
Strathprints Institutional Repository

Kirby, Graham and Dearle, Alan and Morrison, Ron and Dunlop, Mark and Connor, Richard
and Nixon, Paddy (2003) Active architecture for pervasive contextual services. In: International
Middleware Conference, Workshop Proceedings, 2003-06-16 - 2003-06-20, Rio de Janeiro.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9015611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Kirby, G. and Dearle, A. and Morrison, R. and Dunlop, M. D. and Connor, R.
and Nixon, P. (2003) Active architecture for pervasive contextual services.
In: International Middleware Conference, Workshop Proceedings.

http://eprints.cdlr.strath.ac.uk/2526/

This is an author-produced version of a presentation from the International
Middleware Conference. This version has been peer-reviewed, but does
not include the final publisher proof corrections, published layout, or
pagination.

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any
profitmaking activities or any commercial gain. You may freely
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints
website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://eprints.cdlr.strath.ac.uk/2815/

Proc. International Workshop on Middleware for Pervasive and Ad-hoc Computing (MPAC 2003), Rio de Janeiro, Brazil, 2003.

Active Architecture for Pervasive Contextual Services

Graham Kirby, Alan Dearle, Ron Morrison
School of Computer Science, University of St Andrews,

North Haugh, St Andrews, Fife KY16 9SS, Scotland
{graham, al, ron}@dcs.st-and.ac.uk

Mark Dunlop, Richard Connor, Paddy Nixon
Department of Computer and Information Sciences, University of Strathclyde,

26 Richmond Street, Glasgow G1 1XH, Scotland
{Mark.Dunlop, Richard.Connor, Paddy.Nixon}@cis.strath.ac.uk

Abstract

Pervasive services may be defined as services that are available to any client (anytime, anywhere). Here we focus on
the software and network infrastructure required to support pervasive contextual services operating over a wide area.
One of the key requirements is a matching service capable of assimilating and filtering information from various
sources and determining matches relevant to those services. We consider some of the challenges in engineering a
globally distributed matching service that is scalable, manageable, and able to evolve incrementally as usage pat-
terns, data formats, services, network topologies and deployment technologies change. We outline an approach
based on the use of a peer-to-peer architecture to distribute user events and data, and to support the deployment and
evolution of the infrastructure itself.

1 Introduction

1.1 Requirements

Pervasive services may be defined as services that are
available to any client (anytime, anywhere) [1]. From
this definition the global nature of pervasive services is
implicit. Contextual services may be defined as any
services that take account of the user’s current context;
many research projects are attempting to define context,
e.g. [2, 3]. One useful definition is given in [4] as:

“We call the environment in which a computation takes
place its context. We define context in the broadest pos-
sible sense. A context may either refer to aspects of the
physical world or to conditions and activities in the
virtual world.”

Examples of contextual information include: time, lo-
cation (both coordinate and logical location), current
personal role, physical attributes of the environment
(e.g. temperature, ambient light), etc.

Most research on contextual services concentrates on
local environments. Here we focus on the software and
network infrastructure required to support pervasive
contextual services operating over a wide area.

One of the key requirements to the provision of glob-
ally pervasive contextual services is a matching serv-
ice capable of assimilating and filtering information
from various sources and determining relevant matches.
Information sources include contextual information
from the environment, personal preferences, user his-
tory etc, relatively static information such as spatial
data from GIS, and more general information published

on intranets and the internet. A matching service can be
considered to be an entity that, triggered by the recep-
tion of events from multiple sources, synthesises a
stream of new events. Typically, the output events will
be higher-level (more semantically meaningful) than
the input events. In addition to the input event streams,
the matching service will operate over a global knowl-
edge base comprising elements such as GIS, web-based
systems, databases, semi-structured data, etc.

Each output event describes a correlation of input
events and facts that is relevant to a contextual service.
For example, these items might be correlated:
• user Bob likes ice cream, but only when the weather

is hot and when he has spare time to eat it
• it is 20ºC in South Street is at 16.30 on 25/6/2003
• Bob is on holiday from 20/6/2003 to 27/6/2003
• Bob is Scottish
• Bob is in North Street at 16.45 on 25/6/2003
• Bob is on foot on 25/6/2003
• Janetta’s in Market Street sells ice cream, and is open

between 9.00 and 17.00
• Bob knows Anna
• Anna is at coordinate 56.3397, -2.80753 at 16.15 on

25/6/2003

If, within the time interval 16.45-16.50, all these items
could be correlated, a pervasive contextual service
could suggest to both Bob and Anna via some appropri-
ate user interface mechanism that they might wish to
meet for an ice cream at Janetta’s at 16.55. This corre-
lation requires the detection of spatial, temporal and
logical relationships; it can be inferred from the set of
items that both Bob and Anna are probably close

Proc. International Workshop on Middleware for Pervasive and Ad-hoc Computing (MPAC 2003), Rio de Janeiro, Brazil, 2003.

enough to Janetta’s to get there before it closes. Simi-
larly, it can be inferred that Bob would probably like an
ice cream given that he is Scottish and therefore regards
20º as hot. It is relatively straightforward to make these
inferences if the small set of items is known; the major
difficulty is in extracting the correlated set in the first
place, from the huge number of items available.

Further difficulties arise: although the example above
was relatively localised in space, in other scenarios the
items to be matched might be globally distributed—e.g.
Bob, currently in Australia, walks past a restaurant pre-
viously recommended by Anna: her opinion of the res-
taurant should delivered to Bob if it is dinner time and
has no plans for dinner, or if he is staying a few more
days in the area. Furthermore, matching for a range of
different services must take place simultaneously, for
the entire population of participating users, as indicated
in Figure 1. The key point is that delivery of pervasive
contextual services requires the continuous processing
of a very high volume of globally distributed items of
information, distilling them down into a relatively small
volume of meaningful events.

1.2 Refining the Requirements

If we accept these requirements for a global contextual
matching service, the question arises as to whether such
an entity can be engineered, and if so, how. The service
cannot be provided on a single machine or in a single
location; therefore, in addition to the items being
matched, the matching computation must itself be dis-
tributed. We can refine the requirements as being a dis-
tributed matching engine, fed from a distributed event
system, and a distributed knowledge base.

Clearly the construction of such an entity is itself a
grand challenge. There are many individual engineering
challenges: information must be assimilated from nu-
merous sources, requiring ontologies for describing it

events relevant
to service 1
for Bob

events relevant
to service 2
for Bob

service n
for Bob

global
infrastructure

facts

facts

facts

facts

events

eventsevents

events

other services
other users

Figure 1: A global matching service.

and tools for extracting it; databases are required for
storing the information; the construction of the distrib-
uted matching engine in itself is extremely complex;
and finally, the system must be engineered to operate
with various hand-held and other mobile technologies.

As with any large-scale distributed system, the devel-
opment of a wide area infrastructure for pervasive con-
textual services poses a number of novel research chal-
lenges in terms of evolution, management and scalabil-
ity; these problems are not significant in the local envi-
ronments in which most contextual services operate.
The distributed matching engine must have the ability
to evolve with, and adapt to, changing usage patterns,
data formats, services, network topologies and deploy-
ment technologies. Given its scale and non-centralised
nature, it will be impossible to shut it down and restart
it for maintenance. Clearly then, the system must be
capable of incrementally changing its configuration.
This assumes, of course, that data and systems can be
organised appropriately to make use of available re-
sources without imposing complexity on the user. The
problems of complexity in current systems, even on the
small scale, are identified by Bolosky:

“Users are subjected to random performance and
service disruptions. Replacing or upgrading a personal
computer, workstation, or server is very difficult. Even
a moderate size computer network requires significant
expertise to configure and maintain.”

In the distributed matching engine data must flow
around the system in response to: changes in users’
location and behaviour; changes in the access patterns
of processes; changes in the physical resources allo-
cated to the system; or changes in the topology of the
physical infrastructure. It is essential for the underlying
policies to evolve in response to such changes, but the
complexity is such that it is infeasible for this to be
controlled by human users or administrators. The sys-
tem must therefore manage such changes automatically.
In order to achieve scalability, the system needs to be
capable of making best use of the resources that are
available at any time. Ideally, the system would be able
to intercept and utilise network, storage and compute
power as it became available in any location.

The matching engine is required to match events pro-
duced in real-time by real-world interactions. The
matching process must be capable of processing the
event stream sufficiently quickly to produce contextual
information that is pertinent to users within an appro-
priate time frame. In order to do this matching, both the
events and the knowledge base must be delivered to the
locations at which the matching computation occurs.
Clearly this imposes requirements on the event delivery
system and the caching and replication policies. In par-
ticular, if the data is not available with sufficiently low

Proc. International Workshop on Middleware for Pervasive and Ad-hoc Computing (MPAC 2003), Rio de Janeiro, Brazil, 2003.

latency, matching cannot occur at the necessary rate.
Thus the infrastructure must facilitate the appropriate
placement of data and computation at all times—on
servers, end user devices, and within the network.

2 Challenges

The challenges in meeting the requirements outlined
above include:

• the provision of a generic global event service capa-
ble of: delivering events to appropriate locations at
appropriate times; and delivering multiple event
types including those unknown at initial deployment;

• the engineering of the matching computation, in-
cluding: the partitioning of the computation; deploy-
ment of the components at appropriate locations at
appropriate times; incorporation and dropping of
storage, computational and network resources as they
become available/unavailable; data caching and rep-
lication policies to ensure that the matching process
can occur sufficiently fast and with sufficient reli-
ability; ontologies and type systems for describing
data, knowledge and events—and flexible mecha-
nisms for binding to these; adaptation to changing
patterns of use by individuals and populations;

• the ability to incorporate new devices and technolo-
gies incrementally as they become available, given
that it is not possible to halt and restart the system;

• the provision of infrastructure upon which new serv-
ices may be implemented;

• programming abstractions with which to describe the
services and how they should be deployed.

A number of other issues are crucial to a practical de-
ployment, but not specifically addressed in this paper:

• security mechanisms to ensure that data and compu-
tations may be accessed and placed only in appropri-
ate ways;

• privacy policies that allow users to control the degree
to which sensitive data is stored in the global system
and used in various ways;

• definition of user centred quality of service, annoy-
ance, security and privacy requirements.

3 State of the Art

Many projects attempt to address the needs of an event
distribution service for pervasive systems. Some have
been deployed and work well in a relatively localised
area. For example, Elvin [5] supports a content based
addressing mechanism above a publish/subscribe net-
work. The system is based on subscription to events
supported by a subscription language; it uses a client-
server architecture, limiting its scalability.

Siena [6] addresses scalability directly and aims to pro-
vide a wide area event notification system. Event pro-
ducers advertise the events that they generate and event

sinks subscribe to notifications of interest. Events are
represented as 3-tuples of a name, type and value. Siena
does not support mobility directly, however, Mobikit
[7] extends Siena by providing a mobility service that
supports both user mobility and code mobility. The
system provides static proxies for mobile entities,
which subscribe on behalf of the mobile entity when the
mobile entity is disconnected from the pub/sub system.

The need to push and deploy code in the network is also
being addressed by the network communities and active
mobile agents. The Active Network community sup-
ports the deployment of capsules [8] containing both
code and data. For example, the ANTS system supports
a Java-based toolkit for experimenting with active net-
works in which code capsules serve as the minimum
unit of deployment and are used as a measure of re-
source utilisation.

We are currently constructing the Cingal system, which
provides code push technology permitting bundles of
code and data wrapped in XML packets to be deployed
and run on a thin server. On arrival at a thin server, and
subject to verification and security checks, the code
may be executed within a security domain. Each thin
server provides the necessary infrastructure for code
deployment, authentication of bundles, a capability-
based protection system and an object store.

A plethora of Java based active mobile agent systems
exists ranging from commercial products such as Voy-
ager and Pathwalker to research projects such as Mole
[9], HIVE [10] and ARA [11]. These cover the entire
code migration spectrum from strong (in the case of
ARA) to weak schemes (the rest). An agent is a process
that migrates among the nodes within a network to per-
form its task, operating on behalf of a user. Every vis-
ited node must support an infrastructure to deal with the
management of system services and resources. This is
usually done via fully trusted non-mobile agents.

With active pipes [12], the capabilities of nodes and
groups of nodes are described in terms of static and
dynamic properties. Processing and transmission re-
quirements are expressed as a sequence of functions to
be performed on a data stream. These are mapped onto
nodes by placing constraints on the processing elements
such as: IP-range, network services supported, link-load
etc. For each processing step, constraints define a sub-
set of nodes qualified to execute a given function.

Constructing inferences from matched events is a criti-
cal aspect of any context infrastructure, providing the
means by which services are targeted to the individual
and situation. Core to this is the ability to match events
from the real world, correlate against existing knowl-
edge, and identify a meaningful action. The issue of
describing and matching has been investigated in vari-

Proc. International Workshop on Middleware for Pervasive and Ad-hoc Computing (MPAC 2003), Rio de Janeiro, Brazil, 2003.

ous domains. Proposed solutions fall into three catego-
ries: text based, lexical descriptor based and specifica-
tion based. Text based solutions use the textual repre-
sentation as an implicit description of behaviour, while
employing arbitrarily complex string matching expres-
sions. Although these have low maintenance cost and
are easy to introduce, a textual representation does not
guarantee sufficient information for the classification
and in fact could be misleading. Lexical descriptor
based solutions use key phrases, which are constructed
from a predefined vocabulary provided by subject ex-
perts, to describe the target. This can be extended to
describe a number of different aspects of the situation,
leading to the technique of multi-faceted classification
[13]. The use of key phrases makes the method sounder
and more complete. The construction of the predefined
vocabulary, or ontology, is a non-trivial task and there
is also ambiguity associated with the type of semantics
(computational or application) that the vocabulary
should describe. Finally, specification based solutions
use a specification language, whose semantics define
the classification and retrieval scheme [14].

The logic programming, constraint and context-aware
retrieval (CAR) communities are developing technolo-
gies that address the needs of a contextual matching
service. In logic programming, declarative program-
ming languages such as Prolog can be used to express
matches using first order logic. Distributed Prolog sys-
tems have been constructed, notably SICStus Prolog
which supports distributed unification. The constraint
community have produced constraint solvers that search
for solutions using forward checking and constraint
logic programming. Research on the Distributed Con-
straint Satisfaction Problem extends this by distributing
the variables to be solved amongst agents.

The Rome system [15] supports the concept of a con-
text trigger, consisting of a condition and an action. It
allows decentralized evaluation of triggers by embed-
ding triggers in end devices. This does not, however,
allow context sharing and requires the end device to
have the capability to sense and process all of the nec-
essary raw contextual information, which may not be
efficiently achieved, especially for a complicated trig-
ger and a simple device.

XML is established as the de facto standard for infor-
mation interchange; it is therefore reasonable to assume
that both events and knowledge will be stored in an
XML format. There is therefore a requirement for pro-
grams to be able to bind to XML data. Most program-
ming interfaces incorporate a tree-structured view of
XML as an abstraction for the programmer. This is a
good abstraction if the data content is inherently ir-
regular, however for regular data it leaves much to be
desired in terms of both application modelling and run-

time efficiency. A better approach is to present the pro-
grammer with an abstraction corresponding to a more
traditional data model. There is a further option of how
to achieve this; there are two possibilities:

• type generation, where a programming language type
is obtained by analysis of either the data itself or a
metadata description of it [16, 17], and

• type projection, where the type is taken from the pro-
gram context and matched against the data [18, 19]

Our interest here is in the second strategy, which has
various advantages. Crucially in this context, these in-
clude the ability to handle partial data model specifica-
tions. This is key in the case where the overall structure
of the data is not tightly specified, yet it contains struc-
tured ‘islands’ whose structure is known a priori. This
is a key requirement in this context, where there is in-
herently a lack of pre-imposed global standardisation
and rapidly evolving data modelling requirements.

The PSI project [1] directly addresses infrastructure for
pervasive services. It proposes a 3-layer architecture
comprising front end clients such as PDAs, embedded
devices etc.; infrastructure servers and backend servers.
The project’s thesis is that small front end devices can
borrow resources from back end servers. This requires
that applications be split into components and distrib-
uted appropriately. Currently, the partitioning of appli-
cations appears to be being done manually. However
other projects such as RAFDA [20] and Coign [21] are
attempting to do this automatically. For example, the
RAFDA project is investigating partitioning Java appli-
cations into components capable of being executed on
different virtual machines.

Recently a new generation of storage architectures has
emerged based on Peer-To-Peer (P2P) technologies.
These include OceanStore [22], Mnemosyne [23],
PAST [24], Pastry [25], FreeHaven [26] and Freenet
[27], and all provide some degree of abstraction over
the location of data and utilise storage available in a
network of peers. Most of the above are based on a de-
terministic routing algorithm by Plaxton [28], which
permits the discovery of documents stored in a wide
area network such as the Internet. Some systems, such
as [27], rely exclusively on non-deterministic algo-
rithms. This mean that data cannot always be found,
rendering them unsuitable as a base technology for this
work. All the P2P architectures cited use hashing algo-
rithms to assign each document with a globally unique
identifier (GUID). Typically this is either derived
purely from document content using secure hashes, or
from a hash of keywords, filename and the public key
of the creator.

Many of the cited systems store multiple replicated
copies of data to provide resilience and to increase the

Proc. International Workshop on Middleware for Pervasive and Ad-hoc Computing (MPAC 2003), Rio de Janeiro, Brazil, 2003.

probability that copies of a data item will be stored
close (in terms of latency) to its readers. OceanStore in
particular supports algorithms for distributing data
globally. The schemes for storing replicated copies of
data vary from simple block copying to erasure-codes
which permit data to be reconstituted from a subset of
the servers on which it is stored. The more sophisticated
P2P systems support promiscuous caching where data
is free to be cached anywhere at any time. This does not
affect the correctness of the system nor prohibit other
users from manipulating that data, and is crucial to the
performance of the system if the fetching of remote
data at every access is to be avoided.

4 Our Position

We now outline our approach to addressing the chal-
lenges presented. Broadly, this is to develop an active
network whose topology and memberships can change
dynamically, defined over the embedded sensors, mo-
bile devices, servers and the networks that link them.
Each node—mobile device, server or network compo-
nent—stores information, computes over it, and com-
municates with other nodes. Dynamicity is achieved by
pushing code and data onto the network to define data
channels, processing rules and routing rules.

4.1 Generic Global Event Service

We believe that P2P architectures are highly suited to
the provision of pervasive services. In particular, a P2P
architecture may be used to distribute both low-level
sensor-derived events, and high-level synthesised
events produced by the contextual matching engine. We
propose that a general-purpose system such as Siena
would be ideal for this purpose. It has enough expressi-
bility in its publish/subscribe language and shows evi-
dence of being globally scalable.

4.2 Partitioning of Matching Computation

Our approach is to implement a distributed contextual
matching engine as XML pipelines [29], with XML
events flowing between pipeline components, both in-
tra-node and inter-node. This scheme is designed to
abstract over any particular technology, and to make
pipeline components independent of each other.

XML event buses allow incoming events to be deliv-
ered to multiple downstream components, which may
reside on the same node or on remote nodes. Each
pipeline provides a web service interface put(event),
enabling remote pipeline components to push events
into it. Events may also arise from local devices and
sensors such as GPS and GSM devices, RFID tag read-
ers, weather sensors, etc. Each hardware device has a
wrapper component that makes it usable as a pipeline
component. Other components perform filtering (e.g.
transmitting user-location events only when the dis-

component

component

component

component

component

component

component

event
event

Figure 2: Distributed XML pipelines.

tance moved exceeds a certain threshold), buffering,
communication with other pipelines, and so on.

Web service interfaces permit interoperability between
heterogeneous platforms and languages and define how
pipeline components transmit and receive events. The
interconnection topology is orthogonal to the service
definition and its deployment, and may be provided via
a P2P system or a traditional client-server architecture.
Figure 2 shows an example of a pipeline distributed
over two nodes.

4.3 Component Deployment Mechanisms

Given the approach to partitioning the matching com-
putation using distributed event pipelines, we require
mechanisms to deploy and evolve the pipeline compo-
nents. The mapping of pipeline component types to
physical nodes is likely to be extremely complex, and
we consider it infeasible to fully establish this mapping
statically, before deployment. Instead, we propose to
break the deployment problem down into:

• initial deployment of a pipeline deployment infra-
structure onto all participating nodes, followed by:

• ongoing deployment and redeployment of individual
pipeline components onto those nodes, using the de-
ployment infrastructure already loaded.

This allows flexibility in establishing an initial deploy-
ment, and also for subsequent evolution of the pipelines
in response to changes in resource availability, user
demand, access patterns etc. Rather than trying to ad-
dress the need for evolution in a post-hoc manner, this
architecture is designed around the ability to evolve
from its inception. Indeed, we view deployment of the
architecture as being an evolutionary step itself.

The pipeline deployment infrastructure will itself be
deployed on participating nodes using any conventional
software installation approach. The infrastructure will
be based on code push technology developed in our
Cingal project. We propose to exploit this by con-
structing the pipeline components as code bundles that
may be deployed onto Cingal thin servers. This will
provide flexibility both in initial deployment and in
later incremental evolution of the components and their

Proc. International Workshop on Middleware for Pervasive and Ad-hoc Computing (MPAC 2003), Rio de Janeiro, Brazil, 2003.

code bundles

pipeline

pipeline assembly process

events

Figure 3: Pipeline deployment infrastructure.

topology. Figure 3 shows an example of a thin server
node, containing both the deployment infrastructure and
a pipeline assembled from components sent to it in code
bundles.

4.4 Component Deployment Policies

The mechanisms described in the previous section will
support flexible policies for mapping the pipelines
comprising the contextual matching engine across the
network. The need for flexibility arises because the
architecture must be able to evolve, as already dis-
cussed, and also because initially specified policies will
often require refinement in the light of evaluation fol-
lowing deployment.

Implementers and administrators will need to be able to
express deployment policies at a suitable level of ab-
straction. Given that we wish to take advantage of new
computational, storage and network resources as they
become available dynamically—and, conversely, to
adapt gracefully when they disappear—these policies
should not be expressed in terms of specific individual
physical resources. We adopt the active pipe approach
[12], in which policies take the form of constraints over
the placement of processing steps. For example, a con-
straint might specify that at least 5 pipeline components
providing a data replication service must be deployed in
parallel within a given geographical region.

The set of constraints used in active pipes will be ex-
tended to include higher-level concepts such as dy-
namic caching and replication policies, which are cru-
cial to the provision of pervasive contextual services.
All constraints will feed into an evolution engine, itself
a distributed computation, that will dynamically evolve
the contextual matching engine by manipulating the
pipelines as described in the previous section. As events
arise that cause a given constraint to be violated (such
as the sudden unavailability of a particular node), it is
the role of the monitoring engine to make appropriate
adjustments to satisfy the constraint again.

This approach requires knowledge of available re-
sources to be propagated dynamically to the evolution
engine, which is itself decentralised. As with user
events, we propose to use a P2P system to propagate
events describing changes in resource availability.
Nodes will advertise their resource availability, physi-
cal and logical connectivity, geographic location etc.
via publish events on a P2P system. The events may be
subscribed to by the evolution engine, which can then
elect to make use of these resources by deploying new
pipeline components onto them. Nodes may disappear
from the network either gracefully, in which case they
will publish events warning of their imminent with-
drawal, or without warning, in which case the loss may
eventually be detected by other monitoring compo-
nents, which will publish events on their behalf.

4.5 Caching and Replication of Data

As stated earlier, for the matching service to operate
with sufficiently low latency, appropriate caching and
replication policies and mechanisms must be available.
The use of promiscuous caching described earlier com-
bined with a global storage architecture such as one of
the schemes based on Plaxton routing appears an ideal
combination for the global matching engine.

4.6 Adapting To Changing Use Patterns

Efficient operation of the contextual matching engine
will require adaptation to changing patterns of use by
individuals and populations. Data will flow around the
system in response to changes in users’ location and
behaviour, and changes in their patterns of access to
information. The system might observe diurnal patterns
in data access at a microscopic level associated with a
particular user, or at a macroscopic level on a global
scale. In response to these observations the system
would modify the constraint set to optimise the caching
and replication of data as is appropriate.

In order to achieve this, the system must monitor: the
physical infrastructure; behaviour of users including
their physical location(s) and patterns of access to data;
and the internal state of the system itself. The last point
is important since, for example, a rule might create 5
copies of some data for resilience, but over time some
of these might become unavailable—in which case
further copies should be made. An obvious analogy is
with RAID systems, which self-heal in response to in-
dividual component failure.

Data placement monitors will observe meta-data arising
from distributed probes and gauges. Periodically they
will initiate data replication, the details of when and
where depending on the placement policies currently in
operation. Various policies may be designed to pursue
different goals. A latency-reduction policy might, for

Proc. International Workshop on Middleware for Pervasive and Ad-hoc Computing (MPAC 2003), Rio de Janeiro, Brazil, 2003.

example, seek to replicate progressively more of a
user’s personal data at storage units geographically
close to the user’s current location, the longer that the
user remained at that location. A backup policy might
seek to replicate data on a geographically remote stor-
age unit as soon as possible after it was created.

4.7 Adapting To Changes In Technology

Given the issues of large-scale deployment already dis-
cussed, it will be essential that improvements in tech-
nology can be incorporated without requiring the entire
system to be re-deployed. This applies both to external
software services and to hardware. Our approach is to
use standardised and open interfaces and data formats
wherever possible—thus XML-encoded events, web
service interfaces for pushing events and new code
bundles, etc. This also supports software and hardware
heterogeneity since multiple implementations of the
interfaces may inter-operate.

4.8 Service Infrastructure

We expect that many different pervasive contextual
services will be possible, and that the speed with which
new services can be introduced will be commercially
significant. It will thus be important to provide a com-
mon software infrastructure upon which new services
can be implemented. This will factor out software that
is relevant to multiple services for reuse. The nature of
the operations provided by the infrastructure is an open
issue; our initial set of operations includes APIs to the
event pipelines, to the code bundle deployment mecha-
nism, and to the distributed contextual matching engine.

4.9 Programming Abstractions

Related to the previous section, it will be important also
to develop suitable abstractions over the software infra-
structure, in order to be able to express the essentials of
a new pervasive contextual service without being over-
whelmed by the details. Where appropriate, the devel-
oper should be able to largely ignore issues of precise
network topology and individual node failure, and con-
centrate on the fundamental aspects of the new serv-
ice—what information should be delivered to the user,
in what form, and in which context. Our approach here
is to develop declarative notations to describe the
placement of computation and data, allowing the devel-
oper to write constraints that feed into the deployment
evolution engine.

5 Conclusions

The overall system architecture consists of several P2P
systems overlaid on each other in order to implement
and support the global matching engine. An event sys-
tem delivers events from users and sensors. These in-
clude user location events, temperature readings etc.

Machines advertise their arrival and departure from the
matching engine. Some events may be generated by
machines that are monitoring the machines available to
the engine. Both classes of events are supported by a
Siena-like P2P system. The caching and replication of
data is handled by a Plaxton based storage architecture
supported by promiscuous caching mechanisms.

When new computational or storage resources are de-
tected by the matching engine, computations are pushed
onto them as code bundles using technology developed
in the Cingal project. Once installed, these computa-
tions can offer additional computational resources for
the matching engine (matchlets) or provide storage ca-
pacity for the storage architecture (storelets).

Matchlets are structured as pipeline code that accepts
events from the event distribution mechanism and per-
forms matching on them. Each matchlet writes its re-
sults onto the event bus. Thus the primary API offered
by the host to matchlets is an event delivery source and
an event sink. Matchlets use type projection mecha-
nisms for binding to the XML data contained within the
events.

As the system evolves, new event types will be intro-
duced. In order to deal with unknown events, a mecha-
nism is needed within the event distribution mechanism
for routing unknown event types to discovery matchlets.
These look for code capable of matching these new
events in the storage architecture and deploy this code
onto the network. Of course, the deployment of any
bundles needs to be consistent with the constraint rules
associated with them in order to ensure semantic con-
sistency. Such constraints must be enforced dynami-
cally.

6 Acknowledgements

This work was supported by the FP5 Gloss project IST-
2000-26070, with partners at Trinity College Dublin
and Université Joseph Fourier, and by EPSRC grants
GR/M78403/GR/M76225, Supporting Internet Com-
putation in Arbitrary Geographical Locations, and
GR/R45154, Bulk Storage of XML Documents.

7 References

[1] D.S. Milojicic, A. Messer, P. Bernadat, I. Green-
berg, O. Spinczyk, D. Beuche and W. Schröder-
Preikschat, Ψ — Pervasive Services Infrastructure.
In Lecture Notes in Computer Science 2193.
Springer, 2001, pp 187-200

[2] J. Coutaz and G. Rey, Foundations for a Theory of
Contextors. In Computer-Aided Design of User
Interfaces III. Kluwer Academic Publishing, 2002,
pp 13-32

[3] S. Harrison and P. Dourish, Re-Place-ing Space:
The Roles of Place and Space in Collaborative

Proc. International Workshop on Middleware for Pervasive and Ad-hoc Computing (MPAC 2003), Rio de Janeiro, Brazil, 2003.

Systems. In Proc. ACM Conference on Computer
Supported Cooperative Work, pp 67-76, Boston,
MA, USA, 1996

[4] M.R. Ebling, G.D.H. Hunt and H. Lei, Issues for
Context Services for Pervasive Computing. In Proc.
Workshop on Middleware for Mobile Computing,
IFIP/ACM Middleware 2001, Heidelberg, Ger-
many, 2001

[5] Elvin - Content Based Messaging. Distributed
Systems Technology Centre, 2003.
http://elvin.dstc.edu.au/

[6] A. Carzaniga, D.S. Rosenblum and A.L. Wolf,
Design and Evaluation of a Wide Area Notification
Service. ACM Transactions on Computer Systems,
19, 3, pp 332-383, 2001

[7] M. Caporuscio, A. Carzaniga and A.L. Wolf, De-
sign and Evaluation of a Support Service for Mo-
bile, Wireless Publish/Subscribe Applications. De-
partment of Computer Science, University of Colo-
rado Report CU-CS-944-03,, 2003

[8] D.L. Tennenhouse and D.J. Wetherall, Towards an
Active Network Architecture. Computer Communi-
cation Review, 26, 2, 1996

[9] J. Baumann, F. Hohl, K. Rothermel and M. Straßer,
Mole - Concepts of a Mobile Agent System. The
World Wide Web Journal, 1, 3, pp 123-137, 1998

[10] N. Minar, M. Gray, O. Roup, R. Krikorian and P.
Maes, Hive: Distributed Agents for Networking
Things. In Proc. 1st International Symposium on
Agent Systems and Applications (ASA'99)/3rd In-
ternational Symposium on Mobile Agents
(MA'99), pp 118-129, Palm Springs, CA, USA,
1999

[11] H. Peine, Application and Programming Experi-
ence with the Ara Mobile Agent System. Software -
Practice & Experience, 32, 6, pp 515-541, 2002

[12] R. Keller, J. Ramamirtham, T. Wolf and B.
Plattner, Active Pipes: Service Composition for
Programmable Networks. In Proc. IEEE MILCOM
2001, McLean, VA, USA, 2001

[13] R. Prieto-Diaz and P. Freeman, Classifying Soft-
ware For Reusability. IEEE Software, 4, 1, 1987

[14] H. Mili, F. Mili and A. Mili, Reusing Software:
Issues and Research Directions. IEEE Transactions
on Software Engineering, 21, 6, pp 528-562, 1995

[15] A.C. Huang, B.C. Ling, S. Ponnekanti and A. Fox,
Pervasive Computing: What Is It Good For? In
Proc. Workshop on Mobile Data Management, Se-
attle, WA, USA, 1999

[16] The Castor Project.
http://castor.exolab.org

[17] Sun Microsystems, Java Architecture for XML
Binding
http://java.sun.com/xml/jaxb/

[18] F. Simeoni, P. Manghi, D. Lievens, R.C.H. Connor
and S. Neely, An Approach to High-Level Lan-

guage Bindings to XML. Journal of Software Tech-
nology, 44, pp 217-228, 2002

[19] F. Simeoni, D. Lievens, R.C.H. Connor and P.
Manghi, Language Bindings to XML. IEEE Journal
of Internet Computing, 7, 1, pp 19-27, 2003

[20] A. Dearle, G.N.C. Kirby, A.J. Rebón Portillo and
S. Walker, Reflective Architecture for Distributed
Applications (RAFDA). EPSRC, 2003.
http://www-systems.dcs.st-
and.ac.uk/rafda/

[21] G.D.H. Hunt and M. Scott, The Coign Automatic
Distributed Partitioning System. In Proc. 3rd Sym-
posium on Operating System Design and Imple-
mentation (OSDI'99), pp 187-200, New Orleans,
LA, USA, 1999

[22] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, H.
Weatherspoon, W. Weimer, C. Wells and B. Zhao,
OceanStore: An Architecture for Global-Scale Per-
sistent Storage. In Proc. 9th International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (ASPLOS
2000), 2000

[23] S. Hand and T. Roscoe, Mnemosyne: Peer-to-Peer
Steganographic Storage. In Proc. 1st International
Workshop on Peer-to-Peer Systems, 2002

[24] A.I.T. Rowstron and P. Druschel, Storage Man-
agement and Caching in PAST, A Large-scale,
Persistent Peer-to-peer Storage Utility. In Proc.
Symposium on Operating Systems Principles, pp
188-201, 2001

[25] A.I.T. Rowstron and P. Druschel, Pastry: Scalable,
Decentralized Object Location, and Routing for
Large-Scale Peer-to-Peer Systems. In Lecture
Notes in Computer Science 2218. Springer, 2001,
pp 329-350

[26] R. Dingledine, M.J. Freedman and D. Molnar, The
Free Haven Project: Distributed Anonymous Stor-
age Service. In Lecture Notes in Computer Sci-
ence2001

[27] I. Clarke, O. Sandberg, B. Wiley and T.W. Hong,
Freenet: A Distributed Anonymous Information
Storage and Retrieval System. In Designing Pri-
vacy Enhancing Technologies: Lecture Notes in
Computer Science 2009. Springer, 2000, pp 46-66

[28] C.G. Plaxton, R. Rajaraman and A.W. Richa, Ac-
cessing Nearby Copies of Replicated Objects in a
Distributed Environment. In Proc. 9th Annual
ACM Symposium on Parallel Algorithms and Ar-
chitectures (SPAA '97), pp 311-320, Newport, RI,
USA, 1997

[29] A. Dearle, G.N.C. Kirby, R. Morrison, A.
McCarthy, K. Mullen, Y. Yang, R.C.H. Connor, P.
Welen and A. Wilson, Architectural Support for
Global Smart Spaces. In Lecture Notes in Com-
puter Science 2574. Springer, 2003, pp 153-164

