96,357 research outputs found

    An Overview of Search Strategies in Distributed Environments

    Full text link
    [EN] Distributed systems are populated by a large number of heterogeneous entities that join and leave the systems dynamically. These entities act as clients and providers and interact with each other in order to get a resource or to achieve a goal. To facilitate the collaboration between entities the system should provide mechanisms to manage the information about which entities or resources are available in the system at a certain moment, as well as how to locate them in an e cient way. However, this is not an easy task in open and dynamic environments where there are changes in the available resources and global information is not always available. In this paper, we present a comprehensive vision of search in distributed environments. This review does not only considers the approaches of the Peer-to-Peer area, but also the approaches from three more areas: Service-Oriented Environments, Multi-Agent Systems, and Complex Networks. In these areas, the search for resources, services, or entities plays a key role for the proper performance of the systems built on them. The aim of this analysis is to compare approaches from these areas taking into account the underlying system structure and the algorithms or strategies that participate in the search process.Work partially supported by the Spanish Ministry of Science and Innovation through grants TIN2009-13839-C03-01, CSD2007-0022 (CONSOLIDER-INGENIO 2010), PROMETEO 2008/051, PAID-06-11-2048, and FPU grant AP-2008-00601 awarded to E. del Val.Del Val Noguera, E.; Rebollo Pedruelo, M.; Botti, V. (2013). An Overview of Search Strategies in Distributed Environments. Knowledge Engineering Review. 1-33. https://doi.org/10.1017/S0269888913000143S133Sigdel K. , Bertels K. , Pourebrahimi B. , Vassiliadis S. , Shuai L. 2005. A framework for adaptive matchmaking in distributed computing. In Proceedings of GRID Workshop.Prabhu S. 2007. Towards distributed dynamic web service composition. In ISADS '07: Proceedings of the 8th International Symposium on Autonomous Decentralized Systems. IEEE Computer Society, 25–32.Meshkova, E., RiihijĂ€rvi, J., Petrova, M., & MĂ€hönen, P. (2008). A survey on resource discovery mechanisms, peer-to-peer and service discovery frameworks. Computer Networks, 52(11), 2097-2128. doi:10.1016/j.comnet.2008.03.006Martin D. , Paolucci M. , Wagner M. 2007. Towards semantic annotations of web services: Owl-s from the sawsdl perspective. In Proceedings of Workshop OWL-S: Experiences and Directions at 4th European Semantic Web Conference, Innsbruck, Austria.Ogston E. , Vassiliadis S. 2001b. Matchmaking among minimal agents without a facilitator. In Proceedings of the 5th International Conference on Autonomous Agents, Bologna, Italy, 608–615.Martin D. , Burstein M. , Hobbs J. , Lassila O. , McDermott D. , McIlraith S. , Narayanan S. , Paolucci M. , Parsia B. , Payne T. , Sirin E. , Srinivasan N. , Sycara K. 2004. Owl-s: Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S/Eng Keong Lua, Crowcroft, J., Pias, M., Sharma, R., & Lim, S. (2005). A survey and comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys & Tutorials, 7(2), 72-93. doi:10.1109/comst.2005.1610546Liang J. , Kumar R. , Ross K. 2005. Understanding kazaa. In Proceedings of the 5th New York Metro Area Networking Workshop (NYMAN), New York, USA.Ko, S. Y., Gupta, I., & Jo, Y. (2008). A new class of nature-inspired algorithms for self-adaptive peer-to-peer computing. ACM Transactions on Autonomous and Adaptive Systems, 3(3), 1-34. doi:10.1145/1380422.1380426Kleinberg J. 2001. Small-world phenomena and the dynamics of information. In Advances in Neural Information Processing Systems (NIPS), Dietterich, T. G., Becker, S. & Ghahramani, Z. (eds). MIT Press, 431–438.Jha S. , Chalasani P. , Shehory O. , Sycara K. 1998. A formal treatment of distributed matchmaking. In Proceedings of the 2nd International Conference on Autonomous Agents, Sycara, K. P. & Wooldridge, M. (eds). ACM, 457–458.Huhns, M. N. (2002). Agents as Web services. IEEE Internet Computing, 6(4), 93-95. doi:10.1109/mic.2002.1020332He Q. , Yan J. , Yang Y. , Kowalczyk R. , Jin H. 2008. Chord4s: A p2p-based decentralised service discovery approach. In IEEE International Conference on Services Computing, Honolulu, Hawaii, USA, 1, 221–228.Lv Q. , Cao P. , Cohen E. , Li K. , Shenker S. 2002. Search and replication in unstructured peer-to-peer networks. In Proceedings of the 16th International Conference on Supercomputing, ICS '02. ACM, 84–95.Maymounkov P. , Mazieres D. 2002. Kademlia: a peer-to-peer information system based on the xor metric. Proceedings of the 1st International Workshop on Peer-to Peer Systems (IPTPS02), Cambridge, MA, USA.Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001). Chord. ACM SIGCOMM Computer Communication Review, 31(4), 149-160. doi:10.1145/964723.383071FernĂĄndez A. , Ossowski S. , Vasirani M. 2008. General Architecture. CASCOM: Intelligent Service Coordination in the Semantic Web. Whitestein Series in Software Agent Technologies and Autonomic Computing, 143–160.Ding D. , Liu L. , Schmeck H. 2010. Service discovery in self-organizing service-oriented environments. In Proceedings of the 2010 IEEE Asia-Pacific Services Computing Conference. IEEE Computer Society, 717–724.Crespo A. , Garcia-Molina H. 2004. Semantic overlay networks for p2p systems. In Proceedings of the 3rd International Workshop on Agents and Peer-to-Peer Computing, Lecture Notes in Computer Science, 3601, 1–13. Springer.Rao J. , Su X. 2004. A survey of automated web service composition methods. In Proceedings of the 1st International Workshop on Semantic Web Services and Web Process Composition, SWSWPC 2004, San Diego, CA, USA, 43–54.Constantinescu I. , Faltings B. 2003. Efficient matchmaking and directory services. In Web Intelligence. IEEE Computer Society, 75–81.Cong Z. , FernĂĄndez A. 2010. Behavioral matchmaking of semantic web services. In Proceedings of the 4th International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web (SMR2), Karlsruhe, Germany, 667, 131–140.Cholvi V. , Rodero-Merino L. 2007. Using random walks to find resources in unstructured self-organized p2p networks. In Proceedings of the IEEE Workshop on Dependable Application Support in Self-Organizing Networks, Edinburgh, UK, 51–56.VĂĄzquez-Salceda J. , Vasconcelos W. W. , Padget J. , Dignum F. , Clarke S. , Roig M. P. 2010. Alive: an agent-based framework for dynamic and robust service-oriented applications. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1, AAMAS '10, International Foundation for Autonomous Agents and Multiagent Systems, 1637–1638.Liu L. , Schmeck H. 2010. Enabling self-organising service level management with automated negotiation. In Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT '10, Huang, J. X., Ghorbani, A. A., Hacid, M.-S. & Yamaguchi, T. (eds). IEEE Computer Society, 42–45.Campo C. , Martin A. , Garcia C. , Breuer P. 2002. Service discovery in pervasive multi-agent systems. In AAMAS Workshop on Ubiquitous Agents on Embedded, Wearable, and Mobile Agents, Bologna, Italy.Brazier, F. M. T., Kephart, J. O., Parunak, H. V. D., & Huhns, M. N. (2009). Agents and Service-Oriented Computing for Autonomic Computing: A Research Agenda. IEEE Internet Computing, 13(3), 82-87. doi:10.1109/mic.2009.51Bisnik N. , Abouzeid A. 2005. Modeling and analysis of random walk search algorithms in p2p networks. In Proceedings of the 2nd International Workshop on Hot Topics in Peer-to-Peer Systems, Anglano, C. & Mancini, L. V. (eds). IEEE Computer Society, 95–103.Huhns, M. N., Singh, M. P., Burstein, M., Decker, K., Durfee, E., Finin, T., 
 Zavala, L. (2005). Research Directions for Service-Oriented Multiagent Systems. IEEE Internet Computing, 9(6), 65-70. doi:10.1109/mic.2005.132Ben-Ami D. , Shehory O. 2005. A comparative evaluation of agent location mechanisms in large scale mas. In Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS '05, Pechoucek, M., Steiner, D. & Thompson, S. (eds). ACM, 339–346.Basters U. , Klusch M. 2006. Rs2d: Fast adaptive search for semantic web services in unstructured p2p networks. In International Semantic Web Conference, Lecture Notes in Computer Science 4273, 87–100. Springer.BarabĂĄsi, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509Liu G. , Wang Y. , Orgun M. 2010. Optimal social trust path selection in complex social networks. In Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI). AAAI Press, 1391–1398.Adamic, L., & Adar, E. (2005). How to search a social network. Social Networks, 27(3), 187-203. doi:10.1016/j.socnet.2005.01.007Kalogeraki V. , Gunopulos D. , Zeinalipour-Yazti D. 2002. A local search mechanism for peer-to-peer networks. In Proceedings of the Eleventh International Conference on Information and Knowledge Management (CIKM '02). ACM, 300–307.Babaoglu O. , Meling H. , Montresor A. 2002. Anthill: a framework for the development of agent-based peer-to-peer systems. In Proceedings of the 22nd International Conference on Distributed Computing Systems, Vienna, Austria, 15–22.Yang B. , Garcia-Molina H. 2002. Efficient search in peer-to-peer networks. In Proceedings of the International Conference on Distributed Computing Systems (ICDCS).Mokhtar S. , Kaul A. , Georgantas N. , Issarny V. 2006. Towards efficient matching of semantic web service capabilities. In Proceedings of International Workshop on Web Services – Modeling and Testing, Palermo, Italy.FernĂĄndez A. , Vasirani M. , CĂĄceres C. , Ossowski S. 2006. Role-based service description and discovery. In AAMAS-06 Workshop on Service-Oriented Computing and Agent-Based Engineering, 1–14.Bailey J. 2006. Fast discovery of interesting collections of web services. In WI '06: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence. IEEE Computer Society, 152–160.Rowstron A. I. T. , Druschel P. 2001. Pastry: scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg, Middleware '01, Sventek, J. & Coulson, G. (eds). Springer-Verlag, 329–350.Kleinberg J. 2006. Complex networks and decentralized search algorithms. In Proceedings of the International Congress of Mathematicians (ICM), Madrid, Spain.Bachlechner D. , Siorpaes K. , Fensel D. , Toma I. 2006. Web service discovery – a reality check. In Proceedings of the 3rd European Semantic Web Conference, Seoul, South Korea.Lopes, A. L., & Botelho, L. M. (2008). Improving Multi-Agent Based Resource Coordination in Peer-to-Peer Networks. Journal of Networks, 3(2). doi:10.4304/jnw.3.2.38-47Klusch M. , Fries B. , Sycara K. 2006. Automated semantic web service discovery with owls-mx. In Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS '06, Nakashima, H., Wellman, M. P., Weiss, G. & Stone, P. (eds). ACM, 915–922.Ogston E. , Vassiliadis S. 2001a. Local distributed agent matchmaking. In Proceedings of the 9th International Conference on Cooperative Information Systems, Trento, Italy.Nguyen V. , Martel C. 2005. Analyzing and characterizing small-world graphs. In SODA '05: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics.Amaral, L. A. N., & Ottino, J. M. (2004). Complex networks. The European Physical Journal B - Condensed Matter, 38(2), 147-162. doi:10.1140/epjb/e2004-00110-5Crespo A. , Garcia-Molina H. 2002. Routing Indices For Peer-to-Peer Systems. In Proceedings of the 22nd International Conference on Distributed Computing Systems (ICDCS'02). IEEE Computer Society, 23.Manku G. S. , Bawa M. , Raghavan P. , Inc V. 2003. Symphony: Distributed hashing in a small world. In Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems, Seattle, USA, 127–140.Chawathe Y. , Ratnasamy S. , Breslau L. , Lanham N. , Shenker S. 2003. Making gnutella-like p2p systems scalable. In Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM '03, Feldmann, A., Zitterbart, M., Crowcroft, J. & Wetherall, D. (eds). ACM, 407–418.Yu S. , Liu J. , Le J. 2004. Decentralized web service organization combining semantic web and peer to peer computing. In ECOWS, Lecture Notes in Computer Science 3250, 116–127. Springer.Chaari S. , Badr Y. , Biennier F. 2008. Enhancing web service selection by qos-based ontology and ws-policy. In Proceedings of the 2008 ACM Symposium on Applied Computing, SAC '08, Wainwright, R. L. & Haddad, H. (eds). ACM, 2426–2431.Michlmayr E. 2006. Ant algorithms for search in unstructured peer-to-peer networks. In Proceedings of the 22nd International Conference on Data Engineering (ICDE), Atlanta, GA, USA.Perryea C. , Chung S. 2006. Community-based service discovery. In Proceedings of the International Conference on Web Services, Chicago, IL, USA, 903–906.Upadrashta Y. , Vassileva J. , Grassmann W. 2005. Social networks in peer-to-peer systems. In Proceedings of the 38th Annual Hawaii International Conference on System Sciences, Big Island, Hawaii, USA.Satyanarayanan, M. (2001). Pervasive computing: vision and challenges. IEEE Personal Communications, 8(4), 10-17. doi:10.1109/98.943998Kota R. , Gibbins N. , Jennings N. R 2009. Self-organising agent organisations. In Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems – Volume 2, AAMAS '09. International Foundation for Autonomous Agents and Multiagent Systems, 797–804.Kleinberg, J. M. (2000). Navigation in a small world. Nature, 406(6798), 845-845. doi:10.1038/35022643Watts, D. J. (2004). The «New» Science of Networks. Annual Review of Sociology, 30(1), 243-270. doi:10.1146/annurev.soc.30.020404.104342Risson, J., & Moors, T. (2006). Survey of research towards robust peer-to-peer networks: Search methods. Computer Networks, 50(17), 3485-3521. doi:10.1016/j.comnet.2006.02.001PAPAZOGLOU, M. P., TRAVERSO, P., DUSTDAR, S., & LEYMANN, F. (2008). SERVICE-ORIENTED COMPUTING: A RESEARCH ROADMAP. International Journal of Cooperative Information Systems, 17(02), 223-255. doi:10.1142/s0218843008001816Shvaiko P. , Euzenat J. 2008. Ten challenges for ontology matching. In On the Move to Meaningful Internet Systems: OTM 2008, Meersman, R. & Tari, Z. (eds), Lecture Notes in Computer Science 5332, 1164–1182. Springer.BOCCALETTI, S., LATORA, V., MORENO, Y., CHAVEZ, M., & HWANG, D. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4-5), 175-308. doi:10.1016/j.physrep.2005.10.009Bianchini D. , Antonellis V. D. , Melchiori M. 2009. Service-based semantic search in p2p systems. In Proceedings of the 2009 Seventh IEEE European Conference on Web Services, ECOWS '09, Eshuis, R., Grefen, P. & Papadopoulos, G. A. (eds). IEEE Computer Society, 7–16.Bromuri S. , Urovi V. , Morge M. , Stathis K. , Toni F. 2009. A multi-agent system for service discovery, selection and negotiation. In Proceedings of the 8th International Joint Conference on Autonomous Agents and Multiagent Systems, Sierra, C. & Castelfranchi, C. (eds). International Foundation for Autonomous Agents and Multiagent Systems, 1395–1396.Gummadi, P. K., Saroiu, S., & Gribble, S. D. (2002). A measurement study of Napster and Gnutella as examples of peer-to-peer file sharing systems. ACM SIGCOMM Computer Communication Review, 32(1), 82. doi:10.1145/510726.510756Tsoumakos D. , Roussopoulos N. 2003. Adaptive probabilistic search for peer-to-peer networks. In Peer-to-Peer Computing, Linköping, Sweeden, 102–109.Schmidt, C., & Parashar, M. (2004). A Peer-to-Peer Approach to Web Service Discovery. World Wide Web, 7(2), 211-229. doi:10.1023/b:wwwj.0000017210.55153.3dDimakopoulos V. V. , Pitoura E. 2003. A peer-to-peer approach to resource discovery in multi-agent systems. In Proceedings of Cooperative Information Agents, Lecture Notes in Computer Science 2782, 62–77. Springer.Skoutas D. , Sacharidis D. , Kantere V. , Sellis T. 2008. Efficient semantic web service discovery in centralized and p2p environments. In The Semantic Web – ISWC 2008, Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T. & Thirunarayan, K. (eds), Lecture Notes in Computer Science 5318, 583–598. Springer-Verlag.Val E. D. , Rebollo M. 2007. Service Discovery and Composition in Multiagent Systems. In Proceedings of 5th European Workshop On Multi-Agent Systems (EUMAS 2007). Association Tunisienne D'Intelligence Artificielle, 197–212.Srinivasan N. , Paolucci M. , Sycara K. 2004. Adding owl-s to uddi, implementation and throughput. In First International Workshop on Semantic Web Services and Web Process Composition (SWSWPC 2004), San Diego, CA, USA.Thadakamalla, H. P., Albert, R., & Kumara, S. R. T. (2007). Search in spatial scale-free networks. New Journal of Physics, 9(6), 190-190. doi:10.1088/1367-2630/9/6/190Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-Oriented Computing: State of the Art and Research Challenges. Computer, 40(11), 38-45. doi:10.1109/mc.2007.400Travers, J., & Milgram, S. (1969). An Experimental Study of the Small World Problem. Sociometry, 32(4), 425. doi:10.2307/2786545Val E. D. , Rebollo M. , Botti V. 2011. Introducing homophily to improve semantic service search in a self-adaptive system. In Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, Taipei, Taiwan.Xiao Fan Wang, & Guanrong Chen. (2003). Complex networks: Small-world, scale-free and beyond. IEEE Circuits and Systems Magazine, 3(1), 6-20. doi:10.1109/mcas.2003.1228503Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., & Rebollo, M. (2010). An abstract architecture for virtual organizations: The THOMAS approach. Knowledge and Information Systems, 29(2), 379-403. doi:10.1007/s10115-010-0349-1Watts, D. J. (2002). Identity and Search in Social Networks. Science, 296(5571), 1302-1305. doi:10.1126/science.1070120Simsek Ö. , Jensen D. 2005. Decentralized search in networks using homophily and degree disparity. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Edinburgh, UK, 304–310.Vanthournout, K., Deconinck, G., & Belmans, R. (2005). A taxonomy for resource discovery. Personal and Ubiquitous Computing, 9(2), 81-89. doi:10.1007/s00779-004-0312-9Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. doi:10.1038/30918Wei, Y., & Blake, M. B. (2010). Service-Oriented Computing and Cloud Computing: Challenges and Opportunities. IEEE Internet Computing, 14(6), 72-75. doi:10.1109/mic.2010.147Weyns, D., & Georgeff, M. (2010). Self-Adaptation Using Multiagent Systems. IEEE Software, 27(1), 86-91. doi:10.1109/ms.2010.18PirrĂł G. , Trunfio P. , Talia D. , Missier P. , Goble C. 2010. Ergot: a semantic-based system for service discovery in distributed infrastructures. In Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), Melbourne, Australia, 263–272.Yang B. , Garcia-Molina H. 2003. Designing a super-peer network. International Conference on Data Engineering, Bangalore, India, 49.Zhang H. , Croft W. B. , Levine B. , Lesser V. 2004a. A multi-agent approach for peer-to-peer based information retrieval system. In Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems – Volume 1, AAMAS '04. IEEE Computer Society, 456–463.Zhang, H., Goel, A., & Govindan, R. (2004). Using the small-world model to improve Freenet performance. Computer Networks, 46(4), 555-574. doi:10.1016/j.comnet.2004.05.004Sycara, K., Paolucci, M., Soudry, J., & Srinivasan, N. (2004). Dynamic discovery and coordination of agent-based semantic web services. IEEE Internet Computing, 8(3), 66-73. doi:10.1109/mic.2004.1297276Dell'Amico M. 2006. Highly clustered networks with preferential attachment to close nodes. In Proceedings of the European Conference on Complex Systems 2006, Oxford, UK.Mullender, S. J., & VitĂĄnyi, P. M. B. (1988). Distributed match-making. Algorithmica, 3(1-4), 367-391. doi:10.1007/bf01762123McIlraith, S. A., Son, T. C., & Honglei Zeng. (2001). Semantic Web services. IEEE Intelligent Systems, 16(2), 46-53. doi:10.1109/5254.920599Gkantsidis, C., Mihail, M., & Saberi, A. (2006). Random walks in peer-to-peer networks: Algorithms and evaluation. Performance Evaluation, 63(3), 241-263. doi:10.1016/j.peva.2005.01.002Zhong M. 2006. Popularity-biased random walks for peer-to-peer search under the square-root principle. In Proceedings of the 5th International Workshop on Peer-to-Peer Systems (IPTPS), Santa Barbara, CA, USA.Cao J. , Yao Y. , Zheng X. , Liu B. 2010. Semantic-based self-organizing mechanism for service registry and discovery. In Proceedings of the 14th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Shanghai, China, 345–350.Ratnasamy S. , Francis P. , Handley M. , Karp R. , Shenker S. 2001. A scalable content-addressable network. In Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM '01), Cruz, R. & Varghese, G. (eds). ACM.Ouksel A. , Babad Y. , Tesch T. 2004. Matchmaking software agents in b2b markets. In Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS'04), Big Island, Hawaii, USA.Slivkins A. 2005. Distance estimation and object

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Active architecture for pervasive contextual services

    Get PDF
    Pervasive services may be defined as services that are available to any client (anytime, anywhere). Here we focus on the software and network infrastructure required to support pervasive contextual services operating over a wide area. One of the key requirements is a matching service capable of assimilating and filtering information from various sources and determining matches relevant to those services. We consider some of the challenges in engineering a globally distributed matching service that is scalable, manageable, and able to evolve incrementally as usage patterns, data formats, services, network topologies and deployment technologies change. We outline an approach based on the use of a peer-to-peer architecture to distribute user events and data, and to support the deployment and evolution of the infrastructure itself

    Active architecture for pervasive contextual services

    Get PDF
    International Workshop on Middleware for Pervasive and Ad-hoc Computing MPAC 2003), ACM/IFIP/USENIX International Middleware Conference (Middleware 2003), Rio de Janeiro, Brazil This work was supported by the FP5 Gloss project IST2000-26070, with partners at Trinity College Dublin and Université Joseph Fourier, and by EPSRC grants GR/M78403/GR/M76225, Supporting Internet Computation in Arbitrary Geographical Locations, and GR/R45154, Bulk Storage of XML Documents.Pervasive services may be defined as services that are available "to any client (anytime, anywhere)". Here we focus on the software and network infrastructure required to support pervasive contextual services operating over a wide area. One of the key requirements is a matching service capable of as-similating and filtering information from various sources and determining matches relevant to those services. We consider some of the challenges in engineering a globally distributed matching service that is scalable, manageable, and able to evolve incrementally as usage patterns, data formats, services, network topologies and deployment technologies change. We outline an approach based on the use of a peer-to-peer architecture to distribute user events and data, and to support the deployment and evolution of the infrastructure itself.Peer reviewe

    Mobile Computing in Digital Ecosystems: Design Issues and Challenges

    Full text link
    In this paper we argue that the set of wireless, mobile devices (e.g., portable telephones, tablet PCs, GPS navigators, media players) commonly used by human users enables the construction of what we term a digital ecosystem, i.e., an ecosystem constructed out of so-called digital organisms (see below), that can foster the development of novel distributed services. In this context, a human user equipped with his/her own mobile devices, can be though of as a digital organism (DO), a subsystem characterized by a set of peculiar features and resources it can offer to the rest of the ecosystem for use from its peer DOs. The internal organization of the DO must address issues of management of its own resources, including power consumption. Inside the DO and among DOs, peer-to-peer interaction mechanisms can be conveniently deployed to favor resource sharing and data dissemination. Throughout this paper, we show that most of the solutions and technologies needed to construct a digital ecosystem are already available. What is still missing is a framework (i.e., mechanisms, protocols, services) that can support effectively the integration and cooperation of these technologies. In addition, in the following we show that that framework can be implemented as a middleware subsystem that enables novel and ubiquitous forms of computation and communication. Finally, in order to illustrate the effectiveness of our approach, we introduce some experimental results we have obtained from preliminary implementations of (parts of) that subsystem.Comment: Proceedings of the 7th International wireless Communications and Mobile Computing conference (IWCMC-2011), Emergency Management: Communication and Computing Platforms Worksho

    Exploiting the Synergy Between Gossiping and Structured Overlays

    Get PDF
    In this position paper we argue for exploiting the synergy between gossip-based algorithms and structured overlay networks (SON). These two strands of research have both aimed at building fault-tolerant, dynamic, self-managing, and large-scale distributed systems. Despite the common goals, the two areas have, however, been relatively isolated. We focus on three problem domains where there is an untapped potential of using gossiping combined with SONs. We argue for applying gossip-based membership for ring-based SONs---such as Chord and Bamboo---to make them handle partition mergers and loopy networks. We argue that small world SONs---such as Accordion and Mercury---are specifically well-suited for gossip-based membership management. The benefits would be better graph-theoretic properties. Finally, we argue that gossip-based algorithms could use the overlay constructed by SONs. For example, many unreliable broadcast algorithms for SONs could be augmented with anti-entropy protocols. Similarly, gossip-based aggregation could be used in SONs for network size estimation and load-balancing purposes

    Free global DSM assessment on large scale areas exploiting the potentialities of the innovative google earth engine platform

    Get PDF
    The high-performance cloud-computing platform Google Earth Engine has been developed for global-scale analysis based on the Earth observation data. In particular, in this work, the geometric accuracy of the two most used nearly-global free DSMs (SRTM and ASTER) has been evaluated on the territories of four American States (Colorado, Michigan, Nevada, Utah) and one Italian Region (Trentino Alto-Adige, Northern Italy) exploiting the potentiality of this platform. These are large areas characterized by different terrain morphology, land covers and slopes. The assessment has been performed using two different reference DSMs: the USGS National Elevation Dataset (NED) and a LiDAR acquisition. The DSMs accuracy has been evaluated through computation of standard statistic parameters, both at global scale (considering the whole State/Region) and in function of the terrain morphology using several slope classes. The geometric accuracy in terms of Standard deviation and NMAD, for SRTM range from 2-3 meters in the first slope class to about 45 meters in the last one, whereas for ASTER, the values range from 5-6 to 30 meters. In general, the performed analysis shows a better accuracy for the SRTM in the flat areas whereas the ASTER GDEM is more reliable in the steep areas, where the slopes increase. These preliminary results highlight the GEE potentialities to perform DSM assessment on a global scale
    • 

    corecore