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Abstract 

Smart homes for aged care enable the elderly to stay in their own homes longer. By means of 

various types of ambient and wearable sensors information is gathered on people living in 

smart homes for aged care. This information is then processed to determine the activities of 

daily living (ADL) and provide vital information to carers. Many examples of smart homes for 

aged care can be found in literature, however, little or no evidence can be found with respect 

to interoperability of various sensors and devices along with associated functions.  One key 

element with respect to interoperability is the central monitoring system in a smart home. 

This thesis analyses and presents key functions and requirements of a central monitoring 

system. The outcomes of this thesis may benefit developers of smart homes for aged care. 
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1 Introduction 

 

The life expectancy of older people is increasing drastically over the last decades worldwide. 

The proportion of the world population of 65+ was nearly 7% in 2012 and this is projected to 

increase by almost 20% in 40 years (Meg Morris et al. 2012). The ageing population is growing 

faster in high-income countries. Japan has the highest number of older people, 33% Japanese 

were over 60 years followed by Germany (28%), Italy and Finland (28% each) in 2015 (World 

Population Ageing 2015). Along with the other parts of the world, Australia is also 

experiencing a great increase in the elderly population. The percentage of people over the 

age of 65 in Australia was 13% in 2010 and is estimated to be 20% by 2050. Especially, the 

ageing population of  65 to 84 years is projected to a more than double, with the highest 

number of 85+ age group by 2050 (Lê, Nguyen, and Barnett 2012). At the Beginning of the 

twentieth century, the life expectancy of the people in Australia was 47 years and it is 

expected to be 80+ by 2025. In the next 30 years, the number of people over 65 years of age 

will be one-quarter of the total population of Australia and 5% will be over 80 years (Meg 

Morris et al. 2012). 

Elderly people are more vulnerable to physical and psychological illness, health risk factors 

and a higher rate of hospitalisation than other age groups. More than half the proportion of 

the elderly population has a physical or physiological illness such as diabetes, cancer, arthritis, 

heart failure and depression (Majumder et al. 2017). Another significant concern of elderlies 

is the risk of falling and injuries. Falling is one of the common concerns that affect elder 

people. The one-third population of the older citizens fall each year and nearly 10% falls leads 

to fractures or serious injury. Apart from the injuries falls lead to loss of independence, 

mobility, confidence, hospitalization or even death(Xiaodan Zhuang et al. 2009). These health 

issues in older citizens are mainly caused by age-related changes. A balance disorder is a major 

age-related condition that leads to the loss of mobility and independence. These age-related 

conditions and diseases prevent elderlies to stay in their own homes for a long time. As a 

result of that, the trend of increasing ageing population has put pressure on aged care and 

health services to maximise the wellbeing and to serve an increasing proportion of older 
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people. Therefore, the prevention of old age-related physical and mental conditions and risk 

factors is the biggest concern currently. 

It is necessary to monitor general health conditions and behavioural patterns of the elderly 

to prevent health risks. Given that healthcare services are expensive and there is a shortage 

of caregivers, the idea of Ambient Assisted Living (AAL) has risen. Ambient assisted living (AAL) 

can be defined as “the use of information and communication technologies (ICT) in a person’s 

daily living and working environment to enable them to stay active longer, remain socially 

connected and live independently into old age” (AAL Programme - Active Assisted Living 

Programme - Ageing Well 2018). The living environment where AAL is implemented with 

context-aware health monitoring systems is called the Smart Homes (SH) for aged care. The 

current smart homes can be defined as an application of ubiquitous computing which is 

capable to provide user context-aware services (assistive or automotive services) related to 

remote home control, ambient intelligent or home automation (M. R. Alam, Reaz, and Ali 

2012). Smart homes can provide a better quality of life by offering the Assistive services to 

elderlies and increase the comfort of them by utilising context awareness. Moreover, smart 

homes can increase independent living of elderlies, reduce the cost of health care and 

maintain safety through continuous monitoring. 

While smart homes for aged care provide many benefits, there are some shortcomings. There 

is no immediate medical attention compared to traditional-aged care facilities.  Medical and 

other interventions will be made when such events/emergencies are detected via the 

monitoring sensors. Another pressing issue is privacy. As a general rule, the use of video 

cameras is not a preferred option in monitoring occupants in SHs. The security of data and 

access methods is another important aspect.     

There are many experimental SH systems currently under investigation (Helal et al. 

2005)(Kautz et al. 2002). These systems use various sensors to detect activities of daily living 

(ADL) and provide context-aware monitoring. ASH utilises a central computer or central 

monitoring system (CMS) for processing. The capabilities and the performance of the SH are 

directly influenced by the capabilities and performance of the CMS.  Also, there is a need for 

interoperability, open standards and common platforms for SH for aged care (Barnett et al. 
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2017). The CMS plays a vital role in interoperability and implementing standards which are 

still under development.  

 

1.1 Objective and Research Questions 
Almost all smart home system implementations found in the literature have used ad-hoc 

implementations of CMS. While security and privacy have been identified as key issues, how 

security will be implemented in SH for aged care have been rarely discussed in the literature.  

The issue of interoperability is also rarely addressed.    

The main objective of this project is to define the requirements of the CMS and identify the 

capabilities it requires.  

In order to define requirements, it is necessary to address the following research questions: 

What are the main functions of the CMS? 

What are the main requirements of the CMS? 

How can devices be used across different SH implementations?  

 

1.2 The organisation of the thesis 
This thesis is organised as follows: 

Chapter 2 presents a literature review on smart homes and Ambient Assisted Livings for aged 

care. Further, this chapter describes the main functions of Smart homes and the review the 

research works that apply ambient and wearable sensors to monitor the health status of 

elderlies and finally introduce the Central Monitoring System for aged care. 

Chapter 3 presents the requirements of central monitoring systems for smart homes. The 

chapter is divided into three main sections to describe the function of CMS: Sensing layer, 

Data processing and management layer, Security and access control layer. 

Chapter 4 presents the design considerations of CMS. Firstly, the communication 

requirements of the CMS is described. Secondly,  various steps of data processing are 

highlighted. Thirdly, the implementation consideration of Security and Access control is 

presented. Finally, chapter 5 presents a discussion and future work related to this thesis. 
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2 Literature Review 

The rapid growth of the ageing population and increasing demand for self-care for elderly 

people has led to increasing research work on smart elder care systems in the last few years. 

Smart care or smart home for the elderly is one of the pioneering technological advancement. 

Several research works and surveys are carried out in smart home Ambient Assistant Living 

for elderly care area. 

Section 2.1 provides a description that is necessary to understand the concept of Ambient 

Assisted Living and Smart Homes for aged care. Section 2.2 elaborates the major functions of 

Ambient Assisted Livings for aged care. Section 2.3 gives an insight into the ambient and 

wearable sensors and technologies that are used in the previous work of the smart homes. 

Section 2.4 gives details of the previous smart home project. Section 2.5 briefly introduce 

Central Monitoring Systems for aged care.   

2.1 Ambient Assisted Living and Smart Homes for Aged Care 

 

The demographic shift will have major effects on many facets of human life such as homes, 

infrastructure, community. The demand for health services and aged care is expected to 

increase dramatically. Studies have indicated that from the year 2010 to 2050, the quantity 

of elderly (65-84 years old) requiring aged care will be more than twofold the measure of 

earlier years (Morris et al., 2012). Additionally, the elderly not only require intense physical 

therapy but support their mental and psychological health. Thus, the development of 

progressing treatments is necessary to enhance and sustain their wellbeing.  

As previously stated, AAL aims to help seniors live longer in their own homes and SH for aged 

care is the environment that enables the AAL principles. Satpathy defines smart home as, “A 

home which is smart enough to assist the inhabitants to live independently and comfortably 
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with the help of technology” (Satpathy 2006). Smart home technology can help elderly people 

to increase independence and the quality of life and reduce healthcare cost. The main 

features and functions of AAL can be illustrated using Figure 2.1. 

As the following figure shows, AAl technology is used to monitor the vital signs and Activities 

of Daily Livings (ADL), emergency detection, assist with cognitive impairment, promote the 

healthy living and well being and therapy and rehabilitation application. The benefits of AAL 

are for three types of users: Primary users who the elderly being cared for, Secondary users – 

immediate family members and caregivers,  and Tertiary users – public health services and 

insurance companies.  

 

Figure 2.1. AAL Features and Types of Users  (Maan 2017) 

     

2.2 Major Functions of Smart Homes for Aged Care  

The major functions of AAl can be categorised into these areas: health monitoring, emergency 

detection, rehabilitation and therapy, emotional wellbeing and cognitive orthotics. 
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2.2.1 Health Monitoring 

AAL systems are basically designed to monitor the activities of daily living of a person and for 

providing healthcare services. The health monitoring is a system fixed within the smart home 

or in a smart environment that can be used to evaluate the health status of and to monitor 

the daily activities of the subject. Eventually, these systems provide confidence to elderlies to 

live independently in their own homes for longer and assist the health care professional for 

providing advanced communication. Some of the previous work on health monitoring are 

presented in this section. 

2.2.1.1 Human Activity Recognition  

Chen et al. (2012) carried out a comprehensive survey to investigate the current status and 

development in the field of sensor-based and video-based activity recognition system. (Liming 

Chen et al. 2012).  The research work highlighted the strengths and weakness of the methods 

that are associated with smart home technology and presents the difference between data-

driven and knowledge-driven approaches. They divide assisted living into two categories; 

direct and indirect based on sensing method  

Celler et al. (1995) presented a telemonitoring system to determine a functional health status 

of older people by constantly monitoring remotely by identifying some parameters which 

observe the interaction between participants (Elderly people) and the environment (Celler, 

Earnshawa, et al. 1995). This research work proposed that the functional health status of 

elderly people can be identified by observing the changes in some measures such as sleep 

pattern, mobility, utilisation of toilet, washing and cooking facilities. The telemonitoring 

system used infrared sensors, sound sensors, magnetic switches to detect activities and 

record moments. 

Zhu and Sheng proposed a method for recognising the indoor daily activities that link motion 

and location data of the subject  (Zhu and Sheng 2011). They attached an inertial sensor on 

the right thigh of a person to collect motion data and an optical motion capture system is 

used to get the location data. The combination was less invasive and it has maintained the 

high accuracy rate of identification. To identify the basic activities, they use two neural 

networks. First, the Viterbi algorithm is used for daily activity recognition and Bayes theorem 
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is used to get the location data. They conducted their experiment in a mock apartment and 

get the results proved the algorithm is accurate and effective for activity recognition. 

Papamatthaiakis et al built a smart system for activity recognition of people in their home by 

using data mining methods (Papamatthaiakis, Polyzos, and Xylomenos 2010). They monitored 

and analyse the daily indoor activities of individuals in their homes. For the experiment, they 

used a set of events for each activity to produce temporal relations between events and try 

to find the prominent temporal relations based on association rules to recognise the actually 

executed activities. They recorded the activities of different people in two apartments they 

concluded that the technique is 100% accurate for some activity recognition than other 

techniques which are based on data mining classifier. They state that the proposed technique 

is adaptable and flexible for a dynamic environment. 

Helmi and Almodaresi presented a fuzzy inference System for activity recognition of a person 

by utilizing a triaxial accelerometer (Helmi and AlModarresi 2009). The purpose of the 

accelerometer was to detect the motion of a person and collect the motion data to classify 

motion into four categories that were jumping, moving forward, going upstairs and going 

downstairs. The identification system included three different features standard deviation, 

peak amplitude and the correlation between different axes. The membership features and 

fuzzy rules were described from the experimental value. They claimed that the fuzzy inference 

system can perform better than another classifier. 

Le et al proposed a technique to build smart homes equipped with a noninvasive sensor to 

enable activity recognition in order to improve the living condition of alone elderlies (Le et al. 

2008). They undertook a case study of a person to detect the loss of his independence on the 

basis of activity performed. Firstly they processed the mobility states sequence in various 

allocation around the home then they took out the descriptive rules to identify the activities 

that influence the loss of independence of a person.  

Eunju et al examined the activity recognition and demonstrated that it can be extended in 

order to get societal benefits in human-centric applications (E. Kim, Helal, and Cook 2010). 

They focused on simple human activities recognition. They claimed that the understanding of 

activity pattern is required to understand human activity. They described the two techniques 

to make an activity model. The First technique is based on an initial personalised model for 
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activity recognition. The second one focuses to use an algorithm based on probability to build 

a model for activity recognition. For this purpose, they used the Hidden Markov Model (HMM) 

and Conditional Random Field (CRF) techniques. 

2.2.1.2 Continuous of Monitoring of Vital Signs  

The research work of this category provides the health facilities for elderly people in smart 

homes. Healthcare services can be implemented locally or remotely to create a health report. 

Local monitoring in smart homes can be used to identifying health conditions and to generate 

local warnings alarms. The smart environment produces the long term health record that can 

be analysed by the medical service provider. 

Mihaildis et al designed a system for pervasive healthcare to improve the quality of life and 

independence of older people (Mihailidis et al 2004). The aim of the research was to use 

pervasive computing to develop a smart environment which will monitor the activities of 

elder people with dementia and provide assistance with commands. The system includes 

three agents: sensing, planning and promoting. They traced the face and hands by using 

statistic based skin colour segmenting to extract the information of users’ activities. When 

the sensing step is completed, the planning agent confirms which plan (sequence of steps) 

the user is attempting and if the plan is incorrect such as missing a step the system select and 

play a command automatically. 

The ENABLE project analysed the impact of assistive technology for dementia patients in some 

Europe counties (Adlam et al. 2004). The patients were selected based on the mild or 

moderate state of dementia by their local social service department. Two devices were 

installed for this project: cooker monitor and night light. The cooker was a controlling system 

that detects the dangerous situation and intervenes by turns off cooker knobs automatically 

if the first intervenes fails the system sends a text message to primary carer. The night light 

detects and turns bedside light when a person gets out of bed. The light sensor measures the 

changes in weight on the bed such as getting into or getting off the bed. The researcher 

believed that good relationship and consistent communication between project staff, 

patients and carer are important for effective evaluation. They concluded that the researcher 

should have a better understanding of patients and patience as well to innovate the 

equipment for people with dementia. 



9 
 

Arcelus et al proposed Sit to stand transfer (SiST), a measure of sit and stand the duration of 

a person to predict the physical mobility status of patients ( Arcelus et al., 2009). The 

researchers embedded pressure sensors on the floor and bed to measure the SiST duration. 

The start time was set with an algorithm of motion of the centre of pressure (CoP) on the 

front edge of the bed and the end time was set by the third order transfer function by using 

the foot pressure on the floor. They reviewed the video recorded data to estimate the time 

error. The system did not implement complex equipment to estimate the SiST duration. They 

have not provided a detailed characterisation of the system such as the measure of stability 

while standing, a measure of usage of hands, a measure of leaning of the forward trunk. 

Vainio et al designed a proactive and adaptive home control system to anticipate the user's 

requirements  (VainIo et al., 2008). The aim of the research was to control the environment 

actuators in order to fulfil the need and desire of the user. The system can recognise normal 

living habits and provide notifications of daily activities such as sleeping pattern, medicine 

taking to caretakers. The system works autonomously, however, the residents still have 

control of the home. 

Barnes et al developed a telecare system based on lifestyle monitoring that can detect the 

movement of the residents (Barnes et al., 1998). The aim of the project was to provide a low-

cost technological solution to increase the provision of care, quality of life and independence 

to elderlies in their own home. The trial was performed with monitoring data of the elderly 

by British Telecom and Anchor trust.  Researchers installed magnetic contacts and the IR 

sensors at the entrance door the house. It measures the temperature in the living area by 

using temperature sensors and an alarm activation system was implemented to detect 

behaviour and communicate with caregivers. They used a new telecom the feature No Ring 

Calling in order to make the system non-invasive. The No Ring Calling was a phone call without 

a ring. As the main objective of the life monitoring system was the low cost and non-invasive 

technology, so they used clients existing telephone line for the collection of data. 

William et al proposed an architectural model of integrated telecare system named CareNet 

(Williams, Doughty, and Bradley 1998). The main components of the model are a sensor bus, 

a sensor set, a control unit and an intelligent monitoring system. In order to collect the 

psychological data, the authors used the spirometer, PPG, ECG, temperature, colourimeter 

and pulse measuring tools. The communication network is implemented with Body Area 
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Network and HomeLAN in order to collect real-time data, command and control data and 

event data which has allocated a smart system including body hub, clients healthcare record, 

smart sensors. The system provides health information, emergency alarms and monitoring 

services. The CareNet system used distributed intelligent to provide information processing 

features which enhances its capacity to perform online data. 

2.2.2 Emergency Detection 

Various AAL technologies have been developed for emergency detection in order to assist 

elderlies. These technologies include fall detection, detection of anomalous situations and 

event automation. The detection of anomalous activities is an important part of AAL that 

measures the functional ability of a subject and ensures safety by monitoring daily activities. 

The role of anomaly detection is to identify the unexpected and rare events that may lead to 

the situation of concern. Fall detection technology is used to rapidly detect falls and 

intervention for subjects who have experienced the falls. The following section will review the 

work related to fall  detection and anomaly detection  

2.2.2.1 Detection of anomalous situations and Event Automation 

Phua et al developed erroneous plan recognition (EPR) to detect the faults in the performing 

daily activities of older people suffering from dementia (Phua et al. 2009). The system detects 

and sends audio and visual messages to older people in order to enhance their problem-

solving abilities and to replace their diminished memory. To monitor the activity of daily living 

they used sensors deployed in SH. The biggest challenge of the research was the highly 

inaccurate behaviour of dementia patients. The sequential and independent layers were 

arranged in a prioritised way to detect a specific error first.  

Ordonez et al proposed an automated behaviour analysis system to improve the efficiency of 

old aged people and disables (Ordóñez et al., 2014). Authors used behaviour patterns to 

record the measurement from different sensors and detect the anomalous behaviour that 

shows changes in health status by predicting the standard behaviours.  

Ghasemzadeh et al designed a system with physiological monitoring for human body balance, 

the system collects muscle activities and acceleration signals for assessing standing balance 

(Ghasemzadeh et al 2010). To get the relevant information from the interaction between 
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Electrogram (EMG) and accelerometer measurement they used statistical techniques and 

machine learning algorithm. 

Das et al introduced Mavhome by using artificial intelligence, mobile computing, multimedia 

technology and robotics (Das et.al., 2002). They divide the design into four layers; physical, 

communication, information and decision. They used the X10 protocol to monitor the devices 

installed into the electric wiring system of the home. They used an Active LeZi algorithm to 

make accurate prediction and decisions. The goal of the project was to increase the comfort 

of inhabitants and minimus the operational cost. 

ACHE was a system designed with different sensors to monitors the device usage patterns of 

inhabitants (Mozer 1998).  They used a neural network and build an adaptive inferential 

engine to control the heating, lighting and temperature of the home. ACHE was one of the 

oldest smart homes. The capabilities of this project were limited to only three components; 

to control light, heat and temperature. 

Brdiczka et al described a framework for contextual learning in smart homes to address the 

problem of learning situation models (Brdiczka, Crowley, and Reignier 2009). The authors 

designed a 3D smart home with cameras and microphone for situation modelling. It depends 

on the video tracking and role detection of residents.  It can detect the speed and distance of 

residents from the interacting object. The identification error rate of the proposed system 

was 82 %. 

Yamazaki proposed a real-life testbed named Ubiquitous Home for context-aware services. 

The system linked the sensors, appliances and devices to create new house services (Yamazaki 

2006). Active and passive RFID receiver was installed into the house to detect the residents. 

Pressure sensors were embedded to locate the residents, they installed plasma panels, 

microphone, liquid crystal display for user interaction. The project was aimed at creating an 

environment between system and human. However, the system was useful for a few house 

services for example recipe display, search for forgotten property.  

Pirttikangas et al researched activity recognition with small wearable sensor devices attached 

to four different parts of the body (Pirttikangas, Fujinami, and Nakajima 2006). For the 

experiment, they collected data from 13 persons performing 17 daily activities. They used the 

forward-backwards sequence algorithm for feature selection.  
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Swaminathan et al presented an object recognition approach using image localisation and 

registration (Swaminathan, Nischt, and Kuhnel 2008). They used direct feature matching 

approach to register the appliances with an image processing system. The environmental map 

was used to select the different objects according to the voice command of the user. The 

project demonstrated the benefits of visual and verbal inputs combination for the smart 

home. 

Shehata et al. designed a runtime policy interaction management module for detecting and 

resolving user-defined policies (Shehata and Eberlein, 2007). They used the identified 

requirements interactions by using the semi-formal method to differentiate the interaction 

pattern between home appliances. They proposed to extend traditional KNX networking 

system to use it as an engineering Tools Software for applying the policies. The contribution 

of this research was to detect and resolve unwanted policies interactions. It was the first 

module that can be implemented in the KNX network.  

Ma et al gave prominence to context awareness for automated services in ambient assisted 

living ( Ma et al 2005). They aimed to implement the context awareness into Case base 

reasoning to provide more appropriate services in a smart home. The case base reasoning 

relies on previous experience and interactions to resolve current issues. To test the 

methodology authors used cancer diagnose database contains geospatial context. In this 

research, they used a few scenarios for example tv interactions, lamp interactions and Ac 

interactions and plan to add more contexts and to enhance the features of the case table in 

the future research. 

2.2.2.2 Fall Detection 

Gjoreski et al proposed a system to detects fall in older people by joining the two subsystems; 

electronic cardiograph sensors (ECG) and accelerometer (ACC) (Gjoreski et al. 2014). To 

recognise the activities and falls they used ACC data and ECG data was used to detect 

physiological signal such as heart rate, respiration rate. The combination of accelerometer 

signal and ECG signals was used to detect the anomalies in older people. The researchers 

claimed that the proposed work can be very useful health care and for patient’s safety.  

Wu and Xue proposed a pre-impact system with inertial sensors for fall and injury prevention 

in order to increase the confidence of independent living for elderly people (Wu and Xue 
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2008). Inertial profile of the body was used to recognise falls from non-fall activities and to 

detect the early falls they used the threshold detection algorithm. 

Rimminen et al proposed a fall detection method using near floor sensor and pattern 

recognition (Rimminen et al. 2010). The purpose of the floor sensor based on near field 

imaging are to detect the location and pattern of people with a measure of impedances. For 

the classification, size, shape and magnitude of the pattern are used and the system showed 

a good performance with 91% of sensitivity and specificity. 

Zhuang et al proposed a fall detection system that distinguishes falls noise from other noise. 

They differentiate other sounds by only using far field microphone. They used a Gaussian 

mixture model (GMM) to model audio segments and falls then make a pairwise difference 

between audio segments using Euclidean distance (Xiaodan Zhuang et al. 2009). 

2.2.3 Cognitive Orthotics 

Cognitive orthotics are personal reminder systems to assist people with cognitive decline. In 

other words, it is a software-based personal reminder system, which can be beneficial for 

people with cognitive impairment including elderlies (Koziol et al. 2017). It is also known as 

cognitive artificial devices. These systems may include the features of artificial intelligence to 

fulfil the needs of the person more appropriately. These system assists elderlies to perform 

ADL satisfactorily and enable them to stay in their own homes longer. The idea to enhance 

cognitive of disabled people with the help of technology was originated nearly 1960s, early 

devices were calendar system, talking clocks (Douglas 1963). The earlier cognitive orthotics 

was mainly focused on alarm systems to remind elderlies of specific tasks at a fixed time. Auto 

minder is a system that uses a plan management technology and AI planning to schedule the 

daily activities of a person (Pollack 2002). In recent time, these devices and tools are designed 

with the help of data mining and Artificial intelligence. A walker reminder device was designed 

to reduce the incident of walker non-use. It detects a person and provides reminding signals. 

When a person starts to use the walker signalling stops. Infrared and ultrasonic sensors were 

used for detection. It uses a switch to the handle of the walker that send feedback to the 

system to stop reminding when the person is engaged (Koziol et al. 2017). A model was 

proposed which focus on well-known places or point of interest to suggest the user-friendly 

routes to the destinations according to the context of the user rather than conventional street 
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names. The system was based on a client-server approach. (Hervas, Bravo, and Fontecha 

2014). A multifunction cognitive orthotics system names “Essential Steps” was developed for 

people with chronic brain damage to assist with ecologically relevant activities. It was a 

personal computer-based compensatory approach that uses the technology and 

neuroscience to full fill the needs of people with cognitive impairment (Bergman 2003). 

 

2.2.4 Therapy and Rehabilitation 

AAL can be used to assist in rehabilitation and therapy of the elder persons with physical and 

cognitive disability resulting from neurological conditions such as stroke or traumatic brain 

injury. The elder patients who suffer from these neurological conditions may require long 

term rehabilitation after discharge from an acute rehabilitation hospital. Telehealth has the 

potential to address the rehabilitation and follow up care of the elderlies with physical and 

neurological conditions. 

 Telehealth which involves the services of telerehabilitation, telemedicine and teleconsulting 

is a way of care delivery that improves the access to health services. Telehealth can be defined 

as the use of ICT devices for providing healthcare services for a specific patient including a 

healthcare provider at distance(AHRQ 2016). The mechanism of providing telehealth care 

involves the mode of communication between parties( patient and providers) to exchange 

the data or can be provided with real-time interaction (Pramuka and van Roosmalen 2009). 

The technology for the exchange of data to provide healthcare includes emails, video 

conferencing, texting, cameras, GPS, 3D motion sensors or robotics. The pairing of these 

technologies to deliver healthcare services can be affected by a specific clinical application. 

So, it is important to understand the need for a clinical application to select technology and 

data mode for healthcare delivery (Pramuka and van Roosmalen 2009). 

Research by the Agency for Healthcare Research and Quality (AHRQ) have provided the 

evidence and benefits of providing telerehabilitation for cardiovascular conditions. The 

research claimed that the telehealth was used for counselling, remote monitoring, 

communication for chronic diseases including diabetes and cardiovascular. The outcome 

benefits of the telehealth were cost-effectiveness and less hospitalisation (AHRQ, 2016). 
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Telestroke is an established mode of care that is used to provide emergency stroke care 

remotely (Hess and Audebert 2013). Research has examined the management of the stroke 

patient with thrombolysis using tissue plasminogen activator by using the telestroke network. 

The study claimed that the result was similar between a patient who receives the 

thrombolysis (tPA) through telemedicine using video teleconferencing and patient receiving 

tPA at a stroke centre, the thrombolysis using tissue plasminogen is delivered to three hours’ 

time window for three months. The study also considered that telestroke is cost-effective 

(Kepplinger et al. 2016). 

Additionally, Telehealth research has explored the area of delivering the physical therapy 

services with a recent study of using the telehealth services for the rotator cuff injury (Macías-

Hernández et al. 2016). Moreover, the review of the diagnosing imaging of the elderlies has 

been managed by using the telehealth. The software-based interface allows the medical 

provider to share the images with patients, teleradiology algorithm has been used for decades 

to deliver the service of diagnosis imaging review (Bashshur et al. 2016).   

In regard to medication adherence, many research has been conducted to provide medication 

assistance to elderlies. Medication adherence is a medication-taking behaviour. It can be 

described as an extent to which patients take the medication prescribed by the providers 

(Osterberg and Blaschke 2005). A number of medication adherence for elderlies has been 

designed ranging from electronic pill boxes to mobile-based apps. MedTracker, an 

instrumented portable pillbox that monitors the medication adherence uninterruptedly. This 

device provides information about medication errors and non-adherence (Tamara. L. Hayes 

et al. 2006). Radio frequency identification tags (RFID) based medication monitoring was 

developed (Fishkin, & Wang, 2003). It was a flexible system that detects medication status. It 

also includes a user interface to provide medication information. Some studies also used the 

prompting services in order to remind the subject to follow the medication with the help of 

images, audio and videos. A study presented a medication adherence using ubiquitous 

multimedia services, Multimedia Healthcare System (MHS) automatically monitor medication 

(Tang et al. 2011). A recent study, PillSense has designed a pill bottle based on non-invasive 

medication monitoring system attaching the analogue and digital sensors on the pill bottle. 

These sensors work collaboratively to detect the cap removal, perform motion monitoring 

and measure sensing activities (Aldeer, Martin, and Howard 2018). 
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2.2.5 Emotional Wellbeing 

The AAL technology has been aimed to provide social connectedness or emotion support to 

elder people. The social connectedness can be referred to as an attitude or relationship of a 

person to society (Rettie, 2003). It can be aroused with the presence of other persons. The 

social connectedness can be provided with the interaction between subject and smart 

devices. It can be divided into two categories:  interaction or connection between user and 

devices in the smart home and the interaction or connection between the user and smart 

devices in another person’s home (B. Lee et al. 2017). The AAl technology for social 

connectedness and emotional well-being includes the web-based intervention and 

communication program, access to asynchronous discussion forum online self-help program 

and remote family communication. Research has designed a digital family portrait for 

visualising the daily living of the elderlies parent remotely.  CareNet Display is another system 

that provides interactive access of a member of the elderlies’ care network to daily activities 

of the elderly person. Family Window System was a video-based communication tool was 

invented to promote the feeling of connectedness to the family. Some systems are developed 

to support a subtle form of social awareness, for example, a lamp glows when the system 

detects a movement in the remote living room. This research aimed the ambient awareness 

to show the emotions between the elderlies and family  

 

2.3 Sensors and Technologies used in Smart Homes 

 The sensor technology can be divided into three categories on the basis of the ability to sense 

human activity in the smart home; wearable sensors which are attached to the human body, 

Ambient sensors which are embedded into the infrastructure and objects of smart homes and 

combination of wearable and ambient sensor. 

2.3.1 Ambient sensors 

Ambient sensors are smart devices embedded in different parts of the home or attached to 

various objects that are common in daily activities.  The role of these sensors is to collect data 

unobtrusively. Some of the commonly used ambient Sensors are described as follows. 
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2.3.1.1 Contact Switches 

 Contact switches are embedded on the front doors, doors of appliances and cabinets doors 

of the home to get the information about the specific interaction between the occupants and 

objects. A smart home project classified the data into six activities such as sleeping, eating 

food, they logged the data from the contact switches and motion sensors. (Brown, Majeed, 

Clarke  and Lee ., 2006).  

Wilson and Atkeson used contact switches with break beam sensor, motion detector and 

pressure sensors, these sensors can be triggered by gross movement, point manipulation, 

point movement and point manipulation (D. H. Wilson and Atkeson 2005). 

Ordonez et al employed datasets by using three kinds of binary sensors installed in five 

different part of the home to detect seven daily activities of using the toilet, leaving the house, 

having dinner, eating breakfast, drinking, sleeping, taking shower). They used the passive 

infrared sensors to detect the movement in a particular area. In order to measure toilet being 

flushed flush sensors were used and read switches were used to detect the open/close state 

of the doors (Ordóñez, de Toledo, and Sanchis 2013). 

2.3.1.2 Video sensors  

Video sensors are commonly used, high content sensors for aged care. These sensors are used 

for various application in ambient assisted living such as to recognise the activities of 

residents, locating residents in their homes and provide information for computer 

interpretation. The main drawbacks of the video camera are its technical issues regarding 

information extraction and storage requirements and social issues regarding privacy (Y.-S. Lee 

and Chung 2012). 

Tabar et al used the three cameras in a room with a combination of a wearable accelerometer 

for fall detection (Tabar, Keshavarz, and Aghajan 2006). They used a real-time image 

processing to estimate the position of the residents and to analyse the data. This setup was 

very useful to reduce the false alarms which were caused by sensitive accelerometer signals. 

The key benefit of the setup was its ability to preserve the privacy of residents when 

transmitting visual data is not needed. 

The PlaceLab, a living laboratory in the home for the research of ubiquitous computing 

installed nine colour camera, nine infrared cameras and eighteen microphones in different 
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areas of the home such as in cabinets, on the kitchen counter, on the office desk. To capture 

the residents’ behaviour, four video streams and one audio stream was used. The image 

processing algorithm was used to select from video stream which detects the behaviour of 

residents based on motion and camera layout in the home. The data of the streams were 

organised with other sensor data to save to a disk drive (Satpathy 2006). 

2.3.1.3 Radio Frequency Identification 

RFID refers to the technology that is used to track the subject and object in a smart home 

independently through radio waves. It has passive RFID tags which are attached on the objects 

to monitor the interaction between user objects and the active RFID tags which that can be 

carried by a person and provide greater range. When a reader interrogates the tag, its 

response to a unique identifier. The passive RFID tag does not come with a power source and 

mostly attached to the object to detect the interaction between user objects and the active 

RFID tag is worn by a person for personal identification. 

The SmartWave system and SmartPlug system developed by GatorTech Smart Home is based 

on RFID technology. All the power outlets in the Smartplug system was designed with an RFID 

reader and all the electronic devices are attached with RFID tags. The RFID reader into power 

outlet read the tags when a device was plugged in and send data to the main system and 

system control the device and identify its location (Elzabadani et al. 2005). Observing the 

usage of electronic devices provide information about the specific daily routine of the 

residents. The SmartWave system is a microwave-based cooking system that has used RFID. 

RFID readers were attached under the counter of the kitchen to scan the food packets in order 

to get the cooking instruction from the database and automatically start microwave according 

to instructions (Russo et al. 2004). 

Pirttikangas et al. used the RFID tags to detect the long term daily activities of dementia 

patients, they attached the RFID tags into the slippers of the residents in a smart home. 

(Pirttikangas, Fujinami, and Nakajima 2006) . Then they designed a system by attaching RFID 

tags into the objects in order to track the daily activities, the information of the activities are 

obtained with the sequence of used objects. 

Kim et al developed RFID technology based ubiquitous healthcare system for real-time 

monitoring and to accurately locating elderlies. They analysis the location based on the length 
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of time the residents stay in a specific location. The collected data is used to identify the 

movements and activity patterns and to predict the wellbeing of elderlies (E. Kim, Helal, and 

Cook 2010). 

The key advantages of RFID are its low cost and small size. Moreover, RFID is well suited for 

monitoring the activities of several people. Unique identification of RFID is very useful for 

tracking the multiple people location and interactions. However, the issues of tag collision 

and reader collision are the disadvantages of RFID technology. Tag collision issue arises when 

an RFID tag reader reads a large number of tags and not able to differentiate the tag signals. 

The reader collision occurs when the tag is not able to answer all the reader, as the tag is 

being read by multiple readers at the same time. 

2.3.1.4 Passive Infrared Sensors  

PIR motion sensors are mostly used to monitor the movement of a person. A lot of 

researchers have applied PIR sensors for motion detection in a smart home. These sensors 

are embedded on the ceiling and walls of the smart home for elderlies to obtain motion data 

related to redefined activities. Various sensors are installed into parts of the home to detect 

different activities such as room temperature, stove use, water usage, the opening of 

cabinets. The obtained motion data is transmitted to the caregiver of the elderlies by using a 

base station, data is further analyzed for the trend to detect the changes in activities and also 

to distinguish the changes of health status, PIR sensors can also generate alarms if the change 

occurs. These sensors are also very useful for fall detection and detection the degree of the 

activities, to analysis gait velocity, sleeping pattern, time out of the home, activities at night 

and user location. 

Alwan et al analysis the validity of the rule-based inference method of specific Activity of daily 

living. They have installed fifteen different switches in various part such as on doors, 

microwave. The result proved that the rule-based algorithm combined with detectors can 

identify the activities of meal preparation and showering  (Majd Alwan et al. 2005). 

Barger et al presented the probabilistic mixture model, they used motion sensor data for 

activity detection. They used a set of motion data in order to evaluate the work and off days. 

The motion data was divided into 139 clusters (Barger, Brown, and Alwan 2005). Celler 

explained the technical features for monitoring the health status of elderlies. The changes in 



20 
 

health status were recorded continuously for five months at the smart home (Celler, 

Earnshaw, et al. 1995).  

Hayes et al described a Gaussian Kernel-based model based on probability density method 

for detecting the walking. Authors embedded different types of sensors in homes of 265 

people It has produced 98% accuracy (T.L. Hayes, Pavel, and Kaye 2004). Lee et al developed 

a behaviour monitoring system based on PIR sensing system which can detect the motion of 

elders. Moreover, a remote monitoring system was developed for caregivers to monitor the 

elderlies (Lee S.-W., Kim Y.-J., Lee G.-S., Cho B.-Q. 2007).  Noury and Hadidi et al designed a 

simulator that identifies activities of a person by using presence sensors in the smart home 

for elderly care. A mathematical model based on HMMs was designed by using real recorded 

data in order to generate simulated data series for different situations, then real data and 

simulated data was measured on the basis of similarity (Noury and Hadidi 2012). Virone et. 

al. conducted a simulated case study to test the pattern recognition model for the activity of 

daily life and they also look at activity deviation during daily activity monitoring. Wang 

considered the activity pattern deviation for early detection of health issues. The differences 

among various activities density map were measured to automatically detect changes in 

activity pattern.  The result showed the dissimilarity of activity density map was from 0.3 to 

0.5 (Virone 2009). The smart Condo project in Alberta, researchers used 13 passive infrared 

motion sensors to locate the residents at key areas (Bores et al2010). 

2.3.1.5 Pressure sensor 

One of the main function of pressure sensors is to detect the presence of inhabitants within 

the house and transition from sit to stand or stand to sit, these sensors are usually embeded 

into furniture. Arcelus et al used the pressure sensor array under the mattress and beside the 

bed in order to automatically measure the duration of sit to stand transition of a person. The 

pressure information extracted from the sensor data was analysed over time. The centre of 

pressure (CoP) motion was detected in the wavelet domain to detect the occurrence of the 

motion. The pressure sensing technique provides useful information for the monitoring of 

patients in a smart home. For further research Arcelus et al installed the pressure sensors in 

a toilet on the commode. In experiment elderly people were included as a subject. The clinical 

parameters showed that the older people took more time to sit to stand transition and stand 

to sit transition.  Arcelus et al again conduct research that focuses on the analysis of state 
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transition (sit to stand and stand to sit) performed by the inhabitants in bedroom and toilet 

to assess the behaviour. The information was obtained in various modalities and the clinical 

features were extracted from the bed exits and from the toilet to obtain a warning level. They 

have shown the functions of a pressure sensor array system for tracking the warning signs 

based pressure measurement sequences (Arcelus et.al., 2010). 

2.3.1.6 Floor sensor 

The floor sensors are commonly used sensors in a smart home environment. These sensors 

are used in different areas of smart environment for eldercare to predict the emergency 

situations, for example falls and for movement detection. Alwan et al.2006 described the 

design and functionality of a floor vibration based sensor to which was fully unobtrusive to 

the inhabitants. The performance of the detector was analysed by conducting an experiment 

using anthropomorphic dummies. The fall detection accuracy rate was 100% with the minimal 

potential for false alarms (Alwan et al. 2006).  

Lombardi et al. proposed a data model to store and process the data of the sensing floor. The 

model used the biomechanical based on the ground reaction force (GRF) concept to estimate 

the centre of floor pressure. The experiment was conducted several times on the real sensing 

floor prototype. The approach outnumbered the old background subtraction schemas that 

accurately detect the presence of the people in the smart home (Lombardi et. al.,2015).  

Serra et. al.  proposed a smart flooring system based on the piezoelectric polymer floor 

sensors. The aim of the research was to recognise human footsteps. The sensors generate a 

signal used for the normalization calculation to compare a signal and reference signal. The 

Pearson product moment correlation coefficient (PPMCC) used between the two signal for 

similarity calculation. They obtained 99% accuracy (Serra et. al., 2014). 

2.3.1.7 Sound sensors 

The sound sensors are utilized to detect daily activities in a smart home. For example, a sound 

that is created when an object or a person falls. Li et al developed an acoustic fall detection 

system that automatically informs the caretaker about the falls. They used 8 microphones 

circular array to predict the sound location. The sound estimation experiment showed that 

sound array circulation system is robust and reliable to interference. Mel frequency cepstral 

coefficient was used for sound classification. The classification result on pilot dataset was 
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excellent with 120 non-fall sound and 55 fall sound (Yun Li et al. 2010). They proposed a new 

approach to increase the accuracy of the acoustic fall detection system. Popescu et al 

presented an acoustic fall detection system. The experiment was performed on the five 

different falls (Popescu et.al., 2008). They applied the array of acoustic sensors to get 

information about the sound source height. If the sound comes from the source above 2 feet 

in height, it is considered a false alarm. They tested the system in 23 sets of falls, falls was 

performed by the stunt actors, who imitate to falls of an older person. The system reduced 

the fall rate from 32 to 5 per hours with 100% accuracy  

Zhuang et al. proposed a system to using the audio signals generated from a single 

microphone (Xiaodan Zhuang et al. 2009). The system used the Gaussian Mixture model to 

measure the difference between audio segments. The system improves the fall classification 

from 59% to 67%. The system also detects the falls which are more difficult to detects    

2.3.1.8 Radar sensors  

Radar sensors are used to detect the moment, to detect the human cardiopulmonary motion. 

They are more powerful than the vision-based vision in as it can go through the strong 

obstacles such as walls and furniture. Moreover, it maintains privacy while monitoring in a 

smart home. Forouzanfar et al presented a methodology for the classification of various 

events. They have used a radar signal to derive the time and frequency domain features and 

used the Bayesian classifier in order to detect the target event (Forouzanfar et al. 2017).  

Kim and Toomajan used a deep convolutional neural network and micro-Doppler signature 

for recognition of hand gesture. A Fourier transform feature of the radar sensor is used to 

recognise ten types of hand gesture (Kim & Toomajian 2016). 

2.3.2 Wearable Sensors 

The wearable sensors play an important role in the Ambient Assisted living in elderly care. 

The wearable sensors are worn by the residents, these sensors can be embedded into 

wristwatches, shoes, clothes or placed directly or indirectly on the body. These sensors 

monitor the features related to psychological or movement of a person, for this purpose they 

run continuously. They also get used to obtain information regarding body movement, body 

position, body temperature and so on. 
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Matthews et al developed a physiological Sensor Suite(PSS) that provide a completely 

integrated. it is developed at QUASAR in the form of the body-worn system, the purpose of 

the PSS was real-time monitoring of the physiological and cognitive monitoring of a person, 

more specifically the system was used to monitor the cardiac and neurological conditions. 

The system measure four bioelectric signals; EOG which was used to monitor the blinking of 

eyes these sensors were embedded into the glass, ECG was used to measure heart rate ( 

embedded into a belt), EMG was placed on the bicep to measure the muscle activities, EEG is 

a bioelectrode of monitoring through hair (Matthews et. al, 2007). 

Tartarisco et al  2012 proposed an automatic pervasive system to measure the stress status 

of an individual. They used the ECG sensors integrated into a wearable device to monitor the 

stress level of a person during daily activities. The system is capable to collect the data from 

the wearable sensors remotely and from that data the detection of the anomalous situations 

(Tartarisco et al. 2012). Zhu and Sheng monitored the daily activities; walking, standing, 

sitting,  sit to stand, stand to sit, sit to lie in a home (Zhu and Sheng 2011). They placed an 

accelerometer on the right thigh of the resident to get the motion data. They also use the 

optical motion capture system to get the location data.  researchers of the Activity recognition 

based project placed accelerometers on the chest, waist, thigh and left underarm to detect 

the activities of walking, lying, sitting, standing, transition. (Gao, Bourke, and Nelson 2014). 

Narayan et al used the triaxial accelerometer for the fall detection, it was placed on the waist 

to measure the time for sit to stand transition (Narayan et al., 2009).  et al used the used the 

gyroscopes with the accelerometer to measure the sit to stand movement rising from a chair. 

Gao et al used multiple sensors on distributed body places to recognise the activities more 

accurately and more specifically. For the experiment, they fitted four accelerometer based 

sensors on the chest left thigh, waist and underarm of eight elderlies (Gao, Bourke, and 

Nelson 2014).  

Kwapisz et al. described a phone based accelerometer for activity recognition. The 

accelerometer data of the daily activities performed by twenty-nine users was collected and 

then aggregated the data to summarise the user activities over 10 second interval and the 

resulting data was used to build a prediction model (Kwapisz et.al, 2011). 

Hemalatha et al used the triaxial accelerometer for the bit pattern of the daily activities such 

as walking, sitting, laying in a time sensitive sliding window. The fall was detected by setting 
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the most important bit of bit pattern and the lying activity used to distinguish falls (Hemalatha 

and Vaidehi 2013). 

Mannini et al proposed an algorithm to process the data obtained from the wrist and ankle 

wearable sensors. They classify the activities on the basis of behaviour into four categories 

these are the cycling, sedentary, ambulation and other categories. The subjects had worn the 

accelerometer on the wrists and ankles while performing twenty-six different activities. Then 

the was collected and processed (Mannini et al. 2013) 

Harrison et al developed a mobile sensing platform based on the machine learning to detect 

the activities. They used multi axial sensors such as barometer, accelerometer, gyroscope, 

placed on a single the body part such as hip, shoulder. The accelerometer was used to 

measure the motion and barometer was used to measure the air pressure in order to detect 

the walking activity of a person (Harrison et.al.,2010).  

Arif and Kattan 2015 developed a time domain based system to recognise the physical 

activities such as cycling, walking, running, ascending stairs and descending stairs, vacuuming 

clothes, jumping rope and ironing. Various sensors including accelerometer, magnetometer, 

gyroscope, temperature sensors were worn by the person (Arif and Kattan 2015). 

Dong et al 2011 detected the activity of eating by placing a magnetometer, gyroscope, 

accelerometer on the wrist of the user. The data was collected and then data was divided for 

the different activities. The accuracy of the activity of eating was 91%. Wildhorse and Baldauf  

2015 attached the three sensors accelerometer, magnetometer and gyroscope on the 

wristwatch for the detection of drinking activities. The researchers developed a system based 

on the data mining technique to automatically detecting the activity of drinking. The accuracy 

rate was 91% to 97% 

So the wearable sensors used for ambient assisted living for elderly care can provide the 

accurate detection of some activity of daily living.  

All of the recent research has not tried to interconnect these smart and wearable devices to 

a system or infrastructure.  However, there are few algorithms designed for wireless sensor 

network but none of these algorithms is suitable for a wearable sensor. The data rate, 

communication, transmission, number of sensors, energy consumption are major challenges 
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in sensor area. There is a need to connect these sensors and smart devices altogether to 

extract the data automatically.  

2.4 Smart home projects 

Smart homes for aged care research have been carried out over a few decades. Some of the 

recent smart home projects are as follows. 

Casattenta,(2010) a research project in Itlay demonstrated a system by using the ambient 

intelligence, sensor fusion and wireless network to monitor and recognise the critical 

conditions such as falls and immobility of older people. The system was designed with 

wearable sensors nodes and fixed sensor nodes to monitor the health and activities of 

inhabitants and to recognise the dangerous events (Farella, Falavigna, and Ricc 2010). 

The aim of the Gator tech project was to design an assistive environment by using pervasive 

computing to promote the independence and quality of life of aged people. This project 

focused on the integration and interconnection of sensors, computers and devices. They used 

the generic design for the smart environment to maintain a service definition for sensors and 

actuator (Helal et al. 2005). 

CASAS project  (Cook et al. 2013) introduced a lightweight design of a smart home that was 

easy to install and can link multiple smart homes together. They used machine learning for 

activity recognition of elderlies. They proved that the implemented algorithm can detect the 

difference between the activities. Users can add new bridges without changing middleware. 

They used a compact middleware, all the components of CASAS  was fitted in a box. All the 

sensors were embedded in physical components and users can add more sensors and 

controllers as needed. They used a computer with  ITX form factor server for database, 

application component and middleware. 

Assisted Cognition Environment (ACE) was an interdisciplinary project which used an artificial 

intelligence system to support and improve the quality of life of cognitive patients. The aim 

of the project was to provide active assistance to the patient by sensing the location with the 

help of GPS, motion detectors and badges, identify the daily behaviour patterns and then 

support patients by providing the physical and verbal intervention in case of danger. The 

Assisted Co 
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gnition system used two models, the activity compass and adaptive prompter. The activity 

compass was basically an activity supervision model that helps to direct the disoriented 

patient to their destination. The adaptive prompter directs the patients to perform multistep 

everyday activities (Kautz et al. 2002).  

 

2.5 Central Monitoring System for Smart Homes for Aged Care     

The central monitoring system is responsible for all the functionality of a smart home. In other 

words, centralised monitoring system can be based on a device which can control all the 

functionality of the system including data collection from sensors,  data processing with 

various algorithms and reasoning techniques and sharing the information with outside parties 

and providing services. However, the information about CMS in the literature is very limited. 

While several functions of the central unit have been identified by various authors, for 

example, the research identified three stages of activity based AAL; the raw data acquisition, 

sensor data processing and provide the useful information to caregivers (Ni, García Hernando, 

and de la Cruz 2015). However, a full description of the central unit cannot be found. Another 

example can be found. 

2.6 Summary 

Although there are numerous developments in Smat home and lots of research work on AAL 

especially on sensors and activity recognition. These researches have mainly focused on 

health prosprctives of smart homes. The information about the design of a centeral 

monitoring system (CMS) for smart home is limited. Moreover, there is no clear definition of 

the main functions of CMS. Also, there is no path for interoperability of different sensors by 

various developers. Hence, there is a need to identify the requirements of the CMS for the 

full functionality of SH.  
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3 Central Monitoring System for Smart Homes for Aged Care 

 

In the previous chapter, the concept of AAL and the development of smart home technologies 

were discussed.  As described earlier, a smart home is a regular home which has been 

augmented with various technologies in order to provide comfort and to monitor the 

wellbeing of the residents (Al-Shaqi et al 2016). This is achieved by extracting context 

information by combining various forms of sensor data where the central monitoring system 

(CMS) of the smart home plays a significant role. While the existence of the CMS is presented 

in almost all AAL related papers and its function has been described by some papers (Mshali 

et al 2018), a clear definition or the complete function of the CMS has not been articulated in 

literature.  A lot of researchers have developed Smart home technologies such as wearable 

devices, intelligent control, indoor condition monitoring, smart appliances and various 

sensors that can be used in the smart home to provide comfort and safe environment to the 

elderlies.  However, these devices and sensors are controlled separately, which can effect the 

efficency of the system. So, SH for aged care solutions are becoming available, so are the 

various sensors and devices that go. We need a unified platform for interoperability of 

devices. As a result, we need a unified architecture for CMS that can work across different 

vendors/devices. 

Central Monitoring System

Wearable Sensors Ambient Sensors

Database Webserver

Internet/Clousd User Interface

 

Figure 3.1 Overview of Central Monitoring System 
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3.1 Main requirements of CMS 

In short, CMS should collect data from sensors and actuators, analyse data, extract contextual 

information, report alters and warnings as necessary and upload data to external servers or 

cloud for relevent parties to access.  

In order to develop an efficient central monitoring system that can assist the elderlies 

proactively, a system needs to have full access to contextual information and should capable 

to collect and process the information. Moreover, the CMS should be aware of the 

surrounding of the elderlies in order to provide the services.  So, there is a need to have a 

continuous process to automatically acquire the surrounding, behaviour and physiological 

information of the aged people and that can eventually provide the proactive services on the 

basis of available the information.   

The CMS should able to collect the healthcare data from the sensors and medical sources, 

process and manage the data and make the health status information available on the cloud 

for the caretakers, healthcare professional of the elderlies or other parties. A three-layer 

architecture can be adopted; Sensing layer, Data Processing and Management layer, Security 

and access control layer. Similar approaches have been used in (Ni, García Hernando, and de 

la Cruz 2015),(Salama et al. 2018)  in describing the CMS. 

The sensing layer should manage the smart devices, wearable sensor signals and the medical 

data. Various ambient sensors and wearable sensors can be utilised to gather information 

about the elderlies. 

 The data processing and management layer should process the contextual data. In this layer, 

the activities can be aggregated from the sensor data feed and the various analytics methods 

can be performed to process the data. The key function of Data processing and Management 

layer should extract the activity recognition and localisation by using data collected from 

sensors. The other function of the data processing and management layer is to gather all the 

data and store it with the healthcare data in a secure cloud. Moreover, the data management 

layer should send the data to the main engine, so it can generate alerts or warning if the data 

indicate any health issue.  

The third layer Security and Access control is an access control mechanism. The main function 

of this layer is to respond to the data access requests that can be made by caretakers or other 
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parties. The user can make a request at the work station to access the healthcare data. 

Further, authentication and authorisation are performed. The authentication server sends the 

access request for authorisation and further, its evaluated with Access rules and Policies and 

the final result is sent back to the user. 

 

3.2 Sensing and Data Access Layer 

The sensing layer is the first stage in CMS, which is responsible for data acquisition. Various 

physical devices such as wearable sensors, ambient sensors and multimedia devices such as 

video camera and microphones are used to collect the information related to the health 

status of the subject, their ADL and their environment. 

The functions of the commonly used ambient sensors and wearables can be summarised as 

in Table 1 and Table 2 respectively. 

Table 1. Ambient sensors: Summary of main functions 

        Sensors            Functions   References 

PIR sensors detect motion and events to detect the 

pattern in ADL, detect the presence of 

subject by using temperature variation. 

(Celler, Earnshawa, et al. 

1995), (Barger, Brown, and 

Alwan 2005) 

RFID Sensors track the long-term ADL, track the 

location 

(Pirttikangas, Fujinami, and 

Nakajima 2006),(Kim et al., 

2013)  

Pressure sensors detect stand to sit or sit to stand 

transition, to detect the presence of 

subject on bed or chair. 

(Arcelus et al., 2009),( 

Arcelus et al., 2010) 

Video sensors detect the ADL and location (Willems, Debard, 

Vanrumste, & Goedemé, 

2009),(Landau 2013),(Tabar, 

Keshavarz, and Aghajan 

2006), (Abidine, Fergani, 

Abidine,&Fergani,2015), 

(Belshaw et al. 2011)  

Floor sensors   detect the presence of the subject (M. Alwan et al.,2006), 

(Lombardi et al., 

2015),(Serra et al. 2014) 
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Microphones  sound recognition and detect various 

events. 

(Fleury et al. 2008),(Li, Ho, & 

Popescu, 2012), (Popescu et 

al. 2008) 

Temperature 

sensors 

measure the temperature of the 

object. 

(Celler et al., 1995), 

Radar sensors Detect cardiopulmonary of a subject, 

detect the movement of stationary 

clutter  

(Forouzanfar et al. 2017),  

(Kim & Toomajian, 

2016),(Lien et al. 

2016),(Qian Wan et al. 

2014) 

 

Table 2. Wearable sensors: Summary of main functions 

Sensors Functions References 

Accelerometer Measure the acceleration 

value based  

(Gao, Bourke, and Nelson 

2014),(Mannini et al. 2013)  

Gyroscope  Movement detection (Greene, Thapliyal, and 

Carpenter 2016), (Briere and 

Hurley 2011) 

ECG To measure cardiac activities  (Gjoreski et al. 2014),(Giri et 

al. 2013) 

EEG To monitor electrical brain 

activities. 

(Dwivedi, Singh, and Shukla 

2018),(Anwar et al. 2014) 

EMG To monitor muscle activities (Khushaba et al. 2012) 

Temperature  Measure body temperature (Mansor et al. 2013),(M. W. 

Alam, Sultana, and Alam 

2016) 

 

 

Sensing layer should provide communication between sensors and the CMS. Sensors work on 

different data rates, different storage requirements, different monitoring requirements 

(frequency), issues. The use of remote monitoring for the vital signs can provide the early 

indication of the health conditions of residents, which can be useful for early and proactive 

care. It requires to develop a solution to record the vital signs electronically, to evaluate the 



31 
 

warning score and to automatically generate the alarms for the caretakers. The system can 

also combine the recent medical data of a patient with the collected data from the sensors to 

detect the early indication of major risks such as heart attack, stroke or organ failure. So, some 

health risks can be detected by utilising health sensors data collections. In the Sensing and 

Data Access layer, various sensors can be used to collect information about the physical status 

of a person, to get the information about to the activities performed by them and their 

behaviour The main function of the sensing and data access unit is data collection from the 

ambient and wearable sensors. 

At this stage, several sources such as smart devices or wearable devices and sensors can be 

used to collect information about the physical and psychological health status of the elderly 

or their environment. The data can be collected directly from the embedded sensors in the 

smart environment or data collection can be performed indirectly. In the indirect method, the 

sensor data is collected in a middleware-based system, where data can be collected from a 

database, storage server and additional software. The important feature of Sensing layer is 

the frequency of the data collection as the frequency of receiving data could affect the whole 

system. The data can be gathered continuously, instantly or on the few intervals. For the 

continuous events data is constantly extracted, the interval event requires the data after a 

few intervals, for example, sending information related to blood pressure measurement every 

two hours. The instant event applies that information is sent immediately when a different 

event is performed such as the opening of the cabinets. 

Sensors are the most important part of the data collection and sensing layer that is utilised to 

create the raw data about the health of the elderlies and their surroundings. A wide range of 

sensors can be used for the central health monitoring for the elderlies. The commonly used 

sensors for collecting raw data in recent studies are a temperature sensor, light sensor, 

accelerometer, magnetic, motion sensor, pressure sensor, ECG etc. These sensors can be 

categorised into two main categories that are wearable and static or ambient sensors. Both 

types of sensors are required in the CMS. These sensors can be attached to the infrastructure, 

devices of the home and should be interconnected with each other to perform one or more 

task simultaneously. The static sensors are used for the purpose of recording the activities 

performed by the subject or events in the environment. The wearable sensors are used to 

detect the health conditions of the elderlies. Some electronic devices can be also used to get 



32 
 

more contextual information such as cameras, TV, Speakers etc. These electronic devices can 

extract a rich amount of information. However, these devices can be suffered for privacy 

issues. 

The static or environment sensors are used in order to generate the contextual data. These 

sensors can be embedded into the environment or attached to the objects for example on 

doors, sofa, beds, chairs, on cabinets doors to detect the elderlies’ activities.  The 

performance of an elderly in terms of daily activities can be measured on the basis of their 

interaction with the environment or objects in the environment. For example, if the sensor of 

a shower is on and the location of the person is detected in the bathroom with a motion 

sensor, it indicates that a person has performed the activity of taking showering. The most 

frequently used sensors for health monitoring are  RFID. The radio frequency identification 

(RFID) has the tags attached to the object and a reader placed on the body part of a person. 

To track the location and movement of the elderly, pressure sensors can be used. The contact 

switches are used to measure the interaction of a person with appliances or another object 

in the environment. The power sensors can be used to measure the utilisation of the 

appliances, to manage the energy consumption and the usage of energy. 

The wearable sensor can be worn by elderlies; the wearable sensors are a great source of 

information for real-time health monitoring. These sensors are usually embedded in clothes, 

belts or glasses. These sensors can be used to measure internal units such as heart rate, blood 

pressure. The wearable sensors that can be used inertial sensors are an accelerometer and 

ECG and gyroscope, these sensors are used to detect the movement or body gesture, for 

example, sitting, walking, standing. Triaxial is used to measure the acceleration rate by placing 

on the body of the (Jiang et al., 2011). The gyroscope can be used for the movement detection 

but gyroscope is mostly used with the accelerometer. These sensors can be placed on the 

arms, legs, the wrist of the person to recognise the activities of walking, sitting, standing etc. 

Another sensor that can be used as a wearable sensor is GPS to detect the location of a 

person. The main purpose to use the GPS can be to detect the means of transport of a person.  

The wearable sensors can be used to measure the sign of the elderly for example the body 

temperature, heart rate, blood pressure, blood glucose etc. These sensors provide the real-

time monitoring of the health conditions of the elderlies. Other wearable sensors could be 

electroencephalography (EEG) for brain activities monitoring, electrocardiography (ECG) for 



33 
 

cardiac activities, electrooculography (EOG) for the eye movements, electromyography 

(EMG) to monitor muscle activity, photoplethysmography used to measure blood flow.  
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Figure 3.2 Sensing and Data Collection Layer 

 

Three types of data can be aggregated for the system is   

• Data collected from a number of sensors. 

• Health care data of the patient related to the medical history, latest health status or 

health condition, early symptoms for an alarming disease obtained from the medical 

professionals   

• Personal data such as background, authenticity or dietary information  

 

However, data of sensors and data gathered from healthcare professional could be great in 

volume, so the graphs and table can be used to analyse data in order to utilise time properly. 
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3.3 Data processing and management 

Data Processing and management is an important part of the centralised monitoring system. 

The key function of the data processing and management layer is to apply suitable methods 

and techniques to successfully recognise the activities and location of the elderlies. Various 

phases are responsible for data processing and management such as data representation, 

pre-processing, data fusion and context reasoning and machine learning.  

Activities of daily living (ADL) are the tasks which are performed every day by a person such 

as drinking, eating, cooking or walking. The behaviour of elderlies can be detected by their 

activities and events. The events and activities performed by elderlies can be used to 

distinguish behaviour at a different complex level. The event is a task performed by a subject 

for a very short time such as close the door or turns off light. An activity is a sequence of the 

actions executed by one or more persons as they can interact with each other. The activities 

are the sequence of the actions, for example, the eating activity, the drinking activity includes 

the sequence of; pick a glass, turn on tap and turn off the tap. The subject can also perform 

two activities at the same time such as eating and watching TV. The location, time, posture 

and frequency are also very important in the monitoring activities. A location is an area where 

the activities are usually performed for example the meal preparation takes place in the 

kitchen. The duration, starting time and end time of an activity is also prominent for 

monitoring the activities. The posture of the subject is a key characteristic for activity 

monitoring some regular posture sitting, standing, lying are used to detect the activities of 

sleeping, walking or eating. The frequency is repeatability of activity, for example, the eating 

activity is mostly performed three times a day. The object can also indicate that an activity is 

being performed such as the usage of the plate can indicate the eating activity. Temperature 

and humidity can be also an important characteristic of activity monitoring.  

Activity recognition is an important element in a health monitoring system for elderlies. 

Activity recognition can be performed with different methods and algorithms. 

Moreover, to locate the elder people in their homes is a crucial task for a central monitoring 

system. The localisation refers to a place where most of the activities are performed on a daily 

basis by elderlies (Swaminathan, Nischt, and Kuhnel 2008). The location of the elderlies can 

be extracted automatically from the data gathered from the sensors. RFID tags can be used 
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to locate people or objects. The received signal strength indicator (RSSI) could be uncertain 

in a complex environment. The passive tag array and some machine learning methods can be 

used to predict the location. 

3.3.1 Context Data representation 

The initial requirement of the Processing and management layer is Context data 

representation. The context data representation refers to a context representation of the 

collected data in a system (Schilit, Adams, and Want 1994). The aim of the context 

representation techniques is to represent the data into an integrated format to make it 

understandable and to share it. The data gathered from the sensors is raw data and it is 

useless unless it is evaluated and interpreted. When the data acquisition is started, the sensor 

data increase very fast so an effective technique for the data representation is necessary. It 

is important to present the data in a way that it can be read easily and with minimum efforts. 

The collected data should be categorised into different formats due to its nature of 

heterogeneity. A mechanism is required to organise the data into a readable format for 

further processing. Various context modelling techniques are available for the data 

representation such as key-value modelling, object-oriented logic based, graphics, mark-ups, 

ontology-based technique. One of the easiest methods that can be implemented for context 

representation is the Key value modelling. A list of key and value is used to represent the 

attributes and value. (Schilit, Adams, and Want 1994). The object-oriented modelling uses the 

reusability, inheritance, encapsulation to represent the context data. Zhang and Gu 2005 

(Zhang, Gu, & Wang, 2005) used the context model in the smart environment project based 

on the context-aware system. The data is defined in the entities; these entities further 

describe the conceptual or physical objects for example as an activity or a person. The 

graphical representation of the data can also be used, the context information is presented 

in the form diagrams by using the Unified Modelling Language (UML) (Rialle, Lamy, Noury, & 

Bajolle, 2002.). Mark up modelling is the representation in the hierarchical structure by using 

XML. In mark-ups, the attribute and content of the attributes are used to define the 

information. This modelling can be very useful to store and share data in a flexible way. The 

ontologies based technique of data representation is based on semantic technologies. The 

relationship, concept and instances are used to define the context data. The Ontology Web 

Language (OWL) is used in ontology-based modelling for knowledge sharing, context 
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representation. In the logically based technique, data is presented in the expressions, rules 

and facts. Logically based modelling uses the data and then used logical based rules to process 

the context data. (Ricquebourg et al. 2006) 

3.3.2 Data pre-processing 

The objectives of the pre-processing task are to perform further processing in order to 

retrieve the missing values, removing unnecessary data, cleaning the collected data. If the 

data is irrelevant, the process of the analysis becomes more difficult. The data pre-processing 

can be performed in various steps such as data cleaning, normalisation, data transformation 

and feature extraction. The data should be cleaned by removing and editing inappropriate 

records. The data normalisation could be used to uniform the various variables into 0,1. Data 

reduction can be used to transfer numerical data into a simple and systematic way. The 

feature extraction can be used to transfer input data into the set of features. When the input 

data become too large and difficult to process, then it can change into the feature vectors. 

The process of feature extraction starts with feature selection, only selected features are used 

to get the relevant information from the input data. So the Data Fusion process is used to 

make sensor data more consistent, useful and accurate. 

3.3.3 Data Fusion 

Data fusion is used to integrate data from multiple sensors to generate more useful and 

consistent information than single sensors. The aim of the data fusion task is to integrate data 

from various sensors in order to reduce errors. The data fusion can be divided into three 

categories data association, state estimation and decision fusion. 

 

3.3.4 Context Reasoning and Machine learning 

Context reasoning is the most challenging part of the data processing and management layer. 

The aim of the context reasoning is to obtain the real context of the subject by using various 

reasoning and learning algorithms. The implementation of these reasoning methods has an 

impact on the final results. Therefore, the success of the system is depended on these 

methods. These techniques are fundament to recognise activities and behaviour. The most 

common reasoning and learning methods are statistical technique, computational technique 

and knowledge-driven technique.  A single technique could not be more effective for an 
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efficient Central monitoring system, so, the best approach could be to combine the different 

techniques to provide a more accurate health status of the elderly in a smart home. 

The statistical methods are an important part of the recognising the human activities for 

health care. These methods are used for the reasoning to deal with the task of behaviour 

recognition. The methods of the Hidden Markov Model (HMM) and Bayesian are probabilistic 

methods. These methods are capable of the modelling behaviours as these methods have the 

ability to show the dependence and random variables. In the HMM, the system uses the 

Markov process, it defines hidden states and observation for behaviour modelling (Atallah 

and Yang 2009). 

Another statistical modelling could be conditional Random Field (CRF). The CRF can be used 

to encode the relationship between observation and interpretation and for the labelling of 

the sequential data. It does not make the assumptions between observation independently. 

classification for activity recognition (Vail, Veloso, and Lafferty 2007). Bayesian networks are 

used for the modelling of human behaviour. The Bayesian framework includes the Naive 

Bayes Classifier (NBC) based on the Bayes theorem to recognise the activities. The Bayesian 

model has produced satisfactory results for activity recognition in many projects. However, 

NBC require a large amount of data for activity recognition. The Gaussian Mixer Model (GMM) 

is another model used for activity recognition. GMM was combined with rule-based reasoning 

in Cardinaux et al (Cardinaux, Brownsell, Hawley, & Bradley, 2008). 

The alternative to these statistical methods can be computational techniques such as Artificial 

Neural Networks (ANN), Suppport Vector Machines, data mining, fuzzy systems. These 

techniques play an important part to recognise the ADL and predict the health condition of a 

person. ANN presents mathematical tools, that can be useful for the data classification. The 

ANN has been employed in many healthcare monitoring systems.  Xie et al. (Xie et al. 2013) 

authors have used the ANN with a wireless network for activity recognition. The ANN proved 

more accurate simulation results than other techniques. ANN is also used to provide decision 

support for the remote health system. The ANN can consist if different combination such as 

Multi-Layer perception (MLP) is used with a single hidden layer for activity recognition in 

(Ricquebourg et al. 2006).  
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The support vector machine (SVM) is also used for classification and pattern recognition. In 

SVM set of training, examples are connected with each other. SVM training algorithm creates 

a model which allocate a new example to one category. SVM can also be combined with HMM 

to detect the abnormality in the behaviour pattern of the elderlies and to train the ADL 

(Ordóñez, de Toledo, and Sanchis 2013). 

The knowledge driven techniques such as Fuzzy logic, Rule-based, Case-based, Ontology-

based can be also used for modelling activity recognition and human behaviours. The 

knowledge driven method is used to develop logical reasoning. The knowledge-based 

reasoning technique is used to observe the daily activities of people. The accuracy of the prior 

knowledge is fundamental in knowledge-based reasoning. The fuzzy system is mainly used to 

handle the uncertainty of the sensor data. The fuzzy logic can be applied to integrate activity 

recognition. The neuro-fuzzy system (NFS) can be used for the diagnosis of heart diseases. 

Fuzzy set theory is combined with rule-based to control the automated system in order to 

optimize contextual reasoning. 

The ontology-based reasoning is well suited and commonly used method for the context 

reasoning. The benefits of the ontology-based reasoning are its interoperability of pervasive 

computer system, its efficient reasoning and knowledge sharing in a dynamic environment. 

The ontology-based reasoning is based on knowledge representation and logic description. 

The ontology reasoning is supported by the two semantic web languages these are Web 

Ontology Language (OWL) and Resource Description Framework (RDF). The ontology 

reasoning can be combined with the statistical reasoning to recognise the activities. The 

ontology-based reasoning can be used to discover the devices and location in the smart home. 

The reasoning is used to support to discover the activities (Ricquebourg et al. 2006). 

The rule-based is one of the simplest reasoning techniques. The rule-based reasoning uses 

the low-level context to create a high-level abstraction. The weakness of Rule-based 

reasoning is that it is not able to detect activities directly. The rule-based reasoning could be 

more effective for activity recognition when it is combined with Bayesian networks (Nef et al. 

2015).  
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In the case based reasoning, context knowledge is extracted on the basis of the previous 

similar cases. Case-based reasoning is usually used for activity recognition and behaviour 

recognition. 

The reasoning techniques and methods that are described above are the commonly used for 

extracting the context. Each method has its own benefits and weaknesses. A single technique 

is not useful to handle the complexity of context reasoning. A single method could not able 

to perform well for the Central Monitoring System. So, there is a need to combine various 

method that complements each other in order to present a piece of comprehensive 

information related to the context of elderlies in the smart home 

So the data management and inference layer need to process the perceived information with 

the data pre-processing and data fusion to observe the high-level contextual information, to 

use the reasoning methods and learning algorithm to infer activities. 

The data processing and management layer can be used to extract the location and activities 

of daily living based on sensor data. The raw data collected through sensors should be 

managed and processed in order to recognise activities. Various machine learning algorithm 

and reasoning methods can be used to recognise the activities and location of the subject in 

order to evaluate the health status of the elderlies so required healthcare services can be 

provided. 

3.3.5 Location Identification 

Indoor-positioning or location identification systems provide information on the location of 

residents and movable objects in smart homes. There are many location identification 

methods which are based on WiFi, Bluetooth, Zig-Bee (Muñoz 2009), RFID (Alsinglawi et al. 

2017) and visible light communications(Keskin, Sezer, and Gezici 2018).  The location data 

provides important information for context reasoning. The location data help to track elderly 

with dementia and in general to identify where the subjects (Lin et al. 2006). 

 

3.4 Security and Access Control 

Security and Access control is a critical part of a health monitoring system. As the Central 

monitoring system will use sensitive subject data. So there is a need to have an access control 
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system maximum security and privacy is required as the monitoring of the elderlies involves 

large data collection and processing.  

In CMS the key function of security and access control is to manage the access requests made 

by the healthcare professionals or another user. The security and access control unit includes 

the user attributes, different types of the health records of the user such as mental, physical 

health data or personal information. The policies of access control which manage the viewing 

of data and update the health care data. The user should have a certificate to access the data.  

When the user requests the access for the health care data at the workstation, it forwards 

the request to the authentication server. The key function of the authentication server is to 

verify the digital certificate of a health care professional and patient ID and then send the 

access request to the authorisation server. The main function of the authorisation server is to 

check the access policies and grant access to the user.  

 

Figure 3.3 Security and Access Control Layer 

                                  

3.4.1 Privacy requirements 

In a health care system, there are many people who want to access the healthcare data of the 

elderlies such as doctors, organisations like imaging centre or laboratories, family member or 

friends. The patient or elderly person can manage his own medical data. The elderly should 

capable to response the request to access the sensitive healthcare data to a specific person 

or healthcare organisation.  The elderly should give permission to a family doctor to access all 
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types of healthcare data and the family doctor should have the ability to check the data 

classification. The practitioner should be able to provide immediate assistance in an 

emergency so an emergency attribute should be accessible for the available practitioner. Only 

healthcare units or doctors should have the ability to update medical records. Elderly should 

able to provide the access of data to any person if it is required. The access permission should 

be given to a particular period of time and location. Moreover, the healthcare data should be 

available to authorised users without interruption and the infrastructure should be easy to 

manage and modified if required. 

3.4.2 Identity Requirements 

The identity requirement for a robust Access control of CMS should as following. 

Every component of the system should be able to classify the data it produces. The patient or 

elderly should able to grant or deny access to private information or healthcare data anytime. 

The patient should able to classify his Doctor, whom he wants to be capable to access all the 

healthcare data anytime. There should an emergency attribute that can be used by any 

available practitioner to access healthcare data in an emergency case to give immediate help. 

Moreover, there should be no obstruction for the eligible user to access the healthcare data. 

The policies should be easy to use and easy to change whenever required. The access should 

also be granted to a group of people such as to healthcare professionals. The patient should 

capable to give permission to anyone when required. The access of data could be conditional 

for a specific period. For example, the practitioner can access the data when a patient is 

hospitalised. 

3.4.3 Authentication 

The authentication is a process to identify a user before granting access to healthcare data. 

The healthcare professional requires to have a certificate in order to access healthcare data. 

The request for access to healthcare data can be made via a Workstation, which is connected 

to the authentication server. The main function of the authentication server is to verify the 

digital certificate of the healthcare professional and ID of the patient and authenticate the 

healthcare professional and forward the request to the authorization server. Various type of 

authentication approaches can be implemented for a health monitoring system to grant 

access to data by using the electronic documents such as V5 protocol, Semantic Access 
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certificate (SAC), national authentication service for health (NASH), Microsoft Vault, PKB.  The 

SAC can be used to authenticate a user. Nash grants access to the healthcare data by using a 

public key Infrastructure (PKI) certificate. The users can utilise the smart cards and PIN to 

access from any workstation. PKI certificate contains the information related to the public key 

of the user, identity of the user, digital signature certificated authority and list of certificate 

extensions. NASH sets a Record Access Code (RAC) in order to prevent or approve access to 

the record of the patient. It prevents the document from view and marks a specific document 

as limited access in patients record. NASH is also capable to control login issues such as 

multiple logins fail and control after-hours access 

3.4.4 Authorization 

The function of authorisation in a health monitoring system is to manage which user can 

access a specific resource, to give an access right to healthcare professionals, to define access 

policy, to decide if the request should be granted or denied. 

So, the privacy and security layer handle the access control system. The system starts to work 

when a user sends a request to the user interface to access the data of the elderly. The user 

interfaces forwards the request to the authentication server, the authorisation server and 

then to the cloud database. 
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4 Design details of the Central Monitoring System 

 

The requirements for CMS were identified in the previous chapter.  The functions of the CMS 

were described using three main layers 1) Sensing layer, 2) Data processing and management 

layer; and 3) Security and access control layer.  This is illustrated in Figure 4.1. 

Implementational considerations of the 3 main layers of the CMS are presented in this 

chapter. 
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Figure 4.1 Three main layers of CMS 

4.1 Sensing Layer 

The main function of the sensing layer as described in Chapter 3 is to gather data from 

multiple sensors which can be both wearable and ambient. In general, the wearable sensors 

should have wireless connectivity such as Bluetooth. In cases where wearable sensors require 

high data rates, it may be necessary to consider wired connections. The ambient sensors may 
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be able to connect to the CMS using either wired or wireless connections. The wired sensors 

may require the support of serial communication methods such as inter-integrated circuit (IIC, 

I2C, or I2C), serial peripheral interface (SPI), universal serial bus (USB) or high-definition 

multimedia interface (HDMI). 

 

4.1.1 Communication with Ambient Sensors 

The communication requirements of commonly used ambient sensors can be summarised as 

shown in Table 3. 

Table 3. Communication Requirements for Ambient Sensors 

Sensor Measurement Date Rate Communication 

Method 

Pressure Pressure on mats, chairs, 

etc. 

Very low I2C/SPI 

Passive Infrared (PIR) Motion Low I2C/SPI 

Active Infrared Motion, identification Low I2C, USB 

RFID Location, Object 

information 

High USB, Ethernet 

Smart Tiles Pressure on the floor, 

location 

Very low I2C/SPI 

Magnetic switches Door/Window/Cabinet 

opening closing 

Very low I2C/SPI 

Temperature Room temperature Very low Single wire or I2C 

Ultrasonic Motion Low I2C 

Microphone Sound, Activity High USB 

Camera Video, Activity Very high HDMI 
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4.1.2 Communication with Wearable Sensors 

The communication requirements of commonly used wearable sensors can be summarised 

as shown in Table 4.  

Table 4. Communication Requirements for Ambient Sensors 

Sensor Measurement Data Rate Communication 

Method 

Accelerometer Acceleration High Bluetooth 

Gyroscope Orientation High Bluetooth 

Glucometer Blood Glucose High Bluetooth 

Temperature Body temperature Very low Bluetooth 

Pressure Blood pressure Low Bluetooth 

Pulse Oximeter Blood oxygen 

saturation  

Low Bluetooth 

ECG Cardiac activity High Bluetooth 

EEG Brain activity High Bluetooth 

EMG Muscle activity Very High Wired or Wi-Fi 

 

In addition to communication requirements, CMS should provide easy access to interfacing 

with external sensors, i.e. digital and analog inputs should be readily available for connection 

of sensors. Some sensors may also require additional signal conditioning units. The serial 

communication interface of CMU can be summarised as in Figure 4.2. 
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SPI I2C UARTBluetooth
Ethernet

Wifi

Central Monitoring System
Sensing Layer Communication Interface

Wearable Sensors Ambient Sensors

USB

Wired Connectivity
Wireless 

Connectivity

 

Figure 4.2 Sensing Layer Communication Interface 

4.2 Data Management and Analysis 

Data processing and management is a key phase of CMS. The appropriate reasoning and 

machine learning may increase the effectiveness of CMS. In the following section data 

preprocessing, feature extraction and machine learning methods are described, that can be 

implemented for the processing of sensor data for CMS. 

Data Preprocessing

Feature Extraction

Activity Modelling

Data Acquisition User Interface

Location 
Identiifcation

Raw 
Data

Activity 
Data

Location

 

                                        Figure 4.3 Data Processing and Management Layer 
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4.2.1  Step 1: Data Preprocessing 

 The data preprocessing operation is used to clean the noisy and unwanted data, to handle 

the missing values and to put data into a proper format. The first step of preprocessing is data 

cleaning. There are various cleaning techniques that can be used to filters artificial and 

unimportant data in order to get relevant information. The main  data cleaning methods are 

as following;  

 The Bayes filter can be used to track a single user and to clean the RFID sensor data (Wilson 

& Atkeson, 2005). The particle filter is used to filter the Binary and RFID sensor data, it works 

well for the tracking of multiple users in a noisy environment (D. H. Wilson and Atkeson 2005). 

The median filter can be used to filter the non-linear data and to detect the abnormal 

measurements of passive presence sensor data (Noury and Hadidi 2012). The low pass filter 

can be applied to remove the constant gravity acceleration from the data set gather through 

the accelerometer (Khan, Siddiqi, and Lee 2013). Kalman filter can be used to remove the 

noise from ECG data. Clustering based undersampling (ClusBus)  is another approach that can 

be used to overcome the issues of class overlapping and class imbalance. This approach was 

applied for the CASAS smart home data set by Barnan et al (B. Das, Krishnan, and Cook 2014). 

After data cleaning the next step of data preprocessing is handling the missing values. Linear 

Interpolation is the widely used method for handling the missing values. Linear interpolation 

is usually applied to fill the missing reading of RFID datasets (Parlak and Marsic 2013). Other 

techniques that can be used to fill the missing values are a cubic interpolation and nearest 

neighbour interpolation. The cubic interpolation decreases the computational complexity and 

maintains the performance level (Ferrer-Arnau et al. 2012). 

 For further data processing, the data transformation methods are used to put the data into 

a proper format. The main function of these methods is to change the raw data into attributes 

according to the requirements of a specific system. Normalization is a commonly used data 

transformation approach, in order to get a representation format of sensor outputs (Durrant-

Whyte and Henderson 2008). There is a range of possible scales, so the normalisation can be 

performed on the basis of homogeneity, nature of scale, semantics. The homogeneity means 

wheater sensors are providing a measurement of the same physical phenomenon. Nature of 

scale is the mathematical properties of a scale. Semantics is a  way in which the scale is 
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interpreted such as the degree of similarity, probabilistic or utility (Durrant-Whyte and 

Henderson 2008). 

4.2.2 Step 2: Feature extraction and Selection 

Feature extraction refers to the extraction of the features that represent significant 

characteristics of data. The raw sensor data is converted into a feature vector, which should 

have useful information for advanced processing and machine learning algorithm. Various 

feature extraction methods are categorised on the basis of time domain, frequency domain 

and discrete representation domain (Figo et al. 2010). The main feature extraction techniques  

in these three domains are as follows: 

Time domain features: the main features that can be extracted in the time domain are Mean, 

Standard deviation, Average, Median, Variance, Min, Max, Range, Correlation, Cross relation 

and integration. The mean can be used for almost every kind of sensors. It requires minimum 

computational memory and cost. In previous researches mean have been used to identifies 

the posture of the subject, to detect the activities, as an input for classifiers. The Standard 

deviation is also used as a basic metrics for classifiers like Dynamic Bayesian Networks and 

the Neural networks. The correlation can be used to measure the direction of the linear 

relationship between two signals. It is also used in activity recognition to distinguish the 

activities that involve translation in a single dimension (He and Jin 2009). Another metrics is 

Cross-correlation which is used to measure the similarity between waveforms. The median is 

used to separate the one half of the data sample from the others half 

Frequency Domain methods are used to capture the repetitive sensor data. Fourier transform 

and Wavelet transform is commonly used methods. Fourier transform can be used to 

compute a time based discrete signal using Fast Time-Frequency Transform (FTFT) and Fast 

Fourier Transform (FFT) algorithms.  The Wavelet transform is used to capture the transition 

between activities because it has the ability to detect sudden changes in sensor signals. Other 

frequency domain feature extraction for activity recognition are DC component, spectral 

energy, information entropy, key coefficients, coefficient sum and dominant frequency.  

Discrete Domain: These features are used to transform the sensor signals into the string of 

discrete symbols. When the signals mapped to strings, then the key techniques  Euclidean-

based relation, Dynamic time warping and Levenshtein edit distance are used to examine the 
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string similarity and to classify the activities. Euclidean-based relation allows quick 

discrimination between signals. The Dynamic time wrapping (DTW) is a feature for measuring 

the similarity of sequences. It has been used to find similarity between signals in automatic 

speech recognition and gesture recognition. Levenshtein edit distance is used to measure the 

similarity between two signals. It determines the number of symbols insertion, deletion and 

substitution for transferring the strings. 

However, the extracted features from raw sensor data could have irrelevant information 

which may affect the performance of the system. The feature selection approach can be used 

to find more discriminative features. The role of the feature selection process is to select more 

relevant features within a dimensional feature vector to decrease the noise. The commonly 

used feature selection methods are Correlation-based Feature Selection (CFS), Minimum 

Redundancy and Maximum Redundancy (MRMR). MRMR method selects the features from 

the fixation, blink, saccade and wordbook feature group (Bulling et al. 2011). CFS has been 

used for accelerometer data (Maurer et al. 2006). Other feature selection methods thas has 

been used to select relevant features from high dimensional feature vector are SVM based 

feature selection (Bron et al. 2014), correlation-based feature (M. Zhang and Sawchuk 2011), 

Sequential  Forward Floating Search (Gupta and Dallas 2014), Forward-backward Sequential 

search (Muhammad et al. 2012).  The feature selection methods that used to transform the 

high dimensional feature vector into low dimensional feature vector are Linear Discriminant 

Analysis, Principal Component Analysis and Independent Component Analysis (Giri et al. 

2013). 

4.2.3 Step 3: Machine Learning  

After the feature extraction and selection, the next step is Machine learning(ML). ML is used 

to generate the real context of the subject by using various methods. The commonly used 

methods for activity recognition and location identification is as follows: 

Hidden Markov Models (HMM) and Bayesian networks are commonly used for recognition of 

daily activities. In HMM, the system uses a Markov process with unknown parameters. The 

HMM is composed of hidden states which represent the activities and sensor data represent 

observed output (Atallah and Yang 2009). The extensions of HMM such as Hidden Semi 

Markov model (HSMM) (Duong et al. 2005), Coupled hidden Markov Model ( CHMM) (Wang 
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et al. 2011) has been used for activity recognition. Another Statistical method for activity 

recognition is Conditional Random Field (CRF), it represents the conditional probability of a 

label sequence. CRF uses more computation of training data than HMM (Vail, Veloso, and 

Lafferty 2007). Bayesian Networks has been used for activity recognition. Support vector 

machines, Artifical Neural Networks and fuzzy systems and Decision trees are computational 

intelligence techniques used for activity recognition. SVM has been used to learn the habits 

related to ADL of the subject. ANN has been combined with another method for activity 

recognition. 

Table 5. Data Processing methods 

Functions Processing Methods Computing Power 

Requirement 

Context data representation UML, OWL, Object-oriented 

modelling 

Medium 

Data pre-processing Filtering techniques (high-

pass, band-pass, notch), 

applications of wavelets 

Medium 

Data Fusion HMM, Bayesian techniques  High 

Context Reasoning and 

Machine learning 

Artificial neural networks, 

fuzzy systems, neuro-fuzzy 

systems, support vector 

machines, Bayesian 

techniques, HMM 

High 

Location Identification Triangulation, 

multilateration 

Medium 

 

4.3 Access and Security Control 

The main concern of healthcare data is privacy or confidentiality.  As discussed in the last 

chapter an Access control system is required for CMS that should able to ensure the privacy, 

confidentially and integrity of the information. In addition to that, the Access control system 

should apply privacy policies in order to permit data Access to only authorised users. An 

Access control model based on Attribute-Based Access Control (ABAC) policies can be 

implemented for the CMS as described in (Salama et al. 2018). The proposed access and 

security control mechanism is illustrated in Figure 4.4.   
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Figure 4.4 Access Control and Security 

4.3.1 Attributes 

Attributes are used to present the particular feature of the user, environment or resources.  

The user attributes could be any user who tries to access the healthcare data such as a doctor, 

nurse, family friend or researchers. Every user should have unified attributes such as his name 

or ID. The users can be divided into different groups such as ‘patients’, ‘Doctors’, ‘friends’, 

‘researchers’, ‘medical centre’. 

Environment attribute could be time or date when the healthcare professional can access the 

medical record of the patients. Location and emergency could also be added as environmental 

attributes for example, the hospital staff can access the healthcare data when the patient is 

hospitalised. 

Resource attribute could be medications, health record or immunisation or any entity acted 

upon by the user. The resources attribute can be defined into different categories such as 

‘physical health‘ that contains any ailments, details of radiology or pathology or any medical 

treatments or procedure performed on the patient. It could be ‘mental’ that contain medical 

history related to psychological ailments such as depression, bipolar or other mental 

disorders. Another category could be ‘general‘ which could include the blood pressure, 
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oxygen level or sugar level or other health data collected through sensors. the ‘general’ class 

could also include a warning, for example, the patient has allergies or taking a specific 

medication or smoking. 

So the system starts to work when an authenticated user sends the healthcare data access 

request to the Access enforcement point (AEP), it extracts the user and healthcare attribute 

and forwards the request to the Access Decision Point (ADP). ADP will evaluate all the 

attributes with Access rules and policies and then return the decision.  The request could be 

denied or granted.  

4.3.2 Policy repository (PR) 

It is used to store and retrieve the policies and access rules. 

4.3.3 Attribute-Based Access Control 

The attribute-based access control system grant access on the basis of the attributes of the 

user, environment and data. The two parts of the ABAC system are policy model and 

Attribute-based Access control architecture that can be used to implement policies. 

The main components of the Access control architecture are authentication, AEP, ADP, Policy 

Repository (PR) and Healthcare data Server.  

4.3.4 Authentication 

The user authentication can be the initial process of the access control system. The 

authentication will start at the work station when a user request for the healthcare data. if a 

user is requesting to access healthcare data, he should have a certificate. The authentication 

server verifies the identity and certificate of the user and may forward his request for 

authorisation. Fast Identity Online (FIDO) can be also used to provide authentication for a 

health monitoring system (FIDO Alliance 2019).  

4.3.5 Access Enforcement Point 

AEP is an important part of the authorisation process. The authenticated users can send a 

request to AEP and it will further send the request to the ADP for authorisation. When AEP 

get data access request from a user, it will gather the data and user attribute and forward to 

ADP for evaluation. The output request must be enforced by AEP. The output could be a grant 

or deny access to the requested data. 
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4.3.6 Access Decision Point 

ADP is the main component of the Access control system. ADP is responsible for attribute and 

policy assessment and makes access control decisions. The ADP receive the user and 

healthcare data attributes from the AEP, and it will extract the environment attribute and 

then evaluate the policy for a specific policy rule and return the decision to AEP. 

4.4 Discussion 

In this chapter, hardware, software and security requirements for the CMS were presented 

by detailing the requirements in each of the three main layers. While there are many 

implementations of SH for aged care are available, mostly in the form of experimental 

designs, almost all implementations have considered CMS implementations that work only 

for the underlined SH design. From the finding of this study, the following can be clearly 

identified: 

o CMS requires processing power that is capable of implement high-level algorithms 

o CMS should be able to acquire and process data from multiple sensors 

o CMS requires to run a database 

o CMS requires storage in order to process data as well as to publish in the cloud and 

other servers 

o CMS requires Internet access 

o CMS should be able to implement security mechanisms 

o CMS software should be configurable and update mechanisms should be present 

o CMS should be able to run continuously for longer periods (years) and should be 

robust 

o CMS should be compact in size and should be tamper resistant 

o CMS should provide debugging/diagnostic mechanisms 

o CMS in developer mode also should be able to implement software development 

environments. 

Given the above requirements, it is possible to conclude that a simple microcontroller 

platform such as Arduino or Raspberry Pi will not satisfy all requirements of a CMS. However, 

platforms such as Arduino and Raspberry Pi have been popular in this domain given that those 

provide easy communication with many sensors. A PC based platform (Windows or Linux) 
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alone without any modifications will not satisfy requirements of sensor connectivity though 

provide processing power requirements. 

Table 6. System Recommendation 

Hardware platform Intel-based NUC with a Celeron processor or 

higher 

Operating System A secure operating system using Windows 

or Linux 

Storage requirements 128 Gigabytes or higher storage and 4 

Gigabytes or higher of RAM 

Acquisition device Dedicated acquisition devices which enable 

both digital and analog IO which can be 

connected via USB (an example would be NI 

myDAQ). It is necessary for the device to 

have high precision ADC (e.g. 24-bit) if EEG 

signals are to be captured. 

Software SQL server, web server, access to high-level 

languages such as Python, being able to host 

run machine learning applications.  

 

5 Conclusion 

5.1 Discussion 

Smart homes aged care is emerging as a solution for addressing issues with the increase in 

the higher portion of the elderly in society.  Smart homes enable the elderly to stay longer in 

their own homes longer with the aid of technology.  This thesis examined one key element of 

the smart homes for aged care which enables its functionality – the central monitoring system 

or the CMS. While there have been numerous research work performed on smart homes for 

aged care, several high profile examples on SH and devices, virtually no significant work has 

been performed exclusively for the CMS. That leaves these questions on interoperability of 
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devices, scaling operations of SH and future developments in SH. As such the main objective 

of this thesis was to identify the requirements and capabilities of the CMS. 

A comprehensive literature review was carried out in order to address the research questions. 

The main functions of the CMS were identified by collating functions presented in various 

implementations of SH for aged care. Similarly how different functions are implemented in 

SH were studied in order to identify the requirements of the CMS. Sensor interoperability was 

addressed by identifying the communication requirements. 

The main objective of this research was achieved by proposing a three-layer model for the 

CMS.  The sensing layer performs the functions of acquiring data from various sensors. The 

data processing and management layer extract the contextual information from the sensor 

data. The security and access control layer deals with the implementation of the security 

mechanism and the access control methods for the SH. 

 

5.2 Future Work 

In this thesis, we have identified requirements for designing a CMS for a smart home for aged 

care. While the details presented in the thesis may help the development of a unified CMS 

architecture and inter-operable devices, there are many questions still remain open.  

This study was conducted without physical building a CMS and mainly based on reported 

material on laboratory settings on short time frames. It is necessary to continue this study 

considering long term human trials and real-world data collection as opposed to laboratory 

environments. It is also necessary to consider users’ acceptance of devices and data collection 

methods. 

Most published systems directly or indirectly assumed a single person’s presence in a smart 

home.  It is necessary to consider the impact of multi-user or at least 2-person SH for aged 

care on a CMS.   

Generally, it is assumed that almost all wearable devices are based on Bluetooth. It is 

necessary to consider limits of Bluetooth, bandwidth and device requirements along with 

measurement requirements in the design process. 
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While it is important to identify the requirements of the CMS for interoperability, it is also 

important to standardise the communication interfaces and methods for sensors and other 

devices used in SH for aged care.   
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Ordóñez, Fco Javier, Paula de Toledo, and Araceli Sanchis. 2013. “Activity Recognition Using 

Hybrid Generative/Discriminative Models on Home Environments Using Binary Sensors.” 

Sensors (Basel, Switzerland) 13(5): 5460–77. 

http://www.ncbi.nlm.nih.gov/pubmed/23615583 (December 4, 2018). 

Osterberg, Lars, and Terrence Blaschke. 2005. “Adherence to Medication.” New England 

Journal of Medicine 353(5): 487–97. 

http://www.nejm.org/doi/abs/10.1056/NEJMra050100 (February 10, 2019). 

Papamatthaiakis, George, George C. Polyzos, and George Xylomenos. 2010. “Monitoring and 

Modeling Simple Everyday Activities of the Elderly at Home.” In 2010 7th IEEE Consumer 

Communications and Networking Conference, IEEE, 1–5. 

http://ieeexplore.ieee.org/document/5421717/ (August 22, 2018). 

Parlak, Siddika, and Ivan Marsic. 2013. “Detecting Object Motion Using Passive RFID: A 

Trauma Resuscitation Case Study.” IEEE Transactions on Instrumentation and 

Measurement 62(9): 2430–37. http://ieeexplore.ieee.org/document/6545303/ 

(February 20, 2019). 

Phua, Clifton et al. 2009. “2-Layer Erroneous-Plan Recognition for Dementia Patients in Smart 

Homes.” In 2009 11th International Conference on E-Health Networking, Applications 

and Services (Healthcom), IEEE, 21–28. http://ieeexplore.ieee.org/document/5406183/ 

(October 17, 2018). 



70 
 

Pirttikangas, Susanna, Kaori Fujinami, and Tatsuo Nakajima. 2006. “Feature Selection and 

Activity Recognition from Wearable Sensors.” In Springer, Berlin, Heidelberg, 516–27. 

http://link.springer.com/10.1007/11890348_39 (October 8, 2018). 

Pollack, Martha E. Planning Technology for Intelligent Cognitive Orthotics. www.aaai.org 

(February 6, 2019). 

Popescu, Mihail, Yun Li, Marjorie Skubic, and Marilyn Rantz. 2008. “An Acoustic Fall Detector 

System That Uses Sound Height Information to Reduce the False Alarm Rate.” In 2008 

30th Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society, IEEE, 4628–31. http://www.ncbi.nlm.nih.gov/pubmed/19163747 (January 26, 

2019). 

Pramuka, Michael, and Linda van Roosmalen. 2009. “Telerehabilitation Technologies: 

Accessibility and Usability.” International journal of telerehabilitation 1(1): 85–98. 

http://www.ncbi.nlm.nih.gov/pubmed/25945165 (February 10, 2019). 

Qian Wan, Qian, Yiran Yiran Li, Changzhi Changzhi Li, and Ranadip Pal. 2014. “Gesture 

Recognition for Smart Home Applications Using Portable Radar Sensors.” In 2014 36th 

Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 

IEEE, 6414–17. http://www.ncbi.nlm.nih.gov/pubmed/25571464 (February 4, 2019). 

Rettie, Ruth. Connectedness, Awareness and Social Presence. 

https://eprints.kingston.ac.uk/2106/1/Rettie.pdf (February 11, 2019). 

Rialle, Vincent, Jean-Baptiste Lamy, Norbert Noury, and Lionel Bajolle. “Telemonitoring of 

Patients at Home: A Software Agent Approach.” www.biomed.ntua.gr/vital_home/ 

(January 29, 2019). 

Ricquebourg, Vincent et al. 2006. “The Smart Home Concept: Our Immediate Future.” In 2006 

1st IEEE International Conference on E-Learning in Industrial Electronics, ICELIE,. 

Rimminen, Henry, Juha Lindstrom, Matti Linnavuo, and Raimo Sepponen. 2010. “Detection of 

Falls among the Elderly by a Floor Sensor Using the Electric near Field.” IEEE Transactions 

on Information Technology in Biomedicine 14(6): 1475–76. 

http://ieeexplore.ieee.org/document/5477180/ (October 18, 2018). 



71 
 

Russo, James T. et al. 2004. “SmartWave – Intelligent Meal Preparation System to Help Older 

People Live Independently.” https://www.semanticscholar.org/paper/SmartWave-–-

Intelligent-Meal-Preparation-System-to-Russo-

Sukojo/31e951f81685fbce2475b5d44757886d85678861 (February 27, 2019). 

Salama, Usama et al. 2018. “An Internet of Things Based Multi-Level Privacy-Preserving Access 

Control for Smart Living.” Informatics 5(2): 23. http://www.mdpi.com/2227-

9709/5/2/23 (February 26, 2019). 

Satpathy, Lalatendu. 2006. SMART HOUSING: TECHNOLOGY TO AID AGING IN PLACE-NEW 

OPPORTUNITIES AND CHALLENGES. https://search-proquest-

com.ezproxy.uws.edu.au/docview/305315332?pq-origsite=primo (January 23, 2019). 

Schilit, B., N. Adams, and R. Want. 1994. “Context-Aware Computing Applications.” In 1994 

First Workshop on Mobile Computing Systems and Applications, IEEE, 85–90. 

http://ieeexplore.ieee.org/document/4624429/ (January 29, 2019). 

Serra, Renan, Pascal Di Croce, Richard Peres, and Dominique Knittel. 2014. “Human Step 

Detection from a Piezoelectric Polymer Floor Sensor Using Normalization Algorithms.” In 

IEEE SENSORS 2014 Proceedings, IEEE, 1169–72. 

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6985216 

(December 9, 2018). 

Swaminathan, Rahul, Michael Nischt, and Christine Kuhnel. 2008. “Localization Based Object 

Recognition for Smart Home Environments.” In 2008 IEEE International Conference on 

Multimedia and Expo, IEEE, 921–24. http://ieeexplore.ieee.org/document/4607586/ 

(October 9, 2018). 

Tabar, Ali Maleki, Arezou Keshavarz, and Hamid Aghajan. 2006. “Smart Home Care Network 

Using Sensor Fusion and Distributed Vision-Based Reasoning.” In Proceedings of the 4th 

ACM International Workshop on Video Surveillance and Sensor Networks  - VSSN ’06, 

New York, New York, USA: ACM Press, 145. 

http://portal.acm.org/citation.cfm?doid=1178782.1178804 (December 4, 2018). 

Tafeta. 2011. “Tafeta Smart Home for Health.” www.tafeta.ca/home2.html. 

Tang, Lei et al. 2011. “MHS: A Multimedia System for Improving Medication Adherence in 



72 
 

Elderly Care.” IEEE Systems Journal 5(4): 506–17. 

http://ieeexplore.ieee.org/document/6026896/ (February 10, 2019). 

Tartarisco, Gennaro et al. 2012. “Personal Health System Architecture for Stress Monitoring 

and Support to Clinical Decisions.” Computer Communications 35(11): 1296–1305. 

https://www.sciencedirect.com/science/article/pii/S0140366411003720?via%3Dihub 

(December 12, 2018). 

Tinghuai Ma et al. “Context-Aware Implementation Based on CBR for Smart Home.” In 

WiMob’2005), IEEE International Conference on Wireless And Mobile Computing, 

Networking And Communications, 2005., IEEE, 112–15. 

http://ieeexplore.ieee.org/document/1512957/ (October 16, 2018). 

Vail, Douglas L, Manuela M Veloso, and John D Lafferty. 2007. Conditional Random Fields for 

Activity Recognition. http://www.eecs.ucf.edu/~gitars/cap6938/vail07conditional.pdf 

(January 30, 2019). 

Vainio, A.-M., M. Valtonen, and J. Vanhala. 2008. “Proactive Fuzzy Control and Adaptation 

Methods for Smart Homes.” IEEE Intelligent Systems 23(2): 42–49. 

http://ieeexplore.ieee.org/document/4475858/ (October 30, 2018). 

Virone, Gilles. 2009. “Assessing Everyday Life Behavioral Rhythms for the Older Generation.” 

Pervasive and Mobile Computing 5(5): 606–22. 

https://www.sciencedirect.com/science/article/pii/S1574119209000571?via%3Dihub 

(January 26, 2019). 

Wang, Liang et al. 2011. “Recognizing Multi-User Activities Using Wearable Sensors in a Smart 

Home.” Pervasive and Mobile Computing 7(3): 287–98. 

https://www.sciencedirect.com/science/article/pii/S1574119210001252 (February 14, 

2019). 

Willems, Jared, Glen Debard, Bart Vanrumste, and Toon Goedemé. 2009. “A Video-Based 

Algorithm for Elderly Fall Detection.” In Springer, Berlin, Heidelberg, 312–15. 

http://link.springer.com/10.1007/978-3-642-03904-1_87 (January 26, 2019). 

Williams, G., K. Doughty, and D.A. Bradley. 1998. “A Systems Approach to Achieving CarerNet-

an Integrated and Intelligent Telecare System.” IEEE Transactions on Information 



73 
 

Technology in Biomedicine 2(1): 1–9. http://ieeexplore.ieee.org/document/678527/ 

(October 31, 2018). 

Wilson, D. H., and C. Atkeson. 2005. “Simultaneous Tracking and Activity Recognition (STAR) 

Using Many Anonymous, Binary Sensors.” In Springer, Berlin, Heidelberg, 62–79. 

http://link.springer.com/10.1007/11428572_5 (February 14, 2019). 

Wilson, Daniel, and Chris Atkeson. Simultaneous Tracking &amp; Activity Recognition (STAR) 

Using Many Anonymous, Binary Sensors. 

http://www.cs.cmu.edu/~dwilson/papers/wilsonPERVASIVE2005.pdf (December 3, 

2018). 

“World Population Ageing 2015.” 

http://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2

015_Report.pdf (May 24, 2018). 

Xiaodan Zhuang, Jing Huang, Gerasimos Potamianos, and Mark Hasegawa-Johnson. 2009. 

“Acoustic Fall Detection Using Gaussian Mixture Models and GMM Supervectors.” In 

2009 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 69–

72. http://ieeexplore.ieee.org/document/4959522/ (October 18, 2018). 

Xie, Xiaobo et al. 2013. “Neural-Network Based Structural Health Monitoring with Wireless 

Sensor Networks.” In 2013 Ninth International Conference on Natural Computation 

(ICNC), IEEE, 163–67. http://ieeexplore.ieee.org/document/6817963/ (January 29, 

2019). 

Yamazaki, Tatsuya. 2006. “Beyond the Smart Home.” In 2006 International Conference on 

Hybrid Information Technology, IEEE, 350–55. 

http://ieeexplore.ieee.org/document/4021238/ (September 18, 2018). 

Yun Li, Yun, K. C. Ho, and M. Popescu. 2012. “A Microphone Array System for Automatic Fall 

Detection.” IEEE Transactions on Biomedical Engineering 59(5): 1291–1301. 

http://www.ncbi.nlm.nih.gov/pubmed/22532430 (February 4, 2019). 

Yun Li, Zhiling Zeng, M Popescu, and K C Ho. 2010. “Acoustic Fall Detection Using a Circular 

Microphone Array.” In 2010 Annual International Conference of the IEEE Engineering in 

Medicine and Biology, IEEE, 2242–45. http://ieeexplore.ieee.org/document/5627368/ 



74 
 

(February 27, 2019). 

Zhang, Daqing, Tao Gu, and Xiaohang Wang. Enabling Context-Aware Smart Home with 

Semantic Web Technologies. 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.964&rep=rep1&type=p

df (January 29, 2019). 

Zhang, Mi, and Alexander Sawchuk. 2011. “A Feature Selection-Based Framework for Human 

Activity Recognition Using Wearable Multimodal Sensors.” In Proceedings of the 6th 

International ICST Conference on Body Area Networks, ACM. 

http://eudl.eu/doi/10.4108/icst.bodynets.2011.247018 (February 22, 2019). 

Zhu, Chun, and Weihua Sheng. 2011. “Motion- and Location-Based Online Human Daily 

Activity Recognition.” Pervasive and Mobile Computing 7: 256–69. 

www.elsevier.com/locate/pmc (August 22, 2018). 

 

 




