
Exploiting the Synergy Between Gossiping and Structured
Overlays

Ali Ghodsi
Swedish Institute of Computer

Science (SICS)
Box 1263

SE–16429 Kista
Sweden

ali(at)sics.se

Seif Haridi
KTH—Royal Institute of

Technology
Electrum 229

SE–16440 Kista
Sweden

haridi(at)kth.se

Hakim Weatherspoon
Cornell University
Computer Science

Department
Ithaca, NY 14853

USA
hweather(at)cs.cornell.edu

ABSTRACT
In this position paper we argue for exploiting the synergy
between gossip-based algorithms and structured overlay net-
works (SON). These two strands of research have both aimed
at building fault-tolerant, dynamic, self-managing, and large-
scale distributed systems. Despite the common goals, the
two areas have, however, been relatively isolated. We fo-
cus on three problem domains where there is an untapped
potential of using gossiping combined with SONs. We ar-
gue for applying gossip-based membership for ring-based
SONs—such as Chord and Bamboo—to make them handle
partition mergers and loopy networks. We argue that small
world SONs—such as Accordion and Mercury—are specifi-
cally well-suited for gossip-based membership management.
The benefits would be better graph-theoretic properties. Fi-
nally, we argue that gossip-based algorithms could use the
overlay constructed by SONs. For example, many unreliable
broadcast algorithms for SONs could be augmented with
anti-entropy protocols. Similarly, gossip-based aggregation
could be used in SONs for network size estimation and load-
balancing purposes.

Keywords
Gossip-based Algorithms, Structured Overlay Networks, Dis-
tributed Hash Tables

1. INTRODUCTION
Due to the scale and dynamicity of many applications run-
ning over the Internet, it has become increasingly important
to build systems that are scalable, fault-tolerant, and self-
managing. Two strands of research have addressed these
issues: gossip-based algorithms and structured overlay net-
works (SONs). Gossip-based algorithms have proved to be
a powerful way to achieve the above requirements, as well
as being effective in solving many problems, such as broad-
cast [5], failure detection [40], and aggregation [21]. Further-
more, they are simple, which makes them easy to implement

and maintain. At the same time, research on structured
overlay networks (SONs) have flourished and a plethora of
such systems provide scalability, fault-tolerance, and self-
management. Most SONs boil down to providing a dis-
tributed hash table (DHT) abstraction, or group communi-
cation capability.

In this paper we take the position that there is an untapped
potential in the synergy between gossip-based algorithms
and SONs. We believe that these two research areas, de-
spite their similarities and common goals, have been iso-
lated from each other. Most research papers in either of
the areas, do not reference papers in the other area. There
are a few exceptions to this, which we will highlight. We
point to open problems that can be best addressed if gossip-
based algorithms are combined with SONs. We also point
at existing work, which we believe can be improved by the
cross-fertilization of these areas.

1.1 Outline
Next, Section 2 briefly overviews gossip-based algorithms
and SONs. Thereafter, Section 3 describes three problem
domains, which we think would benefit from the outlined
research. Section 4 describes existing related work that
already combines gossip-based algorithms with SONs, and
their respective advantages. Finally, Section 5 concludes.

2. BACKGROUND
In this section we briefly give an overview gossip-based al-
gorithms and structured overlay networks.

2.1 Gossip Algorithms
An algorithm is gossip-based if it prescribes nodes to pe-
riodically pick a neighbor, and exchange information with
that node. Moreover, the amount of data exchanged has a
bounded size. Typically, the information exchanged quickly
disseminates to all nodes through a process that resembles
gossiping or epidemics [9, 12].

It is often assumed that nodes are picked at random during
the gossip process. This is achieved by using a membership
service, where each node maintains routing pointers to other
nodes, such that every node can pick another random node
with uniform probability [41, 20]. This service can itself
be implemented using a gossip-based algorithm that peri-
odically makes nodes exchange routing pointers with each



other.

If there is no requirement of randomness in the picking of
nodes, many traditional algorithms are gossip-based. In par-
ticular, most self-stabilizing [10] algorithms fit the definition
of gossip-based algorithms.

Gossip-based algorithms have been used to solve many prob-
lems. For example, Birman et al. [5] use a gossip-based pro-
tocol to implement a probabilistic reliable multicast service,
whose throughput—unlike traditional algorithms—is not as
affected by failures. Van Renesse et al. [40] use a gossip-
based protocol to spread information about heartbeats to
implement a scalable failure detector. Others, such as Jela-
sity et al. [22], use gossip-protocols to aggregate information—
such as the average, maximum, or minimum—at all nodes.

2.2 Structured Overlay Networks
All structured overlay networks make use of the concept of
an identifier space consisting of a set of identifiers, which
we take to be positive integers less than some large constant
value. At all times, each identifier is under the responsibility
of one node1. Each node maintains routing pointers to other
nodes such that every node can find the node responsible for
a given identifier. The process of finding responsible nodes
is referred to as the lookup operation. It is typically guar-
anteed that the number of routing pointers, as well as the
number of redirects a lookup needs, is O(log n) for n nodes,
even though other schemes are possible. This is typically
implemented by assigning to each node an identifier, and
connecting nodes to each other to form a distributed ring
structure2. Lookups essentially traverse the ring structure
to find responsible nodes. To avoid the worst case of travers-
ing the whole ring, each node can maintain extra pointers
across the ring structure, which can be used to speed up the
lookup operation. For example in Chord the extra pointers
at a node p are placed with exponentially increasing dis-
tances from p in the identifier space. Hence, the distance to
any destination can always be at least halved in one hop,
yielding a worst-case of O(log n) hops to reach any destina-
tion.

SONs are mainly used for implementing two services: dis-
tributed hash tables (DHTs) and group communication. A
DHT is a hash table abstraction built on top of the SON.
The DHT is implemented by hashing the key of each item
(key/value pair) such that it gets an identifier from the iden-
tifier space. Every item is stored at the node responsible for
the item’s identifier. Hence, lookups can be used to resolve
keys.

SONs can also be used for group communication [14, 11,
15, 3]. For example, uninformed search can be done by
broadcasting on top of the routing pointers of a SON. Sim-
ilarly, overlay multicast can be implemented by creating a
SON instance for every multicast group. Nodes interested
in a multicast group join that group, and nodes wanting to
multicast a message simply broadcast the message within

1Some systems, such as P-Grid [1], have multiple nodes re-
sponsible for the same identifier. The same applies to sym-
metric replication [16].
2The ring structure is a distributed doubly-linked list with
its header and tail connected.

the SON representing the desired multicast group. Broad-
cast on top of SONs exploits the structure of the overlay
to avoid transmitting redundant messages. Hence, they not
only guarantee non-redundant delivery of messages, but also
non-redundant message reception.

One of the main uses of DHTs have been name-resolution.
In particular, it is useful to be able to find out the current
address or location of a user or node. In P-Grid, the DHT
is used to find out the current IP address of a node that has
left the system and later returned with a new IP address [2].
Similar uses of DHTs can be found for the Host Identity Pro-
tocol (HIP) [32], Session Initiation Protocol (SIP) [31], and
I3 [38]. It is evident that name resolution, for dealing with
mobility and dynamic IP addresses, is relevant in purely
gossip-based systems too. Hence, using DHTs in such sys-
tems would be advantageous.

3. GOSSIP ALGORITHMS FOR IMPROV-
ING STRUCTURED OVERLAYS

Gossip algorithms have had an important role in the build-
ing of robust SONs, even though it is not widely acknowl-
edged. Rhea et al. [35] made some of the first real ex-
periments with existing SON implementations, and found
that the implementations of the two main SONs—Chord
and Pastry—did not work properly under churn. They de-
vised a new system called Bamboo, which provides a new
algorithm for maintaining the ring structure. Even though
not explicitly mentioned by the authors, the algorithm is
gossip-based. The algorithm maintains the ring structure
by having each node keeping a leaf set, which contains the
closest nodes on the ring. The nodes periodically gossip in-
formation about the contents of the leaf-set with each other.
Early versions of Bamboo used a similar algorithm that was
not periodic. Nodes reactively sent notifications to the nodes
in their leaf sets about changes in their neighborhood. It
therefore suffered from the network becoming overly con-
gested due to positive feedback cycles created by the send-
ing of the notifications. Hence, the use of a gossip protocol
avoided such bursty behavior because of its periodic behav-
ior and bounded message exchange. These reasons have pre-
viously been the main motivation for using gossip algorithms
in other contexts [5].

The seminal work by Stoica et al. on Chord [39] describes an
algorithm called periodic stabilization that maintains a ring
structure. Periodic stabilization resembles a gossip algo-
rithm, as each node periodically gossips with its immediate
successor on the ring about information about its neigh-
borhood. Though simple, the algorithm ensures that any
number of concurrent joins will eventually lead to a perfect
ring. It is also very robust to node failures.

Periodic stabilization has, however, two shortcomings. First,
it cannot properly heal from network partitions. When net-
work partitions happen, periodic stabilization ensures that
each partitioned component eventually forms a perfect ring.
When the network partition ceases, periodic stabilization
cannot efficiently merge the disjoint rings.

The second shortcoming of periodic stabilization is due to
failure scenarios which might cause the ring to enter a state,
referred to as loopy, in which a perfect ring is never formed



again. In a loopy state, every node p points to another node
q, which it believes is its successor, and node q believes p
to be its predecessor. But to traverse all nodes in the ring,
the successor pointers have to be traversed more than once
around the whole ring (see Figure 1). Determining whether
the ring is in a loopy state is a global property. Hence, there
has been two solutions up to now, both requiring sending
messages to all nodes in the system [27, 24].

3.1 Healing From Merged Partitions and Loopy
Networks

Gossip-based protocols have previously been successfully used
to handle network partitions. We believe the reasons for
this to be threefold. First, its periodic behavior is ideal for
detecting sudden state changes, such as the merger of a net-
work partition or the detection of a loopy network. Second,
its bounded resource utilization ensures that sudden global
changes, such as that of a merger of network partitions,
avoids positive feedback cycles in very much the way ex-
plained in the previous Bamboo scenario. Third, the expo-
nential speed at which information is disseminated ensures
efficient topology recovery. Our position is that gossip-based
protocols can be used to tackle both mentioned problems in
SONs.

There are already several gossip-based algorithms that are
viable for being used to tackle the aforementioned prob-
lems with the ring topology of SONs. In particular, T-
man [19, 30] can build various desired topologies from a com-
pletely random graph. T-chord [30] can build the overlay of
Chord from a random graph. Interestingly, these algorithms
are efficient as the desired network topology appears after
O(log n) rounds of gossiping, while doing periodic bounded
message exchange. A SON could use a gossip-based algo-
rithm, such as T-chord [30], and periodically check if T-
chord has better information that can be incorporated into
the structured overlay. The T-chord protocol would then
run in epochs, which are restarted periodically as prescribed
by Jelasity et al. [21, 19]. Shafaat et al. [37] have recently
showed that the problem of merging SONs after partitions
can be solved using gossip-based algorithms, there is, how-
ever, room for improvement.

3.2 Membership for SONs
The SON requirement of maintaining a ring structure is
quite strict. Some of the initial SONs, such as Chord [39]
and CAN [34], had also a strict requirement on which nodes
the extra pointers should be pointing to. Since the design al-
lowed for little flexibility in where pointers could be placed,
it made little sense to use gossip-based algorithms for mem-
bership management3. We believe that this has gradually
changed, which makes the usage of gossip-based algorithms
for membership management in SONs viable. Already the
Pastry system [36], had flexibility in how nodes could be in-
terconnected. Later it was also shown how systems, such as
Chord, could be changed to allow for flexibility in how the
nodes are interconnected. In particular Gummadi et al. [17]
described that it was sufficient for each node to partition
the identifier space into intervals of exponentially increasing
sizes, and have one pointer anywhere in each interval.

3A membership protocol maintains the routing pointers of
a node

Several recent SONs only prescribe that nodes should be
connected to each other according to a probability distribu-
tion that ensures a small-world property. This applies to
SONs such as Accordion [26], Mercury [4], Symphony [29],
and EpiChord [25]. These systems ensure that the diameter
of the overlay is low, by having each node pick a neighbor
with a probability inversely proportional to the distance to
the neighbor, as described by Kleinberg [23]. The graph
theoretic properties of these systems, has not been as thor-
oughly investigated as those of gossip-based membership
protocols.

Membership protocols have extensively been studied in the
context of gossip-based algorithms. They have been used to
create different types of topologies, such as random [41, 13],
clustered [42, 33], or application specific [19]. For example,
Cyclon [41] ensures that each node has routing pointers to
a small subset of the nodes in the system, such that the
nodes in the subset are picked with uniform distribution
across all nodes in the system. Furthermore, the graph in-
duced by the membership protocol exhibits other attractive
properties, such as robustness, low clustering coefficient, and
highly symmetric and similar in and out-degrees. The graph
theoretic properties of these systems have been studied [20],
and undesirable properties remedied.

We believe that the membership protocols of flexible SONs,
such as the ones mentioned above, have not undergone proper
investigation. Most of them perform membership manage-
ment heuristically, by, for example, discovering membership
information through lookups performed by the application.
Our position is that the flexibility of such SONs make them
ideal for gossip-based membership protocols. This requires
that the membership protocols can ensure that nodes are
picked according to the probability distribution prescribed
by the SON. We believe it is viable that gossip-based proto-
cols can achieve this, since gossip-based membership already
has been used to construct many different types of graphs.
For example, T-man [19] can be used with a ranking func-
tion that ranks nodes according to the probability distri-
bution described by the small-world SON (see T-man [19]
for more details). Since many of the existing gossip-based
based membership protocols have exhibited desirable prop-
erties, these could perhaps be transferred to SONs, if their
topology is maintained by a gossip-based membership pro-
tocol.

3.3 Gossiping on top of a SON
Researchers from the SON community have suggested to
run gossip-based algorithms on top of SONs. For example,
instead of using a gossip-based membership service that cre-
ates a random graph, a SON like Accordion [26] can be used.
Even if there might be no intrinsic value in using SONs for
gossip-based algorithms, it might be that a SON is already
chosen to solve a given problem and one would like to use
gossip-based algorithms on top of the existing SON. One can
then also utilize the SON for gossiping.

Any gossip-based algorithm can be deployed on top of a
SON. The gossip-based algorithm can use the routing point-
ers of the SON for random gossip exchange. We mention
two approaches that can be used in cases where it is re-
quired that nodes are picked with uniform probability for



89 7 6 5 43
210

10111213 14 15
Figure 1: A loopy ring from which periodic stabilization cannot recover. The dark circles represent nodes in
the ring, and each doubly arrowed link represents a successor pointer and a predecessor pointer.

gossip exchange. First, a random identifier can be picked,
and a lookup can be made to find the node responsible for
that identifier. Second, a random walk can be made to find
random peers.

In Structella [6], Gnutella is built on top of the SON Pas-
try [36], and flooding and random walks are used for search-
ing. Castro et al. [7] show how this approach can lead
to lower membership maintenance cost. By exploiting the
structure of the SON, the flooding algorithms used for search-
ing can completely avoid the sending of redundant messages.

The work on flooding on top of SONs could be comple-
mented with gossip-based algorithms. For example, the
broadcast algorithms for SONs [14, 11] are costly to make
reliable. Instead, one could use the unreliable broadcast
algorithm for SONs, and then deploy a gossip-based anti-
entropy [9, 5] protocol in the background to achieve reliabil-
ity. The anti-entropy protocol lets nodes gossip among each
other to find out whether they are missing any information,
which then can be transmitted. Hence, the broadcast algo-
rithm, which guarantees to never send redundant messages,
will attempt to disseminate information to all nodes, while
anti-entropy protocol ensures that all nodes with high prob-
ability and low cost get all the messages.

Finally, we think that the use of aggregates in SONs would
benefit from using gossip-based protocols. For example,
most SONs require nodes to have an estimate of the number
of nodes, n, present in the system. This can be used to main-
tain routing tables, whose size are dependent on n. Most
SONs have very rudimentary algorithms for estimating the
network size. For example, in Viceroy [28] and Mercury [4],
each node’s distance to its successor in the identifier space is
used to calculate the number of nodes in the system. There
is, however, no analysis of the accuracy of such an estimate.
In contrast, Jelasity et al. [22] show how their aggregation
algorithm for calculating averages can be used to exactly
calculate the network size within O(log n) rounds. Simi-
larly, gossip-based aggregation could be used to calculate
the average, maximum, or minimum load on nodes. This
information could effectively be used for load-balancing.

We give an example of how gossip-based algorithms can ex-

ploit SON properties. The following algorithm estimates the
network size in a SON by using the gossip-based aggrega-
tion algorithm described by Jelasity et al. [22]. Each node
i starts with an initial value vi, which is set to the distance
to its successor on the ring. Then a gossip algorithm is ap-
plied to get the average inter-node distance, δ, on the iden-
tifier space. The network size is then the ratio between the
identifier space size and δ. The system should at all times
maintain the invariant that the sum of all the estimates vi

is equal to the size of the identifier space. Hence, a joining
node sets its estimate to zero. Similarly, a leaving node i en-
sures that some other j sets vj = vj + vi. Failures are dealt
with by restarting the algorithm, similarly as described by
Jelasity et al. [22].

4. RELATED GOSSIP-BASED SONS
Two existing SONs—P-Grid [1] and Kelips [18]—are com-
pletely gossip-based, though this fact is not widely known
in the two communities.

P-Grid [1], which is one of the first SONs, is completely
gossip-based. It is indeed a SON as at each instant in time,
it is possible to make a lookup to find the node responsi-
ble for any given key. At the same time, data is spread to
replicas using a gossip-based protocol. Decisions, such as
when the replication degree of an item should be increased,
are triggered by gossip-based protocol. As a direct result of
this, P-Grid can heal from merged network partitions [8].
Moreover, it load-balances as nodes storing popular items
are automatically replicated by other nodes.

Kelips [18] is another gossip-based SON. Each node in Ke-
lips picks a random group number between [1,

√
n], where

n is the network size. A gossip protocol is used to ensure
that each node has

√
n routing pointers to all nodes with

the same group number, and one routing pointer to at least
one node from every other group number. Items are hashed
to receive a group number, and an item with group number
i is stored at all nodes with group number i. This way, a
lookup can in one step find the node responsible for any pro-
vided identifier. Replication of data within a group is done
using a gossip-based protocol. The main cost of Kelips is
thus in maintaining O(

√
n) replicas of each item, where n is

the network size. This could cause problems when there are



many updates in the system. Nevertheless, Kelips, in sim-
ilarity with P-Grid, has the advantage of being resilient to
network partitions and automatically does load-balancing.

5. CONCLUSION
We have argued for the synergy of gossip-based algorithms
and structured overlay networks (SON). Both research ef-
forts have had similar goals: building fault-tolerant, dy-
namic, self-managing, and large-scale distributed systems.
Despite their common goals, the two areas have, however,
been relatively isolated. We explicitly solicited research on
three common connecting points: gossip-based ring main-
tenance in SONs, membership in small-world SONs, and
gossiping on top of SONs. We argued that applying gossip-
based membership for ring-based SONs—such as Chord and
Bamboo—will make them self-heal from partition mergers
and loopy networks. We argued that small world SONs—
such as Accordion and Mercury—would have better graph-
theoretic properties if they used gossip-based membership
management. Last, we mentioned several ways in which
gossip-based algorithms could beneficially run on top of the
overlay of a SON. For example, many unreliable broadcast
algorithms for SONs could be augmented with anti-entropy
protocols to achieve reliability. Furthermore, many SONs
could benefit from using gossip-based aggregation protocols
for network size estimation and load-balancing.

Acknowledgments
We would like to thank Jim Dowling and Sverker Janson at
SICS for their comments on earlier drafts of this paper. This
work has been financed by VINNOVA 2005-02512 Trust-Dis,
SICS Center for Networked Systems (CNS), and IST project
SELF-MAN.

6. REFERENCES
[1] K. Aberer, P. Cudré-Mauroux, A. Datta,

Z. Despotovic, M. Hauswirth, M. Punceva, and
R. Schmidt. P-Grid: a self-organizing structured P2P
system. SIGMOD Record, 32(3):29–33, 2003.

[2] K. Aberer, A. Datta, and M. Hauswirth. Efficient,
self-contained handling of identity in Peer-to-Peer
systems. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 16(7):858–869, 2004.

[3] L. O. Alima, A. Ghodsi, P. Brand, and S. Haridi.
Multicast in DKS(N, k, f) Overlay Networks. In The
7th International Conference on Principles of
Distributed Systems (OPODIS’03), volume 3144 of
Lecture Notes in Computer Science (LNCS), pages
83–95. Springer-Verlag, 2004.

[4] A. R. Bharambe, M. Agrawal, and S. Seshan.
Mercury: Supporting Scalable Multi-Attribute Range
Queries. In Proceedings of the ACM SIGCOMM 2004
Symposium on Communication, Architecture, and
Protocols, pages 353–366, Portland, OR, USA, March
2004. ACM Press.

[5] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,
M. Budiu, and Y. Minsky. Bimodal Multicast. ACM
Transactions on Computer Systems (TOCS),
17(2):41–88, 1999.

[6] M. Castro, M. Costa, and A. Rowstron. Should we
build Gnutella on a structured overlay? SIGCOMM

Computing Communication Review, 34(1):131–136,
2004.

[7] M. Castro, M. Costa, and A. Rowstron. Debunking
Some Myths About Structured and Unstructured
Overlays. In Proceedings of the 2nd USENIX
Symposium on Networked Systems Design and
Implementation (NSDI’05), Boston, MA, USA, May
2005. USENIX.

[8] A. Datta and K. Aberer. The Challenges of Merging
Two Similar Structured Overlays: A Tale of Two
Networks. In Proceedings of the First International
Workshop on Self-Organizing Systems (IWSOS’06),
volume 4124 of Lecture Notes in Computer Science
(LNCS), pages 7–22. Springer-Verlag, 2006.

[9] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic Algorithms for Replicated Database
Maintenance. In Proceedings of the 7th Annual ACM
Symposium on Principles of Distributed Computing
(PODC’87), pages 1–12, New York, NY, USA, 1987.
ACM Press.

[10] E. W. Dijkstra. Self Stabilization in spite of
Distributed Control. Communications of the ACM,
17(11):643–644, 1974.

[11] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi.
Efficient Broadcast in Structured P2P Netwoks. In
Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS’03), volume 2735 of
Lecture Notes in Computer Science (LNCS), pages
304–314, Berkeley, CA, USA, 2003. Springer-Verlag.

[12] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and
L. Massoulié. From epidemics to distributed
computing. IEEE Computer, 37:60–67, May 2004.

[13] A. Ganesh, A.-M. Kermarrec, and L. Massoulié.
Peer-to-Peer Membership Management for
Gossip-based Protocols. IEEE Transactions on
Computers (TOC), 52(2):139–149, 2003.

[14] A. Ghodsi. Distributed k-ary System: Algorithms for
Distributed Hash Tables. PhD dissertation,
KTH—Royal Institute of Technology, Stockholm,
Sweden, December 2006.

[15] A. Ghodsi, L. O. Alima, S. El-Ansary, P. Brand, and
S. Haridi. Self-Correcting Broadcast in Distributed
Hash Tables. In Proceedings of the 15th International
Conference, Parallel and Distributed Computing and
Systems, Marina del Rey, CA, USA, November 2003.

[16] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric
Replication for Structured Peer-to-Peer Systems . In
Proceedings of the 3rd International VLDB Workshop
on Databases, Information Systems and Peer-to-Peer
Computing (DBISP2P’05), volume 4125 of Lecture
Notes in Computer Science (LNCS), pages 74–85.
Springer-Verlag, 2005.

[17] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of DHT routing
geometry on resilience and proximity. In Proceedings
of the ACM SIGCOMM 2003 Symposium on
Communication, Architecture, and Protocols, pages
381–394, New York, NY, USA, 2003. ACM Press.

[18] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van
Renesse. Kelips: Building an Efficient and Stable P2P
DHT Through Increased Memory and Background



Overhead. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS’03),
volume 2735 of Lecture Notes in Computer Science
(LNCS), pages 160–169, Berkeley, CA, USA, 2003.
Springer-Verlag.

[19] M. Jelasity and Ö. Babaoglu. T-man: Gossip-based
overlay topology management. In Proceedings of 3rd
Workshop on Engineering Self-Organising Systems
(EOSA’05), volume 3910 of Lecture Notes in
Computer Science (LNCS), pages 1–15.
Springer-Verlag, 2005.

[20] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen. The peer sampling service:
experimental evaluation of unstructured gossip-based
implementations. In Proceedings of the 5th
ACM/IFIP/USENIX International Conference on
Middleware (MIDDLEWARE’04), volume 3231 of
Lecture Notes in Computer Science (LNCS), pages
79–98, New York, NY, USA, 2004. Springer-Verlag.

[21] M. Jelasity and A. Montresor. Epidemic-Style
Proactive Aggregation in Large Overlay Networks. In
Proceedings of the 24th International Conference on
Distributed Computing Systems (ICDCS’04), pages
102–109, Tokyo, Japan, March 2004. IEEE Computer
Society.

[22] M. Jelasity, A. Montresor, and Ö. Babaoglu.
Gossip-based Aggregation in Large Dynamic
Networks. ACM Transactions on Computer Systems
(TOCS), 23(3), August 2005.

[23] J. M. Kleinberg. The small-world phenomenon: an
algorithm perspective. In Proceedings of the 32nd
ACM Symposium on Theory of Computing
(STOC’00), pages 163–170, Portland, OR, USA, 2000.
ACM Press.

[24] B. Leong and J. Li. Achieving One-Hop DHT Lookup
and Strong Stabilization by Passing Tokens. In 12th
International Conference on Networks (ICON’04),
Singapore, November 2004. IEEE Computer Society.

[25] B. Leong, B. Liskov, and E. Demaine. EpiChord:
Parallelizing the Chord Lookup Algorithm with
Reactive Routing State Management. In 12th
International Conference on Networks (ICON’04),
Singapore, November 2004. IEEE Computer Society.

[26] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek.
Bandwidth-efficient management of DHT routing
tables. In Proceedings of the 2nd USENIX Symposium
on Networked Systems Design and Implementation
(NSDI’05), Boston, MA, USA, May 2005. USENIX.

[27] D. Liben-Nowell, H. Balakrishnan, and D. R. Karger.
Observations on the Dynamic Evolution of
Peer-to-Peer Networks. In Proceedings of the First
International Workshop on Peer-to-Peer Systems
(IPTPS’02), volume 2429 of Lecture Notes in
Computer Science (LNCS). Springer-Verlag, 2002.

[28] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A
scalable and dynamic emulation of the butterfly. In
Proceedings of the 21st Annual ACM Symposium on
Principles of Distributed Computing (PODC’02), New
York, NY, USA, 2002. ACM Press.

[29] G. S. Manku, M. Bawa, and P. Raghavan. Symphony:
Distributed Hashing in a Small World. In Proceedings
of the 4th USENIX Symposium on Internet

Technologies and Systems (USITS’03), Seattle, WA,
USA, March 2003. USENIX.

[30] A. Montresor, M. Jelasity, and Ö. Babaoglu. Chord on
Demand. In Proceedings of the 5th International
Conference on Peer-To-Peer Computing (P2P’05).
IEEE Computer Society, August 2005.

[31] P2PSIP. http://www.p2psip.org, 2006.

[32] Host Identity Payload.
http://www.ietf.org/html.charters/hip-charter.html,
2006.

[33] J.A. Pouwelse, P. Garbacki, J. Wangand A. Bakker,
J. Yang, A. Iosup, D. Epema, M.Reinders, M. van
Steen, and H. J. Sips. Tribler: A social-based based
peer to peer system. In Proceedings of the 5th
International Workshop on Peer-to-Peer Systems
(IPTPS’06), February 2006.

[34] S. Ratnasamy. A Scalable Content-Addressable
Network. PhD thesis, University of California at
Berkeley, Berkeley, CA, USA, 2002.

[35] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling Churn in a DHT. In Proceedings of the 2004
USENIX Annual Technical Conference (USENIX’04),
Boston, MA, USA, June 2004. USENIX.

[36] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proceedings of the 2nd
ACM/IFIP International Conference on Middleware
(MIDDLEWARE’01), volume 2218 of Lecture Notes in
Computer Science (LNCS), pages 329–350,
Heidelberg, Germany, November 2001.
Springer-Verlag.

[37] T. M. Shafaat, A. Ghodsi, and S. Haridi. Handling
Network Partitions and Mergers in Structured Overlay
Networks. In Proceedings of the 7th International
Conference on Peer-To-Peer Computing (P2P’07),
September 2007.

[38] I. Stoica, D. Adkins, S. Ratnasamy, S. Shenker,
S. Surana, and S. Zhuang. Internet Indirection
Infrastructure. In Proceedings of the First Interational
Workshop on Peer-to-Peer Systems (IPTPS’02),
Lecture Notes in Computer Science (LNCS), pages
191–202, London, UK, 2002. Springer-Verlag.

[39] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan.
Chord: a scalable peer-to-peer lookup protocol for
internet applications. IEEE/ACM Transactions on
Networking (TON), 11(1):17–32, 2003.

[40] R. van Renesse, Y. Minsky, and M. Hayden. A
Gossip-Style Failure Detection Service. In Proceedings
of the IFIP/ACM International Conference on
MIDDLEWARE (MIDDLEWARE’98), Lecture Notes
in Computer Science (LNCS). Springer-Verlag, 1998.

[41] S. Voulgaris, D. Gavidia, and M. van Steen. Cyclon:
Inexpensive membership management for
unstructured p2p overlays. Journal of Network and
Systems Management, 13(2), 2005.

[42] S. Voulgaris and M. van Steen. Epidemic-Style
Management of Semantic Overlays for Content-Based
Searching. In Proceedings of the 11th European
Conference on Parallel Computing (EUROPAR’05).
Springer-Verlag, 2005.


