2,050 research outputs found

    A Dynamic Neuro-Fuzzy Model Providing Bio-State Estimation and Prognosis Prediction for Wearable Intelligent Assistants

    Get PDF
    BACKGROUND: Intelligent management of wearable applications in rehabilitation requires an understanding of the current context, which is constantly changing over the rehabilitation process because of changes in the person's status and environment. This paper presents a dynamic recurrent neuro-fuzzy system that implements expert-and evidence-based reasoning. It is intended to provide context-awareness for wearable intelligent agents/assistants (WIAs). METHODS: The model structure includes the following types of signals: inputs, states, outputs and outcomes. Inputs are facts or events which have effects on patients' physiological and rehabilitative states; different classes of inputs (e.g., facts, context, medication, therapy) have different nonlinear mappings to a fuzzy "effect." States are dimensionless linguistic fuzzy variables that change based on causal rules, as implemented by a fuzzy inference system (FIS). The FIS, with rules based on expertise and evidence, essentially defines the nonlinear state equations that are implemented by nuclei of dynamic neurons. Outputs, a function of weighing of states and effective inputs using conventional or fuzzy mapping, can perform actions, predict performance, or assist with decision-making. Outcomes are scalars to be extremized that are a function of outputs and states. RESULTS: The first example demonstrates setup and use for a large-scale stroke neurorehabilitation application (with 16 inputs, 12 states, 5 outputs and 3 outcomes), showing how this modelling tool can successfully capture causal dynamic change in context-relevant states (e.g., impairments, pain) as a function of input event patterns (e.g., medications). The second example demonstrates use of scientific evidence to develop rule-based dynamic models, here for predicting changes in muscle strength with short-term fatigue and long-term strength-training. CONCLUSION: A neuro-fuzzy modelling framework is developed for estimating rehabilitative change that can be applied in any field of rehabilitation if sufficient evidence and/or expert knowledge are available. It is intended to provide context-awareness of changing status through state estimation, which is critical information for WIA's to be effective

    Fuzzy-description logic for supporting the rehabilitation of the elderly

    Full text link
    [EN] According to the latest statistics, the proportion of the elderly (+65) is increasing and is expected to double within the European Union in a period of 50 years. This ageing is due to the improvement of quality of life and advances in medicine in the last decades. Gerontechnology is receiving a great deal of attention as a way of providing the elderly with sustainable products, environments, and services combining gerontology and technology. One of the most important aspects to consider by gerontechnology is the mobility/rehabilitation technologies, because there is an important relationship between mobility and the elderly's quality of life. Telerehabilitation systems have emerged to allow the elderly to perform their rehabilitation exercises remotely. However, in many cases, the proposed systems assist neither the patients nor the experts about the progress of the rehabilitation. To address this problem, we propose in this paper, a fuzzy-semantic system for evaluating patient's physical state during the rehabilitation process based on well-known standard for patients' evaluation. Moreover, a tool called FINE has been developed that facilitates the evaluation be accomplished in a semi-automatic way first asking patients to carry out a set of standard tests and then inferencing their state by means of a fuzzy-semantic approach using the data captured during the rehabilitation tasks.This research was funded by the Spanish Ministry of Economy and Competitiveness and by EU FEDER funds under project grants TIN2016-79100-R and TIN2015-72931-EXP. It has also been funded by the Junta de Comunidades de Castilla¿La Mancha scholarship 2018-UCLM1-9131Moya, A.; Navarro, E.; Jaén Martínez, FJ.; González, P. (2020). Fuzzy-description logic for supporting the rehabilitation of the elderly. Expert Systems. 37(2):1-16. https://doi.org/10.1111/exsy.12464116372Alamri, A., Cha, J., & El Saddik, A. (2010). AR-REHAB: An Augmented Reality Framework for Poststroke-Patient Rehabilitation. IEEE Transactions on Instrumentation and Measurement, 59(10), 2554-2563. doi:10.1109/tim.2010.2057750Antoniou, G., & van Harmelen, F. (2004). Web Ontology Language: OWL. Handbook on Ontologies, 67-92. doi:10.1007/978-3-540-24750-0_4Bobillo F.(2008).Managing vagueness in ontologies. Universidad de Granada.Bobillo F. (2015).The fuzzyDL system. Retrieved July 10 2018 fromhttp://www.umbertostraccia.it/cs/software/fuzzyDL/fuzzyDL.htmlBobillo, F., Delgado, M., & Gómez-Romero, J. (2012). DeLorean: A reasoner for fuzzy OWL 2. Expert Systems with Applications, 39(1), 258-272. doi:10.1016/j.eswa.2011.07.016Bobillo, F., & Straccia, U. (2016). The fuzzy ontology reasoner fuzzyDL. Knowledge-Based Systems, 95, 12-34. doi:10.1016/j.knosys.2015.11.017Boucenna, S., Narzisi, A., Tilmont, E., Muratori, F., Pioggia, G., Cohen, D., & Chetouani, M. (2014). Interactive Technologies for Autistic Children: A Review. Cognitive Computation, 6(4), 722-740. doi:10.1007/s12559-014-9276-xCarter J. E. L.(2002).The Heath‐Carter anthropometric somatotype—Instruction manual. San Diego:State University.Chiu, Y.-H., Chen, T.-W., Chen, Y. J., Su, C.-I., Hwang, K.-S., & Ho, W.-H. (2018). Fuzzy logic-based mobile computing system for hand rehabilitation after neurological injury. Technology and Health Care, 26(1), 17-27. doi:10.3233/thc-171403Fernández-Caballero, A., González, P., & Navarro, E. (2017). Gerontechnologies - Current achievements and future trends. Expert Systems, 34(2), e12203. doi:10.1111/exsy.12203Giles, R. (1976). Łukasiewicz logic and fuzzy set theory. International Journal of Man-Machine Studies, 8(3), 313-327. doi:10.1016/s0020-7373(76)80003-xHsieh, Y.-W., Hsueh, I.-P., Chou, Y.-T., Sheu, C.-F., Hsieh, C.-L., & Kwakkel, G. (2007). Development and Validation of a Short Form of the Fugl-Meyer Motor Scale in Patients With Stroke. Stroke, 38(11), 3052-3054. doi:10.1161/strokeaha.107.490730Karime, A., Eid, M., Alja’am, J. M., Saddik, A. E., & Gueaieb, W. (2014). A Fuzzy-Based Adaptive Rehabilitation Framework for Home-Based Wrist Training. IEEE Transactions on Instrumentation and Measurement, 63(1), 135-144. doi:10.1109/tim.2013.2277536Krynicki, K., Jaen, J., & Navarro, E. (2016). An ACO-based personalized learning technique in support of people with acquired brain injury. Applied Soft Computing, 47, 316-331. doi:10.1016/j.asoc.2016.04.039Leap Motion INC. (2018).Leap Motion. Retrieved July 10 2018 fromhttps://www.leapmotion.com/Lukasiewicz, T., & Straccia, U. (2008). Managing uncertainty and vagueness in description logics for the Semantic Web. Journal of Web Semantics, 6(4), 291-308. doi:10.1016/j.websem.2008.04.001Metz, D. . (2000). Mobility of older people and their quality of life. Transport Policy, 7(2), 149-152. doi:10.1016/s0967-070x(00)00004-4Nassabi M. H. Den Akker H. &Vollenbroek‐Hutten M. (2014).An ontology‐based recommender system to promote physical activity for pre‐frail elderly 181–184.Navarro, E., González, P., López-Jaquero, V., Montero, F., Molina, J. P., & Romero-Ayuso, D. (2018). Adaptive, Multisensorial, Physiological and Social: The Next Generation of Telerehabilitation Systems. Frontiers in Neuroinformatics, 12. doi:10.3389/fninf.2018.00043OpenNI Pioneering Members. (2018).OpenNI. Retrieved July 10 2018 fromhttp://openni.ru/about/index.htmlOrbbec 3D. (2018).Orbbec Astra Pro. Retrieved July 10 2018 fromhttps://orbbec3d.com/product‐astra‐pro/Rodríguez, A. C., Roda, C., Montero, F., González, P., & Navarro, E. (2015). An Interactive Fuzzy Inference System for Teletherapy of Older People. Cognitive Computation, 8(2), 318-335. doi:10.1007/s12559-015-9356-6Shaughnessy, M., Resnick, B. M., & Macko, R. F. (2006). Testing a Model of Post-Stroke Exercise Behavior. Rehabilitation Nursing, 31(1), 15-21. doi:10.1002/j.2048-7940.2006.tb00005.xSu, C.-J., Chiang, C.-Y., & Huang, J.-Y. (2014). Kinect-enabled home-based rehabilitation system using Dynamic Time Warping and fuzzy logic. Applied Soft Computing, 22, 652-666. doi:10.1016/j.asoc.2014.04.020Velozo, C. A., & Woodbury, M. L. (2011). Translating measurement findings into rehabilitation practice: An example using Fugl-Meyer Assessment-Upper Extremity with patients following stroke. The Journal of Rehabilitation Research and Development, 48(10), 1211. doi:10.1682/jrrd.2010.10.0203W3C. (2012).OWL 2 web ontology language. Retrieved July 10 2018 from https://www.w3.org/TR/owl2‐overview/Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZhang, Z., Fang, Q., & Gu, X. (2014). Fuzzy inference system based automatic Brunnstrom stage classification for upper-extremity rehabilitation. Expert Systems with Applications, 41(4), 1973-1980. doi:10.1016/j.eswa.2013.08.09

    Bypassing the Natural Visual-Motor Pathway to Execute Complex Movement Related Tasks Using Interval Type-2 Fuzzy Sets

    Get PDF
    In visual-motor coordination, the human brain processes visual stimuli representative of complex motion-related tasks at the occipital lobe to generate the necessary neuronal signals for the parietal and pre-frontal lobes, which in turn generates movement related plans to excite the motor cortex to execute the actual tasks. The paper introduces a novel approach to provide rehabilitative support to patients suffering from neurological damage in their pre-frontal, parietal and/or motor cortex regions. An attempt to bypass the natural visual-motor pathway is undertaken using interval type-2 fuzzy sets to generate the approximate EEG response of the damaged pre-frontal/parietal/motor cortex from the occipital EEG signals. The approximate EEG response is used to trigger a pre-trained joint coordinate generator to obtain desired joint coordinates of the link end-points of a robot imitating the human subject. The robot arm is here employed as a rehabilitative aid in order to move each link end-points to the desired locations in the reference coordinate system by appropriately activating its links using the well-known inverse kinematics approach. The mean-square positional errors obtained for each link end-points is found within acceptable limits for all experimental subjects including subjects with partial parietal damage, indicating a possible impact of the proposed approach in rehabilitative robotics. Subjective variation in EEG features over different sessions of experimental trials is modelled here using interval type-2 fuzzy sets for its inherent power to handle uncertainty. Experiments undertaken confirm that interval type-2 fuzzy realization outperforms its classical type-1 counterpart and back-propagation neural approaches in all experimental cases, considering link positional error as a metric. The proposed research offers a new opening for the development of possible rehabilitative aids for people with partial impairment in visual-motor coordination

    Classification of EMG Signals using Wavelet Features and Fuzzy Logic Classifiers

    Get PDF
    Master'sMASTER OF ENGINEERIN

    759-2 Use of Artificial Neural Networks within Deterministic Logic for Computer ECG Diagnosis of Myocardial Infarction

    Get PDF
    The study was aimed at assessing the effect of incorporating neural networks (NN) inside an existing deterministic computer ECG analysis program in order to enhance the diagnosis of myocardial infarction. Separate neural networks were trained for inferior and anterior myocardial infarction using 200 normals, 100 IMI. 80 AMI and 42 left ventricular hypertrophy cases, all clinically validated. All the networks had a single output to discriminate between MI and non-MI. A variable number of inputs to the networks was used consisting of QRS±ST-T measurements. Separate test sets including 200 normals. 42 LVH, 101 AMI and 80 IMI cases were then utilised to find the best performing neural networks for IMI and AMI. The best neural network for each of IMI and AMI was then selected and inserted into the existing Glasgow Program (GP) for ECG analysis together with some modifications (M) to the diagnostic logic. The modified and original GP were then assessed using a completely new test set composed of 74 AMI, 52 IMI, 60 LVH and 230 normals.ResultsAMI SeIMI SeNSpLSpOSpGP76%69%100%93%99%GP+NN+M78%88%100%85%97%Se=sensitivity, Sp=specificity, N=normal. L=LVH, Oa=overallConclusionsThis first report of neural networks for the diagnosis of myocardial infarction embedded within a deterministic logic program has shown that (1) the technique significantly improves the diagnosis of inferior though not anterior MI; (2) the evaluation of specificity using only normals is misleading; (3) the technique can usefully be adopted selectively to enhance diagnostic ECG programs in future

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Central monitoring system for ambient assisted living

    Get PDF
    Smart homes for aged care enable the elderly to stay in their own homes longer. By means of various types of ambient and wearable sensors information is gathered on people living in smart homes for aged care. This information is then processed to determine the activities of daily living (ADL) and provide vital information to carers. Many examples of smart homes for aged care can be found in literature, however, little or no evidence can be found with respect to interoperability of various sensors and devices along with associated functions. One key element with respect to interoperability is the central monitoring system in a smart home. This thesis analyses and presents key functions and requirements of a central monitoring system. The outcomes of this thesis may benefit developers of smart homes for aged care

    Fuzzy sliding mode control of a multi-DOF parallel robot in rehabilitation environment

    Get PDF
    Multi-degrees of freedom (DOF) parallel robot, due to its compact structure and high operation accuracy, is a promising candidate for medical rehabilitation devices. However, its controllability relating to the nonlinear characteristics challenges its interaction with human subjects during the rehabilitation process. In this paper, we investigated the control of a parallel robot system using fuzzy sliding mode control (FSMC) for constructing a simple controller in practical rehabilitation, where a fuzzy logic system was used as the additional compensator to the sliding mode controller (SMC) for performance enhancement and chattering elimination. The system stability is guaranteed by the Lyapunov stability theorem. Experiments were conducted on a lower limb rehabilitation robot, which was built based on kinematics and dynamics analysis of the 6-DOF Stewart platform. The experimental results showed that the position tracking precision of the proposed FSMC is sufficient in practical applications, while the velocity chattering had been effectively reduced in comparison with the conventional FSMC with parameters tuned by fuzzy systems

    Evolving Spatio-temporal Data Machines Based on the NeuCube Neuromorphic Framework: Design Methodology and Selected Applications

    Get PDF
    The paper describes a new type of evolving connectionist systems (ECOS) called evolving spatio-temporal data machines based on neuromorphic, brain-like information processing principles (eSTDM). These are multi-modular computer systems designed to deal with large and fast spatio/spectro temporal data using spiking neural networks (SNN) as major processing modules. ECOS and eSTDM in particular can learn incrementally from data streams, can include ‘on the fly’ new input variables, new output class labels or regression outputs, can continuously adapt their structure and functionality, can be visualised and interpreted for new knowledge discovery and for a better understanding of the data and the processes that generated it. eSTDM can be used for early event prediction due to the ability of the SNN to spike early, before whole input vectors (they were trained on) are presented. A framework for building eSTDM called NeuCube along with a design methodology for building eSTDM using this are presented. The implementation of this framework in MATLAB, Java, and PyNN (Python) is presented. The latter facilitates the use of neuromorphic hardware platforms to run the eSTDM. Selected examples are given of eSTDM for pattern recognition and early event prediction on EEG data, fMRI data, multisensory seismic data, ecological data, climate data, audio-visual data. Future directions are discussed, including extension of the NeuCube framework for building neurogenetic eSTDM and also new applications of eSTDM
    corecore