm are addressed. Far away neurons can 
now have a chance to move to the pattern regions. This is similar in spirit to 
Rumelhart and Zipser's leaky learning [102] which allows the losing neurons to learn a 
small amount of the difference vector unconditionally. On the other hand, closeness 
information has already been employed by the proposed algorithm to compute the 
membership values which in turn are used to control the learning process. It is 
expected that the UFCL algorithm will converge to better solutions than the UCL 
algorithm. These two advantages will be demonstrated by the simulation results 
reported in Section 4.7. 

4.3.2 Fuzzy Learning Vector Quantization Algor i thm 

Being inspired by the UFCL algorithm, we have opted for an objective function 
minimization approach to derive a fuzzy LVQ (FLVQ) algorithm [17]. Although LVQ 
was developed without resorting to minimize any objective function, two objectives of 
the algorithm could be identified. One is to maximize the classification rate and the 
other is to minimize the distances between training patterns and neuron's parametric 
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vectors. Taking these two criteria into considerations, we have defined the F L V Q 

objective function as follows. For the sake of clarity, we assume here that the number 

of competing neurons c is equal to the number of pattern classes. Then, is the 

class i membership of the M i input pattern. The goal of the F L V Q algorithm 

therefore is to minimize the fol lowing fuzzy objective function 

= X e r = I S [ 〜 - R 诚 (4.20) 
fc 二1 k=i i=i 

subjected to the constraints 

i=l 

VkJ (4.22) 
where t^ g {0,1} is the target membership value of input pattern x^ for class i neuron. 

As in the case of UFCL, the first constraint is essential for the validity of the objective 

function and to avoid the trivial solution where is minimized by assigning all 

memberships to 1. Similarly, without the fuzziness parameter m, the solution of 

applying Lagragian multiplier method to wi l l be a null one. Repeating the 
derivation steps of the UFCL algorithm, we have the learning law and membership 

updating rule for the F L V Q algorithm as 

= (4.23) 

and 
2 

( 1 \m-l 

[ P j (4.24) ^ki -
C ( 1 、口 

X 丄 ^ n 
！二1 V 〜 / 

respectively. I t can be seen that every neuron i has to learn in each pattern 

presentation and graded correction is introduced. Conforming to the general fuzzy 

C L procedure, the F L V Q algorithm adopts the membership function defined by 

eq.(4.24), the distance computation D,. defined by the squared Euclidean one, and the 
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fuzzy scaling function 

2 ; . ( | i j = 、 . - a i j m (4.25) 

In fact, the derived algorithm implements the FCL paradigm as wel l as the LVQ's 

reinforce-or-punish learning principle. Specifically, when 二 1，Z. w i l l be positive 

and the quantity that neuron i w i l l move to the training pattern w i l l depend on the 

discrepancy between the target and membership values to the training pattern. 

Similarly, w h e n = 0，Z. w i l l be negative and neuron i w i l l move away f rom the 

training pattern accordingly. Thus, the differences reduce as learning 

proceeds unti l the neurons converge to the class centroids where the neuron's 

membership outputs would be large for patterns of the same class and small for 

patterns o f difference class. 

Recall that the number of competing neurons has been assumed to be equal to 

the number of pattern classes. Such an assumption can be removed by defining the 

distance between the input pattern and the class i neurons as 
(4.26) 

where S^ is the index set of the competing neurons for pattern class i and fh” is theyth 

competing neuron's parametric vector for pattern class L Thus, the F L V Q learning 

law, corresponding to the new objective function 

Q-'iu^v)=X e r ( " ， v ) = X i X . - ( 〜 广 ] 赞 IK—汤"『 （4.27) k=\ k=\ i=l ‘ 
would become 

( , + 1 ) 二 fh , ( 0 + o c ⑴ [ t ^ — r - 汤 " ( 0 1 (4.28) 

where 

_ | l 順 - 辱 I I 无 「 等 叫 ( 4 2 9 ) 
lij 一 ‘ 

0 otherwise 
< 

This modification can be realized by introducing a MEN layer between the distance 

computation layer and the fuzzy competition layer of Fig.4.5. As shown in Fig.4.6, 
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among the pool o f competing neurons labelled for pattern class i , only the one closest 

to the input pattern is chosen by the iih M I N neuron to undergo the fuzzy competitive 

learning process, i.e. class membership computations and parametric vector 

adaptations. Thus the pool of competing neurons would learn the corresponding class 

patterns in a cooperative manner. Wi th the proposed algorithm, the divergent 

example in Fig.4.3 can be solved because the punishment force caused by different 

class patterns is always smaller than the reinforcement force caused by same class 

patterns. Furthermore, the F L V Q algorithm is excellent in avoiding neuron 

undemtil ization, as demonstrated by the simulation results reported later. 

Class Membership Outputs 
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Figure 4.6 A FLVQ Network with Multiple Neurons per Pattern Class 
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4.3.3 Fuzzy Frequency Sensitive Competitive Learning A lgor i thm 

Central to the FSCL algorithm is the use of win-rate to bias the competition such that 

it is fairer. Wi th the concept win being fuzzified, the fuzzy FSCL (FFSCL) algorithm 

proposed here takes use of the corresponding win frequency obtained from the UFCL 

algorithm to modulate the competition. Specifically, the FFSCL algorithm employs a 

modif ied distance function for the UFCL algorithm which is defined as 

B ^ . = \ x ^ - m , { t ) \ ' u X t - \ ) (4.30) 

where 

卜 1) 二 广 (4.31) 
1=1 

is the accumulated win membership of neuron i for the past M competitions. 

Obviously, the proposed algorithm is simply a conceptual extension of the original 

FSCL algorithm. In fact, one may argue the motivation to ftizzify the FSCL 

algorithm as we have already mentioned that the UFCL algorithm does have the 

ability to resolve the neuron underutilization problem. Simulation results reported 

later however wi l l demonstrate that the two approaches are complementary rather 

than redundant in addressing the problem. 

4.4 Stability of Fuzzy Competitive Learning 
As for the crisp CL algorithms and most on-line neural network learning algorithms, 

one may suspect the convergence and stability of the FCL algorithms when the input 

presentation order is biased. This could be true i f the order is extremely biased. In 

this regard, two alternatives to implement the FCL algorithms are suggested. One is 

to apply the learning law in batch mode, i.e., accumulating the changes Afh.(t) for 

each of the available training patterns before actually updating the parametric 
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vectors, viz. 

Am^.(T) 二 ) [x , - r h ^ m ] (4.32) 
k=\ 

where T denotes the iteration index. In fact, eq.(4.32) is just the results of applying 

gradient descent to the training set based objective functions /肌 and in eqs.(4.12) 

& (4.27) respectively. Hence, reaching a stable equilibrium (i.e., a local minimum) 

could be expected. Another implementation of the FCL algorithms for biased input 

presentation order is to include momentum update as in the back-propagation 

algorithm [101] to the learning law, i.e. 

A m, ( 0 = ( . ) [ - (O] + A m, (f - 1 ) 

卜 1 (4.33) 
二 ； p t - r -邮-T). 

T = 0 

where 0 < r| < 1 is the momentum term that determines the relative contribution of the 

current and past learning actions, the original index k of training patterns has been 

changed to t to refer to the training sequence. Thus the parametric vectors tend to 

change in the decending direction of the exponentially weighted sum of current and 

past gradients. Such kind of "filtering" operation is particularly suitable for irregular 

input presentation order. In fact, with appropriate momentum, eq.(4.33) provides a 

close approximation to the batch mode implementation which is a truly gradient 

descent procedure. Thus, the FCL algorithms would not be very sensitive to the input 

presentation order. These two alternatives of which the momentum implementation is 

suitable for on-line training and the batch mode implementation is more appropriate 

for off-line training can be adopted when the order of input presentation is extremely 

biased. Otherwise, the standard implementation is sufficient to obtain good 

performance. 
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4.5 Controlling the Fuzziness of Fuzzy Competitive 
Learning 

A fuzziness parameter m, as in most fuzzy pattern recognition algorithms, has been 

introduced in the proposed FCL algorithms. From the membership function in 

eq.(4.17), i t can be observed that for f ixed distances the variation of membership 

for different neuron i decreases (i.e. fuzzier) as the fuzziness parameter m 

increases. In the extreme case of m 4 — 1 / c for all & i and therefore all the 

competing neurons no matter how far they are f rom the input pattern w i l l be equally 

active in learning that pattern. Thus adopting larger fuzziness values, forcing every 

neuron to learn actively, should be more beneficial in avoiding neuron 

underutilizations. Unfortunately, adopting larger fuzziness value on the other hand 

may not lead to effective clustering of training data. A study [13] for the fuzzy c-

means algorithm has shown that it is better to choose fuzziness value between 1.25 

and 1.75. In view of such a conflict, a monotonically decreasing implementation 

scheme for the fuzziness parameter is proposed for the UFCL algorithm [16]. The 

basic idea is to use large fuzziness value (say 2.5) to avoid neuron underutilizations 

in the ini t ial training stage and then gradually decrease the fuzziness to an 

appropriate value (say 1.5) during the training process. In [16]，the fol lowing 

schedule has been adopted : 

m{n) = Mf + ( m . - m ^ ) e x p ( - — ) (4.34) 
"max 

where m, and m, are the init ial and f inal fuzziness values, n is the current training 

iteration index and n ^ is the maximum number of training iterations allowed. 
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4.6 Interpretations of Fuzzy Competitive Learning 
Networks 

Through the concept of "clusters as rules" [67], the trained FCL networks can be 

interpreted linguistically. Let's take the F L V Q network as an example [18]. Assume 

that there are c pattern classes and the size of the trained network is p neurons per 

pattern class. The iih classification rule extracted directly f rom the trained network 

has the fo rm 

Rule � : I f x^ is near to fh 认 or x^ is near to m^^ o r . . . or is near to fh— 
then Xĵ  belongs to class i 

I t can be seen that the clusters characterized by the parametric vectors form the 

rule. The membership function of the antecedent has been described by eq.(4.24) 

where the computed membership value wi l l be the truth value of the consequent. The 

logical "or" operations correspond to the M I N neurons in Fig.4.6. In fact, the M I N 

(of distances) neurons can be regarded as M A X (of memberships) neurons which 

conform to the usual implementations of the fuzzy "or" operations. 

Such kind of rules however does not involve any linguistic term, (say small, 
medium fast, high) for the parametric vectors m^. e R" and therefore does not provide 

true linguistic interpretation. In order to do so, the classification rules extracted f rom 

the trained network should have the form 

Rule�:If X,, i s A ( m J andx,^ isA^CmJ and …无,„ is or 

is M m J and is 4 ( ^ 2 ) and …无 “ is or . • • 

3c,1 i sA (m,^ ) a n d i s 4 ( 汤 a n d … 

then x^ belongs to class i 
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where is the nth feature of x^ e i T and is the linguistic label attached to 

the ^ th dimensional space for the parametric vector m.^. To obtain we 

propose to replace the constrained fuzzy membership function [69] in eq.(4.24), 

rewritten here as 

(4.35) 
1=1 V w J 

一 」 

by the possibilistic one [69], i.e, 

- 丄 

1 + 问 （4.36) 
I J —* 

where ri- are positive constants to determine the squared distance at which the 

membership value becomes 0.5. I t was adopted because the constrained fuzzy 

membership function, in spite of its mathematical tractability, does not provide 

intuitive interpretation of the resulting membership [69]. For example in Fig.4.7, it 

w i l l produce very different class A membership values for the points i & j, even 

though they are equally typical of this class, i.e., equidistant from the representative 

neuron ’*’. On the other hand in Fig.4.8, it wi l l assign equal membership value (0.5) 

for the points i & j to both classes, even though point i should have smaller 

memberships than point j intuitively. These problems arise from the probabilistic 

constraint in eq.(4.21) which makes a point's membership value in a fuzzy set depend 

on its membership values in other fuzzy sets defined over the same universe of 

discourse. The memberships of the possibilistic membership functions, however, are 

solely a function of the distance of point from a prototypical member and therefore 

provide a better model for interpretation. Furthermore, the function is rotational 

symmetric in the multidimensional space and can be easily projected to the 1-D space 

for linguistic labelling. Such an interpretation process wi l l be exemplified in the next 

section. 

62 



Chapter 4 Fuzzification of Competitive Learning Networks 

Class A Class B 

〇 O 

i 〇 〇 〇 j 〇 〇 〇 
〇 〇 〇 米 〇 〇 〇 〇 〇 參 〇 〇 

〇 〇 〇 〇 〇 〇 

〇 O 

Figure 4.7 Example of data points '0' forming two 
clusters with parametric vectors •*' & •參• in which the 
constrained fuzzy membership for points i and j are 
different, even though they are equally typical to class 
A 

i 
〇 

Class A Class B 

〇 j 〇 

0 0 0 〇 0 0 0 

〇 〇 米 〇 〇 o o • o o 

0 0 0 0 0 0 
〇 O 

Figure 4.8 Example of data points '0' forming two 
clusters with parametric vectors •*• & i in which the 
constrained fuzzy membership for two noise points i 
and J are equal, even though point i is much less 
representative of either cluster than point j. 
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4.7 Simulation Results 
In this section, the performances of the proposed FCL algorithms as compared with 

those of the crisp algorithms in three pattern classification data sets are reported. To 

demonstrate its effectiveness, the fuzziness control scheme is adopted by the UFCL 

algorithm and tested on two data sets. The interpretation of trained FLVQ networks 

is then described via a 2-D model data set. In all simulations, the available training 

vectors were randomly chosen as the initial parametric vectors. Furthermore, a 

monotonic decreasing learning rate defined as 
/ \ 

a ( 0 = a (0 ) 1 — (4.37) 
� ^max J 

was used, where a (0 ) is the initial learning rate and r丽 is the maximum number of 

(pattern based) trainings allowed. Unless otherwise stated, r匪 was set to 30 times 

the number of available training data. The fuzziness parameter values m=1.2, 1.5, 2.0 

were employed to test on its sensitivity to the algorithm's performance. To ensure fair 

comparisons, all the training conditions, particularly the initialization step, of the fuzzy 

and crisp CL algorithms are exactly the same. 

4.7.1 Performance of Fuzzy Competitive Learning Algorithms 

Experiment #1 : 2-D Gaussian Distributed Data Set with Distant Clusters 
In this data set, 400 training patterns are located at four gaussian clusters of which 

centroids are (-15,0)，(-9,0), (3,3), & (3,-3) and variances are fixed to one. No 

clusters are overlapped and the two left clusters are far apart from the right ones. 

Such data set was initially designed to test on the performances of FCL algorithms in 

n o n-over lapping data set. However, simulation results showed that neuron 

underutilizations were frequently encountered. A typical case of it is depicted in 

Fig.4.9 where the U C L algorithm cannot learn the four cluster centroids by four 

neurons, but instead, it has converged to group the two left clusters by one neuron 
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and encode the lower right cluster by two neurons. This is due to the random 

initialization cases that three neurons are initialized f rom the two right clusters and 

only one neuron is initialized f rom the two left clusters. Wi th such initialization, the 

single competing neuron at the left w i l l always win and learn those patterns in the two 

left clusters. This has left no chance for the other competing neurons to learn them. 
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Figure 4.9 Typ ica l Neuron Underut i l izat ion Case. The unsuperv ised 

compet i t i ve learning a lgor i thm fai led to converge to the four c luster cent ro ids 

(denoted by "o"). But instead, it has converged to encode the 200 pat terns 

in the two left c lusters by one neuron (denoted by "x") and the 100 pat terns 

in the lower right cluster by two neurons. 

The performances, in terms of the success rate (i.e. the percentage of 20 trials 

converged to approximately the four cluster centroids by four competing neurons)，of 

the three different types of C L algorithms are shown in Fig.4.10(a)~(c). Fuzzy 
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algorithms using m=1.2，1.5, 2.0 are symbolized by extensions "-1”，"-2", and "-3" 

respectively. Also, three initial learning rates a(0)=0.01, 0.1，0.5 representing slow, 

medium and fast learning were used. Obviously, the proposed fuzzy algorithms 

converged more often to the desired solutions than the crisp ones. In particular, the 

F L V Q algorithm has attained 100% success rate in all cases, very robust to the 

parameters used. For the other two types of fuzzy algorithms, simulation results 

showed that adopting larger m values would have better performance. As discussed 

in Section 4.5, larger m values specify fuzzier clusterings which in turn wi l l weight 

more on larger distances in the membership computation and produce higher 

membership values. Thus, far away neurons are more active to learn the current input 

pattern and hence neuron underutilization cases are less likely to occur. Therefore, 

fuzzier FCL algorithms are more beneficial in resolving the neuron underutilization 

problem. As shown by the learning trajectories of four competing neurons 

(particularly the solid line one) in Fig.4.11, the UFCL algorithm using a ( 0 ) = 0.1 and 

m=2.0 has successfully escaped from the undesirable neuron underutilization case 

depicted previously in Fig.4.9. Although the FSCL algorithm was proposed to address 

the same problem, Fig.4.10(c) shows that such capability has been further enhanced 

by the fuzzification of the algorithm. 

Success Rate (%) 

J � l 
U UCL UFCL-1 UFCL-2 UFCL-3 

• alpha=0.01 _ alpha=0.1 _ alpha=0.5 

(a) 
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Success Rate (%) 

O B 
LVQ FLVQ-1 FLVQ-2 FLVQ-3 

• alpha=0.01 _ alpha=0.1 _ alpha=0.5 

(b) 

Success Rate (%) 

M 
70 _ FFSCL-1 FFSCL-2 FFSCL-3 

_ alpha=0.01 _ alpha=0.1 _ alpha=0.5 

(c) 

Figure 4.10 Success Rates of Crisp and Fuzzy Competitive Learning (CL) 
Algorithms in Converging to the Desired Solutions : 2-D Gaussian Data Set 
with Distant Cluster Locations. Parameter alpha is the initial learning rate 
used. The depicted crisp CL algorithms include UCL, LVQ and FSCL The 
corresponding fuzzy CL algorithms are the UFCL, FLVQ，and FFSCL Fuzzy 
algorithms using fuzziness parameter value m=1.2, 1.5, & 2.0 are 
symbolized by extensions "-1", "-2", & "-3" respectively. 
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Figure 4.11 Escaping from Neuron Underutilization Case of Fig.4.9 by 
Unsupervised Fuzzy Competitive Learning. The solid lines are the learning 
trajectories of four competing neurons. After a few iterations of training, the 
"excess" neuron in the lower right cluster has been moved to the second left 
cluster and hence the four cluster centroids are 丨earned. Note also the 
zigzagging trajectory of the left neuron which is the result of wandering 
between the two left clusters during the time the "excess" neuron has not 
been moved away from the lower right cluster. 
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Experiment #2 : 2-D Gaussian Distributed Data Sets with Overlapping Clusters 
In contrast to previous data set, the 400-pattem gaussian distribution data sets here 

consist of two overlapping pattern clusters and they were generated from centroids 

(10,0) & (-10，0) wi th different variances. Specifically, we have fixed the variance of 

left centroid to 5 and varied that of the right centroid from 3 to 13 at 2 unit interval. 

Thus different degrees of overlapping simulating different fuzzy environments were 

resulted. In Fig.4.12, the algorithms' classification performances in terms of the 

averaged misclassification rate of 20 trials using a (0 ) 二 0.1 and networks of two 

competing neurons are depicted. The differences between fuzzy and non-fuzzy 

algorithms are not so significant in the unsupervised CL cases, i.e. the U C L and 

FSCL. However, fuzzy algorithms do perform better particularly in the fuzzier data 

sets. Furthermore, the fuzzier the training data sets, the more the fuzzy algorithms 

outperform the crisp one. For supervised CL, the performance gain is much larger, 

up to approximately 4% misclassification rate. From the results, it can also be 

observed that using larger m generally gives better results for the fuzzier data sets. I t 

seems also that there exists a relationship between the degree of overlapping in data 

sets and the fuzziness value of the FCL algorithms. 
Misclassification % 
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Figure 4.12 Misclassification Rates of Crisp and Fuzzy Competitive 
Learning : 2-D Gaussian Data Sets with Different Degrees of Cluster 
Overlapping. See Fig.4.10 for descriptions of the depicted algorithms. 
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Experiment #3 : Vowel Recognition Data Set 
The vowel data used in this simulation was collected by Deterding [30] who recorded 

examples of eleven steady state English vowels spoken by fifteen speakers of which 

eight were male and the other seven were female. Speech signals were first low-pass 

filtered at 4.7kHz and then A / D converted with lOkHz sampling rate and 12-bit word 

length. Twelf th order linear predictive analysis was carried out on six 512-sample 

Hamming windowed segments f rom the steady part of the vowel. The reflection 

coefficients were used to calculate 10 log area parameters, giving a 10 dimensional 

input space. In order to facilitate generalization performance testing, samples 

obtained f rom four male and three female speakers were set aside for testing while 

those f rom the other four male and four female speakers were used for training the 

network. This gave 8x11x6=528 training samples and 7x11x6=462 testing samples. 

The classification rates of both crisp and fuzzy CL algorithms on these two sets of 

vowel samples were summarized in Table 4.1 & 4.2 respectively wi th each reading 

recorded as the average of 20 runs. Initial learning rate a (0 ) = 0.1 and networks of 

different size were used in this experiment. The results show that such data set is not 

easy to classify. In fact, it has already been reported by Robinson [99] that the best 

generalization performance obtained from multilayer perceptron model is only 51%. 

Obviously, there exists a lot of overlappings between vowel classes and fuzzy 

algorithms are expected to perform better. According to Table 4.1, the training 

performances of fuzzy algorithms are indeed superior to those of the crisp ones for 

m= 1.2 & 1.5. However, it is not the case for m=2.0, except the L V Q algorithm 

where divergencies were found. This indicates the importance of fuzziness value to 

the performance of proposed fuzzy algorithms. For the vowel data set here, fuzziness 

value around 1.2-1.5 should be used. However, this is not true for the data sets in 

experiment #2. I t seems that an appropriate specification of fuzziness parameter is 

related to the characteristics of training data, e.g., the degree of overlapping. 
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Nevertheless, it is appropriate to choose values around 1.5 for general applications. 

By comparing the performances of the three types of CL algorithms, one can 

conclude that supervised learning is indeed much more superior to unsupervised one 

and among the two unsupervised type CL algorithms, the win-rate dependent type CL 

algorithms (i.e. FSCL & FFSCL) are better. In addition, the classification rate of 

FFSCL is higher than those of the FSCL and UFCL, and this again justifies its 

development. Regarding the generalization performances of the proposed fuzzy 

algorithms, Table 4.2 demonstrates that they are generally in line with the training 

performances, that is, the generalization performances increase or decrease with the 

training performances. Such generalization performances however are better than 

those of other neural network models reported in [99]. In particular, the F L V Q 

algorithm (attaining 58.4%) significantly outperforms the multilayer perceptrons 

(51%) and the nearest-neighbor method (56%). 
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Table 4.1 Train ing Per formances of Crisp and Fuzzy 

Compet i t ive Learning (CL) algori thms: Vowel Data Set. 

Neurons/Vowel Classification Rate of Training Data Set (%) 

U C L UFCL-1 UFCL-2 UFCL-3 

1 33.9 35.0 36.9 32.1 

2 47.5 48.7 49.6 47.1 

3 56.1 57.5 55.1 53.8 

L V O FLVO-1 FLVO-2 FLVO-3 

1 9 . 1 卞 7 0 . 3 6 4 . 4 6 1 . 7 

2 9 . 1 卞 7 8 . 9 7 4 . 9 7 3 . 5 

3 9 . 1 卞 8 6 . 0 8 1 . 1 7 8 . 9 

FSCL FFSCL-1 FFSCL-2 FFSCL-3 

1 35.4 37.0 36.3 31.0 

2 49.6 51.4 50.0 47.0 

3 56.8 59.5 56.5 53.4 

卞 Diverged in all the 20 trials 

Table 4.2 General izat ion Per formances of Crisp and Fuzzy CL 

Algor i thms: Vowel Data Set. 

Neurons/Vowel Classification Rate of Training Data Set (%) 

U C L UFCL-1 UFCL-2 UFCL-3 

1 36.1 36.0 37.9 31.5 

2 48.9 49.4 49.2 48.8 

3 55.8 55.8 55.9 54.5 

L V O FLVO-1 FLVO-2 FLVO-3 

1 9 . 1 卞 5 1 . 7 5 1 . 5 5 0 . 9 

2 9 . 1 卞 5 7 . 0 5 6 . 8 5 7 . 2 

3 9 . l t 58.4 56.6 56.1 

FSCL FFSCL-1 FFSCL-2 FFSCL-3 

1 37.6 38.1 37.9 30.4 

2 50.7 49.7 48.9 48.7 

3 56.3 56.6 56.5 54.0 

卞 Diverged in all the 20 trials 
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4.7.2 Performance of Monotonically Decreasing Fuzziness Control 

Scheme 

Experiment #4 : 2-D Gaussian Distributed Data Set with Distant Clusters 
This data set is the same as that in experiment #1 and was chosen to test on the 

performance of the fuzziness control scheme depicted in eq.(4.34)，i.e., 

m{n) 二肌/ + {i^i 一 饥f 
)exp( ) (4.38) 

"max 

in helping the U F C L algorithm to avoid neuron underutilization. W i th the final 

fuzziness value m, = 1.2,1.5, 2.0, the initial fuzziness value m. f ixed at 2.5，and the 

maximum number of training iterations allowed equal to 30，the performances of this 

enhanced fuzzy algorithm, in terms of the neuron underutilization rate in 20 runs, are 

shown in Fig.4.13. As in Fig.4.10, the three final fuzziness values are symbolized by 

extensions "-1" , "-2"，"-3" respectively. Obviously, the U F C L algorithm wi th 

decreasing fuzziness are much better than the crisp algorithm. By comparing Fig.4.13 

w i th Fig.4.10(a)，the fuzziness control scheme substantially improves the ability of 

U F C L algorithm in avoiding neuron underutilization. 

Success Rate (%) 

• u 
U UCL UFCL-1 (F.C) UFCL-2(F.C) UFCL-3(F.C) 

_ alpha=0.01 _ alpha=0.1 _ alpha=0.5 

Figure 4.13 Success Rates of UCL and UFCL with 
fuzziness control in Converging to the Desired Solutions : 2-
D Gaussian Data Set with Distant Cluster Locations. 
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Experiment #5 : IRIS Data Set 
Anderson's IRIS data set [2] consisting of 50 labelled 4-D patterns for each of the 

three pattern classes has long been used for bench-marking the performances of 

clustering algorithms. Properties of the data are well-known [84] and typical error 

rates for supervised classifier are 0-3.3%; and for unsupervised classifier, around 10% 

[84]. In Table 4.3, the error rates of the UCL, UFCL, and UFCL with fuzziness 

control are depicted. Each reading was taken as the average of 20 runs using 

a (0 ) = 0.1. In addition to using one neuron per pattern class, simulations using three 

neurons per pattern class were conducted. The results show that the fuzzy algorithms 

has outperformed the crisp one in all cases except one. By inspecting the 

effectiveness of the decreasing fuzziness scheme, one may observe that the scheme is 

effective only for the case of one neuron per pattern class. This is because neuron 

underutilization is no longer a problem when there are three neurons per pattern class. 

Table 4.3 Error Rate of UCL, UFCL and UFCL with fuzziness control : IRIS 

Data Set. 

Neurons/ U C L UFCL UFCL 

Class (fixed fuzziness) (with fuzziness control) 

m 二 1.2 m=1.5 m=2.0 m 尸 1.2 m 尸 1.5 m 尸 2.0 

1 16.0% 16.1% 14.7% 12.4% 13.0% 11.3% 10.7% 

3 10.4% 8.2% 7.8% 8.3% 8.0% 8.5% 9.4% 
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4.7.3 Interpretat ion of Trained Networks 

Experiment #6 : 2-D Model Data Set 
In this data set, there are four clusters of Gaussian-distributed patterns. Each one 

consists of 100 patterns. The centroids are located at (2,0)，(25,0), (15,3)，(15,-3) 

respectively and the variances are 2.5. The first two clusters were labelled class A 

while the other two were labelled class B. As shown in Fig.4.14, the class A patterns 

are separated by the class B patterns '+'. Consider that the two dimensions of this 

data set corresponds to the error and change-of-error states of a fuzzy system. For 

the class A state patterns, one particular control action takes place. For the class B 

state patterns, another control action is required. The F L V Q model can be used to 

estimate the membership functions of both control actions. In Fig.4.15, maximum of 

the two membership functions were plotted using the constrained fuzzy membership 

computations in eq.(4.35) wi th m=1.5 and the trained network's parametric vectors 

^11(2.1,0.1), m,2(24.9,0), m, , (15.1-3.2) , and m,,(14.7,3.5). Note that the 

membership scale is [0.5,1]. I t can be seen that the middle "bump" corresponds to 

the class B patterns while the other two "bumps" correspond to class A's distant 

pattern clusters in Fig.4.14. As pointed out in Section 4.6，such a membership 

function is not appropriate for interpretations because it has been formulated as a 

function of the relative distance rather the absolute distance. Here, it can be observed 

that the memberships are too high for those far away points, say the four corners 

whose memberships are about 0.8. For comparisons, the possibilistic membership 

functions were plotted in Fig.4.16 according to eq.(4.36) where rj. were set to the 

average fuzzy intra-cluster distances [69]‘ The membership scale here is [0,1]. 

Comparatively, the possibilistic membership function is more appropriate for 

interpretations. By projecting the 2-D membership functions to the error and change-

of-error spaces as shown in Fig.4.17 & Fig.4.18 respectively, the linguistic 

classification rules could be identified. According to the projected membership 
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functions, the error (E) state could be attached with linguistic labels "small", 

"medium", and "large". On the other hand, the change-of-error (CE) state could be 

attached wi th linguistic labels "negative small", "zero", and "positive small". As a 

result, the trained F L V Q network is interpreted as follows. 

Rule^. If (E is small and CE is zero) or (E is large and CE is zero), 
then control action A takes place 

Rule(i. If (E is medium and CE is negative small) or (E is medium and CE is 
positive small), 
then control action B takes place 

10| 1 1 1 1“； ‘ ‘ 
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Fig. 4 .14 A 2-D Gaussian-distr ibuted data set with class A patterns 

,.• separated by class B patterns '+'. The Gaussian centroids are 

denoted by 'o'. 
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Error - Change-of-Error Space 

Fig. 4.15 Constrained Fuzzy Membership Functions Formed by FLVQ 

j 暴 
Error - Change-of-error Space 

Fig. 4.16 Possibilistic Fuzzy Membership Functions Formed by FLVQ 
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i ^ l / y Y l 
0 . 2 7 V A -
。 “ . 一 一 、 、 … — — 

0_5 0 5 10 15 20 25 30 Error 

Fig.4.17 Projected Possibilistic Membership Functions : Error State. 
The class A membership functions are represented by solid lines 
and the class B membership functions are represented by dashed 
lines. 
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Fig.4.18 Projected Possibilistic Membership Functions : Change-of-
Error State. The class A membership functions are represented by 
solid lines and the class B membership functions are represented by 
dashed lines. 
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4.8 Concluding Remarks 
In this chapter, the concept of fuzzification of neural network learning has been 

demonstrated. Through a fuzzification of the crisp concept win in conventional 

competitive learning (CL) paradigm, a fuzzy competitive learning (FCL) paradigm 

adopting a "learn according to how well it wins" principle has been proposed and 

based upon which three existing CL algorithms have been fuzzified. Unlike the crisp 

competitive learning algorithms where only one neuron wi l l win and learn at each 

competition, every neuron in the proposed FCL networks to a certain degree wins, 

depending on its distance to the input pattern, and learns the pattern accordingly. As 

demonstrated by the experimental results, the FCL networks are effective in 

addressing the two shortcomings of crisp CL models and superior to their crisp 

counterparts. 

Some of the work developed in this chapter have already been reported in 

various technical publications and have received considerable attention. For example, 

the work reported in [16] has led Zhu et a l [122] to devise a new FCL algorithm 

called partial-distortion-weighted FCL for vector quantization. Its basic idea is to 

introduce the partial distortion theorem [42] of the theory of vector quantization into 

the UFCL algorithm. The theorem states that each partition region represented by 

one codevector makes an equal contribution to the distortion for an optimal quantizer 

wi th asymptotically large codebook size. In the wordings of competitive learning, 

each competing neuron should be equally responsible to minimize the distortion J^ of 

eq.(4.12) and this requires the competing neurons to be equally active in learning the 

input patterns. Such an idea is essentially the same as that of the FSCL and FFSCL 

algorithms presented in Sections 4.2.3 & 4.3.3 respectively and hence the partial-

distortion-weighted FCL algorithm like FSCL and FFSCL is effective in overcoming 

the problem of neuron underutilization and designing near optimal vector quantizer 

regardless of the init ial condition of the codevectors. 
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The class of fuzzy competitive learning networks developed in this chapter 

represents a new input to the first major category of FNS's, i.e., fuzzification of neural 

networks. I t exploits the strength of fuzzy sets in modelling concepts that are fuzzy 

or vague in nature. One may synthesize another class of FNS's along this way by i) 

identifying the crisp concepts employed in the neural network model that are deficient 

in their current forms and are potentially better modelled by fuzzy set theory, e.g., the 

class identity of certain patterns, and ii) fuzzifying them using the developed theory 

and methodologies, e.g. [6,7], such that the performance of the models is improved. 

In the fol lowing two chapters, we switch our attentions to the second major category 

of FNS's and see how neural network and its theory help traditional fuzzy systems. In 

particular, we present a theoretical analysis of the storage capacity of F A M and FRNS 

models，both of which have been devised to encode a set of fuzzy rules, and develop 

high capacity encoding schemes for them via the well-developed perfect recall 

principle in associative memory. 
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Capacity Analysis of 
Fuzzy Associative Memories 

5.1 Introduction 
Kosko's work on fuzzy associative memory (FAM) follows immediately f rom his 

work on bidirectional associative memory [66]. Its objectives are to capture the fuzzy 

rule knowledge of human experts in a particular problem domain, to represent it in 

modular and flexible neural network structure, and to infer from it in an efficient and 

effective manner. Despite its success in applying to problems such as backing up a 

truck-and-trailer [65], target tracking [67, C h . l l ] , and voice cell control in 

asynchronous transfer mode (ATM) networks [81], the F A M model still suffers from 

the problem of very low storage capacity — one rule pattern pair per F A M matrix. 

Subsequently, the implementation requires a large amount of hardware when the 

fuzzy rulebase is large and hence the F A M model is limited to small rulebase 

applications. Inspired from the neural network research work on associative memory, 

the multiple-rule storage property of F A M matrix is identified in this chapter [21,22]. 

A perfect recall theorem is established and based upon which the implementation of 

the F A M model can be more efficient. In addition, it is found that by generalizing the 
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F A M model to max-bounded-product (max-®) composition, a single F A M matrix 

implementation of a set of semi-overlapped fuzzy rules, which is typical in general 

applications, can be achieved. The resulted model not only leads to higher efficiency 

in hardware implementation and computation, but also to the capability in bi-

directional inference, i.e., forward and backward inference, which is of important 

value to knowledge-based systems [32]. 

In the next section, Kosko's F A M model is elaborated. In Section 5.3, the 

perfect recall theorem is presented and based upon which an efficient implementation 

of F A M is suggested. The max-® F A M model for single matrix implementation of a 

set of semi-overlapped fuzzy rules is introduced in Section 5.4. In Section 5.5, the 

capacity of a F A M matrix is formally discussed. Issues regarding the modification of 

certain stored fuzzy rules and the inference performance of the established high 

capacity F A M models are addressed in Section 5.6 and Section 5.7 respectively. 

5.2 Fuzzy Associative Memories (FAMs) 
Kosko's F A M model is characterized by a two-layer heteroassociative feedforward 

network as shown in Fig.5.1 which encodes the involved linguistic term pair ( A ” 5 J 

of the fuzzy rule 

Rule �：IF the input variable is A^ THEN the output variable is 民 

in a matrix form rather than a look-up table in traditional fuzzy systems. Specifically, 

it stores the Jdh fuzzy rule as represented by rule pattern pair ( A , , i n its weight 

matrix M using correlation-minimum encoding 

M 二 A f A B t (5.1) 

or correlation-product encoding 

M = Al-B, (5.2) 
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where the Alh rule pattern pair is represented by fuzzy sets! 

4 = { ^ i 、 ( a ) l f l e U } (5.3) 

and 

(5.4) 

For the sake of clarity, we drop the membership symbols further, i.e., 

A, ⑷丨 a e U } (5.5) 

and 

代二 仲 e V } (5.6) 

In order to avoid crosstalks, Kosko proposed to use separate storage of all the 

available fuzzy rules. I t turns out that L available fuzzy rules are encoded by L F A M 

matrices using correlation-minimum (or correlation-product) encoding 

Rule � : = 八 
• • 

• • • • 

Rule�:M广 A[八 Bl 
As shown in Fig.5.2, a F A M system comprises of a bank of L F A M matrices. 

Inference takes place individually for a fuzzy input A according to the compositional 

rule of inference (max-min composition) depicted in eq.(2.32), viz. 

Bk�=AoMk (5.7) 
The partial fuzzy outputs are then combined by an appropriate aggregation 

operator E, e.g., weighted sum or maximum, to form the overall fuzzy output. Here, 

we w i l l focus on the maximum operator only. I f crisp output is required, a defuzzifier 

can be cascaded to the F A M system to form the whole system. 

1 As compared with the formal definition in eq.(2.4), the notation of fuzzy sets here has been 
simplified to refer to the membership values only. This is applicable to the rest of the thesis. 
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For multiantecedent F A M rules, say "IF X is A^ A N D Y is B^ T H E N Z is C；', 

Kosko proposed to split the rule into "IF X is A^ T H E N Z is C；' and " IF Y is 5 

T H E N Z is C；' and hence the 3-D F A M matrix is decomposed into two 

2 -D F A M matrix and { B ^ . C l ) . The actual fuzzy output is then recomposed 

by intersecting the partial results C\ SiCl. This corresponds to the " A N D " connective 

of antecedent terms in the original rule. I f they are related by "OR" connective, 

recomposition can take place by taking the union of the partial results. Such a FAM 

decompositional inference scheme [67, pp.322-327] requires far less storage than the 

multidimensional matrix approach at the expense of producing a close approximation 

of the fuzzy outputs rather than the actual ones. Without loss of generality, we wi l l 

focus on single-antecedent F A M rules only in the rest of the chapter. 

I t can be seen that the F A M model implements the desired set-to-set mapping 

S , r — r as specified by the available fuzzy rules. I t employs the individual-rule 

based inference mechanism but stores the fuzzy rule knowledge in fuzzy relation 

( F A M matrix) format in order to achieve parallel implementation and activation of 

fuzzy rules. As wi l l be demonstrated in Section 5.7，the involved inference 

mechanism for crisp inputs is exactly the same as that depicted in Fig.2.6. Therefore, 

F A M is an efficient but cost-ineffective model as compared wi th traditional fuzzy 

systems. The separate storage scheme also has its advantages and disadvantages. On 

one hand, it leads to very low system capacity but on the other hand it features 

modularity which enables partial modifications, such as adding and deleting certain 

fuzzy rules, without disturbing the other storage. 
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5.3 Storing Multiple Rules in FAMs 
In his popular textbook [67, pp.313-314], Kosko claims that information wi l l lose if 

we superimpose multiple F A M rule matrices. Hence, the attempt to store multiple 

rules in a single F A M matrix was abandoned. In this section, we show that such a 

storage scheme is feasible for a certain distribution of input fuzzy sets and hence can 

lead to a more cost-effective implementation of the model. 

In the theory of matrix associative memory, perfect recalls of multiple patterns 

are possible i f the stored (crisp) patterns constitute a set of orthonormal basis vectors 

[86]. This result indeed can be generalized and applied to the F A M model. 

Definition 5.1 : 
Fuzzy rule patterns A. = 1,2，…，w} and A. ={Aj(a)\a = 1,2,...,n} are max-

min orthogonal to each other i f 

A . o A,. = m a x ( A . ( a ) A A / a ) ) = 0 ( 5 . 8 ) ^ J a 

i.e., A.(a) A A . { a ) = 0 Va. Graphically, they are pairwisely disjoint. 

Theorem 5.1 : 
Given a set of fuzzy rules represented by the rule pattern pairs 

S={{\,BJk = l2,--.L} where A, 二 U ”"， " } and B,={B,(b)\ 
Z? = 1,2,.. . ,m} and it is encoded by a F A M weight matrix using max-min encoding as 

M = max [A [ (5.9) 
k 

or in pointwise notation as 

= ( 5 . 1 0 ) 
k 

then the stored fuzzy rule pattern pairs can be perfectly recalled i f the input fuzzy sets 

Ak are normal ones, i.e., max A , { a ) = 1, and max-min orthogonal to each other. 
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Proof: 
By performing max-min composition A； o M for an input fuzzy set A ^ e S , have 

the element-wise outputs 

= max {A , (a ) A [max( A “ a ) A 
Q k. 

二 A j众 (a) A 召左 a L k 
= m a x { m a x [ A ^ ( a ) A A , ( a ) A 5 , ( Z ? ) ] v [ A ; ( a ) A A ^ ( a ) A 5 , ( Z ? ) ] } (5.11) a k^l 

Since A； are max-min orthogonal to each other, we have 

( b ) 二 max{max[0 a B^ ( b ) ] (a) a 為(a) a B州]} 
I a ^ k^l 

二 m a x { A , 0 ) A A , ( a ) A 5 , ( Z 7 ) } (5.12) a 
A 

As a result o f the normal fuzzy set requirement, eq.(5.12) becomes B i (b) = i.e., 

the stored output fuzzy set is recalled. Q.E.D. 

The theorem points out that there is no need to separate the storage of fuzzy 

rules i f the input fuzzy sets are normal and max-min orthogonal to each other. This 

can reduce the hardware and computation requirements of the F A M model 

significantly by the proposed max-min encoding method in eq.(5.9). However, the 

orthogonal requirement is hard to satisfy in practice and semi-overlapped normal input 

fuzzy sets, as exemplified in Fig.5.3(a)，are usually the case. By semi-overlapped, we 

define here as fuzzy sets satisfying the fol lowing two conditions 

= V adjacent fuzzy sets A., A. (5.13) 

and 

= l Va (5.14) 
k=\ 

Regarding such distribution of input fuzzy sets, it can be inferred f rom the theorem 

that two F A M matrices are sufficient since the s e m i -over lapped input fuzzy sets can 

be decomposed into two sets of orthogonal fuzzy sets as shown in Fig.5.3. The 

resulted F A M system therefore comprises a bank of two F A M matrices only. This 
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saves a lot of hardware and computations and we term such an implementation as 

reduced F A M model. The saving is proportional to the resolution of the fuzzy 

partition of the input universe of discourse. For the case in Fig.5.3, five F A M 

matrices, i.e., more than 70% of the resources, has been saved. On the basis of the 

F A M decompositional inference scheme, the result can be applied to multiantecedent 

fuzzy rules. Furthermore, it is also applicable to max-product F A M model. As wi l l 

be demonstrated in Section 5.7, such an implementation of the F A M model, i.e., a 

system consisting of two F A M matrices constructed using max-min (or max-product) 

encoding, is functionally the same as Kosko's implementation. 

A , 〜 〜 

J 2 3 4 5 6 7 X w 

U \ 2 4 6 

u 
(c) 

Figure 5.3 The decomposition of semi-overlapped fuzzy sets 

in (a) into two sets of orthogonal fuzzy sets in (b) & (c). 
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5.4 A High Capacity Encoding Scheme for FAMs 
I n the previous section, the derived perfect recall theorem has been applied to 

optimize the storage of fuzzy rules in Kosko's max-min composition F A M model and 

significant reductions in hardware and computations have been obtained. In fact, the 

perfect recall theorem derived can be generalized to the max-r composition [94], a 

more general class of inference operators. 

Definition 5.2 : 
Fuzzy sets A. and A. are max-r orthogonal to each other i f 

A,。，A. 二 m a x (為⑷ r A 々 )） = 0 (5.15) 
J a 

i.e., A i ( a ) t A j i a ) = 0 \ / a . 

Theorem 5.2 : 
Given a set o f fuzzy rules S = {{A,,B,)\k = M and it is encoded by a F A M 

weight matrix using max-r encoding 

M = m a x [ A [ r 民 ] (5-16) 
k 

or in pointwise notation as 

M{a,b) = msix[Ma)TB,M (5.17) 
k 

then the stored fuzzy rule pattern pairs can be perfectly recalled i f the input 

fuzzy sets A^ are normal ones and max-r orthogonal to each other. 

Proof: 
Owing to the distributive property of maximum operator wi th respect to 广norm，the 

proof is the same as that of Theorem 5.1 and therefore is omitted here. 

According to the generalized perfect recall theorem, single F A M matrix 

implementation of s e m i -over lapped fuzzy rules is possible i f there exists a composition 

operator that makes s e m i -over lapped fuzzy rules orthogonal to each other. In this 

regard, the max-bounded-product (max-®) composition, due to its computational 
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simplicity and well-behaved inference property (to be discussed in Section 5.7), is 

proposed. Recall f rom Chapter 2 that the bounded product ^-norm is defined as 

p ® q = max{0,p + <7- l } (5.18) 

According to the condition for semi-overlapped fuzzy rules in eqs.(5.13)&(5.14), the 

max-® composition 

A. A. 二 max (A . (a )®A. (a ) ) 

= max{max[0,A(^0 + A 7 O ) - l ] } (5.19) a 

=0 

i.e., the orthogonal requirement is satisfied. Hence, the semi-overlapped fuzzy rules 

can be encoded by a F A M matrix using max-® encoding. Due to its matrix structure, 

such an implementation w i l l be beneficial to accommodate backward inference [32] on 

top of the usual forward inference in the F A M model. Backward inference does not 

play a role in fuzzy control, though it is an essential strategy for guiding the querying 

process in knowledge-based systems [32]. Thus, the max-® F A M model wi l l have 

more applications. 

5.5 Memory Capacity 
Based upon the established results, the capacity of a F A M matrix in the two high 

capacity F A M models, i.e., the reduced model (using max-min composition) and the 

high capacity model (using max-® composition), is derived in this section. According 

to Theorem 5.1, one F A M matrix is enough for storing a set of fuzzy rules that are 

normal and max-min orthogonal to each other. I f the max-min orthogonal condition 

cannot be satisfied, eq.(5.12) of the proof w i l l become 

%{b)>B,{h) (5.20) 
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i.e., the perfect recall property is not guaranteed. Hence, the capacity of a F A M 

under max-min composition is bounded by such conditions. Once they are met, the 

memory capacity depends on the resolution of the input fuzzy sets involved. For 

example in Fig.5.4(a), the maximum number of fuzzy rules that can be stored by a 

F A M is 4. On the other hand in Fig.5.4(b), a F A M matrix can store up to 7 fuzzy 

rules for the same discrete universe of discourse. 

Similarly, the capacity of a F A M matrix under max-® composition is bounded 

by the semi-overlapped condition, according to Theorem 5.2 and eq.(5.19). Again it 

depends on the resolution of the input fuzzy sets involved. As one may expect, the 

capacity under max-® composition is about twice that under max-min composition 

because the compactness of semi-overlapped condition doubles that of the non-

overlapped condition. Wi th the same discrete universe of discourse and resolution in 

Fig.5.4(a)&(b), the capacities under max-® composition wi l l be 7 and 13 fuzzy rules 

respectively. 
A 7 A 2 ^ 5 A 4 

。：N八八乂 
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Figure 5.4 (a) Memory Capacity of 4 Rules; (b) Memory Capacity of 7 Rules 92 
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5.6 Rule Modification 
Recall f rom Section 5.2 that Kosko's separate storage scheme is advantageous in 

enabling rule modifications (addition, deletion, and updating) without disturbing the 

other storage. For example, deleting a rule simply requires disconnecting the 

corresponding F A M matrix f rom the system. Conversely, rules can be added by 

connecting F A M matrices to the system. Rule modifications are essential to the 

success of F A M because the model as an adaptive fuzzy system is frequently required 

to fo l low the environmental changes. Since each F A M matrix now stores more than 

one rule, rule modifications have to be carried out in another way and some effective 

methods to do so are developed in this section. Consider the fol lowing set of semi-

overlapped fuzzy rules. 

R1 ： IF X is very small T H E N Y is medium 
R2 : IF X is small T H E N Y is small 
R3 : IF X is medium T H E N Y is very small 
R4 : IF X is large T H E N Y is large 
R5 : IF X is very large T H E N Y is very large 
where the fuzzy terms very small (VS), small (S), medium (M) , large (L), and very 
large (VL ) are defined in Fig.5.5. By using the reduced F A M model, two F A M 

matrices corresponding to the encoding of the rule sets {Rl，R3, R5} and {R2, R4} 

w i l l be formed and their 3-D surface plots are shown in Figs.5.6(a)&(b) respectively. 

Each pyramid represents a rule and its projections onto the X and Y variable spaces 

reveal the associated triangular shape fuzzy terms. The contour plots of these two 

matrices are depicted in Figs.5.7(a)&(b). As a result of the max-min orthogonal 

condition, Figs.5.6 & 5.7 show that the pyramids are isolated f rom each other. Based 

on such property, rules can be easily deleted by suppressing the corresponding 

pyramids to zero memberships. This can be achieved by a simple weight updating 

operation 
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M_(ci,b) = min[M(a,b),r(a,b)] (5.21) 
where 

0 (a,b) E supportiMj^ = A [ A B,) T(a,b) = l (5.22) 1 otherwise 
via which the kth rule can be deleted. On the other hand, rule addition is straight-

forward because it is exactly the same as the rule encoding operation. I f the kth rule 

has to be added, the corresponding F A M matrix is updated, according to the max-min 

encoding rule in eq.(5.10), as 

M_(fl，Z?) = max[M(f l 力)，r(fl 力)] (5.23) 

where 

r(a,b)=A,(a)AB,(b) (5.24) 

Thus, the pyramid for the ^th rule wi l l be formed accordingly. In order to preserve 

the perfect recall property, the rules being added should conform to the normal fuzzy 

sets and max-min orthogonal requirements. Wi th the rule deletion and addition 

schemes described by e q s .(5.21)-(5.24), rule updating can be easily implemented by a 

delete-and-add process, i.e., the obsolete rule is firstly deleted using eqs.(5.21) & 

(5.22) and the updated one is then added using eqs.(5.23) & (5.24). 

Similar rule modification schemes can be derived for the max-® F A M model. 

As shown in the 3-D surface plot of Fig.5.8 and the contour plot of Fig.5.9, the single 

F A M matrix formed consists of five pyramids. Since the pyramids are also isolated 

f rom each other, the rule deletion and addition schemes established previously can be 

applied to the max-® model as 

力）=min[M(a,b),r(a,b)] (5.25) 

where 
fO (a,b) E support{M, = Al ® B,) 

n a , b ) = \ (5.26) 1 otherwise 
and 
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M 廳(a 力）=max[M(a 力),r(a,Z7)] (5.27) 

where 

T{a,b)=A^{a)®B^{b) (5.28) 

respectively. Again, rule updating can be carried out by a delete-and-add process 

using eqs.(5.25)-(5.28). 

' 圖 
^ 5 1 0 1 5 2 0 2 5 

X 

Figure 5.5 The Membersh ip Funct ions of Input Fuzzy 

Te rms very small (VS), small (S), medium (M), large (L)，and 

very large (VL) 
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Y X 

(a) 

Y X 

(b) 

Figure 5.6 3-D Surface Plots of the Two FAM Matrices in 

Reduced Model : (a) for the set of rules {R1，R3, R5}, (b) for 

the set of rules {R2，R4} 
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Figure 5.7 Contour Plots of the Two FAM Matrices in 
Reduced Model : (a) for the set of rules {R1, R3, R5}，(b) 
for the set of rules {R2, R4} 
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Figure 5.8 3-D Surface Plot of the FAM Matrix in max-® FAM Model 
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Figure 5.9 Contour Plot of the FAM Matrix in max-® FAM Model 
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5.7 Inference Performance 
I n this section, the inference performances of Kosko's model, the reduced model and 

the max-® models are demonstrated and compared through the semi-overlapped 

fuzzy rule set described in Section 5.6. I t is recalled here as consisting of the fuzzy 

rule pattern pairs small, medium), R2:{small, small), R3'.(medium, very 
small), R4:{large, large), R5:(very large, very large)} wi th the membership functions 

of the five fuzzy terms defined in Fig.5.5. Three types of fuzzy inputs were used for 

testing. They includes fuzzy terms f rom the rule set, modified fuzzy terms, and 

singleton fuzzy terms. 

The first type of fuzzy inputs is used to test on the model's ability in recalling 

the stored fuzzy output. We present the input "X is medium” and see how wel l the 

models produce the desired output "Y is very small”, i.e., realizing R3. In Fig.5.10， 

the inference output (solid line) of Kosko's model is shown. I t is the same as that of 

the reduced model and their output is the maximum of fully fired very small (R3), 

partially f ired small (R2), and partially fired large (R4). Unfortunately, both of them 

cannot perfectly recall the desired output fuzzy term very small As shown in 

Fig.5.11，the max-® F A M model can achieve this. Such a difference is particularly 

illustrative to this example because the defuzzified output value, using COG 

defuzzification (see eq.(2.39)), of Kosko's (or reduced model) w i l l be approximately^ 

equal to 10 which is around the nucleus of the fuzzy term small rather than the 

expected very small. 
The second type of fuzzy inputs is modified fuzzy terms [123]. In Fig.5.12， 

two such terms, i.e., more-or-less medium and very medium, are shown. They were 

presented to the three models and the inference performances are reported as follows. 

The inference outputs (solid lines) of Kosko's model for them are depicted in 

Figs.5.13 & 5.14 respectively. Again, the outputs of the reduced model are the same 

2 The exact quantity depends on the resolution of the universe of discourse adopted. 
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as those of Kosko's model. Fig.5.13 shows that in response to "X is more-or-less 
medium”, all the rules have been fired with strength 0.2 for R1 & R5, 0.6 for R2 & 

R4, and 1 for R3. These values correspond to the memberships of the intersecting 

points of more-or-less medium wi th respect to VS, S, M , L , & V L respectively. For 

the modified fuzzy input "X is very medium”, only R2, R3, & R4 have been fired and 

the strengths are 0.4, 1, & 0.4 respectively. These values can also be observed from 

Fig.5.14. By comparing the inference outputs for inputs "X is more-or-less medium” 
and "X is very medium”, the former is fuzzier than the later and its defuzzified output 

using COG method is ==41.2 which is more far away from very small than the latter 

one (=9.8). This matches with the intuition that more-or-less medium is a fuzzier 

input term than very medium and therefore should produce more general output. 

For the max -0 model, the inference output for input "X is very medium” is the 

same as that for input "X is medium” already shown in Fig.5.11. This is a common 

intuitive criterion when the causal relation between input and output of fuzzy rules is 

not strong [72]. The inference output for input "X is more-or-less medium” is 

depicted in Fig.5.15. Unlike Kosko's or the reduced model, the partially fired outputs 

are of scaled triangular shape and their peak values, as indicated in Fig.5.15, are the 

membership value of more-or-less medium at the nucleuses of small and large. The 

defuzzified output value using COG method in this case is -6.4, as compared with -

11.2 of Kosko's or reduced model. Judging from the defuzzified output values, the 

inference performance of max-® model for modified fuzzy inputs is intuitively better 

than that of Kosko's or reduced model. 

The third type of fuzzy input is singleton fuzzy terms and is used to study the 

performance for crisp inputs. In Fig.5.16, the inference output of Kosko's or reduced 

model for a crisp value x=15 is recorded. It shows that rules R3 & R4 have been fired 

wi th strength 0.5. This result is indeed exactly the same as that using the individual-

rule based inference described in Fig.2.6. The inference output of the max-® model is 
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shown in Fig.5.17. Again, the partially fired fuzzy outputs are of scaled triangular 

shape. Despite the difference in shape, the defuzzified outputs of Kosko's (or 

reduced) model and max-® model using COG method are the same in this case. For 

the other crisp input values, they may not be exactly the same but at least very close 

to each other. Therefore, it can be concluded that the inference performances of 

Kosko's (or reduced) model and max-® model for crisp inputs are comparable to each 

other. 

讯^^^^^1 
f / R 3 \ B 2 F14 

O 5 l o t s 2 0 2 5 
I n f e r e n c e O u t p u t Y 

Figure 5.10 The 丨inference Output of "X is medium" : Kosko's 

and Reduced FAM Models 

t J 
^ 5 1 0 15 2 0 2 5 

I n f e r e n c e O u t p u t Y 

Figure 5.11 The Inference Output of "X is medium" : max-® 

FAM Model 
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5.8 Concluding Remarks 
In the light of the research work on neural associative memory, we have proved that 

the capacity of a F A M matrix is not limited to a single rule. One can store multiple 

fuzzy rules in a F A M matrix using max-min encoding i f the normal and max-min 

orthogonal conditions on the involved input fuzzy sets are observed. This implies that 

a F A M system consisting of two F A M matrices only is enough for storing a set of 

semi-overlapped fuzzy rules, which is typical in general applications. Such an 

implementation is called reduced F A M model because it reduces the storage 

requirement of FAM. By generalizing the usual max-min composition to the max-® 

one, one can even encode such a set of rules by one F A M matrix only. The resulted 

model not only is cost effective in implementation, it also features bi-directional 

inference which is essential to applications in knowledge-based systems. 

Wi th the introduction of the reduced and max-® models, mechanisms for 

partial modification of the fuzzy rulebase have been revised. Based upon an 

observation of the structures of the max-min encoded and max-® encoded F A M 

matrices, simple weight modification schemes for adding, deleting, updating rules 

have been devised and they are as effective as the original ones. In addition, the 

inference performances of the two high capacity models have been illustrated and 

compared wi th that of Kosko's max-min model through a typical rulebase. The 

reduced model has been shown to be functionally the same as Kosko's model while 

the inference output of the max-® model is generally the most appealing one. 

As mentioned in the introductory section, Kosko's F A M is a neural network 

inspired model for encoding a set of fuzzy rules. In the next chapter, we wi l l look at a 

mathematical oriented model, i.e., the fuzzy relational equations, and present a 

rigorous analysis of the storage capacity of the FRNS model. 
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Chapter 6 

Capacity Analysis of 
Fuzzy Relational Neural Systems 

6.1 Introduction 
Since its introduction by Sanchez [103] in 1976, fuzzy relational equations have been 

continuously exploited by researchers in both theories [32,51,90] and applications 

[32,97]. As mentioned in Chapter 3, fuzzy relational equations in their generic forms 

are non-linear equations in which the relations determine the mappings between the 

associated pairs of input and output fuzzy sets. Each equation corresponds to a single 

rule and a system of equations results when there is a set of rules. Thus, encoding a 

body of fuzzy rule knowledge by a fuzzy relation requires solving of a system of 

equations. In the theoretical studies of FRE, focuses have been put on characterizing 

the families of solutions of equations [31,106], investigating different types of 

equations [82,89,93], and determining the solutions of a variety of equations and 

systems of them [32,89,94]. In particular, several analytical resolution methods have 

been successfully developed to address the last problem. A key assumption was often 

made in the development that a solution exists, i.e. the system of equations is solvable. 

The usual understanding on the solvable condition of a system of max-f type FREs is 
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that the input fuzzy sets must be normal and pairwisely disjoint (max-min orthogonal) 

[33,44,92,97]. As already mentioned, this is often not the case in practical 

applications and recent developments have been focused on solving the equations 

approximately [43,44,92]. 

Recently, it has been shown that FREs are structurally similar to a two-layer 

feedforward network and hence can be implemented by parallel hardware and solved 

via a network training process [95,97]. Since it is a direct implementation of the 

F R E S , the storage capacity of the resulted fuzzy relational neural system ( F R N S ) 

model remains the same as that of a fuzzy relation. Consequently, it is still governed 

by the poorly established solvable conditions of the equation systems. In this chapter, 

a rigorous analysis of the storage capacity of the FRNS model is presented. The 

backgrounds on max-r type and min-5 type FREs and FRNS model are given in the 

fol lowing section. The analytical methods for solving these two types of equations 

and system of them are introduced in Section 6.3. In Section 6.4，new solvable 

conditions [24] are presented and based upon which the boundary condition of 

solvability is derived. In Section 6.5, we show that the results can also be applied to 

existing analytical methods for approximate resolution of a non-solvable system of 

equations [25]. The capacity of the FRNS model is then elaborated using the newly 

established results in Section 6.6. The inference performance is reported in Section 

6.7. 
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6.2 Fuzzy Relational Equations and Fuzzy Relational 
Neural Systems 

In Chapter 2, we have already shown that fuzzy sets play a significant role in coping 

wi th the vagueness of concepts and forming the appropriate representations while 

fuzzy relations are frequently used to encode the imprecise associations between 

concepts as represented by fuzzy rules. Both are commonly regarded as the basic 

constructs to model human knowledge which have been found to be vague, imprecise, 

and uncertain in nature. In his seminal paper [103], Sanchez put them into a 

mathematical framework called fuzzy relational equation (FRE) and laid down the 

foundation for its resolution. There exist many different forms of FREs and an overall 

presentation of the subject can be found in [32,94]. In this section, the max-t and 

min-5 FREs which are commonly used to encode fuzzy rules are reviewed. Their 

neural network implementations to form the FRNS model are introduced 

subsequently. 

Let A and B be fuzzy sets defined in finite universes of discourse U and V 

respectively and both the universes be discrete. Then the fuzzy relation R is defined in 

U x V , namely, R : U x V - > [ 0 , l ] . The m a x " and rmn-s FREs are given by 

B(b) = m^x[Aia)tR(a,b)] VZ?eV (6.1) 
aeU 

and 
B{b) = min[A{a)sRia,b)] V Z ^ g V (6.2) 

aeV 

respectively where t & s denote the t-novm and s-norm respectively. Alternatively, 

they can be represented in compact form as 

B = Ao^ R (6.3) 

and 

B 二 A.sR (6-4) 
respectively. As for the F A M matrix, they correspond to the fuzzy rule 
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Rule : IF the input variable is A THEN the output variable is B 
I t can be seen that eq.(6.3) is simply a generalized version of the compositional rule of 

inference in eq.(2.32). In fact, fuzzy relational equations has evolved from eq.(2.32) 

to include eqs.(6.3) & (6.4), the eigen FREs 

A 二 yl。，/?, ( 6 . 5 ) 

the adjoint FREs 

B = A(s;>R (6.6) 
where cp is the inclusion operator [94], and other variants. The theoretical interest 

of the subject is to solve these equations and systems of them, e.g., 

B, = A, o^ R', k 二 1,2’…,L (6.7) 
or 

k = h2,…丄 (6.8) 

Constructive methods to do so have been successfully derived and they wi l l be 

reviewed in the next section. 

In view of the matrix form of FREs, Pedrycz [95,97] proposed to implement 

the equations by neural architecture. As shown in Fig.6.1, the resulted network 

model, termed as fuzzy relational neural system (FRNS), is the same as that of the 

F A M rule network in Fig.5.1 except that the composition operators are generalized 

ones, i.e., max-r. Unlike Kosko's F A M model which employs a bank of F A M rule 

networks to form the whole system, such a network by itself is expected to capture 

the set of fuzzy rules, i.e., to be able to solve a system of FREs, via an iterative 

descent learning algorithm. The power of FRNS model however is still governed by 

the capacity of fuzzy relation in FREs. In the subsequent sections, it wi l l be analyzed 

through a re-examination of the solvability of a system of FREs. 
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I 叩 ut + + Output 

A,(n) 乙 ^ Bk(m) 
t-norm / maximum / 

operation operation , 
on links on output node 

Figure 6.1 Fuzzy Relational Neural System Archi tecture 

6.3 Solving a System of Fuzzy Relational Equations 
In this section, the analytical results for solving the max-r and min-s FREs and systems 

of them are reviewed. Consider the problem of determining the fuzzy relation R for 

given A and B , i.e., the encoding problem, under the assumption that the family of 

solutions is non-empty, i.e., {R\Ao^R = B } ^ 0 and {/？丨^參、二 5 }关 0 . The 

greatest solutions, according to [94], are 

力）二 A ( a ) 9风的 （6.9) 

and 

R(a,b) = Aia)^^B(b) (6.10) 

respectively wi th the (p and p operators defined as 

p(^q = sup{we[0,l]\ptw<q} (6.11) 
and 
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pf>q = M{wG [0,l]\ psw > q} (6.12) 
For the r-norm of eq.(6.11) and 5-norm of eq.(6.12) specified as minimum and 

maximum operators respectively, the cp-operator w i l l become the a-operator [94] 
[l if p<q 

= = (6.13) 
[q if p>q 

and the (3 operator w i l l become the 8 operator [94] 

q if p<q 
pe(7 = mf {wG [0,1]Ip w w > q } = { (6.14) 

[0 if p>q 
For the max-t FREs, the condition 

Mb e V，3A G U: A(a) > B(b) (6.15) 

must be satisfied in order to guarantee the existence of a solution [92]. Such a 

solvable condition of a single equation is easy to check and always holds true i f A is a 

normal fuzzy set. Similar condition can also be derived for the n m - s equations. 

Suppose now the systems of equations depicted in eqs.(6.7) & (6.8) are to be solved. 

Based upon the assumption that a solution exists, i.e., R = V/:} * 0 and 

= Bk the greatest solutions are [94] 

R = mm[A,(!;>B,] (6.16) 
k=\ 

and 
(6.17) 

於二 1 

respectively where and are the compact representations of eqs.(6.9) 

& (6.10). 

As mentioned in the introductory section, the requirement for a system of 

max-r equations to be solvable, i.e., the existence of a solution, is usually assumed to 

be that the input fuzzy sets A^ are normal and pairwisely disjoint [33,44,92,97]. The 

latter condition is equivalent to the max-min orthogonal condition described in 

definition 5.1. An example with triangular membership functions has been shown in 

Fig.6.2. They are not common in practice. As the min-5 FRE is dual to the rrnx-t 
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FRE, its solvable conditions are the complement of these two conditions. In the 

following section, we wi l l re-examine the solvable conditions of a system of max-r 

FREs and those of the min-5 equations as well. 

Small Medium Large V.Large 

-KAA.^ 
0 i i i V i i i i i V i i i i i V ' ' ' 

u 
Figure 6.2 Pairwisely Disjoint Fuzzy Sets 

-ve -ve -ve +ve +ve +ve 
Large Medium Small Zero Small Medium Large 

： / K X X X X ) ^ 
X 

(a) 

.ve -ve -ve +ve +ve +ve 
large Medium Small Small Medium Large 

X 

(b) 

Figure 6.3 Triangular Type and Trapezoidal Type Semi-

Overlapping Fuzzy Sets 
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6.4 New Solvable Conditions 
6.4.1 max-r Fuzzy Relational Equations 

I n contrast w i th pairwise disjoint condition depicted in Fig.6.2, the fuzzy sets A^ of 

typical fuzzy rule-based systems are pairwisely overlapped. In particular, they are 

usually semi-overlapping, as mentioned in Chapter 5，satisfying the conditions 

described by eqs.(5.13) & (5.14). Examples for triangular and trapezoidal 

membership functions are shown in Fig.6.3. Wi th such distributions defined, a new 

solvable condition, though not necessarily a boundary one (to be discussed later), for 

a system of max-r FREs is established below. 

Theorem 6.1 : Given a system of max-r FREs 

B, = A, o^ k = l,2”"L (6.18) 
then the system of equations can be exactly solved using 

二 (6.19) 

k=l 

i.e., Pedrycz's greatest solution [94], i f the input fuzzy sets A, are normal and semi-

overlapping. 

Proof ： By performing the max-r composition A � o � R for any input fuzzy set A " the 

element-wise output is 
— 、 

‘ 「 L 
= m i n ( ( Z ? ) ) > 

a 入 
I— '-'y 

=maxli4i[A(a)KA,(a)(p5.(^))]j (6.20) 

Div id ing the input universe of discourse U into 

二 { d A ⑷ ： 1 } (6.21) 

and 

(6.22) 

we have 
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八 (L 、 

Bi{b) = max^ min [ v 
I I 
‘ L 、 

max^ min > aiSi k=l J 
r ^ r 

=max、min >v aeSi I k=\ 
(6.23) 

r ^ J max<nm[Ai{a)t(Aj^(a)^>B,^(b))\ > 
atSi I k=\ 

According to the semi-overlapping conditions, 

A , { a ) = 0 (6.24) 

Hence, 

a^Sj k^l 
V 夕 

r L ] 
m a x m i n Ai(a)t(Aj^(a)(pB,^(b))\ > 

aiSi [ k=\ 一 
= v m a x m in fA ( f l ) ^ (A . 八 

“ 紹 ' M (6.25) 

Since pt{p(pq)<q [89], the maximum term of eq.(6.25) is less than or equal to 

Bi(b) and therefore 

B^(b) = B,{b) (6.26) 

That is, the output fuzzy set B! is recalled and the system of max-r FREs is exactly 

solved. Q.E.D. 

According to this theorem, the usual pairwisely disjoint condition for solving a 

system of max-^ FREs is too conservative. More importantly, the semi-overlapping 

condition can be satisfied in most rule-based system applications and the theorem is 

instructive to the design and implementation of fuzzy rulebases, i.e., i f the input fuzzy 

sets are designed to be semi-overlapping, the rulebase can be merely implemented by a 

single fuzzy relation, i.e., a FRNS. In other words, the fuzzy knowledge can be 

captured by the FRNS model via a deterministic encoding process rather than an 
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iterative training process. Furthermore, as illustrated in Fig.6.4, a chained fuzzy 

rulebase can be implemented by cascaded FRNS. Wi th appropriate parallel hardware 

realization, the computational speed of such system could be particularly fast. 

Fuzzy Relational Fuzzy Relational 
Neural System Block Neural System Block 

」 _ 墜 . 
乙 - \ s ) -； 乙 

, ‘ I , Discrete 
Discrete , ‘ Discrete , , ^ 

Fuzzy ‘ Fuzzy sets 

Sets ifX i s M ThenYisBI If Y is B1 Then Z is C1 
If X is A2 Then Y is B2 If Y is B2 Then Z is C2 
If X is A3 Then Y is B3 If 丫 'S B3 Then Z is C3 
If X is A4 Then Y is B4 If Y is B4 Then Z is C4 
If X is A5 Then Y is B5 If 丫 'S 巳5 Then Z is C5 

Chained Rulebase 

Figure 6.4 Cascaded Fuzzy Relational Neural Systems 

I t can be deduced from the proof of Theorem 6.1 that the system of equations 

is solvable as long as the cardinalities of are equal to or greater than one. 

Otherwise, eq.(6.25) becomes 

^(Z7) = m a 4 m i n [ 4 ( f l ) 《 A “ f l ) ( p B “ Z 7 ) ) ] A [ A ( « ) “ A ( 4 9 6 / W ) ] } (6.27) 

Hence, 

B i (b )<B^ (b ) (6.28) 
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and the solvability is not guaranteed. Recall from eq.(6.21)&(6.24) that Ŝ  consists of 

the points in the discrete universe of discourse with full membership attached to the 

input fuzzy set A； and null membership attached to all the other input fuzzy sets, viz. 

S,=[a\A^{a) = hA^{a) = 0 \fk 本 l] ( 6 . 2 9 ) 

For the triangular membership function example in Fig.6.3(a), the cardinalities of 5； 's 

are one and therefore the semi-overlapping condition is also the boundary condition, 

beyond which the solvability of the system of equations cannot be guaranteed. This is 

not the case for the trapezoidal membership functions. As exemplified in Fig.6.3(b), 

the cardinalities of ^ / s are three. Therefore, the distribution of the input fuzzy sets 

can be made more compact while the system of equations is still solvable. In the 

limited case, the cardinalities of ^ / s are one as shown in Fig.6.5. Thus, the boundary 

condition of solvability can be formally defined as follows. 

Corollary 6.1 : For a system of max-r FREs in eq.(6.18)，the boundary condition of 

solvability is the existence of an exclusive point in the universe of discourse for each 

input fuzzy set, i.e., a point with ful l membership for the corresponding input fuzzy set 

and null membership for all the others. Mathematically, it is referred to in 

eq.(6.29) consisting of one element only for all the input fuzzy sets A；. 

Such condition is easy to check and wi l l be used to study the capacity of 

FRNS model in Section 6.6. 

-ve -ve -ve +ve +ve +ve 
Large Medium Small Zero Small Medium Large 

X 

Figure 6.5 Distribution of Trapezoidal Fuzzy Sets Satisfying 
the Boundary Condition of Solvability 
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Figure 6.6 Negative Type Fuzzy Sets 
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6.4.2 min-s Fuzzy Relational Equations 

According to corollary 6.1，the max-r FREs are solvable not only for the semi-

overlapping fuzzy sets in Fig.6.3, but also for the negative type input fuzzy sets in 

Fig.6.6(a). However, they are no longer solvable for the fuzzy sets depicted in 

Fig.6.6(b). I t has been discovered that such types of input fuzzy sets can be encoded 

easily w i th the min-s FREs, according to Theorem 6.2 below. 

Theorem 6.2 : Given a system of min-s FREs 

B, = A, k = Y,2,…，L (6.30) 

then the system of equations can be exactly solved using 

= (6.31) 

i.e., Pedrycz's greatest solution [94], i f the input fuzzy sets A^ are inversely semi-

overlapping as exemplified in Fig.6.7. 

Proof ： By performing the min-s composition A, R for any input fuzzy set 為，the 

element-wise output is 

八 f r L 
B,(b) = nmiA.(a)s m a x ( ‘ 

a = nmlnisoi[A^ia)s(A,(a)^B,M]\ (6.32) 
a — 

Div id ing the input universe of discourse U into 

Q, ⑷ = 0 } (6.33) 

and 

(6.34) 

we have 

！ aeQ, k=\ 
L (6.35) 

aiQi [ 一 

According to the inversely s e m i -over lapped condition depicted in Fig.6.7, we have 
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A , ( a ) = l \ f a 吗,k 丰 I (6.36) 

Hence, 

BAb) = nm\m2OL\mBJb)]v\0f>BJb)] >a 
I aeQi L r /」L 厂 /c \ 

、 乂 

r L 1 
min^max A,(a)s(A.(a)^B.(b)) > 

=B,(b)Amm\m20i\A,(a)s(A,{a)PB,(b)) v 
"玛 L 帖 L , (6.37) 

Since ps(p^q) > q, the minimum term of eq.(6.37) is greater than or equal to 

and therefore 

§ i (b ) = Bi(b) (6.38) 

That is, the output fuzzy set is recalled and the system of min-^ FREs is exactly 

solved. Q.E.D. 

Similarly, a boundary condition of solvability for the rrm-s equations can be deduced 

f rom the proof of Theorem 6.2. 

Corollary 6.2 : For a system of min-s FREs in eq.(6.30), the boundary condition of 

solvability is the existence of an sacrificial point in the universe of discourse for each 

input fuzzy set 為，i.e., a point with null membership for the corresponding input 

fuzzy set and ful l membership for all the others. Again, it is referred to 

a , = { d 二 0 ， = 1 y k ^ l ] (6.39) 

whose cardinality is equal to one. 

According to this boundary condition, the min-s FREs are solvable for the 

negative type fuzzy sets in Fig.6.6 and the inversely semi-overlapped fuzzy sets in 

Fig.6.7. To the contrary, they are not suitable for the positive type fuzzy sets in 

Fig.6.3. On that basis, it is suggested to use the max-r FREs to encode fuzzy 

mlebases with positive type fuzzy sets and the min-s FREs to encode fuzzy rulebases 

wi th negative type fuzzy sets. 
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6.5 Approximate Resolution 
We have already shown that a system of max-t FREs (or nm-s FREs) can be exactly 

solved when the distribution of the input fuzzy sets is within the boundary condition. 

Should it fall beyond the boundary condition, an exact solution cannot be expected. 

In fact, substantial works [43,44,92] on solving a system of FREs approximately 

when it is non-solvable have been reported. In this section, we describe how the 

established results can be applied to two existing approaches to approximate 

resolution. We concentrate on the max-r FREs only. The corresponding results for 

min-s FREs can be derived in a similar manner. 

Wi th respect to the system of equations being non-solvable, Gottwald and 

Pedrycz [43] have proposed two approaches to modify the input and output fuzzy 

sets such that the solvability of the resulted system is increased. One is to replace the 

fuzzy sets by "fuzzified" versions 

卜,� ifMa)>a A'^(a) = max(A, (a),a)=彳 （ 6 . 4 0 ) 
[ a if Aj^{a)< a 
\B,{b) ifB,{b)>a 

B t { b ) 二 max(5,(Z?),a) = { (6.41) a ifB,{b)<a 
and the other follows the opposite direction to replace them by "sharpened" versions 

— K(a) if\{a)>a 
A n a ) = \ (6.42) [ 0 if A,{a)<a 

B n b ) = \ (6.43) 

[ 0 ifB,{b)<a 
However, ways to specify an appropriate threshold value a such that the modified 

system of equations can be exactly solved are lacking. In this regard, the new 

concepts presented in the previous section can be applied as follows. 
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Theorem 6.3 : Given a system of max-t FREs 

B , = A , o ^ R； k = h2,…,L (6.44) 

then the fuzzified system of equations 

k = l,2,…,L (6.45) 

can be exactly solved using 

R = (6.46) 
众=1 

i f a is set as 
L L 

a = max g , = max max A, ( a ) (6.47) 
k=l K k=l l^k, 

ae{dA“fl)=l} 

whose computation has been depicted pictorially in Fig.6.8,. 

Proof : By performing the m a x " composition A" ô  R for any fuzzified input fuzzy 

set A " the element-wise output is 

r r "H 

a k=l 
r L , =max\nm\A^ia)t(A^(a)(pB^{b)) (6.48) 

a ！ ^=1 ‘-
Dividing the input universe of discourse U into 

S,={a\A^{a) = \} (6.49) 

and 

(6.50) 

we have 
^ f L 

aeSi 1 =̂1 ‘“ — 

[ k=l L ••一 

二 max { min [ A ? ⑷ cp ⑷ ] A [ 1 cp 5 广 ⑷ ] } V 
asS, ^ k^l ‘“ 

(6.51) 

a^S, I fc二1 L 」> 

According to eq.(6.47), 

A^ia)<a (6.52) 
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the element-wise output w i l l be 

Bi(b) = B^(b)vmax{n)m\A^ia)t(A^(a)(s;>B^(b))八 
玛 秘 (6.53) 

• a ⑷ “ A ; > ) ( p 5 r ⑷ ) ] } 
• J 

As pt(p(f)q) < q, the maximum term of eq.(6.53) is less than or equal to and 

therefore 

B, ib) = B^(b) (6.54) 

That is, the desired fuzzified output fuzzy set is recalled and the fuzzified system 

of equations is exactly solved. Q.E.D. 

Using the computed threshold value, i.e., g^ or g^ in Fig.6.8, the fuzzified 

input fuzzy sets are shown in Fig.6.9(a) and the corresponding system of equations, 

according to Theorem 6.3, can be solved exactly. 

The application of the new concepts to solve the sharpened system of 

equations exactly is straight forward. As exemplified in Fig.6.9(b), the input fuzzy 

sets sharpened as shown wi l l satisfy the boundary condition of solvability for max-t 
F R E S in Corollary 6.1. Therefore, the sharpened system of equations can be solved 

exactly. Unlike the fuzzified approach where the outputs are fuzzified (approximate) 

versions of the original ones, the outputs of the sharpened approach can be exactly the 

same as the original ones. 
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Figure 6.8 Highly Overlapped Fuzzy Sets and the Pictorial 
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Figure 6.9 (a) Fuzzified and (b) Sharped Highly Overlapped Fuzzy Sets 
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6.6 System Capacity 
The capacity of the FRNS model is referred to the maximum number of fuzzy rules 

that can be stored. I t is equivalent to the maximum number of FREs that can be 

exactly solved by a fuzzy relation. Therefore, it is closely related to the solvability of 

a system of equations and indeed can be derived by checking the solvability condition. 

In this section, it is studied using the results established in the previous sections. 

Like the solvability of a system of FREs, the capacity of fuzzy relations under 

max-^ compositions is l imited by the boundary condition. The exact quantity however 

depends on the type and resolution of the input fuzzy sets. Here are the results for the 

symmetric triangular, singleton, and symmetric trapezoidal membership functions. A 

discrete and uniform universe of discourse U = } is assumed. 

(CI ) . A fuzzy set A^ defined by triangular membership function has the form 

� - w j if u^<u<u^ 
= J ( M R i f UM<u< UR (6.55) 

0 otherwise 
where g U , JI八(w) are nonzero only on the interval and 

ful l membership occurs only at the midpoint u^ of A^. I f it is a symmetric 

one, holds true. Thus, the capacity under max-r 

composition for symmetric triangular input fuzzy sets (STrilFS) is 
f _ \ 

Capacity{mdiX-U STrilFS) = trunc ""二】+1 (6.56) 

where trunc{-) is the truncation operator. I t depends on the resolution of the 

input fuzzy sets, parameterized by UR-u『 For the example in Fig.6.3(a), the 

capacity is equal to \%{u. - m,] ) / 3(m. - ) +1=7. 

(C2). When the STrilFS are degenerated to u. - ，i.e. singleton fuzzy 

sets in the discrete universe of discourse, the capacity under mdx-t 
composition is 
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Capacity{mdiX-t, singleton) = — — + 1 = card{U} (6.57) 
M, -

i.e., the cardinality of the input universe of discourse. 

(C3). A fuzzy set A^ defined by trapezoidal membership function has the form 

if u^ <u<u^ 
1 if uf^<u<u^ 

(6.58) 
‘ (U^-U)/(U^-U^) if Uc<U<Ud 

0 otherwise 
where e U , 〜O) are nonzero only on the interval 

and ful l membership occurs on the interval I f it is a symmetric one, 

=u,-u holds true. Thus, the capacity of fuzzy relations under max-t 
u CI d c 

composition for symmetric trapezoidal input fuzzy sets (STralFS) is 

Capacity(m2ix-t, STralFS)= 

truni ——+1 (6.59) 
、 ( > "一 w j + trunc[0.5{u^ 一〜)�� 

Again, it depends on the resolution of the input fuzzy sets. For the example in 

Fig.6.3(b), the capacity is equal to 18(w. - i ^ i ) / (2 +1 )0 / 一 i ) +1=7. 

Similar results can be obtained for the other types of fuzzy sets and the min-5 FREs. 

In all cases, the fuzzier the input fuzzy sets, the lower the capacity is. Furthermore, 

the maximum capacity among them is equal to the cardinality of the input universe of 

discourse. 
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6.7 Inference Performance 
As a comparison to the F A M model, this section reports the inference performance of 

the FRNS model for the three types of fuzzy inputs described in Section 5.7 using the 

same rulebase. For input "X is medium”, the inference output depicted in Fig.6.10 

confirms that the FRNS model like the max-® F A M can perfectly recall the desired 

output "Y is very small”. The inference output for input "X is more-or-less medium” 
is shown in Fig.6.11 and its defuzzified value using COG method is -9 .3, which is 

larger than that of the max-® F A M (-6.4) and smaller than that of Kosko's model 

11.2). I t is hard to say whether this output is better or worse than that of the max-® 

or Kosko's F A M model. As for the max-® FAM, the inference output of FRNS for 

input "X is very medium” is very small. For singleton fuzzy input representing crisp 

input value x=15, it was found that a null output fuzzy set (zero memberships) was 

produced. As shown by the contour plot of the fuzzy relation of FRNS in Fig.6.12, 

there is a gap between the range [13,17] of X which in turn wi l l produce null output 

for aU crisp values in the range. This is a very undesirable performance and hence 

FRNS is not suitable for inference with crisp inputs. 
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I T T ^ ^ 1 / \ 

i l \ I ° 5 10 15 20 25 
I n f e r e n c e O u t p u t Y 

Figure 6.10 The Inference Output of "X is medium" and "X is 

very medium" : FRNS Model 
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6.8 Concluding Remarks 
I n this chapter, a rigorous analysis of the storage capacity of the so-called fuzzy 

relational neural system (FRNS) model has been conducted. New solvable conditions 

on the input fuzzy sets of a system of max-r FREs and a system of min-s FREs have 

been identified and they point out that the existing ones have been too conservative. 

The new conditions are found to conform to the distribution of the input fuzzy sets 

that are common in rule-based system applications. This implies that a FRNS is 

sufficient to encode the given fuzzy rulebase in most applications and moreover, such 

system can be constructed deterministically, i.e., without involving any training 

process. The established theorems were found to be instructive to the operations of 

two existing methods for approximate resolution of a non-solvable system of 

equations and to formally determine the capacity of FRNS under different types and 

resolutions of input fuzzy sets. The inference performance of the FRNS model is 

comparable to the max-® F A M model for ordinary and modified fuzzy inputs. 

However, it indicates that FRNS is not suitable for inference wi th crisp inputs. 

Throughout the chapter, we have been working on the basic type of FREs that 

involves set-relation compositions. I f there exists more than one, say N, input 

variables in the available fuzzy rules, i.e., multiandecedent fuzzy rules, the 

corresponding FREs wi l l involve relation-relation compositions and the input relation 

w i l l cover the product space of the input variables, i.e., X : U ! xU】x...UN 

In that case, the derived results have to be extended, fortunately in a straight forward 

manner by taking the advantages of the independency between different input variable 

space. For example in Theorem 6.1，the semi-overlapping condition has to be 

satisfied by all the input fuzzy variables in order to have the system of equations 

solvable. On the other hand, the capacity of FRNS wi l l be equal to the product of the 

capacity in the individual input space, i.e., eqs.(6.56)’ (6.57), or (6.59). 
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In these two chapters, we have dealt with the encoding problem of the F A M 

and FRNS models, i.e., how to form an appropriate neural network representation for 

a given set of fuzzy rules as represented by discrete fuzzy set pairs. Thus, the 

established results can be applied to the construction of rule-based systems. In the 

next chapter, we wi l l focus on the identification problem of the FRNS model where 

the available information is a set of input-output crisp data, the fuzzy inputs/outputs 

are in reference fuzzy set format [91] rather the discrete one, and the objective is to 

construct a FRNS capable to capture the dynamic of the system being modelled. 
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Structure and Parameter 
Identifications of 
Fuzzy Relational Neural Systems 

7.1 Introduction 
Applications of fuzzy relational equations (FREs) are commonly found in fozzy 

control [97] and most of which have been devoted to nonlinear dynamic system 

modelling [91,73,113] with FREs to describe the static and dynamic behaviour of the 

systems. The identification process is similar to the conventional ones by observing 

the input-output crisp data pairs and should involve both the determination of 

structure and the estimation of parameters. However, little has been done in the area 

of structure identification, as compared with parameter identification which is simply 

the resolution of a system of equations, viz. estimation of the matrix elements in the 

fuzzy relations. Since the number of input variables in such applications is quite large, 

the discrete representation for the input-output fuzzy sets of the FREs wi l l consume a 

lot of memory and make the system not feasible for implementation. In order to 

reduce the memory requirement and provide an unified treatment of crisp and fuzzy 
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forms of information, Pedrycz [91] proposed to modify the discrete fuzzy set 

representation in FREs to a reference fuzzy set one. Under the concept of reference 

fuzzy sets, each FRE corresponds to an input-output crisp data pair and consequently 

the equation system being solved may consist of tens or thousands equations. That 

makes the system of equations far f rom being solvable and hence numerical techniques 

[73,88] rather than the analytical methods are used to obtain a good approximate 

solution. Both off-l ine and on-line identification algorithms have been successfully 

developed. For examples, Pedrycz [88] has proposed to use the Newton's iteration 

scheme to minimise the system's squared error in an off-line manner while Lee et al. 

[73] take use of the linguistic approach to form an initial fuzzy relation and update it 

by the prediction-error method upon the arrival of new data. Similar on-line 

algorithms, adopting some sorts of learn-and-forget strategies, can also be found in 

[12,26,113]. Besides, wi th the introduction of the FRNS model, neurocomputational 

approaches have also been suggested to achieve both off-line and on-line 

identifications [14,83,95]. 

In view of the absence of an effective structure identification algorithm for 

FRNS and the success of evolutionary computation approach to determine the 

topology of neural networks [115], an evolutionary identification (EV IDENT) 

algorithm [23,25] based on Y ip and Pao's guided evolutionary simulated annealing 

(GESA) method [116,117] is developed in this chapter. Through experiments wi th 

various benchmarking data sets, the new algorithm is demonstrated to be effective in 

both structure and parameter identifications. In the fol lowing section, an overview of 

applying FRNS to dynamic system modelling is provided. A general FRNS 

identification algorithm is described in Section 7.3. In Section 7.4，the backgrounds 

on evolutionary computation and GESA algorithm are reviewed and the E V I D E N T 

algorithm is derived subsequently. The simulation results are reported in Section 7.5 

and the f inal section offers the conclusion. 
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7.2 Modelling Nonlinear Dynamic Systems by Fuzzy 
Relational Equations 

I t is commonly accepted that fuzzy modelling is useful when confronted with a 

dynamic system whose mathematical structure are unknown, ill-defined or too 

complex for analysis by conventional techniques. Without loss of generalization, the 

systems being modelled are described by a discrete time MISO (multi-input/single-

output) system of FREs [113] 

where [/ .(•) and Y(-) for i=l,.",m are the fuzzy inputs and output of the equations; R 
is the fuzzy relation between them; t is the sampling instant; are the time 

delays; and are the system orders. The symbol "o" denotes one of the 

possible composition operators, e.g., max-min, max-f, or s-t [98]. Thus, structure 

identification is the determination of the time delays, the system orders and the 

composition operator while parameter identification is the resolution of a system of 

FREs. For simplicity, let 

• 二 n 卜 T ) , X,{t)=Y{t-x-\\ …，X"。十 1 ⑴二 i X 卜 卜 " o ) 

X„。+2⑴=厂1(卜丁 1 ) ， X „ 。 + 3 ⑴ ( 卜 、 一 1)，…，X„。+„,+2(r) = " i ( r - T l - " i ) (7.2) 

Xn „ (t) = u^{t-xj, ⑴二 f/m(卜 Tfl)，…’ XN(0 = UJt-T 爪-nj 
/V ri… 

where 

t v - X K + D (”） 
i=0 

Hence, the system of FREs in eq.(7.1) can be rewritten as 

r ⑴二 ⑴ ⑴ 。 i ? (7.4) 
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and the fuzzy relation can be represented by R= X^x---x X^ xY where x denotes 

the Cartesian product. Note here that the input and output fuzzy sets have been 

denoted by X.(-) and F(.) respectively instead of the usual A.(-) and B(.) in Chapter 6 

to highlight their reference fuzzy set representations as discussed below. Let U j and 

V be the universes of discourse of fuzzy inputs X . (0 and output Y ( - ) respectively. 

Then the fuzzy relation R has 丨外丨！！小丨！！！！…丨!!、！ elements where |.| is the cardinality 

operator. This is a huge number when there are lots of inputs and the cardinality of 

the universes of discourse is large. The latter is common for discrete representation 

of fuzzy sets, see, e.g., Fig.7.1, which may involve tens or even hundreds of 

quantization levels. Therefore, Pedrycz proposed to use the reference fuzzy set 

representation [91]. Its underlying idea is essentially a fuzzification operation when 

the measured data are crisp, and is essentially a possibility measure [60] when they are 

in fuzzy form. Let A f V , -> [0,1] and B , — [0,1] be the j th reference fuzzy sets of 

the iih input and output variables respectively and assume that they satisfy the 

completeness conditions [118], i.e. 

\fu.(t)el],,3j:A.j(u.{t))>0 (7.5) 
For the crisp data pair (w丨⑴⑴），the reference fuzzy set representation is given by 

⑴二 ⑴ ) i y / ] (7.6) 

y ⑴ 二 ⑶丨 V / ] (7-7) 

of which eq.(7.6) has already depicted in Fig.7.2. On the other hand, the reference 

fuzzy set representations for fuzzy set pair (A. ,B) are 

⑴二 {尸^?浏 = { 溫 织 巧 ( 7 . 9 ) 

whose cardinality, as in the crisp case, wi l l be equal to the number of reference fuzzy 

sets employed in the corresponding variable space. Consequently, the memory 
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requirement of the FRE system can be substantially reduced. However, as 

exemplified in Fig.7.2, the referenced fuzzy set (0,0,0.33,0.67,0,0,0) fails to be a 

normal fuzzy set. Furthermore, it wi l l be highly-overlapped with the referenced fuzzy 

set of the left adjacent crisp input which is (0,0,0.67,0.33,0,0,0). As such, the existing 

analytical methods or even the approximate resolution methods together with those 

developed in Chapter 6 for discrete fuzzy set represented FRE system cannot be 

applied to dynamic system modelling applications and numerical techniques have been 

frequently adopted in order to obtain good approximate solutions. 

133 



Chapter 7 Structure and Parameter Identifications of FRNS 
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Figure 7.1 Discrete Fuzzy Set Representation of Concept Medium 
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1 

Ajj A j2 A js AM ^15 ^16 ^17 

Crisp Input: u^(t) U j 

Figure 7.2 Reference Fuzzy Set Representation of Crisp input u, ( t ) 
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Since crisp data can also be considered as singleton fuzzy sets, the reference 

fuzzy set representation in eqs.(7.8)&(7.9) provides a unified treatment of fuzzy and 

crisp data. A neural network representation of eq.(7.8) can be found in the 

referencing block of Fig.7.3 where the solid lines denote the t-novm operations on the 

input fuzzy set and the reference fuzzy sets A., and the open dots indicate the 

maximum operation on the incoming signals. Corresponding to Fig.7.1 & 7.2, the 

number of inputs to this referencing block is 19 while the number of outputs is 7. 

Fig.7.3 shows also the operation of a SISO (single-input/single-output) system. Upon 

receiving the referenced input fuzzy sets, the fuzzy relational neural system block wi l l 

carry out the s-t inference operation, as denoted in the figure by solid lines and open 

dots wi th a 's' inside. After that, the referenced output fuzzy sets wi l l be defuzzified 

and the crisp outputs are resulted. As mentioned in Chapter 2, there are lots of 

defuzzification strategies and the commonly used height defuzzification method, see 

eq.(2.40), is depicted in the rightmost block of Fig.7.3 where y ; is the nucleus of the 

j t h output reference fuzzy set. Mathematically, the crisp output y * ( t ) is determined 

by 

I：卿； 
= ^ (7.10) j 

where F . ( 0 is the j - th element of the reference fuzzy set representation Y ( t ) in 

eq.(7.9). On the basis of Fig.7.3, Fig.7.4 depicts a MISO system which includes 

dynamic feedbacks from the outputs. Thus, the objective of identification is to 

minimize 

J I (KO-/⑴)2 (7.11) 
modeLucture _ ^max 仁 " W + l 

reference fuzzy sets 
defuzzification scheme 

where T _ 二 max(T,T”".，、），KO is the desired output and N ^ is the total number 

of available data pairs. 
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In this part of the research, we have concentrated on the identifications of the 

fuzzy relation R and the model structure. The reference fuzzy sets and the 

defuzzification scheme are assumed to be fixed in advance. A new FRNS 

identification algorithm is proposed. Unlike the existing algorithms which fix the 

system structure beforehand and identify the fuzzy relations subsequently, the 

proposed one carries out both structure and parameter identifications in a concurrent 

manner. This can be achieved via the harness of evolutionary computation (EC) [40]. 

Before proceeding to describe the new algorithm, a general FRNS identification 

algorithm is described in the next section. 

Referencing Fuzzy Relational Height 

(Fuzzification) Neural System Block Defuzzification 

: R : 

Discrete 丨 “ ‘ '' 丨 

{Crisp inputs) , / / / ； � -： / : 

:f̂：：： :； : 
input output 

reference reference 
fuzzy sets f磁)sets 

Figure 7.3 A Single- lnput-Single-Output FRNS for Dynamic System 

Model l ing 
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Referencing Fuzzy Relational Height 
Blocks Neural System Block Defuzzification 

" 1 ^ - - : 、 : R : : : 
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� � , : • • : : • y; Output 

J . : : 。 : • 尸 [ 
p - i : 力 ： ； ： 
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广 
Figure 7.4 A Multiple-Input-Single-Output FRNS for Dynamic System 

Modelling 
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7.3 A General FRNS Identification Algorithm 
According to [91], the FRNS identification can be described by the following six 

general steps. 

A General FRNS Identification Algor i thm 

Step 1. Data Acquisition 
-Col lect the crisp and/or fuzzy input-output data. 

-Def ine the universes of discourse involved. 

Step 2. Data Pre-processing 
-Per form clustering of data. 

-Construct the reference fuzzy sets. 

-Transform the raw data into reference fuzzy set representations. 

Step 3. Structure Identification 
- Ident i fy /Fix the system structure, i.e., 

- t ime delays, 

-composit ion operators, 

-system orders. 

Step 4. Parameter Identification 
.Compute the fuzzy relation R of the system such that the system error, 

defined by a given performance index, e.g., eq.(7.11)，is minimized. 

Step 5. Testing 
-Test the system obtained against the collected data and check i f it meets the 

requirement. 

Step 6. On-Line Identification (optional) 
- Update the system upon receiving new data. 

Existing FRNS identification algorithm mainly worked on Steps 4 & 6. In general, 

gradient descent type optimization methods were employed in Step 4 
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[14,83,88,91,95] while a learn-and-forget principle was frequently adopted in Step 6 

[12,113]. In [91], the fuzzy c-means clustering algorithm was proposed for Step 2. 

Neural clustering algorithms such as competitive learning and fuzzy competitive 

learning proposed in Chapter 4 can also be used and are particularly appropriate for 

on-line identification. Due to the lacking of feasible optimization tools, none has been 

done for identifying the system orders and time delays. However, identifying the 

composition operators by gradient descent has been proposed recently in [14] where 

the max-^ composition is considered and the 广norm is defined by the Yager's class 

[114]. 

7.4 An Evolutionary Computation Approach to Structure 
and Parameter Identifications 

I n recent years, the interest in evolutionary computation (EC) has increased 

dramatically. I t is usually considered as an effective optimization methodology that 

can be simulated on a computer, particularly, a parallel one, and applied to various 

real-world problems. Currently, there are three main avenues of research, namely, 

genetic algorithms, evolutionary strategies, and evolutionary programming. Each 

method has its root f rom different facet of natural evolution [41]. Basically, EC 

begins wi th a population of trial solutions brought to the task at hand. An objective 

function is used to assess the "fitness" of each trial solution, and a selection 

mechanism determines which solutions for subsequent generation. New solutions are 

created by altering the existing solutions wi th biologically inspired operations like 

cross-over and mutation. Therefore, EC algorithms can be generally described by a 

repeated sequence of evaluation, selection, and reproduction steps. Also, the 

principle of survival-of-the-fittest is exploited throughout the evolutionary process 
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and as such EC can be considered as an intelligent random search method. I t is 

superior to gradient descent techniques as the search is not biased toward the locally 

optimal solution. 

7.4.1 Guided Evolutionary Simulated Annealing 

Research works in EC are abundant for the past few years, see, e.g. [5,39,40]. One 

particular area of interest is the integration of EC wi th other local or global 

optimization techniques such that a more powerful search algorithm is devised. The 

guided evolutionary simulated annealing (GESA) method [116,117] is one of the most 

impressive examples. I t combines the ideas of simulated evolution [38] and simulated 

annealing [59], and introduces a "regional guidance" mechanism by which the 

algorithm measures the qualities of multiple regions and focuses the search onto high 

quality regions automatically. Furthermore, it can be easily implemented on a 

massively parallel machine. In Fig.7.5 & 7.6，the GESA method is depicted. It can be 

seen that GESA mainly works on the selection step of EC. The search strategy, as a 

result of Steps 3.1-3.3 of Fig.7.5, depends not on the fitness of an individual, but on 

the fitness of a family of individuals which characterizes the quality of the region 

involved. Steps 3.2 & 3.3 have been designed to operate in a simulated annealing 

manner. I t is due to Step 3.3, i.e., Fig.7.6, that the search is focused on high quality 

regions by allocating more individuals (family members) to those regions (family). 

For the quadratic assignment problems and the travelling salesman problems being 

solved in [116] and [117] respectively, simple random mutation was used for 

reproduction, though the performance is very encouraging. The use of recombination 

operators for reproduction has not been mentioned in [116,117]. In this regard, 

GESA can be classified as an evolutionary programming (EP) algorithm since EP 

stresses on behavioral change of species and there is no sexual communication 

between them [41]. 
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Step 1 Initialization 
- S e t the initial temperatures t and form the initial population G(0) by 

randomly generate n parents and m children for each of them. 

Step 2 Evaluation 
-Eva lua te the objective value (inverse fitness value) of the current 

population G(t). 

Step 3.1 Local Competition (Fittest Child Determination) 
-F i nd the fittest child for each family. 

Step 3.2 Parent Selection 
- F o r each family, the best child found in Step 3.1 is accepted as the new 

parent for next generation i f 

J c _ < J p or e x p [ — ( / c ; / p ) " ] 〉 p 

where is the objective value of the best child, 

Jp is the objective value of the parent, 

t is the current temperature coefficient, 
p is a random number uniformly distributed between 0 and 1. 

Step 3.3 Global Competition (Children Allocation) 
-Determine the number of children to be generated next in each family. 

The details of this step are given in Fig.7.6. 

Step 4 Reproduction 
- F o r m the next generation G(t+1) by generating children from the selected 

parents via mutation operation according to the number of children 

allocated to each family. 

Step 5 Annealing 
-Decrease the temperature parameters for Step 3 according to the cooling 

schedule. 

Step 6 Termination 
_ Repeat Step 2 to Step 5 until an acceptable solution has been found or the 

maximum number of generation has been reached. “ 

Figure 7.5 The Guided Evolutionary Simulated Annealing (GESA) Method 
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Step 1 Repeat Step 2 to Step 3 for each family, goto Step 4. 

Step 2 Set the acceptance number of the iih family - 0. 

Step 3 For each child, increase A j by 1 i f 

h < honest o r e x p [ - ( Jc - J Lowest ) " J � P 

where J^ is the objective value of the child, 

JLo而t is the lowest objective value ever found, 

t is the current temperature coefficient, 

p is a random number uniformly distributed between 0 and 1 • 
n 

Step 4 Sum up the acceptance numbers of all the families, i.e., S = 

i=\ 

Step 5 For each family, the number of children to be generated in the next 

generation is determined by the following formula 
T m. 二 T • -

, S 

where mi is the number of children that wi l l be generated for the iih 

family 
n 

T = ^ n i i is the total number of children, i.e., nxm. 
！•二 1 

Figure 7.6 Algorithm for the Children Allocation Step of Fig.7.5 
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7.4.2 An Evolutionary Identification (EVIDENT) Algorithm 
Based upon the GESA algorithm, an evolutionary identification algorithm called 

E V I D E N T is proposed. The GESA algorithm was adopted because i) evolutionary 

programming is preferable to genetic algorithms when there is no sufficient calculus to 

guide recombinations [3], as in our case where the relationship between fuzzy 

relations for different time delays and inference operators is still unclear, ii) the 

representation of the time delays, composition operators, and fuzzy relations are 

easier and more straight-forward, and iii) it is a powerful method that can be 

implemented in parallel. Since the system orders are related to the generalization 

property of FRNS and their identification is too involved to be included in current 

study, they are assumed to be fixed in advance. 

The EVIDENT algorithm addresses both the structure identification and 

parameter identification steps of the general identification algorithm described in 

Section 7.3 using the GESA method. The fitness function is simply the mean squared 

error J defined in eq.(7.11). The search space is the set of all valid representations of 

the time delays, composition operators, and fuzzy relations. For the time delays, a 

(^+l)_dimensional vector, corresponding to the FRE system in eq. (7.1)， 

〒 二 • . . ， 、 ） （7.12) 

where T E ( 1 ， T 匪 ) a n d x,. G ( 0 , T _ ) are used. T 腿， a s in eq.(7.11)，is the maximum 

time delay allowed. For the composition operators, the representation depends on the 

class of operators adopted. In this work, the s-t composition, due to its generality, is 

used and the r-norm and 5-norm are defined as the Dubois type [35] 

士 P q (7.13) 

ptoQ pyqvg^ 
and 

( l - p ) a - ^ ) (7.14) 
凡 卜 （ l - p ) v ( l - … 
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where < 1 respectively. When ĝ，ĝ  =0, t^ w i l l be the minimum operator and 

Sd w i l l be the maximum operator. On the other hand, when gf , g ,=l , they wi l l 

become the algebraic product ' • ’ in eq.(2.13) and algebraic sum '+ ' in eq.(2.18) 

respectively. I t has been found that the relationships 

and 

v < 5 ^ < + (7.16) 

hold when < 1 [80]. Although the Dubois type of r-norm and ^-norrn is not 

the most general one [80], it is simple and computationally fast. The representation 

for the composition operators is simply a 2-D vector, i.e., 

g 二 溶J ( 7.17) 

where g [0 ,1 ] . For the fuzzy relation, its (7V+l)-dimensional matrix form, 

recalled f rom eq.(7.4), can be represented by the vector 

(7.18) 

where E [0,1] and M —Y|.IXi!.！父！！“体,!，according to Section 7.2. Therefore, 

each valid assignment of the time delays, composition operators, and fuzzy relation is 

represented by a (m+3+M)-dimensional vector : 
c = (7.19) 

such that TG ( U m a x ) , 巧 e[0，l]. 

In the wordings of genetic algorithms, mutation is the occasional alteration of 

some gene values in a chromosome. Therefore, each element of c is chosen for 

mutation wi th a mutation probability. Such probability should be kept at a low value 

to maintain the regional guidance characteristic. The mutation can take place either 

by replacing the selected element with a random number in the range or by applying a 

reasonable perturbation to it. The latter is adopted here. In fact, this scheme has also 

been adopted by [87] for a similar application. 
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As an additional mechanism to the GESA, the elitist selection [45] has been 

incorporated by the E V I D E N T algorithm although it has not been included in the 

original implementation by Y ip & Pao [116,117]. It simply always retains the solution 

wi th the best fitness in every generation. Since the best solution may not necessary 

become the parent due to the simulated annealing effect in the parent selection 

process, we may just give away the true solution and the simulated annealing process 

would just make the system unstable. To avoid this, when the best solution has not 

been selected as the parent, it is retained to be a child in the family. Such mechanism 

is frequently used by genetic algorithms and is found to be essential to guarantee the 

asymptotic convergence of the algorithms [100] and indeed gives better results to our 

experiments. 
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7.5 Simulation Results 
In this section, the performances of the proposed algorithm in three data sets, namely, 

the gas-furnace data from Box-Jenkins [8], a simulated dynamic model data set 

[73,113], and the chaotic time series [76], are reported. Unless otherwise stated, the 

parameter settings of the EV IDENT algorithm in Table 7.1 were adopted. The basic 

principle for setting the initial temperatures is that the simulated annealing process 

should have a conditional probability of acceptance around 98% initially. This wi l l 

encourage more random walks at the beginning of the training process. The cooling 

factor is the same as that adopted by Yip and Pao [116,117]. The mutation ranges 

were selected to cover about half of the full range. The initializations for time delays 

and composition operators are totally random. For the fuzzy relations, the linguistic 

initialization scheme commonly adopted by existing parameter identification 

algorithms [73,113] was adopted. For example, the element of the initial fuzzy 
relation for max-min composition is calculated as 

R 二 二 M = max {min[X, ( 0 , 7 ( 0 ] } (7.20) 
f=Xmax+l f 二、nax+1 

The aggregation operations change with respect to the composition adopted. As 

remarked in Table I, two random initialization schemes for the fuzzy relation were 

also used for testing in the gas-furnace data set. One is totally random in [0,1] and 

the other is biased random around 0.5. The latter allows the search process starting at 

the central area of the search space. 
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Table 7.1 Parameter Settings of the Evolutionary Identification Algorithm 

Gas-Furnace Simu. Dynamic Chaotic Time 

Data Set Model Series 

Population Size 50 80 100 

(10x1 parents, (10x1 parents, (10x1 parents, 

10x4 children) 10x7 children) 10x9 children) 

M a x i m u m No. o f Generations 1000 1000 1000 

Cool ing Schedule : 

- I n i t i a l temp, (parent selection) 50 0.1 10 

- I n i t . temp, (global competition) 2000 4 40 

- C o o l i n g factor 0.99 ^ 0.99 

Mutat ion Probability 0.05卞 ⑶ ^ 0.05 

Mutat ion Range : 

- T i m e delays 土2 ±2 ±5 

-Compos i t ion operators 士0.2 ±0.2 ±0.2 

-Fuzzy relation ±0.2 ±0.2 土0.2 

T 10 10 20 
m a x 

Init ialization : 

_ Time delays random random mndom 

-Compos i t ion operators random random random 

-Fuzzy relation linguistic* linguistic linguistic 

t Mutation probability=0.01, 0.1, 0.2 have also been used for sensitivity analysis 
本 Random in [0,1] and random in [0.4,0.6] have also been tested in the gas-furnace data set 
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Experiment #1 : Box-Jenkins' Gas-Furnace Data Set [8] 
The gas furnace data set is a well-known problem for benchmarking 

FRNS/FRE system identification algorithms. It consists of 296 input-output data 

pairs where the input u^{t) is the input gas flow rate and the output y ( t ) is the 

concentration of CO〗 in outlet gas. The sampling interval is 9 seconds. In order to 

benchmark against the best performance to date, the reference fuzzy sets adopted are 

the same as those in [73] and have been depicted in Fig.7.7. Furthermore, the model 

is represented by 

⑴ = X i ( 0 。 X 2 ( 0 。尺 （7.21) 

where X,{t)=Y(t-i:) and X^W二f^i(卜^^i), and its objective function is defined as 

州)-/⑴)2 (7.22) 
286 

In Table 7.2, a comparison of the EVIDENT algorithm using linguistic initialization 

and three existing algorithms is made. The performance of the proposed algorithm 

has been recorded as an average of 10 trials using different initializations 丨 while those 

of three existing algorithms are quoted from the cited references. Among the four 

sets of simulations for the EVIDENT algorithm, the first two correspond to the 

inhibition of the structure identification capability so that a direct comparison of the 

parameter identification performance is allowed. Obviously, the performance of 

EV IDENT is much better than that of the existing algorithms. In the third case, the 

result shows that the proposed algorithm can identify the optimal time delays (1,4) 

and the algebraic-sum-product composition in 9 out of the 10 trials. As indicated by 

the superior performance of the fourth set of simulations which has the composition 

operator and time delays fixed at algebraic-sum-product and (1,4) respectively, the 

composition operator identified is also an optimal one. A typical identified system 

1 Since the linguistic initialization is deterministic for the simulations with fixed time delays, small 
perturbations have been applied to the computed fuzzy relations to obtain ten different 
initializations. 
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outputs of the E V I D E N T algorithm have been plotted in Fig.7.8. They are almost 

indistinguishable f rom the original outputs. 

Bj B^ B^ B4 B5 

- m m 
wf 二0.0 <=1.4 u�=2.8 u(t) 

J 2'=49 3^5=6! y(t) 
Figure 7.7 The Reference Fuzzy Sets Used : Box-Jenkins' 

Gas-Furnace Data Set 

Table 7.2 Compar ison of Performance : Gas-Furnace Data Set 

Algori thm Composition Time Delays System Error 

J 

Pedrycz [91] max-product (1，3) 0.776 

X u & L u [ 1 1 3 ] max-product (1，4) 0.328 

Lee et al [ 7 3 ] max-product ( 1 , 3 ) 0.211 

E V I D E N T fixed at max-product fixed at (1,3) 0.167 

fixed at max-product fixed at (1,4) 0.156 

s-t 卞 本 0 . 1 2 9 

f ixed at alg.sum-product fixed at (1，4) 0.124 

卞 Algebraic Sum-Product was identified in 9 (out of 10) trials. 
本 ( 1 , 4 ) was identified in 9 (out of 10) trials. 
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Figure 7.8 Actual and Estimated Outputs Obtained by EVIDENT : 

Box-Jenkins' Gas-Furnace Data Set 

In Fig.7.9, the fitness history (learning curve) of the best individual in an 

E V I D E N T algorithm simulation carrying out both structure and parameter 

identifications is depicted. I t can be seen that the system error is lower than the best 

result todate which is 0.211, after approximately 200 generations of training and the 

algorithm converged in about 400 generations. Such a computational requirement is 

quite common in EC algorithms. Sensitivity analysis of the proposed algorithm has 

been conducted. In Table 7.3, the sensitivity to the initialization scheme of the fuzzy 

relations in various sets of simulations is depicted. As expected, the linguistic scheme 

is the best because it can provide a good initial solution for the EV IDENT algorithm 

to optimize. Furthermore, it is more robust as compared with the other two schemes, 

in particular, the unbiased random initialization (in [0,1]) where the system error 

variance of the solutions obtained is as high as 0.312. This matches with the results 
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reported in [87] which shows that genetic-based algorithms despite their goal for 

obtaining globally optimal solutions are also sensitive to the initial conditions. 

Regarding the sensitivity to the mutation rate, Table 7.4 shows that the proposed 

algorithm is quite robust to a range of values, i.e., 0.01 to 0.1. The performance was 

degraded significantly when larger mutation rate was adopted. In fact, using small 

enough mutation rate is essential to the preservation of the regional guidance property 

of the GESA method; otherwise, it wi l l become a pure random search algorithm. As 

a result of this analysis, mutation rate in [0.01,0.1] is suggested for further 

applications of EVIDENT. 

0.7| 1 r 1 ‘ ‘ ‘ ‘ ‘ 

0 . 6 -

0.5 

0 S 
ixi _ 
E 0.4 -(D V 

\ -
0.3 - \ 

0.2 _ 

‘ — 、 

O-Iq ^ i S o ^ 400 500 ^ ^ ^ ^ 二 0 0 
Generation 

Figure 7.9 Fitness History of the Best Individual in an EVIDENT 
algorithm simulation : Box-Jenkins' Gas-Furnace Data Set 
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Tab le 7.3 Sensi t iv i ty Ana lys is of Init ial ization S c h e m e s : 

Gas -Fu rnace Data Set 

Init ialization System Error J 

Sim#l Sim#2 Sim#3 

max-product, (1,4) alg.sum-product, (1,4) s-t, 

Linguistic 0.156 0.124 0.129 (0.007)卞 

Random in [0,1] 0.245 0.129 0.437 (0.312) 

Biased Random 0.242 ^ 0.219(0.118) 

卞 The bracketed values show the variances 

Tab le 7.4 Sensi t iv i ty Analys is of Mutat ion Probabi l i ty : 

Gas -Furnace Data Set 

Mutat ion Sim#l Sim#2 Sim#3 

Probability max-product, (1,4) alg .sum-product, (1,4) s - t , ) 

0.01 0.161 0.125 0.122 

0.05 0.156 0.124 0.129 

0.1 0.176 0.127 0.126 

0.2 0.246 0.146 0.151 
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Experiment #2 : A Simulated Dynamic Model 
The two-input/single-output dynamic model [73,113] 

y{t) = 0.%y{t-\)u,{t) + 0.5u,{t-\)y{t-2) + u^{t-A) (7.23) 

is another popular benchmarking data set for FRNS identification. A set of 400 

output data is generated f rom eq.(7.23) by letting inputs u八t) and u^{t) be 

uncorrelated random sequences uniformly distributed on (0.1,0.9). The model is 

described by 

Y{t) = X, it) o X2 ⑴ oX“OoR (7.24) 

where Xi (0 = y (卜 t ) , X ^ W 二 卜 1：1) and X,(t) = U,(t-T,), and its objective 

function is defined as 

Again, we have adopted Lee et al�s reference fuzzy sets. Their distributions are the 

same as those in Fig.7.7 and the nucleuses for inputs u ! ⑴ and u^ i t ) are ‘ i ^ i = 0.1, 

二0.3, < 3 X 3 =0 .5 , and ‘ 1 ^ 5 =0.9 , and those for the output 

y ⑴ are 乂 (=0 .3 , j . ^ - L l , 《 二 1.9, and >；卜 3.5. In Table 7.5, the 

performances of E V I D E N T and the other two algorithms are compared. As in Table 

7.2，each reading of E V I D E N T corresponds to the average of 10 runs and those of 

the other two algorithms are quoted f rom the cited references. Once again in all 

cases, E V I D E N T has outperformed the X u & Lu's algorithm and the Lee et al:s 

algorithm, which is the best FRNS parameter identification algorithm reported todate. 

I t has identified the optimal structure in all the 10 trials. I t can be seen from the third 

set of simulations for E V I D E N T that the best performance is obtained when the 

structure is fixed at the optimal one which has been determined by the earlier 

attempts. This is reasonable because EV IDENT, in that case, can fully utilize its 

resources to search the parameter space and hence can explore more regions and 

attain better parameter identification. 
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Table 7.5 Compar ison of Performance : Simulated Dynamic Model 

Algorithm Composition Time Delays System Error 

(X,Xi,T2) j 

Xu & L u [ 113] max-product (1，0,4) 0.0230 

Lee et al. [73] max-product (1，0，4) 0.0186 

EV IDENT fixed at max-product fixed at (1,0,4) 0.0130 

S-t-t 0.0118 

fixed at a lg.sum-product fixed at (1，0,4) ⑶應 

卞 a lgeb ra i c - sum -product composition has been identified in all trials 
本 time-delays (1,0,4) has been identified in all trials 
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Experiment #3 : Chaotic Time Series Data Set 
The chaotic time series has long been used to benchmark neural network learning 

algorithms. In this experiment, the time series described by the Mackey-Glass 

differential equations [76] 

M ) ^ 0 . 2 , ( ^ - 1 7 ) (7.26) 
dt l + y'\t-ll) 

was adopted. The equation was integrated using the fourth-order Runge-Kutta 

method to provide values of y ( t ) at discrete time steps. From the computed values, 

we extracted 1000 points of which the first 500 points were used for training and the 

rest 500 points were used for prediction. For neural networks, the task is usually 

formulated as predicting y(t+6) f rom four past data points y(t), y{t-6), y{t-\2), y{t-\S). 
Taking the advantages of the structure identification capability of EVIDENT, we have 

reformulated the problem as predicting y{t+6) from four past data points y(t-i:), 
whose time delays are to be identified. As such, the 

fol lowing model was employed 

Y(t + 6) = X,⑴ o ⑴ o X,⑴ oX,(t�oR (7.27) 

where X,it) = Y{t-x), X,(t) = Y(t-x,), X,(t) = Y{t-x,), & ⑴ = t � ） ， a n d its 

objective function is defined as 

4 / 4 f二27 

According to eq.(7.27), the fuzzy relation is a 5-dimensional one and wi l l consist of 

55 = 3125 elements i f five reference fuzzy sets are adopted. In order to reduce that 

number, only three reference fuzzy sets, corresponding to only 3' = 243 matrix 

elements, were used and they are depicted in Fig.7.10. The prediction results have 

been recorded in Table 7.6 where EVIDENT is benchmarked against four other 

methods that are not based on FRNS. The first three rows of results are from [27] 

and they correspond to the auto-regressive (AR) model, the cascade-correlation 
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learning neural network [37], and the back-propagation neural network respectively. 

The fourth row is the result of Jang's ANFIS model [54] introduced in Chapter 3. 

The prediction performance was measured by the non-dimensional error index 

(NDEI ) which is defined as the root mean squared error divided by the standard 

deviation of the target series [27]. I t can be seen that E V I D E N T is superior to the 

AR , cascade-correlation learning, and BP models among which the latest one is well-

known for its generalization performance and has long been used to predict (chaotic) 

time series and identify nonlinear dynamic systems. By examining the structure 

obtained, E V I D E N T has identified the algebraic-sum-product composition operator in 

all the ten trials. However, it has identified a variety of time delays, including 0, 1, 3, 

12, 13, 15, 16，17, 18, & 20, and the most popular ones are 0，13, 15, & 20. Hence, 

we have tried to simulate E V I D E N T wi th the four time delays fixed at these values 

and the composition operator fixed at algebraic-sum-product. As shown in Table 7.6， 

the result is better. We further tried to check the optimality of the set of time delays 

(0, 6，12, 18) commonly adopted by neural network models and the result 

demonstrates that it is not comparable to that of (0, 13, 15, 20) as (t^,12,^3,T4). On 

the other hand, it can be seen that E V I D E N T is not so good as Jang's A N F I S model 

because the ANFIS model optimizes the shape and location of the membership 

functions (reference fuzzy sets) while E V I D E N T in its current form predefines the 

input reference fuzzy sets to be evenly distributed, semi-overlapped triangular as 

shown in Fig.7.7 and Fig.7.10. Such difference has indeed been demonstrated to be 

inf luential to the performance of fuzzy systems [75]. Since Jang's model is based on 

Takagi & Sugeno,s fuzzy system and is therefore different f rom FRNS in both 

structure and inference mechanism. One has to carry out more experiments on these 

two models in order to determine which one is better and this has been left for 

further research. 
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Bi 

}；；=0.35 ：̂2〔二0.85 y ( t ) 

Figure 7.10 The Reference Fuzzy Sets Used : Chaotic Time Series 

Table 7.6 Comparison of Prediction Performance : Chaotic Time Series 

Algor i thm Non-Dimensional Error Index 

A R Model 0.19 

Cascaded-Correlation N N 0.06 

Back-Propagation N N 0.02 

ANFIS [54] 0.007 

E V I D E N T : 

-柳11(1(1”1：2,工3，工4) 0.0105 

- f i x e d at alg.sum-prod.，(0,13,15,20) 0.0089 

- f i x e d at alg.sum-prod.，（0,6，12,18) 0.0115 
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7.6 Concluding Remarks 
In this chapter, we have addressed an important but not-yet-explored learning 

problem in the fuzzy relational neural system (FRNS) model, i.e., the identification of 

both model structure and system parameters. An evolutionary identification algorithm 

called E V I D E N T based on the GESA method has been developed. As demonstrated 

by the simulation results of various benchmarking data sets, EV IDENT not only is 

effective in determining a near optimal structure of the systems, but is also capable for 

identifying a better parametric solution than the best FRNS identification algorithms 

reported todate. Wi th such algorithm, the uncertain trail-and-error process normally 

required by existing FRNS identification algorithms [73,91,113] for structure 

determination can be eliminated. Thus, the new algorithm should be a very attractive 

method for applications whose underlying system dynamic is unknown. For example 

in financial forecast, EV IDENT would be distinctive in determining which type of 

past data is critical to the prediction tasks. 
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Conclusions 

In attempt to identify methodologies to integrate fuzzy systems with neural networks 

technology, three areas have been chosen to study in more details after careful survey 

of the development of fuzzy neural systems todate. Through a common strategy to 

synthesize fuzzy neural systems, viz. fazzifying a learning algorithm for a neural 

system, a new class of FNS model has been developed. Since another strategy to 

synthesize fuzzy neural system is to implement fuzzy system in neural network 

architecture, attention is then given to capacity analysis and numerical identification of 

such systems. While the results have not been applied to solve practical problems, 

they have all been demonstrated to be effective for various benchmarking 

experiments. Some of these works have already been published and received 

considerable attention. They and some related publications are listed in Appendix A 

for reference. In the following, the contributions made by this work towards the 

synthesis of fuzzy neural systems is summarized and directions for further research is 

suggested. 
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8.1 Summary of Contribution 
8.1.1 Fuzzy Competitive Learning 

A new class of FNS model has been proposed. Methodology to fozzify any CL 

algorithm that conforms the general description given in Section 4.2 has been 

developed and it has been presented in Section 4.3. According to this methodology, 

three existing CL algorithms covering unsupervised and supervised types have been 

fuzzified. Compared with their crisp counterparts, the newly developed fuzzified 

models were found to be distinctive in i) converging more often to the desired 

solutions, or equivalently, reducing the likelihood of neuron underutilization; ii) 

obtaining superior classification and generalization performance, especially in cases of 

overlapping data sets; and iii) allowing interpretation of trained networks. Thus, the 

class of FCL networks is a very attractive model for applications such as image 

coding, pattern classification, and membership function estimation. 

In addition, the work of fuzzy competitive learning has laid down an example 

of how to fuzzify neural network models. I t takes use of the strength of fuzzy sets in 

modelling a concept employed by CL that is fuzzy or vague in nature. One may 

synthesize a new FNS model along this way by first identifying the crisp concepts in 

the neural networks that are inefficient and potentially be better modelled by fuzzy 
sets, e.g., the class of training patterns, and then fuzzifying them using fuzzy theories 

and methodologies. 

8.1.2 Capacity Analysis of F A M and FRNS 

Storage capacity of F A M has been theoretical studied. A perfect recall theorem for 

multiple storage of F A M has been developed and the condition to allow multiple 

storage by a F A M matrix has been identified. Moreover, the capacity of a F A M 

matrix has been enhanced by generalizing the usual max-min composition to the max-
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(g) one to achieve single F A M matrix implementation of a set of semi-overlapped 

fuzzy rules, which is typical in general applications. 

By re-examining the solvability condition of the FREs, the new one has been 

identified. Based on the new result, boundary conditions for several typical types of 

F R E S have been derived. Also, based upon the new results, capacities of some 

systems have been derived in Section 6.6. Since FRNS is functionally equivalent to 

F R E S , the results are applicable to F R N S and instructive to the design and 

implementation of fuzzy mlebases, i.e., i f the input fuzzy sets are designed to be 

normal and semi-overlapped, the mlebase can be merely implemented by the FRNS 

model. 

This study has dealt with efficient network implementations of relation based 

fuzzy systems. I t has not only consolidated the theoretical understanding on the 

storage property of the F A M and FRNS models but has also exemplified the benefit 

of borrowing neural network encoding principle to fuzzy systems. 

8.1.3 Numerical Identif ication of FRNS 

Adopting evolutionary computing approach, a numerical identification algorithm of 

FRNS called EV IDENT that identifies both its structure and parameters concurrently 

has been developed. The algorithm can be applied to identify nonlinear dynamic 

system without going through a trail-and-error process to determine the system 

structure. I f the optimal structure is k n o舊 in advance, the newly developed 

algorithm is still capable of obtaining better parameter estimation. Comparative study 

has been made to evaluate the performance of the developed algorithm in nonlinear 

dynamic system identification against some well-known algorithms using various 

benchmarking data sets. 
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8.2 Further Investigations 
I n the derivation of the three FCL algorithms, we have assumed the network size be 

f ixed in advance. A n appropriate choice however requires a good understanding of 

the data set being learnt. In practice, this knowledge may not be available and the 

network has to be designed by an intelligent guess approach. Such a network design 

problem has long been an active research problem in neural networks [15,20,116] and 

many effective methodologies such as network growth [20] and evolutionary 

computation [116] have been developed. Applicat ion of these methods to F C L 

networks, however is non-trivial. 

Confidence measure is a special feature of fuzzy pattern recognition 

algorithms [56]. Since the output neurons of the FCL networks have been formulated 

as fuzzy class memberships of input patterns, one may exploit such valuable and 

ready-to-use information to measure the confidence of the classification results. For 

example, i f the highest and the second highest class memberships are very close to 

each other, we may say that the trained network is not sure about its classification. 

Such k ind of knowledge is very useful in applications like signature verification where 

the users may require to sign again i f the network is not confident in its classification. 

The experimental results of FCL networks indicate that their performances are 

quite sensitive to the fuzziness parameter used. We have then conjectured that the 

fuzziness value is related to the characteristics of the training data set, in particular, 

the degree of overlapping. As we mentioned in Section 4.5, all the membership 

values w i l l become 1/c when the fuzziness tends to infinity which is the fuzziest 

condition. According to the learning law in eq.(4.16)，this w i l l cause all the 

competing neurons converged to the centroid of the training data and such a 

phenomenon indeed reflects that the fuzzy model considers the data clusters being 

totally overlapped wi th each other. As the fuzziness decreases, the competing 

neurons w i l l deviate f rom the centroid accordingly, indicating the assumption of lesser 
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degree of overlapping. In the extreme case of m = l , the model wi l l perform hard 

clustering, i.e., non-overlapping data clusters are being considered. Thus, it looks 

promising to carry out further research in this direction to derive the relationship 

between the fuzziness parameter and the degree of overlapping in the training data 

set, and to obtain a better understanding on data clustering. 

The design of the EV IDENT algorithm has been focused on the identification 

of system time delays, the inference operator, and the relation parameters. As the 

final goal of using FRNS to model nonlinear dynamic systems is to identify all the 

system structure and parameters, including the reference fuzzy sets, defuzzification 

scheme, and system orders, in an autonomous manner, incorporating them into 

E V I D E N T wi l l be pursued in our further studies. This requires to search for a 

generalized representation of each of them, to formulate it under the framework of 

E V I D E N T , and to devise the corresponding reproduction schemes. Since the system 

orders determine the accuracy of FRNS in modelling and consequently are influential 

to its generalization performance, the objective function (see eq.7.11)) for fitness 

evaluation may have to be modified to take that into consideration. The enhanced 

algorithm wi l l then be very useful to analyze the importance of the reference fuzzy 

sets, defuzzification scheme, and system orders to the performance of fuzzy system 

modelling. 
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Publication List of the Candidate 

1. Publications Reporting the Work in this Thesis 

1 F.L. Chung and T. Lee, "A fuzzy competitive learning algorithm wi th decreasing 

fuzziness," Electronics Letters, vol.29, no. 13, pp. 1206-1208, 1993. 

2. F.L. Chung and T. Lee, "Fuzzy learning vector quantization," Proc. Int'l Joint 
Conference on Neural Networks (IJCNN '93), Nagoya, Japan, pp.2739-2742, 

1993. 
3. F.L. Chung and T. Lee, "A fuzzy learning model for membership function 

estimation and pattern classification," Proc. IEEE International Conference on 
Fuzzy Systems (FUZZ-IEEE'94), Orlando, Florida, pp.426-431, 1994. 

4 F.L. Chung and T. Lee, "Fuzzy competitive learning," Neural Networks, vol.7, 

no.3，pp.539-552, 1994. 
5. F.L. Chung and T. Lee, "Two methods for perfect encoding of a set of semi-

overlapped fuzzy rules," to appear in Proc. 6th Int. Fuzzy Systems Association 
World Congress (IFSA '95), Sao Paulo, Brazil , 1995. 

6 F.L. Chung and T. Lee, "EV IDENT : An evolutionary identification algorithm 

for fuzzy relational systems，" to appear in Proc. World Congress on Neural 
Network (WCNN '95), Washington, DC, 1995. 

7 F.L. Chung and T. Lee, "On fuzzy associative memory wi th multiple-rule 

storage capacity," submitted to IEEE Trans, on Fuzzy Systems 
g P L . Chung and T. Lee, " A new look at solving a system of fuzzy relational 

equations," submitted to Fuzzy Sets and Systems. 
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9. F.L. Chung and T. Lee, "Analytical resolution and numerical identification of 

fuzzy relational systems," submitted to IEEE Trans, on System, Man & 
Cybernetics. 

I I . Other Related Publications 

10. F.L. Chung and T. Lee, "A node pruning algorithm for backpropagation 

networks," Neural Systems, vol.3, no.3, pp.301-314, 1992. 

11. F.L. Chung and T. Lee, "A network growth approach to the design of 

feedforward neural networks," to appear in lEE Proceedings - Control Theory 
and Applications. 

I I I . Manuscript Under Preparation 

12. F.L. Chung and T. Lee, "Signature verification using fuzzy learning vector 

quantization," under preparation. 
13. F.L. Chung and T. Lee, "Incremental learning in fuzzy competitive learning," 

under preparation. 
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