30 research outputs found

    Monitoring soil moisture dynamics and energy fluxes using geostationary satellite data

    Get PDF

    Ground, Proximal, and Satellite Remote Sensing of Soil Moisture

    Get PDF
    Soil moisture (SM) is a key hydrologic state variable that is of significant importance for numerous Earth and environmental science applications that directly impact the global environment and human society. Potential applications include, but are not limited to, forecasting of weather and climate variability; prediction and monitoring of drought conditions; management and allocation of water resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM information that links the water, energy, and carbon cycles, significant efforts and resources have been devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global scales. This review encompasses recent advances and the state‐of‐the‐art of ground, proximal, and novel SM remote sensing techniques at various spatial and temporal scales and identifies critical future research needs and directions to further advance and optimize technology, analysis and retrieval methods, and the application of SM information to improve the understanding of critical zone moisture dynamics. Despite the impressive progress over the last decade, there are still many opportunities and needs to, for example, improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for novel applications of SM information for water resources management, sustainable environmental development, and food security

    Drought assessment modelling using biophysical parameters and remote sensing data

    Get PDF
    This study considers the advancement in technical development of a few disciplines as an infrastructure for developing a suitable model and methodology for agricultural drought assessment in semi-arid area. It evaluates capabilities of multisource remote sensing data in developing raster-based biophysical drought assessment models. The capability for expressing the spatial and inter-annual variation of evapotranspiration (ET) over a study area by the proposed models has made it efficient. The base model, Mapping EvapoTranspiration at high Resolution with Internal Calibration (METRIC) has been evaluated for its performance in estimating ET over the pistachio plantation in a semi-arid region. The result proved that the base model gives good accuracy and is suitable for the selected study area. The base model, METRIC, is found sensitive to a number of meteorological parameters. Two-factor analysis for the primary inputs of the base model shows that the surface albedo and surface temperature pairs is the most effective while other tested pairs are found to be least effective. The study suggests that improving the equations of the effective pair should increase the accuracy. In this case, the multilayer perceptron Artificial Neural Network (ANN) technique is used for estimating spatial and temporal distribution of actual ET from satellite based biophysical parameters. The result shows that a strong correlation exist between ET values computed using METRIC and those generated using ANN. ANN sensitivity analysis shows that surface temperature, soil heat flux and surface albedo are the most significant parameters. Exploratory factor analysis using Principal Component Analysis (PCA) was performed to select the most significant biophysical parameters to be used as input to a newly developed BioPhysical Water Stress Index (BPWSI). The BPWSI is a new model for estimating water stress index using the selected biophysical parameters. The results of BPWSI are found to be significant and can be used for predicting the pistachio water status which represents the indication of agricultural drought

    Estimation de l'humidité du sol à haute résolution spatio-temporelle : une nouvelle approche basée sur la synergie des observations micro-ondes actives/passives et optiques/thermiques

    Get PDF
    Les capteurs micro-ondes passifs SMOS et SMAP fournissent des donnĂ©es d'humiditĂ© du sol (SM) Ă  une rĂ©solution d'environ 40 km avec un intervalle de 2 Ă  3 jours Ă  l' Ă©chelle mondiale et une profondeur de dĂ©tection de 0 Ă  5 cm. Ces donnĂ©es sont trĂšs pertinentes pour les applications cli- matiques et mĂ©tĂ©orologiques. Cependant, pour les applications Ă  Ă©chelle rĂ©gionales (l'hydrologie) ou locales (l'agriculture), des donnĂ©es de SM Ă  une haute rĂ©solution spatiale (typiquement 100 m ou plus fine) seraient nĂ©cessaires. Les donnĂ©es collectĂ©es par les capteurs optiques/thermiques et les radars peuvent fournir des indicateurs de SM Ă  haute rĂ©solution spatiale, mais ces deux approches alternatives ont des limites. En particulier, les donnĂ©es optiques/thermiques ne sont pas disponibles sous les nuages et sous les couverts vĂ©gĂ©taux. Quant aux donnĂ©es radar, elles sont sensibles Ă  la rugositĂ© du sol et Ă  la structure de la vĂ©gĂ©tation, qui sont tous deux difficiles Ă  caractĂ©riser depuis l'espace. De plus, la rĂ©solution temporelle de ces donnĂ©es est d'environ 6 jours. Dans ce contexte, la ligne directrice de la thĂšse est de proposer une nouvelle approche qui combine pour la premiĂšre fois des capteurs passifs micro-ondes, optiques/thermiques et actifs micro-ondes (radar) pour estimer SM sur de grandes Ă©tendues Ă  une rĂ©solution de 100 m chaque jour. Notre hypothĂšse est d'abord de nous appuyer sur une mĂ©thode de dĂ©sagrĂ©gation existante (DISPATCH) des donnĂ©es SMOS/SMAP pour atteindre la rĂ©solution cible obtenue par les radars. A l'origine, DISPATCH est basĂ© sur l'efficacitĂ© d' Ă©vaporation du sol (SEE) estimĂ©e sur des pixels partiellement vĂ©gĂ©talisĂ©s Ă  partir de donnĂ©es optiques/thermiques (gĂ©nĂ©ralement MODIS) de tempĂ©rature de surface et de couverture vĂ©gĂ©tale Ă  rĂ©solution de 1 km. Les donnĂ©es dĂ©sagrĂ©gĂ©es de SM sont ensuite combinĂ©es avec une mĂ©thode d'inversion de SM basĂ©e sur les donnĂ©es radar afin d'exploiter les capacitĂ©s de dĂ©tection des radars Sentinel-1. Enfin, les capacitĂ©s de l'assimilation des donnĂ©s satellitaires de SM dans un modĂšle de bilan hydrique du sol sont Ă©valuĂ©es en termes de prĂ©diction de SM Ă  une rĂ©solution de 100 m et Ă  une Ă©chelle temporelle quotidienne.Dans une premiĂšre Ă©tape, l'algorithme DISPATCH est amĂ©liorĂ© par rapport Ă  sa version actuelle, principalement 1) en Ă©tendant son applicabilitĂ© aux pixels optiques entiĂšrement vĂ©gĂ©talisĂ©s en utilisant l'indice de sĂ©cheresse de la vĂ©gĂ©tation basĂ© sur la tempĂ©rature et un produit de couverture vĂ©gĂ©tale amĂ©liorĂ©, et 2) en augmentant la rĂ©solution de dĂ©sagrĂ©gation de 1 km Ă  100 m en utilisant les donnĂ©es optiques/thermiques de Landsat (en plus de MODIS). Le produit de SM dĂ©sagrĂ©gĂ© Ă  la rĂ©solution de 100 m est validĂ© avec des mesures in situ collectĂ©es sur des zones irriguĂ©es au Maroc, indiquant une corrĂ©lation spatiale quotidienne variant de 0,5 Ă  0,9. Dans un deuxiĂšme Ă©tape, un nouvel algorithme est construit en dĂ©veloppant une synergie entre les donnĂ©es DISPATCH et radar Ă  100 m de rĂ©solution. En pratique, le produit SM issu de DISPATCH les jours de ciel clair est d'abord utilisĂ© pour calibrer un modĂšle de transfert radiatif radar en mode direct. Ensuite, le modĂšle de transfert radiatif radar ainsi calibrĂ© est utilisĂ© en mode inverse pour estimer SM Ă  la rĂ©solution spatio-temporelle de Sentinel-1. Sur les sites de validation, les rĂ©sultats indiquent une corrĂ©lation entre les mesures satellitaires et in situ, de l'ordre de 0,66 Ă  0,81 pour un indice de vĂ©gĂ©tation infĂ©rieur Ă  0,6. Dans une troisiĂšme et derniĂšre Ă©tape, une mĂ©thode d'assimilation optimale est utilisĂ©e pour interpoler dans le temps les donnĂ©es de SM Ă  la rĂ©solution de 100 m. La dynamique du produit SM dĂ©rivĂ© de l'assimilation de SM DISPATCH Ă  100 m de rĂ©solution est cohĂ©rente avec les Ă©vĂ©nements d'irrigation. Cette approche peut ĂȘtre facilement appliquĂ©e sur de grandes zones, en considĂ©rant que toutes les donnĂ©es (tĂ©lĂ©dĂ©tection et mĂ©tĂ©orologique) requises en entrĂ©e sont disponibles Ă  l' Ă©chelle globale.SMOS and SMAP passive microwave sensors provide soil moisture (SM) data at 40 km resolution every 2-3 days globally, with a 0-5 cm sensing depth relevant for climatic and meteorological applications. However, SM data would be required at a higher (typically 100 m or finer) spatial resolution for many other regional (hydrology) or local (agriculture) applications. Optical/thermal and radar sensors can be used for retrieving SM proxies at such high spatial resolution, but both techniques have limitations. In particular, optical/thermal data are not available under clouds and under plant canopies. Moreover, radar data are sensitive to soil roughness and vegetation structure, which are challenging to characterize from outer space, and have a repeat cycle of at least six days, limiting the observations' temporal frequency. In this context, the leading principle of the thesis is to propose a new approach that combines passive microwave, optical/thermal, and active microwave (radar) sensors for the first time to retrieve SM data at 100 m resolution on a daily temporal scale. Our assumption is first to rely on an existing disaggregation method (DISPATCH) of SMOS/SMAP SM data to meet the target resolution achieved by radars. DISPATCH is originally based on the soil evaporative efficiency (SEE) retrieved over partially vegetated pixels from 1 km resolution optical/thermal (typically MODIS) surface temperature and vegetation cover data. The disaggregated SM data is then combined with a radar-based SM retrieval method to exploit the sensing capabilities of the Sentinel-1 radars. Finally, the efficacy of the assimilation of satellite-based SM data in a soil water balance model is assessed in terms of SM predictions at the 100 m resolution and daily temporal scale. As a first step, the DISPATCH algorithm is improved from its current version by mainly 1) extending its applicability to fully vegetated optical pixels using the temperature vegetation dryness index and an enhanced vegetation cover product, and 2) increasing the targeted downscaling resolution from 1 km to 100 m using Landsat (in addition to MODIS) optical/thermal data. The 100 m resolution disaggregated SM product is validated with in situ measurements collected over irrigated areas in Morocco, showing a daily spatial correlation in the range of 0.5-0.9. As a second step, a new algorithm is built on a synergy between DISPATCH and radar 100 m resolution data. In practice, the DISPATCH SM product available on clear sky days is first used to calibrate a radar radiative transfer model in the direct mode. Then the calibrated radar radia- tive transfer model is used in the inverse mode to estimate SM at the spatio-temporal resolution of Sentinel-1. Results indicate a positive correlation between satellite and in situ measurements in the range of 0.66 to 0.81 for a vegetation index lower than 0.6. As a third and final step, an optimal assimilation method is used to interpolate 100 m resolution SM data in time. The assimilation exercise is undertaken over irrigated crop fields in Spain. The analyzed SM product derived from the assimilation of 100 m resolution DISPATCH SM is consistent with irrigation events. This approach can be readily applied over large areas, given that all the required input (remote sensing and meteorological) data are available globally

    Improved Modeling of Evapotranspiration using Satellite Remote Sensing at Varying Spatial and Temporal Scales

    Get PDF
    The overall objective of the dissertation was to improve the spatial and temporal representation and retrieval accuracy of evapotranspiration (ET) using satellite imagery. Specifically, (1) aiming at improving the spatial representation of daily net radiation (Rn,24) under rugged terrains, a new algorithm, which accounts for terrain effects on available shortwave radiation throughout a day and utilizes four observations of Moderate-resolution Imaging Spectroradiometer (MODIS)-based land surface temperature retrievals to simulate daily net longwave radiation, was developed. The algorithm appears to be capable of capturing heterogeneity in Rn,24 at watershed scales. (2) Most satellite-based ET models are constrained to work under cloud-free conditions. To address this deficiency, an approach of integrating a satellite-based model with a large-scale feedback model was proposed to generate ET time series for all days. Results show that the ET time series estimates can exhibit complementary features between the potential ET and the actual ET at watershed scales. (3) For improving the operability of Two-source Energy Balance (TSEB) which requires computing resistance networks and tuning the Priestley-Taylor parameter involved, a new Two-source Trapezoid Model for ET (TTME) based on deriving theoretical boundaries of evaporative fraction (EF) and the concept of soil surface moisture availability isopleths was developed. It was applied to the Soil Moisture and Atmosphere Coupling Experiment (SMACEX) site in central Iowa, U.S., on three Landsat TM/ETM imagery acquisition dates in 2002. Results show the EF and latent heat flux (LE) estimates with a mean absolute percentage difference (MAPD) of 6.7 percent and 8.7 percent, respectively, relative to eddy covariance tower-based measurements after forcing closure by the Bowen ratio technique. (4) The domain and resolution dependencies of the Surface Energy Balance Algorithm for Land (SEBAL) and the triangle model were systematically investigated. Derivation of theoretical boundaries of EF for the two models could effectively constrain errors/uncertainties arising from these dependencies. (5) A Modified SEBAL (M-SEBAL) was consequently proposed, in which subjectivity involved in the selection of extreme pixels by the operator is eliminated. The performance of M-SEBAL at the SMACEX site is reasonably well, showing EF and LE estimates with an MAPD of 6.3 percent and 8.9 percent, respectively

    Monitoring crops water needs at high spatio-temporal resolution by synergy of optical/thermal and radar observations

    Get PDF
    L'optimisation de la gestion de l'eau en agriculture est essentielle dans les zones semi-arides afin de prĂ©server les ressources en eau qui sont dĂ©jĂ  faibles et erratiques dues Ă  des actions humaines et au changement climatique. Cette thĂšse vise Ă  utiliser la synergie des observations de tĂ©lĂ©dĂ©tection multispectrales (donnĂ©es radar, optiques et thermiques) pour un suivi Ă  haute rĂ©solution spatio-temporelle des besoins en eau des cultures. Dans ce contexte, diffĂ©rentes approches utilisant divers capteurs (Landsat-7/8, Sentinel-1 et MODIS) ont Ă©tĂ© developpĂ©es pour apporter une information sur l'humiditĂ© du sol (SM) et le stress hydrique des cultures Ă  une Ă©chelle spatio-temporelle pertinente pour la gestion de l'irrigation. Ce travail va parfaitement dans le sens des objectifs du projet REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) qui visent Ă  estimer l'humiditĂ© du sol dans la zone racinaire (RZSM) afin d'optimiser la gestion de l'eau d'irrigation. Des approches innovantes et prometteuses sont mises en place pour estimer l'Ă©vapotranspiration (ET), RZSM, la tempĂ©rature de surface du sol (LST) et le stress hydrique de la vĂ©gĂ©tation Ă  travers des indices de SM dĂ©rivĂ©s des observations multispectrales Ă  haute rĂ©solution spatio-temporelle. Les mĂ©thodologies proposĂ©es reposent sur des mĂ©thodes basĂ©es sur l'imagerie, la modĂ©lisation du transfert radiatif et la modĂ©lisation du bilan hydrique et d'Ă©nergie et sont appliquĂ©es dans une rĂ©gion Ă  climat semi-aride (centre du Maroc). Dans le cadre de ma thĂšse, trois axes ont Ă©tĂ© explorĂ©s. Dans le premier axe, un indice de RZSM dĂ©rivĂ© de LST-Landsat est utilisĂ© pour estimer l'ET sur des parcelles de blĂ© et des sols nus. L'estimation par modĂ©lisation de ET a Ă©tĂ© explorĂ©e en utilisant l'Ă©quation de Penman-monteith modifiĂ©e obtenue en introduisant une relation empirique simple entre la rĂ©sistance de surface (rc) et l'indice de RZSM. Ce dernier est estimĂ© Ă  partir de la tempĂ©rature de surface (LST) dĂ©rivĂ©e de Landsat, combinĂ©e avec les tempĂ©ratures extrĂȘmes (en conditions humides et sĂšches) simulĂ©e par un modĂšle de bilan d'Ă©nergie de surface pilotĂ© par le forçage mĂ©tĂ©orologique et la fraction de couverture vĂ©gĂ©tale dĂ©rivĂ©e de Landsat. La mĂ©thode utilisĂ©e est calibrĂ©e et validĂ©e sur deux parcelles de blĂ© situĂ©es dans la mĂȘme zone prĂšs de Marrakech au Maroc. Dans l'axe suivant, une mĂ©thode permettant de rĂ©cupĂ©rer la SM de la surface (0-5 cm) Ă  une rĂ©solution spatiale et temporelle Ă©levĂ©e est dĂ©veloppĂ©e Ă  partir d'une synergie entre donnĂ©es radar (Sentinel-1) et thermique (Landsat) et en utilisant un modĂšle de bilan d'Ă©nergie du sol. L'approche dĂ©veloppĂ©e a Ă©tĂ© validĂ©e sur des parcelles agricoles en sol nu et elle donne une estimation prĂ©cise de la SM avec une diffĂ©rence quadratique moyenne en comparant Ă  la SM in situ, Ă©gale Ă  0,03 m3 m-3. Dans le dernier axe, une nouvelle mĂ©thode est dĂ©veloppĂ©e pour dĂ©sagrĂ©ger la MODIS LST de 1 km Ă  100 m de rĂ©solution en intĂ©grant le SM proche de la surface dĂ©rivĂ©e des donnĂ©es radar Sentinel-1 et l'indice de vĂ©gĂ©tation optique dĂ©rivĂ© des observations Landsat. Le nouvel algorithme, qui inclut la rĂ©trodiffusion S-1 en tant qu'entrĂ©e dans la dĂ©sagrĂ©gation, produit des rĂ©sultats plus stables et robustes au cours de l'annĂ©e sĂ©lectionnĂ©e. Dont, 3,35 °C Ă©tait le RMSE le plus bas et 0,75 le coefficient de corrĂ©lation le plus Ă©levĂ© Ă©valuĂ©s en utilisant le nouvel algorithme.Optimizing water management in agriculture is essential over semi-arid areas in order to preserve water resources which are already low and erratic due to human actions and climate change. This thesis aims to use the synergy of multispectral remote sensing observations (radar, optical and thermal data) for high spatio-temporal resolution monitoring of crops water needs. In this context, different approaches using various sensors (Landsat-7/8, Sentinel-1 and MODIS) have been developed to provide information on the crop Soil Moisture (SM) and water stress at a spatio-temporal scale relevant to irrigation management. This work fits well the REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) project objectives, which aim to estimate the Root Zone Soil Moisture (RZSM) for optimizing the management of irrigation water. Innovative and promising approaches are set up to estimate evapotranspiration (ET), RZSM, land surface temperature (LST) and vegetation water stress through SM indices derived from multispectral observations with high spatio-temporal resolution. The proposed methodologies rely on image-based methods, radiative transfer modelling and water and energy balance modelling and are applied in a semi-arid climate region (central Morocco). In the frame of my PhD thesis, three axes have been investigated. In the first axis, a Landsat LST-derived RZSM index is used to estimate the ET over wheat parcels and bare soil. The ET modelling estimation is explored using a modified Penman-Monteith equation obtained by introducing a simple empirical relationship between surface resistance (rc) and a RZSM index. The later is estimated from Landsat-derived land surface temperature (LST) combined with the LST endmembers (in wet and dry conditions) simulated by a surface energy balance model driven by meteorological forcing and Landsat-derived fractional vegetation cover. The investigated method is calibrated and validated over two wheat parcels located in the same area near Marrakech City in Morocco. In the next axis, a method to retrieve near surface (0-5 cm) SM at high spatial and temporal resolution is developed from a synergy between radar (Sentinel-1) and thermal (Landsat) data and by using a soil energy balance model. The developed approach is validated over bare soil agricultural fields and gives an accurate estimates of near surface SM with a root mean square difference compared to in situ SM equal to 0.03 m3 m-3. In the final axis a new method is developed to disaggregate the 1 km resolution MODIS LST at 100 m resolution by integrating the near surface SM derived from Sentinel-1 radar data and the optical-vegetation index derived from Landsat observations. The new algorithm including the S-1 backscatter as input to the disaggregation, produces more stable and robust results during the selected year. Where, 3.35 °C and 0.75 were the lowest RMSE and the highest correlation coefficient assessed using the new algorithm

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research

    Sharpening ECOSTRESS and VIIRS Land Surface Temperature Using Harmonized Landsat-Sentinel Surface Reflectances

    Get PDF
    Land surface temperature (LST) is a key diagnostic indicator of agricultural water use and crop stress. LST data retrieved from thermal infrared (TIR) band imagery, however, tend to have a coarser spatial resolution (e.g., 100 m for Landsat 8) than surface reflectance (SR) data collected from shortwave bands on the same instrument (e.g., 30 m for Landsat). Spatial sharpening of LST data using the higher resolution multi-band SR data provides an important path for improved agricultural monitoring at sub-field scales. A previously developed Data Mining Sharpener (DMS) approach has shown great potential in the sharpening of Landsat LST using Landsat SR data co-collected over various landscapes. This work evaluates DMS performance for sharpening ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST (~70 m native resolution) and Visible Infrared Imaging Radiometer Suite (VIIRS) LST (375 m) data using Harmonized Landsat and Sentinel-2 (HLS) SR data, providing the basis for generating 30-m LST data at a higher temporal frequency than afforded by Landsat alone. To account for the misalignment between ECOSTRESS/VIIRS and Landsat/HLS caused by errors in registration and orthorectification, we propose a modified version of the DMS approach that employs a relaxed box size for energy conservation (EC). Sharpening experiments were conducted over three study sites in California, and results were evaluated visually and quantitatively against LST data from unmanned aerial vehicles (UAV) flights and from Landsat 8. Over the three sites, the modified DMS technique showed improved sharpening accuracy over the standard DMS for both ECOSTRESS and VIIRS, suggesting the effectiveness of relaxing EC box in relieving misalignment-induced errors. To achieve reasonable accuracy while minimizing loss of spatial detail due to the EC box size increase, an optimal EC box size of 180–270 m was identified for ECOSTRESS and about 780 m for VIIRS data based on experiments from the three sites. Results from this work will facilitate the development of a prototype system that generates high spatiotemporal resolution LST products for improved agricultural water use monitoring by synthesizing multi-source remote sensing data

    Désagrégation de l'humidité du sol issue des produits satellitaires micro-ondes passives et exploration de son utilisation pour l'amélioration de la modélisation et la prévision hydrologique

    Get PDF
    De plus en plus de produits satellitaires en micro-ondes passives sont disponibles. Cependant, leur large rĂ©solution spatiale (25-50 km) n’en font pas un outil adĂ©quat pour des applications hydrologiques Ă  une Ă©chelle locale telles que la modĂ©lisation et la prĂ©vision hydrologiques. Dans de nombreuses Ă©tudes, une dĂ©sagrĂ©gation d’échelle de l’humiditĂ© du sol des produits satellites micro-ondes est faite puis validĂ©e avec des mesures in-situ. Toutefois, l’utilisation de ces donnĂ©es issues d’une dĂ©sagrĂ©gation d’échelle n’a pas encore Ă©tĂ© pleinement Ă©tudiĂ©e pour des applications en hydrologie. Ainsi, l’objectif de cette thĂšse est de proposer une mĂ©thode de dĂ©sagrĂ©gation d’échelle de l’humiditĂ© du sol issue de donnĂ©es satellitaires en micro-ondes passives (Satellite Passive Microwave Active and Passive - SMAP) Ă  diffĂ©rentes rĂ©solutions spatiales afin d’évaluer leur apport sur l’amĂ©lioration potentielle des modĂ©lisations et prĂ©visions hydrologiques. À partir d’un modĂšle de forĂȘt alĂ©atoire, une dĂ©sagrĂ©gation d’échelle de l’humiditĂ© du sol de SMAP l’amĂšne de 36-km de rĂ©solution initialement Ă  des produits finaux Ă  9-, 3- et 1-km de rĂ©solution. Les prĂ©dicteurs utilisĂ©s sont Ă  haute rĂ©solution spatiale et de sources diffĂ©rentes telles que Sentinel-1A, MODIS et SRTM. L'humiditĂ© du sol issue de cette dĂ©sagrĂ©gation d’échelle est ensuite assimilĂ©e dans un modĂšle hydrologique distribuĂ© Ă  base physique pour tenter d’amĂ©liorer les sorties de dĂ©bit. Ces expĂ©riences sont menĂ©es sur les bassins versants des riviĂšres Susquehanna (de grande taille) et Upper-Susquehanna (en comparaison de petite taille), tous deux situĂ©s aux États-Unis. De plus, le modĂšle assimile aussi des donnĂ©es d’humiditĂ© du sol en profondeur issue d’une extrapolation verticale des donnĂ©es SMAP. Par ailleurs, les donnĂ©es d’humiditĂ© du sol SMAP et les mesures in-situ sont combinĂ©es par la technique de fusion conditionnelle. Ce produit de fusion SMAP/in-situ est assimilĂ© dans le modĂšle hydrologique pour tenter d’amĂ©liorer la prĂ©vision hydrologique sur le bassin versant Au Saumon situĂ© au QuĂ©bec. Les rĂ©sultats montrent que l'utilisation de l’humiditĂ© du sol Ă  fine rĂ©solution spatiale issue de la dĂ©sagrĂ©gation d’échelle amĂ©liore la reprĂ©sentation de la variabilitĂ© spatiale de l’humiditĂ© du sol. En effet, le produit Ă  1- km de rĂ©solution fournit plus de dĂ©tails que les produits Ă  3- et 9-km ou que le produit SMAP de base Ă  36-km de rĂ©solution. De mĂȘme, l’utilisation du produit de fusion SMAP/ in-situ amĂ©liore la qualitĂ© et la reprĂ©sentation spatiale de l’humiditĂ© du sol. Sur le bassin versant Susquehanna, la modĂ©lisation hydrologique s’amĂ©liore avec l’assimilation du produit de dĂ©sagrĂ©gation d’échelle Ă  9-km, sans avoir recours Ă  des rĂ©solutions plus fines. En revanche, sur le bassin versant Upper-Susquehanna, c’est le produit avec la rĂ©solution spatiale la plus fine Ă  1- km qui offre les meilleurs rĂ©sultats de modĂ©lisation hydrologique. L’assimilation de l’humiditĂ© du sol en profondeur issue de l’extrapolation verticale des donnĂ©es SMAP n’amĂ©liore que peu la qualitĂ© du modĂšle hydrologique. Par contre, l’assimilation du produit de fusion SMAP/in-situ sur le bassin versant Au Saumon amĂ©liore la qualitĂ© de la prĂ©vision du dĂ©bit, mĂȘme si celle-ci n’est pas trĂšs significative.Abstract: The availability of satellite passive microwave soil moisture is increasing, yet its spatial resolution (i.e., 25-50 km) is too coarse to use for local scale hydrological applications such as streamflow simulation and forecasting. Many studies have attempted to downscale satellite passive microwave soil moisture products for their validation with in-situ soil moisture measurements. However, their use for hydrological applications has not yet been fully explored. Thus, the objective of this thesis is to downscale the satellite passive microwave soil moisture (i.e., Satellite Microwave Active and Passive - SMAP) to a range of spatial resolutions and explore its value in improving streamflow simulation and forecasting. The random forest machine learning technique was used to downscale the SMAP soil moisture from 36-km to 9-, 3- and 1-km spatial resolutions. A combination of host of high-resolution predictors derived from different sources including Sentinel-1A, MODIS and SRTM were used for downscaling. The downscaled SMAP soil moisture was then assimilated into a physically-based distributed hydrological model for improving streamflow simulation for Susquehanna (larger in size) and Upper Susquehanna (relatively smaller in size) watersheds, located in the United States. In addition, the vertically extrapolated SMAP soil moisture was assimilated into the model. On the other hand, the SMAP and in-situ soil moisture were merged using the conditional merging technique and the merged SMAP/in-situ soil moisture was then assimilated into the model to improve streamflow forecast over the au Saumon watershed. The results show that the downscaling improved the spatial variability of soil moisture. Indeed, the 1-km downscaled SMAP soil moisture presented a higher spatial detail of soil moisture than the 3-, 9- or original resolution (36-km) SMAP product. Similarly, the merging of SMAP and in-situ soil moisture improved the accuracy as well as spatial representation soil moisture. Interestingly, the assimilation of the 9-km downscaled SMAP soil moisture significantly improved the accuracy of streamflow simulation for the Susquehanna watershed without the need of going to higher spatial resolution, whereas for the Upper Susquehanna watershed the 1-km downscaled SMAP showed better results than the coarser resolutions. The assimilation of vertically extrapolated SMAP soil moisture only slightly further improved the accuracy of the streamflow simulation. On the other hand, the assimilation of merged SMAP/in-situ soil moisture for the au Saumon watershed improved the accuracy of streamflow forecast, yet the improvement was not that significant. Overall, this study demonstrated the potential of satellite passive microwave soil moisture for streamflow simulation and forecasting

    Understanding Moisture Dynamics in the Vadose Zone: Transcending the Darcy Scale

    Get PDF
    Soil moisture forms the interface at which the partitioning of the energy, carbon and water budget for the land-surface occurs. Its variability impacts different fields of application at varying extent scales like agriculture at the field scale, meteorology at the regional scale and climate change assessment at the global scale. However, past literature has focused on understanding soil moisture dynamics at this diverse range of extent scales using soil moisture data at the Darcy support scale which cannot effectively cater to soil moisture dynamics for the current eco-hydrologic models that describe complex heterogeneous domains at remote sensing footprint scales. This dissertation serves to push the envelope of our understanding of soil moisture dynamics and its dependence on land-surface heterogeneity at the coarse remote sensing scales. The research questions answered in this dissertation include 1) determining the dominant land-surface controls of near-surface soil moisture dynamics at scales varying between the Darcy (of the order of a few centimeters) support and satellite footprint scale (25.6 km); 2) generating a framework for quantifying the relationships between antecedent wetness, land-surface heterogeneity and near-surface soil moisture at remote sensing scales and 3) evaluating variability in the root zone moisture dynamics as evaluated through evapo-transpiration estimates at different remote sensing footprint scales. The dominant land-surface factors controlling soil moisture distribution at different scales were determined by developing a new Shannon entropy based technique and non-decimated wavelet transforms. It was found that the land-surface controls on soil moisture vary with hydro-climate and antecedent wetness conditions. In general, the effect of soil was found to reduce with coarsening support scale while the effect of topography and vegetation increased. A novel Scale-Wetness-Heterogeneity (SWHET) cuboid was developed to coalesce the relationship between soil moisture redistribution and dominant physical controls at different land-surface heterogeneity and antecedent wetness conditions across remote sensing scales. The SWHET cuboid can potentially enable spatial transferability of the scaling relationships for near-surface soil moisture. It was found that results from the SWHET cuboid enabled spatial transferability of the scaling relationships between two similar hydro-climates (Iowa, U.S.A and Manitoba, Canada) under some wetness and land-surface heterogeneity conditions. Evapotranspiration estimates were computed at varying scales using airborne and satellite borne remotely sensed data. The results indicated that in a semi-arid row cropped orchard environment, a remote sensing support scale comparable to the row spacing and smaller or comparable to the canopy size of trees overestimates the land surface temperature and consequently, underestimates evapotranspiration
    corecore