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ABSTRACT

Soil moisture forms the interface at which the partitioning of the energy, carbon and

water budget for the land-surface occurs. Its variability impacts different fields of applica-

tion at varying extent scales like agriculture at the field scale, meteorology at the regional

scale and climate change assessment at the global scale. However, past literature has fo-

cused on understanding soil moisture dynamics at this diverse range of extent scales using

soil moisture data at the Darcy support scale which cannot effectively cater to soil mois-

ture dynamics for the current eco-hydrologic models that describe complex heterogeneous

domains at remote sensing footprint scales. This dissertation serves to push the envelope

of our understanding of soil moisture dynamics and its dependence on land-surface het-

erogeneity at the coarse remote sensing scales. The research questions answered in this

dissertation include 1) determining the dominant land-surface controls of near-surface soil

moisture dynamics at scales varying between the Darcy (of the order of a few centimeters)

support and satellite footprint scale (25.6 km); 2) generating a framework for quantify-

ing the relationships between antecedent wetness, land-surface heterogeneity and near-

surface soil moisture at remote sensing scales and 3) evaluating variability in the root zone

moisture dynamics as evaluated through evapo-transpiration estimates at different remote

sensing footprint scales. The dominant land-surface factors controlling soil moisture dis-

tribution at different scales were determined by developing a new Shannon entropy based

technique and non-decimated wavelet transforms. It was found that the land-surface con-

trols on soil moisture vary with hydro-climate and antecedent wetness conditions. In gen-

eral, the effect of soil was found to reduce with coarsening support scale while the effect

of topography and vegetation increased. A novel Scale-Wetness-Heterogeneity (SWHET)

cuboid was developed to coalesce the relationship between soil moisture redistribution and

ii



dominant physical controls at different land-surface heterogeneity and antecedent wetness

conditions across remote sensing scales. The SWHET cuboid can potentially enable spa-

tial transferability of the scaling relationships for near-surface soil moisture. It was found

that results from the SWHET cuboid enabled spatial transferability of the scaling rela-

tionships between two similar hydro-climates (Iowa, U.S.A and Manitoba, Canada) under

some wetness and land-surface heterogeneity conditions. Evapotranspiration estimates

were computed at varying scales using airborne and satellite borne remotely sensed data.

The results indicated that in a semi-arid row cropped orchard environment, a remote sens-

ing support scale comparable to the row spacing and smaller or comparable to the canopy

size of trees overestimates the land surface temperature and consequently, underestimates

evapotranspiration.
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1. INTRODUCTION

Soil moisture is a state variable that describes the water content of the (typically) par-

tially saturated or vadose zone of the land-surface that lies above the ground water table.

Due to its strategic position at the interface of the atmosphere and deeper permanently

saturated zone, it exerts a large impact on the energy and water budgets of the Earth. In the

top few centimeters of soil, it controls the overland flow and infiltration fluxes whereas in

the deeper root zone, it influences evapotranspiration and percolation to the groundwater

aquifers. It also acts as the carrier for fertilizers, nutrients, and pollutants in the soil. It is

thus, an important variable for field-scale agricultural water management, and watershed-

scale hydrologic management. In modeling scenarios, it describes the bottom boundary

condition for atmospheric models while describing the upper boundary condition for land-

surface models. The application of soil moisture in the above mentioned fields differs

primarily in terms of the spatial and temporal scale at which it is utilized. Agricultural wa-

ter management and contaminant transport requires fine scale soil moisture information

(of the order of a few meters or finer) whereas land-surface and atmospheric models use

moisture estimates at the scale of a few kilometers.

Soil moisture is a highly dynamic variable in the spatial as well as temporal domain.

Spatial correlation lengths ranging from 30 m up to 119 km across different time scales

have been reported in various studies across the globe (Cosh and Brutsaert, 1999, Ryu and

Famiglietti, 2006, Joshi and Mohanty, 2010, Western et al., 1998). In lieu of the strategic

location of this variable at the interface of the atmosphere and land-surface and its inherent

spatio-temporal dynamic nature, it is essential to continuously monitor and describe soil

moisture dynamics at different space-time scales.
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1.1 Current Data Collection Practices

Collecting spatially representative soil moisture data continuously and periodically on

the ground is expensive and logistically infeasible. Periodic ground based data is only

collected using sparsely distributed permanent monitoring stations. This data, though pe-

riodic in time, represents a support scale of only a few centimeters and thus, lacks spatial

representation. Spatially distributed ground based data on the other hand, is collected

during intensive short term soil moisture campaigns like Southern Great Plains (SGP)

campaigns- SGP97, SGP 99, Soil Moisture Experiments (SMEX)- SMEX02, SMEX04,

Cloud and Land Cover Interaction Campaign- CLASIC07 and Soil Moisture Active Pas-

sive Validation Experiment- SMAPVEX12 during which airborne remotely sensed data is

also collected. This spatially representative data, however, is limited in the spatial extent

scale and also time. In order to periodically measure soil moisture across the globe, space-

borne remote sensing has emerged as a viable tool and has been popular since the past

decade. National Aeronautics and Space Administration’s (NASA) Advanced Microwave

Scanning Radiometer (AMSR-E) which went out of operation in October, 2011, collected

surface soil moisture data twice a day starting from 2002. More recently, in 2009, Soil

Moisture Ocean Salinity (SMOS) was launched by the European Space Agency (ESA)

while NASA’s Soil Moisture Active Passive (SMAP, launched in January 2015) is the lat-

est to join the global mission of estimating soil moisture from space. However, the data

produced using remote sensing platforms has two major limitations: 1) it gives us infor-

mation of only near-surface soil moisture, 2) the spatial resolution of the soil moisture

outputs is incompatible with most modeling scenarios.

1.2 Limitations in Effectively Utilizing Coarse Scale Soil Moisture Data

Soil moisture movement in the vadose zone has typically been defined using the Richard’s

equation at the Darcy scale or a homogeneous representative elementary volume (REV)
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scale. However, the same equation is extended and used beyond the Darcy scale by defin-

ing effective parameters through optimization. Even though, the Richard’s equation using

these scaled parameters is often useful in defining moisture dynamics at the coarse scale,

it unexpectedly fails under different conditions since its conception is not anchored in a

theoretical framework. Thus, in order to outline effectively homogeneous REV’s at the

coarser scale where the scaled Richard’s equation may either be applied or a new equa-

tion describing water flow at the coarse scale is defined, it is imperative to understand

and quantify the factors affecting soil moisture distribution at the coarser footprint scales.

Since we are restricted in terms of resolution of soil moisture observations, it is also es-

sential to understand the scaling behavior of soil moisture so that information at one scale

can be effectively utilized at another scale.

1.3 Motivation

Soil moisture, like other land surface state variables is dependent upon several geo-

physical parameters. These geophysical parameters which act as external physical controls

of soil moisture are soil, vegetation, topography and meteorological factors. Hydrologists,

over the years, have attempted to establish quantitative relationships between these physi-

cal controls and soil moisture (Joshi and Mohanty, 2010, Mohanty et al., 2000, Joshi et al.,

2011, Famiglietti et al., 1998, Njoku and Entekhabi, 1996). However, it has not yet been

possible to come up with a generic relationship because of inherently different heteroge-

neous study domains. Under varying wetness conditions, the physical controls interact

differently to create unique patterns of soil moisture. The effect of physical controls has

been shown to be scale dependent and may also change with different hydro-climates since

the nature of vegetation, topography, soil type; itself is dependent on the hydro-climate of

a region. Keeping in mind the requirement and non-availability of soil moisture data at

different spatial scales, a scaling scheme which is reliable and transferable across hydro-
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climates is required.

Past scaling studies of soil moisture have either been based on statistical formulations

or particular case studies which are non-transferable to other hydro-climatic conditions

with varying heterogeneities. Besides statistics, scaling of soil moisture often involves

the use of land surface models which are based on the equations developed for the Darcy

scale. These equations depend upon the pore sizes based heterogeneity (Fig. 1.1a) in the

soil, based on which the hydraulic properties for soil water movement are determined.

However, the land surface at coarser footprint scales is more heterogeneous (Fig. 1.1b)

and this heterogeneity determines water movement at these scales. In order to generate

effective soil moisture scaling schemes which are transferable across locations, the science

for soil moisture movement at coarser scales needs to be developed.

 

 

 

 

 

 

 

 

 

 

a) b) 

Figure 1.1: a) Heterogeneity at Darcy scale, b) Heterogeneity at coarser scales

1.4 Research Objectives

The overarching objective of this research is to coalesce soil moisture information

collected from different platforms at different scales and define scaling relationships for

near-surface soil moisture that are rooted in a sound physical framework. Specific research
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objectives are given below

1. Determine relationships between physical controls and near-surface soil moisture at

different scales and quantify them.

2. Incorporate the determined relationships into a scaling scheme and generate spa-

tially transferable scaling relationships for near-surface soil moisture.

3. Explore moisture dynamics in the root zone, as observed from space, and determine

its scaling behavior through estimation of evapotranspiration at different scales.

1.5 Hypotheses

The dissertation evaluates the following two hypotheses.

1. The effect of geo-physical factors on spatial distribution of soil moisture is a function

of scale and hydro-climate.

2. It is possible to characterize regions based on heterogeneity and hydro-climate and

create data based scaling functions (without the use of existing physical models),

which are transferable in space.

The dissertation addresses the objectives of this research in the following seven chap-

ters.

Chapters II and III of this dissertation address the first objective. Chapter II is fo-

cused on determining the most dominant physical control of soil moisture at the point and

airborne (0.8 x 0.8 km) footprint scale for two different hydro-climates. This has been

achieved by introducing a new entropy based scheme which combines the use of easily

available categorical information of physical factors with quantitative soil moisture infor-

mation to potentially establish hierarchy of physical controls dominance on soil moisture.
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Chapter III is focused on describing the spatial extent and quantified effect of physi-

cal factors on soil moisture redistribution at multiple remote sensing footprint scales (1.6

to 25.6 km) and three different hydro-climates. This has been done by employing 2-

dimensional non-decimated wavelet transform on spatial soil moisture redistribution and

physical signals in a novel way to determine spatial scale based dominance of physical

factors on soil moisture.

Chapter IV and V address the second objective. Chapter IV incorporates the find-

ings of objective 1 to describe a spatially transferable scaling cuboid (Scale-Wetness-

Heterogeneity (SWHET) cuboid) for soil moisture redistribution for three different hydro-

climates. The novelty of this cuboid is that it incorporates the scale specific dynamic

effects of static physical factors on soil moisture redistribution. The scheme is potentially

transferable to areas with varying heterogeneity within the same hydro-climate. The re-

sulting scheme can also be used to validate footprint scale soil moisture data.

Chapter V describes the generation of a downscaling scheme for soil moisture. The

technique is based on the SWHET cuboid developed in Chapter IV.

Chapter VI addresses the third objective. Remote sensing based evapotranspiration

(ET) estimates obtained from an airborne sensor (very fine spatial resolution) have been

compared with those obtained from a satellite borne sensor. This study was conducted

over partially vegetated areas which compound the problem of estimating ET from space.

Chapter VII concludes the dissertation along with a description of the potential impact

of this research as well as future directions for extending the field of study.
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2. EVOLUTION OF PHYSICAL CONTROLS FOR SOIL MOISTURE IN HUMID

AND SUB-HUMID WATERSHEDS1

2.1 Synopsis

The co-variability of soil moisture with soil, vegetation, topography and precipitation

are linked by physical relationships. The influence of each of these interdependent phys-

ical controls on soil moisture spatial distribution depends on the nature of heterogeneity

present in the domain and evolves with time and scale. This paper investigates the effect

of three physical controls - topography (slope), vegetation (type) and soil (texture) on soil

moisture spatial distribution in the Little Washita and Walnut Creek watersheds in Ok-

lahoma and Iowa, respectively at two support scales. Point support scale data collected

from four soil moisture campaigns (SMEX 2002, SMEX 2003, SMEX 2005 and CLA-

SIC 2007) and airborne scale data from three soil moisture campaigns (SGP 1997, SGP

1999 and SMEX 2002) were used in this analysis. The effect of different physical controls

on the spatial mean and variability of soil moisture was assessed using Kruskal-Wallis

and Shannon entropy, respectively. It was found that at both (point and airborne) support

scales, non-uniform precipitation (forcing) across the domain can mask the effect of the

dominant physical controls on soil moisture distribution. In order to isolate land surface

controls from the impact of forcing, we removed the effect of precipitation variability. Af-

ter removing the effect of precipitation variability, it was found that for most soil moisture

conditions, soil texture as opposed to vegetation and topography is the dominant physical

control at both the point and airborne scales in Iowa and Oklahoma. During a very wet year

(2007), however, the effect of topography on soil moisture spatial variability overrides the

1Reprinted with permission from, ’Evolution of physical controls for soil moisture in humid and sub-
humid watersheds’ by Gaur, N., and B. P. Mohanty (2013) Water Resour. Res., 49, 1244-1258,
doi:10.1002/wrcr.20069, Copyright 2013 John Wiley and Sons, Inc.
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effect of soil texture at the point support scale. These findings are valuable for developing

any physically based scaling algorithms to up- or down-scale soil moisture between point

and watershed scale in the study watersheds in humid and sub-humid regions of the Great

Plains of USA. These results may also be used in designing effective soil moisture field

campaigns.

2.2 Introduction

Soil moisture is a dynamic state variable. This dynamic behavior may manifest itself in

long term changes in mean soil moisture of an area on a yearly basis which are of interest

to climate modelers or very short daily time scales wherein a change in soil moisture may

cause convective storms (Taylor et al., 2012). Thus, in order to address the effects of soil

moisture variability in hydrological and meteorological processes, it is very important to

identify and understand the spatial and temporal variability of soil moisture and quantify

it.

The temporal and spatial patterns of soil moisture are dependent on a set of physical

controls. These physical controls have been identified primarily as precipitation, soil, veg-

etation and topography (Famiglietti et al., 1999; Entin et al., 2000; Mohanty and Skaggs,

2001, Albertson and Montaldo, 2003, Teuling and Troch, 2005, Joshi and Mohanty, 2010).

The physical controls interact to create certain spatial and temporal patterns of soil mois-

ture. Due to the interdependent nature of these physical controls, it is often impossible to

isolate their individual effects on soil moisture distribution. Numerous studies have been

undertaken to understand the controls that these factors assert over soil moisture spatial

distribution (Famiglietti et al., 1999, Mohanty et al., 2000a,b, Joshi and Mohanty, 2010)

and their temporal persistence (Mohanty and Skaggs, 2001, Jacobs et al., 2004, Joshi et

al., 2011). The use of geostatistical analysis has been a popular choice for investigating

the dominance of physical controls. Using geostatistical techniques, in Tarrawarra catch-
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ment in Australia, Western et al., (1998) showed that the degree of wetness of top 30 cm

of soil moisture affect spatial distribution of soil moisture. In a mixed vegetation pixel

with relatively homogeneous topography and soil type, Mohanty et al., 2000a showed

that variable land cover, land management and micro-heterogeneity affect soil moisture

distribution. Yet in another study pixel with uniform vegetation, Mohanty et al., 2000b

showed the influence of topography in spatio-temporal arrangement of surface soil mois-

ture. Using airborne remote sensing data, Cosh and Brutsaert, (1999) showed that soil

type strongly affects the soil moisture variability. Ryu and Famiglietti (2006) observed

that within regional scale, soil texture and vegetation control the smaller scale correlation

whereas larger scale correlations are controlled by precipitation.

The other popular technique that has been used to study the dominant controls for

soil moisture is the Empirical Orthogonal Functions (EOFs) (Preisendorfer and Mobley,

1988, Kim and Barros, 2002, Jawson and Niemann, 2007, Joshi and Mohanty, 2010). Kim

and Barros (2002) used the EOF technique to explore the relationship between physical

controls and soil moisture spatial structure over a 40 km x 250 km region across South-

ern Great Plains. They observed that topography dominated the spatial distribution of

soil moisture during and after a rainfall event. Soil hydraulic properties controlled spatial

variability above field capacity while vegetation controlled soil moisture distribution dur-

ing drydown. In another study for the same region, Jawson and Niemann (2007) showed

that soil texture, topography and land use, describe spatial soil moisture patterns with soil

texture influencing the spatial and temporal distribution by the maximum amount. In an

agricultural watershed in Iowa, Joshi and Mohanty (2010) showed that topography, rain-

fall, and soil texture have mixed effects on soil moisture distribution at watershed and

regional scale whereas vegetation parameters namely vegetation water content has very

limited influence at both scales.
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2.2.1 Heterogeneity, Scale, and Soil Moisture Measurements

All past studies suggest that the presence of spatial heterogeneity in any kind of phys-

ical control induces a variation in observed soil moisture spatial distribution even under

same precipitation input. Also, studies showed that under different wetness conditions,

various physical controls interact differently (Joshi and Mohanty 2010). The effect and

dominance of physical controls may also vary with different hydroclimates, since vegeta-

tion type, topographic features, and soil morphology intricately depend on the hydrocli-

mate of a region. Thus, along with investigating the spatial distribution of soil moisture

across a domain, it is also equally essential to explore the nature of heterogeneity of its

different physical controls. The importance of effectively representing land surface het-

erogeneity for a broader understanding of the effect of scale on soil moisture has also been

emphasized by Western et. al (2002). A brief description of how heterogeneity and soil

moisture distribution are related to the scaling triplet (Bloschl and Sivapalan, 1995) i.e.

support, extent and spacing is described below.

2.2.1.1 Support Scale

1. Point Scale: At the point scale, soil moisture is measured using gravimetric method,

Time Domain Reflectrometry (TDR) etc. These measurement techniques have the

support size of a few square centimeters. At the centimeter scale, the measurements

made are very sensitive to the pore sizes in the soil. Soil moisture measurements

taken a few centimeters apart may differ greatly if a macropore in the soil is en-

countered as opposed to soil matrix. Thus, the heterogeneity which may affect the

soil moisture distribution that is obtained from the point observation scale is the soil

structure. Soil structure is often a difficult quantity to quantify. However, since the

formation of soil structure is itself controlled by the soil texture, and the nature of

roots and organic lifeforms (earthworms etc.) present in the soil system, it can be

10



quantified to some extent using these other measureable ancillary parameters.

2. Airborne Scale: The usual airborne scale in past field experiments (e.g., Southern

Great Plain Hydrology Experiment 1997, Soil Moisture Experiment, 2002, 2003)

has been of the order of 800m x 800m. Airborne remote sensing of soil moisture

attributes one soil moisture value to a large heterogeneous pixel (800m X 800m). At

this large support scale, the heterogeneity in terms of soil pore sizes may no longer

influence the measurements since the effect gets averaged out. However, each pixel

has an intrinsic characteristic heterogeneity comprised of soil, vegetation and topog-

raphy, which is different from its adjoining pixel and is interacting to create a soil

moisture distribution within the pixel. Thus, in order to understand the underlying

dynamics of soil moisture distribution at the remote sensing footprint scale, it is im-

portant to characterize the heterogeneity observed at this support scale. Pixels may

differ in vegetation type, relief, and soil texture, that may be characterized using

topographic indices (e.g., slope, aspect), soil properties (e.g., soil texture, bulk den-

sity), and vegetation attributes (e.g., vegetation type, Leaf Area Index, Normalized

Difference Vegetation Index).

2.2.1.2 Extent Scale

When delineating a physical control as dominant, it is also important to mention the

extent scale of the measurements. The rainfall, which according to past studies has the

major influence on soil moisture, observed over a larger extent may be more variable.

The rainfall heterogeneity observed at a watershed scale may be different from the het-

erogeneity observed at the regional and continental scale. Past studies have demonstrated

that the influence of different physical attributes changes at different wetness conditions

(Joshi and Mohanty, 2010). Thus, increasing the extent scale in a scaling study can change

the wetness conditions observed in the domain. This can influence the apparent dominant
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physical controls of soil moisture for domains of different sizes. On the other hand if the

extent scale is limited, there is a loss of large scale features (Western et. al, 2002).

2.2.1.3 Spacing Scale

The spacing at which observations are taken determines the heterogeneity captured. If

the spacing is too large it may not capture the soil moisture dynamics for a given extent

at a particular observation scale. Thus, in order to describe the soil moisture dynamics

of an area adequately, the spacing of observations should be such that it describes the

heterogeneity of the entire extent. Western et al. (2002) also pointed out a loss of detail in

the small scale features if a higher spacing is used. Measurement spacing along with the

support scale may thus be considered to be a control of the level of detail of soil moisture

dynamics that can be resolved at a particular scale.

2.2.1.4 A New Dimension for the Scaling Triplet- Time

Besides the spatial scales which control the representation of heterogeneity in an area,

the time scale also holds utmost importance in assessing the dominance of physical con-

trols of soil moisture. Heterogeneity on the land surface itself is dynamic and is governed

by time. An agricultural watershed may be more dynamic than a natural terrain. It is

highly likely that during different times in a plant’s growth cycle or throughout the course

of the year, the hierarchy of dominance that physical controls exert over soil moisture spa-

tial distribution may change with the changing heterogeneity. Thus, it is very important

to specify and work with the time scale when discussing the spatial physical controls of

soil moisture. The time scale may itself be split into support (time over which a given

reading is averaged), spacing (time between two readings) and extent (time span of the

experiment).

In addition to the understanding of how scale may impact heterogeneity and soil mois-

ture distribution, it is equally essential to understand the physical processes that influence
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soil moisture distribution at various scales. A brief discussion is given below.

1. Effect of Soil: Soil texture is based on a range of composition of sand, silt and

clay. These quantities together are indicative (to some extent) of the soil structure

and its hydraulic properties. Soil texture determines the pore sizes in the soil or

alternatively the water holding capacity of the soil. The hydraulic properties of soil

determine the downward hydraulic conductivity of a soil, the matric potentials that

the soil may create to impede the flow of water through the soil and also the plant

available water content.

2. Effect of Vegetation: Vegetation may impact the downward as well as upward ver-

tical flow of water. Vegetation may reduce the impact of a precipitation event by

interception. Different vegetation types lead to different amounts of interception,

throughfall and stemflow, thus, affecting the input of water to the ground surface.

Also, vegetation affects the upward flow of water through the process of transpira-

tion. Different rooting structures will lead to different amount of water uptake. The

effect of vegetation on soil moisture spatial distribution can be considered to be most

dynamic.

3. Effect of Topography: Topography usually affects spatial redistribution of water

under saturated conditions. Water tends to move from a higher potential to lower

potential and thus, flows along a path determined by the slope of the area. Topog-

raphy also determines the aspect of an area, and based on the varying amount of

sunlight available the evapotranspiration occurring on different aspects may vary.

Thus, the water loss on different portions of topography might be different.

The primary objective of this study is to assess the effect of spatially heterogeneous

physical controls on soil moisture spatial distribution under different wetness conditions
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for two watersheds with different hydroclimates. The evolution of dominance of the soil

moisture physical controls at point and airborne scales for (1) Walnut Creek, Iowa agricul-

tural watershed, and (2) Little Washita, Oklahoma watershed has been investigated using

Kruskal Wallis analysis and the concept of entropy to respectively assess the effect of

physical controls on the mean and variance of soil moisture across a watershed.

2.3 Study Area and Data Description

2.3.1 Study Area

Walnut Creek Watershed, Iowa: The Walnut Creek watershed (WC) is located in

Boone and Story counties in Iowa. The region is characterized by humid climate with an

average annual precipitation of 818 mm. The majority rainfall in this region occurs from

April through September which is also the growing season in this agricultural watershed.

The topography of the watershed is fairly flat. Owing to the comparatively young geologic

development, the watershed is poorly drained and consists of low depressional areas or

’potholes’ which are hydrologically unconnected. The main crops grown in the watershed

are corn and soybean. The estimated evapotranspiration through the growing season varies

approximately between 1-9 mm/day and 3-8 mm/day for corn and soybean respectively

(Geli, 2012).

Little Washita Watershed, Oklahoma: The Little Washita watershed (LW) spreads

over parts of Caddo, Canadian and Grady counties in Oklahoma. The climate is sub-humid

with an average annual precipitation of 795 mm. It receives bulk of its rainfall in May,

June, September and October. The average potential evapotranspiration over these months

is about 6.3 mm/day (Mohseni et. al., 1998). This watershed has a significantly rolling

topography with an average elevation of 400 m and a maximum relief of 183 m. Surface

runoff in the watershed is generally towards the east. The water bearing aquifers under-

lying the watershed contribute to the Little Washita river and seepage has been observed
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along portions of the channel in the central region. (Liew and Garbrecht, 2003). 

Figure 2.1: Slope and point scale soil moisture data collected in Oklahoma
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Figure 2.2: LULC data in Walnut Creek watershed, Iowa
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2.3.2 Data

The soil moisture dataset for the watersheds were obtained from National Snow and Ice

Data Center located at, http://nsidc.org/data/amsr_validation/soil_moisture /index.html.

The point support scale soil moisture measurements for top 5 cm depth were taken us-

ing an impedance-based probe, namely Time Domain Reflectometers (TDR) (ML2 probes

with HH2 data loggers of Delta-T Inc.; http//www.delta-t.co.uk) and were calibrated gravi-

metrically for the specific sites. Point scale data for Little Washita watershed, Oklahoma

(Figure 2.1) was obtained from the Soil Moisture Experiments in 2003 (SMEX 03) and

Cloud and Land-Surface Interaction Campaign in 2007 (CLASIC 07). Point scale data for

Walnut Creek watershed, Iowa was obtained from the soil moisture sampling conducted

during 2002 (SMEX02) and 2005 (SMEX05). Point support scale soil moisture mea-

surements (100 m apart) were taken at 14 points in each of the fields chosen to monitor

the hydrology of the watershed. At each of the 14 points in the Walnut Creek agricul-

tural watershed, 3 readings were taken- one on the furrow, one on the slope of the furrow

and the third one on the crop row. In the Little Washita watershed for the pasture cover,

three replicated samples were taken within a 1-m diameter sampling area at the 14 sam-

pling locations. In addition to ground-based point sampling, soil moisture was retrieved

from airborne Electronically Scanned Thinned Array Radiometer (ESTAR) (Jackson, et

al. 1999) during the Southern Great Plains Hydrology Experiments in 1997 and 1999 and

Polarimeteric Scanning Radiometer (PSR) (Bindlish, 2006) during 2002 respectively. A

brief description of the various soil moisture campaigns is given in Tables 2.1, 2.2 and 2.3.

Vegetation attributes for Iowa (Figure 2.2) were obtained during the field experiments

and DEM (National Elevation Dataset, NED, 30m resolution) was used to create the slopes

for the watersheds. The slope map at the 800 m resolution was constructed after aggregat-

ing the elevation data at 30 m to 800 m. The soil texture information has been obtained
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from SSURGO (30 m resolution). Soil maps of the Walnut Creek and Little Washita wa-

tersheds in Iowa and Oklahoma are shown in Figures 2.3 and 2.4, respectively The soil

moisture variability observed over the two watersheds (at the airborne scale) is shown in

Figure 2.5, 2.6 and 2.7.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: SSURGO based classified soil map of Walnut Creek watershed, Iowa
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Figure 2.4: SSURGO based classified soil map of Little Washita watershed, Oklahoma
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Figure 2.5: Airborne soil moisture maps for Walnut Creek watershed, Iowa
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Figure 2.6: Airborne soil moisture maps for Little Washita watershed (1997)
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Figure 2.7: Airborne soil moisture maps for Little Washita watershed (1999)

2.4 Methodology

2.4.1 Kruskal-Wallis

The first step in assessing the dominance of a particular physical control is to check

whether its inherent heterogeneity leads to an effective separation of mean soil moisture

within a classification. This was done using the Kruskal-Wallis test on the mean soil

moisture. This test is the non-parametric equivalent of the Analysis of Variance test and

is used to distinguish between the difference in means of 2 or more distributions. The

null hypothesis for this test was, HN.: There is no difference in the median soil moisture

grouped by ’a’, where ’a’ represents the categories in a particular classification. This test

was conducted to compare the separability between mean soil moisture values of different

categories within a classification.
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Table 2.1: Overview of the various soil moisture campaigns
Campaign Location Duration Support Scale Measuring

instrument
SGP 97 OK June 18-July 18, 1997 Airborne ESTAR

(800 m x 800 m)
SGP 99 OK July 8- July 20, 1999 Airborne ESTAR

(555 m x 450 m)
SMEX 02 IA June 25- July 12, 2002 Point, TDR and PSR

and Airborne(800 m x 800 m)
SMEX 03 OK July 2- July 17, 2003 Point TDR
SMEX 05 IA June 13- July 4, 2005 Point TDR

CLASIC 07 OK June 11- July 6, 2007 Point TDR

2.4.2 Shannon Entropy

The next step was to assess the variability in the data which is done using Shannon

entropy. Shannon entropy (Shannon, 1948) has been a popular technique for investigat-

ing spatial variability in the field of hydrology (Mishra et al., 2009; Mogheir et al., 2004;

Phillips, 2001 etc.) However, to the best of the authors’ knowledge, this is the first study

to use the entropy technique to understand the dominance of physical controls on soil

moisture spatio-temporal variability. The strength of this technique lies in its effective

simplicity to incorporate the effect of dependent or independent physical controls (cate-

gorical or numerical) on soil moisture spatial distribution. It can be used on datasets of

a short or long length. However, in order to use this technique it is essential to isolate

the parameters (physical controls) whose effect we want to assess on soil moisture spatial

distribution.

Shannon entropy (I) (Shannon, 1948, 2001) is a statistical quantity representing a mea-

sure of the information that may be extracted from a system or analogously the uncertainty

that the system comprises of. Entropy for a system with a state random variable, V, is for-

mulated as
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Table 2.2: Details of number of data points used for the support scale analysis

Campaign Classification Min/Max number of points No. of bins used
/day used in the analysis

SMEX03 Total 139-204
Based on Soil Type

Loam 10-13 3
Silt Loam 90-133 6

Sandy Loam 39-63 4
Based on topographic position

Hilltop 55-91 3
Slope 30-40 5
Valley 54-78 4

CLASIC07 Total 101-112
Based on Soil Type

Loam 14-17 3
Silt Loam 44-54 5

Sandy Loam 34-43 5
Based on topographic position

Hilltop 19-20 3
Slope 49-56 4
Valley 31-36 5

SMEX02 Total 244-278
Based on Soil Type

Loam 41-48 5
Clay Loam 195-230 9

Based on vegetation
Corn 148-184 10

Soybean 83-94 7

SMEX05 Total 286-321
Based on Soil Type

Loam 155-176 10
Clay Loam 125-145 8

Based on vegetation
Corn 170-190 9

Soybean 111-132 8
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Table 2.3: Details of number of data points used for the airborne scale analysis

Campaign Classification Min/Max number of points No. of bins used
/day used in the analysis

SGP97 Total 601
Based on Soil Type

Loam 68 5
Silt Loam 313 11

Sandy Loam 220 9
Based on topographic position

Hilltop 119 6
Slope 371 10
Valley 111 6

SGP99 Total 473-532
Based on Soil Type

Loam 76-80 5
Silt Loam 214-268 10

Sandy Loam 183-184 8
Based on topographic position

Hilltop 94-107 6
Slope 298-334 10
Valley 81-91 6

SMEX02 Total 64
Based on Soil Type

Loam 7 2
Clay Loam 57 5

Based on vegetation
Corn 31 3

Soybean 33 4
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IV (p1, p2, ....., pn) =−∑ pi log2 pi

V : n ∈ N
(2.1)

n

∑
i=1

pi = 1 (2.2)

pi: probabilities of occurence of realizations of V

IV, entropy of the system, is representative of the uncertainty of the random variable or

the unresolved information in the random variable. However, instead of a unique value of

uncertainty, all systems possess a range of uncertainty, which depends on the probability

values associated with the set N chosen to represent the random variable. This range of

uncertainty is quantified by a range of entropy values of the system. By addition of in-

formation to this system in terms of either constraints, like specifying the moments of the

random variable etc., the range of uncertainty and correspondingly the range of entropy

of the system reduces. In other words, with each addition of independent information to a

system, the system goes from being stochastic (with a range of uncertainty) to being de-

terministic (i.e. possessing a unique probability distribution). The entropy of a completely

determinate system is zero.

Entropy is an extensive quantity and unlike energy does not follow the conservation

laws. In order to express the combined uncertainty of two or more independent random

variables, their respective entropy values may be added. However, if the random variables

are dependent on each other, this dependence must be accounted for as ’transinformation’,

T(A,B), i.e., the amount of information common to both sets of random variables. The

joint information or entropy, I(A,B) of this system of random variables is calculated as

shown in equation 2.3. For two independent random variables, ’T(A,B)’ is zero. This
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concept of transinformation can be extended to more than two variables as well.

I(A,B) = I(A)+ I(B)−T (A,B) (2.3)

2.4.2.1 Entropy as a Tool to Assess Physical Controls of Soil Moisture

As discussed above, entropy of a system of random variables will decrease with ad-

dition of information. The information which explains more uncertainty in the data will

have a lower value of entropy of the random variable (Paszto, et al., 2009). This property

of entropy forms the basis of this study.

In this study, the random variables under consideration are point and airborne mea-

surements of soil moisture. The addition of information to the random variable is done in

the form of classification of the soil moisture data. These soil moisture values are classi-

fied under different categories based on the physical controls present at the location of the

measurement. These categories are ’soil type’ and ’vegetation type’ for the agricultural

watershed in Iowa, and ’soil type’ and ’topographical location’ for the natural terrain in

Oklahoma. The classification type which leads to a lower entropy explains the maximum

uncertainty in the random variable. The factor on which the lowest entropy classification

is based can be considered to be the most dominant physical control in terms of controlling

soil moisture variability.

Despite the availability of various attributes to represent the various physical controls

like hydraulic conductivity, percent sand, percent silt and percent clay etc. for soil, Nor-

malized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), vegetation type etc.

for vegetation, and slope, aspect, elevation etc. for topography, broad classification cate-

gories namely soil type, vegetation type and topographic location were chosen. This was

done in order to incorporate easily available categorical information and retain the individ-

ual identities of each physical control along with each classification being representative
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of the properties of the physical control. For example, ’soil type’ gives a fair idea about the

range of hydraulic conductivity, infiltration and evaporation behavior of a soil. Similarly,

’vegetation type’ is representative of the root zone and root water uptake, plant percentage

cover on land, LAI, etc. for landuse and landcover. There may be other factors like plant

health which may not be represented in an adequate way under this classification scheme

but we assumed that plant health at the extent scale may be excluded as a heterogeneous

factor. ’Topographical location’ was determined based on the location of a sampling point

on the slope. This classification scheme adequately represents most of the attributes of

topography like elevation and slope. It does not however represent aspect which may be

an important attribute for soil moisture variation. But considering the moderate relief of

the area under consideration, aspect will not influence the soil moisture distribution signif-

icantly. The different classification categories used in this study are provided in Tables 2.4

and 2.5. The choice of these parameters for describing the heterogeneity was made based

primarily on their suitability for representing the key landscape features and also on the

ease of obtaining such categorical data.

Table 2.4: Classification categories for Walnut Creek, Iowa

Classification Type Categories
Soil Type Loam, Clay Loam

Vegetation Type Corn, Soybean

1. Marginal Entropy Calculation for Soil Moisture: We arranged the soil mois-

ture smk
d values , where, d (days): 1,2,....d; and k (number of soil moisture values

1,2,....n0, day wise to calculate entropy values for each day separately. Using the

Scott’s algorithm (Scott, 1979) of optimal binning, frequency histograms for each
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Table 2.5: Classification categories for Little Washita, Oklahoma

Classification Type Categories
Soil Type Loam, Silt Loam, Sandy Loam

Topography position Hilltop, Valley, Slope
(Slope: 0-1.5%, flow accumulation: 0) Hilltop

(Slope: 0-1.5%, flow accumulation: >0) Valley
(Slope: 1.5-14%, flow accumulation: >0) Slope

day were calculated. According to this algorithm, the bin-width (h) in the daily

frequency histograms is defined as

h = 3.49sn
−1
3

0 (2.4)

h: bin width

s: standard deviation of daily soil moisture

The average value of ’h’ across the duration of the campaign was chosen as the

representative bin width for a particular campaign. A probability, pi is assigned to

each bin and calculated as

pi =
ni

n0
(2.5)

ni: number of observations in the ith bin

Then we substituted pi in eq. 2.1 to find out daily marginal entropies.

2. Joint Entropy Calculation for Each Classification:Soil moisture values were clas-

sified under different categories as mentioned in Tables 2.4 and 2.5. A joint prob-

ability mass function (pmf) was constructed for soil moisture values in different

categories. The steps for constructing a joint pmf with two variables are given be-
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low. A joint pmf for three variables can be constructed along the same lines. It is

important to note here that this method may become computationally intensive with

increasing number of categories in a classification scheme.

The soil moisture values in one category (smj) under a classification were paired up

with soil moisture values in the other category (smm) within the same classification

to form unordered pairs on a daily basis (for example loam and sandy loam category

under soil classification).

(sm j,smm), j = 1,2, ...,J

m = 1,2, ....M

A contingency table representing the relative frequencies, fi, was used to calculate

the probabilities as given in eq. 2.6. The bin sizes for the two categories under the

classification were decided based on eq. 2.4.

fi = p(sm j,smm) =
n jm

n0
, j = 1,2, ...,J

m = 1,2, ....M
(2.6)

njm: number of observation in the jth (from category 1) and mth (from category 2)

bin

Substituting p(smj, smm) in eq. 2.1, the joint entropies were obtained. This joint

entropy of the dataset correspond to I(A,B) in equation 2.3.
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2.4.3 Bootstrapping

In order to achieve statistically significant daily results, bootstrapping was employed

to get multiple samples for each category in a classification. Bootstrapping enables the

use of the sample data at hand as a population from which random samples may be drawn.

Random sampling with replacement was done within each category. Equal number of

data points were employed in each bootstrapping routine with 40 samples being created

for each category. These results were used to compute the joint pmf and to identify the

uncertainty range of the entropy values (represented by error bars).

2.4.4 Effect of Precipitation

As mentioned above, if the extent scale is large enough and precipitation varies across

the extent, the effect of precipitation may mask the actual effect of different physical land

surface controls on soil moisture. In order to remove the effect of precipitation, the entire

computation was repeated for soil moisture anomalies. In order to compute soil moisture

anomalies at the point support scale, the mean soil moisture values of every field in the

entire study domain were computed. These means were subtracted from the soil moisture

readings collected in each respective field. At the airborne scale, the soil moisture values

were linearly detrended to obtain the anomalies. Linear detrending was done by linearly

regressing a straight line through the soil moisture values plotted against its spatial location

and then subtracting the regressed value from the actual soil moisture value. The entire

coding for the analysis was done using MATLAB.

2.5 Results and Discussion

This section is divided into 2 sub-sections. The first part discusses the Kruskal-Wallis

results and the second part discusses the entropy results. Each sub-section is further di-

vided into 2 parts- 1) Point Scale and 2) Airborne Scale. The two analyses comprehen-
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sively describe the effect of different physical controls of soil moisture on its spatial-

temporal distribution. Kruskal-Wallis compares the mean soil moisture of different dis-

tributions whereas the entropy based analysis compares the variability observed in the

distributions.

2.5.1 Comparison of Means: Kruskal-Wallis Based Analysis

Point Scale: Year 2005 (SMEX05) was relatively wetter than 2002 (SMEX02) in

Iowa. In Oklahoma, CLASIC07 during 2007 was very wet whereas 2003 (SMEX03 cam-

paign) was very dry. In addition, SGP97 in Oklahoma was an average year whereas SGP99

again was very dry.

Table 2.6 contains the p-values of Kruskal-Wallis. From the p-values calculated for

2002 (Iowa), we see that soil texture, for the most part partitioned the mean soil moisture

at a significance level of 0.05 whereas vegetation type was not as effective on the wetter

days (DOY 187 onward). Soil texture was consistently capable of separating mean soil

moisture from DOY 176 to DOY 186. These days corresponded to low soil moisture val-

ues. On DOY 188, the mean soil moisture for the watershed increased from 0.15(V/V)

to 0.21(V/V) because of a precipitation event and neither soil texture nor vegetation type

induced an effective partition of mean soil moisture. A failure for either of the two clas-

sifications inducing a mean difference in soil moisture indicates an interaction of soil and

vegetation or an extraneous factor besides the two, which is dominating under these condi-

tions. However, during a similar increase from 0.15(V/V) to 0.28 (V/V) on DOY 192, soil

texture (but not vegetation) was capable of discerning a difference in mean soil moisture.

This can be attributed to the difference in the antecedent soil moisture conditions that pre-

vailed in the watershed. Before the precipitation event on DOY 188, the antecedent soil

moisture conditions were very low whereas after the precipitation event on DOY 192, the

antecedent moisture conditions were relatively higher. This indicates that when the crop is
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water stressed on account of limited soil moisture availability, the interaction between the

vegetation and soil increases and jointly they control the soil moisture spatial distribution.

Physically, this may refer to two competitive forces acting within the soil: (1) matric po-

tential of soil that tries to hold the water in the soil pores and (2) suction potential of plant

roots which tries to withdraw water from the soil pores. However, when the antecedent

moisture conditions are high, suction forces of plant roots do not compete for near-surface

soil moisture since the deeper root zone is not water stressed. The density of roots is higher

in the slightly deeper root zone and thus, observing the principle of minimum energy re-

quirement, plants would preferentially take water from the deeper zone. Thus, we observe

that after the second precipitation event, soil texture, which determines the water holding

capacity of soil pores, effectively partitions mean surface soil moisture which could be due

to more infiltration to the lower layers.

In 2005, which was a relatively wetter year, we found that vegetation was slightly

more capable of discerning a difference in near surface soil moisture. Corn and soybean

have very different canopy structures. Corn has a very dense canopy and leads to greater

interception as opposed to soybean which offers little to no interception. This holds true

for the later half of the campaign when the canopies are fully developed. Also, it could

be attributed to the difference in infiltration properties of the soil under these (corn vs.

soybean) canopies, as rooting structure and organic content play an important role in the

development of infiltration properties of the soil (Mohanty et al., 1994, DasGupta et al.,

2006). On DOY 172, after a precipitation event, vegetation (p-value<0.05) partitioned the

mean soil moisture more than soil texture (p-value = 0.3992). This is somewhat different

from 2002. However, it is important to keep in mind that SMEX02 (DOY 176 - 193) and

SMEX05 (DOY 164 - 185) captured different portions of the growth cycle of corn and

soybean. DOY 172 in 2005 fell in the growing cycle of corn and soybean and thus the

water requirements were considerably more than in 2002, when we see more dominance
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Table 2.6: p-values for Kruskal-Wallis test, Walnut Creek watershed, Iowa (point scale)

DOY Mean volumetric soil moisture (%) Soil Vegetation
2002 p-value p-value
176 0.1 <0.0001* 0.0273*
177 0.1 0.0091* 0.0002*
178 0.09 0.0291* 0.0081*
182 0.07 0.0481* 0.0001*
186 0.14 0.0068* 0.0006*
187 0.15 0.0921 0.2650
188 0.21 0.0874 0.2986
189 0.18 0.0008* 0.8908
190 0.15 0.0086* 0.0807
192 0.28 0.0013* 0.2168
193 0.26 <0.0001* 0.9502

2005
166 0.24 0.0011* <0.0001*
167 0.21 0.0112* <0.0001*
168 0.2 0.0082* <0.0001*
169 0.18 0.3068 <0.0001*
170 0.17 0.0346* 0.1354
171 0.16 0.3759 0.0101*
172 0.2 0.3992 0.0296*
176 0.17 0.6679 0.2436
177 0.32 0.0002* <0.0001*
178 0.27 0.0198* <0.0001*
181 0.32 <0.0001* <0.0001*
182 0.26 0.0351* <0.0001*
183 0.23 0.0007* <0.0001*
184 0.2 0.5525 <0.0001*

* represent a significant difference in means with a significance level
of 0.05.
The shaded rows represent that a rainfall event preceded the DOY

34



of soil texture. This implies that in an agricultural watershed, the effect of vegetation on

soil moisture dynamics is highly dependent on the crop growth stage. Another interesting

observation is that if we compare the effect of soil texture and vegetation on soil moisture

means during the same stages of the crop growth cycle, we observe very different effects.

In 2005, except for a brief exception of DOY 170 and DOY 176, vegetation continued

to exert an effect on the partitioning of soil moisture means in contrast to what was ob-

served in 2002. This can again be explained by referring to the antecedent soil moisture

conditions. 2002 was a comparatively drier year with a larger range of soil moisture. The

root zone vegetation dynamics (phenology) were probably very different in 2002 as com-

pared to 2005. Thus, in addition to crop growth stage, the antecedent wetness conditions

in the study domain exert a large influence on effect of different physical controls on soil

moisture spatial distribution. On DOY 176, neither vegetation nor soil texture displays a

partitioning of soil moisture mean. Hysteresis in soil moisture variability, previously been

reported at the field scale by Teuling et. al., 2007 and Ivanov et. al., in 2010, may possibly

be another contributor to this behavior.

Table 2.7 contains the p-values for Little Washita, Oklahoma. Interestingly for Okla-

homa, at the point scale, soil texture remained dominant throughout in the wet as well as

dry year. There could be two possible explanations for this behavior. The first could be

the soil texture is dominating and is the only factor responsible for deciding the separation

of mean soil moisture. The other possible explanation could be that such a small support

scale is insufficient to represent a topographical position. But irrespective, this finding

may prove to be highly useful for conducting future field campaigns.

Airborne Scale: During SMEX02 campaign in Iowa, at the 800m x 800m scale, the

p-values of vegetation based Kruskal-Wallis test were on some occasions much lower than

the p-values of soil texture based Kruskal-Wallis test (Table 2.8). On DOY 182, the soil

moisture values rose up to 0.20 V/V and then consistently remain above it. During this
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Table 2.7: p-values for Kruskal-Wallis test, Little Washita watershed, Oklahoma (point
scale)

DOY Mean volumetric soil moisture (%) Soil Topography
2003 p-value p-value
183 0.129 <0.0001* 0.0608
184 0.117 <0.0001* 0.4389
185 0.108 <0.0001* 0.3529
186 0.096 <0.0001* 0.1101
187 0.103 <0.0001* 0.2992

2007
160 0.271 <0.0001* 0.081
161 0.247 <0.0001* 0.3963
162 0.283 <0.0001* 0.1725
163 0.259 <0.0001* 0.1166
164 0.242 <0.0001* 0.3791
168 0.326 <0.0001* 0.3673
169 0.304 <0.0001* 0.2835
170 0.291 <0.0001* 0.2835
174 0.297 <0.0001* 0.1953

* represent a significant difference in means with a significance level of
0.05. Since there were three classifications, a Bonferroni correction was
applied bringing the actual level of significance testing to 0.016 (0.05/3)
for each individual comparison The bold face rows represent that a rain-
fall event preceded the DOY
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period, vegetation showed lower p-values on all days with the exception of DOY 190 and

191. p-value indicates the level of confidence that we have in the results that the two means

are equal to each other or come from the same distribution. However, neither soil texture

nor vegetation type partitions the mean soil moisture quite effectively with the exception

of DOY 193 where vegetation emerges as the dominant factor. This could imply that

soil-vegetation interaction effects are more important when observing soil moisture at a

coarser scale than their individual effects. A heterogeneity factor comprising of both soil

and vegetation together may be needed to effectively represent soil moisture heterogeneity

in the Walnut Creek agricultural watershed region. The analysis could also be indicative

of a type II statistical error since the number of data points was relatively low.

Table 2.8: p-values for Kruskal-Wallis test, Walnut Creek watershed, Iowa (airborne foot-
print)

DOY Mean volumetric soil moisture (%) Soil Vegetation
2002 p-values p-values
176 0.18 0.8213 0.8772
178 0.16 0.6437 0.9625
180 0.18 0.8213 0.8561
182 0.2 0.7388 0.3041
185 0.23 0.788 0.4319
189 0.21 0.4451 0.2507
190 0.23 0.6749 0.8351
191 0.27 0.5687 0.8984
192 0.35 0.6749 0.1525
193 0.28 0.372 0.0053*

* represent a significant difference in means with a significance level
of 0.05. The shaded rows represent that a rainfall event preceded the
DOY

Contrary to the results from the agricultural watershed in Iowa, soil texture in Little

Washita, Oklahoma, partitioned mean soil moisture effectively at the airborne scale (Table
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2.9). Topography also displayed an effective partitioning of mean soil moisture on most

days. The interesting point to note here is that during SGP97, on DOY 178, there was

a small precipitation event wherein the soil moisture rose from 0.132 V/V to 0.151 V/V.

Despite the precipitation event topography failed to partition the mean soil moisture even

though soil continued to do so. On the other hand on DOY 192, when the soil moisture

value rose from 0.080 V/V to 0.227 V/V, topography was able to show an effective par-

titioning in mean soil moisture. This was true even for DOY 197 wherein topography

and soil type both showed an effective partitioning of mean soil moisture. This result

also shows that there exist certain precipitation amount thresholds wherein the influence

of topography on soil moisture means begins. During SGP99, which was a considerably

drier year, soil texture partitioned soil moisture mean more effectively than topography.

Even though the airborne and point scale data were taken in separate years, soil texture

dominance at both scales is noteworthy.

This analysis also showed another important feature. Walnut Creek watershed is an

agricultural watershed with considerable vegetation heterogeneity usually absent in a nat-

ural watershed like Little Washita. The p-values in Little Washita for the Kruskal-Wallis

tests based on soil and topography followed similar patterns for the most part across time

as opposed to those in Walnut Creek watershed, where soil and vegetation dominated at

different times. This may imply a stronger correlation between soil type and topography

(slope) in comparison to correlation between vegetation type and soil texture, which is

more dynamic in nature. This could also suggest that for a similar spatial extent, the ab-

sence of (dynamic) vegetation based heterogeneity leads to more predictable soil moisture

dynamics as observed by Albertson and Montaldo (2003).
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Table 2.9: p-values for Kruskal-Wallis test, Little Washita watershed, Oklahoma (airborne
footprint)

DOY Mean volumetric soil moisture (%) Soil Topography
1997 p-values p-values
1997 p-values p-values
169 0.188 <0.0001* 0.0157*
170 0.173 <0.0001* 0.0639
171 0.147 <0.0001* 0.5906
176 0.138 <0.0001* 0.0868
177 0.132 <0.0001* 0.3856
178 0.151 <0.0001* 0.501
180 0.143 <0.0001* 0.0012*
181 0.106 <0.0001* 0.0002*
182 0.104 <0.0001* 0.0007*
183 0.08 <0.0001* 0.0054*
192 0.227 <0.0001* <0.0001*
193 0.202 <0.0001* <0.0001*
194 0.16 <0.0001* <0.0001*
195 0.141 <0.0001* <0.0001*
197 0.17 0.9108 <0.0001*

1999
189 0.097 <0.0001* 0.036*
195 0.118 <0.0001* 0.6542
196 0.097 <0.0001* 0.0067*
200 0.075 <0.0001* 0.1364
201 0.076 <0.0001* 0.2705

* represent a significant difference in means with a significance level of
0.05. Since there were three classifications, a Bonferroni correction was
applied bringing the actual level of significance testing to 0.016 (0.05/3)
for each individual comparison The shaded rows represent that a rainfall
event preceded the DOY
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2.5.2 Evolution of Physical Controls Dominance: Entropy Based Analysis

Entropy analysis using raw soil moisture data from various field campaigns explains

the control that the geophysical parameters exert over the soil moisture variability across a

watershed. Watershed is a relatively large spatial extent and different parts of the watershed

may receive different amounts of rainfall. Since dominance of physical controls changes

under different wetness conditions (as discussed in the previous section), it is possible that

dominant physical controls across the watershed may not be the same. In order to remove

the effect of variable precipitation from the analysis, the entropy computation was done on

soil moisture anomalies (computed as explained in 2.4.4).

The marginal entropy values using daily soil moisture anomalies were plotted against

the daily mean soil moisture in Figures 2.8 and 2.1. Marginal entropies refer to the en-

tropies computed for all the soil moisture values grouped together (without any classi-

fication). For the point scale entropy values in Walnut Creek agricultural watershed in

Iowa, we observed that entropy (or variability) is maximum when the soil moisture was

in the intermediate range (i.e., neither too high nor too low). In the Little Washita natural

Watershed, Oklahoma, the entropy values were slightly higher during the dry year 2003

(SMEX03) as compared to the wet year 2007 (CLASIC07). At the airborne scale in Wal-

nut Creek watershed, in line with past research findings (Rodriguez- Iturbe et al., 1995,

Western and Bloschl, 1999), we observed that the entropy (and consequently the variabil-

ity) was lower than at the point support scale. However, in the Little Washita watershed,

even though airborne data from SGP97 showed slightly lower entropy than that observed

at the point support scale, data from SGP99 showed otherwise.
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Figure 2.8: Mean volumetric soil moisture v/s Entropy for Walnut Creek watershed, Iowa

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Mean volumetric soil moisture v/s Entropy for Little Washita watershed, Ok-
lahoma
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The joint entropy values calculated based on soil moisture anomalies and different

classifications are provided in Figures 2.10 and 2.11 (point scale) and Figures 2.12 and

2.13 (airborne scale). Joint entropies refer to the entropy values computed based on a

particular classification scheme. These values represent the mean entropy values based on

the bootstrapping result. In Iowa, a comparison of mean soil moisture for the watershed

between two years reveals that 2005 was a wetter year as compared to 2002 (Figures 2.14

and 2.15).

Correspondingly, we observed that even though the marginal entropy values were sim-

ilar for the years 2002 and 2005 (Figure 2.8), the joint entropy values based on the soil

and vegetation classification were higher for 2005 (Figure 2.10). The same however, can-

not be said for the Little Washita watershed, OK, where the dry (SMEX03) and the wet

(CLASIC07) years show a similar range of joint entropies based on the soil and topogra-

phy based classifications (Figure 2.11). This analysis also shows that the inclusion of a

vegetation based heterogeneity leads to an increase in variability of soil moisture during

wet conditions, also consistent with the findings of Albertson and Montaldo (2003).
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Figure 2.10: Point scale joint entropy values based on soil and vegetation for Walnut Creek
watershed, Iowa
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Figure 2.11: Point scale joint entropy values based on soil and topography for Little
Washita watershed, Oklahoma
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Figure 2.12: Airborne scale joint entropy values based on soil and vegetation for Walnut
Creek watershed, Iowa
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Figure 2.13: Airborne scale joint entropy values based on soil and topography for Little
Washita watershed, Oklahoma
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At the airborne scale, as compared to the point support scale, we see a lowering of

the joint entropy values in Iowa (Fig. 2.12 and 2.13). This implies that at the airborne

scale, soil texture and vegetation type (as a heterogeneity index) perform better than at the

point scale. For Oklahoma, even though the marginal entropy values for airborne scale

followed a similar range (Fig 2.9) when compared with the point scale values, the joint

entropy values show a marked increase (Fig. 2.11 and 2.13). This means that the soil

and topography based classifications do not represent soil moisture variability well at this

scale.
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Figure 2.14: Time series of mean soil moisture for point support scale. The whiskers
represent 1 standard deviation.
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Figure 2.15: Time series of mean soil moisture for airborne footprint Scale. The whiskers
represent 1 standard deviation.

The differences between the joint entropy values based on the different classification

schemes were computed and the difference between the two (∆ Entropy) was evaluated

(Figures 2.16, 2.17, 2.18 and 2.19). For Oklahoma, (∆ Entropy) represents difference

between soil based and topography based entropy. For Iowa, (∆ Entropy) represents dif-

ference of soil based and vegetation based entropy. We would also like to point out that

the exclusion of transinformation between the entropies based on the different classifica-

tions has not been computed separately in the analysis. However, this does not take away

the credibility of the analysis, since we worked with the entropy difference and not the

absolute entropy values to ascertain the dominant physical control.
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Figure 2.16: Time series of entropy difference (raw soil moisture) for point support scale.
The error bars represent 1 standard deviation from the bootstrapping result. For Iowa: ∆

Entropy = soil based entropy – vegetation based entropy, For Oklahoma: ∆ Entropy = soil
based entropy – topography based entropy
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Figure 2.17: Time series of entropy difference (raw soil moisture) for airborne support
scale. The error bars represent 1 standard deviation from the bootstrapping result. For
Iowa: ∆ Entropy = soil based entropy – vegetation based entropy, For Oklahoma: ∆ En-
tropy = soil based entropy – topography based entropy
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Point Scale: In Iowa, using the raw soil moisture data at the point support scale (Figure

2.16), we observe that during the relatively wet SMEX 05 year, vegetation appeared to

dominate the soil moisture spatial distribution. However, during SMEX 02, the controls

shifted between soil and vegetation at precipitation events (as marked by an increase in

soil moisture, Figures 2.14 and 2.15). This was also consistent with the mixed results

obtained using the Kruskal-Wallis analysis where 2002 showed mixed effects. However,

this could be a result of the different amounts of rainfall that occurred over different parts

of the watershed. After removing the effect of rainfall (Fig. 10), we observed that across

both the years, soil texture was explaining more of the variability in the data. Though the

difference between the soil and vegetation based entropy evolved with time, soil texture

gave us more information about the spatio-temporal distribution at the point support scale.

The soil moisture conditions in Oklahoma represented two extremes of the wetness

spectrum. 2003 was very dry whereas 2007 was very wet. Using the raw soil moisture

data, we observe that soil was the dominant physical control in 2003 as opposed to the

dynamic evolution of dominant physical controls evident in 2007. However, after remov-

ing the effect of precipitation from the analysis, we discovered that soil still dominated

the spatio-temporal distribution of soil moisture in 2003 whereas only topography based

dominance was evident in 2007. This analysis reinforces the diagnosis that variable rain-

fall across the watershed can lead to misleading results. For the dry year, 2003, excluding

the effect of rainfall did not have any effect on the analysis. The dominant physical control

was soil texture. However, in the wet year, 2007, despite the fact that topography was un-

able to effectively partition the mean soil moisture (Kruskal-Wallis), it still explained more

variability (entropy) in soil moisture spatial distribution than soil. A clear dominance of

one factor is difficult to outline in this case.
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Figure 2.18: Time series of entropy difference for point support scale. The error bars
represent 1 standard deviation from the bootstrapping result. For Iowa: ∆ Entropy = soil
based entropy – vegetation based entropy, For Oklahoma: ∆ Entropy = soil based entropy
– topography based entropy
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Figure 2.19: Time series of entropy difference for airborne support scale. The error bars
represent 1 standard deviation from the bootstrapping result. For Iowa: ∆ Entropy = soil
based entropy – vegetation based entropy, For Oklahoma: ∆ Entropy = soil based entropy
– topography based entropy
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Airborne Scale: In Iowa, 2002, soil texture is dominant. Even though the magnitude

of âĹĘ Entropy changed after removing the effect of precipitation, the analysis did not

change much. The same was observed in Oklahoma in 1997 and 1999. Soil texture was

the dominant physical control and the analysis result did not change much after removing

the effect of precipitation. These results were consistent with Cosh and Brutsaert, (1999)

who showed that soil is the most plays the most dominant role in controlling the spatial

variability of soil moisture. However, it cannot be said that soil texture would be the

most dominant factor of spatio-temporal distribution of soil moisture in Iowa, since, it

did not partition the mean soil moisture effectively. In Oklahoma on the other hand, soil

texture can be called the most dominant physical control of soil moisture. It should also be

noted that retrieval algorithms utilize vegetation (land cover, single scattering albedo and

vegetation water content) and soil information (soil texture) when estimating soil moisture

(Bindlish et. al, 2006). The effect of slope is not considered in radiometer based soil

moisture retrievals. This result may be an artifact of the structure of the retrieval algorithm

itself. From the above entropy based analysis, we saw a change in the interaction between

the physical controls before and after removing the effect of precipitation for the point

support scale but not so much for the airborne scale. It can be deduced that the effect of

variability of precipitation across the extent is more pronounced when the support scale is

smaller.

2.6 Conclusions

In this study we investigated the evolution of dominance of different physical controls

on spatial distribution of soil moisture across time for Walnut Creek watershed, Iowa and

Little Washita watershed, Oklahoma. The two watersheds were located in different hy-

droclimates and had distinctly different inherent heterogeneity. Walnut Creek watershed

in Iowa is an agricultural watershed in a humid climate with heterogeneity in the form
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of vegetation and soil type. The Little Washita watershed in Oklahoma is a more natural

watershed in a sub-humid environment with heterogeneity existing in the form of topog-

raphy and soil type. The analysis was conducted at two levels. The Kruskal-Wallis based

analysis formed the primary step and assessed the applicability of the physical controls

in causing a separation in mean soil moisture due to the heterogeneity observed in the

particular physical control. We found that in the Walnut Creek watershed, the broad clas-

sifications of vegetation type and soil type, served to explain differences in soil moisture

well. Soil texture performed slightly better in 2002 whereas vegetation performed bet-

ter in 2005. However, at the airborne scale, neither soil nor vegetation served as good

representatives of heterogeneity. In Little Washita watershed, on the other hand, soil and

topography (slope) performed relatively well at both the point and airborne scale. Soil

texture partitioned mean soil moisture to a greater extent at both scales.

The second level of analysis comprised of assessing the partitioning the variability of

soil moisture by the physical controls which was done by computing the entropy values.

At the point scale, we found that in Iowa soil texture partitioned soil moisture variability

across both the years. However, in Little Washita, the two years showed different results.

In the dry year soil texture showed better partitioning of soil moisture whereas in the wet

year, topography showed better partitioning. At the airborne scale, soil texture showed an

effective partitioning of soil moisture variability for both the watersheds. However, this

may be an artifact of the structure of the soil moisture retrieval algorithm itself.

We also found that given the same extent scale, variable precipitation is more liable of

effecting the apparent interactions of physical controls with data observed at a smaller sup-

port scale. An important take home message from the study is that during a field campaign

while collecting ground based data, it is very important to collect representative samples

from different vegetation and soil types in agricultural watersheds since they jointly con-

trol the soil moisture spatial distribution. In the absence of vegetation based heterogeneity
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in the watershed, soil textures based heterogeneity seems to yield more control on soil

moisture spatial distribution as opposed to topography. However, since the nature of het-

erogeneity controls the spatial distribution of soil moisture, this result must be restricted

to watersheds with similar heterogeneity.
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3. LAND-SURFACE CONTROLS ON NEAR-SURFACE SOIL MOISTURE

DYNAMICS: TRAVERSING REMOTE SENSING FOOTPRINTS

3.1 Synopsis

In this new era of remote sensing based hydrology, a major unanswered question is how

to incorporate the impact of land-surface based heterogeneity on footprint scale soil mois-

ture in understanding the hydrologic cycle. The answer to this question becomes twice

complicated since 1) soil moisture dynamics that vary with (support, extent and spacing)

scale are dependent on land-surface based heterogeneity and 2) land-surface based hetero-

geneity itself is scale specific and varies with hydro-climate/regions. Land-surface factors

such as soil, vegetation and topography affect soil moisture dynamics by redistributing the

available soil moisture on the ground. In this study, we determined the contribution of

these physical factors on the redistribution of near-surface soil moisture across a range of

remote sensing scales varying from airborne remote sensor footprint (1.6 km) to a satellite

footprint scale (25.6 km). Two-dimensional non-decimated wavelet transform was used to

extract the support scale specific information from the spatial signals of the land-surface

and soil moisture variables. The study was conducted in 3 hydro-climates: humid (Iowa),

sub-humid (Oklahoma) and semi-arid (Arizona). It was found that the dominance of soil

on soil moisture dynamics typically decreased as we went from airborne scale to satel-

lite footprint scales whereas the influence of topography and vegetation increased with

increasing support scale for all three hydro-climates. The distinct effect of hydro-climate

was identifiable in the soil attributes dominating the soil moisture dynamics. It was found

that the near-surface soil moisture dynamics in Arizona (semi-arid) can be more attributed

to the clay content which is effective limiting parameter for evaporation whereas in the

humid and wet Oklahoma, % sand (limiting parameter for drainage) was the dominant
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attribute of soil. The findings from this study can provide a deeper understanding of the

impact of heterogeneity on soil moisture dynamics and the consequent improvement of

hydrological models operating at footprints scales.

3.2 Introduction

Near-surface soil moisture dynamics refer to the variations in near surface soil mois-

ture. They govern (1) partitioning of the energy and water budget, (2) triggers for runoff

on the land surface or infiltration into the deeper layers after rainfall depending on the an-

tecedent moisture conditions, (3) modulation of groundwater recharge rates and contami-

nant transport to the groundwater and (4) bottom boundary condition for climate models

and top boundary condition for watershed hydrology and agricultural production mod-

els. However, the apparent soil moisture dynamics can vary widely with the spatial and

temporal scale of measurement of soil moisture (Bloschl and Sivapalan, 1995; Gaur and

Mohanty, 2013) which can be varied based on the scaling triplet, i.e., support, extent, and

spacing scale (Bloschl and Sivapalan, 1995). The advent of a remote sensing (RS) era

in hydrology has led to increased availability of data over larger extents, coarse remote

sensing supports (footprints) and regular spacing whereas our understanding of soil mois-

ture dynamics (Richard’s equation, Richard (1931) has been based on soil moisture data

collected at smaller extents, Darcy support scale and irregular spacing. In order to exploit

the full potential of soil moisture estimation from space and enable transfer of knowledge

of soil moisture dynamics between scales, it is essential to understand soil moisture dy-

namics from a remote sensing (support, spacing and extent) scale perspective. The other

important factor governing soil moisture dynamics at the RS footprint is the hydro-climate

of the region. The hydro-climate of a region determines the amount of input water (in

terms of precipitation) to any region and discounting tectonic activity or nature of parent

rock material, it also represents the nature of landscape forming agents (like precipitation,
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temperature extremes observed in a region etc.). For example, an arid hydro-climate (like

deserts) will be dry and will typically have poorly formed coarser sandy soils since a ma-

jor weathering agent (water) is available in low quantity. Likewise, the vegetation density

is also determined by the precipitation amount, temperature etc. while many topographic

features (rills etc.) may also be generated as a result of long term impact of channeling of

precipitation. Since soil type, vegetation (type, density etc.), topography and precipitation

history control soil moisture dynamics (Mohanty and Skaggs, 2001; Gaur and Mohanty,

2013), it can be hypothesized that dynamics of soil moisture are hydro-climate specific.

Past literature has focused extensively on correlations between physical factors and

soil moisture using geostatistics. This has enabled scientists to evaluate their effect on soil

moisture at varying extent and spacing scales but fixed support scale (typically Darcy).

Ryu and Famiglietti (2006) used ground based soil moisture data (Darcy support scale)

to propose that small scale correlations were controlled by soil and vegetation properties

whereas large scale correlations could be attributed to precipitation (Joshi and Mohanty,

2010). Cosh and Brutsaert (1999) demonstrated a soil based control on soil moisture

distribution which was also corroborated by Gaur and Mohanty (2013). Soil moisture dis-

tribution has also been shown to be influenced by variable land cover, land management,

micro-heterogeneity (Mohanty et al., 2000a) and topography (Mohanty et al., 2000b; Burt

et al., 1985; Western et al., 1999). Oldak et al. (2002) computed soil moisture variograms

with data collected at 400 m support scale and compared them with those of rainfall and

soil texture. They associated soil moisture variability observed in Oklahoma at 10 km

to soil texture and larger scale dynamics to precipitation variability. However, only a few

studies have discussed soil moisture variability by varying support scales (RS footprints)

and have mostly been limited by the scales and/or hydro-climates being analyzed. Jawson

and Niemann (2007) described the influence of soil texture, topography and land-use on

soil moisture patterns using soil moisture data collected at 800 m support scale for a re-
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gion in Oklahoma and described that percent sand is most closely related to soil moisture

variability. Joshi and Mohanty (2011) used data collected at the 800 m support scale in

Iowa and argued that rainfall, topography, and soil texture have maximum effect on soil

moisture distribution with limited influence of vegetation. Gaur and Mohanty (2013) used

data from Oklahoma and Iowa at 800 m support scale to show a soil texture based control

on soil moisture variability.

Considering the lack of and need for studies regarding the effect of varying support

scales on the relationship between soil moisture and heterogeneity, the primary objective

of this study was to determine the hierarchical dominance of land-surface (soil, vegetation

and topography) factors on soil moisture across remote sensing support scales varying

from 1.6 km (airborne) to 25.6 km (satellite) for 3 hydro-climates. The extent and spacing

scale for the study was fixed at regional extent and regular spacing while the support was

varied to extract support scale specific information from the spatial signal of the physical

variables using 2-dimensional non-decimated wavelet transform. A number of attributes

were chosen to represent soil, vegetation and topography for a comprehensive evaluation

of the land-surface factors. To the best of the authors’ knowledge, this is the first study

addressing the physical controls of near-surface soil moisture across such a wide range of

support scales.

3.3 Study Area and Data

3.3.1 Climatology

The study has been conducted in 3 separate regions representing different hydro-

climates (Figure 3.1). The first region lies in Arizona. The climate in this region is

classified as semi-arid hot climate (climate classification BSh, Ackerman (1941)). This

climate typically receives 25.4 cm of precipitation but not more than 76.2 cm annually.

Precipitation is caused by cyclonic fronts and the water balance displays a deficit (output

58



> input) throughout the year. The potential evaporation during the growing season is be-

tween 101.6- 127 cm (NOAA technical report NWS 33, 1982). The second region is in

Iowa. The climate in the region is classified as moist climate with severe winter (climate

classification Dfa). The potential evaporation during the growing season is 76.2 cm. The

third study area is in Oklahoma and is characterized as sub-tropical climate (climate classi-

fication Cfa). The climate in the region remains humid throughout the year. The summers

are hot and long while the winters are cool and short. Frontal precipitation from cyclonic

storms dominates in winters which are replaced by convectional precipitation during sum-

mer. The potential evaporation during the growing season is between 91.4- 101.6 cm. The

water budget for Oklahoma typically is a surplus. In case a deficit exists, it does not last

beyond 2-3 months.

3.3.2 Data

The heterogeneity in topography, soil, and vegetation was described using various at-

tributes for a comprehensive analysis. Topography was represented by elevation (DEM),

slope (degree) and flow accumulation, soil was represented by percent clay and percent

sand, while leaf area index (LAI) was used to represent vegetation. The elevation data was

obtained from the National Elevation Dataset (Gesch, 2009). Slope (calculated in degrees)

and flow accumulation were derived from the same elevation dataset using ArcGIS (ESRI).

Percent sand and clay values were obtained from Soil Geographic (STATSGO) Data Base

for the Conterminous United States (Miller and White, 1998). LAI was extracted from

the 4-day composite MODIS product (NASA Land Processes Distributed Active Archive

Center). Statistics describing site characteristics have been given in 3.1. Airborne volu-

metric soil moisture data (Figure 3.2 and 3.3) for Iowa and Arizona was collected during

Soil Moisture Experiments in 2002 (SMEX02) and 2004 (SMEX04) respectively, using

the Polarimetric Scanning Radiometer, PSR (Bindlish et al., 2006, 2008) at 800 m X 800
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m spatial resolution. The data for Oklahoma (Figure 3.4) was collected in 1997 (Southern

Great Plains (SGP) 1997 hydrology experiment) using the Electronically Scanning Ra-

diometer (Jackson, et al. 1999) at 800 m X 800 m spatial resolution. The soil moisture

data comprises a wide range of soil moisture conditions (Figure 2) that are representa-

tive of the typical soil moisture conditions in the regions during the growing season. The

airborne soil moisture data was validated against the corresponding field averages of the

ground based soil moisture data that was collected simultaneously. Thus, the moisture

retrieval algorithm used does not bias the interpretation of the results in this study.

3.4 Methodology

Land-surface based physical factors (also referred to as physical factors or physical

controls in the study) mainly affect soil moisture dynamics by redistributing the available

moisture in the land surface. Moisture redistribution or changes in soil moisture content

in a region over a given period of time, takes place as a result of infiltration/drainage (pri-

marily dependent on soil type) or evapo-transpiration (dependent on vegetation, soil and

topography) from within a pixel and also sub-surface/overland flow (dependent on soil and

topography) between pixels etc. Since each process causing redistribution has its own as-

sociated time scale, a redistributed soil moisture signal sampled over different time scales

may reveal a dominance of different physical processes. Thus, moisture redistribution at a

fixed time scale (representative of RS data) was selected as the variable for evaluating con-

trols of physical factors on footprint scale soil moisture dynamics. The magnitude of soil

moisture redistribution is also a function of antecedent moisture conditions and depends

on whether the domain is undergoing drying or wetting as evident by hysteresis observed

in past studies (Teuling et. al., 2007; Ivanov et. al., 2010; Gaur and Mohanty, 2013).

Thus, in order to study the effect of land-surface factors on soil moisture dynamics in iso-

lation, the effect of antecedent soil moisture from the moisture redistribution spatial signal
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was removed. We generated pixel based daily (in some cases, once in 2 days or bidiur-

nal) moisture redistribution images. The daily (and bidiurnal) scale was selected keeping

in mind that most satellite based soil moisture data is typically available once every day.

The influence of physical factors on moisture redistribution was computed in terms of their

areal extent of dominance and the average magnitude of moisture redistribution they cause.

The areal extent was evaluated by comparing the spatial patterns of the redistribution sig-

nal with the patterns of different land-surface based physical factors. It was assumed that

if a physical factor contributed to moisture redistribution, the spatial pattern of moisture

redistribution would reflect the spatial pattern of the same physical factor. For example,

the spatial patterns of vegetation would match that of moisture redistribution if evapotran-

spiration was the dominant process causing redistribution. The results were analyzed for

drying and wetting conditions separately to account for any large scale hysteresis. The

computational details of the methodology are given below.
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Figure 3.1: Locations of the various study areas along with the heterogeneity that the
regions are composed of.
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Table 3.1: Metrics of properties representing different physical factors for semi-arid (Ari-
zona), humid (Iowa) and sub-tropical (Oklahoma) regions.

Phys. Factor Max Min Average CV** Median
Elevation
Arizona 2155 1074 1365.96 0.11 1335

Iowa 391.63 266.95 342.85 0.07 350.51
Oklahoma 383 269.99 328.32 0.06 327.67

Clay
Arizona 38 12 16.64 0.28 16

Iowa 33 18 24.76 0.14 24
Oklahoma 27 3 16.83 0.33 19

Sand
Arizona 58 17 50 0.19 49

Iowa 45 20 29.92 0.19 29
Oklahoma 92 17 31.51 0.72 20

Slope
Arizona 17.22 0.03 1.61 1.22 1.05

Iowa 1.36 0 0.24 0.66 0.21
Oklahoma 1.53 0.01 0.35 0.59 0.31

Flow Acc.
Arizona 1339 0 21.6 3.97 2

Iowa 129 0 4.37 2.58 0
Oklahoma 701 0 10.23 3.81 0

LAI
Arizona 1.8 0 0.46 0.45 0.5

Iowa 6.8 0.1 2.62 0.33 2.5
Oklahoma* 3.3 0.3 0.96 2.68 0.9

* LAI data for Oklahoma was taken from the year 2004 since
MODIS data was not available in 1997. Since Oklahoma is
mostly natural grasslands which remain almost same across the
years, datasets from different years with similar rainfall was
considered.
**CV represents coefficient of variation

63



 

 

 

 

 

 

 

Figure 3.2: Soil moisture maps for Arizona
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Figure 3.3: Soil moisture maps for Iowa
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Using the soil moisture data for each region, soil moisture redistribution (eq. 3.1 and

eq. 3.2) values were computed. Soil moisture data was collected at irregular time intervals.

Thus, the redistribution values represent soil moisture redistribution over time scales rang-

ing from 1-2 days depending on the duration between two consecutive airborne remote

sensing data collection days (Table 3.2).

∆SMt = smt− smt−1(t−2) (3.1)

where,

∆SMt = redistributed soil moisture for day, t (before correction for antecedent soil

moisture)

smt = soil moisture for day, t

∆SMnorm,t =
∆SMt

SMant
(3.2)

∆SMnorm,t = value of soil moisture redistribution at a pixel after correction for an-

tecedent moisture

SMant = antecedent soil moisture at the pixel

Figure 3.5 shows a monotonic decreasing relationship between antecedent soil mois-

ture and moisture redistribution. Thus, in order to evaluate the significance of different

geophysical factors on moisture redistribution in isolation from the effect of antecedent

moisture, the redistribution values were normalized using antecedent moisture values for

each pixel (eq. 3.2)
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Table 3.2: Days of year (DOY) data was available for and the time and spatial scales at
which the wetting/drying dynamics were analyzed

Region Data availability Time scales Spatial support Data dimension
(DOY) analyzed (days) scale (km) (pixels)

Arizona 221-223,225-226 1-2 1.6, 3.2, 6.4, 12.8 4340 (62x70)
Iowa 176,178,180,182,185 1-2 1.6, 3.2, 6.4, 12.8 3900 (100x39)

189-193
Oklahoma 169-171,176-178,180-184, 1-2 1.6, 3.2, 6.4, 12.8 4440 (111x40)

193-195,197

 

 

 

Figure 3.5: Plot of observed ∆SM given antecedent soil moisture conditions

3.4.1 Wavelet Analysis

In order to extract support scale based information from the images comprised of

the moisture redistribution values as well as the physical factors, two- dimensional non-

decimated wavelet (NDWT) analysis was used. Wavelet analysis has proved to be a pow-

erful tool in understanding geophysical data (Kumar and Foufoula-Georgiou, 1997, Si and

Zeleke, 2005). Wavelets are wave like functions,ψ(x), defined at a location ’x’ which os-

cillate about the x-axis and satisfy three criteria 1)
∫

∞

−∞
ψ(x)dx = 0 i.e. zero mean value ,

2)
∫

∞

−∞
|ψ(x)|2dx = 1 i.e. finite energy, and 3) compact support i.e. non-zero value over a

narrow interval. Once a particular formulation of the mother wavelet, ψ(x), is fixed, it is

(dilated) and translated over a given signal (eq. 3.3) and the resultant variations serve as
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basis functions ψs,u(x) to represent the given signal.

ψs,u(x) =
1√
s
ψ(

x−u
s

) (3.3)

s = scaling parameter which controls the dilation

u = location of wavelet used for translation across the signal

NDWT is a discrete wavelet transform. For a discrete wavelet transform (DWT), any

signal f (x) is decomposed (eq. 3.4) into wavelet coefficients, Ws,u for each scale (s) and

location (u), through wavelets. Simply explained a wavelet coefficient, Ws,u, represents

the degree of similarity between the wavelet at the scale ’s’ and at location determined by

’u’ and the signal at the same location. The higher the wavelet coefficient, greater is the

similarity

Ws,u = ∑ f (x)ψs,u(x) (3.4)

The basis functions in the case of a DWT scale up in a dyadic series represented by eq.

3.5. The largest scale of the basis function is restricted by the length of the dataset.

ψs,u(x) = 2
s
2 ψ(2sx−u) (3.5)

s = 1,2,...

The mother wavelet chosen for our study was the Haar wavelet represented by eq. 3.6.

A Haar wavelet was chosen given its suitability in soil moisture applications in literature

(Das and Mohanty, 2008).
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ψs,u(x) = 1 0≤ x < 0.5

=−1 0.5≤ x < 1

= 0 otherwise

(3.6)

We performed a 2-dimensional NDWT on our spatial data. A 2-D wavelet transform

is a wavelet transform performed twice- once on the rows and once on the columns. It

produces horizontal, vertical and diagonal details and an approximation (Figure 3.6). The

approximation represents the original signal after the details at support scale range,’s’,

have been removed from the signal. While running wavelet analysis, each wavelet trans-

form is conducted on the approximation of the next finer scale range (Figure 3.6). Thus,

after running the wavelet analysis over all possible scales, the result is a set of details at all

scales ’S’ and a signal approximation (AS). The horizontal details are obtained by passing

high pass-low pass (HP-LP) filters, vertical details by passing LP-HP and diagonal details

are obtained by passing HP-HP filters over the domain. The hyphenated combination in-

dicates the vertical-horizontal direction in which filters are moved. The set of all wavelet

coefficients (W̃s) at a particular scale, s, represents the ’details’ in the signal at that partic-

ular scale. NDWT is associated with zero phase filter and is translation invariant. It thus

results in images of the wavelet coefficients which can be perfectly aligned with the orig-

inal signal (Percival and Walden, 2000) and reduces error in interpretation resulting from

the sampling scheme/starting point of the data. For more mathematical details on NDWT,

the readers are referred to Percival and Walden (2000). The NDWT wavelet analysis on

our dataset was carried out using the waveslim package (Whitcher, 2012) in the statistical

software package R version 3.0.1.

Wavelets analysis (like Fourier analysis) is computed in the frequency domain of the
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(in this case, spatial) signal and provides information of the range of support scales corre-

sponding to different frequency bands. In the given study, the dataset was analyzed over

4 support scale ranges (1.6 - 3.2 km, 3.2 - 6.4 km, 6.4 - 12.8 km, 12.8 - 25.6 km) that

represent corresponding ranges of spatial frequency. The scale ranges have been referred

to by their lower scale limit in the results and discussion.

A useful property of NDWT is that it divides the total variance of the signal, σ( f (x))

into the components of variance associated with different support scales. The total variance

of the signal can be reconstructed by simple addition (Percival et al., 2011) as explained

in eq. 3.7.

σ( f (x)) = ∑
S

σ(W̃s)+σ(AS) (3.7)

σ( f (x)) is defined as the statistical variance =Σ
( f (x)− f (x))2

n−1 , where f (x) is the moisture

redistribution variable, f (x) is the sample mean and n is number of realizations of the

variable. σ(W̃s) or the global wavelet spectrum is the variance contributed by support

scale range, s, to the variance of the signal,σ( f (x)), which can also be obtained by adding

the variance of the detail wavelet coefficients (horizontal, vertical and diagonal) at each

support scale range. Thus, wavelets can characterize a non-stationary spatial/temporal

dataset at different support scales (coarser than the scale of the original signal).

In the given study, the global wavelet spectrum was modified (eq. 3.8) to understand

the percentage of variance (σglobal(%)) contributed by a particular support scale range to

the total variance of moisture redistribution signal

σglobal(%) =
σ(W̃s)

σ( f (x))
x100 (3.8)
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3.4.2 Pattern Matching

The contribution of different physical factors to soil moisture redistribution was com-

puted in terms of its areal extent of influence and the magnitude of moisture redistribution

associated with the physical factor.

The spatial patterns of the physical factor were matched with the patterns of the mois-

ture redistribution signal at different support scales. The areal extent of impact was deter-

mined by calculating the total area at which pattern matches between the physical factor

and ∆SMnorm,t were observed. A successful match in the pattern of ∆SMnorm,t and the

physical factor was computed by equating the wavelet spectrum (W 2
s,norm) of the two sig-

nals for each spatial support scale. Location specific wavelet spectrum values that differed

by less than 0.005, were considered to display a similar pattern at the particular location.

Prior to comparison of the wavelet spectrum of the physical factors and ∆SMnorm,t , the

wavelet coefficients for all set of images were normalized (eq. 9) with mean of 0 and

standard deviation of 1. The mean and standard deviation for normalizing the coefficients

were calculated after removing the outliers. The outliers were determined and removed

using eq. 10.

∆SM (redistributed near-surface soil moisture) and geophysical control attributes have

different ranges. The values of their wavelet coefficients are thus influenced by this varying

range in data. Thus, after calculating wavelet coefficients for ∆SM and physical factors,

the wavelet coefficients were normalized (eq. 3.9) to transform them to a normal distri-

bution with mean of 0 and standard deviation of 1. The mean and standard deviation for

normalizing the coefficients were calculated after removing the outliers. The outliers were

determined using eq. 3.10.

Ws,norm =
Ws− 1

k ∑Ws√
(1

k ∑(Ws− 1
k ∑Ws)2

(3.9)
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k = number of pixels in the domain

Ŵs,outlier =Ws >
1
k ∑Ws +2

√
(
1
k ∑(Ws−

1
k ∑Ws)2

=Ws <
1
k ∑Ws−2

√
(
1
k ∑(Ŵs−

1
k ∑Ws)2

(3.10)

Eq. 3.11 was then used to determine the areal extent of influence of the physical factors

(e.g., soil, topography and vegetation) on ∆SMnorm,t at different support scale ranges.

C f ,s =
N f ,s

N∑ f ,s
x100 (3.11)

where C f ,s = percent contribution of physical factor, f at a specific support scale range,

s;

N f ,s = number of pattern matches of a specific physical factor, f , at a specific support

scale range, s

N∑ f ,s = total number of pattern matches observed for all physical controls at a partic-

ular support scale range, s.

The magnitude of controls (M f ,s) of each physical factor, f , at scales, s, was computed

by evaluating the mean of∆SMnorm,t for the pixels where a pattern match between the

physical factor, f and ∆SMnorm,t was observed (eq. 3.12).

M f ,s =
1

N f ,s
ΣN f ,s∆SMnorm,t (3.12)

3.5 Results and Discussion

∆SMnorm,t was computed over 1- or 2-day intervals. The 2-day interval soil moisture

redistribution values were calculated when the soil moisture data was not collected daily

because of rain events or logistic reasons. Table 2 provides the details of available data
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for each study region. The ∆SMnorm,t computed for day of year (DOY) 225 (in Arizona),

DOY 178, 180, and 182 (in Iowa) and DOY 180, and 197 (in Oklahoma) represent soil

moisture redistribution computed over 2 day periods.

3.5.1 Analysis of Variance of ∆SMnorm,t

The variance of a soil moisture signal is dependent on the support scale it is sampled

at (Bloschl and Sivapalan, 1995). The total variance of the original∆SMnorm,t signal rep-

resents the variance in soil moisture dynamics at the 0.8 km support scale which contains

information of scales at and coarser than 0.8 km (restricted by extent of data). The vari-

ance within the 0.8 km support scale has been averaged within the dataset and cannot be

represented by this data. The NDWT based analysis divides the variance of the original

spatial signal (0.8 km support scale) into variance contributed by different spatial support

scale ranges i.e., 1.6- 3.2, 3.2-6.4, 6.4-12.8, and 12.8- 25.6 km. Figure 3.7 shows the per-

cent contribution (σglobal(%), eq. 3.8) of each support scale to the total variance of spatial

∆SMnorm,t signal. The daily variance signals showed typical increasing trend up to 6.4 km

spatial resolution for all days in Iowa and a few days in Arizona and Oklahoma (Figure 5).

Qualitatively, the trend of scale based variance does not appear to be related to the

antecedent moisture conditions (Figures 3.2, 3.3 and 3.4) since both trends (i.e increasing

and decreasing till 6.4 km) occur for dry as well as wet days. These results may on the

other hand be qualitatively related to the spatial patterns of the land-surface factors (Figure

3.1). Iowa has a smoothly varying gradient in elevation with elevation being higher in the

northern part of the region whereas lower in the southern part of the region. The elevation

in Arizona on the other hand has a high elevation band in the middle of the domain which

radiates to lower elevations while Oklahoma has a rolling topography. Likewise, the soil

patterns in Iowa are not ’patchy’ unlike Oklahoma which shows higher variation in % sand

at shorter distances. Similar variations can be seen in the soil pattern in Arizona albeit
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at slightly larger distances than Oklahoma. The higher heterogeneity in the patterns of

land-surface factors at coarser scales potentially causes the variability in the soil moisture

dynamics to be higher as the support scale is coarsened in Iowa (beyond 6.4 km). Arizona

and Oklahoma which are more locally heterogeneous than Iowa show mixed effects with

no consistent pattern in the global wavelet spectrum (Figure3.7 a and c).

 

 
Figure 3.7: Graphs depict percent of the total variance observed in the soil moisture change
signal at different scales for a) Arizona, b) Iowa and c) Oklahoma. 1-day and 2-day dy-
namics represent soil moisture change observed at 1 day and 2-days’ interval, respectively.
Black line represents declining trend, while grey line represents increasing trend
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At homogeneous Darcy scale, antecedent wetness conditions and the stage at which

imbibition or drying is initiated determine moisture dynamics of soil. However, this part of

the analysis indicates that at remote sensing footprints, heterogeneity and the organization

(co-variablity) of land-surface heterogeneity has a greater control over the soil moisture

dynamics. The relationship between landscape heterogeneity and moisture dynamics has

been discussed in detail in the subsequent sections.

3.5.2 Scale Based Contribution of Physical Factors

The scale based contribution of the physical factors to soil moisture redistribution was

evaluated as a function of their areal extent (eq. 3.11) of influence and the relative magni-

tude of their effect (eq. 3.12) on soil moisture redistribution. The analysis was conducted

separately for drying and wetting conditions to account for large scale hysteresis.

3.5.2.1 Areal Extent of Controls, C f ,s

The patterns observed in different physical factors and ∆SMnorm,t signals were matched

for the three study regions. A sample diagrammatic representation of locations of pattern

match between moisture redistribution patterns and % sand values is shown in Figure 3.8.

Figures 3.8 a and b depict the normalized wavelet coefficients of∆SMnorm,170 (Oklahoma)

and % sand respectively while Figure 3.8 c depicts the locations of the pixels where a

pattern match between the two was observed. The white pixels correspond to the central

location of the wavelet at which a pattern match was observed. The area of these white

pixels was consolidated (eq. 3.11) to estimate C f ,s (Figure 3.9). The contribution of soil

(% sand and % clay) remains high (and typically maximum compared to other factors) in

all three hydro-climatic regions while maintaining a decreasing trend as we go higher in

scale (Figure 3.9). The trend for contribution of topographical and vegetation factors, on

the other hand, increases with increasing scale. Specifically in Arizona, at 12.8 km, the

effect of topography and vegetation becomes equivalent/ slightly greater than soil. Also
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in Oklahoma, vegetation becomes more dominant than soil beyond 3.2 km. These factors

are analyzed in greater detail below.

 

 
Figure 3.8: a) Normalized wavelet coefficients (Horizontal (H), Vertical (V) and Diagonal
(D)) for soil moisture redistribution (DOY 170), b) for % sand, c) Locations of pattern
match (white pixels), in Oklahoma at 1.6 - 3.2 km scale
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Figure 3.9: Relative contribution of different physical controls to soil moisture redistri-
bution observed in Arizona, Iowa and Oklahoma, a) all pixels, b) drying pixels, and c)
wetting pixels.
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1. Soil Factors

Percent clay and sand: The percentage of clay and sand together define the infil-

tration capacity of the domain at the land surface. Since they comprise the primary

factors determining the pore sizes and structure of the soil in which water is being

held, they also affect the rate of evaporation from the soil. Significant association

between soil based factors and soil moisture change is evident in all three regions.

Higher clay content can be related to higher water holding capacity of the soil. It

also slows down infiltration and hinders drainage. In contrast, sand promotes in-

creased infiltration. The spatial distribution of sand and clay across the study scales

also determine infiltration vs. evaporation patterns (Nachshon et al., 2011; Zhu and

Mohanty, 2002; Mohanty and Zhu, 2007).

The contribution of % clay on soil moisture variability is higher than that of % sand

in Arizona and in Iowa (except for the 3.2 km scale), whereas in Oklahoma % sand

contributes more than % clay (except for the 1.6 km scale). This is true for drying

as well as wetting scenarios. Arizona is semi-arid and receives very little rainfall.

Under these conditions, any moisture that is held in the soils is held by the small

pores represented by % clay as opposed to % sand. The greater pattern association

with % clay in Arizona represents that the evaporation is the dominant process of

water redistribution as opposed to drainage of free water (Zhu and Mohanty, 2002).

Despite being a sandy region, the water dynamics in Arizona are controlled (lim-

ited) by the clay content in the soil. In case of Iowa, which is primarily a cultivated

region that receives higher precipitation than semiarid Arizona, soil moisture pat-

terns match well with both % sand and % clay. This indicates that both processes

(evaporation and drainage) occur in this region to cause redistribution of moisture.

Iowa is a cropped land planted with soybean and corn. The canopies of the two
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crops (during initial period of growth) allow bare soil exposure to the sun. Thus, the

top soil made porous by plant roots enables infiltration (represented / limited by %

sand) whereas the landcover promotes water losses (represented / limited by % clay)

through evapotranspiration. Oklahoma is a wet and sub-humid region and the major

losses to the near-surface soil moisture are due to drainage represented / limited by

% sand. Thus, the influence of soil texture on soil moisture redistribution is directly

linked to the hydro-climate and wetness condition of a region.

2. Topographic Factors

Elevation, slope and flow accumulation: Elevation is the basic topographic factor

from which a number of heterogeneity representing parameters (slope, flow accumu-

lation etc.) may be derived. Elevation patterns can relate to soil moisture patterns

for different reasons (Coleman and Niemann, 2013). It may cause steep potential

gradients thus, influencing moisture redistribution. Large elevation differences in-

duce differences in evapotranspiration patterns (Goulden et al., 2012). Slope can

strongly influence water distribution through overland flow or aspect based drying.

Flow accumulation represents the tendency of the region to accumulate water (con-

cavity) and thus, the water holding capacity. This may lead to localized infiltration

and evaporation.

Figure 3.9a shows that the behavior of topography (elevation, slope and flow accu-

mulation) with scale is similar for all three hydro-climates i.e. its percent contri-

bution increases with support scale. In the relatively natural (anthropogenically un-

altered) and topographically more complex (undulating terrain) regions, Oklahoma

and Arizona, flow accumulation has a higher contribution than slope and elevation,

whereas the trend is different for Iowa where elevation takes a higher precedence at

coarser scales (6.4 km and coarser).
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Overall, we observe that Arizona and Oklahoma behave similarly whereas the be-

havior of moisture dynamics in Iowa is different. Oklahoma and Arizona are topo-

graphically more complex than Iowa which has a relatively smoothly varying north

to south gradient (Figure 3.1). Even though the absolute values of elevations in Iowa

and Oklahoma are similar, the pattern association for the two regions is very differ-

ent. This implies that the spatial patterns of elevation dictate the effect of elevation

on soil moisture redistribution. Oklahoma is rolling and thus, the concavity of the

domain remains an important factor whereas the slope in Iowa is more uniform and

therefore the effect of concavity of the domain becomes lesser than elevation as we

go higher in scale. The contribution of slope is slightly higher for the wetting pixels

than drying pixels in Oklahoma and Arizona (Figures 3.9b and c). The contribu-

tion of elevation is only marginally different during wetting and drying. The higher

contribution of slope in the two regions during wetting signifies the occurrence of

overland flow in Oklahoma and even in the precipitation limited Arizona. However,

in Iowa, the trend is different with elevation showing higher contribution for the dry-

ing pixels. The contribution of elevation in Iowa also becomes equivalent to or larger

than other topographical factors at the coarser scales (6.4 km and coarser). This sig-

nifies two important points. First, elevation influences drying more than wetting and

second, irrespective of the precipitation dynamics, in topographically less undulat-

ing regions, the contribution of topography on soil moisture spatial distribution is

more dominated by the elevation of a pixel. On the other hand in topographically

complex (undulating) regions, flow accumulation and slope form better representa-

tive parameters of topography for describing soil moisture spatial dynamics.

3. Vegetation Factors

Leaf area index: Leaf area can affect soil moisture loss through transpiration and
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limit the amount of input water through interception and evaporation of intercepted

water on the leaf. It can also direct water flow into the soil through stem flow.

The association between LAI patterns and moisture was significant in all 3 regions.

The percentage of pattern matches, show a general increasing trend with scale. In

Oklahoma, vegetation becomes the most spatially dominant factor at support scale

3.2 km and above. Iowa is an agricultural region with crops of different LAI. Ari-

zona is split among cropland, shrub land, and grass land while Oklahoma is mostly

grassland with some agriculture. The significance of vegetation in Iowa is slightly

more in the drying pixels as compared to wetting pixels implying more transpiration

losses as opposed to differential interception of rain water by the varied plant types

(Fig. 3.9b and c). Similarly, Oklahoma also displays a higher contribution of vege-

tation in the drying scenario. In the sparsely vegetated Arizona, the trend is opposite

with higher vegetation contribution for wetting pixels. It signifies a dominance of

processes like interception and leaf evaporation from intercepted water.

3.5.2.2 Effect of Physical Factors on Magnitude of ∆SMnorm,t ,M f ,s

Figure 3.10 shows the mean of the absolute values of ∆SMnorm,t (eq.3.12) observed in

regions where the pattern matches between various physical factors and ∆SMnorm,t were

observed. The range and maximum value of ∆SMnorm,t were higher for the wetting pixels

than the drying pixels (Figure 3.10). The higher variability of the ∆SMnorm,t during wetting

can be attributed to higher variability in rainfall input to the system which leads to higher

variations in soil moisture. Arizona and Oklahoma also showed larger ranges of ∆SMnorm,t

whereas they were smaller in Iowa. This partly occurred since there were no heavy precip-

itation events in Iowa and also the moisture conditions in Iowa did not become extremely

dry (Figure 3.5). It was also observed that topography showed significantly greater contri-

bution in Arizona. Mixed effects are observed in Iowa with soil and topography creating
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higher ∆SMnorm,t at different scales. Likewise in Oklahoma, topography and soil create

higher ∆SMnorm,t . These results also reveal that the physical factors which had lower spa-

tial influence (in terms of areal extent) on soil moisture redistribution (Figure 3.9), may

have greater influence on the amount of moisture redistribution that takes place and can

thus; greatly alter the water budget in the limited spatial regions where they are important.

It is worthwhile to note that the magnitude of vegetation effect was typically low in all 3

regions.

3.5.3 Overall Ranking Scheme

In order to characterize the overall effects of the physical factors on soil moisture dis-

tribution and provide a general guideline for the three hydro-climates, the physical factors

were ranked based on the magnitude of controls (Figure 3.10a) and areal extent of con-

trols (Figure 3.9a). Equal weight was given to both the components and the hierarchy of

physical factors on defining near surface soil moisture distribution was evaluated. Results

are depicted for the three study regions in Figure 3.11. A lower numerical rank implies

greater overall control of the physical factor on soil moisture at a particular scale. In Ari-

zona, soil (or specifically % clay), is the most dominant land-surface factor at the 1.6 -

3.2 km support scale range, while topography (slope) and vegetation (LAI) become more

dominant at 3.2-12.8 km and 6.4-25.6 km support scale range respectively. Soil remains

the most dominating factor in Iowa consistently with % sand being most dominant at the

1.6 - 3.2 km support scale range beyond which % clay becomes most dominant. As in Ari-

zona, we observe that soil (% sand) is dominant at the relatively finer support scales (1.6

- 6.4 km) while vegetation becomes most important between 3.2 - 25.6 km support scale

range in Oklahoma. Topography exerts little dominance at the finer scales and moderate

dominance at the relatively coarse support scales.
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Figure 3.10: Mean redistributed moisture gradients observed in regions where pattern
matches with % sand, % clay, elevation, slope, flow accumulation and LAI are observed
for a) dry, b) normal and c) wet antecedent conditions during drying and wetting of the
domain.
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3.5.4 Investigating Antecedent Moisture Based Thresholds

Processes that control moisture movement in the soil surface are generated by the

amount of water in the domain and the heterogeneity comprised of different geophysi-

cal factors in the domain. In order to investigate the presence of threshold antecedent

moisture values at which different physical factors (and thus related hydrologic processes)

become dominant, the antecedent soil moisture conditions of the pixels at which different

geophysical factors become dominant (pattern matched locations) were compared using

the Wilcoxon rank sum (WRS) tests. WRS test is the non-parametric equivalent of the

t-test and assesses a difference in the distribution of the ranks of the ordered observa-

tions as opposed to their actual values. The physical factors which showed maximum

overall control (Figure 3.11) on moisture redistribution values were chosen to represent

soil, topography and vegetation attributes. The median values for the same attributes are

provided in Table 3.3. Figure 3.12 shows the antecedent soil moisture distribution of the

regions where the particular physical factor was found important while the WRS signifi-

cance results are provided in Table 3.4. We observe that there are statistically significant

differences in the antecedent moisture distribution of topography when compared to soil

and vegetation in Arizona whereas in Iowa, there are no statistically significant differ-

ences/thresholds observed. In Oklahoma, the effect of soil is significantly different from

topography at all scales and from vegetation at 3.2-25.6 km support scale range. The typ-

ical accuracy of soil moisture retrieval from microwave brightness temperature has been

reported to be between 2 - 5% VSM (Narayan et al., 2004; Bolten et al., 2003; Njoku et

al., 2002). Thus, any median moisture difference < 0.02 may reflect retrieval errors (Table

3.3). The difference between the median values of antecedent moisture values of the re-

gions where different physical factors dominate is relatively small in Oklahoma and within

the error range. In Arizona on the other hand, we observe that differences are more than
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the remote sensing measurement error. This implies that at remote sensing footprint scales,

antecedent moisture based thresholds at which the controls switch from one land-surface

factor to the other may be effectively identified only in some regions.

Table 3.3: Median of the antecedent moisture values of the regions at which a pattern
match between the given physical factors and moisture redistribution was observed.

Median antecedent moisture
Support scale 1.6 km 3.2 km 6.4 km 12.8 km

ARIZONA
Soil (Clay) 0.021 0.073 0.093 0.076

Topography (Elevation) 0.099 0.100 0.085 0.060
Vegetation (LAI) 0.020 0.068 0.078 0.077

IOWA
Soil (Clay) 0.214 0.208 0.210 0.210

Topography (Elevation) 0.215 0.212 0.202 0.203
Vegetation (LAI) 0.209 0.205 0.205 0.204

OKLAHOMA
Soil (Sand) 0.170 0.180 0.170 0.230

Topography (Elevation) 0.180 0.180 0.170 0.190
Vegetation (LAI) 0.170 0.170 0.150 0.180
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Figure 3.12: SMant distribution of regions where soil, topography and vegetation are dom-
inant
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Table 3.4: Significance results of Wilcoxon rank sum (WRS) test marking the existence of
a threshold value. ’x’ represents a WRS result significant at 95%.

Soil and Topography
Region/Scale 1.6 km 3.2 km 6.4 km 12.8 km

Arizona x x x x
Iowa - - - -

Oklahoma x x x x
Soil and Vegetation

Arizona x - x -
Iowa x - - -

Oklahoma - x x x
Topography and Vegetation

Arizona x x x x
Iowa - - - -

Oklahoma x x x -

3.6 Conclusions

In this study, non-decimated wavelet analysis was used to assess the influence of land-

surface based physical factors, namely, soil ( % sand, % clay), topography (elevation,

slope, flow accumulation) and vegetation (leaf area index) on soil moisture redistribution

at remote sensing footprint scales varying from 1.6 km to 25.6 km. The original soil

moisture signal was observed at 0.8 km. The contribution of the different physical factors

was computed in terms of areal extent of influence of the physical factor and the mag-

nitude of moisture redistribution associated with it to define their hierarchical control on

soil moisture dynamics. The hierarchy was defined for coarse spatial support scales but

fine (daily) temporal spacing scales which are typical of remotely sensed soil moisture

data. It was determined that the influence of physical factors on soil moisture redistribu-

tion at remote sensing footprints varies across different hydro-climates and scales. Soil

remains the dominant physical factor in Iowa across all scales whereas the topography and

vegetation are the dominant physical controls in Arizona starting at 3.2 km and 6.4 km,
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respectively. In Oklahoma, on the other hand, soil is the dominant factor at 1.6- 3.2 km but

vegetation becomes more dominant thereafter. The effect of hydro-climate was also iden-

tifiable in the soil attributes dominating the soil moisture dynamics. It was found that the

near-surface soil moisture dynamics in Arizona (semi-arid) can be more attributed to the

clay content which is effective limiting parameter for evaporation whereas in the humid

and wet Oklahoma, % sand (effectively limiting drainage) was the dominant attribute of

soil. Antecedent moisture based thresholds at which the effect of different physical factors

becomes significant were also found to be hydro-climate specific and found to exist only

in Arizona.

This study is yet limited by the regional extent, hydro-climates and also time period

(growing season) analyzed. However, it provides a direction for understanding hydro-

climate based dependence of near-surface soil moisture on physical factors. These findings

can assist in developing more effective physically based soil moisture scaling schemes and

in the improvement of processes in large scale hydrological models.
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4. ON VALIDATING FOOTPRINT SCALE SOIL MOISTURE AT DIFFERENT

SUPPORT, SPACING, AND EXTENT SCALE

4.1 Synopsis

The launch of the soil moisture estimating satellites like Soil Moisture Active Passive

(SMAP), Soil Moisture Ocean Salinity (SMOS), and Advanced Microwave Scanning Ra-

diometer (AMSR2) has launched hydrology into an era where the use of footprint scale

soil moisture (SM) in numerous hydrological and eco-hydrological applications is becom-

ing the norm. Depending on the spatial resolution required, a directly observed or scaled

remotely sensed soil moisture value is typically needed. However, the validation of such

observed or scaled footprint scale products is severely limited because of the scale dis-

crepancy between footprint scale soil moisture and observed ground based data that is

typically used to validate soil moisture products. Scale discrepancy poses a problem in

validation because of the difference in land-surface heterogeneity encompassed between

the two scales. In this study, we propose a data-driven, scale appropriate scheme that can

be used to validate footprint scale soil moisture. The designed scheme generates the spatial

variance structure of footprint scale moisture redistribution as a function of a scale appro-

priate dominant physical factor on which soil moisture redistribution depends. The scheme

was developed for a variety of heterogeneous conditions found in 3 regions (Arizona, Iowa

and Oklahoma) with different hydro-climates and 3 footprint scales (0.8 km, 1.6 km and

3.2 km). Our results indicate that the spatial variance of moisture redistribution can be

effectively modeled as a function of the most dominant physical control (minimum mean

R2 = 0.8 and maximum mean RMSE = 0.119) in each case. In order to make the valida-

tion scheme potentially transferable to regions with heterogeneity that is different from the

data used, the validation scheme was extended by exploiting the relationship between soil
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moisture, scale and heterogeneity through a conceptualized scale-wetness-heterogeneity

(SWHET) cuboid. The SWHET cuboid is described by a wetness index, scale index and

a newly defined heterogeneity index which can adequately quantify the land-surface het-

erogeneity across scales. The proposed SWHET cuboid can potentially serve as a look-up

graph to model the spatial variance of footprint scale moisture redistribution as a function

of the dominant physical controls. The within region validation of the cuboid resulted in

rmse values <0.002 in all three regions. The concept can potentially be temporally and

spatially transferable to larger footprint scales and hydro-climates.

4.2 Introduction

The increased and periodic availability of soil moisture (SM) observations from satel-

lites like Soil Moisture Ocean Salinity (SMOS), Advanced Microwave Scanning Radiome-

ter (AMSR) and NASA’s Soil Moisture Active Passive (SMAP), has led to the possibility

of using soil moisture to initialize and calibrate a variety of hydrological models (Wanders

et al., 2014, Sutanudjaja et al., 2014, Montzka et al., 2011, Santanello et al., 2007). Large

scale hydrological or climate models typically require soil moisture products at remote

sensing footprint scales which may or may not match the observed footprint scales. A

variety of scaling algorithms are available to generate such soil moisture products (Shin

and Mohanty, 2013, Crow et al., 2000, Piles et al., 2011, Merlin et al., 2012, Merlin et

al., 2008). However, the validation of soil moisture at remote sensing footprints (scaled or

observed) is challenging due to a lack of accurate and representative ground based data.

Past studies have typically used ground based darcy scale soil moisture data from in-

tensive soil moisture campaigns to ascertain the efficacy of their scaled or observed soil

moisture product. The major drawback of such validation schemes is the scale discrep-

ancy between the remote sensing footprint and ground based observation data. Remotely

sensed soil moisture data is collected over global extent scales, regular spacing scales
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(sampling interval of satellites) and typical support scales ranging from 25-60 km. The

ground based data on the other hand is available for regional extent scales, highly irregular

spacing scales (often only 1 or less per remote sensing pixel) and at support scales of the

order of a few centimeters. This scale discrepancy in terms of extent, support and spacing

scales between the remotely sensed soil moisture data and ground based data causes the

average soil moisture value computed through remote sensing at footprint support scales

(also referred to as footprint) to be typically lower than that calculated by averaging lim-

ited number of ground based soil moisture measurements across the footprint. The ground

based soil moisture averages may match the footprint scale moisture values only if the en-

compassing variability within the footprint is represented adequately while estimating the

averages (which due to logistic reasons is seldom the case). The satellite based soil mois-

ture value thus, cannot be efficiently validated using soil moisture estimates obtained by

averaging insufficiently sampled ground based data. Shin and Mohanty (2013) validated

their downscaled soil moisture in 3 quarter section (800m x 800m) fields in Oklahoma us-

ing soil moisture data collected at 49 points within the fields. Merlin et al. (2012) validated

their disaggregated soil moisture 1 km product using intensively collected point scale soil

moisture data during the AACES campaign in Australia. The downscaled soil moisture

product was underestimated as compared to the ground based data. Piles et al. (2011) also

validated their 40, 10 and 1 km soil moisture product using ground based soil moisture

data collected in Australia. The highest R2 achieved in this study when comparing in-situ

soil moisture to scaled soil moisture was 0.33. Bircher et al. (2012) designed an inten-

sive soil moisture measurement cluster network based on the within pixel heterogeneity

in Skjern River Catchment, Denmark to validate soil moisture over 1 SMOS pixel. Their

comparison of retrieved soil moisture and ground based soil moisture led to a better R2

value of 0.49 but was limited to just 1 SMOS pixel.

Besides the use of intensively collected soil moisture data, more spatially continuous
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soil moisture estimates at remote sensing footprint scales have also been generated to rep-

resent remotely sensed soil moisture through the use of models. Montzka et al. (2013)

retrieved hydraulic parameters from in-situ soil moisture to feed into the Water Flow and

Balance Simulation Model (WaSiM-ETH) to generate area wide soil moisture estimates

to validate SMOS soil moisture. However, the WaSiM-ETH (Schulla, 1997, and Schulla

and Jasper, 2000) and other models used in approaches that involve distributed hydrologi-

cal models are mostly based on Richard’s equation which was not designed to model soil

moisture at coarse scales. Also, the use of in-situ Darcy support scale soil moisture used

to retrieve hydraulic parameters may not necessarily represent the effective hydraulic pa-

rameters at footprint scales wherein the encompassing heterogeneity is much larger than

that represented by the small support scale in-situ soil moisture. Hence this technique of

generating coarse scale soil moisture products, though useful, may not provide accurate

results under all conditions.

An alternative strategy to validating remote sensing footprint soil moisture is to de-

velop guidelines specific to remote sensing footprint scales that coarse scale soil moisture

distributions adhere to. There has been extensive work done to evaluate the dependence

of soil moisture distribution on geo-physical factors at remote sensing support scales. It

has been found that precipitation typically forms the first principal component for ex-

plaining the dependence of moisture on geo-physical factors (Joshi and Mohanty, 2010).

Besides precipitation, different physical factors like topography of the landscape (Ander-

son and Burt, 1978, Western et al., 1999, Joshi and Mohanty, 2010), vegetation (Hupet

and Vanclooster, 2002), and soil texture and structure (Famiglietti et al., 1998, Gaur and

Mohanty, 2013, Jawson and Niemann, 2007, Joshi and Mohanty, 2010, Oldak et al., 2002)

have also been described as controlling factors for soil moisture variability at remote sens-

ing support scales. Gaur and Mohanty (2015) described the hierarchy of dependence of

soil moisture redistribution on geo-physical factors across a range of remote sensing sup-
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port scales in 3 hydro-climates showing that (in general) the effect of soil decreases with

coarsening support scale whereas the effect of topography and vegetation increases. They

showed that the dominant physical factors controlling soil moisture redistribution depend

on the hydro-climate and nature of heterogeneity of the region. Thus, by developing scale

specific relationships between soil moisture and geo-physical factors (like precipitation,

soil, topography and vegetation) which determine moisture distribution at coarse remote

sensing support scales, more accurate validation relationships for soil moisture at remote

sensing scales can be developed. In order to develop these scale specific relationships be-

tween soil moisture and physical factors, it is foremost required to understand the nature

of these relationships which should be viable and reproducible. Soil moisture response

to geophysical factors is highly non-linear. Thus, a direct linear relationship cannot be

employed. However, the various geo-physical factors on which moisture distribution de-

pends exhibit certain amount of spatial correlations at the footprint scales. For exam-

ple, vegetation is typically correlated to biomes; soil has characteristic spatial correlation

structures depending on its origin and method of formation etc. Precipitation patterns also

have large scale embedded correlation structures (Portmann et al., 2009) which can be

considered specific to the region of the world under consideration. For example, Indian

precipitation dominated by monsoon winds will have a characteristic spatial correlation

structure depending on the path the monsoon winds typically adopt to rain over the In-

dian sub-continent while the storm systems bringing precipitation to different parts of the

United States will have different spatial correlation structures. Since soil moisture in the

land-surface is redistributed as a result of infiltration in soil, run-off from topography,

transpiration from vegetation and precipitation input to land-surface, it should mimic the

correlation structures of one dominant or a combination of many dominant geophysical

factors. Previously, a few studies have attempted to exploit this spatial dependence albeit

in an inverse fashion (i.e. by studying the soil moisture spatial correlations and relating it
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to geo-physical factors) to understand the dominant physical controls. Oldak et al. (2000),

examined the semi-variograms of airborne soil moisture data to conclude that the domi-

nant geo-physical factors controlling soil moisture distribution were soil (at local scale)

and precipitation (at regional scale). Mohanty et al. (2000) also used geostatistics with

point scale measurements to describe the effect of microheterogeneity, land covers and

mixed vegetation on soil moisture distribution.

Geostatistical analysis or more specifically, semi- variograms of soil moisture are

highly sensitive to scale (spacing, support and extent) of the data (Bloschl and Sivapalan,

1995). The first objective of this study was to develop scale based semi-variograms for

soil moisture redistribution observed at remote sensing scales (support, spacing and ex-

tent) as a function of the scale based dominant physical factors (Gaur and Mohanty, 2015).

The semi-variograms generated as a function of the dominant physical factors serve as

a validation basis for observed RS footprint scale soil moisture. Such semi-variogram

based relationships have two major advantages over the previous validation techniques: 1)

They are devoid of assumptions that restrict the application of Richard’s equation while

being a physical representation of the interdependence of soil moisture on physical factors

and, 2) They are scale specific and preserve the spatial structure of soil moisture unlike

the isolated point scale measurements. Validation schemes are also typically restricted

in terms of transferability because of differences in land-surface heterogeneity in differ-

ent regions. Thus, the second objective of this study was to functionally relate the soil

moisture semi-variogram structures to land-surface heterogeneity and antecedent wetness

conditions such that the results can be transferred for different heterogeneity conditions in

similar hydro-climates elsewhere.

The study is based on 2 hypotheses. 1) Scale specific soil moisture redistribution

(∆SM) semi-variogram (γ) structures can be generated as a weighted function (weight =

α) of the semi-variograms of the most dominant land-surface based physical factor (Figure
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4.1). Soil moisture redistribution refers to the change in soil moisture over a fixed time

scale (1-2 days in this study).

 

Figure 4.1: γ can be defined as a weighted function of the variograms of the dominant
physical factors. (Conceptual diagram)

2) We also hypothesize that these semi-variograms based relationships (parameter α)

are specific to the land-surface heterogeneity (soil, vegetation and topography) and an-

tecedent wetness conditions (caused by precipitation), which can be represented by a

scale-wetness-heterogeneity (SWHET) cuboid (Figure 4.2).
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Figure 4.2: Scale-Wetness-Heterogeneity (SWHET) cuboid. Different slices of the cuboid
represent values of α defined for specific heterogeneity and wetness conditions at different
spatial support scales (Figure represents a conceptualization of the cuboid and not actual
data).
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4.3 Study Area

Three regions with different land-surface heterogeneity and hydro-climate were se-

lected to develop and evaluate the SWHET cuboid. The first region is characterized by

semi-arid hot climate and lies in Arizona. Owing to low yearly rainfalls (30.28 cm average

annual rainfall at Tuscon, (http://www.usclimatedata.com/climate/tucson /arizona/united-

states/usaz0247, accessed on September 24, 2015), this region is typically characterized

as a water limited environment. The second region lies in Iowa and is characterized by

moist climate while the third region is classified as sub-tropical climate and lies in Ok-

lahoma. Iowa receives average annual rainfall of 90.60 cm as recorded in Des Moines

(http://www.usclimatedata.com/climate/iowa/united-states/3185, accessed on September

24, 2015) and Oklahoma receives average annual rainfall of 92.61 cm as recorded in

Oklahoma city (http://www.usclimatedata.com/ climate/oklahoma/united-states/3206, ac-

cessed on September 24, 2015). The two regions may be energy or water limited depend-

ing on the short term precipitation history in the region. Table 4.1 provides the descriptive

statistics of the land-surface based heterogeneity of the study regions.

4.4 Data

The elevation data to generate the necessary topographic parameters, soil and LAI

data were obtained from the National Elevation Dataset (Gesch, 2009), Soil Geographic

(STATSGO) Data Base for the Conterminous United States (Miller and White, 1998) and

4-day composite MODIS product (NASA Land Processes Distributed Active Archive Cen-

ter) respectively. ∆SM was generated from airborne soil moisture data collected during

Soil Moisture Experiments in 2002 (SMEX02) and 2004 (SMEX04) in Iowa and Ari-

zona respectively using the Polarimetric Scanning Radiometer, PSR (Bindlish et al., 2006,

2008) at 800 m X 800 m spatial resolution. The soil moisture data in Oklahoma was

collected during 1997 (Southern Great Plains (SGP) 1997 hydrology experiment) using
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Table 4.1: Average and standard deviation (σ ) of physical factors representing land surface
heterogeneity

Phys. Factor Average σ

Sand
Arizona 50 9.5

Iowa 29.92 5.7
Oklahoma 31.51 22.7

Flow Acc.
Arizona 21.6 85.7

Iowa 4.37 11.3
Oklahoma 10.23 39

LAI
Arizona 0.46 0.2

Iowa 2.62 0.9
Oklahoma* 0.96 2.6

the Electronically Scanning Radiometer (Jackson, et al. 1999) at 800 m X 800 m spatial

resolution.

4.5 Methodology

In order to evaluate the two hypotheses for the study, we 1) evaluated the relationships

between the dominant physical factor and soil moisture redistribution and 2) computed the

Scale-Wetness- Heterogeneity (SWHET) cuboid. The relationships between soil mois-

ture redistribution and dominant land-surface factor were generated for different scales by

computing the semi-variograms of soil moisture redistribution as a linear function (weight

= α) of the semi-variograms of the most dominant physical factor (Table 4.2) using data

at different support scales. The use of data at different support scales to generate the

semi-variogram based relationships eliminates the problems arising as a result of scale

discrepancy in validation studies. The use of moisture redistribution semi-variograms as

opposed to using soil moisture semi-variograms has added advantages. Firstly, soil mois-
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ture redistribution rather than soil moisture is directly affected by the land-surface factors

given certain antecedent moisture conditions. Secondly, multiple spatial patterns of soil

moisture could result in similar semi-variogram structures. However, when we use soil

moisture redistribution structures, we bound the spatial pattern of moisture redistribution

between a set antecedent state (moisture value) and present state (moisture value). This

restricts the non-uniqueness of the feasible spatial distributions of soil moisture possible

for a given semi- variogram structure.

The variability in soil moisture redistribution spatial structure at remote sensing foot-

prints evolves based upon the combination of 1) land-surface factors (soil, vegetation and

topography), 2) antecedent wetness conditions and 3) the prevailing meteorological con-

ditions. The SWHET cuboid (Figure 4.2) coalesces the relationships between the land-

surface factors, antecedent wetness conditions and soil moisture redistribution for different

RS footprint scales. Since the general meteorological conditions for a certain region vary

based upon the hydro-climate of the region and the time of the year, the SWHET cuboid

(Figure 4.2) has been conceptualized separately for different hydro-climates in this study

and represents only the growing season. The computational details are provided below.

Table 4.2: Scale based dominant physical attributes that create ∆SM variability
Region Dominant physical attribute

0.8 km 1.6 km 3.2 km
Arizona % clay % clay % clay

Iowa % clay % clay % clay
Oklahoma % sand % sand % sand

Soil moisture redistribution, ∆SM (eq. 4.1), and the physical attribute parameters (Ta-

ble 4.2) required for generating semi-variograms (γ) and heterogeneity indices (Table 4.1)

were resampled and re-gridded to 0.8 km, 1.6 km and 3.2 km from the original resolution
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of 0.8 km by averaging the 0.8 km pixels. Amongst various averaging techniques, a linear

averaging scheme was employed since the data was available at a regular and continuous

spacing.

∆SMt = SMt−SMt−1 (4.1)

where,

SMt = redistributed soil moisture for day, t;

The heterogeneity indices and γ relationships were then defined for fixed extents called

sub-regions. It was essential to define a fixed extent since soil moisture variance structures

are sensitive to the extent of the region (Bloschl and Sivapalan, 1995). In this study, sub-

regions of radius 40 km sampled from the domain by moving the center of a circular

window of 40 km radius by one pixel (pixel size = 0.8, 1.6 or 3.2 km) at a time (Figure

4.3) were used as the fixed extent. Moving a window by one pixel at a time resulted in

partial overlap of the sub-regions. This was done for increasing number of data and to

exhaustively consider the possible conditions that a satellite footprint may encompass. A

sub-region size of radius 40 km was chosen keeping in mind the typical resolution of a

satellite radiometer based soil moisture product which varies between 30-60 km (depend-

ing on the angle of view of the sensor and frequency being used to estimate soil moisture).

However the entire analysis presented in this research may be conducted using a differ-

ent sub-region extent to suit a given study. The number of sub-regions and the number

of pixels in each sub-region is provided in Table 4.3. The following section describes

the generation of empirical semi-variogram(Figure 4.1) which is followed by the SWHET

cuboid (Figure 4.2).
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Figure 4.3: Moving window over the gridded domain to define sub-regions (fixed spatial
extent scale) for generation of semi-variograms
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Table 4.3: Spatial extent of study regions and details of number of pixels used to generate
γ

Region # pixels to generate variograms
(Area, km2) (# of ∼40 km regions)

0.8 km 1.6 km 3.2 km
Arizona 2012-4080 516-957 135-224

(70 x 62 x0.82) (16320) (3828) (896)
Iowa 1689-3588 420-861 98-184

(100 x 39 x0.82) (32661) (7776) (1656)
Oklahoma 1723-3702 420-878 98-198

(111x 40 x0.82) (57988) (13608) (2912)

4.5.1 Empirical ∆SM Semi-Variogram Structure

A semi-variogram (also referred to as variogram in the manuscript) is used in stan-

dard geostatistical analysis (Journel and Huijbregts, 1978, Issaks and Srivastava, 1989,

Mohanty et al., 2000, Wackernagel, 2003) for representing spatial relationships within a

dataset. The traditional semi-variogram estimator (γ) employed in the study is given in eq.

4.2.

γ(hi) =
1

2N(hi)

N(hi)

∑
i=1

[(φ(x)−φ(x+hi)]
2 (4.2)

where φ (x) and φ (x+hi) represent the values of the variable under consideration sepa-

rated by a distance hi and N(hi) is the total number of such pairs. In this study, isotropic

or non-directional semi-variograms have been considered. Even though this is not strictly

correct, reasonable success has been observed while using isotropic semi-variograms in

previous remotely sensed soil moisture studies (Joshi and Mohanty, 2010).

We numerically defined the dependence of ∆SM spatial structure on land-surface based

heterogeneity at different antecedent conditions by quantifying the relationship between

∆SM semi-variograms (eq. 4.2) and dominant physical factor semi-variograms (eq. 4.2) at
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different antecedent wetness conditions. α was obtained by linearly regressing the ∆SM

semi-variogram on the dominant physical factor semi-variogram (eq. 4.3). These semi-

variograms were constructed using regular spatial intervals (32 intervals at 0.8 km spacing

for 0.8 km data, 16 intervals at 1.6 km spacing for 1.6 km data and 8 intervals at 3.2 km

spacing for 3.2 km data to go upto a maximum lag of 25.6 km). The dominant physical

factors (Table4.2) were selected based on Gaur and Mohanty (2015). The nugget value of

the semi-variograms for the dominant physical factor and ∆SM was assumed 0 and hence

no intercept was computed for the relationship.

γ∆SM = αγd f (4.3)

where, γ∆SM represents the semi-variogram of soil moisture redistribution, and γd f rep-

resents the semi-variogram of the dominant physical factor. The semi-variogram based re-

lationship was constructed for each 40 km sub-region for all 3 support scales (0.8, 1.6 and

3.2 km) in all 3 regions . The ∆SM and dominant physical factors were normalized stan-

dardized (eq. 4.4) within each sub-region before the semi- variograms were constructed.

The standardization was done since the dominant physical factor data and soil moisture

redistribution data have a very different range of values which may also change between

sub-regions and cause errors while extrapolating the empirical relationships.

ai,norm =
ai−a√
∑(ai−a2)

n−1

(4.4)

a = variable being normalized (dominant physical factor/ ∆SM)

a = mean value of a.
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4.5.2 SWHET Cuboid

In order to enable the transferability of the semi- variogram based relationships to

regions with varying heterogeneity within the same hydro-climate, the SWHET cuboid

was developed. The cuboid describes the relationship between antecedent wetness, het-

erogeneity and the semi- variogram based physico-empirical relationships across different

footprint scales.

In this study, the cuboid has been developed for 3 remote sensing footprint (support)

scales and consists of 3 axes representing - scale index, wetness index and heterogeneity

index. It defines unique correlation structures for soil moisture redistribution given spe-

cific heterogeneity, antecedent wetness and support scale. Each index described below

represents a value for the extent of a region representing the resolution of a radiometer

soil moisture product (40 km radius sub-region). Using the resampled ∆SM and attribute

parameters, the following indices were defined.

Normalized Scale Index, Snorm: The scale index (eq. 4.5) is a measure of the degree

of averaging that occurs in a domain (sub-region). It represents the support size or pixel

resolution as compared to a 40 km domain (extent of the sub-region). A lower scale index

implies higher averaging or coarser resolution. A 40 km domain was selected because

it describes the scale of the pixel as compared to the extent of the sub-region (described

above) which also describes the resolution of most soil moisture products from satellite

based radiometers (30-60 km).

Snorm =
40− s

40
(4.5)

s = support scale in km

Normalized Wetness Index, SMnorm: Antecedent wetness has been described as an

important factor controlling soil moisture dynamics (Teuling et. al., 2007 and Ivanov
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et. al., in 2010, Gaur and Mohanty, 2015). The static heterogeneity (soil and topography)

and dynamic heterogeneity (vegetation) within a domain dynamically redistributes the soil

moisture conditioned upon the antecedent wetness conditions in the domain. The wetness

index (eq. 4.6) describes the antecedent wetness condition of the 40 km extent sub-region

(domain). A lower wetness index implies higher antecedent moisture content.

SMnorm =
SM40,max−SM40

SM40,max
(4.6)

SM40,max = maximum volumetric water content observed for 40 km support size in the

domain

SM40 = antecedent soil moisture content of the 40 km sub-region under consideration

Normalized Heterogeneity Index, Hnorm: The heterogeneity index is a numerical

measure of the variability of the land-surface heterogeneity in the 40 km domain. In order

for the heterogeneity index to be transferable to other locations it was deemed essential

to have a formulation that was general and yet representative enough to describe land-

surface heterogeneity in most regions. The heterogeneity index developed in this study

represents the variability and co-variability in soil (s), topography (t) and vegetation (v).

Since the physical processes that lead to moisture redistribution on the land-surface are

dependent on the variability (and co-variability) of these physical factors on the land-

surface (given specific wetness and atmospheric conditions), this independent index should

quantify and distinguish the hydrologic behavior of land-surface around the globe. The

factors chosen to represent soil, topography and vegetation are % sand, flow accumulation

and leaf area index (LAI), respectively. These attributes were chosen as % sand determines

the infiltration capacity of the soil, flow accumulation is representative of the spatial pattern

of the topography of the region (thus, determines overland flow, localized evaporation and

infiltration etc.) and LAI is indicative of the leaf area available for transpiration and rainfall
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interception.Past studies on controls of soil moisture have also demonstrated the utility of

these parameters in defining the near-surface soil moisture distribution dynamics. The soil,

vegetation and topography of the region are shown in Figure 4.4

 

Figure 4.4: Spatial patterns of % sand, flow accumulation and LAI in the study areas.
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The heterogeneity in each sub-region was represented by a heterogeneity (H) matrix

(eq. 4.7).

H =


σs,s σv,s σt,s

σs,v σv,v σt,v

σs,t σv,t σt,t

 (4.7)

H = heterogeneity matrix

σ = statistical co-variance

s,v,t represent soil (% sand), vegetation (LAI) and topography (flow accumulation)

respectively

In order to account for the variable number of fine support pixels within different sam-

pled sub-regions because of the rectangular extent of the entire dataset , the heterogeneity

matrix was scaled using the total area of the fine support pixels within the domain (eq.

4.8).

Ha ==
H

nxA
(4.8)

n = number of fine support scale pixels within 40 km sub-region

A = area of fine support scale pixel (km2)

Eigenvalue decomposition (eq. 4.9) was conducted on each Ha -matrix to project the

land-surface heterogeneity on a de-correlated vector space. In order to account for any

statistical bias arising because of a difference in size of dataset or variable area within

the sub-region, the H matrix was adjusted by the encompassed area before computing

the decomposition as given in eq. 4.8. Owing to the symmetric nature of the covariance

matrix, the eigenvectors (u) of the H-matrix are pairwise orthogonal and composed of

real values. The eigenvectors together with adjusted eigenvalues can be considered to be
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characteristic of and unique to the encompassing heterogeneity.

(Ha−δ I)U = 0 (4.9)

The highest eigenvalue (δmax) and the corresponding eigenvector (umax) represent the

axis along which the maximum variability of the data is oriented. The heterogeneity index,

H’ (eq. 4.10 ) is defined as the product of δmax and the unique angle that umax makes with

the vector, i. The normalized heterogeneity index (Hnorm) is defined in eq. 4.11.

H′ = δmaxcos−1(
umax.i

||umax||.||i||
) (4.10)

Hnorm =
H′max−H

H′max
(4.11)

where cos−1( umax.i
||umax||.||i||) = angle (radians) between dominant eigenvector and a refer-

ence vector i ( [1 1 1] ). A lower heterogeneity (small δmax) would imply that maximum

variability-covariability in heterogeneity cannot be oriented along a single direction in

the vector space and hence entail either low variance in the data or more ’divergent’ het-

erogeneity in the sub-region (within a region). Divergent heterogeneity means that most

of the variance-covariance structure in the dataset cannot be represented by one single

axis. Thus, regions with low variance or less correlated heterogeneity (like in agricultural

domains where natural correlations between soil, vegetation and topography have been

disturbed) should have a relatively lower heterogeneity index .

Each α value derived using the regression relationships (eq. 4.3) corresponds to a

normalized wetness, normalized heterogeneity and normalized scale index. A surface rep-

resenting the linking parameter α was generated for the entire range of the normalized

wetness and heterogeneity indices (Figure 4.2) at different scales by interpolating using a
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thin-plate smoothing spline interpolation technique in MATLAB. The surface was gener-

ated after removing 10% of the data (random sampling without replacement) for valida-

tion. This process of randomly selecting 10% of the data and interpolating with remaining

data was repeated 10 times and the resulting rmse were computed. The final generated

surface displayed the lowest rmse.

4.6 Results and Discussion

4.6.1 Hydro-climate Based Semi-Variogram Relationships

Scale specific α values for the relationship between moisture redistribution (∆SM) and

dominant land-surface factors were generated for each sub-region within the domain us-

ing empirical semi-variograms of normalized ∆SM and the most dominant physical factor

(Table 4.2) as above. Plots of the observed ∆SM and dominant physical factor semi- var-

iograms for each scale and all sub-regions are provided in Figure 4.5. A theoretical vari-

ogram was not fit to the empirical semi-variograms to retain the inherent spatial correlation

structure of ∆SM and dominant physical factors (Figure 4.5). The semi-variograms of ∆SM

and dominant physical factor show similarities not only in terms of general trends but also

the holes in the semi- variograms. As an example, the slight dip in variance observed in

∆SM semi-variograms in Arizona was also observed in % clay (dominant physical factor)

semi-variograms. This feature provides some visual validation of the generation of the

∆SM semi-variogram as a linear function of the dominant physical factor semi-variogram

to generate α (Figure 4.1). On computation of these linear relationships, only less than 1%

(in Arizona and Iowa) and 2% (in Oklahoma) of the semi- variogram based relationships

did not result in statistically significant (p-value<0.05) α values suggesting that the use of

a single dominant physical factor to represent the functional relationship is adequate.
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The histogram of α values (p-value<0.05) is shown in Figure 4.6. The dominant

physical factor used for Arizona as well as Iowa was % clay (Gaur and Mohanty, 2015).

However, the distribution of α values at the same scale is significantly different for both

the regions. This occurs due to the difference in overall land-surface heterogeneity (co-

variability between soil, vegetation and topography). The α values are a function of the

variability-co-variability of the land-surface heterogeneous parameters (heterogeneity in-

dex) and its interaction with the antecedent wetness conditions (wetness index) which are

markedly different in the two regions.

 

Figure 4.6: Distribution of α values at different scales

Within a region, the number and location of modes of α are similar (though not same)

as the scale changes from 800 m to 3200 m, revealing a scale based dependence of the rela-
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tionship between the dominant physical factor and moisture redistribution. The mean and

standard deviation of α within a hydro-climate are also similar indicating some potential

of generating relationships at a particular scale and transporting relationships across scales

within a hydro-climate/region. This might also have implications beyond just soil mois-

ture and explain the reasonable success of certain studies like Jana et al. (2008) wherein

they used trained neural networks at a coarser scale to estimate fine scale hydraulic pa-

rameters. In other words, given the same dominant physical factor at a particular range

of scales, transferability of parameters generated at a particular scale to other scales may

be feasible. The range of α coefficients (varying around 1) shows that the spatial vari-

ance observed in ∆SM may be larger or smaller than the variance of the dominant physical

factor. This occurs because of the other less dominant physical factors that control soil

moisture redistribution in space. However, the fact that the mean α values across scales

for the 3 hydro-climates are close to 1 suggests that the correct dominant physical factor

was chosen (Gaur and Mohanty, 2015) to represent the soil moisture redistribution.

The root mean squared error (RMSE) and coefficient of determination (R2) obtained

as a result of linearly regressing the semi-variograms of ∆SM and the dominant physical

factors are shown in Figure 4.7. The regression based relationships showed good results

with minimum R2 value of 0.8, 0.92 and 0.88 and maximum rmse of 0.119, 0.097 and

0.086 for Arizona, Iowa and Oklahoma, respectively. This validates our hypothesis of

quantifying the spatial structure of ∆SM as a function of the spatial structure of dominant

physical factors.

4.6.2 Heterogeneity Index

Soil moisture redistribution at remote sensing footprint scales is a function of the spa-

tial organization of land-surface heterogeneity within a landscape. In the given study, the

heterogeneity index was defined to quantify the heterogeneity within a sub-region (fixed
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extent) using data at different support scales. For any particular support scale, it was de-

fined as a function of the angle (with reference vector [1 1 1]) and eigenvalue of the dom-

inant eigenvector. Large eigenvalues imply that a large amount of variance in the dataset

can be explained by projecting the data along the corresponding unit eigenvector. Addi-

tionally, large eigenvalue suggest larger correlations within the heterogeneous variables

i.e. soil, vegetation and topography or larger variance within the dataset. The eigenan-

gles describe the orientation of the eigenvector or direction of maximum variability and

thus will differ based on the inherent correlations between soil, vegetation and topography

within a region.

The ranges of the heterogeneity index for three study regions are provided in Table 4.4.

In order for the heterogeneity index to singularly quantify the heterogeneity in all physical

factors, it was required to be able to represent the complexity of the region in terms of

soil, vegetation and topography. Arizona and Oklahoma represent mostly natural domains

with some agriculture whereas Iowa is primarily an anthropogenically altered agricultural

domain. As such the natural correlations between soil, vegetation and topography can be

expected to be larger in Oklahoma and Arizona as opposed to Iowa. The spatial patterns

and values of % sand, flow accumulation and LAI (Figure 4.4) along with their respec-

tive standard deviations (Table 4.1) reveal that the variations in terms of soil, vegetation

and topography are also considerably larger in Oklahoma and Arizona than in Iowa. The

standard deviation of the physical factors reflects the diversity within a physical factor

observed in the region. It was observed that the heterogeneity index values effectively

represent the heterogeneity of the respective regions. At each scale, the index values for

Arizona were highest followed by Oklahoma and Iowa. There was some overlap between

the heterogeneity index values for Arizona and Oklahoma. This is in agreement with the

standard deviation of the physical factors observed in these regions wherein Arizona shows

highest standard deviation for vegetation and topography while Oklahoma has higher stan-
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dard deviation in terms of % sand. Iowa is a production agricultural region with expected

lower correlations between vegetation (i.e., crop type), soil and topography and the same

was reflected in the heterogeneity index as well. A scatterplot of adjusted eigenvalues and

eigenangles representing the heterogeneity for each hydro-climate is provided in Figure

4.8. The three hydro-climates reveal distinctly different signatures. The scatterplot for

Arizona reveals two distinct correlation structures (in terms of eigenangles) between the

heterogeneous land-surface factors at each scale. The eigenangle values for Iowa which is

completely anthropogenically altered through agriculture and Oklahoma which is a mix of

agricultural manipulation and natural landscape shows a wider range of eigenangles and

thus correlation structure. The eigenangle ranges do not change much for Arizona and

Oklahoma as the scale is coarsened but the ranges become very small in Iowa at 3200 m

scale. The eigenvalues are highest for Arizona (with some overlap with Oklahoma) fol-

lowed by Oklahoma and Iowa. The different distribution of the eigenangles corresponding

to the eigenvalues for each domain, characterizes the differences in the correlation between

the physical factors within each domain effectively. The formulation of the heterogene-

ity index can, therefore, effectively distinguish between different heterogeneities within a

domain.

Table 4.4: Range of heterogeneity indices
Region Min-Max values

0.8 km 1.6 km 3.2 km
Arizona 0.32-3.21 0.28-3.69 0.14-1.32

Iowa 0.02-0.09 0.01-0.05 0.01-0.04
Oklahoma 0.25-1.31 0.16-1.36 0-1.37
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Figure 4.8: Scatter plot for eigenangle vs. eigenvalue of the dominant eigenvector
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Within a region, the mean eigenvalue reduces as the support scale is coarsened (Figure

4.8) in Arizona and Iowa. This implies that the variability in data reduces as the sup-

port scale is coarsened. This feature is typical of remotely sensed soil moisture data as

well wherein subsequent averaging at coarser scales leads to a reduction in the variability

of data. Eigenvalue ranges for Oklahoma remain approximately same revealing that this

trend in heterogeneity cannot be generalized. Another interesting observation is that the

dominant physical factor for Arizona and Iowa (wherein the index values evolved with

scale) was % clay for all scales whereas the dominant physical factors changed with scale

for Oklahoma. Even though this result cannot be generalized at this stage to imply an

association between the two, it is worthwhile to keep in mind while designing/conducting

future studies. Figure 4.9 shows the empirical cumulative density plots (cdf) of the normal-

ized heterogeneity index for the regions. The cdf plots represent how the overall apparent

heterogeneity in the region varies. It was observed that the heterogeneity in Arizona and

Iowa scale up similarly whereas the apparent heterogeneity in Oklahoma varies with scale.

This aspect is reflected in the relationship of heterogeneity with soil moisture redistribution

as well. Gaur and Mohanty, (2015) found that the soil of the region showed highest dom-

inance on spatial moisture redistribution for Iowa and Arizona. The relative dominance

of the physical factors on moisture redistribution also changed proportionally across all

scales. However, the dominance (relative as well as absolute) of physical factors in Ok-

lahoma was more dynamic with the relative contribution of each physical factor changing

disproportionately with scale (Gaur and Mohanty, 2015). Since soil moisture is a function

of land-surface heterogeneity, a change in the apparent heterogeneity of the region would

affect a variation in dominance of the physical factors. The same was reflected in the cdf

plots where the distribution of the normalized heterogeneity index for Arizona and Iowa

remained similar while the distribution for Oklahoma changed markedly with scale.
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Figure 4.9: Empirical cumulative density plots of normalized heterogeneity index

4.6.3 SWHET Cuboid

The effect of physical controls on soil moisture has been known to vary with wetness

conditions (Kim and Barros, 2002, Gaur and Mohanty, 2013) and nature of heterogeneity

(Jawson and Niemann, 2007, Joshi and Mohanty, 2010, Gaur and Mohanty, 2013, Ryu and

Famiglietti, 2006). Figure 4.10 shows the relationship between wetness, heterogeneity and

the coefficient, α . The sub-parts of this figure combined represent the conceptual SWHET

cuboid. To put the indices into a physical perspective, a wetness index of 0.5 indicates

that the wetness of the 40 km sub-region is half the maximum wetness (SMmax) observed

for a 40 km sub-region in a particular region. Given the dataset for the growing season,

SMmax for Arizona, Iowa and Oklahoma was found to be 8.72 x 10−4, 0.34 and 0.36 v/v

respectively.

The SWHET cuboid was conceptualized to estimate the scale based relationships ob-

served between soil moisture redistribution and land-surface factors across scales for het-

erogeneity conditions not represented by the dataset used to generate the scale based re-

lationships. In order to develop these predictive relationships for α given a certain het-
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erogeneity index and wetness index in different hydro-climates, a surface of α values was

fitted with respect to the normalized heterogeneity index and wetness index. Given the

irregular distribution of dataset, a thin plane spline interpolation technique was employed

to generate the surface (Figure 4.10). The surfaces were generated after removing 10%

of the α values for validation. This procedure was repeated 10 times for each scale and

hydro-climate and the resultant rmse are plotted in Figure 4.11. Each simulation led to

a very low rmse value (<0.004) implying that the generated surfaces were robust and the

hypothesis holds. The surface with the lowest rmse has been used to represent the final

relationship between heterogeneity, wetness and scale.

Building on past research which qualitatively indicates the presence of wetness and

heterogeneity based thresholds; Figure 4.10 helps us visualize those thresholds. The pat-

tern of α indirectly represents the pattern of soil moisture distribution dependence on

wetness and heterogeneity. The patterns of α in Arizona appear to only have a wetness

based threshold (visible boundaries along the wetness axis) whereas Iowa and Oklahoma

reveal that the thresholds depend both on heterogeneity and wetness in some structured

manner. An interesting observation is that the patterns appear to remain consistent with

scale for Arizona and Iowa. This implies that transfer of information from one scale to the

other in these regions can be done without much error. The patterns in Oklahoma do not

appear to be as scalable since they are inconsistent.
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 Figure 4.11: RMSE values of the SWHET cuboid surfaces

Our second hypothesis states that scale specific soil moisture redistribution (∆SM) var-

iogram (γ) structures can be estimated given a specific heterogeneity (soil, vegetation and

topography) and antecedent wetness conditions (caused by precipitation), represented by

the SWHET cuboid. These conceptual cuboid based results can serve as look-up tables for

validating footprint scale soil moisture radar products which promise to have resolutions

of 3 km as well as for the validation of downscaled soil moisture. Upon availability of
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more data, these results can be extended.

4.7 Conclusions

Accuracy of validation relationships for footprint scale soil moisture is severely re-

stricted because of scale discrepancy of remote sensing support scales and ground based

soil moisture measurements. In this study we proposed a scale appropriate physically

based technique that can be used to validate footprint scale soil moisture. The results re-

flect that redistributed soil moisture spatial variance can be modeled as a linear function of

the dominant physical factors’ spatial variance. We also developed a scale based look-up

graph which can potentially be used to generate validation relationships in similar hydro-

climates for different land-surface heterogeneity. The results from this study can be highly

useful for validating radar based soil moisture products which have spatial resolutions

similar to the support scales analyzed in the given study.

The results of this study until validated otherwise should be restricted for use only

during growing seasons. This is required since the dominance of physical controls was

evaluated only during the growing seasons. However, from an agricultural perspective,

when the changes in land-surface heterogeneity are the quickest, the results from this

study can prove very valuable as an independent source of validating footprint scale soil

moisture data.
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5. A SPATIALLY TRANSFERABLE DOWNSCALING SCHEME FOR

NEAR-SURFACE SOIL MOISTURE

5.1 Synopsis

The use of remotely sensed soil moisture in hydrological modeling has gained mo-

mentum in recent years. However, scale discrepancy between observed and required soil

moisture necessitates the use of downscaling algorithms. Even though numerous down-

scaling algorithms for soil moisture have been defined for different regions of the world,

the concern for their spatial and temporal transferability remains. In this study, we have de-

vised a spatially transferable downscaling algorithm for near-surface remotely sensed soil

moisture. The algorithm is based on the recently developed Scale-Wetness-Heterogeneity

(SWHET) cuboid. The downscaled soil moisture is computed by generating spatially

auto-correlated random fields of soil moisture redistribution as a function of the dominant

land-surface factor governing soil moisture redistribution and adding to antecedent soil

moisture. The functional relationship between the dominant physical factor and soil mois-

ture redistribution was found to be spatially transferable between similar hydro-climates

(Iowa, U.S.A. and Manitoba, Canada) under most conditions. The downscaling relation-

ship was evaluated for 3 different coarse scale SMOS pixels which were downscaled to

1500 m under six different heterogeneity conditions. The minimum root mean squared

error was 0.06 v/v while the maximum was found to be 0.11 v/v. The study provides a first

attempt at proof of concept for devising techniques to generate spatially and potentially

temporally transferable downscaling algorithms.

5.2 Introduction

Recent years have seen a surge iαn soil moisture downscaling algorithms owing to

the scale discrepancy between footprints of satellite based soil moisture and that required
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in numerous hydrological modeling scenarios. The typical footprint of satellite based

soil moisture is between 25-60 km. Spatial transferability of downscaling schemes for

near-surface soil moisture for such large footprints (also referred to as pixels) becomes

challenging for 2 reasons- 1) variable land-surface factors based heterogeneity within the

pixel, and 2) differential wetting within the pixel as a result of isolated rainfall events.

Land-surface factors i.e. soil, vegetation and topography, jointly yet variably control

the distribution of soil moisture at different scales. Past studies (Gaur and Mohanty, 2015;

Gaur and Mohanty, 2013; Ryu and Famiglietti, 2006; Jawson and Nieman, 2007; Joshi and

Mohanty, 2010; Joshi and Mohanty, 2011; Oldak et al., 2002) have shown that even though

a single dominant heterogeneous factor controlling soil moisture distribution may be de-

fined, it can differ with scale and the variability-co-variability of the land-surface factors.

Thus, downscaling schemes based on the relationship between a particular land-surface

factor and soil moisture in a certain region may not be spatially transferable to another

region with different land-surface heterogeneity. Kim and Barros (2002) who used linear

combinations of a single land-surface factor (topography) data for a region in Oklahoma to

downscale soil moisture using a modified fractal interpolation method also suggested the

limitation of spatial transferability of their scheme to regions with varying heterogeneity.

Other popular downscaling methods such as the ’universal triangle’ method (Carlson et al.,

1994; Carlson et al., 1995; Gillies et al., 1997) and UCLA method (Kim and Hogue, 2012)

are based on the relationship between vegetation based heterogeneity, temperature and soil

wetness. The universal triangle method exploits the triangular or trapezoidal nature of the

relationship between vegetation or more specifically normalized difference vegetation in-

dex (NDVI) and surface temperature given different wetness conditions. However, the

technique becomes limited in regions where the within pixel data is not sufficient to map

the universal triangle/trapezoid completely or where the soil moisture-temperature vari-

ability is related to parameters besides vegetation which is often the case in soil type based
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or topographically heterogeneous locations. Numerous studies (Chauhan et al., 2003; Piles

et al., 2011 etc.) have employed this technique to get downscaled soil moisture with vary-

ing success. The UCLA method utilizes a soil wetness relationship developed by Jiang and

Islam (2003) to determine soil wetness based on its relationship with the enhanced veg-

etation index and soil temperature and is thus, similarly limited. The other factor which

affects transferability of downscaling relationships is the variable antecedent wetness con-

ditions within the pixel caused by variable rainfall. Precipitation is the most dominant

factor controlling soil moisture distribution (Joshi and Mohanty, 2010). Other studies

(Teuling et. al., 2007; Ivanov et. al., 2010, Gaur and Mohanty, 2015) have also shown that

the relationship between soil moisture and land-surface heterogeneity is heavily dependent

on antecedent wetness conditions. Thus, the uncertainty in downscaling methods based on

the relationships between land-surface heterogeneity and soil moisture can become much

higher under scenarios of differential wetting within the pixel. A major limitation of the

downscaling relationships based on vegetation based heterogeneity also arises because of

the differences in sensitivity of soil wetness to temperature and vegetation based on the

antecedent wetness conditions. The land-surface temperature is more sensitive to wetness

under relatively wet conditions whereas vegetation is more sensitive only during relatively

drier conditions (Kim and Hogue, 2012). Therefore, variable wetting within the pixel may

lead to high uncertainty in the downscaled soil moisture generated through these tech-

niques and consequently affect their spatial transferability.

The objective of this study is to design a soil moisture downscaling algorithm that

is spatially transferable under various land-surface heterogeneity and antecedent wetness

conditions.

The downscaling scheme developed in this study is based on the Scale-Wetness Het-

erogeneity (SWHET) Cuboid (Gaur and Mohanty, 2015). The SWHET cuboid describes

the scale and hydro-climate specific relationships between soil moisture redistribution and
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dominant land-surface factors through a parameter, α . The parameter α , is unique to a

specific normalized wetness index and normalized heterogeneity index. The wetness in-

dex describes the antecedent wetness conditions and the heterogeneity index honors the

within pixel variability and co-variability of land-surface based heterogeneity i.e. soil,

vegetation and topography. Thus, enabling the results to be spatially transferable.

5.3 Study Area

The generated downscaling scheme was assessed in the Red river watershed in south-

ern Manitoba, Canada. The soil texture varies in an east to west gradient from heavy clays

to loamy fine sands. The topography in the region is flat (< 2% slope) while the primary

land-use is agricultural. The climate of the region is classified as moist climate with se-

vere winter. The % sand, leaf area index (LAI) and flow accumulation values from the

region are provided in Figure 5.1. A more detailed description of the region can be found

in McNairn et al., 2015.
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Figure 5.1: Study area and the prevailing heterogeneity in terms of vegetation, topography
and soil.
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5.4 Data

The coarse scale soil moisture to be downscaled was obtained from the Soil Moisture

Ocean Salinity (SMOS) satellite. A Level 2 soil moisture data product, MIR_SMUDP2,

was used for the study (Figure 5.2). This dataset is provided by the European Space

Agency on the Icosahedral Snyder Equal Area (ISEA) projection (Carr et al., 1997). The

multiple pixels in the dataset that appear to form a hexagonal cell correspond to one set

of latitude and longitude defined at the center of the hexagonal cell. The actual average

product spatial resolution is 43 km but the data are oversampled and the coordinates are

equispaced at 15 km. More details about this soil moisture product can be obtained in

Sanchez et al., 2012.

The airborne soil moisture data, % sand, elevation and leaf area index data were ob-

tained from Dr. Andreas Colliander through personal communication. Figure 5.2 also

shows the centers of the airborne pixels of soil moisture data that was collected using the

passive active L-band (PALS) sensor during the SMAPVEX12 field campaign in Mani-

toba, Canada. The spatial support of the airborne and ancillary data is 1500 m.
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Figure 5.2: SMOS based soil moisture data and pixel centers of the soil moisture data
collected using PALS sensor. Pixels 1-6 represent the center of the downscaled pixels.
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5.5 Methodology

Our study region in Manitoba, Canada may be considered to have a hydro-climate

similar to Iowa. Thus, we chose the results from the SWHET cuboid for Iowa to assess

the spatial transferability of the downscaling scheme in Manitoba, Canada. In this study,

fine scale refers to the scale being downscaled to (i.e 1500 m) while coarse scale refers to

the satellite pixel scale (43 km).

5.5.1 Overview of Downscaling Scheme

The downscaled soil moisture was generated as shown in the downscaling algorithm

schematic (Figure 5.3). A normalized wetness index and heterogeneity index were com-

puted using the coarse support scale SMOS data and fine support scale ancillary data re-

spectively. The heterogeneity index acts as a bridge between the fine and coarse scale since

it is computed at the coarse scale but composed of land-surface factors defined at the fine

support scale. Based on the two indices, an α parameter was computed from the SWHET

cuboid. The α parameter in conjunction with the semi-variograms of a previously deter-

mined dominant land-surface factor was used to generate the empirical semi-variograms

of soil moisture redistribution at the fine support scale. Soil moisture redistribution (∆SM

) refers to changes in soil moisture over a specific time period (1-2 days in this study).

Random fields specific to the derived semi-variograms of were generated to provide spa-

tial distribution of ∆SM. The ∆SM values were added to the antecedent soil moisture at the

fine support scale to generate downscaled soil moisture. Each of these steps is described

in detail below.

5.5.2 Generation of Indices

Normalized Wetness Index:The normalized wetness index, SMnorm describes the rel-

ative antecedent wetness conditions of the coarse scale. Antecedent wetness conditions
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determine the nature of relationship between soil moisture redistribution and land-surface

factors. The index was defined using the SMOS data as given in eq. 5.1.

SMnorm =
SMSMOS,max−SMSMOS

SMSMOS,max
(5.1)

SMSMOS,max = maximum volumetric water content observed for SMOS pixels

SMSMOS = antecedent volumetric water content of the SMOS pixel under consideration

Normalized Heterogeneity Index:The heterogeneity index describes the variability-

co-variability between the factors creating land-surface heterogeneity. A heterogeneity

index value was generated for each coarse pixel using ancillary data (%sand, flow accu-

mulation and LAI) at 1500 m as described below. Such a formulation of the index at both

scales acts as a bridge between the two scales. In order to generate the index, the first step

is the creation of a covariance matrix of heterogeneity (eq. 5.2). The covariance matrix is

defined using the fine support scale ancillary data for the extent of a SMOS pixel.

H =


σs,s σv,s σt,s

σs,v σv,v σt,v

σs,t σv,t σt,t

 (5.2)

H = heterogeneity matrix

σ = statistical co-variance

s,v,t represent soil (% sand), vegetation (LAI) and topography (flow accumulation)

respectively

In order to account for the variable number of fine support pixels within different

SMOS pixels, the heterogeneity matrix was normalized using the total area of the fine

support pixels within the domain (eq. 5.3).

135



Ha ==
H

nxA
(5.3)

n = number of fine support scale pixels within SMOS pixel extent

A = area of fine support scale pixel = 1.5 x 1.5 km2

An eigenvalue decomposition was then computed on Ha (eq. 45.4) to generate the

heterogeneity index H’ (eq. 5.5).

(Ha−δ I)U = 0 (5.4)

I = identity matrix U = eigenvector matrix δ= eigenvalue (scalar)

H′ = δmaxcos−1(
umax.i

||umax||.||i||
) (5.5)

The heterogeneity index was normalized (eq. 5.6) based on the maximum value of the

index calculated for the region.

Hnorm =
H′SMOS,max−H

H′SMOS,max
(5.6)

where cos−1( umax.i
||umax||.||i||) = angle (radians) between dominant eigenvector and a refer-

ence vector i ( [1 1 1] ).

α values based on the normalized wetness and heterogeneity index were obtained from

the SWHET cuboid for Iowa at 1600 m (Gaur and Mohanty, 2015).

5.5.3 Generation of Fine Scale Soil Moisture Redistribution

5.5.3.1 Semi-variogram Based Relationships

As found previously for a similar hydro-climate in Iowa, % clay was selected as the

dominant physical factor controlling soil moisture redistribution. The % clay values were
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normalized within each coarse extent using eq. 5.7.

ci,norm =
ci− c√
∑(ci−c2)

n−1

(5.7)

Empirical semi-variograms (eq. 5.8) for the % clay data, γc were generated for the

approximate extent of a SMOS pixel by using data representing a support and spacing of

1500 m.

γc(hi) =
1

2N(hi)

N(hi)

∑
i=1

[(c(x)− c(x+hi)]
2 (5.8)

Where γc(hi) is the semi-variogram estimator and c(x) and c(x+ hi) represent the values

of the dominant physical factor, i.e. % clay separated by a distance hi and N(hi) is the total

number of such pairs. Estimates of empirical semi-variograms, γ∆SM for soil moisture re-

distribution values at the fine scale were estimated using the α values and semi-variogram

of the dominant physical factor as show in eq. 5.9 (assuming a 0 nugget value and hence

0 intercept)

γ∆SM = αγc (5.9)

5.5.3.2 Theoretical Semi-Variogram Fitting and Random Field Generation

A theoretical semi-variogram was fit to γ∆SM in MATLAB using a variogram fitting

function, variogramfit (Schwanghart, 2010). Based on the theoretical variogram, 50 ran-

dom fields of soil moisture redistribution, ∆SMnorm were generated for a fine scale grid

of size n (as defined in eq. 5.3) using the R package gstat (Pebesma, 2004, Pebesma and

Wesseling, 1998). A large number of random fields were generated to account for non-

uniqueness of the random fields. These values were then de-normalized using eq. 5.10 to

obtain actual soil moisture redistribution values.
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∆SMi = ∆SMi,norm

√
Σ(∆SMi−∆SM)2

n−1
+∆SM (5.10)

The standard deviation, ∆SMi,norm

√
Σ(∆SMi−∆SM)2

n−1 and mean, ∆SM of the soil moisture

redistribution values was computed from the actual observed data (at 1500 m resolution) in

the study. However, there are numerous studies which give estimates of standard deviation,

variance etc. based on past field experiments (for example, Famiglietti et al., 2008) from

where these values may be extracted.

5.5.4 Generation of Downscaled Soil Moisture

Downscaled soil moisture was generated by adding the mean of the generated soil

moisture redistribution (50 realizations) to the antecedent soil moisture data (eq. 5.11).

Such data may be obtained from soil moisture modeling at finer scales where the applica-

bility of Richard’s equation has been proven or from well distributed in-situ datasets. In

this study, we used the available soil moisture data at the fine scale.

SMi = SMi−1 +∆SMi (5.11)

5.6 Results and Discussion

5.6.1 Heterogeneity Index

The heterogeneity index of Manitoba, Canada was compared to that of Iowa from

where the inter-relationships between heterogeneity, wetness and fine scale soil moisture

were being assessed for transferability. Figure 5.4 shows the empirical cumulative dis-

tribution (cdf) function plots of the normalized heterogeneity for the Iowa (Gaur and Mo-

hanty, 2015) and Manitoba, Canada region. A Kolmogorov-Smirnov test to assess whether

the two distributions comprise of a single continuous distribution shows that the two cdf

plots do not match (p-value >0.05). This implies the heterogeneity in Iowa and Canada is
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different from each other in terms of variability and co-variability of the land-surface fac-

tors. Even though the two regions have similar land-use, this inequality may be expected.

The crop types grown in Iowa were mostly soybean and corn whereas the crops grown in

Canada were more diverse comprising of canola, winter wheat, soybean, corn and wheat.

On average, the % sand content in Canada is also much higher that Iowa as is its distribu-

tion within the region. This could lead to differences in the values and distribution of the

heterogeneity index.

 

Figure 5.4: Cumulative distribution function plots of the normalized heterogeneity index
for Iowa and Canada.

5.6.2 Soil Moisture Downscaling

A typical SMOS satellite overpass does not repeat itself for 2-3 days. This implies

that the radiation values used to derive a typical daily SMOS soil moisture product over

a fixed grid does not comprise of the radiations from the exact same region. This leads

to each overpass potentially representing slightly different land-surface heterogeneity be-
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tween days. In order to assess our downscaling scheme for insulation against such effects,

we selected two adjacent heterogeneity combinations to represent a SMOS pixel. The

starred locations (Pixel 1-6) in Figure 5.2 represent that centers of the pixels around which

a 40 km radius area was chosen to represent a SMOS pixel. These locations were chosen

in the center of the domain as well as at the edges to assess different combinations. Pixel

1-4 are located in higher sand content and less diverse LAI conditions than pixel 5-6 where

there is more heterogeneity in terms of crops and LAI (Figure 5.1). Each pair of pixels

(1-2;3-4;5-6) represents the two adjacent heterogeneity combinations for one SMOS pixel.

The wetness conditions for each pair is also different from each other. (Table 5.1).

Table 5.1: SWHET cuboid values to generate the empirical semi-variograms of soil mois-
ture redistribution

Pixel SWHET cuboid values
Normalized Heterogeneity Index Normalized Wetness Index α

1 0.6349 0.2702 0.9655
2 0.6349 0.2702 0.9655
3 0.6349 0.3493 0.7281
4 0.6331 0.3493 0.7244
5 0.3655 0.4771 1.2806
6 0.3425 0.4771 1.2895

The normalized heterogeneity index and wetness index values along with the corre-

sponding α values are provided in Table 5.1. The α values were obtained from the

SWHET cuboid for Iowa. It was observed that shifting the center of the SMOS pixel

by 1500 m (or one fine scale pixel) resulted in slightly different heterogeneity index val-

ues which combined with the wetness index generated unique α values. Lower normalized

heterogeneity index (or higher heterogeneity index) may represent either high variability in

the region or higher correlations within the land-surface factors. Since Manitoba, Canada

140



is an agricultural area, natural correlations between different land-surface factors can be

assumed to minimal. Thus, a lower normalized heterogeneity index can be attributed to

higher variability in the land-surface factors in that location. The region represented by

pixel 5-6 had the lowest normalized heterogeneity index and was therefore most heteroge-

neous (or variable) whereas region represented by pixel 1-4 had lower heterogeneity. This

can also be visually observed from Figure 5.1. Pixel 5-6 represent a more heterogeneously

cropped area with varying sand content while pixels 1-4 encompass the almost uniformly

sandy area as well.

The computed α values were multiplied with the empirical semi-variograms of % clay

(eq. 5.9) to estimate the empirical semi-variograms of the soil moisture redistribution.

Most appropriate theoretical semi-variograms were then fitted to the empirical variograms.

The parameters for the fitted semi-variograms are provided in Table 5.2. It was seen that

the sill and range values for the semi-variograms for % clay using pixels with adjacent

centers are similar and not necessarily same.

Table 5.2: Details of the fitted theoretical semi-variograms
Pixel Fitted semi-variogram parameters

Type Sill Range (m)
1 Spherical 1.1051 35271
2 Spherical 1.1051 35271
3 Spherical 0.8334 35271
4 Spherical 0.8286 35305
5 Spherical 1.9237 37548
6 Spherical 1.9842 37528

The downscaled soil moisture was then computed as shown above. The observed soil

moisture and the downscaled soil moisture for the various pixels is shown in Figure 5.5-

5.7. The downscaled region for pixels 1-4 is same. The downscaling region with these 4
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pixels as centers falls within 2 adjacent SMOS pixels. It was observed that the downscaled

results for the pixels whose centers correspond to pixels 1-2 showed relatively better results

than pixel 3-4 where the downscaled soil moisture was overestimated. The root mean

squared error (rmse) of the same is provided in Table 5.3. The minimum rmse for these

pixels was 0.07 v/v while the maximum was 0.11 v/v (Table 5.3). The normalized wetness

index for pixel 1-2 was slightly lower than that for pixel 3-4 implying that the coarse

pixel represented by 3-4 was slightly drier (lower wetness) as compared to pixel 1-2. The

overestimated downscaled soil moisture for pixel 3-4 implies that at lower wetness, the

computed redistribution values were lower than the actual redistribution values. This may

be attributed to the higher sand content in the region than Iowa. Since the relationships

derived in Iowa (Gaur and Mohanty, 2015) do not account for such high estimates of

% sand, the relationship between heterogeneity and soil moisture redistribution may be

inadequately represented. The region downscaled using pixel centers 5-6 lies slightly south

of the first downscaled region. The rmse values for this region were relatively lower ( 0.06

v/v). Akin to pixel 3-4, this region is also relatively dry (high wetness index) but lies in

relatively lower sand content. The downscaled soil moisture values match well under these

conditions.

Table 5.3: Root mean squared error for the downscaled pixels
Pixel Downscaled rmse (v/v)

1 0.0790
2 0.0721
3 0.1168
4 0.1082
5 0.0664
6 0.0656
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Despite different rmse values, the trend of relative wetness across the domain is repre-

sented by all the downscaled regions using different antecedent wetness conditions. This

may also be attributed to the fine scale antecedent wetness conditions that were added to

the soil moisture redistribution. Since precipitation forms the first principal component in

explaining soil moisture variability over a domain, the general good trend could also be

attributed to the good antecedent soil moisture data at the fine scale. However, the results

are encouraging considering the transferability of results from Iowa to Canada which has

similar hydro-climate but different heterogeneity conditions.

5.7 Conclusions

In the given study a spatially transferable soil moisture downscaling scheme was de-

fined. The scheme was based on the Soil-Wetness-Heterogeneity (SHWET) Cuboid. The

most important finding of this study is the possibility of spatial transferability of downscal-

ing schemes given similar hydro-climates if the within pixel heterogeneity and antecedent

wetness conditions are properly accounted for. The scheme designed in this study per-

formed well (maximum rmse 0.07) for regions with heterogeneity comparable to the re-

gions where SWHET was defined but did not perform as well (maximum rmse 0.11) under

extremely different heterogeneity conditions. A limitation of this scheme is the potential

temporal propagation of error since antecedent soil moisture conditions form an important

component of the downscaling scheme.
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6. EFFECT OF OBSERVATION SCALE ON REMOTE SENSING BASED

ESTIMATES OF EVAPOTRANSPIRATION IN A SEMI-ARID ORCHARD

ENVIRONMENT

6.1 Synopsis

Partially vegetated fields like fruit orchards wherein different trees are subject to dif-

ferent kinds of fertilizer/irrigation treatments, require spatially distributed estimates of

evapotranspiration (ET) to monitor water use. Estimating spatially distributed evapotran-

spiration for these environments can be achieved by using remote sensing. However, the

computation of ET under such conditions is complicated because of the complex param-

eterizations required to derive ET for the mixed orchard pixels comprising bare soil and

well watered plants. Also, the parameterization of processes is not scale invariant, ow-

ing to change in the nature of mixed pixels across remote sensing observation scales. In

this study, our main objectives were 1) to isolate and evaluate the effect of varying spatial

scales (comparable to canopy sizes and larger) of the remote sensing data on ET estimates;

and 2) provide a user-friendly method for estimating remote sensing based ET for orchard

conditions. ET was computed using an empirical technique (Simplified- Surface Energy

Balance Index Algorithm) for almond and pistachio orchards from remote sensing imagery

collected at 5.8/7.2 m and 120 m using the MASTER and Landsat sensors, respectively.

In order to account for the effect of mixed pixels, an NDVI based correction factor was

applied to the derived ET values and the results were validated with Penman-Monteith

based ET estimates. It was found that the corrected mean ET estimates were in agreement

with the Penman-Monteith based ET estimates at 120m (RMSEaverage = 0.12 mm/hr)

whereas they were underestimated at the finer resolutions. The results indicated that a re-

mote sensing pixel resolution comparable to the row spacing and smaller or comparable to
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the canopy size overestimated the land surface temperature and consequently, underesti-

mates ET. The results reflect that good spatial estimates of crop ET can be made for crops

growing in orchards using simple ET models that require minimal data and freely available

Landsat imagery. These findings are very encouraging for the regular monitoring of crop

health and effective management of irrigation water in highly water stressed agricultural

orchards.

6.2 Introduction

The Central Valley region in California is one of the most productive agricultural re-

gions of the United States. Over 250 different crops are grown in the region with an

estimated value of $ 17 billion per year (Faunt, 2009). The summer agriculture in the

valley depends solely on irrigation (Zhong et al., 2009), which makes water management

in this water-stressed period a crucial task. In order to effectively manage water resources

without jeopardizing the agrarian economy of the region, the use of irrigation water needs

to be optimized by minimizing water losses. Evapotranspiration (ET) accounts for up to

80 % of the water losses in such semi-arid regions (Chehbouni et al., 2008). An accurate

estimation of ET can thus, lead to better determination of the water losses by the plants

and thus enable effective management of irrigation planning.

The most extensively and successfully applied method for estimating crop ET (ETc)

for irrigation systems planning is the two-step crop coefficient (Kc) x reference ET (ETref)

method (Allen and Pereira, 2009, Pruitt and Doorenbos, 1977, Allen et al., 1998). This

method of ET estimation provides numerically accurate ET estimates in basin wide studies

but no spatial representation of ET. Also, the estimation of Kc becomes complicated when

the percent crop cover, irrigation techniques and routines vary across the region (Allen

and Pereira, 2009). In the irrigated fruit orchards of the Central Valley, where the fertilizer

treatments, irrigation techniques and age of various trees within the orchard (and conse-
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quently water demands) are often variable, a numerically accurate spatial representation

of ET is highly desirable. This can be achieved through properly validated ET estimates

from remote sensing, which provides spatial representation of ET while preserving the

numerical accuracy of the crop coefficient based methodology (Price 1990; Kustas et al.

1994; Bastiaanssen et al. 1998, Roerink et al. 2000; McCabe and Wood 2006).

Remote sensing data is available at multiple spatial scales which determine the amount

of detail that can be extracted from the dataset. Under full crop cover conditions, there is

loss in spatial information as the scale coarsens (Mauser and Schadlich 1998, McCabe and

Wood 2006, Kustas et al. 2004). However, the orchards in Central Valley consist of evenly

spaced trees, such that a large amount of bare soil is exposed between the trees. Higher

discrepancies in ET estimates based on remote sensing data at different scales have been

observed under such conditions owing to complex parameterization of the energy balance

processes (Chang and Hong, 2012, Moran et al., 1997).

The objective of the study was to assess the scaling behavior of ET by comparing

spatially distributed ET derived from high resolution (5.8-7.2 m) and relatively coarser

(120 m) remote sensing imagery with MODIS based (1km) and Penman-Monteith (fetch

scale) based ET estimates under orchard conditions. It was hypothesized that in orchard

(partially vegetated) conditions, finer resolution imagery may not necessarily imply better

ET estimates from the dataset. The land surface temperature estimates from smaller mixed

pixels (pixel resolution comparable to canopy size) may be higher on average than that

obtained from a coarser mixed pixel where the pixel resolution is much larger than the

canopy size. This would occur since a pixel resolution comparable to the canopy size will

lead to presence of higher amount of bare soil in most pixels (pistachio canopy in Figure

6.1 a) and thus lead to higher land surface temperature estimates (and consequently, lower

ET estimates) as opposed to a coarser pixel (Figure 6.1 b). Thus, the size of the pixel or

observation scale would affect the ET value estimated from a remote sensing dataset. Since
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land-surface temperature is a major input in all ET estimating algorithms, this variability

due to scale can impact ET estimates irrespective of the algorithm used.

To verify this hypothesis, the Simplified- Surface Energy Balance Index (S-SEBI) al-

gorithm (Roerink et al., 2000) was used to estimate ET. S-SEBI is an empirical approach

and consequently removes scope of error due to incorrect parameterization of processes in

such complex settings. In this study, ET from two different crops (pistachios and almonds)

with different canopy sizes and percent ground cover was calculated using S-SEBI. A cor-

rection factor that explicitly reduces the discrepancy between measured, ground based

ET and ET derived from remote sensing imagery under row orchard conditions was also

introduced to improve ET estimates under orchard conditions.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Conceptual diagram representing relative size of canopies and remote sensing
pixels
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6.3 Study Area

The study was conducted in almond and pistachio orchards in Lost Hills, Kern county,

California (Figure 6.2). The climate of the region is semi-arid. The summer months in

this area are extremely hot and dry with virtually no precipitation, with most of the crop

water demands fulfilled by irrigation. The ET from these areas is thus directly dependent

on irrigation. The study was conducted on four adjacent orchards (Figure 6.2) planted in

rows and irrigated through fanjet and drip irrigation. The pistachio orchards were planted

in the year 2000 and the rows are spaced 5.8 m apart. The two almond orchards were

planted one year apart (1999 and 2000) with a row spacing of 7.5 m. The almond trees

were 2.5-7.0 m high whereas the pistachio trees were shorter with tree heights varying

between 1.5-3.0 m. (Cheng et al. 2013).

6.4 Materials and Methods

6.4.1 Remote Sensing Platforms

The study uses imagery from two different remote sensing platforms: an airborne sen-

sor, MASTER, and a space borne sensor, Landsat 5. The MASTER imagery was collected

on July 24th, 2009 (7.2 m resolution, time of overpass 2 P.M. local time) and June 29th,

2010 (5.8 m resolution, time of overpass 10:30 A.M. local time) as part of the Student

Airborne Research Program (SARP) campaign organized by NASA in collaboration with

the National Sub-Orbital Education and Research Center, whereas the Landsat (120 m

thermal band resolution, time of overpass 10:30 A.M. local time) imagery was collected

on July 28th, 2009 and June 29th, 2010. The necessary calibration data for the remote

sensing imagery was collected at the field site as part of the SARP campaign.
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6.4.1.1 Landsat

Landsat 5 imagery (path 42, row 35) was used in this study. A basic atmospheric cor-

rection was applied to the terrain corrected imagery using Fast Line-of-Sight Atmospheric

Analysis of Spectral Hypercubes (FLAASH) module provided by ENVI version 4.3 (Ex-

elis Visual Information Solutions, Boulder, Colorado). The necessary parameters for the

correction were obtained from the metadata file. Band 6 was used for temperature extrac-

tion from the imagery. The procedure used to extract at-satellite temperature values from

Landsat was adopted from Landsat 7- Science Data User’s Handbook, NASA.

Land surface temperature was derived from at-satellite temperature by accounting for

surface emissivity of the respective pixels depending on the land cover. Per-pixel emissiv-

ity was determined based on the red (R) and near infra-red (NIR) bands using the technique

developed by Valor and Caselles (1996). The various assumed emissivity components used

in the calculation were obtained from those developed for fruit trees.

ε0 = εvPv + εg(1−Pv)+4(dε)Pv(1−Pv) (6.1)

Pv =
1− NDV I

NDV Ig

(1− NDV I
NDV Ig

)− k(1− NDV I
NDV Iv

)
(6.2)

k =
ρ2v−ρ1v

ρ2g−ρ1g
(6.3)

ε: Dimensionless emissivity of the pixel

dε: Cavity effect of a rough surface (Caselles and Sobrino 1989) 0.04

Pv : Vegetation fraction cover

ρ2 : Reflectance in NIR band

ρ1 : Reflectance in R band
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NDV I = ρ2−ρ1
ρ2+ρ1

: Normalized difference vegetation index (Tucker, 1979)

The sub-scripts 0, g and v refer to the pixel under consideration, a bare ground pixel

and a fully vegetated pixel respectively. The values of emissivity for a bare ground pixel

and fully vegetated pixel were assumed to be 0.95 and 0.99.

The uncalibrated land surface temperature was obtained by correcting the satellite (ra-

diative) surface temperature for emissivity effects of the surface.

T0 =
4

√
T 4

sat

ε0
(6.4)

T0 = Uncalibrated land surface temperature

Tsat = At-satellite temperature

The remote sensing based land surface temperature was calibrated using with the tem-

perature data collected on the ground using empirical line correction (ELC). Ground truth

data (as described in section below) for the same was collected on July 22nd 2009 and

June 29th, 2010. The equations developed to calibrate the derived temperature estimates

to the actual land surface temperature are given below in eq. 6.5 and 6.6 for 2009 and

2010, respectively (R2 > 0.9).

Tact = 3.7156.T0−96.093 (6.5)

Tact = 2.2632.T0−46.918 (6.6)

T0 = Uncalibrated derived land surface temperature, ◦C

Tact = Calibrated derived land surface temperature, ◦C
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6.4.1.2 MODIS/ASTER Airborne Simulator (MASTER)

The MASTER sensor collects information over 50 optical and thermal wavelengths.

The temperature estimates for the MASTER sensor were obtained from band 42. At-

mospheric correction using MODTRAN 4 and the In-Scene Atmospheric Compensation

(ISAC) algorithm for 2009 and 2010 respectively, were applied to the thermal imagery

prior to ELC and temperature estimation. A standard MODTRAN 4 and FLAASH correc-

tion for optical bands was applied for 2009 and 2010, respectively.

6.4.2 Field Data Collection

In order to calibrate the remote sensing derived temperature data, calibrated thermal

infra-red (TIR) guns were used to measure the temperature of the ground. In 2009, 4

locations (2 bare soil and 2 water bodies) in the field were chosen to calibrate the imagery

(Figure 6.2). Each location was divided in a 3 by 3 grid and the temperature of all 9 grid

points was estimated using the TIR gun. This was done twice through the afternoon. Since

each location was sampled twice, a linear relationship between temperature and time of

temperature collection was assumed (Figure 6.3(a)). The temperature of the ground at the

time of over pass of the sensor was estimated from this curve. Three such targets (light,

dark and water), each divided into a 2 by 2 grid were chosen to calibrate the imagery in

2010 (Figure 6.2). This was done 8 times through the afternoon. The temperature of each

location at the time of overpass was estimated using the fitted polynomial curve as shown

in Figure 6.3(b).
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Figure 6.3: Calibration curves for estimation of ground temperature at the time of satellite
and airborne sensor overpass.

The value of hourly incoming solar radiation (Table 6.1) and reference ET estimates

were obtained from weather station No. 146 (Belridge) managed by CIMIS. The station

is located 800 m west of the pistachio orchards. CIMIS generates ET estimates for the

state of California and calculates reference ET over a standard grass or alfalfa land cover

using the modified Penman equation (Pruitt and Doorenbos 1977). The necessary crop

coefficients required to compute ET estimates specific to the crop are also calculated by

CIMIS based on the technique developed by Allen et al. (1998).

Table 6.1: Incoming solar radiation (CIMIS, Belridge station)

Date Solar Rad (W m-2)
July 24th, 2009 835.1
July 28th, 2009 834.2
June 29th, 2010 858.9
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6.4.3 Estimating ET

6.4.3.1 Energy Balance Method: S-SEBI

The ET for the region was estimated using the S-SEBI algorithm. The algorithm re-

quires minimal data inputs and assumptions to estimate ET. It is compatible with multiple

sensors and works well for various land covers. S-SEBI was used successfully by So-

brino et al. (2007), Verstraeten, Veroustraete and Feyen (2005) over diverse landscapes

using imagery from AVHRR. Roerink, Su and Mementi (2000) used this algorithm using

imagery from Landsat. More recently, S-SEBI was deemed most useful in a semi-arid irri-

gated environment in Mexico (Chirouze et al. 2014). A brief description of S-SEBI, with

minor variations in computation of albedo, is provided below for completeness. However,

readers are referred to (Roerink, Su and Mementi 2000) for details of the algorithm.

Rn = G+H +LE (6.7)

Rn = Net radiation, W
m2

H = Sensible heat flux, W
m2

LE = Latent heat flux, W
m2

G = Soil heat flux, W
m2

Incoming solar radiation, RS was measured close to the field site at weather station

No. 146 managed by CIMIS. Rn was estimated using the relationship given below

Rn = RS(1−α)+Rld−Rlu (6.8)

α = Dimensionless albedo

Rld = Long-wave downwards radiation W
m2
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Rld = εaσT 4
a

W
m2 (6.9)

Ta = air temperature (K)

εa = Dimensionless atmospheric emissivity

εa = 1.24(
ea

Ta
)

1
7 (6.10)

ea = Vapor Pressure (mBar)

Rlu = Long-wave upwards radiation

Rlu = εsσT 4
s

W
m2 (6.11)

εs = Land Surface emissivity (calculated in equation 6.1)

σ = Stefan-Boltzman Constant ( W
m2K4 )

Ts = Land surface temperature (K)

Soil heat flux, G, was estimated as a function of NDVI using the model developed

by Daughtry et al (1990) and assuming that the same relationship held good for our field

site. The use of a vegetation based relationship for calculating soil heat flux was justifiable

since the area under consideration was an agricultural region.

G = (0.325−0.208NDV I)Rn (6.12)

H and LE were lumped into one factor called the evaporative fraction, defined as the

ratio between latent heat and the sum of latent and sensible heat fluxes. The advantage of

using the evaporative fraction to estimate latent and sensible heat fluxes, as certain studies

suggest, is that the evaporative fraction remains constant throughout the day (Shuttleworth

et al. 1989; Brutsaert and Chen 1996; Crago 1996,). The evaporative fraction (Λ) as per
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the S-SEBI model is calculated as given below.

Λ =
LE

Rn−G
(6.13)

Λ =
TH−T0

TH−TλE
(6.14)

TH = aH +bHr0 (6.15)

TλE = aλE +bλEr0 (6.16)

Λ = Evaporative fraction corresponding to pixel albedo, r0

TH = Theoretical land surface temperature for an albedo value when all available en-

ergy gets converted to sensible heat

TλE = Theoretical temperature for a land-surface albedo value when all available en-

ergy gets converted to latent heat

aH ,bH , aλE , bλE = fitting parameters
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Figure 6.4: Relationship between albedo and land surface temperature (adapted from
Roerink et al, 2000).
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These fitting parameters were obtained by bounding the albedo versus temperature

graphs as shown for the MASTER and Landsat sensors (Figure 6.5). The accuracy of

the bounding lines is subject to the nature of the heterogeneity present in the area (i.e.

presence of light and dark pixels). Ideally, the light pixels should correspond to bare soil

that is completely devoid of moisture whereas the dark pixels should correspond to pure

water pixels. The bounding lines approximate the theoretical evaporation and radiation

controlled cooling lines shown in Figure 6.4. Albedo, r0, was estimated using Brest and

Goward (1987) model using the Red (R) and Near Infrared bands (NIR).
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Albedo v/s land surface temperature for a) Landsat sensor, 2009, b) Landsat
sensor, 2010, c) MASTER sensor, 2009, and d) MASTER sensor, 2010
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r0 = 0.512R+0.418NIR (6.17)

NIR = Band 4 ( Landsat) or Band 9 (MASTER)

R = Band 3 ( Landsat) or Band 5 (MASTER)

The latent heat, (LE) was then estimated as

LE = Λ(rn−G) (6.18)

The latent heat flux was converted to ET estimates (mm/hr) using eq. 6.19.

ETS−SEBI = LE
3600

L
(6.19)

L = 2.5e6−2.386e3(T −273.15) (6.20)

6.4.3.2 Correction Factor for S-SEBI Based ET

Penman-Monteith based ET estimates provide an accurate estimate of the potential

water loss from a crop with complete ground cover (unless a variation of percent ground

cover is accounted for in the computation of Kc). On the other hand, ET obtained from

S-SEBI is based on the relationship between land surface temperature and albedo data

derived at pixel resolution of the remote sensor and as such gives an estimate of the wa-

ter loss per pixel (which may be fully or partially vegetated). This relationship, however,

holds good only for homogeneous pixels whose albedo changes proportionally to the tem-

perature (also water content) of the entire pixel. In the given study, the bare soil around

the canopy and within the rows was parched dry and as a result each pixel was com-

prised of the well watered trees and soil at vastly different temperatures. The resultant
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albedo/temperature of the mixed (partially vegetated) pixel would not change in propor-

tion with the water content of the pixel. A well-watered plant in such conditions may

appear to be water stressed because of the high temperature of the mixed pixel due to the

presence of bare soil in it. Thus, as a result of averaging over the mixed pixel, the ET

values in the pixel will be underestimated. In order to correct for the averaging effect, the

ET values estimated using S-SEBI were adjusted based on the percent vegetation cover

(eq. 6.21).

ET =
ETS−SEBI

NDV I
NDV Imax

(6.21)

NDV I
NDV Imax

= percent vegetation cover

NDVI = NDVI of the pixel under consideration

NDV Imax = NDVI of a completely vegetated pixel or maximum NDVI of the region

(with similar leaf area index as the crop under consideration)

ETS−SEBI = modeled ET estimates (mm/hr)

Such a correction was based on the assumption that the ET increases in proportion to

the NDVI of the pixel and was intended to increase the estimated ET value to match a

fully vegetated pixel. Such a correction will enable the user to compare and validate the

estimated ET with the more accurate Penman-Monteith based ET values while retaining

the spatial variability in ET estimates as available from remote sensing.

6.5 Results and Discussion

6.5.1 Effect of Correction Factor on ET Estimates

Figures 6.6 (a) and 6.6 (b) show the ET derived using S-SEBI from the Landsat and

MASTER sensor in 2010. On average, ET losses from the almond fields were higher

as compared to the pistachio fields. However, since S-SEBI is an empirical technique

and based on a relationship between land surface temperature and albedo, the derived ET
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values were underestimated as a result of the bare soil in the pixel. By scaling the ET

as given in eq. 21, corrected ET from the plants was calculated (Figures 6.6 (c) and 6.6

(d)) which was higher than the averaged ET across the pixel. The increase in ET values

was larger for the pistachio orchards as compared to almond orchards (Figure 6.6) since

pistachios had a smaller canopy and consequently consisted of more bare soil compared

to almond pixels.

The field averages and standard deviation for ET (Figures 6.7 (a) and 6.7 (b)) and cor-

rected ET (Figures 6.7 (c) and 6.7 (d)) are plotted against Penman-Monteith based ETc

(Kc x ETref) estimates (Table 6.2). The calculation of ETref that represents the ET from

a reference crop (either clipped, well watered grass or a taller full-cover alfalfa crop) has

been standardized by Food and Agriculture Organization (FAO), (Allen et al. 1998, 2006)

and the American Society of Civil Engineers (ASCE-EWRI 2005). Kc is the crop specific

coefficient representing ratio of the crop’s potential ET (ETc) and ETref. This formulation

does not account for agricultural practices like planting in rows that result in partial ground

cover. The orchards in our study area were not under water stress and the trees were ex-

pected to be transpiring nearly at the potential (Penman-Monteith) rate; however, S-SEBI

generated ET (uncorrected) estimates were lower than the Penman-Monteith based esti-

mates (Figures 6.7 (a) and 6.7 (b)). ET from pistachio orchards which comprise of trees

with smaller canopies was underestimated more than that from the almond trees with larger

canopies. After applying the correction for percent crop cover, the ET estimates became

comparable with the Penman-Monteith based estimates (Figures 6.7 (c) and 6.7 (d)). The

observed root mean square error (RMSE) for pistachios changed from 0.65 mm/hr to 0.08

mm/hr and 0.76 mm/hr to 0.62 mm/hr for Landsat and MASTER, respectively. The dif-

ference in RMSE for almonds was lower. It can be inferred that accounting for percent

vegetation cover improves estimates of remote sensing derived ET in orchard conditions.

This finding is very encouraging for remote sensing based ET estimation over agricultural
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orchards in California that solely depend on irrigation, since spatial estimates of ET can be

obtained with the use of simple models like S-SEBI and routinely available Landsat data.

This can also be used to design targeted irrigation schemes.
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Figure 6.6: ET (S-SEBI estimated) distribuition in 2010 as estimated from a) Landsat and
b)MASTER sensor and Corrected ET distribution in 2010 c) Landsat and d)MASTER
sensor. (P-pistachio and A-almonds)
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Table 6.2: CIMIS (Belridge station) based ET estimates

Date Crop ET0 Crop Coefficient, Kc* ET
(mm/hr)** Kc x ET0 (mm/hr)

July 24th, 2009 Almonds 0.762 1.08 0.823
July 28th, 2009 Almonds 0.762 1.08 0.823
June 29th, 2010 Almonds 0.762 1.06 0.808
July 24th, 2009 Pistachio 0.762 1.19 0.907
July 28th, 2009 Pistachio 0.762 1.19 0.907
June 29th, 2010 Pistachio 0.762 1.19 0.907

* Crop coefficients were chosen based on time of year and have been provided by CIMIS
for mature almond crops
** Provided by CIMIS

6.5.2 Effect of Varying Scale on ET Estimates

In order to compare the Landsat and MASTER based ET, the violin plots of corrected

ET as obtained from both sensors in 2009 (Figure 6.8 (a)) and 2010 (Figure 6.8 (b)) were

plotted. The ET from crops was typically normally distributed except for Landsat based ET

in almond orchards which was right skewed. This implies that the apparent ET distribution

changes across the two scales under certain crop cover conditions and a general conclusion

for all heterogeneous orchard environments cannot be drawn. ET estimates as obtained

from MASTER were lower than those obtained from Landsat. The higher contrast between

the two in 2009 could be because of differences in irrigation amounts on the two days when

imagery was collected. Table 6.3 provides the mean and variance for the distribution of

the MASTER-based S-SEBI calculated ET values. The MASTER sensor provided lower

mean ET estimates than Landsat during both the years. In 2010, when the imagery from

MASTER and Landsat was collected almost simultaneously, the differences between the

two ET estimates were smaller. The variance values for the pistachio fields were almost

the same at both resolutions implying that the variance captured at 5.8/7.2 m and 120 m
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resolution was nearly similar in the orchards. . The variance value for the almond fields

was slightly higher in Landsat because of the dry patch in the almond field (Figure 6.2),

which was averaged into the Landsat pixels.
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Figure 6.8: Violin plots representing distrbution of ET in the year a) 2009 and b) 2010.
Red line depicts MODIS based average ET.

The underestimation of mean ET by MASTER can be attributed to the pixel resolution

of the sensors (Landsat, 120 m thermal; MASTER, 5.8 m). The Landsat pixel was large

enough to comprise of multiple trees and the ET that was generated from it was an average

of the trees and bare soil (Figure 6.1 (a)). On the other hand, the small pixel resolution

of the MASTER sensor at most allowed one tree per pixel (Figure 6.1 (b)). Most pixels

for the MASTER sensor consisted of either a portion of a tree and bare soil or in some

cases bare soil itself. This led to higher pixel temperatures in the MASTER sensor and

consequently S-SEBI generated lower ET estimates observed from the MASTER sensor.

This also indicates that remote sensing derived ET at a finer scale may not match remote

sensing derived ET at coarser scale and an adequate scaling scheme will need to be applied.

The results indicate that akin to the typical loss of information on upscaling there may be

loss of information in selecting resolutions that are comparable to canopy sizes under row
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Table 6.3: Mean (Variance) of corrected ET estimates obtained for almonds and pistachio
from Landsat and MASTER

Year: 2009
Crop Landsat MASTER

Almonds 0.96 (0.013) 0.52 (0.009)
Pistachio 0.84 (0.004) 0.32 (0.003)

Year: 2010
Crop Landsat MASTER

Almonds 0.93 (0.014) 0.77 (0.009)
Pistachio 0.85 (0.003) 0.72 (0.009)

orchard conditions. A comparison of variance within the sensors across the years shows

that the variance values are almost similar. This indicates that the sensor behavior was

consistent for both the years. The MODIS based ET values were typically lower than

Landsat and higher than MASTER sensor derived ET. The MODIS pixel has a resolution

of 1 km and, under the given agricultural settings, comprises various crops that differ in

terms of growth stage, irrigation patterns and types. Thus, at the scale of a MODIS pixel,

the representativeness of an agricultural field is lost.

The above analysis indicates that specifically for partially vegetated or orchard condi-

tions, the spatial resolution of remote sensing can lead to under/over estimation ET. It is

also not necessary that finer resolution of remote sensing will enable better estimation of

ET.

6.6 Conclusions

In the given study, we evaluated the effect of varying spatial resolutions on ET esti-

mates for two different crop orchards in California. ET was estimated over almond and

pistachio orchards using S-SEBI algorithm. The data used was obtained from the MAS-

TER sensor at a resolution of 5.8 m and 7.2 m and from the Landsat sensor at 120 m

resolution across two years. We found that Landsat provided more accurate estimates of
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ET than MASTER, which tended to underestimate the ET from the plants. An NDVI based

rescaling technique was also applied to correct for the mixed pixel effects in the orchard

conditions which improved ET estimates with respect to the crop coefficient method. A

comparison of the derived ET estimates with MODIS based ET estimates revealed that

MODIS based ET estimates do not compare well with the ET estimates from individual

crop types because of its coarse pixel size. The results of the study are very encouraging

toward the incorporation of remote sensing data in estimating evapotranspiration in the

region for use toward precision agriculture. The freely available Landsat data can be used

in conjunction with a simple ET model with minimal data requirements to provide ET and

related crop health maps to farmers regularly.
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7. CONCLUSIONS

The key to accurate and reliable hydrologic modeling is to incorporate soil moisture

data that honors the spatial and temporal scale of the processes simulated in the models. An

understanding of the spatio-temporal distribution of soil moisture across different support,

spacing and extent scales spanning beyond the observed is central for the success of this

effort. This study describes a data based framework for understanding and predicting the

variability in soil moisture dynamics during the growing season across spatial scales that

are atypical for soil moisture data collection but useful in modeling scenarios.

The dominant land-surface factors controlling near-surface soil moisture spatial dis-

tribution were found to evolve with hydro-climates, antecedent moisture conditions and

scale specific land-surface heterogeneity. In chapter II, a technique based on Shannon en-

tropy was developed to evaluate the dominant physical controls of soil moisture at Darcy

and airborne footprint (0.8 km) scale in a humid (Iowa) and sub-humid (Oklahoma) hydro-

climate. The data available for this analysis comprised soil moisture data from the growing

season for a normal and wet year for the humid hydro-climate and dry and wet year for

the sub-humid hydro-climate. It was found that soil texture was the dominant physical

factor controlling soil moisture distribution at the Darcy support scale for all conditions

except for the wet year in the sub-humid hydro-climate where topography was found to

be dominant. At the airborne footprint scale, soil texture showed an effective partition-

ing of soil moisture variability for both the hydro-climates. In chapter III, this analysis

was extended using non-decimated wavelet transform to evaluate the land-surface con-

trols of soil moisture redistribution across support scales varying from 1.6-25.6 km for

three hydro-climates- humid (Iowa), sub-humid (Oklahoma) and semi-arid (Arizona). It

was found that the dominance of soil on soil moisture dynamics typically decreased as we
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went from 1.6 km to 25.6 km support scales whereas the influence of topography and veg-

etation increased with increasing support scale for all three hydro-climates. The distinct

effect of hydro-climate was identifiable in the soil attributes dominating the soil moisture

dynamics where clay content (effective limiting parameter for evaporation) and sand con-

tent (effective limiting parameter for drainage) showed more dominance in the semi-arid

(Arizona) and sub- humid (Oklahoma) hydro-climate respectively. A hierarchy of dom-

inance of different land-surface factors on soil moisture redistribution at remote sensing

footprint scales during the growing season in the three hydro-climates was also developed.

In chapter IV, the dominant physical attributes found in the previous chapters were

incorporated to generate relationships between soil moisture redistribution and dominant

physical factors for the growing season in the same three hydro-climates. The scale based

dependence of these relationships on land-surface heterogeneity and antecedent wetness

was exploited to develop a Scale-Wetness-Heterogeneity (SWHET) cuboid to enable spa-

tial transferability of these relationships. In Chapter V, the spatial transferability of the

SWHET cuboid in a similar hydro-climate with different land-surface heterogeneity was

assessed. The scheme based on the SWHET cuboid performed well for regions repre-

senting highly correlated land-surface heterogeneity and relatively dry soil moisture con-

ditions, low correlated land-surface heterogeneity and relatively high soil moisture condi-

tions but not for regions representing low correlated land-surface heterogeneity and rela-

tively dry soil moisture conditions.

In chapter VI, the effect of varying spatial support scales on evapotranspiration es-

timates for two different crop orchards in a semi-arid region in California was evaluated.

The data used for estimating evapotranspiration was obtained from the MASTER sensor at

a resolution of 5.8 m and 7.2 m and from the Landsat sensor at 120 m resolution across two

years. It was found that Landsat provided more accurate estimates of evapotranspiration

than MASTER, which tended to underestimate the ET from the trees.
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The results from this research pave the way to evaluate various impactful concepts in

soil moisture literature like time stability (Grayson and Western, 1998, Mohanty and Sk-

aggs, 2001, Martinez-Fernandez and Ceballos, 2003, Cosh et al., 2004, Jacobs et al., 2004,

Joshi and Mohanty, 2011 etc.) at different extent and support scales which enables scien-

tists to determine watershed averages using a single monitoring site or pixel. The existence

of time stable pixels is conditioned upon some appropriate combination of land-surface

based heterogeneity as outlined in the previous studies. The understanding of the domi-

nance or hierarchy of dominance of physical factors provided through this study can assist

in predicting the location of time stable pixels for different extent scales (field, watershed,

region etc.) in some of the unmapped areas of the world and thus, enable the scientists

to accurately select installation sites for long term soil moisture monitoring using sensors

that measure soil moisture at different support scales (hand-held sensors, COSMOS etc.).

The key is to select monitoring sites that represent the dominant physical factor for a given

extent scale and at a particular support. For example, at the extent of the field or a water-

shed (based on results from chapter II) and using point support scale sensors, a soil texture

based installation scheme must be incorporated to capture soil moisture dynamics in most

cases. On the other hand, if the intent is to capture soil moisture dynamics at the regional

extent scale (based on results from chapter III) using sensors that give coarser support

scale soil moisture estimates, an installation scheme that honors the dominant physical

factor for a given hydro-climate and support scale must be selected. Ideally located soil

moisture monitoring stations can aid in upscaling soil moisture and consequently enhance

the predictive capabilities of hydrological models operating at scales that span beyond the

Darcy scale.

Soil moisture variability varies with spatial and temporal scale. While the focus of this

research spans a range of spatial support and extent scales, the finding from this research

are limited in their temporal extent. Since the relationships and findings of this research
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are data driven, it is imperative that the findings are not generalized while implementing

in other studies. Further research also needs to be done in evaluating the downscaling

scheme with regards to propagation of error in time and its applicability over a larger do-

main. However, this research lays the foundation for developing a promising method of

analyzing and incorporating spatial soil moisture data at varying support, spacing and ex-

tent scales into hydrologic modeling at coarse remote sensing footprints where the science

pertaining to hydrology is yet limited.
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APPENDIX A

The results for the Scale-Wetness-Heterogeneity Cuboid for the 6.4 km support scale

are provided below. The semi-variograms for the ∆SM and dominant physical factor (Table

A.1) were evaluated by extending the maximum lag to 51.2 km. 49.7%, 55.4%, 28.6% of

the α values obtained for the semi-variogram based relationships in Arizona, Iowa and

Oklahoma respectively were found to be statistically not significant (p>0.05). This can

be explained based on Figure 3.9 wherein the dominance of multiple factors becomes

comparable at the 6.4 km scale.The comparable dominance of different physical factors is

much higher in Arizona and Iowa and not as much for Oklahoma which is also reflected in

the relatively less statistically insignificant α values obtained for Oklahoma. These results

imply that when a clear dominant factor cannot be outlined, it is essential to incorporate

the effect of secondary factors as well.

Table A.1: Dominant physical attributes that create ∆SM variability for the 6.4 km support
scale

Region Dominant physical
attribute

Arizona Slope
Iowa % clay

Oklahoma LAI
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Figure A.1: Cumulative distribution function plots for the heterogeneity indices

 

Figure A.2: Histogram of the significant α values for 6.4 km scale for Arizona, Iowa and
Oklahoma
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