thesis

Design of stable adaptive fuzzy control.

Abstract

by John Tak Kuen Koo.Thesis (M.Phil.)--Chinese University of Hong Kong, 1994.Includes bibliographical references (leaves 217-[220]).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Introduction --- p.1Chapter 1.2 --- "Robust, Adaptive and Fuzzy Control" --- p.2Chapter 1.3 --- Adaptive Fuzzy Control --- p.4Chapter 1.4 --- Object of Study --- p.10Chapter 1.5 --- Scope of the Thesis --- p.13Chapter 2 --- Background on Adaptive Control and Fuzzy Logic Control --- p.17Chapter 2.1 --- Adaptive control --- p.17Chapter 2.1.1 --- Model reference adaptive systems --- p.20Chapter 2.1.2 --- MIT Rule --- p.23Chapter 2.1.3 --- Model Reference Adaptive Control (MRAC) --- p.24Chapter 2.2 --- Fuzzy Logic Control --- p.33Chapter 2.2.1 --- Fuzzy sets and logic --- p.33Chapter 2.2.2 --- Fuzzy Relation --- p.40Chapter 2.2.3 --- Inference Mechanisms --- p.43Chapter 2.2.4 --- Defuzzification --- p.49Chapter 3 --- Explicit Form of a Class of Fuzzy Logic Controllers --- p.51Chapter 3.1 --- Introduction --- p.51Chapter 3.2 --- Construction of a class of fuzzy controller --- p.53Chapter 3.3 --- Explicit form of the fuzzy controller --- p.57Chapter 3.4 --- Design criteria on the fuzzy controller --- p.65Chapter 3.5 --- B-Spline fuzzy controller --- p.68Chapter 4 --- Model Reference Adaptive Fuzzy Control (MRAFC) --- p.73Chapter 4.1 --- Introduction --- p.73Chapter 4.2 --- "Fuzzy Controller, Plant and Reference Model" --- p.75Chapter 4.3 --- Derivation of the MRAFC adaptive laws --- p.79Chapter 4.4 --- "Extension to the Multi-Input, Multi-Output Case" --- p.84Chapter 4.5 --- Simulation --- p.90Chapter 5 --- MRAFC on a Class of Nonlinear Systems: Type I --- p.97Chapter 5.1 --- Introduction --- p.98Chapter 5.2 --- Choice of Controller --- p.99Chapter 5.3 --- Derivation of the MRAFC adaptive laws --- p.102Chapter 5.4 --- Example: Stabilization of a pendulum --- p.109Chapter 6 --- MRAFC on a Class of Nonlinear Systems: Type II --- p.112Chapter 6.1 --- Introduction --- p.113Chapter 6.2 --- Fuzzy System as Function Approximator --- p.114Chapter 6.3 --- Construction of MRAFC for the nonlinear systems --- p.118Chapter 6.4 --- Input-Output Linearization --- p.130Chapter 6.5 --- MRAFC with Input-Output Linearization --- p.132Chapter 6.6 --- Example --- p.136Chapter 7 --- Analysis of MRAFC System --- p.140Chapter 7.1 --- Averaging technique --- p.140Chapter 7.2 --- Parameter convergence --- p.143Chapter 7.3 --- Robustness --- p.152Chapter 7.4 --- Simulation --- p.157Chapter 8 --- Application of MRAFC scheme on Manipulator Control --- p.166Chapter 8.1 --- Introduction --- p.166Chapter 8.2 --- Robot Manipulator Control --- p.170Chapter 8.3 --- MRAFC on Robot Manipulator Control --- p.173Chapter 8.3.1 --- Part A: Nonlinear-function feedback fuzzy controller --- p.174Chapter 8.3.2 --- Part B: State-feedback fuzzy controller --- p.182Chapter 8.4 --- Simulation --- p.186Chapter 9 --- Conclusion --- p.199Chapter A --- Implementation of MRAFC Scheme with Practical Issues --- p.203Chapter A.1 --- Rule Generation by MRAFC scheme --- p.203Chapter A.2 --- Implementation Considerations --- p.211Chapter A.3 --- MRAFC System Design Procedure --- p.215Bibliography --- p.21

    Similar works