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Summary 

This project involves the design of fuzzy classifiers targeted for a two-

class EMG classification problem. One of the main objectives of this 

project is to prove the performance efficiency of the designed fuzzy 

classifiers, which are developed using both type-1 and type-2 fuzzy logic 

systems (FLS). 

 

Given a collection of EMG data for simple human arm motions such as 

hand close-open and forearm pronation-supination, we shall use a subset 

of them to create a rule-based classifier (RBC) using fuzzy logic. We 

have developed both type-1 and type-2 fuzzy classifiers and also 

compared them to see which classifier provides the best performance in 

terms of classification accuracy. 

 

The most important step is to extract appropriate features from the EMG 

signals under study. We have used the EMG data obtained from 2 

subjects, a healthy and a post stroke subject. Using Continuous Wavelet 

Transform (CWT), we obtain the wavelet coefficients of EMG signals, 

which are the features for the fuzzy classification system. The maximum 

absolute value of the wavelet coefficients at each scale were extracted as 

features for the classifier.  
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The uncertainties involved in EMG signals suggest that it is more 

appropriate to model each input measurement as a type-2 fuzzy set. An 

interval type-2 non-singleton type-2 FLS model is appropriate for the 

case where there is non-stationary additive noise like EMG signal 

measurements. 

 

Finally, a FLS contains many design parameters whose values must be set 

by the designer. After the tuning of each FL RBC is completed, these 

classifiers are tested on the remaining unused data. Its classification 

accuracy is the performance measure that is used to evaluate it and to 

compare it against the other classifiers. 

 

We have designed the following five FL RBCs: singleton type-1 FL 

RBC, non-singleton type-1 FL RBC, interval singleton type-2 FL RBC, 

interval type-1 non-singleton type-2 FL RBC, and interval type-2 non-

singleton type-2 FL RBC. All the five designs used the totally 

independent approach in which all of the parameters were tuned 

independently for each design. 

 

We have given comparisons between type-1 and type-2 fuzzy logic 

classifiers for both the singleton as well as the non-singleton case. The 

results show how the steepest descent tuning procedure affects the 

performance of the classifiers. In addition, we have also analyzed the 
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classification accuracy when only the dominant muscles are chosen as the 

input features. 

 

We used a back-propagation algorithm for tuning, in which each element 

of the training set is used only one time, and the FLS parameters are 

updated using an error function. Training occurs for only one epoch. 

 

From the results, we take note of the following key points. Coiflet 

wavelets has proved to work out well for the EMG data under study. 

Type-2 FLS outperform the type-1 FLS. The interval type-2 non-

singleton type-2 FLS performs the best and the interval type-1 non-

singleton type-2 FLS also gives comparable results. Out-of-product 

classification results have been summarized which is very useful for real-

time EMG classification purposes. Finally, we have also tested the 

versatility of the fuzzy classifiers. 
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Chapter 1 

Introduction 

 

Many researchers working on exoskeletons and assistive devices have 

been using Electro Myo Gram(EMG) signals to control the torque 

required at the human joints [1,2,3]. As we know the human body is a 

typical fuzzy system. EMG is the measurement of the muscle activity and 

measuring these signals on the skin surface identifies the intention of the 

user. These signals are also fuzzy. Researchers have proposed neuro-

Fuzzy controllers for this purpose. They use Fuzzy sets to represent the 

uncertainty and neural networks for adaptive learning ability. In this 

thesis, I will present in detail a better option to handle the uncertainties [4] 

involved in EMG signals. 

 

Measurement of EMG signal is corrupted by additive noise [5] whose 

signal-to-noise ratio (SNR) varies in an unknown manner. Research on 
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type-2 Fuzzy Logic System (FLS) [6,7] show that a type-2 Fuzzy model 

is appropriate in modeling measurements such as EMG signals. 

 

I propose to implement Type-2 FLS [8,9] as well as the normal Type-1 

for the classification of EMG signals, which can be used later for control 

of assistive devices. Based on the subjects’ simple motion patterns such 

as hand close-open and forearm pronation-supination motions obtained 

from pre-experiment, IF-THEN rules for the fuzzy system can be 

obtained. The results of all these fuzzy classifiers with and without tuning 

have been summarized.  

The entire project could broadly be broken down into four important 

phases, (1) the EMG signal measurement and signal processing phase- the 

signal capturing phase alone was done by Prof. Ted Milner and his group 

in Simon Fraser University (2) feature extraction and selection phase (3) 

fuzzy classifiers, classification algorithms development phase and (4) 

strategies for classifiers’ performance improvement phase. 

The thesis consists of eight chapters and brief descriptions of these are: 

Chapter 1 Introduction – The scope of the thesis is presented here. 

Some background information on the topic is provided in this chapter.
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Chapter 2 Literature Review – In this chapter, related works from 

other researchers are discussed, reviewing the current state of technology 

and general approach in this field of research. 

Chapter 3 EMG signals – The important details related to EMG 

measurement and signal processing are explained in this chapter. 

Chapter 4 Feature extraction – The time and frequency domain 

approaches, their relative advantages and disadvantages, and the reasons 

for choosing Continuous Wavelet transform for EMG feature extraction 

are presented in this chapter. 

Chapter 5 Fuzzy approach to EMG classification – In this chapter, 

the proposed fuzzy logic systems will be discussed. Details of type-1 and 

type-2 FLS, both singleton and non-singleton systems are presented. 

Chapter 6 Design of fuzzy classifiers for EMG classification – The 

structure and algorithm of the five fuzzy classifiers used for EMG 

classification will be presented in the chapter. 

Chapter 7 Simulation results – Experiments are done on the EMG 

signals to classify them. The relative performance of all the fuzzy 

classifiers will be discussed in this chapter. 
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Chapter 8 Conclusions and Recommendations – In this chapter, 

conclusions drawn from this work are summarized and some 

recommendations for further investigation in this topic are also provided. 
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Chapter 2  

Literature Review 

        

A good and computationally efficient means of classifying EMG signal 

patterns has been the subject of research in recent years. Important 

research works and valuable lessons learnt from them are shared among 

the research community through publications in journals and Conferences. 

In this chapter, we give a brief survey of some of the research works that 

are related to our work in this thesis. 

 

2.1.         EMG signal detection and processing 

The study of EMG signal and its classification is an interesting topic, 

which has lots of scope for research. The EMG signal has been detected 

for various reasons in the past [10]. This area of research has been vastly 

explored in the last few decades. Researchers and clinicians had great 

difficulties [11, 12] in converting the raw EMG signal into usable signals 
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that can provide sufficient information about the subject. This is primarily 

due to the fact that technology at that time, especially in terms of 

hardware and software, was still unable to handle the uncertainties 

involved in the measurement of the myosignals. Different methods to 

decrease the range of pick-up and thereby potential crosstalk have been 

proposed. Some of them include using electrodes of smaller surface area, 

choosing smaller bipolar spacing and employing mathematical 

differentiation.   

 

The interest in EMG research did not stop at research centers and 

universities; Commercial companies also took up the challenge in 

research. Groups like Noraxon, Matlab [13,14], etc., resorted to work on 

building hardware systems and software packages for the processing of 

raw EMG signals. Analyzing the EMG signal using pattern recognition 

techniques can perform human gesture recognition. However, the EMG 

signals generated by specific gestures and motion patterns are subject 

dependent. 

 

2.2. Algorithms for EMG classification  

Control of assistive devices and exoskeletons using EMG signals has 

been the focus for many researchers. Given the complexity of EMG 

signals for specific motion tasks, motion detection and EMG 
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classification is a challenging task. Many approaches to achieve efficient 

control using EMG signal classification had been considered, and they 

could generally be classified into the following main categories: (1) 

Neural Network (2) Fuzzy logic (3) Hybrid Fuzzy-Neural approaches and 

(4) Wavelet based. 

 

2.2.1. Neural Network approach 

In 1990, Kelly et al.,[15] described some early work done to explore the 

application of neural networks to myoelectric signal analysis. Hopfield 

algorithm was used to compute the time series parameters of the moving 

average signal model. The performance of two algorithms, namely the 

Hopfield and Sequential Least Squares algorithm were compared and it 

was concluded that Hopfield was two to three times faster than the latter 

based on a typical EMG data. Some additional results such as the use of 

perceptrons in future myoelectric signal analysis were also discussed.  

 

In 1991, Nishikawa and Kuribayashi[16] used neural network to 

discriminate hand motions for EMG-Controlled Prostheses. Here the 

neural network was used to learn the relation between EMG signal’s 

power spectrum and the motion task desired by the handicapped subject. 

Hudgins et al., [17] analyzed the EMG signals for controlling 

multifunction prosthesis. Features were extracted from several time 
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segments of the myoelectric signal to preserve pattern structure. These 

features were then classified using an artificial neural network. They 

observed that the performance of their system enhanced due to the neural 

network’s ability to adapt to small changes in the control patterns.  

 

The application of neural networks for the classification of myoelectric 

signals [18] and further in the control of the assistive devices based on 

these signals has been an interesting research.    

 

2.2.2 Fuzzy approach 

There have been many works on applying the fuzzy approach to EMG 

classification and control of assistive devices. Fuzzy logic has the ability 

to deal with imprecise, uncertain and imperfect information. The strength 

of fuzzy logic lies in the fact that it is based on the reasoning inspired by 

human decision-making. This fuzzy logic is used to handle the vagueness 

intrinsic to many problems by representing them mathematically. We 

have listed some of the prominent research in this field.  

 

Some research groups have validated the use of fuzzy system for EMG 

classification and control of exoskeletons [19]. Fuzzy logic has 

demonstrated a good result in terms of higher recognition rate, 

insensitivity to training and consistent outputs. EMG signals and the force 

measured during elbow motion have been used as input information to 
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fuzzy controllers. The input variables are the Waveform Length of biceps 

and triceps EMG signals, and the force measured at the subject’s wrist. 

The torque command for the exoskeletal robot joint was obtained as the 

output from this controller. 

 

Kiguchi et al. developed a fuzzy controller to control the elbow and 

shoulder joint angles of the exoskeleton based on the moving average 

value of EMG signals from arm and shoulder muscles and the generated 

wrist force [20]. Nearly 50 fuzzy IF-THEN control rules were designed 

based on the analyzed human subject’s elbow and shoulder motion 

patterns in the pre-experiment. 

 

In 2003, the same group proposed an improved version known as the 

fuzzy-neuro controller and implemented a back-propagation learning 

algorithm for the controller adaptation. Desired joint angle and 

impedance of the exoskeletal system were outputs from this controller.  

 

Fuzzy logic was also used to detect the onset of EMG and to classify user 

intention in a multifunction prosthesis controller [1]. The fuzzy logic 

system did the EMG classification and based on the classification results, 

the controller executed the corresponding prosthesis functions. Ajiboye 

and Weir [3] proposed a heuristic fuzzy logic approach for multiple EMG 

pattern recognition in a multifunctional prosthesis control. Basic signal 
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statistics such as mean and standard deviation were used for membership 

function construction. The rule base construction was done by a fuzzy c-

means data clustering method. This system discriminated between four 

EMG patterns for subjects with intact limbs, and between three patterns 

for limb-deficient subjects. Overall classification rates ranged from 94% 

to 99%. This heuristic fuzzy algorithm also demonstrated success in real-

time classification, both during steady state motions and motion state 

transitioning. This kind of functionality is necessary for the control of 

multiple degrees-of-freedom in a multifunctional prosthesis. 

 

2.2.3 Hybrid Fuzzy-Neural approaches 

Apart from using neural networks and fuzzy logic, researchers also tried 

their combination called neuro-fuzzy or fuzzy-neural systems for EMG 

classification and assistive devices control. Fuzzy systems have a 

reasoning capability similar to that of human beings. In addition, their 

combination with neural networks gives adaptive learning and self-

organization capabilities to these hybrid systems. 

 

In order to help everyday life of physically weak people, exoskeletal 

robots were developed for human motion support. In [21], the authors   

proposed controllers that can control the angular position and impedance 

of the exoskeletal robot system based on skin surface electromyogram 

(EMG) signals and the wrist force during the elbow motion. In order to 
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make the robot flexible enough to deal with vague biological signal such 

as EMG, fuzzy neuro control has been applied to such controllers. While 

executing the controller, they consider the generated wrist force is more 

reliable when the subject activates the muscles little, and the EMG signals 

are more reliable when the subject activates the muscles a lot.  

 

2.2.4 Wavelet based methods 

Feature extraction is an important step for EMG classification. Time 

domain and frequency domain parameters were chosen as representative 

features for EMG signals. In this thesis, we have adopted the Wavelet 

transform and wavelet coefficients to represent the EMG signals. We 

have listed down some of the works, which demonstrated an encouraging 

level of results by identifying human intention and thereby controlling 

assistive devices.  

 

The properties of wavelet transform turned out to be suitable for non-

stationary EMG signals. Wavelet transform in combination with artificial 

neural network technique was used for the classification of EMG signals 

[22]. Neural network architecture with three layers in feed-forward 

fashion was designed using back propagation algorithm. After training 

the network with wavelet coefficients, it was able to classify four forearm 

motions with an average accuracy of 90%. The wavelet transform proves 
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to be a powerful tool for real time preprocessing of EMG signals prior to 

classification. 

 

An improvement to the previous work was the use of a wavelet-based 

feature set, reduced in dimension by principal components analysis [23]. 

It was demonstrated that exceptionally accurate performance was possible 

using the steady-state myoelectric signal. Exploiting these successes, a 

robust online classifier was constructed, which made online decisions on 

a continuous stream of EMG. Although in its preliminary stages of 

development, this online scheme promised a more natural way of 

myoelectric control than one based on discrete, transient bursts of activity. 

 

Later in the year 2002, a wavelet based neuro-fuzzy approach [24] was 

proposed to classify EMG signals for movement recognition. EMG 

signals were analyzed with wavelet transform, and feature vectors were 

constructed by Singular Value Decomposition transform from wavelet 

coefficients for further movement recognition. It has been shown that 

proper feature selection and clustering techniques would improve the 

performance of the system. 

 

In another study by Subasi et al. [25], feed-forward artificial neural 

networks and wavelet neural networks based classifiers were developed 

for EMG classification and they were compared with respect to their 
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classification accuracy. In these methods, they used an autoregressive 

model of EMG signals as input to classification system. EMG obtained 

from 7 normal subjects, 7 subjects with myopathy and 13 subjects with 

neurogenic disease were analyzed in this work. The success rate for the 

wavelet system was 90.7% and for the neural network was 88%. The 

superiority of the wavelet-based systems over the traditional neural 

network systems was demonstrated for EMG classification of a specific 

dataset. 

 

2.3. Type-1 and Type-2 fuzzy logic system (FLS) applications 

In the previous sections, we were discussing many different approaches to 

EMG classification and how they can be used to control assistive devices. 

In this section, we will discuss some type-1 and type-2 FLS applications 

that have shown convincing results when used for applications analogous 

to EMG signal classification. These typical examples will substantiate 

why we have opted to develop fuzzy classifiers using both type-1 and 

type-2 fuzzy systems for our EMG classification in this thesis.  

 

A typical rule-based fuzzy logic system (FLS) consists of three basic 

units- a fuzzifier, an inference mechanism and an output processor. A 

FLS that utilizes type-1 fuzzy sets is called a type-1 FLS. On the other 

hand, a FLS that utilizes at least one type-2 fuzzy set is called a type-2 
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FLS. Type-1 fuzzy sets are certain; hence uncertainties in the fuzzy logic 

rules cannot be modeled using type-1 FLS. As an improvement, type-2 

fuzzy sets were used. In this case, the membership function is described 

by more design parameters compared to type-1 fuzzy sets. The output 

processor unit for a type-1 FLS contains only a defuzzifier that converts 

type-1 fuzzy set into a crisp number. In a type-2 FLS, the output 

processor is composed of a type-reducer, followed by a defuzzifier.   

 

Type-1 FLS have been in use for many decades in engineering 

applications. Type-2 FLS [26] and its applications have been developed 

recently and in the last few years researchers have started exploring this 

field. In particular, we will see in these applications that the Type-2 fuzzy 

classifiers prove to be more robust in the presence of noise. 

 

It was demonstrated with experiments in 1999 [27] that type-2 FLS can 

outperform a type-1 FLS for one-step prediction of a Mackey-Glass 

chaotic time series. This time series is obtained by solving a delayed non-

linear differential equation known as the Mackey-Glass equation. These 

measurements were also corrupted by additive noise. In this paper the 

main focus was on model-based statistical signal processing and how 

some problems that are associated with it can be solved using fuzzy logic. 

Type-2 FLS have proven that they can handle linguistic and numerical 

uncertainties better than type-1.  
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A new approach for MPEG variable bit rate (VBR) video modeling and 

classification using type-2 fuzzy techniques was presented by Liang and 

Mendel [28]. They identified that a Gaussian membership function with 

uncertain variance (uncertain standard deviation) was the most 

appropriate choice to model the log-value of I/P/B frame sizes in MPEG 

VBR video. Fuzzy c-means method was used to obtain the mean and 

standard deviation of the input dataset. Type-1, type-2 fuzzy classifiers 

and a Bayesian classifier were designed for video traffic classification 

and fuzzy classifiers were compared with the Bayesian classifier. 

Simulation results show that the type-2 classifier performs the best in out-

of-product classification. 

 

In another experiment [29], Hani Hagras used indoor and outdoor robots 

navigating in unstructured environments to test the real time performance 

of type-2 Fuzzy Logic Controllers (FLC). Different robot behaviors like 

edge following, obstacle avoidance and goal seeking were tested. In these 

experiments, the type-2 FLC also outperformed the performance of the 

type-I FLC. One advantage of using type-2 fuzzy sets to represent the 

FLC inputs and outputs is that it will result in the reduction of the rule 

base when compared to using type-1 fuzzy sets. 

 

In 2005, Herman, et al. [30] examined the potential of the type-2 FLS in 

devising an EEG based brain-computer interface. The designed type-2 
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FLS was required to classify imaginary left and right hand movements 

based on time-frequency information extracted from the EEG with the 

short time Fourier transform. Their challenge was to assign the examined 

EEG signals to classes of the associated mental tasks. The Type-2 fuzzy 

classifier proved to be more robust in the presence of noise and also 

compared favorably to a linear discriminant analysis classifier in terms of 

classification accuracy. 

 

Another relevant work by National University of Singapore [31] assessed 

the feasibility of using a type-2 fuzzy system for ECG arrhythmic beat 

classification. Three types of ECG (Electrocardiograph) signals, namely 

the normal sinus rhythm (NSR), ventricular fibrillation (VF) and 

ventricular tachycardia (VT), were considered. The inputs to the fuzzy 

classifier were the average period and the pulse width, two features that 

are commonly used for computer-assisted arrhythmia recognition. Tests 

using data from the MIT-BIH Arrhythmia Database show that the type-2 

fuzzy classifier yields an accuracy of 90.91% for VT events, 84% for VF 

events and 100% for NSR events. These results are superior when 

compared to type-1 system, neural network using self-organizing map 

and fuzzy rule-based methods. 

 

Type-2 FLS have also been applied to classification of battlefield ground 

vehicles based on acoustic features [32]. In this paper, three fuzzy logic 
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rule based classifiers were proposed and experiments were conducted to 

evaluate the performances of these architectures, and then they were 

compared to a Bayesian classifier. All the fuzzy classifiers performed 

substantially better than the Bayesian classifier and they achieved higher 

than the acceptable 80% classification accuracy. It is interesting to note 

that Interval type-2 fuzzy classifiers perform better than their type-1 

counterpart, although sometimes not by much.  

 

In this chapter, our main focus is to convince the readers why we have 

opted to design wavelet based type-1 and type-2 fuzzy classifiers for 

EMG classification. To support our claim we have given a brief literature 

assessment of some important research works in the field of EMG 

classification using neural networks and fuzzy approaches, and some 

relevant applications of type-1 and type-2 fuzzy systems. This chapter 

also identifies several applications where type-2 FLS have been chosen 

instead of the traditional type-1 FLS because of its comparative 

advantages. 

 

The classifier model and the features used in that classifier have to be 

chosen appropriately with sufficient care. We should bear in mind that the 

performance of any classifier varies widely with different choice of 

dataset, training algorithm, feature selection, etc. In a pattern recognition 

problem, there should be a negotiation between the various available 
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choices. A very strong classifier can perform poorly if the choice of 

features is not good. The reverse is also true: a carefully chosen feature 

set can classify well even if a weak classifier is used.  
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 Chapter 3  

 Electromyographic Signals 

 

When a muscle contracts, the neuromuscular activities associated with 

that muscle results in myoelectric signals being generated which we call 

as EMG. It is a common practice to measure the skin surface EMG 

signals in order to identify the intention of an individual [12]. For 

example if we want to build any prosthetic or orthotic device, we will 

need to know the intention of the users. One solution is to use EMG 

signals. There are various factors involved in the development, recording 

and analysis of myoelectric signals, which we will discuss later in this 

chapter. 

 

Measurement of EMG signal is corrupted by additive noise whose signal-

to-noise ratio (SNR) varies in an unknown manner [33]. Unlike the 

classical Neurological EMG, where an artificial muscle response due to 

external electrical stimulation is analyzed under static conditions, the 
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focus of Kinesiological EMG can be described as the study of the 

neuromuscular activation of muscles within postural tasks, functional 

movements, work conditions and treatment/training regimes [34]. The 

EMG is considered as a reasonable reflection of the muscle activity [35], 

which indicates the firing rate of motor neurons.  

 

Each individual has his own style of using his muscles for a certain 

motion and one muscle is associated with more than one motion task [36]. 

This fuzzy behavior of biological signals such as EMG has been noted 

many years back [37]. Analysis of EMG data can be done using raw 

signal (prior to any processing) or using processed signal. The raw data is 

not very useful for classification purposes. Hence, it is usually processed 

and used for further analyses.  

 

3.1.  Raw EMG 

The use of EMG has many benefits - it measures muscular performance, 

helps us to record treatment and training regime for future use, helps 

subjects with disabilities to train their muscles. However, there are some 

difficulties in the measurement and processing of these signals [38]. One 

such aspect is the choice of sampling frequency for EMG measurement. 

The sampling rate of Analog/Digital kit must be at least twice as high as 

the maximum probable frequency of the signal. This is in accordance 
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with Nyquist’s sampling theorem. If the sampling frequency is too low 

then it might lead to aliasing effects.  

 

The band setting for EMG amplifiers should be chosen carefully. Usually 

the lower limit is 2 Hz or less and the upper limit is 10 kHz or higher 

[39]. This means to ensure that the signal is not lost, a sampling 

frequency of at least 20 kHz or more is recommended. 

 

Although, the measurement and processing of EMG signal [40,41] is a 

difficult task, the evolution of many computational tools and other 

software has made it easier to convert the raw EMG signals to usable 

form. 

 

3.1.1. Details of subjects, EMG recordings 

The following five are the important factors to be considered before 

recording EMG signals [40-42].  

1. Choice of electrodes; 

2. Skin preparation technique; 

3. Electrode dimensions; 

4. Appropriate electrode placement and location of muscles, and; 

5. Inter-electrode distance (There is very little clue to find a standard inter-

electrode distance). 
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The quality of any EMG measurement strongly depends on a proper skin 

preparation and electrode positioning. The key factor in skin preparation 

is to establish stable electrode contact and low skin impedance. Most 

modern EMG-amplifiers are designed for skin impedance levels between 

5 and 50 kOhm (between pairs of electrodes). Usually it is necessary to 

perform some skin preparation before the electrodes can be applied. 

There are no general rules for this and there are several possibilities to 

reach a good skin condition for EMG-measurements [33]. 

 

The following procedures may be considered as the key steps to prepare 

the skin: 

1) Removing the hair 

2) Cleaning the skin – Using conductive cleaning pastes, sand paper or 

alcohol to perform soft rubbing on the skin. A light red color on the skin 

is an indication of good skin impedance. For surface electrodes, silver or 

silver chloride (pre-gelled) electrodes are most commonly used.  

For certain cases, a simple alcohol cleaning may be sufficient for skin 

preparation. 

 

3.1.2. EMG recordings and Signal Processing techniques 



    

 - 23 -    

 

The EMG data used in this study were obtained from experiments done at 

Neuromuscular Control Laboratory, Simon Fraser University [43,44]. 

The experiment started in May 2007 and was completed in July 2007.  

 Two subjects were chosen as given below: 

1. Post-stroke subject: Right handed male, 63 years old with right 

hemiplegia.  

2. Healthy subject: male, 61 years old. 

The following key points are crucial during the EMG signal capture and the 

subsequent signal processing steps. 

• Skin cleaning and surface electrode positioning 

• Filter bandwidth  

• Sampling rate  

• Acquisition card  

 

            Fig.3.1 Bipolar surface electrodes used for EMG recording 
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For skin preparation, the skin was cleansed with alcohol. Custom-built 

active bipolar electrodes (surface electrode) with variable gain as shown 

in Fig.3.1 were used and filtered in 30 Hz and 500 Hz bandwidth range. 

The sampling rate for the EMG measurements was 2 kHz, keeping in 

mind the Nyquist’s sampling theorem. A data acquisition card with 16 

channels was used to acquire the data in the SFU laboratory (only 9 

channels were used, as they recorded from 9 muscle sites). The 9 muscle 

sites from the arms are the Extensor carpi radialis (ECR) muscle, the 

Extensor digitorum communis (EDC) muscle, the Flexor carpi ulnaris 

(FCU) muscle, the Flexor digitorum superficialis (FDS) muscle, the 

Peroneus tertius (PT) muscle, the Biceps (BI), the First dorsal 

interosseous (IDI) muscle, the Abductor Pollicis Brevis (APB) and the 

Abductor digiti minimi (ADM) muscle as in Fig. 3.2. 

Fig.3.2 Surface EMG electrode sites on the subject 
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EMG signals vary widely when the detection condition varies such as changes in 

subjects, small changes in electrode locations, and day-to-day measurements of the 

same muscle site. Normalization eliminates this problem and signals are now 

scaled to a percentage of reference value. This allows a direct quantitative 

comparison of EMG findings between subjects. Fig. 3.3 shows the EMG signals of 

a subject both before and after normalization. Normalization [45] is done for 

comparing EMG parameters across different muscles or for different subjects. We 

do this by dividing the measured EMG value by the Maximum voluntary 

contraction (MVC) [10] that is likely to reflect the differences in the conditions of 

the recording. The MVC procedure is done for each of the 9 muscle sites 

separately. We notice that this normalization changes only the amplitude and does 

not affect the shape of EMG signals.  The raw signals obtained from these muscles 

were already filtered in the bandwidth of 30 Hz to 500 Hz. The next step is offset 

removal. DC offset is simply the mean amplitude of the signal; by subtracting the 

mean amplitude from each sample we can remove this offset. 
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Fig.3.3 EMG signals of patient before and after normalization 

3.2. Kinds of motion 

Each subject generated two different types of motion: hand close-open 

and pronation-supination of the forearm. The contraction levels were 

assumed to be arbitrary as long as they are reasonably consistent. It was 

also ensured that the level of contraction was comfortable enough for the 

subjects to perform these motions without any fatigue. 

 

The number of trials depends on the subject, i.e. if he was tired or 

experienced pain, the session was limited. In the EMG dataset that we are 
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using, the two subjects have performed 10 trials per set. They rested for 2 

minutes between subsequent sets. The duration for the whole experiment 

for the subject with hemiplegia lasted for nearly 2 months. To summarize, 

the complete experiment comprised of 16 sessions (days), each session is 

composed of 2 or 3 sets and each set consists of 10 trials. The raw EMG 

signal is not very useful to us. We will have to process the EMG signals 

using a sequence of steps. 

In our study, we used the EMG signals when the two subjects performed 

simple, but very common hand motion tasks. The healthy subject’s EMG 

levels were measured as well in order to compare them with that of the 

post-stroke subject. 

The main objective of the experiment done at Simon Fraser University 

was to develop robotic tools for the rehabilitation of hand functions after 

stroke [43,44]. In order to analyze further, the EMG of post-stroke patient 

both before and after rehabilitation training were also measured.  

The subjects performed two specific motions such as hand close-open 

and forearm pronation-supination as shown in Fig 3.4 and 3.5. These 

were the functions that the post-stroke subjects wanted to recover so that 

it would help them in their daily activities such as knob manipulation, 

handwriting practice, etc., [46]      
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Fig.3.4 Post-stroke subject performing hand close-open                                
motion with robotic device 

 

 

Fig.3.5 Post-stroke subject performing forearm pronation-
supination motion with robotic device 

The details of the robotic devices for opening and closing of hand, haptic 

knob and robotic interface for handwriting rehabilitation are not 

described here as we focus only on the EMG classification using fuzzy 

approaches.  
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Chapter 4  

Feature Extraction 

 

Any classifier’s performance is based on numerous factors. One such factor 

is the most appropriate choice of the feature set. The way in which we 

represent the EMG signals for classification is very important. In this 

chapter, we focus on the representation of EMG signals so that the designed 

fuzzy classifiers can clearly distinguish between human arm motions.  

 

In addition, we have discussed the various approaches to extract useful 

features from signals. In particular, we have summarized the time domain 

and frequency domain features; their relative advantages and disadvantages. 

We know that EMG signals can be represented in both time domain and 

frequency domain [47]. Hence, for signal classification, the signal’s energy 

depicted in a dual representation has been used by Englehart, et al., [48].  
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For the EMG signals under study, we have chosen a dual representation 

using Continuous wavelet transforms (CWT) which characterizes these 

signals in terms of time and scale information.  

 

Time-frequency representations of signals have been used in various 

classification applications such as recognition of speech signals [49,50], 

radar imaging and signal analysis [51], underwater acoustic and geo-acoustic 

signals [52].  

 

For signal classification applications, the signals are represented using 

different transformation methods. Due to their complexity in nature for most 

of these methods, we resort to only Continuous Wavelet Transform for our 

work. The first mention of wavelets appeared in an appendix to the thesis of 

A.Haar in 1909. One property of this Haar wavelet, named so after its 

inventor, is that it has compact support, meaning it vanishes outside of a 

finite interval. Wavelets were developed independently in the fields of 

mathematics, quantum physics, electrical engineering, and seismic geology. 

Many other fields also make use of the concept of wavelets such as in 

astronomy, acoustics, signal and image processing, earthquake-prediction, 

nuclear engineering, sub-band coding, music, magnetic resonance imaging, 

speech discrimination, optics, radar. 
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4.1. Time domain features 

Many raw signals have been represented in their time domain, which is 

nothing but simple amplitude versus time representation of the signals. 

Signal processing applications require additional information that is not 

present in the time domain representation. For this reason, signals were 

analyzed in their frequency domain also. 

 

Myoelectric patterns can be represented by the following features [17]: 

Mean absolute value, mean absolute value slope, zero crossings, slope 

sign changes and waveform length are some of the ways of feature 

representation for EMG signals. Although the variance in the time 

structure of these signals is high, waveform statistics may be stable 

enough to allow pattern recognition.  

 

4.2. Frequency domain features 

The frequency spectrum of any signal tells us what frequencies exist in 

that signal. The plot of the quantity of signal with respect to the frequency 

is called as frequency spectrum. Such a representation of a signal is 

known as frequency domain representation. Fourier transform (FT) and 

Short time Fourier transform (STFT) are discussed under this section. The 

problem of STFT is overcome by using Wavelet Transform for our EMG 

signal analysis. 
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4.2.1. Fourier Transform (FT) 

FT decomposes a signal into complex exponential functions of different 

frequencies. If the FT of a signal in the time domain is taken, the 

frequency-amplitude representation of that signal is obtained. The way it 

does this is defined by the following two equations:   

 

dtetxfX ftj∫
+∞

∞−

−= π2).()(        (4.1) 

dfefXtx ftj∫
+∞

∞−

= π2).()(        (4.2) 

 

Equations 4.1 and 4.2 are the expressions for Fourier transform and inverse 

Fourier transform, respectively. In the above equations, t and f stand for time 

and frequency, respectively. x and X denote the signals in the time domain 

and frequency domain, respectively.  

 

Using this simple expression of FT, it is possible to easily find out whether a 

particular frequency component is a major component of the signal or not. 

The main outcome of FT is that it tells us what are the frequency components 

existing in the signal under study. In certain specific applications, we may 

want to know when in time these frequencies occur in the signal. This feature 

is not available in the FT and is one major disadvantage of the FT. In short, 

FT is very useful for stationary signals where we are not concerned with 
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when the different frequency components appear in the signal. In Fourier 

transform, we can include a finite measurement time window, which is 

known as the windowed Fourier transform. 

Many biological signals are non-stationary. To name a few are ECG 

(Electrocardiograph), EEG (Electroencephalograph), and EMG 

(Electromyogram). 

 

4.2.2. Short Time Fourier Transform (STFT)  

We notice only a minor difference between STFT and FT. In STFT, the 

signal is divided into small segments, and each segment of the signal can 

be assumed to be stationary. Thus, the signal is interpreted as a 

piecewise-stationary signal. In biomedical signal processing, choosing a 

proper segmentation for the signals has to be done with care. The signals 

have to be studied prior to choosing the stationary segments. We need to 

ensure if the signals are highly non-stationary signals or if they are 

signals with wide stationary segments.  

 

We multiply the signal ( )x t by a window function ( )t tω ′− . The resulting 

transform gives the frequency content of the signal near t t′= . Usually, 

the width of the window function is equal to the stationary segment of the 

signal.  
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' 2[ ( ). ( )]. j ft
STFT

t

X x t t t e dtπω −= −∫                (4.3) 

 

The STFT of the signal as shown in Eq.4.3 is nothing but the FT of the signal 

multiplied by a window function. 

 

The problem with STFT is the choice of a proper window function. If we 

choose a small narrow window, we get a good time resolution but a poor 

frequency resolution. Narrow windows abide by the rule of stationary 

signals. Another option is to choose a wide window size. In this case, the 

time resolution gets poorer and the frequency resolution is better than the 

former case. We have to make a compromise in choosing the window 

function for the STFT. When the window size is too large, the STFT 

becomes the normal FT. The choice of window function is application 

dependent. Once, we choose the window size and then it remains fixed. 

Hence, we face the resolution problem. To overcome this, CWT was 

developed. This will be discussed in detail in the next section. 

 

4.2.3.  Continuous Wavelet Transform (CWT)   

The wavelet transform is performed in the same manner as STFT. We 

multiply the signal x(t) by a wavelet function instead of a window 

function as in Eq.4.3. As we discussed in the previous section, the 

resolution problem can be resolved using CWT which uses a different 
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approach called Multi Resolution Analysis. This method of analysis 

makes more sense for biological signals like EMG, ECG, etc., where 

there are high frequency signal components for short time intervals and 

low frequency signal components for long time intervals in such signals. 

Hence the Multi Resolution Analysis when applied to EMG signals 

computes the transform for the signals segment-by-segment individually 

with different resolutions for each segment based on the nature of the 

signal. The expression to compute the CWT of a signal x is given as 

follows. 

dt
s

ttx
s

X CWT ∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

=
τψ *)(1         (4.4) 

 

In the case of FT as in Eq.4.1, we notice that the signals in time domain 

are represented in their frequency domain, whereas in Eq.4.4, there is a 

scaling parameter s instead of frequency f. This scaling parameter s is the 

reciprocal of frequency f. We also notice that the window function is 

being translated along the time axis using the parameterτ . The function 

ψ  is called the wavelet basis function or mother wavelet, where the 

asterisk in the superscript denotes complex conjugate. It serves as a 

source function to generate many other wavelets. It is called as the mother 

wavelet as we can derive daughter wavelets by obtaining scaled and 

translated versions of this wavelet. The significance of the scale s in the 
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computation of CWT is to either compress or expand the signal x(t). We 

usually calculate the CWT for a finite interval of values of s, starting 

from 1 to 25 for our EMG signals here. Thus, the CWT is computed for 

the EMG signals by incrementing the values of τ  and s. The plot of CWT 

can be shown in either a two-dimensional or three-dimensional graph. It 

is usually represented on a time-scale axis. The magnitude of the CWT 

can be represented by a gray-scale colour graph with time on the 

horizontal axis and scale on the vertical axis.  

 

4.3. EMG feature extraction using Continuous Wavelet transforms 

Fast Fourier Transform and other frequency transformations assume that 

the EMG signal when measured during a motion task remains stable. 

Continuous Wavelet Transform, which was selected for this research, 

gives a time-scale view of signals [53]. This makes the identification of 

muscle motions easier. The wavelet type and the decomposition level 

were chosen after some initial trials on the available EMG data. There is 

no standard procedure to choose the most appropriate type of wavelet and 

the decomposition level that will best suit the available data. It is purely 

application dependent.  
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4.3.1. Choice of mother wavelet 

The choice of mother wavelet can be done from the following families: 

Beylkin [54], Spline, Daubechies, Mexican hat and Morlet [55,56]. 

Researchers have already checked the suitability of various mother 

wavelets for myoelectric signal analysis. It has been shown that the 

features obtained using Wavelet Transform with Coiflet-4 as the mother 

wavelet, yielded the lowest classification error on a transient EMG 

dataset [23].  

In this thesis, we have also chosen the same Coiflet-4 mother wavelet. 

Here the number next to the wavelet’s name represents the number of 

vanishing moments and is associated with the number of wavelet 

coefficients. This wavelet family has good de-noising effects and they 

work well for signal analysis [57] and in financial trends.  

The wavelet function ( )xψ  and the scaling function ( )xϕ for the Coiflet 

wavelets should satisfy the following conditions: 

dx∫  ( ) 0,jx xψ =  and                (4.5) 

dx∫  ( ) 1xϕ = ,  dx∫  ( ) 0,jx xϕ =  0,1,..., 1j N= −          (4.6) 

The following are the characteristics of Coiflet wavelet [56]: 

1. The Coiflet wavelets are both orthogonal and biorthogonal [58] in 
nature. Orthogonal wavelets are those that satisfy the condition that the 
inner product of the scaled and translated mother wavelet is an impulse 
function. The associated wavelet transform of biorthogonal wavelets is 
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invertible but not necessarily orthogonal. Biorthogonal wavelets can be 
used to construct symmetric wavelet functions. 

2. They are compactly supported wavelets. 

3. The order of this wavelet ranges from 1 to 10. We have chosen the 
wavelet of order 4 for our work. 

4. The length of the filter is usually six times the order of the wavelet. 

5. Coiflets are wavelet functions that are more symmetrical compared to 
Daubechies wavelets. 

In addition, the Coiflets are those wavelets with the highest number of 

vanishing moments for a given support width. The Coiflet wavelet is 

different from the Daubechies wavelet in the sense that it was constructed 

with vanishing moments for both the wavelet function and scaling function. 

In signal analysis the Coiflets are desirable due to their symmetry property.  

 

4.3.2. Wavelet Coefficients 

The continuous wavelet transform analysis of the signal involves the 

estimation of some constant numbers called as wavelet coefficients. 

These coefficients refer to the closeness of the signal to the wavelet at the 

current scale.  

For example, if the EMG signal measured from one muscle has a major 

frequency component at a particular value of scale, then the wavelet at 

that value of scale will be similar or almost close to that muscle’s signal. 
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Therefore, the CWT coefficient computed at this point will be a relatively 

large number. Similarly, a small value of the wavelet transform 

coefficient indicates that the EMG signal pattern is far different from the 

wavelet at that particular value of scale. In short, the wavelet coefficients 

obtained using Eq.4.4 shows the correlation between the chosen wavelet 

and the signal under study, at various values of scales. 

 

Fig. 4.1 Computation of CWT coefficients using Matlab toolbox 
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  Fig. 4.2 Coiflet Wavelet coefficients of post-stroke subject for 
class 0 
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  Fig.4.3 Coiflet Wavelet coefficients of post-stroke subject for 
class 1 

Using the wavelet toolbox in Matlab, we were able to obtain the wavelet 

coefficients for EMG signals by choosing coiflet-4 as the mother wavelet. 

As we have discussed in the previous section, the number of scales is 

chosen randomly as a reasonable number since we are not concerned with 

the reconstruction of these EMG signals. We have chosen the scales from 

1 to 25 and the scale increment is done using a “step-by-step” mode. Fig. 

4.1 shows a snapshot of the Matlab wavelet toolbox that plots the wavelet 

coefficients. 
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Using the above method, we have obtained the wavelet coefficients 

corresponding to all the nine muscles for the post-stroke subject. Figs. 4.2 

and 4.3 show the plots of wavelet coefficients with respect to the scales. 

We will be using these wavelet coefficients as features for EMG signal 

representation. 

4.3.3. Proper selection of features 

Another consideration is the need to choose the appropriate features that 

serve as a good replication of the signals’ characteristics. Feature 

selection methods will determine the best subset within the original 

feature set. Feature selection is performed here using the criterion from 

another research work [22].   

The maximum absolute value of the wavelet coefficients at each scale 

was extracted as features for the classifier. We choose the maximum 25 

coefficients corresponding to 25 scales. Once the data sets are extracted 

from the subjects, and proper feature selection is done, we then obtain the 

antecedent membership functions and the input fuzzy sets using statistical 

approaches in Microsoft Office Excel. We arrive at 4 rules, 2 for each 

class. Further details of the fuzzy system are described in the subsequent 

chapters.  
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Chapter 5 

Fuzzy Approach to EMG Classification 

 
In year 2000, Chan et al [19] worked on fuzzy EMG classification for the 

control of prosthesis. They used a fuzzy approach called ISO-FUZ, which 

is initialized with the basic Isodata algorithm and trained with the back-

propagation algorithm. The fuzzy approach was compared with an 

Artificial Neural Network and it was superior to the latter in many aspects 

such as higher recognition rate, insensitivity to overtraining and 

consistent outputs demonstrating higher reliability.  

 

In this chapter, we will discuss type-1 and type-2 FLS, their relative 

advantages and disadvantages. In order to search for an improved solution 

to the EMG classification problem, we have proposed to compare both 

type-1 and type-2 FLS. We will also briefly describe Singleton and Non-
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singleton fuzzy systems. As we are concerned with rule-based fuzzy 

classifiers, we should first construct the structure for the fuzzy rules based 

on the available dataset. The EMG data obtained from the healthy and 

post-stroke subjects are inputs to the fuzzy classifiers. They appear in the 

antecedents of the rules. Using CWT, we obtained the wavelet 

coefficients as representative features for these EMG signals. These 

coefficients serve as antecedents to the fuzzy rules and the consequent is 

either ‘0’ or ‘1’ each indicating either of the two motion tasks under 

study. When the consequent is ‘0’ it indicates hand open-close motion 

and when the consequent is ‘1’ it indicates forearm pronation-supination 

motion tasks. 

 

Fuzzy technology has the potential to tackle the uncertainties that exists 

during arm movement changes. Hence, we have chosen a rule-based 

fuzzy system design for our EMG classification problem. In this chapter, 

we will discuss the major components in a fuzzy system, type-1 and type-

2 FLS, the fuzzy rules and the classification of the fuzzy systems into 

singleton and non-singleton.  
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5.1.           Fuzzy Logic System (FLS) 

 

Fig. 5.1 Schematic representation of a fuzzy logic system (FLS) 

A FLS is depicted in Fig.5.1. It contains the following major components-

inference rule base; input processor called fuzzifier, and output processor 

called defuzzifier. The inference engine maps each rule's fuzzy input sets 

into each rule's fuzzy output set. Rules are very important for a FLS. Each 

rule can be thought of as a subsystem and it has one to many membership 

functions (fuzzy sets) associated with it. The rules come into action only 

when the inputs are applied to them. 

The fuzzy rules are nothing but a simple mapping from the inputs to the 

outputs and this mapping can be expressed quantitatively as y = f(x). This 

kind of FLS is very common and widely used in many engineering 

applications of FL, such as in FL controllers and signal processors. It is 

also known as a fuzzy controller, fuzzy system, fuzzy expert system, or 

fuzzy model.  
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There are a number of possibilities for a FLS. The design degrees of 

freedom that control the accuracy of a FLS are the number of inputs, the 

number of rules, and the number of fuzzy sets for each input variable. 

We are free to choose the membership function for our design of fuzzy 

classifiers. This choice can also be done based on an estimate of the kind 

and quantity of noise present. We make sure that this function is 

symmetric about its mean based on the assumption that noise effect is 

most likely to be equivalent on all points.  

Examples of such membership functions are: 

Gaussian:   2 2( ) exp[ ( ') / 2 ],x x xµ σ= − −    (5.1) 

Triangular: ( ) max(0,1 ( ') / ),x x x cµ = − −    (5.2) 

Some other membership functions such as:  

( ) 1/(1 ( ') / ),nx x x cµ = + −       (5.3) 

where 'x  is the center value of the fuzzy sets, standard deviation σ and  

c are values that represent the spread of these sets. Larger values of the 

spread for these membership functions imply that more noise is 

anticipated to exist in the data. 
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Finally, a FLS contains many design parameters whose values must be set 

by us before we work with the FLS. There are many ways to do this, and 

all these methods make use of a set of data, usually called the training set. 

This set consists of input-output pairs for the FLS, and, if these pairs are 

measured signals, then they are uncertain as the measurements excite the 

FLS. We should first set the values for the design parameters in the FLS. 

This can be done using the training dataset, which is a prototype of the 

entire data to be analyzed.  

In this chapter, so far we have discussed the structure and qualities of a 

fuzzy logic system in general. In the remaining chapter, we will briefly 

discuss the properties of type-1 and type-2 FLS, differences between a 

singleton and non-singleton fuzzifier and the different methods of 

extracting fuzzy rules from the data in hand. 

5.1.1. Type-1 and Type-2 FLS 

Type-2 FLS in general are described by type-2 membership functions that 

are characterized by more design parameters than a type-1 membership 

function. The difference in the structure of a type-2 FLS can be seen in 

Fig.5.2.  
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Fig. 5.2 Schematic representation of a type-2 fuzzy logic system (FLS) 

The main difference between a type-1 and type-2 fuzzy set lies in the 

membership function. For a type-1 fuzzy set, membership function is a 

two dimensional function and it is constrained to be between 0 and 1, 

whereas for a type-2 fuzzy set, it is three-dimensional. There are 

uncertainties involved when we use data such as EMG signals in our 

fuzzy system design. These uncertainties appear in the fuzzy rules as well 

as in the EMG measurements, which are used as inputs to the fuzzy 

classifiers. When we design the type-1 and type-2 FLS, we are optimizing 

the parameters of the membership function using some training data. 

The type-1 fuzzy sets that we choose are precise membership functions. 

There is no room for modeling the uncertainties in type-1 fuzzy sets. Such 

precise functions do not have the ability to handle the uncertainties 

involved in the measurements and rules. Type-2 FLS is a better option 

when we are unable to arrive at an exact membership function for a fuzzy 

set. Hence, they can be used to handle rule uncertainties and even 

measurement uncertainties. 

Fuzzifier      

Crisp 
Input 

Fuzzy Input 
Sets 

Type-2 Fuzzy 
Output sets 

Defuzzifier 

Crisp 
Output 

Inference 
Rule Base 

Type-
Reducer 

Type-1 Set 
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It is difficult to visualize the plot of the type-2 fuzzy sets in three 

dimensions. One easy way is to plot the two-dimensional domain of the 

type-2 fuzzy sets called as footprint of uncertainty (FOU). An example of 

such FOU is shown in Fig.5.3. This plot shows a type-2 Gaussian 

membership function whose mean varies from 4.5 to 5.5 (i.e. the mean is 

uncertain) and whose standard deviation is perfect. The space between the 

two Gaussian curves in Fig.5.3 represents weighting. If the weighting is 

assumed to be uniform then such a type-2 fuzzy set is called an interval 

type-2 fuzzy set. In this study, we have used only interval type-2 FLS 

[59], as the computations are easier and well established. 
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 Fig. 5.3 FOU for Gaussian membership function with uncertain mean. 
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A Gaussian primary membership function with uncertain mean can be 

expressed as 

⎥
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where k=1,…,a (the number of antecedents) and l=1,…,R (the number of 

rules).  

Let us assume that 
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Because of the additional features (in terms of more degrees of freedom) 

in the type-2 fuzzy sets, a type-2 FLS can give better results when 

compared to a type-1 FLS. This has not yet been proved mathematically. 

However, in most of the applications to which Mendel has applied type-2 

FLS, he always observed that better performance is obtained using a type-

2 FLS than is obtained using a type-1 FLS [28, 32]. 

According to Mendel’s works on type-1 and type-2 FLS performance, the 

following are some cases in which he observed that type-2 FLS are more 

appropriate than the type-1 FLS:  

• Case 1: When the non-stationary nature of the measurement noise 

cannot be expressed mathematically beforehand (cases where the 

measurements are corrupted by variable signal-to-noise ratio). 

• Case 2: When the non-stationary nature of the features obtained 

from our measurements cannot be expressed mathematically 

beforehand (one typical example is the video traffic classification). 

• Case 3: When the time-varying nature of the data-generating 

mechanism cannot be expressed mathematically beforehand (in 

non-linear and time-varying digital communication channels where 

co-channel interference need to be reduced). 
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• Case 4: When IF-THEN questionnaires are used for experts 

knowledge mining (examples such as traffic control for ATM 

system). 

Our work on classification of EMG signals is identical to a rule-based 

video traffic classification problem.  

5.1.2. Fuzzy Rules for EMG classification  

In order to establish the fuzzy rules for a fuzzy logic system, we start with 

the training dataset. To begin, we choose a certain number of input-output 

training pairs. Our next step is to convert the training dataset into a set of 

fuzzy rules (IF-THEN, IF-THEN-ELSE, etc.). In this work, we use only 

IF-THEN fuzzy rules, which is the most simple and very common rule 

type. All fuzzy sets in the rules are represented by Gaussian membership 

functions.  

 We have N input-output numerical data training pairs, 

),:(),...,:(),:( 2211 NN yxyxyx  where x is the input and y is the output of 

a FLS. Our goal is to completely specify the FLS using the training data. 

The design methods that we adopt usually determine the values of the 

parameters in the antecedent and consequent membership functions based 

on the training dataset. The maximum number of rules we can arrive at is 
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equal to the number of training pairs that we choose. This is the simple 

case when there is no tuning involved in the FLS. Tuning determines an 

optimal system that provides the best fit to the input-output pairs, with 

respect to a cost function. Tuning further reduces the number of rules.  

The following are some methods to extract rules from the numerical 

training data: 

• The centers of the fuzzy sets in the antecedents and consequents of the 

rules are obtained directly from the training data. 

• Assume fuzzy sets for the antecedents and consequents ahead of time 

and then relate the data with these fuzzy sets. 

• The FLS is first designed and then all its design parameters are 

optimized using the training data. 

Extraction of rules from the data is the first method and it is explained in 

detail below as we use a similar approach for our EMG classification.  

A rule is of the form: 

Rule1: IF x1 is F1 and x2 is F2……………and xp is Fp, THEN y is G 
         (5.7) 
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Here F1, F2 , ……Fp fuzzy sets whose membership function is centered at 

the measured value of x1 , x2 , …. and xp. 

In this method, the centers of the antecedent and consequent membership 

function are completely determined by the training data. In this method, 

the numerical training data are used just one time to obtain all the rules. 

Hence, this can be called one-pass method.  

In 1992, the idea of tuning the design parameters in a FLS using the 

numerical training data was introduced for the first time. After this work, 

many similar research works were published on adaptive training 

procedures. 

Another important aspect is the weighting for the rules [60]. All the rules in a 

rule base will fire to a particular degree. Some rules are more reliable than 

the others. We should assign larger weight to such rules than the less reliable 

rules. For a multi-class pattern classification, such rule weighting has shown 

improved results [61,62]. In cases where the boundaries between classes are 

clearly defined, the rules can be assigned equal weighting. Here for our 

application, we give equal weighting to all our rules in order to make the 

computations easier. 

Type-2 FLS also use rules similar to type-1 FLS. The structure of rules 

does not change as we go from type-1 to type-2 FLS. In a type-2 FLS at 
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least one of the antecedent or consequent membership function will be 

type-2 fuzzy sets instead of all type-1 fuzzy sets. Hence a FLS becomes 

type-1 or type-2 based on how we model the fuzzy sets in the rules’ 

antecedents and consequents. 

5.2. Singleton vs. Non-singleton fuzzy classifiers 

Fuzzy classifiers can be of either singleton or non-singleton type. The 

choice of the fuzzifier depends on how we quantify the uncertainties 

present in the system. The fuzzifier maps a crisp point x X∈  into a fuzzy 

set XF  in X. 

Singleton fuzzifier 

The singleton fuzzifier is the most widely used fuzzifier. Given below is 

the definition for a fuzzy singleton. 

XF  is a fuzzy singleton with support x  if ( ) 1
XF xµ =  for x x=  and 

( ) 0
XF xµ =  for all other  x X∈ with x x≠  

We can infer from the above definition that each of the separable 

components of ( )
XF xµ  is a fuzzy singleton. We shall assume that 

( ) 1
iX ixµ =  for ix x=  and ( ) 0

iX ixµ =  for all values of i ix X∈  and 

i ix x≠ .  



    

 - 56 -    

 

 Non-singleton fuzzifier 

In non-singleton fuzzification, any measurement x x=  is mapped into a 

fuzzy number. Hence, there is a membership function for each measured 

value. Given below is the definition for a non-singleton fuzzifier for a 

better understanding of this concept. 

A non-singleton fuzzifier is one for which ( ) 1X xµ = ( 1,..., )i p=  and 

( )X xµ  decreases from one as x  moves away from x . 

The non-singleton fuzzifier is commonly used when the input is corrupted 

by noise. This fuzzifier implies that the given measured value of input has 

the highest possibility to be the correct value when compared to all other 

inputs in its immediate neighborhood. However, because the input is 

corrupted by noise, neighboring input measurements are also likely to be 

the correct value, but to a lesser degree. 

The possible combinations of fuzzy systems that we can choose from are 

listed below. We will be using all these different cases to classify the 

human hand EMG signals. 

Case I: Singleton type-1  

• No uncertainties. 

• All the fuzzy sets are type-1 sets. 
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• Measurements are perfect and treated as crisp values.  

Case II: Non-singleton type-1 

• Inputs are type-1 fuzzy numbers. 

• Can handle the uncertainties when measurements are noisy. 

 

 Case III: Singleton type-2.  

When any one of the antecedent or consequent sets is a type-2 
fuzzy set, then such a system is called a type-2 FLS. 

• Can account for the uncertainties of the antecedents or 
consequents in rules 

• Cannot explicitly account for input measurement 
uncertainties as it uses singleton fuzzification.  

Case IV: Non-singleton type-2  

• Can account for all kinds of uncertainties that were 
mentioned above. 
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Chapter 6 

Design of fuzzy classifiers  

 

Pattern recognition, in simple terms means the classification of a dataset 

based on the features that represent the data. These features are obtained 

using feature selection (extracting features that characterize the given 

dataset). Pattern recognition can be done in many ways of modeling such 

as deterministic, statistical, neural network, and rule-based methods. In 

this thesis, we have adopted the rule-based approach to the EMG 

classification problem. We have used the Fuzzy Logic Software 

developed by Mendel et al., [9,63] for the design of type-1 and type-2 

FLS. All the concepts discussed in this chapter are very important, as they 

have been used in the design of the rule-based fuzzy classifiers. 

 

In this chapter, we shall design the following five Fuzzy Logic Rule 

Based Classifiers (FL RBC): singleton type-1 FL RBC, non-singleton 

type-1 FL RBC, interval singleton type-2 FL RBC, interval type-1 non-
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singleton type-2 FL RBC, and interval type-2 non-singleton type-2 FL 

RBC. By choosing these classifiers, we aim to study the difference in the 

performance of type-1 versus type-2 FLS and singleton versus non-

singleton fuzzifiers. All the five designs are using the totally independent 

approach in which all the parameters are tuned independently for each 

design. 

 

Given a collection of EMG data for simple human arm motions such as 

hand close-open and forearm pronation-supination, we shall use a subset 

of them to create a rule-based classifier (RBC) using fuzzy logic. The first 

few milliseconds of the EMG from arm motions will be used in order to 

design the classifier. We have developed type-1 and type-2 fuzzy 

classifiers and also compared them to see which classifier provides the 

best performance in terms of classification accuracy.  

 

We must decide on the following important factors before we begin our 

design of fuzzy classifiers.  

1. Type of fuzzification, whether it is singleton or non-singleton. 

2. Shape of the membership function, whether it is a Gaussian function, 

triangular or trapezoidal function. 

3. Whether the design parameters in the membership function are fixed 

ahead of time or tuned during the training. 
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Our overall approach is listed below. 

Step 1: Choose features that represent the data and use them as the 
antecedents in fuzzy rules. 

Step 2: Obtain the FOU for the EMG training dataset. 

Step 3: Form fuzzy rules using the selected features. 

Step 4: Optimize all the design parameters using steepest descent 
algorithm. 

Step 5: Apply the available data to all the designed fuzzy classifiers and 
compare them in terms of classification accuracy. 

We give a short introduction to the rule-based classifier in the subsequent 

paragraphs and will show how the typical rules look like. This knowledge 

is very essential before we proceed further to the design of fuzzy 

classifiers. 

Rules for a RBC of EMG signals use the selected muscle signal features 

as their antecedents and have one consequent. This type of rule that we 

use is a special case of a Mamdani FLS, where the consequent is a 

singleton. The antecedents are the muscles’ maximum absolute values of 

wavelet coefficients. The consequent is either 0 or 1. It is 0 if the EMG 

signal corresponds to hand close-open motion or 1 if the EMG signal 

corresponds to forearm pronation-supination motion. There is nothing 
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fuzzy about the consequent in the rules. The rule consequent is assigned a 

numerical value, 0 or 1. Each rule in a type-1 FL RBC looks like this: 

IF 1a is 1F  and 2a is 2F  and ………and 9a  is 9F , THEN the product is 

motion1 (consequent ly = 0) or motion2 (consequent ly = 1).  

For a type-2 FL RBC the rule looks like: 

IF 1a is 1
~F  and 2a is 2

~F  and ………and 9a  is 9
~F , THEN the product is 

motion1 (consequent ly =0) or motion2 (consequent ly  = 1)  

Here the suffix 1 to 9 in the antecedent part of the rule represents the 

features obtained from the nine muscles. These rules that we have 

adopted are from the Mamdani FLS [9] where a typical rule consequent is 

characterized as a singleton.  

A natural way to handle the uncertainties in EMG measurement is by 

using fuzzy logic. The problem here is to choose the right membership 

function. Choice of different membership functions will lead to different 

results. Under some reasonable assumptions, Gaussian functions are 

considered to be the most adequate choice of the membership functions 

for representing uncertainty in measurements [64-66]. In our work, the 

shapes of all the membership functions are fixed to be Gaussian functions. 

The shape of the input measurement’s membership function is fixed but 
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not the parameters. To ensure that the input measurement parameters 

adapt to the training data, we use the training data itself to tune the 

parameters of the input measurement membership functions in our work. 

Our tuning algorithm is described below. 

6.1.  Back-Propagation (Steepest descent) algorithm 

All the antecedent and consequent parameters are tuned using the back-

propagation method.  

Given an input-output training pair ),( ii yx , we want to design the FLS 

[9] as below. The output of the FLS is given by 
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Ni ,...,1=    

where a indicates the number of antecedents, R is the number of rules and 

i is the iteration count. 

The difference between the computed fuzzy logic system output ( )if x  

and the actual output iy  obtained from training dataset is used to compute 
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the error function. We wish to design the FLS such that the following 

error function is minimized. 

21 ( )
2

i i ie f x y⎡ ⎤= −⎣ ⎦  

Ni ,...,1=                                             (6.2) 

From Eq.6.1, we notice that f  is completely characterized by ly , i
mm and 

i
mσ (l=1,…,R and m=1,…,a). 

In the steepest descent algorithm we try to minimize this error function 

and update all the design parameters of the FLS (m=1,…,a, l=1,…,R and 

i=0,1,…). 
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It is easy to initialize the values for m(0), y(0) and (0)σ  in Eqs. 6.3 to 6.5 

[9] since these design parameters are associated with the antecedent and 

consequent membership functions of values such as physical 
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measurements. If we choose these parameters in a random manner, then 

in such a case the back-propagation algorithm will converge very slowly. 

Choosing them with some care and knowledge of the training data will 

cause this algorithm to converge much faster. In this work, we have 

chosen the wavelet coefficients (obtained from Continuous Wavelet 

transform) of the EMG signals for each of the nine muscles. We will 

derive the antecedent membership functions from these features. The 

mean of the Gaussian membership function is located at the maximum 

absolute value of the wavelet coefficients corresponding to scales from 1 

to 25 and the standard deviation is obtained similarly by measuring the 

deviation of these coefficients from the mean value.  

 

This will yield 25 rules for each motion task, thereby giving 50 rules. We 

simply choose only 4 rules, 2 for each motion task. This is done by 

special inspection of the rule base and choosing fewer representative 

rules, which will result in simpler computation.     

The learning parameters, ,m yα α  and σα  also should be chosen 

appropriately. Usually, we choose the same valueα . Choosing a small 

value for α  will take long time to converge whereas a large value for α  

will cause the algorithm not to converge at all.  
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In this algorithm each element of the training set is used only once, and 

the FLS parameters are updated using an error function, that depends only 

on one data point at a time. Training is done for only one epoch. 

After training using the back-propagation method, the FLS is fixed. Its 

performance is then evaluated with the percentage of data correctly 

classified, which is nothing but the classification accuracy. 

6.2.              Classification algorithm for type-1 Fuzzy classifier 

In this section, we will provide some important formulas for type-1 FL 

RBC. As we know, two motion tasks have been considered here. One is 

close-open motion of the hand and the other is the pronation-supination of 

the forearm. The rule consequent, ly , is treated as a crisp set; i.e. 0=ly  

for motion class 1, and 1=ly  for motion class 2. 

The membership function for the rule consequent can be given as below:  

1
( )

0lcon
yµ

⎧
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⎩
    

otherwise
yy l=

               where l=1,…,R.                       (6.6) 

The membership function for the fired rule can be expressed as  
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                                                          (6.7) 
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For a singleton type-1 FL RBC, Eq.6.8 simplifies to 
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For a non-singleton type-1 FL RBC, Eq.6.8 simplifies to 
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There are many methods to obtain the defuzzified output from the type-1 

fuzzy set. We have shown a typical height defuzzifier. The output of a 

type-1 RB FLC in this case can be expressed as  

∑

∑
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f
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xy

1
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1 )(                (6.11) 

In the above equation, 0=ly  or 1=ly . We make a final decision that the 

EMG measurements correspond to hand close-open motion (class 0) or 
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forearm pronation-supination motion (class 1) based on the magnitude of 

the defuzzified output.  

 

IF 5.0)(1 <xy , decide motion1    

IF 1( ) 0.5y x ≥ , decide motion2                                 (6.12) 

 

The normalization operation does not change the sign of 1( )y x . Hence for 

two-class classification problem, we can also simplify Eq.6.11 to obtain 

the unnormalized output for the FLS as 

 

∑
=

=
R

l

ll yfxy
1

1 )(                                                          (6.13) 

 

 For the type-1 FL RBCs, each antecedent’s membership function has two 

design parameters, its mean and standard deviation. Hence, there are 

2x9=18 design parameters per rule.  

 

For the type-2 FL RBCs each antecedent’s membership function has three 

design parameters, two means and one standard deviation parameter; 

hence, there are 3x9=27 design parameters per rule. As we have 

mentioned earlier, there is no uncertainty about the consequent. It is either 

a 0 or 1, so it is a singleton. 
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We can have one or two additional design parameters depending on how 

we model the input measurements. Tuning is done using the steepest 

descent algorithm, which will determine the optimum values for all 

design parameters.  

 

6.2.1.                Singleton versus Non-singleton type-1 FLS 

 We move over to a non-singleton FLS when we have a set of noisy 

input-output numerical data training pairs. What is new for a non-

singleton type-1 FLS is the need for the designer to choose membership 

function for the input measurements. This is not needed for a singleton 

type-1 FLS as the measurements are considered to be perfect without any 

uncertainty. We need to specify the mean and standard deviation for each 

input’s Gaussian membership function. These two design parameters in 

each rule will give additional new possibilities for a non-singleton type-1 

FLS. 

 

We will see later in the results that there will be some improvement in 

results as we move on from singleton to non-singleton FLS, but the 

improvement in performance is not so significant. The reason is that we 

have not accounted for all of the uncertainties as they should be 

accounted for (as in type-2 FLS). The training data are noisy, but there is 

no way to account for this in the antecedent membership function (type-1 

fuzzy set) of a type-1 FLS. 
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6.3.        Classification algorithm for type-2 Fuzzy classifier 
 
A FLS is type-2 as long as one of its antecedents or consequents sets is a 

type-2 fuzzy set. When no uncertainties are present, then singleton type-1 

FLSs can provide excellent results.  

A type-2 fuzzy set A~  is characterized by a type-2 membership 

function ),(~ uxAµ , which can be represented as below. 

                       

uxuxA A
Xx Ju x

,),(~
~µ∫ ∫

∈ ∈

=
                                              (6.14)  

where ∫∫  denotes union over all admissible x and u. Also, 

0 ( , ) 1A x uµ≤ ≤  is called the secondary membership function and 

[0,1]xJ ⊆  is the primary membership of x. 

 
Consider a type-2 FLS having ‘a’ inputs aa XxXx ∈∈ ,...,11  and one 

output Yy ∈ . The number of rules is R as in the type-1 systems. In the 

type-2 case any rule has the form of a type-2 relation between the input 

space aXX ×× ...1 , and the output space, Y, of the type-2 FLS. 

 

IF 1x  is lF1
~ and … and ax is l

aF~ , THEN y is lG~     Rl ,...,1=               (6.15) 

 
A general type-2 FLS is too complicated as there are computational 

difficulties involved. We have chosen to use interval type-2 fuzzy sets in 
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order to simplify our approach. It is easy to compute the meet, join 

operations and perform type-reduction when interval type-2 fuzzy sets are 

used. Using interval sets for secondary membership functions also 

resolves the problem of choosing appropriate secondary membership 

functions. The uncertainties in the interval sets are evenly distributed 

among all admissible primary memberships.  

 

Another important step is the choice of appropriate Footprint of 

Uncertainty (FOU) for the type-2 FLS. It is done by first analyzing the 

available training dataset using statistical techniques and examining the 

variations of the appropriate statistics. It is a pure statistical approach. 

 

To begin, let us see how to express the secondary membership function of 

each a-antecedent fired rule [9]. 

 

1 1 2 21 21 2
1 1 2 2( ) ( ) {[ ( ) ( )] [ ( ) ( )] ......l l l lx X x XX Xrule con F F

y y x x x xµ µ µ µ µ µ∈ ∈= ∩ ∪ ∩ ∩ ∪ ∩ ∩     

)]()([......... ~~ aFaXXx xx l
aaaa

µµ ∩∪∩ ∈           Yy ∈                                 (6.16)         

 This is the input-output relation for the inference engine. The input is a 

type-2 fuzzy set that is given to excite a rule in the inference engine and 

the output is again a type-2 fuzzy set. We assume that ( ) ( )l
a a

a aX F
x xµ µ∩  

is only a function of ax . This implies that the join operation is done over 

a scalar variable. 
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Applying the general equation from Eq.6.6 to 6.16, we obtain  

 

1 1 2 21 21 2
1 1 2 2( ) {[ ( ) ( )] [ ( ) ( )] ......

( ) ......... [ ( ) ( )]

0

l l l

l la a a a

x X x XX Xcon F F

x X a aXrule F

y x x x x

y x x

µ µ µ µ µ

µ µ µ
∈ ∈

∈

⎧
⎪

= ⎨
⎪
⎩
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∩ ∪ ∩  
l

l

y y
y y

=
≠

 

                             (6.17) 

This can be expressed in simple terms as below.                             

 

( ')
( )

0
l

l

con

F x
yµ

⎧
= ⎨

⎩
       

l

l

y y
y y

=
≠

                                                     (6.18) 

 

These equations apply for the case when the input and antecedent sets are 

interval type-2 fuzzy sets. 

)'(xF is an interval type-1 fuzzy set which is denoted as follows[9]. 

 

)]'(),'([)'( xfxfxF upperlower=                                                  (6.19) 

 

where   

1 1 2 2

1 1 2 2 3 3

1 1 2 2( ') sup [ ( ) ( )] [ ( ) ( )] ...l llower x lower lower lower lowerX F X F
x X x X x X

f x x x x xµ µ µ µ
∈ ∈ ∈

= ∗ ∗ ∗ ∗∫ ∫ ∫
.......... [ ( ) ( )] /l

a alower a lower aX Fx x xµ µ∗ ∗               (6.20) 
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1 1 2 2
1 1 2 2 3 3

1 1 2 2( ') sup [ ( ) ( )] [ ( ) ( )] ...l lupper x upper upper upper upperX F X F
x X x X x X

f x x x x xµ µ µ µ
∈ ∈ ∈

= ∗ ∗ ∗ ∗∫ ∫ ∫
                                   (6.21) 

                                             

The supremum for the above 2 equations is attained when each term 

inside the square bracket attains its supremum.  

Applying the extension principle [9] to Eq.6.13, we obtain the extended 

output of a type-2 FL RBC as 

 

i

fff
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i

i

fff
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R
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R
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Ml
upper

l
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l
∫ ∑∫

∈ =∈

==
],[ 1],[
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Here ],[ i
upper

i
lower

ii ffFf =∈  and iy  is a crisp value. 

We obtain the values for the end limits as below. 

 

Left limit, ∑
=

=
R

i

ii
lowerl yfy

1
                 (6.23) 

 

Right limit, ∑
=

=
R

i

ii
upperr yfy

1

              (6.24) 

 

The defuzzified output of the type-2 FL RBC is  

xxx aFupperaXupper l
aa

/)]()([.......... ~~ µµ ∗∗
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2
1

( ') ( ) / 2 ( ) / 2
R

i ii
l r lower upper

i

Y x y y y f f
=

= + = +∑            (6.25) 

 

We use this value in the decision rule as given in Eq.6.12 similar to the 

type-1 FL RBC. 

 
 
6.3.1. Singleton type-2 FLS 
 
 
The singleton type-2 FLS accounts for the uncertainties in the rule 

antecedents and consequents, but does not explicitly account for input 

measurement uncertainties. In this design the parameters of the interval 

singleton type-2 FLS are initialized independently. This means that we 

have tuned all the parameters of the interval type-2 FLS without using 

any information from the previous type-1 design.  

For the interval singleton type-2 FLS, we initially set the intervals of 

uncertainty for the means (Gaussian function with uncertain mean) of 

each of the antecedent’s fuzzy sets based on the knowledge from the 

training samples. 

Although the interval singleton type-2 FLS has incorporated the 

uncertainties that are in the training data into its rules, it still does not 

account for the input measurement uncertainties because it is using 

singleton fuzzification. We move on to develop non-singleton type-2 FLS 
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which can account for all the uncertainties that are present in the 

classification problem.  

 

We should interpret the training data as a collection of IF-THEN rules. 

Each rule consists of interval type-2 fuzzy sets.  They are associated with 

the elements of input training pairs and are described by primary 

membership function. We have chosen Gaussian function with uncertain 

mean as our primary membership function. 

 

The consequent sets are also described by Gaussian primary membership 

function with uncertain mean and interval secondary membership 

functions given by  

 

⎥
⎥
⎦
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⎞
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−=

2

2
1exp)( j

j
j myy

σ
µ     ],[ 21

jjj mmm ∈    Rj ,...,1=          (6.26) 

 
 
Note that the centroid of each )(yjµ  is an interval type-1 set 

 

],[ j
r

j
l yyC =                     Rj ,...,1=               (6.27) 

In addition, the inputs are now type-2 fuzzy numbers whose primary 

membership functions are Gaussian functions and whose secondary 

membership functions are interval sets. The design method that we adopt 
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will specify all the parameters of the membership functions using the 

input-output training pairs. 

The number of rules in the type-2 FLS depends on the design method that 

is used to construct it. If we do not tune the FLS parameters, then the 

number of rules is the same as the number of training pairs. If tuning is 

done, then we use fewer rules. 

Let us discuss the possible number of design parameters in our fuzzy 

classifiers: 

• Antecedent parameters: The total number of design parameters in the 

antecedent for R rules is 3aR. This is because every rule has ‘a’ 

antecedents and each antecedent has 3 design parameters (2 means and a 

standard deviation parameter). 

• Consequent parameters: A total of 2R parameters since there is only 

one consequent per rule.  

• Measurement parameters: A total of 2a parameters since there are 2 

standard deviation parameters in each input and there are ‘a’ inputs. If 

each input measurement has the same standard deviation parameters, 

there will only be 2 additional parameters instead of 2a. 

So the maximum number of design parameters is 3aR+2R+2a. 

When we tune the parameters of interval singleton type-2 FLS, we notice 

that it is different from the tuning in a singleton type-1 FLS. We need to 
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determine the active upper and lower antecedent membership functions 

for the endpoints of the output. As the parameters change, due to their 

tuning, the dependency of the left and right endpoints on these parameters 

also changes. This is not the case in a type-1 FLS. 

 

Table.6.1  Design parameters to be tuned in each of the five fuzzy 
classifiers 
 

 
Type of Fuzzy 
logic system 

 
 

 
Number of 
parameters in 
one input set 

 

 
Number of 
parameters in 
one 
antecedent 

 

 
Number of 
parameters in 
consequent 

 
 

 
Total number 
of design 
parameters 

 

Singleton type-1 
FLS 

 
N/A 
 

 
ii FF

m σ,  
 
iy  

 
RaR +2  

Non-singleton 
type-1 FLS 

 
kXσ  

 
ii FF

m σ,  
 
iy  

 
aRaR ++2  

Interval singleton 
type-2 FLS 

 
N/A 
 

 
i
k

i
k

i
k mm σ,, 21

 

 
i
r

i
l yy ,  

 
RaR 23 +  

Interval type-1 
non-singleton 
type-2 FLS 

 
kXσ  

 
i
k

i
k

i
k mm σ,, 21

 

 
i
r

i
l yy ,  

 
aRaR ++ 23  

Interval type-2 
non-singleton 
type-2 FLS 

 
21 , kk σσ

 

 
i
k

i
k

i
k mm σ,, 21

 

 
i
r

i
l yy ,  

 
aRaR 223 ++

 

R-Number of rules; a-Number of antecedents in each rule; suffix ‘l’ and 
‘r’ indicate left and right endpoints, respectively; N/A-not applicable. 
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6.3.2.            Interval Non-singleton type-2 FLS 

Type-2 FLS whose inputs are modeled as type-1 fuzzy numbers are 

named as type-1 non-singleton type-2 FLS whereas type-2 FLS whose 

inputs are modeled as type-2 fuzzy numbers are named as type-2 non-

singleton type-2 FLS. An interval type-2 non-singleton type-2 FLS model 

is appropriate for the case where there is non-stationary additive noise 

like EMG signal measurements. 

 

The rules of a type-2 non-singleton type-2 FLS are the same as those for a 

type-1 non-singleton type-2 FLS, which are the same as those for a 

singleton type-2 FLS. The only difference in this case is the fuzzifier. It 

treats the inputs as type-2 fuzzy sets, and consequently this effect is seen 

on the inference block. 

 

What is new for a type-2 non-singleton FLS is the need for the designer 

to choose type-2 membership functions for the input measurements; this 

step is not necessary for a type-1 non-singleton type-2 FLS. As 

mentioned earlier we have chosen a Gaussian primary membership 

function with uncertain mean for the input, then an interval for the mean 

(uncertain) needs to be specified for that function. The interval end-points 

represent the additional new possibilities for a type-2 non-singleton type-

2 FLS.  
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Chapter 7 

Simulation results 

 

In this section, we will present our results, and some analysis of the 

designed rule-based fuzzy classifiers based on the results obtained. Five 

fuzzy classifiers have been tested for EMG classification. They are  

1. Singleton type-1 FLS; 

2. Non-singleton type-1 FLS; 

3. Interval singleton type-2 FLS; 

4. Interval type-1 non-singleton type-2 FLS in cases where the antecedent 

membership functions are Gaussian primary membership functions with 

uncertain means and the input sets are type-1 Gaussian, and; 

5. Interval type-2 non-singleton type-2 FLS in cases where the antecedent 

membership functions are Gaussian primary membership functions with 

uncertain means and the input membership functions are Gaussian 

primary membership functions with uncertain standard deviations.  
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7.1. Comparison of type-1 and type-2 FLS performance 

We have compared the performance of the designed type-1 and type-2 

fuzzy EMG classifiers on the basis of their classification accuracy 

throughout this thesis. We are mainly concerned with EMG classification 

for human arm motions. 

 Table 7.1 given below suggests that the choice of Coiflet 4 wavelet 

proves to be more efficient than the Daubichies (db-4) wavelet. This 

shows the comparison results for a one of the post-stroke subject data that 

we have. 

Table 7.1  Comparison of Coiflet vs. Daubichies wavelet 

Classification Accuracy Classifier type 

Coiflet4 Daubichies 4 
Singleton type-1 FLS 
 
 

96%  56% 

Non-singleton type-1 
FLS 
 

94%  88% 

Interval singleton 
type-2 FLS 
 

96%  61% 

Interval type-1 non-
singleton type-2 FLS  
 

87%  72% 

Interval type-2 non-
singleton type-2 FLS  
 

95%  67% 

Linear classifier 
 

88% 70% 
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7.1.1.  Tuning the design parameters 

We tested the dataset with the following fuzzy classifiers and their 

corresponding results are tabulated below. We also tuned the design 

parameters to see how it affects the classification accuracies. We used a 

steepest descent algorithm to tune these parameters. After tuning is done 

by varying the step size (alpha), we fix these parameters to test them. The 

details of parameter tuning are given in the tabulation below for a specific 

dataset of a healthy subject. 

Table 7.2.Details of design parameter tuning for the fuzzy classifiers 

 
Type of Classifier Parameters that we tune Value of step 

size (alpha) 
Singleton type-1 
FLS 
 

M, sigma,c0 alpha=0.001 
 

Non-singleton type-
1 FLS 
 

M, sigma, sn, c0 alpha=0.01 
 

Interval singleton 
type-2 FLS 
 

M1, M2, sigma, c1, c2, 
 

alpha=0.01 
 

Interval type-1 non-
singleton type-2 
FLS 

M1, M2, sigma, c1, c2, sn 
  

alpha=0.01 
 

Interval type-2 non-
singleton type-2 
FLS 

M1, M2, sigma, c1, c2, 
sn1, sn2 
 

alpha=0.01 
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Table 7.3 Results for type-1 and type-2 fuzzy classifiers before and after 

tuning 

Type of Classifier Patient 
dataset1 

Patient 
dataset2 

Healthy 
subject 
dataset1 

Healthy 
subject 
dataset2 

Healthy 
subject 
dataset3 

Singleton type-1 
FLS 
 

86% (89%) 96% (96%) 95% (95%) 96% (96%) 95% (95%) 

Non-singleton 
type-1 FLS 
 

94% (83%) 94%(96%) 90% (93%) 91% (95%) 88% (95%) 

Interval singleton 
type-2 FLS 
 

86% (86%) 96% (96%) 95% (97%) 96% (96%) 94% (94%) 

Interval type-1 
non-singleton 
type-2 FLS  

84%(85%) 87% (96%) 89% (97%) 91% (95%) 74% (94%) 

Interval type-2 
non-singleton 
type-2 FLS  

91% (89%) 95% (96%) 94% (97%) 95% (95%) 88% (93%) 

 
 

  Fig. 7.1 Error rate for Healthy vs. Post stroke subject 

 

 

 

 

 

 

 

 

Fig.7.1 Error rate for Healthy and Post-stroke subjects. 
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In real time applications, the EMG classifier has to deal with unseen data 

most of the time. We will focus on one set of results called out-of-product 

classification in the next section. 

 

7.1.2. Out-of-product EMG classification 

“Out-of-product” means that we use only a few seconds of the total 

SEMG recording to establish the rules and we optimize (tune) the 

resulting classifiers based on this dataset. We do the testing with the 

unseen dataset to validate the actual classification accuracies of these 

classifiers. 

 

Table 7.4 Out-of-product classification results for the fuzzy classifiers 
 

Type of Classifier Patient 
dataset1 

Patient 
dataset2 

Healthy 
subject 
dataset1 

Healthy 
subject 
dataset2 

Healthy 
subject 
dataset3 

Singleton type-1 
FLS 
 

90.63% 97.92% 96.88% 97.92% 95.83% 

Non-singleton type-
1 FLS 
 

87.5% 97.92% 96.88% 96.88% 95.83% 

Interval singleton 
type-2 FLS 
 

87.5% 97.92% 96.88% 97.92% 95.83% 

Interval type-1 non-
singleton type-2 FLS 
  

86.46% 97.92% 96.88% 96.88% 95.83% 

Interval type-2 non-
singleton type-2 FLS 
  

91.67% 97.92% 98.96% 96.88% 94.79% 
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7.2. Choosing only dominant muscles as features 

Neglecting unimportant muscles, choosing the most dominant muscles is 

the next development. We did not choose these 9 muscles as EMG sites 

in a random manner for motion detection. These were the muscles, which 

demonstrated a significant electrical activity during specific hand 

motions.  

 

We analyzed the EMG of all these 9 muscles in detail and found some 

redundancies among them. We observed that the muscles 1, 4 and 5 were 

redundant for both the types of motion tasks (close-open and pronation-

supination) and their contribution was not so significant compared to the 

other muscles. So we tried to analyze the classifiers by neglecting these 3 

muscles.  

 

The results remained almost unchanged in some cases, and in others, 

there was a significant improvement in the classification accuracies 

obtained from our fuzzy classifiers when we chose only the most 

dominant muscle features as inputs. These are the results that we obtained. 

We observe from Table 7.5 that for both the patient and the healthy 

subject, the performance of all five fuzzy classifiers has improved in 

many cases. 
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Table 7.5   Results for the fuzzy classifiers after choosing only 
dominant muscles. 

 
Type of Classifier Patient 

dataset1 
Patient 
dataset2 

Healthy 
subject 
dataset1 

Healthy 
subject 
dataset2 

Healthy 
subject 
dataset3 

Singleton type-1 
FLS 
 

91 (86% )* 95 (96% )  96 (95%) 90 (96% ) 96 (95% ) 

Non-singleton type-
1 FLS 
 

93 (94%)  95 (94%) 96 (90% ) 91 (91% ) 96 (88% ) 

Interval singleton 
type-2 FLS 
 

91 (86% ) 96 (96% ) 96 (95% ) 89 (96% ) 96 (94%)  

Interval type-1 non-
singleton type-2 
FLS  
 

93 (84%) 96 (87% ) 96 (89% ) 92 (91% ) 96 (74% ) 

Interval type-2 non-
singleton type-2 
FLS  
 

95 (91% ) 96 (95%)  96 (94%) 91 (95%)  96 (88%)  

* The values within the bracket indicate the classification accuracies 
obtained with all the 9 muscles. 
 

The only exception is healthy subject dataset2 where there is no 

significant improvement. Actually, the performance has reduced. This 

shows that there is a trade off in the choice of the dominant muscles for 

signal classification applications. The more the number of muscle sites, 

the computations becomes more complex and the speed is reduced. 

Whereas if the number of muscle sites are reduced by neglecting the so 

called less significant muscles, the computation speed seems to be fast, 

but we have a disadvantage of loosing some muscle behaviors that might 

reduce the accuracy to some extent. 
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7.3. Testing adaptability of the designed fuzzy classifiers 

We checked the versatility of the fuzzy classifiers that we designed by 

training them with healthy dataset1 and then testing them with all the 

other unseen dataset, i.e. healthy dataset1, healthy dataset2, healthy 

dataset3, patient dataset1 and patient dataset2. 

 
Table 7.6   Classification results when healthy subject dataset1 is 

used for training 
 

Type of Classifier Healthy 
subject 
dataset1 

Healthy 
subject 
dataset2  

Healthy 
subject 
dataset3 

Patient 
dataset1 

Patient 
dataset2 

Singleton type-1 
FLS 
 

95% 94% 93% 69% 78% 

Non-singleton type-
1 FLS 
 

95% 94% 95% 69% 80% 

Interval singleton 
type-2 FLS 
 

95% 94% 94% 69% 79% 

Interval type-1 non-
singleton type-2 
FLS  

97% 95% 95% 70% 81% 

Interval type-2 non-
singleton type-2 
FLS  

97% 95% 95% 70% 81% 

 

From table 7.6, we observe that since we have trained the classifiers with 

data from a healthy subject, the classification accuracies for healthy 

subjects is very high; whereas the classification accuracies for post-stroke 

subject dataset is comparatively low. We are not surprised to note that 

Interval type-1 non-singleton type-2 FLS and Interval type-2 non-
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singleton type-2 FLS perform the best in all the cases as claimed by 

Mendel in his works [28, 32]. 

 

We did not stop at this point. We wanted to check the versatility of the 

fuzzy classifiers further. So we trained them with data from one patient 

dataset and then tested them with another patient dataset. The following 

table gives the details. 

 

This result is quite surprising; the classification accuracy in the 2nd 

column is too low around 50%. Almost all the close-open motions (in our 

case “class0”) have been wrongly classified as pronation-supination 

motions (in our case “class1”). The main source of this distinctive error 

comes from the overlapping electrical activity in the adjacent electrode 

sites during the EMG measurement stage.  

 

We make the following observations from Table 7.7. Type-2 FLS 

outperform the type-1 FLS. The interval type-2 non-singleton type-2 FLS 

performs the best and the interval type-1 non-singleton type-2 FLS also 

gives very good results. The reason for the latter is because the interval 

type-1 non-singleton type-2 FLS used nσ  as the initial value for the 

standard deviation of its input measurement membership functions, and 
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this value of nσ  gives a good approximation to the average value of the 

standard deviation of the uniform noise. 

 
Table 7.7  EMG Classification results to check versatility of the 

classifiers 
 

 
 
Classifier Type  
 

Train with 
patient 
dataset1 & test 
with patient 
dataset2 
(Before 
rehabilitation 
training) 

Train with 
patient 
dataset2 & 
test with 
patient 
dataset1 
(Before 
rehabilitation 
training) 

Train with 
patient 
dataset1 & 
test with 
patient 
dataset2 
(After 
rehabilitation 
training) 

Train with patient 
dataset2 & test 
with patient 
dataset1 
(After 
rehabilitation 
training) 

Singleton type-1 
FLS 
 

77% 50% 65% 88% 

Non-singleton 
type-1 FLS 
 

77% 50% 65% 88% 

Interval singleton 
type-2 FLS 

76% 50% 65% 87% 

Interval type-1 
non-singleton 
type-2 FLS  

77% 50% 65% 89% 

Interval type-2 
non-singleton 
type-2 FLS  

80% 53% 79% 92% 

 

During our experiments, while tuning the fuzzy classifiers, we noticed 

that type-2 FLS achieve close to their optimal performance almost at the 

first epoch of tuning. This shows that type-2 FLS (as compared to type-1 

FLS) are very promising for real-time signal processing where more than 

one epoch of tuning is not possible.  
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Chapter 8 

Conclusions and Recommendations 

 

8.1. Conclusions 

The entire project could broadly be broken down into four important 

phases, (1) the EMG signal measurement and signal processing phase, (2) 

feature extraction and selection phase, (3) fuzzy classifiers, classification 

algorithms development phase and (4) strategies for classifiers’ 

performance improvement phase. 

We have mentioned in the previous chapter that the classification 

accuracy shows significant improvement when we choose only the most 

significant muscles by neglecting those muscles that do not contribute 

much to the specific motion tasks. The post-stroke subject is a hemiplegic 

who has lost his ability to manipulate his right limbs. We have observed 
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that after rehabilitation training, the results are much better than before 

training.  

Through this project, different fuzzy classifiers were designed and their 

performances were verified. Different arm motions, which were preferred 

by the post-stroke subjects such as hand close-open and forearm 

pronation-supination, were measured and classified based on the 

appropriate extracted features. We have shown that the five fuzzy 

classifiers achieve relatively good results, in particular, after neglecting 

some less important inputs, which are the wavelet coefficients of 

unimportant muscles’ EMG in this experiment. 

The approach of using continuous wavelet transform for analysis and 

classification of EMG signals using rule based fuzzy logic classifiers has 

proved to be efficient and successful. These results can be used directly in 

the design of real-time EMG classifiers for rehabilitation and assitive 

devices.   

Our type-2 RB FLC classifiers did not give very good results. We can 

make a superficial conclusion that a type-1 FL RBC is sufficient for 

applications, which do not make use of linguistic uncertainties. Further 

in-depth research has to be done to explore the effects of both type-1 and 

type-2 FL RBC in the presence of linguistic uncertainties and also 

knowledge mining. This will help in the field of rehabilitation in cases 

where it is difficult to take EMG signal measurements. 
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8.2. Recommendations 

The results raise a few questions, which needs further analysis. 

• Why our fuzzy classifiers were unable to differentiate between the 

different kinds of motions with 100% accuracy? 

• Why is it that in most of the cases hand close-open motion is wrongly 

classified as forearm pronation-supination motion? In other words, why is 

it that comparatively class0 is more wrongly classified than class1? 

• How can we further improve the classification accuracy? 

 

Answering these questions is beyond the scope of our work; yet we will 

address these issues in the point of view of improving the fuzzy 

classifiers’ efficiency with our previous observation. Let’s try to answer 

these questions without going into too much detail of the biomechanics of 

human limbs.  

 

The approach of tuning the design parameters using other new tuning 

algorithms could be further investigated to achieve better results. Choice 

of the value for step size (alpha) when tuning the fuzzy classifiers has to 

be done. The best choice of membership function is still an open question 

whether it should be Gaussian, Triangular or any other function. 
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Another issue that could be further worked on is the investigation of how 

much uncertainty be present in a problem so that it is worthy of choosing 

the interval type-2 FLS for a better performance compared to type-1 FLS. 

It is also essential to clearly identify in which sense type-2 are expected to 

outperform type-1; whether it is in terms of classification error rate, 

generalization or robustness of the two designs. Some issues discussed 

here need further analysis and provides a scope for future researchers. 
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Appendix A  

Comparison of EMG signals before and after training 
 

In order to analyze the post-stroke subject’s motions before and after the 

rehabilitation training sessions, we do the following. We analyze the 

muscles behavior of the stroke patient before and after the training 

sessions. We notice that initially before any training, the patient tried to 

use a certain muscle (specifically the biceps), which appears to be the 

most active and dominant muscle for performing both the motions. The 

amplitude of EMG measured at this muscle site is very high before 

rehabilitation training and suddenly it reduces tremendously (one-tenth) 

after the subject undergoes training exercises. Fig.A.1. shows this effect 

of training on the biceps muscle. In our experiment, we see that the 

healthy individual does not use the biceps prominently to perform the two 

classes of motion when compared to other muscle sites. After sufficient 

rehabilitation training with a robotic device (allows the patient to support 

his arms on the table and perform these motions with an assistance), we 

observe that the muscle activity at the biceps is greatly reduced.  
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Fig.A.1. Effect of training on the biceps muscle for forearm pronation-
supination motion 

The Pronator Teres electrode site has almost the same level of muscle 

activity for both the motions (before as well as after training). Hence, we 

conclude that the contribution from this muscle is very minimal to be the 

input for the fuzzy classifiers. We look for more contrasting 

characteristics among the muscles so that our resultant features remain 

more distinct for fuzzy classification. Choice of the most dominant, 

appropriate muscles from all the available muscles for the fuzzy 

classifiers will be discussed in the forthcoming chapters.  
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The patient has learnt during the training sessions to make use of the 

correct set of muscles for specific motion tasks, so that he can provide 

less effort and perform the motions with ease.  

 

Even after rehabilitation training, the post-stroke subject takes more time 

than that taken by the healthy individual to perform 10 trials of the 

motions. This shows that it is not logical to just directly compare (without 

any compromise) the healthy subject with the post-stroke subject, even 

after sufficient rehabilitation training.  

 

By carefully analyzing the muscle behaviors, we gain an insight into the 

patients’ difficulties in manipulating a particular muscle and how he 

misuses his muscles. After training, the patient has sufficiently trained his 

muscles and learned to use the correct combination of muscles.  

 

We would like to mention again that the post-stroke subject we 

considered here is a hemiplegic. He has lost his ability to move his right 

limbs. He is quite unsure of the muscles that he should employ for 

performing these motions.  

 

The subject used the same combination of muscles with a similar level of 

activity for both the hand motions. There is no clear distinction between 

the two motion tasks. This is clearly evident from the observation of the 
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RMS values of each muscle before any rehabilitation training. After 

rehabilitation training, the motion patterns are better than before training.  

 
 

 
 
 


