452 research outputs found

    Programmable CMOS Analog-to-Digital Converter Design and Testability

    Get PDF
    In this work, a programmable second order oversampling CMOS delta-sigma analog-to-digital converter (ADC) design in 0.5µm n-well CMOS processes is presented for integration in sensor nodes for wireless sensor networks. The digital cascaded integrator comb (CIC) decimation filter is designed to operate at three different oversampling ratios of 16, 32 and 64 to give three different resolutions of 9, 12 and 14 bits, respectively which impact the power consumption of the sensor nodes. Since the major part of power consumed in the CIC decimator is by the integrators, an alternate design is introduced by inserting coder circuits and reusing the same integrators for different resolutions and oversampling ratios to reduce power consumption. The measured peak signal-to-noise ratio (SNR) for the designed second order delta-sigma modulator is 75.6dB at an oversampling ratio of 64, 62.3dB at an oversampling ratio of 32 and 45.3dB at an oversampling ratio of 16. The implementation of a built-in current sensor (BICS) which takes into account the increased background current of defect-free circuits and the effects of process variation on ΔIDDQ testing of CMOS data converters is also presented. The BICS uses frequency as the output for fault detection in CUT. A fault is detected when the output frequency deviates more than ±10% from the reference frequency. The output frequencies of the BICS for various model parameters are simulated to check for the effect of process variation on the frequency deviation. A design for on-chip testability of CMOS ADC by linear ramp histogram technique using synchronous counter as register in code detection unit (CDU) is also presented. A brief overview of the histogram technique, the formulae used to calculate the ADC parameters, the design implemented in 0.5µm n-well CMOS process, the results and effectiveness of the design are described. Registers in this design are replaced by 6T-SRAM cells and a hardware optimized on-chip testability of CMOS ADC by linear ramp histogram technique using 6T-SRAM as register in CDU is presented. The on-chip linear ramp histogram technique can be seamlessly combined with ΔIDDQ technique for improved testability, increased fault coverage and reliable operation

    Testing Embedded Memories in Telecommunication Systems

    Get PDF
    Extensive system testing is mandatory nowadays to achieve high product quality. Telecommunication systems are particularly sensitive to such a requirement; to maintain market competitiveness, manufacturers need to combine reduced costs, shorter life cycles, advanced technologies, and high quality. Moreover, strict reliability constraints usually impose very low fault latencies and a high degree of fault detection for both permanent and transient faults. This article analyzes major problems related to testing complex telecommunication systems, with particular emphasis on their memory modules, often so critical from the reliability point of view. In particular, advanced BIST-based solutions are analyzed, and two significant industrial case studies presente

    An embedded tester core for mixed-signal System-on-Chip circuits

    Get PDF

    High level behavioural modelling of boundary scan architecture.

    Get PDF
    This project involves the development of a software tool which enables the integration of the IEEE 1149.1/JTAG Boundary Scan Test Architecture automatically into an ASIC (Application Specific Integrated Circuit) design. The tool requires the original design (the ASIC) to be described in VHDL-IEEE 1076 Hardware Description Language. The tool consists of the two major elements: i) A parsing and insertion algorithm developed and implemented in 'C'; ii) A high level model of the Boundary Scan Test Architecture implemented in 'VHDL'. The parsing and insertion algorithm is developed to deal with identifying the design Input/Output (I/O) terminals, their types and the order they appear in the ASIC design. It then attaches suitable Boundary Scan Cells to each I/O, except power and ground and inserts the high level models of the full Boundary Scan Architecture into the ASIC without altering the design core structure

    Smart cmos image sensor for 3d measurement

    Get PDF
    3D measurements are concerned with extracting visual information from the geometry of visible surfaces and interpreting the 3D coordinate data thus obtained, to detect or track the position or reconstruct the profile of an object, often in real time. These systems necessitate image sensors with high accuracy of position estimation and high frame rate of data processing for handling large volumes of data. A standard imager cannot address the requirements of fast image acquisition and processing, which are the two figures of merit for 3D measurements. Hence, dedicated VLSI imager architectures are indispensable for designing these high performance sensors. CMOS imaging technology provides potential to integrate image processing algorithms on the focal plane of the device, resulting in smart image sensors, capable of achieving better processing features in handling massive image data. The objective of this thesis is to present a new architecture of smart CMOS image sensor for real time 3D measurement using the sheet-beam projection methods based on active triangulation. Proposing the vision sensor as an ensemble of linear sensor arrays, all working in parallel and processing the entire image in slices, the complexity of the image-processing task shifts from O (N 2 ) to O (N). Inherent also in the design is the high level of parallelism to achieve massive parallel processing at high frame rate, required in 3D computation problems. This work demonstrates a prototype of the smart linear sensor incorporating full testability features to test and debug both at device and system levels. The salient features of this work are the asynchronous position to pulse stream conversion, multiple images binarization, high parallelism and modular architecture resulting in frame rate and sub-pixel resolution suitable for real time 3D measurements

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Design and Test of a Gate Driver with Variable Drive and Self-Test Capability Implemented in a Silicon Carbide CMOS Process

    Get PDF
    Discrete silicon carbide (SiC) power devices have long demonstrated abilities that outpace those of standard silicon (Si) parts. The improved physical characteristics allow for faster switching, lower on-resistance, and temperature performance. The capabilities unleashed by these devices allow for higher efficiency switch-mode converters as well as the advance of power electronics into new high-temperature regimes previously unimaginable with silicon devices. While SiC power devices have reached a relative level of maturity, recent work has pushed the temperature boundaries of control electronics further with silicon carbide integrated circuits. The primary requirement to ensure rapid switching of power MOSFETs was a gate drive buffer capable of taking a control signal and driving the MOSFET gate with high current required. In this work, the first integrated SiC CMOS gate driver was developed in a 1.2 μm SiC CMOS process to drive a SiC power MOSFET. The driver was designed for close integration inside a power module and exposure to high temperatures. The drive strength of the gate driver was controllable to allow for managing power MOSFET switching speed and potential drain voltage overshoot. Output transistor layouts were optimized using custom Python software in conjunction with existing design tool resources. A wafer-level test system was developed to identify yield issues in the gate driver output transistors. This method allowed for qualitative and quantitative evaluation of transistor leakage while the system was under probe. Wafer-level testing and results are presented. The gate driver was tested under high temperature operation up to 530 degrees celsius. An integrated module was built and tested to illustrate the capability of the gate driver to control a power MOSFET under load. The adjustable drive strength feature was successfully demonstrated

    Digital Serializer Design for a SerDes Chip in 130nm CMOS Technology

    Get PDF
    The development of this project is derived from the effort of previous generations from the System on Chip Design Specialty Program at ITESO, who have pioneered the creation of a serializer-deserializer device for high-speed communications in CMOS technology, aiming towards a small and efficient device. The design flow and enhancements implemented within the digital serializer module of the SerDes system, consists of an 8b10b encoder followed by a parallel to serial converter that together reaches a maximum frequency of 239 MHz in a typical cmrf8sf (130 nm) technology manufacturing process, implemented with Cadence tools. The rtl and testbench were taken from the work of Efrain Arrambide, adding a register to store the current disparity value, and thus, enhance the code by adding primitive blocks to improve the behavior of the serializer module and the validation process, generating a summary for every run. The system on chip flow is followed by choosing the variables that best fit the design and a layout with no design violations is generated during the physical synthesis. The individual module layouts were completed successfully in terms of behavior and violations, while the integration of the mixed signal device showed errors that were not resolved in time for manufacturing.El desarrollo de este proyecto parte del trabajo realizado por las generaciones anteriores de la especialidad de diseño de circuitos integrados del ITESO, quienes fueron pioneros en la creación de un dispositivo para comunicaciones de alta velocidad en tecnología CMOS, con el objetivo de obtener un producto final pequeño y eficiente. El flujo de diseño y mejoras implementadas al módulo serializador digital del sistema SerDes, el cual consiste en un codificador 8b10b seguido de un convertidor de datos de paralelo a serial, alcanza una frecuencia máxima de 239 MHz al ser fabricado y operado en condiciones típicas con la tecnología cmrf8sf (130 nm), además de ser implementado con las herramientas proveídas por Cadence. El código de descripción de hardware y banco de pruebas fueron tomados originalmente de los entregados por Efrain Arrambide, a lo que se le agregó un registro para almacenar el valor de la disparidad del dato enviado, así como la adición de bloques básicos para mejorar el comportamiento y se simplificó el código Verilog. El proceso de validación fue mejorado de tal manera que se prueban bloques por separado y cada iteración genera un registro de transacciones y un resumen al final con los resultados de manera automática para cada iteración. El flujo del diseño de sistemas en chip fue seguido por completo, eligiendo las variables que mejor se adaptan a la respuesta y especificaciones del sistema, así como buscar que genere ninguna violación en el diseño físico. Los distintos bloques del sistema serializador-deserializador fueron diseñados y verificados con éxito, sin embargo, la integración del sistema de señal mixta no fue completada debido a errores que no se lograron resolver a tiempo para cumplir con la fecha de fabricación.ITESO, A. C.Consejo Nacional de Ciencia y Tecnologí
    corecore