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ABSTRACT 

 

Improved Modeling of Evapotranspiration using Satellite Remote Sensing at Varying 

Spatial and Temporal Scales. (August 2011) 

Di Long, B.S., Tsinghua University, China; 

M.S., Institute of Geographic Sciences and Natural Resources Research, Chinese 

Academy of Sciences 

Chair of Advisory Committee: Dr. Vijay P. Singh 

 

The overall objective of the dissertation was to improve the spatial and temporal 

representation and retrieval accuracy of evapotranspiration (ET) using satellite imagery. 

Specifically, (1) aiming at improving the spatial representation of daily net radiation 

(Rn,24) under rugged terrains, a new algorithm, which accounts for terrain effects on 

available shortwave radiation throughout a day and utilizes four observations of 

Moderate-resolution Imaging Spectroradiometer (MODIS)-based land surface 

temperature retrievals to simulate daily net longwave radiation, was developed. The 

algorithm appears to be capable of capturing heterogeneity in Rn,24 at watershed scales. 

(2) Most satellite-based ET models are constrained to work under cloud-free conditions. 

To address this deficiency, an approach of integrating a satellite-based model with a 

large-scale feedback model was proposed to generate ET time series for all days. Results 

show that the ET time series estimates can exhibit complementary features between the 

potential ET and the actual ET at watershed scales. (3) For improving the operability of 
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Two-source Energy Balance (TSEB) which requires computing resistance networks and 

tuning the Priestley-Taylor parameter involved, a new Two-source Trapezoid Model for 

ET (TTME) based on deriving theoretical boundaries of evaporative fraction (EF) and 

the concept of soil surface moisture availability isopleths was developed. It was applied 

to the Soil Moisture and Atmosphere Coupling Experiment (SMACEX) site in central 

Iowa, U.S., on three Landsat TM/ETM+ imagery acquisition dates in 2002. Results show 

the EF and latent heat flux (LE) estimates with a mean absolute percentage difference 

(MAPD) of 6.7% and 8.7%, respectively, relative to eddy covariance tower-based 

measurements after forcing closure by the Bowen ratio technique. (4) The domain and 

resolution dependencies of the Surface Energy Balance Algorithm for Land (SEBAL) 

and the triangle model were systematically investigated. Derivation of theoretical 

boundaries of EF for the two models could effectively constrain errors/uncertainties 

arising from these dependencies. (5) A Modified SEBAL (M-SEBAL) was consequently 

proposed, in which subjectivity involved in the selection of extreme pixels by the 

operator is eliminated. The performance of M-SEBAL at the SMACEX site is 

reasonably well, showing EF and LE estimates with an MAPD of 6.3% and 8.9%, 

respectively. 
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CHAPTER I 

INTRODUCTION 

 
 
1.1. Background 

Evapotranspiration (ET) comprises evaporation from the soil surface and 

transpiration from vegetation. As the largest outgoing component in the water balance 

equation, i.e., 60-65% of the precipitation at the global scale (Brutsaert, 2005), ET is a 

key variable for understanding the hydrologic cycle, the energy balance on the Earth’ 

surface, as well as the carbon flow to and from the terrestrial biosphere. Much research 

and many applications associated with hydrology, water resources, agriculture, 

meteorology, and forestry require detailed information of ET across a range of spatial 

and temporal scales, e.g., water resources allocation and management, crop yield 

forecasting, weather prediction, and vulnerability of forests to fire (Anderson et al., 

2007a; Bastiaanssen et al., 2005; McCabe and Wood, 2006). A multitude of studies have 

shown that ET involves complex interactions between water and energy fluxes, and is 

primarily controlled by water and energy availability, surface resistance, and the ambient 

environment. These factors vary with terrain, land cover, and other surface 

characteristics (Baldocchi et al., 2001; Betts et al., 1997; Penman, 1948; Priestley and 

Taylor, 1972; Vorosmarty et al., 1998) . 

 Traditionally, ET has been measured by lysimeter, Energy Balance Bowen Ratio 

(EBBR) systems, and eddy correlation techniques. Yet, such techniques are generally 

                                                        
  This dissertation follows the style of Journal of Hydrology. 



2 

subject to point, field, or landscape scales (Baldocchi et al., 2001; Brotzge and Crawford, 

2003; Gentine et al., 2007; Yunusa et al., 2004). For a river basin system with a few 

human activities, ET at annual or interannual scales can be approximately estimated by 

water budget calculations as the residual term of precipitation and streamflow observed 

at a handful of hydrometeorological stations. However, it seems far from satisfactory to 

understand ET at finer timescales and spatial scales. 

On the other hand, a considerable amount of modeling effort has been made to 

address simulation of actual ET at field scales, in which the Penman-Monteith equation 

(Monteith, 1965; Penman, 1948) and its variant, FAO56 equation (Allen, 2000), have 

been widely used to estimate potential/reference ET. Along with crop coefficients 

obtained from field experiments, the actual ET can be estimated by reducing the 

reference ET proportionally in terms of crop coefficients. It is noted that the 

Penman-Monteith type equation tends to provide the potential/reference ET under wet 

environments and requires a large amount of micrometeorological data (e.g., air 

temperature, vapor pressure deficit, photosynthetic active radiation, and CO2 

concentration) and physiologic parameters (e.g., vegetation height and leaf area index) to 

characterize stomatal and soil surface resistances.  

These measured and simulated ET values, however, cannot be directly extrapolated 

to a larger scale (e.g., watershed/regional and continental scales). Also, expensive 

facilities of these observations and measurements make it infeasible to detect ET over 

large areas, especially over mountainous areas and underdeveloped regions. In 

hydrological modeling, parameterization of ET in many physically based distributed 
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hydrologic models seems inadequate to capture the spatial patterns and magnitude of ET 

within a river basin system (Vorosmarty et al., 1998). The ET term is often taken as a 

dustbin to imbue uncertainties arising from the deficiencies in the model physics and 

inputs. The conventional measurement techniques and simulation approaches have been 

far from satisfactory to result in an enhanced understanding of ET over large 

heterogeneous areas with varying land cover types and surface characteristics. 

The advent of satellite remote sensing represents a major technological 

breakthrough in improving our understanding of global dynamics and processes on the 

land surface, in the oceans, and in the lower atmospheres. It may be the only viable 

approach to handle the spatial variability of drainage basin properties and hydrologic 

processes (Engman, 1996). In particular, satellite remote sensing has provided the Earth 

science communities with an unprecedented opportunity to retrieve critical land and 

atmospheric variables at a range of coverage (e.g., swath width of 2,330 km for the 

Moderate-resolution Imaging Spectroradiometer (MODIS) sensor onboard Terra and 

Aqua satellites), spatial scales (e.g., 102~103 m space scales) and temporal scales (e.g., 

real time, daily, and biweekly) from recorded reflected and/or emitted electromagnetic 

radiation (radiance) by sensors (e.g., multispectral scanners, cameras, and detectors) 

onboard satellite platforms. 

Numerous remote sensing-based models built on the surface energy balance 

equation have been developed to reproduce surface fluxes across a variety of spatial 

scales. These models incorporate remotely sensed land surface temperature 

(LST)/radiative temperature (Trad) which is able to capture turbulent fluxes at the 



4 

interface between the land surface and the atmosphere, surface albedo which depicts the 

reflectance characteristic of the land surface, and/or Vegetation Index (VI)/fractional 

vegetation cover (fc) which reflects vegetation information of the surface (Bastiaanssen 

et al., 1998a; Jiang and Islam, 2001; Kustas and Norman, 1996; Nishida et al., 2003; 

Norman et al., 1995; Su, 2002). Estimates of ET from these models can be gainfully 

employed in determining water consumption by agricultural crops, water resources 

management (e.g., assist policy-makers in addressing the issue of consumptive water use, 

including beneficial and non-beneficial depletions), hydrologic modeling (e.g., 

forecasting river stage and flood potential and constraining recharge in groundwater 

simulations), forest management (e.g., monitoring forest health and vulnerability to fire), 

and numerical weather predictions and general circulation models by prescribing 

important boundary conditions (Anderson et al., 2007a; Bastiaanssen et al., 2005; 

Norman et al., 2003). 

The beauty of new technology is, however, not always impeccable. The 

introduction of satellite remote sensing in ET modeling is beset with a series of 

significant issues associated with the reliability of ET retrievals, limitations in their 

temporal resolution, as well as scale issues involved in both model physics and satellite 

imagery: 

(1) Parameterization of daily net radiation (DNR). DNR, the primary driving force 

of turbulent water and heat fluxes at the interface between the land surface and the lower 

atmosphere, has not been well parameterized under rugged terrain conditions. In most 

satellite-based ET models, DNR is a critical variable linking remotely sensed latent heat 



5 

 

flux (LE) to 24h-integrated ET. The daily net shortwave radiation (DNSR), a key 

component of DNR, is often parameterized by assuming extensively flat land surfaces 

across a study site. This may not hold true under rugged terrain conditions. In addition, 

another key component in DNR, the daily net longwave radiation (DNLR), is calculated 

by the FAO56 equation and a large amount of meteorological forcing or is reliant on 

field measurements. Inadequacies in parameterization of DNSR and DNLR would lead 

to uncertainties in the resulting ET estimates. 

(2) Temporal extension. The merits of satellite remote sensing, especially the 

thermal band information in investigating the large-scale water cycle and surface fluxes 

which are highly variable over space and time are significantly shadowed due to cloud 

cover and infrequent image availability for high spatial resolution imagery (e.g., 

biweekly for Landsat TM/ETM+) as governed by the satellite overpass schedule. This 

constrains most of the satellite-driven ET modeling schemes to work under cloud-free 

days. The snapshot of LE on a few cloud-free days seems inadequate to provide 

continuous monitoring of water consumption by agricultural crops and evolution of 

droughts. 

 (3) Spatial scale and scaling issues. Numerous satellite-based algorithms have 

been developed to estimate ET over large heterogeneous areas. Such algorithms, e.g., 

Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998a; 

Bastiaanssen et al., 1998b) and triangle/trapezoid models (Jiang and Islam, 2001), are 

typically developed and tested at the resolution scale of a certain sensor based on the 

assumption of homogeneity within the pixel resolution. However, there is a tendency in 
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the scientific community to directly apply ET algorithms developed at fine-resolution 

data (e.g., Landsat TM/ETM+) to coarse MODIS data (Gebremichael et al., 2010). It is 

therefore important to quantitatively assess the transferability of existing ET algorithms 

across spatial scales. Furthermore, the performance of these algorithms may depend on 

the size of the modeling domain. This means that some critical boundary 

conditions/variables intrinsic in these models would vary with the domain size. The 

resolution dependence and domain dependence are considered a significant obstacle at 

the accurate derivation of ET by satellite approaches and to build an understanding of 

sub-pixel variation in ET for relatively coarse satellite images. 

(4) Subjectivity involved in selecting extreme pixels in SEBAL. SEBAL has been 

used worldwide to estimate ET and facilitate water resources management over the past 

15 years (Bastiaanssen et al., 2010; Bastiaanssen et al., 2005). Two extremes, termed hot 

pixel and cold pixel, are required to determine the boundary conditions of LE to deduce 

surface fluxes and ET for the remaining pixels across a scene. However, the two 

extremes are selected from satellite imagery by the operator; different operators may 

select different extremes and therefore derive ET estimates of varying magnitudes and 

distributions. To that end, the ET estimates from SEBAL are often misinterpreted and 

large uncertainties may be involved. 

(5) Applicability of two-source models. Most satellite-based models pertain to the 

one-source scheme, which means that evaporation from the soil surface cannot be 

discriminated from vegetation transpiration. However, water consumption by crops and 

transpired by vegetation are more meaningful in many applications than soil surface 
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evaporation, e.g., as a metric for root zone moisture conditions in water balance models 

(Crow et al., 2008). The existing two-source models, e.g., Two-source Energy Balance 

(TSEB) (Norman et al., 1995) require parameterization of networks of surface and 

vegetation canopy resistances. The data requirement cannot be always satisfied. A new 

operational two-source model is therefore needed to allow separate evaluation of soil 

surface evaporation and vegetation transpiration in a simpler manner. 

 

1.2. Objectives 

The overall goal of the dissertation research is aimed at advancing the spatial 

representation and accuracy of ET retrievals at a range of spatial and temporal scales 

from satellite remote sensing and modeling. To achieve this, multiple objectives 

encircling the five issues expounded above are to: 

(1) Improve the spatial representation and reliability of DNR from satellite 

remote sensing under rugged terrains; 

(2) Improve the temporal resolution of satellite-based ET estimation models so 

as to generate ET time series on a daily basis; 

(3) Investigate the scale effects resulting from varying spatial resolutions of 

satellite sensors and modeling domain sizes in SEBAL; 

(4) Develop a new algorithm to determine the boundary conditions of SEBAL 

so as to reduce subjectivity and scale effects involved; 

(5) Investigate the resolution and domain dependencies of triangle models, and 

develop an algorithm to reduce these scale dependencies; and 
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(6) Develop a new two-source model for ET, which is capable of generating 

reliable vegetation transpiration and soil surface evaporation by fewer 

inputs without computing the resistance networks.  

 

1.3. Methodology 

The problems that each objective aims to address will be first examined. A range of 

physically based models in combination with satellite imageries of high spatial 

resolution (i.e., Landsat ET/ETM+) and moderate spatial resolution (i.e., MODIS) will be 

developed or adopted to resolve these problems. Specifically, these approaches include: 

(1) A mathematical model depicting the geometric relationship between the incident 

solar radiation and the sloping land surface will be adopted to simulate instantaneous 

incoming shortwave radiation. Specifically, sunrise and sunset angels for a generic 

surface (including the sloping surface and the flat surface) will be analytically derived so 

as to calculate DNSR. In addition, four observations of LST from Terra- and 

Aqua-MODIS will be tentatively used to simulate DNLR. 

    (2) Remote sensing-based ET models have been shown to be capable of producing 

reasonable ET distribution over large heterogeneous areas (Anderson et al., 2007a; 

Anderson et al., 2007b; Bastiaanssen et al., 2002; Batra et al., 2006; Gao and Long, 2008; 

Jiang and Islam, 2001; Krajewski et al., 2006; Kustas et al., 2007; Nishida et al., 2003; 

Zhang, 2009). The large-scale feedback model developed by Granger and Gray (1989) 

can essentially generate ET times series with routine weather data (Allen et al., 2007; 

Armstrong et al., 2008; Crago and Crowley, 2005; Liu et al., 2006; Xu and Singh, 2005). 
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There is a functional relationship between the relative drying power of air and the 

relative evaporation involved in the feedback model. Integration of remotely sensed ET 

retrievals on cloud-free days into the reconstruction of the functional relationship would 

allow producing an ET time series of high spatial resolution at watershed/regional scales. 

 (3) The domain dependence of SEBAL will be investigated by first performing 

sensitivity analysis of sensible heat flux (H) estimation to model inputs, in particular the 

model sensitivity to two extreme temperatures. Then, the model will be applied to 

varying domain sizes and satellite platforms. The H retrievals from SEBAL will 

subsequently be evaluated. 

(4) Two theoretical boundary conditions of evaporative fraction (EF)/LE within a 

study site given certain time, meteorological conditions, and surface characteristics will 

be derived by examining the radiation budget and energy balance states for critical 

extreme surfaces in the fc-Trad space. The SEBAL-based ET estimates will be constrained 

by the derived theoretical boundary conditions rather than the selected extreme pixels 

directly from satellite imagery. 

(5) The domain and resolution dependencies of triangle models will be investigated 

by applying to varying domain sizes and to varying satellite platforms. In particular, 

variations in the observed warm (upper) and cold (lower) edges with the domain size and 

satellite platform involved in the triangle models will be investigated. The theoretical 

boundary conditions of EF for the triangle models will be derived to reduce uncertainties 

in the derivation of the observed boundary conditions. 

 (6) By interpreting the contextual fc-Trad space and introducing the concept of soil 
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surface moisture availability isopleths superimposed in the space, Trad will be 

decomposed into temperature components (Tc for vegetation and Ts for soil). Vegetation 

transpiration and soil surface evaporation will be separately simulated by the newly 

developed Two-source Trapezoid Model for ET (TTME) algorithm. 

 

1.4. Significance of research 

    The significance of the dissertation research is twofold. First, a new ET time series 

modeling system will be synergistically developed. The modeling system consists of an 

improved daily net radiation algorithm, an integration technique to reproduce ET for 

cloudy days, and a new two-source trapezoid model for ET (Fig. 1). Second, the scale 

effects of SEBAL and triangle models will be elaborated to provide insights into correct 

interpretation of the model outputs. Model performance and mechanisms of error 

propagation will be unraveled. A framework to constrain errors due to the scale effects 

will be proposed. It is expected that the modeling system would be capable of generating 

reliable ET time series of high spatial resolution across large areas, which would greatly 

benefit a range of applications, like agricultural water use, water resources planning, 

watershed integrative management, forest management, and drought forecasting. In 

addition, the research would be helpful for correctly interpreting the model outputs from 

SEBAL and triangle models. A new framework could be incorporated into SEBAL and 

triangle models so as to produce scale-independent outputs. An elevated understating of 

turbulent energy fluxes on the Earth surface and the effect of land surface heterogeneity 

on the hydrologic cycle would be gained. 
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Figure 1.1 A framework of ET time series modeling system. 
 
 
1.5. Organization of dissertation 

Chapter II presents a new algorithm to simulate DNR over large heterogeneous 

areas from MODIS data products and Digital Elevation Models (DEMs). In Chapter III, 

an approach of integrating the SEBAL algorithm with the GG model will be developed 

to produce an ET time series of high spatial resolution at watershed/regional scales. 

Chapter IV focuses on developing a new two-source model based on the trapezoid 

framework of remotely sensed fc-Trad space. A systematic investigation into the model 

sensitivity and domain and resolution dependencies of the SEBAL algorithm is 

presented in Chapter V. Aiming at addressing the scale dependencies and subjectivity 

involved in SEBAL, Chapter VI concentrates on the modification of the SEBAL 

algorithm by deriving theoretical boundary conditions without directly selecting extreme 

pixels in an image. Chapter VII presents an investigation into the scale effects of triangle 

models and a framework to restrain uncertainties arising therefrom. The major 

conclusions, limitations in research, and recommendations for future work are given in 



12 

Chapter VIII.  

This research is primarily motivated by improving the estimation of ET across a 

variety of spatial and temporal scales in the context of increasing access to satellite 

imageries, advancements in thermal infrared remote sensing, and relevant algorithms to 

modeling surface fluxes. The accuracy and reliability of ET retrievals and the 

applicability and operability of models are the core issues of modeling efforts. Our 

research would result in an improved estimation of ET time series and a framework to 

restrain uncertainties arising from scale effects and deficiencies in model physics, and 

even inspire new approaches to simulating surface fluxes and ET based on satellite 

techniques. 
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CHAPTER II 

ESTIMATION OF DAILY AVERAGE NET RADIATION FROM MODIS DATA 

AND DEM  

 
2.1. Introduction 

Compared with instantaneous net radiation, 24-h integrated net radiation or daily 

average net radiation (DANR) consisting of daily average net shortwave radiation 

(DANSR) and daily average net longwave radiation (DANLR) has more applications for 

atmospheric and hydrologic modeling and water resources management, and especially 

for quantifying land surface evapotranspiration (ET) from satellite imagery (Allen et al., 

2006; Bastiaanssen, 2000; Bisht et al., 2005; Fortin et al., 2008; Gao and Long, 2008; 

Gao et al., 2008; Samani et al., 2007). DANR is a critical variable linking estimates of 

instantaneous latent heat flux (typically at satellite overpass time) from energy 

balance-based models (Bastiaanssen et al., 1998a; Su, 2002) and daily estimates of ET 

(in units of mm d-1) on the basis of an assumption that retrieved evaporative fraction 

(defined as the ratio between latent heat flux to available energy) remains fairly constant 

during cloudless days for which advection occurs occasionally (Brutsaert and Sugita, 

1992; Crago, 1996; Kustas et al., 1994a; Shuttleworth et al., 1989). Daily ET can be 

subsequently obtained using the evaporative fraction to partition DANR (Ahmad et al., 

2006; Bastiaanssen et al., 1998a; Jiang and Islam, 2001; Norman et al., 2003; Su, 2002). 

The evaporative fraction can significantly affect the spatial representation of estimates of 

ET across large heterogeneous areas, reflecting the combined effects of soil moisture, 

availability of radiative energy, vegetation type and its state, and meteorological 
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conditions on the latent heat flux (Batra et al., 2006; Nishida et al., 2003). DANR, to a 

large extent, determines the magnitude of estimates of ET for a given evaporative 

fraction from a pixel standpoint. It is thus believed that a considerable effort should be 

made to substantially improve the accuracy of both evaporative fraction and DANR, 

with the objective to make reliable predictions of ET. On the other hand, although 

comparisons of satellite-based latent heat flux with point-scale ground observations or 

more regionally with aircraft for several retrievals have been performed, it seems that to 

date there have not been universally acceptable approaches to effectively assessing the 

accuracy of the extrapolated daily ET from evaporative fraction. Discretization of 

ground-based measurements, the number of measurements, the difference between 

satellite-based pixel scales (e.g., 1000 m) and measurement scales (e.g., 100 m), and 

errors associated with such measurements should be taken into account (Bisht et al., 

2005; Kempf and Tyler, 2006; McCabe and Wood, 2006). It appears that although 

evaluation of the accuracy of spatially distributed estimates of ET from remote 

sensing-based energy balance models cannot be readily performed, improvements in the 

daily estimates of ET could be potentially achieved by increasing the number and/or 

frequency of ground-based observations of each component of DANR or significantly 

enhancing the capability of the parameterization scheme of DANR to represent reality.  

In some cases, DANR can be obtained directly from field measurements or weather 

stations (Bastiaanssen, 2000; Jegede, 1997; Kempf and Tyler, 2006; McCabe and Wood, 

2006). Nevertheless, limited field measurements and weather stations that can provide 

ground-based measurements of DANR or the components of DANR (e.g., DANSR and 
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DANLR) often inhibit practical applications of remote sensing-based surface flux 

models to large heterogeneous areas (Irmak et al., 2003; Samani et al., 2007; Su et al., 

2005), especially mountainous areas having exceedingly sparse measurements or 

stations. Furthermore, weather stations are generally located in flat areas so that the 

observations of DANR tend to represent limited surrounding areas, which may exclude 

sloping land surfaces or mountainous areas (Allen et al., 2006; Thornton et al., 2000). 

Then maps of DANR and associated components are derived through some type of 

parameterization scheme incorporating meteorological and/or remotely sensed data for 

practical ET estimation over large domains (Allen et al., 1998; Bisht et al., 2005; Bois et 

al., 2008; Choudhury, 1997; Fortin et al., 2008; Hurtado and Sobrino, 2001; Jacobs et al., 

2000; Kim and Hogue, 2008; Lagouarde and Brunet, 1993; Mahmood and Hubbard, 

2002; Samani et al., 2007; Thornton and Running, 1999). 

Allen et al. (1998) proposed a framework, known as the FAO56 method which has 

been widely used to estimate DANR from routinely observed meteorological data, for 

calculating reference ET and quantifying crop water requirement. The parameterization 

scheme of DANSR seems to be applicable to flat areas because of the exclusion of the 

effects of terrain factors (e.g., slope and azimuth) on solar radiation. Regarding the 

parameterization scheme of DANLR, it should be noted that the FAO56 equation 

involving the terms for correcting the Stefan-Boltzmann Law using air humidity and 

cloudiness is a site-specific method, not applicable to large heterogeneous areas. 

Therefore, to calculate DANR the FAO56 method should be used with caution for 

satellite-based ET estimation across large heterogeneous areas.  
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Jacobs et al. (2000) utilized Geostationary Operational Environmental Satellite 

(GOES) data to detect cloud cover throughout a day and subsequently derived 

instantaneous direct solar radiation and net radiation on a 15-min basis and DANR for 

ET estimation over wetlands in the Paynes Prairie Preserve, North Central Florida. 

However, the relatively low spatial resolution of GOES data would not be adequate to 

estimate DANR and ET over mountainous areas. Bisht et al. (2005) developed a 

sinusoidal model similar to Lagouarde and Brunet’s (1993) methodology to estimate 

DANR based on estimates of instantaneous net radiation from MODIS data products. 

One of the strengths of this model is direct simulation of DANR from retrieved 

instantaneous net radiation for clear sky days, without the requirement of 

parameterization schemes for each component of DANR.  

In addition, the model accounts for the effects of differences in sunrise and sunset 

angles on DANR, with specification of varied values of sunrise and sunset angles for a 

different Day of Year (DOY) but same values for the entire study region for the same 

DOY due to the domination of flat areas over the Southern Great Plains, United States. It 

is, however, noted that the model would not be suitable for implementation in 

mountainous areas because of the existence of a wide range of sunrise and sunset angles 

for sloping land surfaces. Moreover, integrating all components of DANR into a simple 

sinusoidal model would introduce certain errors to estimates of DANR resulting from 

the difference in the temporal phase of shortwave radiation and longwave radiation 

throughout a day, showing that the longwave radiation is not negligible but the 

shortwave radiation is non-existent during nighttime. 
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This study focuses on two issues associated with DANR estimation. First, in 

application of DANR and ET estimation across large heterogeneous domains for clear 

sky days, the effect of terrain factors on solar radiation should be quantified instead of 

simplifying terrain through an assumption of uniform extensive slopes and azimuths. For 

instance, some specific sloping land surfaces with steep slopes facing north in middle or 

high latitude areas may receive solar radiation only during a very short period or even 

may not receive at all. Some sloping land surfaces, by contrast, may be illuminated by 

direct solar radiation twice a day, meaning that there exist two sets of sunrise and sunset 

angles. These extreme examples are rare but may be important in some applications to 

mountainous areas (Allen et al., 2006; Gao et al., 2008). Second, DANLR also serves as 

a critical component in DANR. In many applications, DANLR has been obtained using 

one observation of land surface temperature (LST) from satellite imagery acquired at 

near midday as a surrogate of daily average LST in combination with meteorological 

data to calculate daily upwelling and downwelling longwave radiation (Hurtado and 

Sobrino, 2001; Kustas et al., 1994b; Lagouarde and Brunet, 1993; Roerink et al., 1997). 

In addition, DANLR can also be estimated by making use of the FAO56 method and 

incorporating a wealth of meteorological data. However, for satellite observation-based 

ET estimation, the utility of existing methods to parameterize DANLR needs to be 

further examined in that the difference in the representativeness of daily average LST 

induced by the difference in the overpass time of varying satellite platforms may result 

in disparate DANLR retrievals. Furthermore, an associated problem has to be 

investigated if one observation of LST can appropriately represent daily average LST for 
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calculating upwelling longwave radiation.  

Two MODIS (Moderate-resolution Imaging Spectroradiometer) sensors, onboard 

the Earth Observing System EOS-AM (Terra) and EOS-PM (Aqua), have remarkable 

advantages over other sensors for providing much more spatially distributed land and 

atmospheric data products, such as surface albedo, surface emissivity, and atmospheric 

profile temperatures at relatively higher spatial and temporal scales, in particular the 

critical variable LST at most four observations per day. This opens a new opportunity to 

more reliably parameterize DANR across large heterogeneous areas and to eliminate the 

need for a large amount of ground-based measurements to estimate DANSR, DANLR, 

and DANR, and related site-specific calibration for operational ET estimation. 

The objectives of this chapter are to (1) analyze physical mechanisms for how each 

component of DANR varies with time during a day, and then improve the 

parameterization scheme of DANSR by quantifying the effects of terrain factors on solar 

radiation for sloping land surfaces; (2) improve DANLR estimation using four 

observations of LST from MODIS data products, DEM, and minimum meteorological 

data; and (3) examine the relationship between DANR and terrain factors. 

 

2.2. Study site and data description 

2.2.1. Study site 

Located in North China, the study site is the Baiyangdian watershed, extending in 

latitude from around 37.8˚ to 40.4˚N and in longitude from around 113.3˚ to 116.6˚E 

(Fig. 2.1a). Hebei and Shanxi Provinces and Beijing City contribute to 80.4%, 12.3% 
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and 7.3% of its total area of 31, 200 km2, respectively. Elevations decrease from the 

northwest of the watershed, Taihang mountainous areas, to the southeast plain, ranging 

from around 2784 m to 0 m, showing that mountainous areas (elevation above 100 m) 

occupy approximately 53% of this watershed. Eight main streams of the Daqing River 

provide primary water sources for four irrigation districts, reservoirs, industrial and 

municipal use in this watershed, finally converging to Baiyangdian Lake, the largest lake 

on the North China Plain. In general, woodland and grassland dominate northwest 

mountainous areas, and cropland is distributed across plain areas, with statistics of a land 

use map (Fig. 2.1b) derived from Landsat TM images in the year 2000 showing that dry 

land, shrub and moderate grassland account for 33.6%, 12.1% and 12.0% of the 

watershed, the three largest land covers, respectively.  

Mean annual temperature is between 6.8 ˚C and 12.7 ˚C (the daily maximum value 

is 43.3 ˚C and the daily minimum value is -30.6 ˚C), with a mean annual precipitation of 

548 mm and a mean annual pan evaporation of 1500-2000 mm according to historical 

weather records of recent 50 years from Baoding, Shijiazhuang, Wutaishan, Weixian, 

and Huailai weather stations within or adjacent to the watershed. Over the recent two 

decades, drought frequency over Baiyangdian Lake has increased rapidly, in particular 

since year 2000, showing that the water level of this lake declines below the warning 

water level of 6.5 m during several months in a year and surface runoff into Baiyangdian 

Lake has reduced drastically. However, the precipitation of this watershed has not yet 

shown an evidently decreasing trend. Central and local administrations relevant to water 

resources management have thus conducted several inter-basin water transfer projects 
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from reservoirs and rivers within or adjacent to this watershed to address increasingly 

severe water shortage crises and to sustain drinking water requirement and ecological 

integrity over the Baiyangdian areas. Therefore, it is critical to explore the reasons for 

droughts over this area in the context of climate change and intensifying human 

activities through reliable estimation of ET and water budget. Reliably modeling DANR 

is the first step to determine ET amount and distribution over this watershed as indicated 

above. 

 

2.2.2. Data description 

Meteorological data on a daily basis relevant to the parameterization schemes of 

DANSR, DANLR and DANR, such as daily mean temperature, daily mean vapor 

pressure, were obtained by averaging in-situ measurements from 18 weather stations 

within the study watershed. Of the 18 weather stations, Baoding and Fuping stations can 

provide the observations of air temperature, vapor pressure and atmospheric pressure at a 

1-h interval. The other stations can provide relevant observations at 6-h intervals. Daily 
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Figure 2.1 Location (a) and land use (b) of the Baiyangdian watershed in North China 
with relevant information. 
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actual sunshine duration is available by accumulating in-situ measurements at 1-h 

intervals during daytime. Terrain factors, like slope, azimuth and elevation, can be 

directly extracted from Shuttle Radar Topography Mission (SRTM) digital elevation 

models (resampled to 100 m). 

MODIS data products, MOD11_L2 (the level 2 MODIS LST and emissivities for 

bands 31 and 32 daily data) are retrieved as 1 kilometer pixel by a generalized 

split-window LST algorithm (Wan and Dozier, 1996). MOD11A1 and MYD11A1 from 

Terra-MODIS and Aqua-MODIS (the level 3 MODIS LST and emissivities for bands 31 

and 32 daily data), are generated in a sinusoidally projected tile by mapping the level 2 

LST product on a 1 kilometer grid and are retrieved by the algorithm taking into account 

the dependence of retrieved LST on the viewing angle based on the physics-based 

day/night LST algorithm (Wan and Li, 1997). MOD11_L2, MOD11A1 and MYD11A1 

were utilized to simulate daily surface upwelling longwave radiation and to examine the 

difference in retrievals between using one observation of LST from MOD11_L2 and 

using four observations of LST from MOD11A1 and MYD11A1.  

MCD43A3, the 16-day composite level 3 gridded albedo products in the sinusoidal 

projection, provides both directional hemispherical reflectance (black-sky albedo in the 

extreme case of completely direct illumination) and bihemispherical reflectance 

(white-sky albedo in the extreme case of completely diffuse illumination) at a spatial 

resolution of 500 m. MOD04 provides daily level 2 aerosol depth at 0.550 μm 

wavelength product of spatial resolution of 10 km. MCD43A3 and MOD04 were jointly 

utilized to simulate land surface albedo in terms of the algorithm developed by Lucht et 
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al. (2000). Six clear sky days in the year 2007 were selected in terms of the MOD11_L2 

LST product with less than 10% cloud cover relative to the entire scene. Table 2.1 

contains DOY, Terra-MODIS overpass time and some variables with respect to weather 

conditions.  

 

Table 2.1 Day of year (DOY), Terra-MODIS overpass time and relevant weather 
conditions for six clear sky days in the year 2007 
 

Calendar day 
(DOY) 

Terra daytime 
overpass time, 

UTC 

Daily actual 
sunshine 

duration (h) 

Daily potential 
duration (h) 

Daily 
Cloudiness (%)

25th Apr(115) 03:15 11.9 13.4 1.1 
9th May (129) 03:25 and 03:30 11.8 13.9 18.6 
15th Jun (166) 03:45 10.7 14.7 20.9 
19th July (200) 03:35 12.1 14.4 47.2 
13rd Aug (225) 03:35 and 03:30 12.1 13.6 13.5 
19th Sep (262) 03:45 10.3 12.1 8.9 

 

2.3. Methodology 

DANR can be expressed as follows: 

n,24 in,24 d,24 d,24 u,24(1 )( ) ( )R r S S L L= − + + −                    (2.1) 

where Rn,24 is the DANR (W m-2), r is the land surface albedo (dimensionless) which is 

assumed to be similar to the surface albedo during the morning overpass (Bastiaanssen, 

2000), Sin,24 is the daily average direct solar radiation (W m-2), Sd,24 is the daily average 

diffuse solar radiation (W m-2), (1-r)(Sin,24 + Sd,24) is also termed the daily average net 

shortwave radiation (DANSR), Ld,24 is the daily average downwelling longwave 

radiation (W m-2), and Lu,24 is the daily average upwelling longwave radiation (W m-2), 

(Ld,24 - Lu,24) is also termed the daily average net longwave radiation (DANLR). 
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2.3.1. Parameterization scheme of DANSR 

(1) From Sin to Sin,24 for sloping land surfaces 

Instantaneous direct solar radiation Sin for a given sloping land surface at a given 

moment (typically satellite overpass) can be expressed as: 

 0
in 2

I cos( ) mS i
d

τ= ⋅                         (2.2) 

)cos(3.101 i
Pm a=                          (2.3) 

where I0 is the solar constant (around 1367 W m-2), d is the Earth-Sun distance in 

astronomical units, τ is the atmospheric transmissivity (dimensionless), m is the optical 

air mass number (dimensionless), Pa is the atmospheric pressure (kPa), which could be 

assumed to be a function of elevation in this watershed [Pa=101.3exp(-elevation/8200)], 

i is the solar zenith angle (rad), and cos(i) is the cosine of solar zenith angle 

(dimensionless).  

A sensitivity analysis of Sin to atmospheric attenuation variables has been performed 

in order to quantify the degree to which they influence the magnitude of Sin (Fig. 2.2).  

Results show that the atmospheric transmissivity and elevation are positively correlated 

with Sin, with a 10% increase in atmospheric transmissivity and elevation resulting in 

around 14.6% and 0.061% increase in the magnitude of Sin, respectively. On the contrary, 

a 10% increase in the solar zenith angle (SZA) will result in around 12.5% reduction in 

Sin. This is because of an increase in the distance of sunlight propagating in the 

atmosphere and thus an increase in atmospheric attenuation. It is concluded that the 
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atmospheric transmissivity is quite sensitive to the simulation of Sin. In many cases, 

instantaneous atmospheric transmissivity for clear sky days is determined merely by 

elevation (Melesse and Nangia, 2005; Wu et al., 2006). This approximation would lead 

certain errors to resulting Sin, especially for those days when cloud cover is significant. 

However, it should be pointed out that one of our purposes was to derive Sin,24 rather 

than Sin. We adopted another method to deal with daily average atmospheric 

transmissivity in the following text.  

On the other hand, accurately simulating atmospheric transmissivity at satellite 

overpass virtually requires detailed information on atmospheric composition with its 

state from radiosounding data. It is, however, not readily available in most cases. 

Through measurement of atmospheric transmissivity for clear sky days, Liu and Jordan 

(1960) stated that τ is between 0.45 and 0.75. In addition, Gates (1980) stated that under 

typical clear sky days, τ is between 0.6 and 0.7. Under extreme clear sky condition, τ 

reaches around 0.75. Here, we take τ for 0.7 for clear sky days for which good quality 

MODIS data products were available.  
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Figure 2.2 Sensitivity analysis of instantaneous direct solar radiation Sin to atmospheric 
attenuation variables. 
 
 
    It is worthwhile to note that for flat land surfaces, the solar zenith angle is simply a 

function of local standard time, latitude and solar declination; for sloping land surfaces, 

it additionally incorporates terrain effects, such as slope and azimuth (Fu, 1983; Morse et 

al., 2000): 

ωβαδβαϕαϕωδ
βαϕαϕδ

sinsinsincos)cossinsincos(coscoscos
)cossincoscos(sinsin)cos(

+++
−=i   (2.4) 

where δ is the solar declination, φ is the latitude (rad), α is the slope (rad), β is the 

azimuth (from due south, clockwise positive value, counterclockwise negative value, so 

the range of value is [-π, π]); ω is the solar angle (=π(t-12)/12, and t is the local standard 

time). 

An expression of Sin,24 can be obtained through an integral of Sin from sunrise angle 

ω1 to sunset angle ω2. The instantaneous atmospheric attenuation τm in Sin should be 
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replaced by the daily atmospheric transmissivity (a+bn/N) and then the expression 

should be divided by the total length of one day 2π (in the unit of solar angle) for 

calculating the integral mean on the range of [-π, π]: 

2

1

0
in,24 2

0
2 1 2 12

2 1

I( ) (sin cos cos cos sin sin sin )dω
2

I( ) [ sin ( ) cos (sin sin )
2

sin sin cos (cos cos )]

nS a b u
N d

na b u
N d

ω

ω

δ δ ω ν δ β α ω
π

δ ω ω ν δ ω ω
π

β α δ ω ω

= + ⋅ + ⋅ +

= + − + −

− −

∫

      (2.5)  

                      βαϕαϕ cossincoscossin −=u                          (2.6)

 βαϕαϕ cossinsincoscos +=v                          (2.7) 

π
ωω )(12 12 −

=N                                (2.8)             

where n is the actual sunshine duration (h), which was obtained by interpolating 18 

point-based observations of actual sunshine duration by an inverse distance square 

method, N is the potential sunshine duration (h), which can be expressed by the sunrise 

and sunset angles, ω1 and ω2, a is a regression constant characterizing the fraction of 

extraterrestrial radiation reaching the Earth on overcast days (n=0), a+b is the fraction of 

extraterrestrial radiation reaching the Earth on clear sky days (n= N).  

Values of a and b may vary with geographical locations and climate zones. The 

FAO method (Allen et al., 1998) recommends that a be taken as 0.25 and b be taken as 

0.50, if no actual solar radiation data are available and no calibration has been carried 

out for improved a and b estimates. Chen et al. (1995) made a regression analysis using 

observations of daily net radiation over the North China Plain and concluded that a and b 

could be specified as 0.17 and 0.54.  
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It is obvious that for theoretically solving Eq. (2.5), a parameterization scheme of 

sunrise and sunset angles, which incorporates the effects of terrain factors on the 

duration of sloping land surfaces being illuminated, the frequency of being illuminated 

during a day, and subsequently on the magnitude of the availability of direct solar 

radiation for sloping land surfaces, is virtually critical. The quantified ω1 and ω2 are thus 

input to Eq. (2.5) to compute Sin,24. Apparently the parameterization scheme of sunrise 

and sunset angles is only determined by the geometric relationship between the solar 

incidence and the sloping surface, being independent of Eq. (2.5).  

(2) ω1 and ω2 for sloping land surfaces 

The reasons why the critical solar angles (ω1 and ω2) should be quantified and the 

relationship between critical solar angles for sloping land surfaces and for flat land 

surfaces should be explored are as follows: As we know, critical solar angles for flat land 

surfaces are symmetrical (Gao et al., 2008), exhibiting the same absolute values but with 

inverse signs. However, the critical solar angles for sloping land surfaces probably show 

different absolute values, moreover, even the same sign. For instance, for certain sloping 

land surfaces facing north and located in middle or high latitudes in winter, they may 

receive solar irradiance merely in the morning or in the afternoon. For some particular 

cases, they may be illuminated twice during daytime, namely having two sets of ω1 and 

ω2. Consequently, if those sloping land surfaces were assumed to be flat surfaces in the 

calculation of critical solar angles for estimating direct solar radiation, it would lead to 

gross errors in the estimates of Sin,24 and eventually DANR and ET. 
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The ‘computed critical solar angles’ for sloping land surfaces can be directly 

obtained by allowing Sin in Eq. (2.4) to be zero, obtaining at most two real roots with 

opposite or identical signs (Gao et al., 2008). Only after comparing the ‘computed 

critical solar angles’ for sloping land surfaces with that for flat land surfaces in terms of 

a set of physical and mathematical principles can we determine the absolute values with 

their signs of the ‘actual critical solar angles’ for sloping land surfaces.  

Let ωs1 and ωs2 be the roots Eq. (29) in Gao et al. (2008), respectively, and ωs2>ωs1. 

Both ωs1 and ωs2 are a function of not only the latitude and solar declination determining 

the macroscopic distribution of direct solar radiation from the perspective of the scene, 

but also the slope and azimuth causing the microscopic variation in direct solar radiation 

for a specific sloping land surface. Additionally, let the sunrise and sunset angles for flat 

land surfaces be -ωH and ωH (ωH is absolutely positive) which are simply a function of 

latitude and solar declination. All mathematical expressions of ωs1, ωs2, -ωH, and ωH  

can also be found in Fu (1983) and Gao et al. (2008). Here, a comprehensive 

mathematical analysis of the relationship between (ωs1, ωs2) and (-ωH, ωH) has been 

made in order to specify ω1 and ω2 for a given sloping surface. The solutions of critical 

solar angles should inherently satisfy a set of physical and mathematical principles 

simultaneously as follows: 

A. Only when cos(i)≥0 can the sloping land surface be illuminated, otherwise it 

would produce nonphysical solutions, such as the presence of receiving direct solar 

radiation when specific terrain actually deflates sunlight. 

B. The sunrise angle for sloping land surfaces, ω1, should not be earlier than that for 
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flat land surfaces at the same latitude. Similarly, the sunset angle for sloping land 

surfaces, ω2, should not be later than that for flat land surfaces.  

On the basis of the two basic principles stated above, the sunrise and sunset angles 

can be specified by exploring the relationship among ωs1, ωs2, -ωH and ωH.  

a. If ωs1≤ω≤ωs2, cos(i)≥0 can be satisfied; thus the sunrise and sunset angles can be 

specified in terms of the principle B, namely, 

ω1=max(ωs1, -ωH); ω2=min(ωs2, ωH). 

b. If ω<ωs1 or ω>ωs2, cos(i)≥0 can be satisfied; thus the sunrise and sunset angles 

can be specified in terms of principle B. There are four kinds of possibilities in case b.  

(a) If computed |ωs1|<ωH and |ωs2|<ωH , the specific sloping land surface has two 

sets of sunrise and sunset angles, which means that it can be illuminated twice a day. 

Hence the critical solar angles are ω1=-ωH, ω2=ωs1 and ω1=ωs2, ω2=ωH, respectively.  

(b) If computed |ωs1|<ωH and |ωs2|>ωH, |ωs2|>ωH contradicting principle B, 

accordingly there is only one set of critical solar angle for this case, namely, ω1=-ωH, 

ω2=ωs1. 

(c) If computed |ωs1|>ωH and |ωs2|<ωH, |ωs1|>ωH contradicting principle B, 

accordingly there is also one set of critical solar angle for this case, namely, ω1= ωs2, ω2 

= ωH. 

(d) If computed |ωs1|<ωH and |ωs2|>ωH, both contradicting principle B, therefore the 

specific sloping land surface cannot receive direct solar radiation during the whole day.  

The four possibilities discussed in case b are illustrated in a sketch in Fig. 2.3. 
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Figure 2.3 A sketch for illustrating determination of sunrise and sunset angles for sloping 
land surfaces in case b. 

  

c. If real roots for ωs1 and ωs2 are non-existent, the sunrise and sunset angles can be 

specified directly in terms of principles A and B. Therefore, there are two possibilities in 

case c.  

(a) If whatever value ω is within its domain of definition [-π, π], cos(i)≥0 can be 

satisfied, corresponding to the situation that terrain does not deflate the direct solar 

radiation for a specific sloping land surface during the whole day, thus ω1=-ωH, ω2=ωH. 

(b) If whatever value ω is within its domain of definition [-π, π], cos(i)≥0 cannot be 
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satisfied, corresponding to the situation that terrain deflates the direct solar radiation 

during the whole day, thus the specific sloping land surface cannot receive direct solar 

radiation, namely Sin,24 is zero.  

The seven kinds of possibilities involved in the three cases analyzed above entirely 

cover all the relationships between computed critical solar angles (ωs1, ωs2) for sloping 

land surfaces and intrinsic critical solar angles (-ωH, ωH) for flat land surfaces at the 

same latitude. The sunrise and sunset angles, ω1 and ω2, can be eventually determined 

for each grid of DEM of the study site. The Sin,24 value for sloping land surfaces can 

subsequently be retrieved by inputting the sunrise and sunset angles to Eq. (2.5). For flat 

land surfaces, it is evidently one particular case for Eq. (2.5) where α=0. 

(3) From Sd to Sd,24 for sloping land surfaces 

When solar radiation propagates through the atmosphere, a major portion of it 

transmits through the atmosphere and ultimately interacts with the Earth’s surface, 

namely the direct solar radiation, a small portion of it is absorbed or reflected back into 

space by the atmosphere, and the left portion of solar radiation is scattered by the 

atmosphere, finally also reaching the Earth’s surface, namely the diffuse solar radiation. 

For accurately modeling the diffuse solar radiation, it would require specific information 

on atmospheric composition. Liu and Jordan (1960) have proposed an alternative and 

straightforward method to estimate instantaneous diffuse solar radiation Sd for clear sky 

days given by 

0
d 2

I0.3(1 ) cos( )mS i
d

τ= −                          (2.9) 
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It can be seen from Eq. (2.9) that Sd is 0.3 times the difference between Sin not being 

attenuated by the atmosphere and Sin being attenuated by the atmosphere, a relatively 

constant proportion. Pa involved in m and τ do not vary greatly for a particular location 

on a daily basis. Thereby, it seems that Sd,24 may rely on the solar zenith angle.  

We examined the variation in Sd with the solar zenith angle within the range of [0, 

π/2] in an attempt to determine some kind of approach to simulating Sd,24. The variations 

in Sin and Sd under the conditions of the atmospheric transmissivity of 0.7 and 0.6 and 

the elevations of 20 m and 1200 m have been modeled, respectively, based on Eq. (2.9) 

(Fig. 2.4). Results suggest that Sin varies dramatically with the solar zenith angle during a 

day, whereas Sd remains fairly constant during daytime except for short periods after 

sunrise and before sunset (solar zenith angle approaches 90°). Additionally, Sin at higher 

elevations is greater than that at lower elevations. On the contrary, Sd at higher elevations 

is smaller than that at lower elevations. As for the effect of atmospheric transmissivity on 

solar radiation, Sin increases with atmospheric transmissivity, while Sd decreases with an 

increase in atmospheric transmissivity. 
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Figure 2. 4 Variations in direct and diffuse solar radiation (W m-2) with solar zenith angle 
on the range of [0, π/2] under different atmospheric transmissivity and elevation 
conditions. 
 
 

It may be concluded that Sd remains fairly constant during daytime, which implies 

that Sd,24 may be estimated by multiplying the fraction of the daytime to the length of 

day (24 hours) to the magnitude of Sd. 

d
d,24 24

S NS ×
=                              (2.10) 

2.3.2. Parameterization scheme of DANLR 

Numerous theories and practices have shown that although instantaneous net 

longwave radiation accounts for only a small portion of total instantaneous net radiation, 

daily average net longwave radiation DANLR is not negligible due to its domination in 

the nighttime. In general, DANLR contributes a negative quantity to DANR in that the 

Earth-Atmosphere system is able to balance the accumulated energy available from the 
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shortwave radiation in the daytime by constantly emitting longwave radiation during the 

whole day. Thereby, DANLR is also critical in the calculation of DANR. 

DANLR is defined as the difference between the daily average downwelling 

longwave radiation Ld,24 from the atmosphere and the daily average upwelling longwave 

radiation Lu,24 from the Earth’s surface as follows: 

4 4
24 d,24 u,24 a a sL L L ε σT εσT= − = −                      (2.11) 

where εa is the daily average atmospheric emissivity (dimensionless) which was 

calculated by Brutsaert’s (1975) formula shown in Eq. (2.12), σ is the Stefan-Boltzmann 

constant (5.67×10-8 W m-2 K-4), Ta is the daily average air temperature at screen level 

(K). Maps of daily average temperature can be made using multi-variate regression 

analysis based on the observations of air temperature from weather stations and their 

corresponding elevations, longitudes and latitudes. ε is the land surface emissivity which 

can be calculated using a nonlinear formula (Liang, 2004) shown in Eq. (2.13). Ts is the 

land surface temperature (K) which can be obtained from MOD11_L2, MOD11A1 and 

MYD11A1 data products.  

1/ 7
a a a1.24( / )e Tε =                         (2.12) 

2
3232323131 774.1037.1807.1778.1273.0 εεεεεε +−−+=        (2.13) 

where ea is the daily average vapor pressure at screen level (hPa), ε31 and ε32 are the 

emissivities in MODIS channels 31, 32, respectively, which can also be obtained from 

MOD11_L2 data product.  

It should be pointed out that plenty of research and applications relative to the 
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estimation of DANLR have only taken advantage of one near midday observation of 

LST from some type of remotely sensed images. On the one hand, remotely sensed 

images with high spatial but low temporal resolution or fewer bands (e.g., Landsat TM 

and Advanced Spaceborne Thermal Emission and Reflection Radiometer, ASTER) are 

not capable of offering sufficient information on thermal infrared bands for retrieving 

LST. On the other hand, remotely sensed images with high temporal resolution (e.g., 

MODIS) have not yet been adequately exploited for estimating DANLR.  

In many applications, estimation of Lu,24 is generally based on an assumption that if 

a satellite overpasses a study site at near midday, the instantaneous LST retrieved from 

some kind of remotely sensed data can be taken as the daily average LST for calculating 

Lu,24 (Hurtado and Sobrino, 2001; Kustas et al., 1994b; Lagouarde and Brunet, 1993; 

Roerink et al., 1997). However, the use of one observation of remotely sensed LST 

acquired at near midday perhaps needs to be further examined, given that the time of 

polar orbiting satellites overpass varies much with remote sensing systems, which would 

result in the difference in the magnitude of LST and thus the estimates of Lu,24.   

Comparisons of estimates of DANLR from the use of one observation of 

Terra-MODIS LST and that from the weather data-based Penman equation (Penman, 

1948) given as Eq. (2.14) were performed to investigate the usefulness of the one 

observation-based method: 

4 4
max,d min,d

24 a( )(0.56 0.25 )(0.1 0.9 )
2

T T nL e
N

σ
+

= − − +           (2.14) 

where Tmax,d and Tmin,d are the daily maximum and minimum temperature (K), 
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respectively; and ea is the daily average vapor pressure (kPa). Eq. (2.14) has been shown 

to be capable of reliably estimating DANLR across the study site (Yin et al., 2008). It 

should be noted that Eq. (2.14) is a site-specific empirical equation. It was developed 

and calibrated to estimate DANLR by circumventing the requirement of LST and land 

surface emissivity that had not been readily available for physically-based Eq. (2.11) 

through conventional methods, especially at watershed or regional scales.  

The advent of remote sensing techniques provides an opportunity to capture 

spatially consistent and distributed variables (e.g., LST, and ε). In addition, it should be 

emphasized that one of our purposes is to develop a method to estimate DANLR directly 

based on Eq. (2.11) using remotely sensed data in conjunction with minimum of 

meteorological data. It is expected that the retrieved distributed DANLR has a higher 

spatial resolution in comparison with the predictions made from the Penman equation 

(Penman, 1948). The proposed method would eliminate the need for calibration required 

by the Penman equation when applied to other regions. 

MODIS data has prominent advantages over other remotely sensed data that it can 

offer a wealth of thermal infrared information from both Terra and Aqua satellites. We 

may utilize at most four observations of remotely sensed LST for a given area to track 

the diurnal cycle of LST, greatly helpful in retrieving DANLR over large heterogeneous 

areas. The four observations of MODIS LST are acquired around 10:30 a.m. and 10:30 

p.m. for Terra-MODIS, and 1:30 AM and 1:30 PM for Aqua-MODIS, respectively. 

Every two snapshots of each satellite are just in the processes of the rise and fall of LST 

during a day. This particularity is greatly beneficial in capturing the diurnal cycle of LST 
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and thus to estimating Lu,24.  

Since meteorological variables (e.g., air temperature) and land surface fluxes (e.g., 

radiation) basically present similar periodic fluctuations with solar zenith angle for clear 

sky days, or just have certain lag phrase, LST which is greatly affected by the variation 

patterns of meteorological variables and land surface fluxes follows closely the diurnal 

variation in the air temperature as well. We first fitted a cubic polynomial function using 

four observations of Terra-MODIS and Aqua-MODIS temperatures, and then calculated 

the average value of this fitting function on [0, 24]. The fitting of a cubic polynomial 

function can be expressed as 

24
3 2

1 2 3 4
0

s 1 2 3 4

( )dt
3456 192 12

24

a t a t a t a
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= = + + +

∫
         (2.15) 

where ai (i=1,…, 4) are regression coefficients which can be obtained by fitting a 

polynomial function using the four observations of MODIS LST. Ultimately, it seems 

logical that the average value could serve as the daily average LST in Eq. (2.11) to 

calculate DANLR.  

 

2.4. Results and discussion 

2.4.1. Sunrise and sunset angles 

The distributions of sunrise and sunset angles across the study watershed for four 

days are presented in Fig. 2.5 and Table 2.2, in which two days are in the summer 

half-year (9 May and 13 August) and two days are in the winter half-year (9 February 
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and 1 November) for explicitly illustrating their essential spatial patterns. 

 

 

Figure 2.5 Distributions of sunrise and sunset angles (rad) of the Baiyangdian watershed 
on Feb 9, May 9, Aug 13 and Nov 11. 
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Figure 2.5 Continued. 
 
 

Table 2.2 Distributions of sunrise and sunset angles (rad) for two days in the summer 
half-year and two days in the winter half-year over the Baiyangdian watershed in the 
year 2007 
 

Calendar day 
(DOY) Average ωH Rang of ω1 Range of ω2 

The number of 
pixels not 

receiving direct 
solar radiation 

The number of 
pixels having 

two sets of 
sunrise and 

sunset angles
May 9 (129) ±1.826 [-1.836, -0.405] [0.442, 1.836] 529 1 
Aug 12 (224) ±1.781 [-1.789, -0.335] [0.404, 1.789] 215 1 

Feb 9 (40) ±1.349 [-1.357, 1.337] [-1.261, 1.357] 522 0 
Nov 1 (305) ±1.351 [-1.354, 1.369] [-1.287, 1.354] 571 0 
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From Fig. 2.5 and Table 2.2, it appears that the adopted geometric model is capable 

of capturing the spatial variability in sunrise and sunset angles under complex terrain 

conditions over the entire scenes. First, sunrise angles are earlier for the summer 

half-year than those for the winter half-year and sunset angles for the summer half-year 

are later compared with those for the winter half-year. In other words, the direct solar 

radiation availability for sloping surfaces in the summer half-year is larger than that in 

the winter-half year.  

Second, there are marked differences between the sunrise angles for sloping 

surfaces and those for flat surfaces across this watershed for a specific day. For instance, 

the difference between the earliest sunrise angle and the latest sunrise angle on 

November 1 incredibly reaches the order of 10.4 hours (1.369 + 1.354 = 2.723 rad), and 

similarly, the difference between the earliest sunset angle and the latest sunset angle also 

spans a long period of 10.1 hours (1.354 + 1.287 = 2.641 rad). This highlights the 

heterogeneity in the terrain of the study watershed. For some specific sloping land 

surfaces in the study watershed, they can only be illuminated by direct sunlight late in 

the morning or early in the afternoon that are quite short compared with the flat surface 

at the same latitude.  

Third, the number of pixels that could not receive direct sunlight or have two sets of 

sunrise and sunset angles is relevant to their specific slopes, azimuths and DOY. There 

was approximately an area of 5.71 km2 not receiving direct solar radiation on November 

1. In addition, there was only one pixel on May 9 and August 13 being illuminated twice 

a day. It is noted that the accuracy of solar critical angles depends largely on the 
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resolution and accuracy of DEM used. This means the finer DEM, the more accurate 

magnitudes of sunrise and sunset angles. 

In summary, if the sunrise and sunset angles for the whole watershed were 

simulated irrespective of terrain factors, it would introduce gross errors to the simulation 

of sunshine duration and Sin,24 for sloping surfaces. What we have done is restoring 

realistic illumination conditions in simulation of Sin,24 by adequately taking into account 

the effects of terrain factors on deriving critical solar angles, which would greatly 

improve the spatial representation of estimates of DANR and ET.  

 

2.4.2. Daily average direct solar radiation 

Daily average direct solar radiation can be derived through inputting quantitatively 

determined sunrise and sunset angles to Eq. (2.5) and observations of actual solar 

duration and other terrain parameters. For examining the characteristics of the variation 

in direct solar radiation with terrain factors and evaluating the utility of the adopted 

geometric model to estimate Sin,24, the variation trends in Sin,24 with slopes for given 

azimuths on April 25 and September 19 have been, respectively, examined (Figs. 2.6 and 

2.7).  
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Figure 2.6 Variations in simulated daily average direct solar radiation (W m-2) with 
slopes for different azimuths across the Baiyangdian watershed on Apr 25, 2007. 
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Figure 2.7 Variations in simulated daily average direct solar radiation (W m-2) with 
slopes for different azimuths across the Baiyangdian watershed on Sep 19, 2007. 

 

Both days explicitly show that there is a kind of ‘hottest slope’ for the sloping land 

surface facing south (due south, southwest, and southeast), presenting that from 0˚ to the 

hottest slope, Sin,24 increases with slopes. However, if slopes exceed the turning point, 

Sin,24 for sloping land surfaces will decrease with an increase in slopes up to lower than 

Sin,24 for the flat land surface at certain large slopes. Namely, the sloping land surfaces 

facing south have the potential to receive more direct solar radiation than the flat land 

surfaces (slope=0˚).  
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In addition, the hottest slope and modeled Sin,24 for April 25 were generally smaller 

than that for September 19 (25˚, 39.5˚ and 39.5˚ for the sloping surface facing south, 

southwest and southeast on 25 April; 29.8˚, 45.5˚ and 38.6˚ on 19 September). This 

could be ascribed to different solar declination values, April 25 having a smaller solar 

declination value than September 19 (12˚59′ for 25 April, 0˚ 35′ for 19 September that is 

quite close to the autumnal equinox in 2007). By contrast, the sloping land surface 

facing north (north, northwest, and northeast) could not present similar variation trends 

as the sloping land surface facing south, exhibiting that Sin,24 for the surface facing north 

declined rapidly with an increase in slopes from the flat surface (slope=0˚). The 

declining rate for September 19 was more rapid than that for April 25. As for the 

variation trends for different azimuths, Sin,24 for the land surface facing due south and 

due north vary with slopes more dramatically than that facing southwest or southeast and 

northwest or northeast. The southwest and southeast azimuths tend to receive much more 

direct solar radiation compared with other azimuths of this study watershed on the two 

tested days. 

Frequency distributions of the difference between the simulated Sin,24 from 

assuming the entire land surface to be flat and that from the geometric model for sloping 

land surfaces larger than 25˚ and 45˚ on April 25 and September 19, respectively, are 

shown in Fig. 2.8. Results indicate that the largest differences between two methods  
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would incredibly reach the order of 199.4 W m-2 and 204.6 W m-2 on April 25 and 

September 19, respectively. In general, the simple way would underestimate Sin,24 by 

10.6 W m-2 and 17.0 W m-2, when the slope is larger than 25˚ for the two tested day. 

Furthermore, with an increase in slope from larger than 25˚ to larger than 45˚, the 

difference between the two methods would increase, showing that the standard deviation 

increased significantly from 39.6 W m-2 to 60.1 W m-2 on April 25 and from 57.9 W m-2 

to 70.3 W m-2 on September 19, respectively.  

To sum up, it was found that the proposed geometric model has the capability to 

capture the characteristics of the variation in direct solar radiation with not only the 

latitude and solar declination, but also terrain factors (slope, azimuth, elevation) across 

the entire watershed. Without accounting for terrain effects, the results would not present 

the detailed spatial heterogeneity and temporal variation trends in modeled Sin,24, and 

would result in gross errors under some specific terrain conditions. 
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Figure 2.8 Frequency distributions of the difference between simulated Sin,24 (W m-2) 
from assuming the land surface to be horizontal across the study watershed and Sin,24 (W 
m-2) from the adopted geometric model for sloping land surfaces with slopes larger than 
25˚ and 45˚ on Apr 25 and Sep 19, respectively (A bin size of 5 W m-2 is specified). 
 

2.4.3. Daily average net shortwave radiation 

After Sin,24 and Sd,24 were simulated on the basis of the geometric model and the 

characteristic of diffuse solar radiation, DANSR can be ultimately calculated in 
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combination with the surface albedo from MODIS black-sky and white-sky albedo 

products (MCD43A3, 500 m) and MODIS aerosol optical depth product (MOD04, 1000 

m). It is noted here that the resolution of Sin,24 and Sd,24 (100 m) differs from that of 

MODIS data products. Sin,24 and Sd,24 had to be thus resampled to 500 m by bilinear 

interpolation so as to be consistent with the resolution of MODIS albedo products.  

Fig. 2.9 and Table 2.3 show the essential characteristics of the spatial distribution of 

DANSR from the proposed method over the Baiyangdian watershed. It can be inferred 

that terrain factors are primarily responsible for the spatial variability in DANSR under 

the condition of the uniform distribution of actual sunshine duration in Eq. (2.5). The 

retrieved DANSR on April 25, May 9, August 13, and September 19 distinctly show that 

DANSR over northwest mountainous areas is larger than that over southeast plain areas, 

resulting primarily from the difference in atmospheric attenuation between mountainous 

and plain areas. Higher elevation areas usually correspond to lower atmospheric 

attenuation and therefore larger shortwave radiation.  

Furthermore, surface albedo is found to be an important factor affecting the spatial 

variation in DANSR. It is obvious that DANSR of Baiyangdian Lake is larger than that 

of surrounding dry land for six tested days. This is probably because of the surface 

albedo of water body and ambient humid environment being smaller than that of dry  
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land, therefore showing a relatively larger DADSR. DANSR on June 15 and July 19 did 

not show similar spatial distributions as the other four clear sky days, which could be 

attributed to heterogeneous distribution of observed sunshine duration across the entire 

study watershed for the two days. This tampered the spatial pattern of DANSR that 

should exhibit for clear sky days. With respect to the variation in DANSR with DOY, the 

mean of estimates of DANSR increased with dates, peaked on July 19 with a value of 

335.6 W m-2, and then decreased with dates. This trend could be closely related to the 

variation in solar declination. 

 

Table 2.3 Statistics about DANSR (W m-2) over Baiyangdian watershed for six clear sky 
days in the year 2007 
 

Calendar day 
(DOY) Maximum Minimum Mean Standard 

deviation 
Apr 25 (115) 347.1 94.8 292.8 18.5 
May 9 (129) 349.4 132.5 301.4 15.4 
Jun 15 (166) 366.1 171.0 304.4 15.0 
July 19 (200) 382.0 184.1 335.6 11.1 
Aug 13 (225) 354.8 104.4 300.0 17.7 
Sep 19 (262) 342.1 21.9 249.8 27.9 
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Figure 2.9 Simulated DANSR (W m-2) over the Baiyangdian watershed for six clear sky 
days in the year 2007. 
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2.4.4. Daily average net longwave radiation 

 DANLR from four observations of LST from MOD11A1 and MYD11A1 data 

products (termed four observations-based method hereafter), and one observation of LST 

from MODIS11_L2 (termed one observation-based method hereafter) were produced. 

Their utility and accuracy were examined in detail on the basis of the Penman equation 

over 18 sites for six tested clear sky days. 

Results (Fig. 2.10 and Table 2.3) suggest that a noticeable discrepancy between the 

one observation-based method and the Penman equation exists, showing the maximum 

bias and root mean square error (RMSE) on the order of -48.7 W m-2 and 54.8 W m-2 on 

May 9, respectively, and the minimum bias and RMSE on the order of -12.6 W m-2 and 

16.3 W m-2 on September 19, respectively. The four observations-based method could 

however dramatically improve the accuracy of estimates of DANLR, exhibiting good 

agreement with the Penman equation in terms of the maximum bias and RMSE of only 

14.0 W m-2 and 16.7 W m-2 on April 25, respectively. In addition, results also clearly 

demonstrate a relatively strong correlation between the four observation-based method 

and the Penman equation in terms of a higher R2 in comparison with the one 

observation-based method. Overall, the one observation-based method systematically 

underestimates DANLR due primarily to relatively higher LST values acquired around 

10:30 a.m. compared with relatively lower daily LST from the four observations-based 

method. 
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Figure 2.10 Comparison of estimates of DANLR (W m-2) from the one 
observation-based method and the four observations-based method against the Penman 
equation across 18 weather stations over the Baiyangdian watershed for six clear sky 
days in the year 2007. 
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Table 2.4 Bias, RMSE, and coefficient of determination (R2) for DANLR from using one 
observation of MOD11_L2 LST acquired around 10:30 a.m. and using four observations 
of MOD11A1 and MYD11A1 LST acquired on 10:30 a.m. and 10:30 p.m., and 1:30 a.m. 
and 1:30 p.m., respectively, relative to the Penman equation using meteorological data 
across 18 weather stations for six clear sky days in the year 2007 

 

Figure 2.11 shows a comparison for the two methods against the Penman equation 

across 18 weather stations for all tested clear sky days. It is clear that the one 

observation-based method showed a relatively larger bias and an RMSE on the order of 

-33.3 W m-2 and 39.6 W m-2, respectively. However, the four observations-based method 

agrees reasonably well with the Penman equation, indicating a bias, RMSE and R2 of 2.7 

W m-2, 12.8 W m-2 and 0.81, respectively. Accordingly, it can be concluded that the 

proposed method that combines four observations of MODIS LST with minimum 

meteorological data (Ta and ea) is of the capability to reliably derive DANLR against the 

Penman equation that has been proven to be applicable to the study site based on 

extensive ground measurements. 

 

Using one observation of MODIS LST Using four observations of MODIS LST Calendar day 
(DOY) Bias  

(W m-2) 
RMSE 
(W m-2) 

R2 
(W m-2) 

Bias  
(W m-2) 

RMSE 
(W m-2) 

R2 
(W m-2) 

Apr 25 (115) -43.3 45.8 0.61 14.0 16.7 0.44 
May 9 (129) -48.7 54.8 0.37 -2.5 7.4 0.68 
Jun 15 (166) -34.4 41.5 0.01 0.3 13.9 0.01 
July 19 (200) -27.9 32.6 0.14 5.5 8.6 0.55 
Aug 13 (225) -34.2 35.7 0.36 -8.9 11.4 0.68 
Sep 19 (262) -12.6 16.3 0.46 8.0 12.1 0.44 

Total -33.3 39.6 0.70 2.7 12.8 0.81 
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Figure 2.11 Comparison of estimates of DANLR (W m-2) from the one 
observation-based method and the four observations-based method against the Penman 
equation across 18 sites over the Baiyangdian watershed for the whole study period. 
 
 

 
2.4.5. Daily average net radiation 

After obtaining each component of Eq. (2.1), DANR can be ultimately calculated 

over the study watershed (Fig. 2.12 and Table 2.5). It can be seen from the results that 

first, the mean of estimates of DANR increased from 25 April, peaked on 19 July with a 

maximum of 229.4 W m-2, and then showed decreased, reaching a minimum of 131.1 W 

m-2 on September 19. The temporal variation in DANR can probably be ascribed to the 

solar declination which profoundly impacts DANSR. The closer to the summer solstice 

(June 22 in 2007), the larger radiation energy the land surface could receive under the 
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clear sky condition.  

Second, although the spatial distribution of DANLR attenuates to some degree the 

effect of terrain factors on DANR for sloping land surfaces due to DANLR having no 

strong relationship with specific slopes and azimuths, an appreciable difference in 

DANR between mountainous and plains areas was still observed on April 25, May 9, 

August 13, and September 19, respectively. Estimates of DANR across the southeast 

plain were apparently larger than those in the northwest mountainous areas on June 15. 

This rests on the fact that the distribution of actual sunshine duration was not 

homogeneous on June 15, with the observations from the southeast sites showing larger 

values than those from the northwest. Owing to clouds obstructing some portions of LST 

images acquired on July 19, the Penman equation was thus used to produce DANLR to 

make up those portions, thereby showing relatively larger values compared with the 

entire scene.  
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Figure 2.12 Simulated DANR (W m-2) over the Baiyangdian watershed for six clear sky 
days in the year 2007. 
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Table 2.5 Estimated DANR (W m-2) over the Baiyangdian watershed for six clear sky 
days in the year 2007 
 

Calendar day 
(DOY) Maximum Minimum Mean Standard 

deviation 
Apr 25 (115) 347.4 25.1 140.7 21.6 
May 9 (129) 285.6 57.8 142.6 24.1 
Jun 15 (166) 402.9 86.7 183.1 27.0 
July 19 (200) 409.6 135.0 229.4 23.0 
Aug 13 (225) 356.8 34.9 178.2 20.1 
Sep 19 (262) 277.0 0.0 131.1 20.6 

 
 

 
The relationship between retrieved DANR and elevation was investigated to show 

how elevation influences macroscopic distribution of DANR throughout the entire study 

watershed. In general, atmospheric composites, temperature, humidity and LST may 

vary to different degrees with elevation, which could induce the variations in direct and 

diffuse solar radiation, atmospheric downwelling and surface upwelling longwave 

radiation, and eventually result in the variations in DANR and ET from plains to 

mountainous areas.  

Fig. 2.13 shows the relationship between DANR and elevation for six clear sky 

days. Overall, DANR decreased slightly with an increase in elevation, showing a 

maximum amplitude of -20 W m-2 km-1 on  August 13 and a minimum amplitude of 

-1.6 W m-2 km-1 on April 25, respectively, with the exception of September 19 showing a 

small amplitude of 2.5 W m-2 km-1 but an inverse variation trend. In addition, the 

coefficients of determination R2 are generally low, implying that there is no direct 

relationship between DANR and elevation. This means that DANR basically remains  
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invariant with an increase in elevation. The variation trend in DANR with elevation 

appears to be determined by the combined effects of each component of DANSR and 

DANLR.  

First, with an increase in elevation, the atmosphere tends to be rare, and the air 

density, dust, impurity and water content in atmosphere tend to reduce, therefore 

resulting in an increase in atmospheric transmissivity and direct solar radiation. However, 

diffuse solar radiation will reduce in terms of the findings from Fig. 2.4, thus restraining 

the increase in total shortwave radiation. Second, as to the variation in DANLR with 

elevation, the air temperature at the screen level and LST can decrease with an increase 

in elevation, resulting in reductions in atmospheric downwelling and surface upwelling 

longwave radiation simultaneously. Eventually, DANR remains relatively invariant. 

However, it shows very scattered points stemming from large differences in land cover 

types, terrain factors, and actual sunshine duration for a specific location. 
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Figure 2.13 Relationship between DANR and elevation across the study watershed for 
six clear sky days in the year 2007. 
 
 

It should be emphasized that our purpose is to retrieve DANR from MODIS data 

products and DEM in combination with minimum meteorological data at regional or 

watershed scales. Resulting estimates of DANR could not be directly compared with 

ground-based measurements for the dearth of radiation observations over this area. We 

acknowledge that the proposed method warrants further validation about the final 
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estimates of DANR. However, the parameterization schemes for each component of Eq. 

(2.1) do provide more reasonable estimates compared with existing parameterization 

schemes that do not account for the effect of terrain factors, particularly restoring 

realistic spatial variability in DANR across mountainous areas. The proposed scheme for 

estimating DANSR was validated against the Penman equation. On the other hand, 

although a handful of ground-based DANR would obtain, there are no universally 

acceptable methods to compare spatially distributed estimates with point-based ground 

observations due to the discontinuity, scale issues, and limited number of observations 

(Bisht et al., 2005; McCabe and Wood, 2006).  

 

2.5. Conclusions 

DANR is a critical variable linking instantaneous latent heat flux to daily ET. 

However, the existing parameterization schemes of DANR appear to be less than 

suitable for capturing its substantial distribution patterns across large heterogeneous 

areas, especially over mountainous areas because: (1) the parameterization scheme of 

DANSR does not involve some physical mechanism to characterize the heterogeneity in 

Sin,24 for sloping land surfaces, and (2) the applicability of the parameterization scheme 

of DANLR only using one observation of remotely sensed LST may vary with satellite 

platform systems, leading uncertainties to DANLR estimation due to different 

capabilities of near midday LST to represent the daily average LST.   

In this chapter, Sin,24 is parameterized through taking into account the effects of 

terrain factors, such as slope, azimuth, and elevation on direct solar radiation. 
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Specifically, the sunrise and sunset angles for a given sloping surface are quantified. 

Besides, the physical mechanism governing the variation in diffuse solar radiation with 

solar zenith angle is investigated in order to involve Sd,24 in the calculation of DANSR. 

Results indicate that the geometric model has the capability to characterize the 

variability in Sin,24 over the entire study watershed, explicitly showing that the southwest 

and southeast azimuths have relatively larger magnitudes of direct solar radiation 

compared with other azimuths on April 25 and September 19, respectively, and there 

exist the hottest slopes for surfaces facing south.  

Improvements in the spatial representation of Sin,24 would significantly improve the 

distributions and magnitudes of DANSR and DANR. Without incorporating terrain 

factors into the parameterization schemes, the difference in Sin,24 would be as large as 

199.4 W m-2 and 204.6 W m-2 on April 25 and September 19, respectively. Furthermore, 

the steeper the slope, the larger difference would occur, implying the robustness of the 

parameterization schemes. DANSR can be ultimately derived from modeled Sin,24, Sd,24, 

and MODIS albedo products.  

An approach to simulating DANLR is proposed through incorporating four 

observations of MODIS LST and surface emissivities from MOD11_L2, MOD11A1 and 

MYD11A1 in conjunction with minimum meteorological data, aiming at circumventing 

the deficiency in the use of only one observation of remotely sensed LST. The retrieval 

accuracy is evaluated on the basis of the Penman equation that has been shown to be 

able to provide reliable estimates of DANLR across the study site but needs relatively 

more meteorological data. Comparison of retrievals from the four observation-based 
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method and one observation-based method against the Penman equation is performed, 

showing a bias of 2.7 W m-2 and a RMSE of 12.8 W m-2 for the proposed method and a 

bias of -33.3 W m-2 and a RMSE of 39.6 W m-2 for the one observation-based method 

across 18 weather stations for six tested clear sky days.  

We acknowledge that the proposed method does not involve a complex radiative 

transfer model. Nevertheless, it incorporates a sophisticated algorithm to quantify solar 

radiation for sloping surfaces. In addition, it adequately utilizes four observations of 

MODIS LST to improve the accuracy of DANLR retrievals. One can be confident that 

the improvements in DANSR and DANLR would significantly improve the accuracy of 

DANR estimates, particularly its spatial distribution across large heterogeneous areas. 

These contributions would be significant in operational regional ET estimation for water 

resources planning and management, hydrologic modeling, and further applications like 

antecedent soil water content and surface runoff estimation, and flood monitoring from 

remote sensing.  

It should be noted that for cloudy days, DANSR can also be estimated from the 

proposed method with successive MODIS albedo products and observations of actual 

sunshine duration for calculating daily average atmospheric transmissivity (a+bn/N). 

Because of the absence of remotely sensed LST in cloudy days, DANLR could be 

estimated directly with the Penman equation and meteorological data. Atmospheric 

radiative transfer models or more sophisticated methods with profiles of atmospheric 

states could also be used to address daily average atmospheric transmissivity and 

DANLR for cloudy days (Forman and Margulis, 2009).  
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CHAPTER III 

INTEGRATION OF THE GG MODEL WITH SEBAL TO PRODUCE ET TIME 

SERIES OF HIGH SPATIAL RESOLUTION AT WATERSHED SCALES 

 
 
3.1. Introduction 

Satellite-based models tend to generate latent heat flux of reasonable spatial 

representation due primarily to the incorporation of remotely sensed LST (Anderson et 

al., 2007a; Anderson et al., 2007b; Bastiaanssen et al., 2002; Batra et al., 2006; Gao and 

Long, 2008; Jiang and Islam, 2001; Krajewski et al., 2006; Kustas et al., 2007; Nishida 

et al., 2003; Zhang, 2009). Satellite images, in particular the images of the thermal 

infrared band, however, are often blurred or obstructed by clouds especially during rainy 

season. The restriction makes such models only work under cloud-free conditions. At 

most, they can offer temporally integrated daily ET by assuming instantaneous 

evaporative fraction (EF) to be fairly invariant during daytime and then utilizing the 

derived instantaneous EF to partition daily net radiation (Ahmad et al., 2006; 

Bastiaanssen, 2000; Bastiaanssen et al., 1998a; Bastiaanssen et al., 2005; Jiang and Islam, 

2001; Norman et al., 2003; Su, 2002). Nevertheless, the latent heat flux or daily ET 

estimates under cloud-free conditions cannot satisfy the requirement of ET time series. 

In particular, monthly, seasonal, and yearly ET estimates are needed for quantifying total 

water consumption by agricultural crops and assisting professionals in water resources 

allocation and management (Ahmad et al., 2006; Allen et al., 2007). 

We suggest that integration of the feedback method (Granger, 1989; Granger and 
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Gray, 1989), (hereinafter the GG model) with a remote sensing-based model has the 

potential to make reliable predictions of ET time series of high spatial resolution by 

simply using routine weather data. The point here is that for a specific region where the 

complementary relationship (hereinafter CR) between pan ET and actual ET has been 

shown to be valid, the ET time series would exhibit complementary features over time 

and space. If the integration approach has demonstrated skill in generating ET time 

series which are of CR features and high spatial resolution due to the incorporation of 

remotely sensed variables and/or fluxes, it would successfully extend remotely sensed 

information on cloud-free days to days without usable images. This technique would 

substantially improve the accuracy of ET time series estimates and greatly benefit a 

range of applications. 

The GG model has been shown to be able to yield reliable magnitudes of ET over 

large areas in different regions throughout different climatic zones (Allen et al., 2007; 

Armstrong et al., 2008; Crago and Crowley, 2005; Liu et al., 2006; Xu and Singh, 2005). 

To account for departures from the saturated condition and obtain a more general 

expression for calculating actual ET, Granger and Gray (1989) introduced a concept of 

relative evaporation, G, (defined as the ratio of the actual evaporation to the potential 

evaporation) to this method. The potential evaporation is defined as the evaporation rate 

that would occur, given certain atmospheric conditions (e.g., wind and humidity), if the 

surface were saturated at the temperature of the surface. Moreover, they related G to the 

relative drying power of air, D, based on an assumption that meteorological variables 

(e.g., air temperature and vapor pressure) can be indicative of changes in soil moisture 
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status and thus potential and actual ET (Brutsaert, 1982; Morton, 1983). The GG model 

eliminates the need for surface variables like LST and surface vapor pressure in that D 

not only drives the actual ET but also reflects the effects of actual ET on regional 

advection (Hobbins et al., 2004). Furthermore, the GG model avoids a prior calculation 

of potential evaporation which has not been clearly defined in a universally accepted 

manner (Biftu and Gan, 2000; Granger and Gray, 1989; Wu et al., 2006).  

It is noted that the relationship between D and G should be applied with caution. In 

Granger and Gray’s original work (1989), limited data points (158) of actual ET and the 

values of G larger than 0.7 (the wet environment) did not allow for a more universally 

applicable functional relation over large heterogeneous areas. Later, Granger modified 

this relationship which is also an exponential function (Granger, 1996; Granger, 1998). 

Nevertheless, Biftu and Gan (2000) suggested that the modified relationship cannot 

represent heterogeneity in landscape properties governing the mechanisms of water-heat 

transfer either. Furthermore, it should also be noted that although the GG model has the 

capability to make reliable predictions of areal ET, its spatial representation has not yet 

been well examined.  

It is logical that the spatial resolution of ET from the GG model relies largely on the 

spatial scale of meteorological forcing. The satellite-based models tend to produce ET 

estimates with reasonable spatial distribution over an entire scene on cloud-free days. 

Meanwhile, the GG model can yield reasonable ET magnitudes over large areas using 

routine meteorological data, provided an effective relationship between D and G is well 

established. The two approaches have important complimentary potential. If the 
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relationship between D and G can be established by the ET outputs from a satellite-based 

model of large heterogeneous areas with a range of atmospheric and surface conditions, 

the modified GG model would probably make reliable predictions of ET with reasonable 

magnitude and distribution throughout a study region by simply using routine 

meteorological data.  

Of satellite-based models for simulating land surface fluxes, SEBAL has been one 

of commonly used tools to capture the spatial variability in ET at watershed/regional 

scales (Allen et al., 2007; Compaore et al., 2008; French et al., 2005b; Gao et al., 2008; 

Hong et al., 2009; Immerzeel and Droogers, 2008; Immerzeel et al., 2008; Kongo and 

Jewitt, 2006; Oberg and Melesse, 2006; Ramos et al., 2009; Teixeira et al., 2009a; 

Teixeira et al., 2009b). A watershed with a variety of land covers exhibiting distinct 

surface and atmospheric conditions can be selected as a study site, which would 

probably satisfy the prerequisite of the presence of two hydrological extremes, termed 

the hot and the cold pixels in SEBAL. Remote sensing sources come from MODIS land 

and atmospheric products which are widely used in regional ET estimation. 

The objectives of this chapter were to (1) estimate actual ET of a selected watershed 

on cloud-free days using SEBAL; (2) re-establish the relationship between D and G in 

the GG model using the ET retrievals from SEBAL; (3) generate ET time series with the 

modified GG model; and (4) compare and contrast the performance of the evaporative 

fraction method, the crop coefficient method, and the proposed integration method to 

produce ET time series at watershed scales. 
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3.2. Critique of methods to generate ET time series 

Existing methods to produce ET time series include: (1) the use of EF derived in 

cloud-free days as a surrogate to partition daily net radiation between satellite overpass 

dates or for days without usable images (Bastiaanssen et al., 2002; Farah, 2000; Farah et 

al., 2004) (hereinafter the evaporative fraction method), (2) the use of crop coefficients 

derived from remotely sensed actual ET and corresponding weather-based reference ET 

on days of image acquisition to partition reference ET on days without usable images 

(Allen et al., 2007; Li et al., 2008b; Mohamed et al., 2004; Mohamed et al., 2006; Oberg 

and Melesse, 2006; Singh et al., 2008) (hereinafter the crop coefficient method), and (3) 

the use of physically-based, distributed hydrological models to generate ET time series 

over large heterogeneous domains (Arnold et al., 1993; Bastiaanssen et al., 2002; 

Droogers and Bastiaanssen, 2002; Flerchinger et al., 1996; Gao and Long, 2008; 

Refsgaard, 1997; Schuurmans et al., 2003; Xu and Li, 2003). 

 

3.2.1. Evaporative fraction method 

Bastiaanssen et al. (2002) pointed out that there is a primary assumption in SEBAL 

that EF remains constant between satellite overpass dates. It may hold true when soil 

moisture and meteorological conditions do not significantly change. Farah (2000) stated 

that the accumulated ET for a period of around 10-20 days can be predicted satisfactorily 

from the remotely sensed EF amid the period. However, use of the EF retrieved for a 

particular day to predict ET for other days within a 10-day period fails. Bastiaanssen et 

al. (2002) implied that temporarily integrated ET from the temporal constancy of EF for 
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a week and or so can suffice for the accuracy, as systematic errors would cancel out over 

a relatively longer period of time: 

                           n24 d
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= ∑           (3.1)              

where ETperiod is the accumulated actual ET for a period beginning on day b and ending 

on day f, 86400 converts from seconds to 24 hours, Λd is the evaporative fraction derived 

on days with usable satellite images, Rn24i is the daily net radiation for day i, and λi is the 

daily latent heat of vaporization (J kg-1). Uncertainties may exist in the extrapolated ET 

from the EF method in the presence of notable differences in soil moisture availability, 

daily net radiation, and meteorological conditions between clear sky satellite image 

dates. 

 

3.2.2. Crop coefficient method 

Allen et al. (2007) indicated that one satellite image per month can generally suffice 

for the construction of a reasonable crop coefficient curve for purposes of estimating 

seasonal ET. However, during periods of rapid vegetation change, a more frequent image 

interval may be required. Note that this approach assumes the actual ET for the entire 

area of interest to change in proportion to changes in the weather-based reference ET. 

This means that the larger the reference ET, the larger the actual ET given a constant 

crop coefficient: 
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where ETd is the actual ET derived from days with usable images, ET0d is the 

corresponding reference ET, and ET0i is the reference ET for day i. In this study, the 

reference ET is calculated with the FAO56 equation (Allen, 2000): 

n,24 s 2 s a
a

0
2

9000.408 ( ) ( )
273ET

(1 0.34 )

R G u e e
T

u

γ

γ

Δ − + −
+

=
Δ + +

           (3.3)            

where ET0 is the reference ET (mm d-1), Δ is the slope of saturated vapor pressure 

(kPa˚C-1), Rn,24 is the net radiation (MJ m-2 d-1), and Gs is the soil heat flux (MJ m-2 d-1). 

In applications having a 24-h calculation time step, Gs is assumed to be 0. γ is the 

psychrometric constant (kPa˚C-1), Ta is the air temperature at a 2 m height (oC), u2 is the 

wind speed at 2 m height (m s-1), and es-ea is the saturation vapor pressure deficit (kPa). 

ET0 predicts ET from a hypothetical grass reference surface that is 0.12 m in height 

having a surface resistance of 70 s m-1 and albedo of 0.23. Sensitivity analysis (Fig. 3.1a) 

of Eq. (3.3) shows that Rn,24 is the most sensitive variable, with a 10% increase in Rn,24 

resulting in around 7.5% increase in ET0. A 10% increase in es-ea, Ta, and u2 would result 

in a 2.5 %, 0.9%, and 0.8% increase in the resulting ET0, respectively.  
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Figure 3.1 Sensitivity analysis of the FAO56 reference ET equation (a) and the GG 
model (b), with reference values: Rn,24=17.28 MJ m-2 d-1, es-ea=1 kPa, u2=2 m s-1, and 
Ta=27 oC. 
 
 
3.3. Proposed integration method 

Integration of the GG model with SEBAL is proposed to produce ET time series 

with high spatial resolution at watershed scales as the following steps: (1) the use of 

SEBAL to simulate spatially consistent and reasonably distributed ET for cloud-free 

days; (2) the ET output from SEBAL constitutes input into the GG model to invert G; (3) 

the new relationship between D and G can be explored and reconstructed; and (4) the 

modified GG model with associated weather data and remotely sensed albedo and VI 

will generate ET time series. 

 

3.3.1. SEBAL model 

SEBAL is an energy balance-based method of modeling land surface fluxes with 

remotely sensed, i.e., LST, albedo, and emissivity, and less meteorological data, i.e., air 

temperature, vapor pressure, and wind velocity. The latent heat flux is calculated as the 
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residual term of the surface energy balance equation, which was intended to circumvent 

the need for surface vapor content and surface resistance that cannot be measured by 

satellite techniques at the current stage. Assuming advection and light energy for 

photosynthesis to be negligible, the energy balance equation can be expressed as 

n s LER G H= + +                        (3.4)              

where Rn denotes the instantaneous net radiation (W m-2) (typically at the satellite 

overpass), Gs denotes the soil heat flux (W m-2), H denotes the sensible heat flux (W m-2), 

and LE denotes the latent heat flux (W m-2). 

Rn is the sum of the net shortwave radiation and the net longwave radiation, minus 

the reflected downwelling longwave radiation from the land and atmosphere system: 

n d d u d

4 4
d a a s

(1 ) ( ) (1 )

(1 ) σ σ

R α S L L ε L

α S εε T ε T

= − + − − −

= − + −
                (3.5)              

where (1-α)Sd is the net shortwave radiation, (Ld-Lu) is the net longwave radiation, and 

(1-ε)Ld is the reflected downwelling longwave radiation. α is the surface albedo 

(dimensionless) which can be derived from visible and near-infrared bands of satellite 

images, and Sd is the instantaneous shortwave radiation (W m-2), which is a function of 

extraterrestrial solar radiation, solar zenith angle, and atmospheric transmissivity at the 

satellite overpass. Given that Sd varies greatly with terrain, Sd will be simulated by Eqs. 

(2.2)-(2.4) in Chapter II. Ld and Lu are the downwelling and upwelling longwave 

radiation (W m-2), respectively, which can be calculated using the Stefan-Boltzmann law 

shown in the last two terms of the second line in Eq. (3.5). εa is the atmospheric 
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emissivity (dimensionless) which is primarily a function of air temperature and vapor 

pressure (Brutsaert, 1975), ε is the surface emissivity (dimensionless) which can be 

estimated using an empirical relationship with the Normalized Difference Vegetation 

Index (NDVI) derived from the red and near-infrared bands of satellite images 

(Bastiaanssen et al., 1998a), σ is the Stefan-Boltzmann constant (5.67 × 10-8 W m-2 K-4), 

Ta is the atmospheric temperature (K) at the screen level which can be obtained from 

weather stations and distributed Ta maps across a study site can be produced by a 

multivariate regression analysis of longitude, latitude, and elevation, and Ts is the land 

surface temperature (K) which can be retrieved by the thermal infrared band(s) of 

satellite measurements. 

In SEBAL, Gs is taken to be a fraction of Rn (Bastiaanssen, 2000): 

4
s n s( 273.15)(0.0038 0.0074 )(1 0.98NDVI )G R T α= − + −           (3.6) 

Parameterization of H is a key component of satellite-based ET models. SEBAL 

assumes the difference between the air temperature at a reference height and the 

aerodynamic temperature at the land surface to be linearly correlated with LST. 

Coefficients of the linear relationship are determined by two extreme pixels selected by 

the operator from satellite images. For the hot pixel, LE is assumed to be zero; and H is 

thus equal to its available energy (Rn-G). For the cold pixel, H is regarded as zero and its 

LE is equal to the available energy. The H algorithm in SEBAL can be expressed as 

0 s 0
p p

ah ah

( )c cdT a T bH
r r

ρ ρ +
= =                     (3.7)              
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where ρ is the air density (kg m-3), cp is the air specific heat at the constant pressure (J 

kg-1 K-1), dT is the near-surface temperature difference between z1 (=0.1 m) and z2 (=2 

m), a0 and b0 are the scene-specific coefficients of linear regression, and rah is the 

aerodynamic resistance for heat transfer (s m-1), which is a function of friction velocity 

u* (m s-1) and stability correction factors for momentum transfer ψm (dimensionless) and 

sensible heat transfer ψh (dimensionless): 

* 200 m(200)
m

200k /[ln( ) ]u u
z

ψ= −                  (3.8)              

2 1

2
ah h( ) h( )

* 1

1 [ln( ) ]
k z z

zr
u z

ψ ψ= − +                 (3.9)              

where k is the von Karman constant (=0.41), u200 is the wind velocity (m s-1) at an 

assumed blending height (200 m), which can be inferred using the observed wind 

velocity at a weather station within a study area of interest, zm is the roughness length 

for momentum transfer (m), which can be related to remotely sensed VI or Leaf Area 

Index (LAI), and expressions of ψm and ψh can be found in Allen et al. (2007). 

In terms of the assumption regarding extreme pixels in SEBAL, a0 and b0 can be 

expressed as 

ah,hot n,hot hot
0
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                   (3.10)              
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                (3.11)              

where subscripts hot and cold denote the hot and cold pixels, respectively. Since both ψm 
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and ψh are a function of H, Eqs. (3.7)-(3.11) have to be solved for in an iterative manner. 

After Rn, Gs, and H are computed, LE can be obtained using Eq. (3.4). EF (=LE/(R-Gs)) 

is made use of by SEBAL as a link between the instantaneous LE and the daily ET (in 

the unit of mm d-1): 

n,24EF
ET 86400

R
λ

=                       (3.12)              

where λ is the latent heat of vaporization (J kg-1). There are two critical assumptions in 

Eq. (3.12) that EF keeps fairly invariant throughout a day in the absence of significant 

regional advection (Bastiaanssen, 2000; Bastiaanssen et al., 1998a; Su, 2002). Rn,24 is a 

key variable for determining the magnitude of ET given an EF estimate. 

Parameterization of Rn,24 has been elaborated in Chapter II. 

 

3.3.2. GG model 

The GG model (Granger and Gray, 1989) is intended to estimate terrestrial actual 

ET at large spatial scales with routine meteorological data. This model was derived 

based on energy budget and aerodynamic principles, similar in form to the Penman 

equation but differs in the inclusion of the relative evaporation, G. ET in this model is 

driven primarily by two components: Rn,24 and the drying power of air, Ea: 

n,24
aET 86400( )

RG G E
G G

γ
γ λ γ

Δ
= +

Δ + Δ +
              (3.13)              

 *
a a a( )( )E f u e e= −                      (3.14)              

where ea
* is the saturated vapor pressure at the daily average temperature (kPa), ea is the 
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daily average vapor pressure (kPa), and f(u) is a function of wind speed: 

2

2

m

0.622( )
[ln( )]

k uf u z dP
z

ρ
=

−
                     (3.15)              

where P is the atmospheric pressure (Pa), u is the wind velocity at the reference height 

(m s-1), z is the reference height (m), and d is the zero plane displacement (m). f(u) does 

not call for stability corrections at daily and longer time steps by assuming that the 

atmospheric stability is, on average, neutral. 

Granger and Gray (1989) related G to a concept of the relative drying power of air, 

D, through experimental data, and established an exponential relationship between G and 

D: 

bDae
G

+
=

1
1                         (3.16)              

a

a n,24 /
ED

E R λ
=

+
                      (3.17)              

where a and b are the regression coefficients. In the first formulation (1989) of the GG 

model (hereinafter GG 1989), a is 0.028 and b is 8.045 derived from 158 experimental 

samples. As indicated by Granger and Gray (1989), the lack of measurements from the 

wet environments (G > 0.7) does not allow for the development of a functional relation 

between D and G that can be treated with confidence over the full range of G. As a result, 

its utility should be further investigated when applied to a broad range of soil wetness 

conditions and landscapes. Granger (1996) modified Eq. (3.16) with an updated set of a 

and b of 0.2 and 4.902, respectively (hereafter GG 1996):  



76 

D
ae

G bD 006.0
793.0

1
+

+
=                  (3.18) 

Sensitivity analysis of GG 1989 was performed in order to examine how inputs of 

the GG model affect the resulting ET estimates (Fig. 3.1b). Results suggest that a 10% 

increase in Rn,24 can lead to about an 18.4% increase in the ET estimates. A 10% increase 

in G, D, and daily mean temperature can result in an 8.0 %, -3.8%, and -0.7% variation 

in the resulting ET, respectively. It is clear that G is positively correlated with ET 

estimates. Re-establishing the functional relationship between D and G is critical to 

improving the spatial representation of the ET time series estimates. Fig. 3.2 shows the 

flow chart of the GG model. 

 

 

Figure 3.2 Flow diagram of inputs and outputs of the GG model. 
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3.4. Application 

3.4.1. Study site 

Validation of the proposed integration method was conducted in the Baiyangdian 

watershed in North China (illustrated in Section 2.2.1 in Chapter II). It is noted that the 

Bouchet’s CR between potential and actual evaporation (Bouchet, 1963) has been shown 

to be valid over the non-humid region in North China under the condition of elevation 

lower than 1000 m (Qiu et al., 2004; Yang et al., 2006; Yu et al., 2009). The 

characteristic of this watershed creates an opportunity to interpret and estimate 

watershed/regional actual ET in a different way. 

 

3.4.2. Data description  

A data set encompassing hydrometeorological data, remote sensing data, DEMs, 

and ancillary parameters in year 2007 was built to simulate daily ET by SEBAL and GG, 

and ET time series by the evaporative fraction method, the crop coefficient method, and 

the proposed integration method.  

 

Hydrometeorological data 

Meteorological data on a daily basis, e.g., daily maximum, minimum, and mean Ta, 

ea, and P were obtained by averaging in-situ measurements from 18 weather stations 

within the study watershed (see Fig. 2.1a) and Section 2.2.2. Maps of these variables 

were produced using multiple linear regression analysis of longitude, latitude, elevation, 

and observations. In simulation of instantaneous surface fluxes by SEBAL, 
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instantaneous P, Ta and ea observed at 16 weather stations were obtained by a sinusoidal 

model which used 4 observations of the respective variable observed at 2:00 a.m., 8:00 

a.m., 14:00 p.m., and 20:00 p.m. throughout the day to infer the values at the time of 

satellite overpass. For Baoding and Fuping stations, the instantaneous counterparts were 

estimated by linear interpolation between two measurements on an hourly basis. 

Instantaneous u was linearly interpolated by two observations recoded on the hour for 

the 18 weather stations.  

Observations of precipitation on a daily basis from 18 weather stations, streamflows 

at 12 gauging stations, reservoir storage change, and groundwater observation well 

levels in the watershed were jointly used to estimate water budget for the entire 

watershed in year 2007. Daily pan ET measurements from 18 weather stations were used 

to interpret trends in the ET time series estimates. 

 

Remote sensing data 

Remote sensing data for this study were obtained from MODIS land and 

atmospheric data products (http://modis.gsfc.nasa.gov/). MODIS data products involved 

in this study are shown in Table 3.1. Section 2.2.2 details the composition of each 

MODIS data product. 
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Table 3.1 MODIS data products used in this study and their associated properties 
 

 

DEM and ancillary data 

SRTM DEMs for the study site were obtained from the U.S. Geological Survey 

Earth Resources Observation and Science Center. Terrain variables (e.g., slope, azimuth, 

and elevation) can be extracted from DEMs for use in simulating terrain-dependent Sd 

for SEBAL and simulating Sin,24 for SEBAL and GG on the basis of the algorithms 

presented in Chapter II. Ancillary parameters comprised day of year (DOY) and satellite 

overpass time. 

 

 

 

 

 

 

 

 

 

Name Used variables Temporal 
resolution 

Spatial 
resolution Platform 

MOD11_L2 LST & Emissivity 5 Min 1000 m Terra 
MOD11A1 LST & Emissivity Daily 1000 m Terra 
MYD11A1 LST & Emissivity Daily 1000 m Aqua 
MCD43A3 Albedo 16days 500 m Terra & Aqua 
MOD13A2 NDVI 16days 500 m Terra 
MOD15A2 Leaf area index 8 days 1000 m Terra 
MOD04_L2 Aerosol depth Daily 10 km Terra 
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3.4.3. Daily ET modeling by SEBAL 

As LST is the most critical remotely sensed variable required by SEBAL, we 

selected one day having LST of the best quality from MOD11_L2 in each month in year 

2007 for modeling surface fluxes and then re-establishing relationships between D and G. 

It is noted that for some months in spring and winter (e.g., January, February, March, 

November, and December) and rainy season in summer (e.g., June, July, and August), 

the scarcity in usable MODIS LST products due to cloud contamination makes 

reconstruction of ET time series only by satellite-based models infeasible. Images 

covering the study watershed obtained in January, February, March, November, 

December, and July were inevitably contaminated by clouds to varying degrees.  

Correctly selecting the hot and cold pixels is critical in SEBAL. However, these 

extremes are visually identified by the operator from images. We selected the extreme 

pixels by virtue of scatterplots of LST and NDVI (Fig. 3.3) and a land use map for the 

study watershed (see Fig. 2.1b). 
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Figure 3.3 Selection of hot and cold pixels from the contextual map of NDVI and LST 
for simulating daily ET by SEBAL under cloud-free days. 
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The hot pixel was selected by the following procedures: (1) pixels with a group of 

high temperature values and relatively low NDVI values were selected and saved; (2) the 

land cover map was used to discriminate land cover types for these selected hot pixel 

candidates. It appears that the hot pixel tends to occur on the bare soil surface, sandy 

land, or dry land; and (3) the hot pixel candidates which corresponded to these land 

covers were refined, from which the one with the highest LST value was taken as the hot 

pixel. 

Regarding the selection of the cold pixel, it is shown in Fig. 3.3 that a small group 

of pixels scattered on the lower portion of these scatterplots are indicative of 

contamination by clouds and sloping terrains. To eliminate the erroneous effects of LST 

retrievals on extreme cold pixel selection, the MOD11_L2 LST quality product was used 

to exclude all pixels that may be influenced by clouds or other factors. Then, the pixel 

with the lowest temperature value could be regarded as the cold pixel. Combining the 

selected extremes with other variables described in Section 3.3.1, daily ET for typical 

cloud-free days was simulated based on the SEBAL algorithm.  

 

3.4.4. Reconstruction of the GG model 

 ET estimates from SEBAL constitute input to the GG model to invert G based on 

Eq. (3.13). D values were calculated based on Eq. (3.17) using meteorological forcing 

and remotely sensed albedo and LAI. Scatterplots of D and G on typical cloud-free days 

are shown in Fig. 3.4. Table 3.2 provides statistics of regression analysis. 
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Figure 3.4 Calibration of the functional relationship between D and G in the GG model 
using SEBAL-based ET estimates for the Baiyangdian watershed on 12 cloud-free days 
in year 2007, with showing GG 1989 and GG 1996. 



84 

 

Figure 3.4 Continued. 
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Table 3.2 Regression coefficients of the exponential relationship between D and G and 
associated statistics (n is the number of samples, RSS is the residual sum of squares and 
R2 is the coefficient of determination) 
 

 

Results clearly show that G decreases nonlinearly with increasing D, which is 

consistent with the finding reported by Granger and Gray (1989). They used the actual 

ET calculated as the residual term in a soil water balance model applied at field sites to 

derive the relationship between D and G. The relationship between D and G is generally 

curvilinear and fitted using an exponential function. The highest and lowest R2 were 

found to be 0.96 on April 25 and 0.77 on May 9, respectively (Table 3.2). It is observed 

that with decreasing D (e.g., D < 0.6), the points tend to be scattered. This tendency may 

be as a result of the weakening CR effect at high altitudes, which suggests that the 

SEBAL-based ET estimates are of more variability than the GG model. Nevertheless, the 

relationship between D and G can be essentially depicted by the fitted functions. 

  

3.5. Results and discussion 

ET time series on a daily basis from the evaporative fraction method, the crop 

Date a b n RSS R2

Jan 17 0.00460 9.93228 19437 187.67 0.82 
Feb 9 0.00237 11.09977 22911 155.61 0.86 

Mar 11 0.00057 14.30073 18568 203.27 0.80 
Apr 25 0.00132 10.64371 30736 26.58 0.96 
May 9 0.00639 9.88353 29400 190.53 0.77 
Jun 15 0.00058 12.83099 22055 68.58 0.89 
July 19 0.02891 7.49486 25232 200.34 0.72 
Aug 13 0.16749 5.07039 24956 125.32 0.81 
Sep 19 0.01734 8.63292 27372 167.30 0.85 
Oct 14 0.00476 10.44144 26258 121.80 0.90 
Nov 1 0.00260 10.24750 26745 166.81 0.88 
Dec 3 0.00366 9.50607 24746 91.29 0.89 



86 

coefficient method, and the proposed integration method for the study watershed in year 

2007 were generated. There were in total 28 cloud-free days selected for generating daily 

evaporative fractions and crop coefficients. The simulated daily evaporative fractions 

and crop coefficients were then employed to extrapolate daily counterparts and ET for 

all cloudy days based on Eq. (3.1) and Eq. (3.2), respectively. The integration method 

yielded ET time series in terms of the modified relationship between D and G (Table 3.2) 

and routine meteorological data.  

 

3.5.1. ET time series from the evaporative fraction method 

Evaporative fractions and crop coefficients of the entire watershed on the 28 

cloud-free days are shown in Fig. 3.5. The evaporative fraction curve varies irregularly 

throughout the year, with a mean of about 0.518. This demonstrates that there was no 

regular variation trend in EF during the year. The daily EF was, to a large extent, 

influenced by the combined effect of soil moisture and energy availability, and 

vegetation and metrological states on that day, considerably varying from one day to 

another. The evaporative fraction method suffers significantly from theoretical and 

technical limitations in producing ET time series.  
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Figure 3.5 Evaporative fractions and crop coefficients from SEBAL of the Baiyangdian 
watershed on 28 cloud-free days in year 2007, with showing corresponding daily 
precipitation and mean values of these estimates. 
 

First, usable images, in particular LST products, were rarely obtained in January, 

February, March, November, and December, with only one day in each month being 

selected for EF and crop coefficient simulation. In the worst case, there are no usable 

images available for routine ET estimation, especially during rainy season when soil 

water content is ample and the actual ET is likely to be large between rain events. 

Therefore, the use of the satellite-deduced EF on a cloud-free day in each month to 

extrapolate ET time series for the month would lead to large uncertainties in the resulting 

ET. The applicability of the evaporative fraction method depends largely on the 

frequency and distribution of images acquired.  

Second, one may obtain several scenes of usable images within consecutive 

cloud-free days (e.g., August 11, 13, and 15 in this study) when the EF for the entire 

watershed probably shows similar patterns. These closely-spaced images, however, 
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cannot capture variations in EF for a relatively longer period during rainy season which 

is likely to exhibit considerable variations in soil moisture, energy availability, and ET. 

Hence, there is somewhat of a tradeoff between the frequency of usable images and their 

distribution over time. This means that even though sufficient usable images are 

obtained, such images are probably centered on a short period of cloud-free days 

exhibiting similar EF patterns and magnitudes. As such, the evaporative fraction method 

does not seem to be capable of estimating ET for a longer period of time when EF and 

ET change greatly over time. The case of sufficient satellite images regularly spaced 

over time rarely occurs in applications.  

Third, there exist large differences in EF during rainy season (e.g., from May to 

September in this study). For instance, the estimates of EF for the entire watershed were 

0.441, 0.636, and 0.300 on June 5, 8, and 15, respectively. The use of any of the EF 

estimates to extrapolate ET for a period centered on the day of image acquisition would 

give rise to large uncertainties. 
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In summary, EF estimates for the study watershed are significantly variable over 

time and space. The usefulness of the evaporative fraction method depends largely on 

the quantity of usable satellite images and the distribution of image acquisition dates, 

and variations in energy and soil moisture availability. Uncertainties in the evaporative 

fraction method would introduce gross errors in the resulting ET time series at watershed 

scales.  

 

3.5.2. ET time series from the crop coefficient method 

Reference ET was first calculated using Eq. (3.3) at 18 weather stations on a daily 

basis. Variations in daily reference ET, pan ET, and precipitation for the Anxin, Fuping, 

Yixian, and Anguo stations in year 2007 are shown in Fig. 3.6. It is illustrated that trends 

in the daily reference ET are highly consistent with that of pan ET. Moreover, the 

reference ET and pan ET during rainy season (June to August) are both relatively lower 

than during May, showing general decreasing trends in the rainy season. The trends in 

the reference and pan ET during rainy season can be ascribed to essentially large Rn,24 

but relatively smaller es-ea compared with May. 
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Figure 3.6 Variations in the FAO56-based reference ET, pan ET, and precipitation of the 
Baiyangdian watershed for the Anxin, Fuping, Yixian, and Anguo stations in year 2007. 
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It is observed that there does not exist a distinct inter-monthly low-and high- 

variation in the crop coefficient throughout the year, showing a mean crop coefficient of 

0.651 (Fig. 3.5). It is apparent that the crop coefficient of the entire watershed from 

January to March is relatively small because of the underdeveloped vegetation and crops 

combined with small Rn,24. With increasing irrigation water supply in the four irrigation 

districts in April, water consumption by crops increased dramatically and therefore 

resulted in a marked increase in the crop coefficient. The crop coefficient continued 

increasing during the growing seasons and peaked in July, showing the largest value of 

around 0.85 on July 2.  

It should, however, be noted that the estimated crop coefficients shown in August 

appear to be counter-intuitively smaller than September and October, which is not 

consistent with field experiment results from Chen et al. (1995) over the North China 

Plain. The erroneous crop coefficient estimates may be due to an overestimation of the 

reference EF in August and/or an underestimation of the reference ET in September and 

October. It seems difficult to construct a consistent and realistic crop coefficient curve 

from a few scenes of satellite images especially during periods of rapid vegetation 

change. In this case, a more frequent image interval may be desirable (Allen et al., 2007). 

However, it rarely comes true in applications. 

In summary, limited usable satellite images only cover a fraction of the crop 

coefficient cycle during a year. The crop coefficient method cannot offer a realistic and 

consistent crop coefficient curve due primarily to insufficient satellite images especially 

during periods of rapid development of vegetation and crops. 
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3.5.3. ET time series from the integration method 

ET time series at the watershed scale from the evaporative fraction method, the crop 

coefficient method, and the proposed integration method are shown in Fig. 3.7. It should 

be noted that the estimates of the ET time series from the evaporative fraction and crop 

coefficient methods were produced by extrapolating corresponding variables from 28 

discrete image dates based on Eq. (3.1) and Eq. (3.2), respectively. In contrast, the ET 

time series from the integration method was generated on a daily basis.  

 

 

Figure 3.7 ET Time series from the evaporative fraction method, the crop coefficient 
method, and the proposed integration method of the Baiyangdian watershed in year 2007, 
showing corresponding observations of daily precipitation and pan ET. 
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In general, the ET time series from the three methods were lower than the 

corresponding pan ET except rainy days when the pan ET data were suspected to be 

systematically overestimated and thus set to zero.  

It is interesting to note that exploring the relationship between pan evaporation and 

actual terrestrial ET at the watershed scale on a daily basis would help clarify and test 

the validity of different approaches to yielding ET time series. Some published studies 

indicated that there exists a CR across the study areas (Qiu et al., 2004; Yang et al., 2006; 

Yu et al., 2009). It is therefore logical that if the generated ET time series and the 

corresponding pan ET measurements show a complementary behavior at watershed 

scales, this would lend support to the credence of the proposed method. Fig. 3.8 

graphically displays data pairs of the estimates of daily ET from the three tested methods 

of the entire watershed against pan ET observations in an ascending order of pan ET for 

days with Rn,24>100 W m-2. The inclusion of only days with Rn,24>100 W m-2 was 

intended to ensure a similar radiative energy condition so as to unravel the underlying 

CR features. 
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Figure 3.8 Observations of the pan ET and actual ET estimates from the evaporative 
fraction method (a), the crop coefficient method (b), and the proposed integration 
method (c) of the Baiyangdian watershed for days with Rn,24>100 W m-2. 
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Results suggest that the pan ET observations and the simulated daily actual ET 

from the integration method show a pronounced asymmetric CR. An increase in pan ET 

generally evidences a decrease in the actual ET estimates. In particular, for days with 

relatively larger pan ET observations emerging in mid May, the simulated actual ET 

from the integration method was relatively low. This might be related to relatively large 

es-ea and u in the period, both contributing to a large magnitude of D and thus small G 

and actual ET in terms of the sensitivity analysis performed in Section 3.3.2. Conversely, 

for days with relatively small pan ET observations, overall, they show relatively large 

actual ET estimates, which approach the wet environmental ET of around 4.5 mm for 

this watershed (Fig. 3.8c). Relatively large soil moisture and energy availability and 

small D were likely to jointly contribute to the large estimates of actual ET for these 

days. It is apparent that the pan ET observations and the actual ET estimates from the 

evaporative fraction and the crop coefficient methods do not diverge from each other, 

which could be considered a significant limitation in the two methods of producing ET 

time series at watershed scales.  

The asymmetric CR from the integration method is essentially in accord with what 

Kahler and Brutsaert (2006) found. They demonstrated that the scaled pan ET and 

locally observed actual ET at the daily timescale show a distinct CR. It is noted that 

although pan ET observations in our study were not scaled, the inclusion of pan ET on 

days with Rn,24>100 W m-2 and the corresponding actual ET from the integration method 

of the entire watershed can generally exhibit a CR. 

It is highlighted that the modified GG model departs from GG 1989 and 1996 in 
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adjusting the D and G relationship by satellite-based ET estimates for different time 

periods (e.g., one month). However, GG 1986 and 1996 take advantage of only one set 

of D and G relationship. The attribute of the modified GG model makes it show more 

characteristics of energy balance-based approaches.  

It can be concluded that evolution of ET estimates from the proposed integration 

method seems to be more reasonable than other extrapolation techniques. The finding 

that the energy balance-based method tends to yield complementary features between the 

actual ET estimates and the pan ET observations lends support to the CR at watershed 

scales and daily timescale. By contrast, ET time series from the evaporative fraction and 

crop coefficient methods do not seem to be able to produce similar complementary 

features as does the integration method. Simply extrapolating or interpolating EF and 

crop coefficients based on a few scenes of images which are probably spaced irregularly 

over time would destruct the temporal patterns of ET time series at watershed scales. 
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3.5.4. Validation 

Daily ET validation versus SEBAL 

To evaluate the performance of the modified GG model, it was used to produce 

daily estimates of ET for typical cloud-free days which were not involved in the 

reconstruction of the D and G relationship. The estimates from the modified GG model 

were then compared with SEBAL-based ET predictions (Fig. 3.9 and Table 3.3). Results 

indicate that the modified GG model generally shows consistency with SEBAL, with 

R2>0.6 (the highest R2 was 0.8 on June 5) and relative error smaller than -22.8% (the 

lowest relative error was -0.5% on April 9) except August 15. However, GG 1989 

generates systematically lower ET estimates, showing larger relative errors versus 

SEBAL. As for ET estimates on August 15, SEBAL may have provided relatively low 

ET estimates due to erroneously large H estimates across bare surfaces and built-up land 

(larger than Rn-G). As a result, estimates of ET for these areas were postprocessed into 

zero. This treatment makes the ET estimates of the entire watershed be underestimated. 

Given this specific case, the relative error with respect to SEBAL would be smaller than 

35.4% on August 15.  



98 

 

Figure 3.9 Comparison of predictions of daily ET from the modified GG and GG 1989 
for the Baiyangdian watershed in year 2007 and SEBAL-based counterparts. 
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Figure 3.9 Continued.  
 
 
Table 3.3 Statistics of the estimates of ET from GG 1989 and the modified GG model 
versus SEBAL-based ET predictions 
 

 
 

 

Even though the GG model shows less variability in ET under the small D 

condition, the areal mean and essential spatial characteristic of the ET estimates can be 

generally captured by the modified GG model. Fig. 3.10 clearly illustrates that the 

modified GG model can offer a more realistic distribution of ET across the entire 

watershed compared with GG 1989 and GG 1996, showing a larger standard deviation of 

Date Original 
GG R2 

Modified 
GG R2 

Original 
GG ET 
(mm) 

Relative 
error 

Modified 
GG ET 
(mm) 

Relative 
error 

SEBAL 
ET (mm) 

Apr 9 0.59 0.62 0.954 -4.6% 1.978 -0.5% 1.987 
May 14 0.68 0.63 1.605 -23.6% 1.698 -19.2% 2.101 
Jun 5 0.81 0.80 1.720 -17.2% 2.200 5.9% 2.077 
Jul 10 0.71 0.78 2.723 -17.5% 3.222 -2.3% 3.299 

Aug 15 0.32 0.43 1.890 2.3% 2.052 35.4% 1.848 
Sep 23 0.74 0.77 1.304 -26.0% 1.368 -22.4% 1.763 
Oct 28 0.74 0.74 0.402 -29.3% 0.410 -27.8% 0.568 
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0.909 mm and a closer mean watershed ET estimate of 2.943 mm on April 25, 2007 

relative to the estimates from SEBAL. GG 1989 and 1996 systematically underestimate 

ET, indicating relatively lower averaged ET estimates of 1.453 mm and 2.359 mm, and 

standard deviations of 0.499 mm and 0.434 mm, respectively. The differences in the 

spatial distribution of ET between the modified GG, GG 1989 and 1996 suggests that 

GG 1989 and 1996 are not sensitive to variations in surface wetness, land cover, and 

actual ET at the study watershed. The deficiencies in GG 1989 and 1996 may result from 

a different hydrologic condition these models are based on. GG 1989 was derived for a 

semi-arid climatic zone of western Canada, which may have led to a relatively small 

magnitude of G and thus low predictions of ET. However, the modified relationship 

between D and G in this study was developed in a semi-humid climatic zone in North 

China, suggesting a relatively larger magnitude of G given the same D. The remotely 

sensed ET from SEBAL at watershed scales provides the potential to derive a more 

universal functional relationship between D and G.  
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Figure 3.10 Spatial distributions of ET estimates from SEBAL, the modified GG model, 
GG 1989 and 1996 of the Baiyangdian watershed on April 25, 2007. 
 

Annual ET validation based on water budget calculations 

Hydrologic budget calculation for the Baiyangdian watershed in year 2007 was 

performed to independently generate annual ET for evaluating the overall accuracy of 

the ET time series estimates from the three techniques under investigation. The water 

balance equation plays a fundamental role in hydrologic modeling and has been widely 

used to perform model validation in satellite-based ET estimation (Bastiaanssen et al., 

2002; Gao and Long, 2008; Mohamed et al., 2006):  
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dt
dW

dt
dG

dt
dSRP −−−−=ET                   (3.19)              

where P is the annual precipitation for a watershed (mm), which can be obtained from 

meteorological stations. The Thiessen polygon interpolation method was adopted to 

provide the areal mean precipitation. R is the streamflow (mm), which can be obtained 

from the gauging station at the outlet. dS/dt is the surface water storage change (mm), 

which can be estimated from records of large reservoirs in a watershed. dG/dt is the 

ground water storage change (mm), which can be estimated from phreatic records. dW/dt 

is the soil water storage change (mm). The ground outflow was neglected in Eq. (3.19) in 

this study.  

The precipitation of the Baiyangdian watershed in year 2007 was estimated to be 

570.0 mm on the basis of records of 18 weather stations. There have not been natural 

streamflow into the outlet, Baiyangdian Lake, due to enormous usage of water resources 

from irrigation, industrial and municipal use, and reservoir regulation in recent years. 

The change in surface water storage was roughly 10.2 mm from reservoir storage data 

within this watershed. The groundwater storage change was calculated using data from 

groundwater observation wells and the inverse distance weighting method, showing an 

increase of about 10 mm across the plain areas. In addition, the groundwater storage 

change over mountainous areas and the soil water storage change were assumed 

negligible. The actual ET of this watershed in 2007 was calculated as 549.8 mm. The 

evaporation method, crop coefficient method, and integration method show annual ET 

estimates with relative errors of -25.4%, -32.3%, and -7.5%, respectively. 
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3.6. Summary and conclusions 

The lack of usable satellite images due to cloud contamination especially in rainy 

season and to the schedule of satellite significantly degrades ET time series predictions 

at watershed scales from satellite-based ET models. This limitation greatly hampered 

satellite-based operational ET estimation for use in estimating water consumption by 

agricultural crops, formulating irrigation scheduling, as well as facilitating water 

resources planning, allocation, and management.  

In this chapter, we integrate the large-scale feedback GG model with satellite-based 

SEBAL, with the objective to generate ET time series of high spatial resolution and 

reasonable temporal resolution. The point here is that for a specific region where the 

complementary relationship between the pan ET and the actual ET shows to be valid, the 

ET time series would exhibit complementary features at certain timescales and spatial 

scales. It is expected that the integration method is capable of extending remotely sensed 

information on cloud-free days to days without usable images only using routine weather 

data. 

Results suggest that the modified GG model that has incorporated remotely sensed 

information can reproduce ET of high resolution at watershed scales. GG 1989 and 1996 

systematically underestimate areal ET at watershed/regional scales due to the 

deficiencies in the original relationship between D and G. The usefulness of the 

evaporative fraction method and crop coefficient method depends largely on the quantity 

of satellite images and their intervals. ET time series estimates from the three techniques 

for days with Rn,24 larger than 100 W m-2 and the corresponding pan ET show that the 
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integration method seems to exhibit an asymmetric complementary relationship at the 

watershed scale and daily timescale. Extrapolation or interpolation of evaporative 

fractions or crop coefficients derived from a few scenes of images to the whole time 

period would destruct the underlying complementary features which would have shown. 

Validation based on hydrologic budget calculations performed in the Baiyangdian 

watershed in North China indicates that the proposed integration method generates an 

annual estimate of ET with the smallest error amongst all techniques being studied.  
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CHAPTER IV 

A TWO-SOURCE TRAPEZOID MODEL FOR ET (TTME) USING SATELLITE 

IMAGERY 

 

4.1. Introduction 

Combined with precipitation and runoff, ET, a key component in the water cycle, 

determines the water availability and partitioning of turbulent energy fluxes on the 

Earth’s surface (McCabe and Wood, 2006). Satellite remote sensing of surface fluxes 

and soil water content at a variety of spatial and temporal scales has emerged since the 

attraction and utility of the thermal infrared remote sensing was recognized in the 1980s 

(Kalma et al., 2008). This has resulted in a series of modeling schemes with varying 

mechanisms and degrees of complexity. In general, they can be categorized into the 

one-source scheme (Bastiaanssen et al., 1998a; Su, 2002) and the two-source scheme 

(Kustas and Norman, 1999; Norman et al., 1995), differing in treating a landscape as a 

mixture of soil and vegetation or independent sources of energy turbulent fluxes.  

There is another type of modeling scheme unique in interpreting the contextual 

relationship between remotely sensed VI or NDVI and radiative temperature (Trad). VI 

and NDVI have been widely recognized as promising indicators to capture vegetation 

information on the land surface. Trad, as a proxy reflecting water and heat states at the 

interface between the land surface and the lower atmosphere, has been used to deduce 

ET and surface soil moisture. Previous studies have shown that in such a space, a high 

NDVI value generally corresponds to a low Trad value for a pixel where large 
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evaporation rates would occur and vice versa. If there exist sufficient pixels representing 

a broad range of soil wetness and fc in an image, and outliers (e.g., clouds, sloping 

terrain, and shading) are removed, the envelope of these pixels could constitute a 

physically meaningful triangle or trapezoid.  

The triangle or trapezoid model infers evaporative fraction within a modeling 

domain, without parameterizing the networks of aerodynamic and surface resistances 

involved in one-source and two-source models that require excessive data and/or 

intractable parameters on vegetation physiology and micrometeorology, e.g., vegetation 

height, leaf area index, leaf size, and wind velocity at a height above the soil surface 

(Carlson et al., 1994; Carlson et al., 1995b; Carlson and Ripley, 1997; Gillies and 

Carlson, 1995; Gillies et al., 1997; Jiang and Islam, 1999; Jiang and Islam, 2001; Jiang 

and Islam, 2003; Lambin and Ehrlich, 1996; Nemani et al., 1993; Nemani and Running, 

1989; Owen et al., 1998; Price, 1990). 

Jiang and Islam (2001) and Sandholt et al. (2002) proposed a similar triangle 

scheme to estimate EF/Temperature Vegetation Dryness Index (TVDI) over large areas. 

Venturini et al. (2004) and Batra et al. (2006) applied Jiang and Islam (2001)’s model to 

National Oceanic and Atmospheric Administration-Advanced Very High Resolution 

Radiometer (NOAA-AVHRR) and MODIS sensors over South Florida and the Southern 

Great Plains, respectively, achieving a root mean square difference (RMSD) of the order 

of 50 W m-2 relative to ground-based latent heat fluxes. Wang et al. (2006) made use of 

the day-night LST difference (ΔTs) instead of Trad to constitute the NDVI-ΔTs space to 

deduce EF over the Southern Great Plains under the Atmospheric Radiation 
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Measurement (ARM) Program, demonstrating a relative error of about 17% of EF 

retrievals. Stisen et al. (2008) substituted a non-linear power function interpolation for a 

linear interpolation of parameter φ describing the combined effects of the 

Priestley-Taylor parameter and surface temperature on EF in Jiang and Islam’s model 

(2001), obtaining EF estimates with a bias of 0.13 and LE estimates with an RMSD of 

41.45 W m-2 from the high-temporal resolution geostationary MSG-SEVIRI sensor.  

In general, the triangle model was intended to overcome difficulties traditionally in 

(1) the initialization of the land surface model with atmospheric measurements that are 

not readily available over large areas, (2) complex parameterization of aerodynamic and 

surface resistances for water and heat transfer (Jiang et al., 2009), and (3) accurate 

absolute radiometric calibration of satellite-based Trad retrievals (Carlson, 2007; Jiang 

and Islam, 2003). 

However, there are several critical issues involved in the triangle framework: (1) 

most of triangle models pertain to the one-source scheme. This means their inability to 

discriminate vegetation transpiration from soil surface evaporation, which affects 

crop/vegetation water use by decreasing the air vapor pressure deficit and reducing the 

overall evaporative demand. In particular, water consumption by crops and transpired by 

vegetation are more meaningful in agricultural applications and assimilation into water 

balance models as a metric for root zone moisture conditions (Crow et al., 2008); (2) 

there exist completely wet surfaces evaporating at potential rates, and extremely dry 

surfaces with negligible ET in an image; (3) aerodynamic and physiological effects of 

the surface on H are not explicitly incorporated into the triangle scheme, and assumed to 
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be encapsulated in the NDVI-Trad space; (4) determination of warm and cold edges 

involves subjectivity (Carlson, 2007). In particular, the cold edge is often poorly 

demarcated because of clouds, sloping terrain, and shading; and (5) there is an 

assumption of linearity of variations in EF across the NDVI-Trad space.  

There has been significant research performed to further derive information 

contained in the NDVI-Trad space. Carlson (2007) comprehensively reviewed the 

development of the triangle scheme. Their simulations and observations show that there 

exist isopleths of soil surface moisture availability within the triangle space. Each 

isopiestic line has the same soil moisture availability and therefore soil temperature. 

However, interpretation of the triangle precludes analysis of the variability in water 

stress on vegetation. This means that within the triangle framework the temperature of 

vegetation is assumed to be invariant regardless of soil moisture content. Moran et al. 

(1994) developed a trapezoid framework to derive the crop water stress index (CWSI), 

which appears to be more suited for depicting the realistic contextual space of NDVI-Trad 

but requires extensive ground-based measurements to determine four vertices of the 

trapezoid.  

Nishida et al. (2003) proposed a two-source triangle model to separately 

parameterize EF for soil by an NDVI-Ts relationship-based method (Gillies et al., 1997) 

and EF for vegetation based on the complementary relationship. They showed EF and 

LE estimates with an RMSD of 0.17 and 45 W m-2, respectively, at 13 AmeriFlux 

stations. However, the calculation of vegetation transpiration requires a wealth of data on 

vegetation physiology, which seems to impede application of the algorithm to large-scale 
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areas (Petropoulos et al., 2009). In addition, the derivation of the maximum soil surface 

temperature necessitates spatially homogeneous meteorological forcing given a study 

site. However, this model was applied to continental scales, which might exaggerate its 

applicability. 

The objective of this chapter was to develop a robust and operational two-source 

ET model from satellite imagery based on the trapezoid framework. Trad is partitioned 

into temperature components (Ts and Tc) using the concept of isopleths of soil surface 

moisture availability within the trapezoid framework. Evaporation from the soil surface 

and vegetation transpiration are then separately parameterized. The proposed model will 

be compared with one-source and two-source models using the same data set to provide 

an insight into the performance of a range of models. Section 4.2 presents the model 

formulation. Study site, data description, and variable derivation are shown in Section 

4.3, followed by results in Section 4.4 and discussion in Section 4.5. Concluding 

remarks are given in Section 4.6.  

 

4.2. Model formulation 

4.2.1. Two-source scheme 

The proposed Two-source Trapezoid Model for Evapotranspiration (TTME) 

partitions turbulent energy fluxes for a mixed landscape using a patch configuration, i.e., 

contributions of evaporation and transpiration to LE of a mixed landscape are weighted 

by fc as 

c c c sLE LE (1 )LEf f= + −                     (4.1)              
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where subscripts c and s denote vegetation and soil hereafter, respectively; LEc is the 

vegetation transpiration (W m-2); and LEs is the evaporation from the soil surfaces (W 

m-2).  

Energy balance equations for vegetation and soil components can be written as 

c c c s(1 )Q f Q f Q= + −                       (4.2)              

n c c c s(1 )R f R f R= + −                       (4.3)              

c c c cLEQ R H= = +                       (4.4)             

s s s s s(1 c) LEQ R G R H= − = − = +                  (4.5)              

where Q is the available energy for a pixel (W m-2); Qc and Qs are the components of 

available energy (W m-2); Rn is the net radiation for a mixed pixel (W m-2); Rc and Rs are 

the components of net radiation (W m-2); Hc and Hs are the components of sensible heat 

flux (W m-2); and G is the soil heat flux (W m-2), which can be taken as a fraction (c) of 

Rs. The LE components can also be written in terms of EF components as 

c c cLE EFQ=                           (4.6)              

s s sLE EFQ=                           (4.7)              
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where EFc and EFs are the EF components. Substituting Eqs. (4.6) and (4.7) into Eq. (4.1) 

and dividing by Q yield a representative EF for a mixture of two sources in terms of the 

EFc and EFs components: 

c c c c s sEF EF (1 ) EFf q f q= + −                     (4.8) 

where qc is equal to Qc/Q and qs is equal to Qs/Q. Determination of EF and q 

components within the trapezoid framework will be elaborated in the following sections.  

 

4.2.2. Interpretation of the trapezoid framework and decomposition of Trad 

TTME is based on the interpretation of the fc-Trad space. To parameterize LEc and 

LEs for a pixel, temperature components (Tc and Ts) will be first derived by interpreting 

the fc-Trad space. Fig. 4.1(a) illustrates the fc-Trad space and concepts of soil surface 

moisture isopleths superimposed, and Fig. 4.1(b) shows procedures of decomposing Trad 

into Tc and Ts. 

 

 

 

 

 

 

 



 

 

Figure 4.1 A sketch (a) of the trapezoid fc-Trad space involved in TTME and (b) illustrates the decomposition of Trad into Ts and 
Tc.
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Theoretically there are four critical points within the trapezoid framework ABCD. 

Point A (fc=0, Trad=Ts,max) represents the driest bare surface with the highest surface 

temperature Ts,max, point B (fc=0, Trad=Ts,min) represents the wettest bare surface with the 

lowest temperature Ts,min, point C (fc=1, Trad=Tc,min) represents the fully vegetated surface 

with the lowest temperature Tc,min, and point D (fc=1, Trad=Tc,max) represents the fully 

vegetated surface with the highest temperature Tc,max. Warm edge AD represents surfaces 

with the largest water stress for the full range of fc; thus LE of these surfaces is equal to 

zero. Analogously, cold edge BC represents surfaces without water stress at equilibrium 

ET rates, i.e., EF=1. It is noted that the warm and cold edges are the boundary conditions 

of TTME. An assumption of TTME is that the boundary conditions can theoretically be 

met, given certain meteorological conditions and surface characteristics. This is different 

from some satellite-based ET models that determine boundary conditions by selecting 

extreme pixels (Allen et al., 2007) or specifying limiting edges (Jiang and Islam, 2001) 

from satellite images.  

In general, with increasing fc, Trad decreases because sunlit vegetation is generally 

cooler than sunlit bare soil (Carlson, 2007; Price, 1990). Numerous studies (Carlson et 

al., 1995a; Carlson et al., 1994; Price, 1990; Sandholt et al., 2002) have demonstrated 

that there exist isopleths of soil surface moisture availability/Temperature-Vegetation 

Dryness Index (TVDI) within the fc-Trad space. As superimposed in Fig. 4.1 (a), each 

isopiestic line reflects the same soil surface moisture availability and then has the same 

Ts. It is assumed that Trad is a weighted sum of vegetation and soil temperatures 

(Anderson et al., 2007a; Norman et al., 1995) 
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rad c c c s( ) ( ) ( ) (1 ( )) ( )T f T f Tθ θ θ θ θ≈ + −                (4.9)              

max
c

max min

NDVI NDVI( ) 1 ( )
NDVI NDVI

af θ −
= −

−
                (4.10)              

where θ denotes a viewing angle; a is a function of canopy architecture; NDVImax and 

NDVImin represent the maximum and minimum values of NDVI within a scene, 

respectively.  

Considering variations in Trad with fc for each isopiestic line by re-writing Eq. (4.9) 

as Trad(θ)≈fc(θ)(Tc-Ts)+Ts, it is clear that Ts and Tc-Ts are the intercept and the slope of 

this function, respectively. As such, Tc is also the same for an isopiestic line. Variation 

in Trad for each isopiestic line results essentially from the variation in fc, the 

independent variable. Ts of a mixed surface can be deduced as Trad of the bare surface 

on the same isopiestic line, i.e., the intercept; Tc of the mixed surface can be deduced as 

Trad of the fully vegetated surface on the same isopiestic line, i.e., Eq. (4.9) intersecting 

with fc=1. 

It is assumed that the slope of each isopiestic line can be derived by interpolating 

the slope of the warm edge AD, i.e., βw=Tc,max-Ts,max and the slope of the horizontal cold 

edge BC, i.e., βc=0, in terms of the Trad difference between the pixel and the cold edge, 

a, and the Trad difference between the pixel and the warm edge, b (see Fig. 4.1 (b)). To 

that end, vertices of trapezoid ABCD play a critical role in configuring the isopleths of 

soil surface moisture availability and subsequently in decomposing Trad in TTME. 
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4.2.3. Determination of theoretical boundary conditions of TTME 

Determination of Ts,max 

The idea is to solve radiation budget and energy balance equations for Ts,max. The 

radiation budget and energy balance equations specifically for the soil component can be 

expressed as Eqs. (4.11) and (4.12), respectively: 

s s d d u s d s d s d u

4 4
s d s a a s s

(1 ) ( ) (1 ) (1 )

(1 )

R S L L L S L L

S T T

α ε α ε

α ε ε σ ε σ

= − + − − − = − + −

= − + −
     (4.11)             

s a
s s s p s

a,s

ET c ( ) LET TR G H
r

ρ −
− = + = +               (4.12)              

where αs is the albedo for the soil surface (dimensionless); Sd is the downwelling 

shortwave radiation (W m-2); Ld and Lu are the downwelling and upwelling longwave 

radiation (W m-2), respectively, which can be calculated by the Stefan-Boltzmann law; 

and εs is the broadband (8-14 μm) emissivity of the soil surface (e.g., 0.95), which can 

vary with soil moisture (Mira et al., 2007; Rubio et al., 2003). If there is no measurement 

of εs, some representative values can be used according to look-up tables from Rubio et 

al. (2003); εa is the emissivity of the atmosphere (dimensionless), which is a function of 

air temperature Ta (K) and water vapor pressure ea (hPa) (Brutsaert, 1975); ρ is the air 

density (kg m-3); cp is the air specific heat at the constant pressure (J kg-1 K-1); and ra,s is 

the aerodynamic resistance for the soil surface (s m-1). In TTME, ra,s is computed with 

Kondo (1994)’s formula in conjunction with Paulson (1970) and Webb’s (1970) 

formulas for stability corrections: 
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a,s
1m

1
0.0015

r
u

=                        (4.13)              

om

*
(1) ( )

om

( )[ln ]
k

m
m m z

u z du
z

ψ ψ−
= − +                 (4.14)              

A) Unstable conditions (L<0): 

2
(1) (1)

m(1) (1)

1 1
2ln( ) ln( ) 2arctan( ) 0.5

2 2
x x

xψ π
+ +

= + − +         (4.15) 

om om

om om

2
( ) ( )

m( ) ( )

1 1
2ln( ) ln( ) 2arctan( ) 0.5

2 2
z z

z z

x x
xψ π

+ +
= + − +      (4.16) 

0.25
(1)

1(1 16 )x
L

= −                       (4.17)              

om

0.25om
( ) (1 16 )z

zx
L

= −                     (4.18)              

3
p * a

s

c
k

u T
L

gH
ρ

= −                         (4.19)              

B) Stable conditions (L>0): 

 

m(1)
15( )
L

ψ = −                         (4.20)              

om

om
m( ) 5( )z

z
L

ψ = −                        (4.21)              

where u1m is the wind velocity at 1 m height above the bare soil surface (m s-1); Eq. (4.14) 

is the logarithmic wind profile function, in which u* is the friction velocity (m s-1), k is 

von Karman’s constant (0.41), zm is the reference height for wind velocity observations 

(1 m for the bare soil surface), d is the zero plane displacement (m) (0 for the bare soil 
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surface), and zom is the roughness length for momentum transfer (m). For the bare soil 

surface zom can be typically taken as 0.005 m (Allen et al., 2007; Nishida et al., 2003). 

Ψm (1) and Ψm (z0m) are the stability correction factors at 1 m and 0.005 m height for the 

bare soil surface (dimensionless), respectively. L is the Monin-Obukhov length (m), and 

g is the acceleration of gravity (9.8 m s-2).  

Substituting Eq. (4.11) into Eq. (4.12), it is clear that Ts is implicitly involved. To 

explicitly express Ts, the first two terms of the Taylor series of Lu at Ta can be written as 

4 4 3
u s s s a s a s a4 ( )L T T T T Tε σ ε σ ε σ= ≈ + −                (4.22) 

Substituting Eq. (4.22) into Eq. (4.11) one obtains 

4 4
s s d s a a s s

4 4 3
s d s a a s a s a s a

(1 )

(1 ) 4 ( )

R S T T

S T T T T T

α ε ε σ ε σ

α ε ε σ ε σ ε σ

= − + −

≈ − + − − −
          (4.23)              

Let 4 4
s d s a a s a(1 )S T Tα ε ε σ ε σ− + −  be Rs,0, which is the net radiation for the soil 

surface in which Ts is approximated by Ta in Lu. Combining Rs,0, Eqs. (4.12) and (4.23), 

and let G = cRs where c is a calibrated proportionality coefficient (0.35), one obtains 

s,0 s
s a3

s a p a,s

- LE /(1-c)
4 c /[ (1 c)]

R
T T

T rε σ ρ
= +

+ −
                (4.24)              

It is apparent from Eq. (4.24) that Ts,max for the theoretical driest bare surface (point 

A) can be derived by setting ETs=0, given certain meteorological conditions and surface 

characteristics: 

s,0
s,max a3

s a p a,s4 c /[ (1 c)]
R

T T
T rε σ ρ

= +
+ −

               (4.25)              
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Ts,max can be eventually derived by solving for the system of nonlinear Eqs. 

(4.11)-(4.21) and (4.25) in an iterative manner. It is noted that the derivation of Ts,max 

requires spatially homogeneous meteorological fields (Ta, u*, and Sd) for a study site. 

Determination of Tc,max 

In a similar vein, Tc,max at point D can be derived by solving for radiation budget Eq. 

(4.26) and energy balance Eq. (4.27) for the vegetation component: 

c c d d u c d c d c d u

4 4
c d c a a c c

(1 ) ( ) (1 ) (1 )

(1 )

R S L L L S L L

S T T

α ε α ε

α ε ε σ ε σ

= − + − − − = − + −

= − + −
   (4.26)              

c a
c c c p c
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ET c ( ) LET TR H
r

ρ −
= + = +               (4.27) 

where αc is the albedo for vegetation (dimensionless); εc is the emissivity of vegetation 

(e.g., 0.98), which can be obtained from look-up tables of Rubio et al. (2003) in the case 

of the absence of measurements (Rubio et al., 2003; Sanchez et al., 2008); and ra,c is the 

aerodynamic resistance above the canopy (s m-1) expressed as 

T oh

T
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oh
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z
z d

zr
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− +
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k z z
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z
ψ ψ−
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A) Unstable conditions (L<0): 
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2
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2 2
z z

z z

x x
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B) Stable conditions (L>0): 

m

m
m( ) 5( )z

z
L
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z
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where, zT is the reference height for temperature observation, which is taken to be 2 m 

for the study site. It is assumed that the driest fully vegetated surface has a vegetation 

height hc=1 m. The zero plane displacement d, zom, and zoh for the hypothesized 
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vegetated surface can be taken as d=2hc/3, zom=hc/10, and zoh= zom/7 (Folhes et al., 2009). 

It is noted that if u* that has been corrected by Ψm(zm) and Ψm(zom) is obtained from 

weather stations, Eq. (4.29) is just needed to perform the stability correction by Ψh(zT) 

and Ψh(zoh).  

Combining Eqs. (4.26) and (4.27), and rewriting Lu at Ta for vegetation canopy in 

terms of the first two terms of the Taylor series yield the general expression of Tc as: 

c,0 c
c a3

c a p a,c

LE
4 c /

R
T T

T rε σ ρ
−

= +
+

                    (4.42)              

where Rc,0 is the radiation for vegetation in which Lu is calculated using Ta instead of Tc. 

Let LEc=0 in Eq. (4.42), Tc,max can then be expressed as: 

c,0
c,max a3

c a p a,c4 c /
R

T T
T rε σ ρ

= +
+

                  (4.43)              

Likewise, the system of non-linear Eqs. (4.26)-(4.41), and (4.43) can be solved for 

in an iterative manner. It is noted that numerically solving radiation budget and energy 

balance Eqs. (4.11)-(4.21) for Ts,max, and Eqs. (4.26)-(4.41) for Tc,max without first 

simplifying Lu in terms of its Taylor series would provide more accurate solutions of 

Ts,max and Tc,max. 

Determination of cold edge 

Areas evaporating at high rates could be detected as pixels with relatively low Trad. 

These pixels are likely to occur in inland wetlands, storage reservoirs, or dense 

vegetation stands (Jiang and Islam, 1999; Jiang et al., 2009). Sandholt et al. (2002) 
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suggested that the cold edge can be taken as the lowest Trad value in an image. 

Derivation of the cold edge, however, suffers somewhat from subjectivity. Erroneous 

effects introduced by clouds and terrains can cause uncertainties in the specification of 

the cold edge from satellite imagery (Gillies et al., 1997; Nemani et al., 1993). In most 

cases, even the visually inspected cloud-free images could be contaminated by cirrus 

clouds. In addition, the use of Trad of water bodies might not ensure an appropriate 

specification of the lowest Trad due to possible clouds over water bodies.  

The surface at the largest evaporation/transpiration rate would correspond to the 

smallest difference between Tc/Ts and Ta. Observed Ta has been used to represent the 

lowest Trad for a study region, i.e., equilibrium evapotranspiration, forming the horizontal 

cold edge of the triangle model (Jiang and Islam, 1999). In TTME, observed Ta within a 

study site is taken to be the horizontal cold edge, i.e., the lower boundary condition. This 

requires relatively homogeneous atmospheric conditions. If there are slight differences in 

the observed Ta among different weather stations or flux towers, the mean Ta 

observations can be taken as the cold edge. The use of Ta as the cold edge of TTME can 

operationally eliminate the effects of clouds and terrains. 

 

4.2.4. Determination of LEs, LEc, and LE 

Hereto, the configuration (Ts,max, Tc,max, and the cold edge) of the trapezoid is 

uniquely determined given certain meteorological conditions and surface characteristics. 

Combining Eqs. (4.24) and (4.25), and taking Ta to be Ts,min yield the following relation 
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              (4.44)              

Let Rs,0(1-c) be Qs,0, in combination with Eqs. (7) and (4.44), one obtains 
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−
                    (4.45)              

In a similar vein, EFc can be derived by combining Eqs. (4.6), (4.42), and (4.42) as: 

c,max c c,0
c

c,max a c

EF
T T Q
T T Q

−
= ⋅

−
                    (4.46)              

Combining Eqs. (4.8), (4.45) and (4.46), EF for a mixed landscape can be further 

expressed as 

c,0 c,max c s,0 s,max s
c c

c,max a s,max a

EF (1 )
Q T T Q T T

f f
Q T T Q T T

− −
= ⋅ + − ⋅

− −
           (4.47) 

In summary, LEc can be calculated by Eqs. (4.6), (4.11), and (4.45); LEs can be 

calculated by Eqs. (4.7), (4.26), and (4.46). LE for a mixed landscape can be calculated 

by Eq. (4.1). It is emphasized that TTME does not use observed extreme temperatures 

selected/specified from the fc-Trad space as triangle and other spatial variability models 

do. Instead, TTME makes use of the theoretical boundary conditions illustrated in 

Sections 4.2.2 and 4.2.3 to decompose Trad and parameterize LEc and LEs, which can 

reduce large uncertainties in the use of observed boundary conditions. 
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4.2.5. Estimation of αc and αs 

A primary feature of TTME is its two-source scheme. In addition to decomposing 

Trad into Ts and Tc within the theoretical boundary conditions, separate parameterization 

of Qs (Qs0) and Qc (Qc0) plays a prominent role in determining the magnitudes of LEs and 

LEc. Albedo components, αs and αc for a generic surface, and albedo of two particular 

surfaces, αs,max and αc,max in Eqs. (4.11) and (4.26), are essential to partitioning Sd. 

The shortwave radiation reaching a sensor for a simplified landscape is taken as the 

weighted sum of the radiation coming from the vegetation and soil components (Sanchez 

et al., 2008; Zhang et al., 2005). The surface albedo for a pixel is therefore assumed to be 

the weighted sum of albedo components: 

m c c c s(1 )f fα α α= + −                       (4.48)              

where αm is the albedo for a composite pixel; and αc and αs are the albedo for vegetation 

and soil surfaces, respectively. Differentiating αm with respect to fc, one obtains 

m
c s

c

d
df
α α α= −                         (4.49)              

Combining Eqs. (4.48) and (4.49), one gets 

m
c m c

c

(1 ) df
df
αα α= + −                     (4.50)              

m
s m c

c

df
df
αα α= −                       (4.51)              

    It is clear from Eqs. (4.50) and (4.51) that partitioning of αm into αc and αs depends 
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on fc and slope of the variation in αm with fc. The slope of each pixel can be linearly 

interpolated by the slopes of warm and cold edges of the fc-αm space (Zhang et al., 2005). 

    We propose that warm and cold edges of the fc-αm space can be determined by the 

following steps. First, the full range of fc is divided into n intervals (e.g., 100). Second, 

the maximum and minimum values of αm for each fc interval are selected and saved. 

Third, to capture the fundamental features of the two critical edges, outliers of the 

selected data pairs of αm and fc are discarded if the extreme αm values fall outside the 

range [μα-σα, μα+σα] (μα and σα are the mean and standard deviation of the saved αm 

extreme values). Fourth, linear regression analysis for the refined data pairs is performed 

to derive the slopes of the two edges. αs,max and αc,max can be deduced by the warm edge 

intersecting with fc=0 and fc=1, respectively.  

Inputs, intermediate variables, outputs, and computation procedures of TTME are 

summarized in Fig. 4.2. 
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Figure 4.2 Flow chart of TTME. 
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4.3. Study site and data processing 

4.3.1. Study site 

The Soil Moisture-Atmosphere Coupling Experiment (SMACEX) campaign was 

conducted in an area ranging in latitude between 41.87ºN and 42.05ºN and in longitude 

between -93.83ºW and -93.39ºW, covering a grid box around 10 km north-south by 30 

km east-west (Fig. 4.3). It was primarily focused on the Walnut Creek (WC) watershed, 

just south of Ames in central Iowa (IA), U.S., during the period from 15 June (DOY 166) 

through 8 July (DOY 189) in 2002, designed to provide extensive measurements of soil, 

vegetation, and meteorological properties and states to understand how horizontal 

heterogeneities in vegetation cover, soil moisture, and other land surface variables 

influence surface flux exchanges with the atmosphere (Kustas et al., 2005). The 

dominant land cover across the WC watershed comprises rainfed corn and soybean fields, 

accounting for approximately 80% in relatively equal proportions of the watershed. 

During the course of campaign, crops and vegetation grew rapidly. The surface soil 

moisture changed from dry to wet from rainfall events in early July.  
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Figure 4.3 Location and the false color composite of Landsat TM imagery acquired on 
June 23, 2002, of the SMACEX study site at Ames, central Iowa, U.S. 
 
 

A mean annual rainfall of 835 mm falls in this region, which can be classified as a 

humid climate. Precipitation during the SMACEX campaign occurred a few days prior 

to 15 June (DOY 166), with a minor rainfall event of 0-5 mm on 20 June (DOY 171). 

This was followed by a rain-free period for the WC watershed until 4 July (DOY 185). 

In a typical growing season, the most rapid growth in corn and soybean crops is 

observed in June and July. Elevation of the SMACEX site ranges from 256 m to 354 m, 

with a mean of 302 m. The topography is characterized by low relief and poor surface 

drainage.  
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4.3.2. Flux tower measurements 

A network consisting of 14 meteorological-flux (METFLUX) towers (12 were fully 

operational during the campaign) was deployed within or in the vicinity of the WC 

watershed (WC03, 06, 23, 24, 25, and 33 were outside the watershed), employing eddy 

covariance (EC) systems at 12 field sites, in which 6 sites were corn and 6 sites were 

soybean. These towers were instrumented with a variety of sensors for measuring 

turbulent fluxes of latent and sensible heat, as well as radiation components (incoming 

and outgoing shortwave and longwave radiation) and soil heat fluxes at 30-min intervals. 

It is noted that relatively large LE fluxes and small H fluxes were observed on DOY 189. 

WC 3, 6, 14, and 24 tower flux sites (Fig. 4.3) even showed negative H, which might be 

indicative of the presence of advection on that day. Additional in situ 

hydrometeorological observations encompassed 10-min averaged temperature, relative 

humidity, and wind speed and direction, etc. Observed fluxes for three image acquisition 

dates were used to validate the TTME model. Details about these sensors and processing 

of the measurements can be found in (Kustas et al., 2005; Prueger et al., 2005). 

 

4.3.3. Energy balance closure 

The eddy covariance systems have been found to underestimate LE and H, i.e., 

Rn-G>LE+H, due to mismatched source areas of LE and H, inhomogeneous surface 

cover and soil characteristics, and flux divergence or dispersion, etc.; therefore the 

measured LE and H need to be adjusted for energy balance closure (Twine et al., 2000). 

Fig. 4.4 compares observed LE+H with Rn-G at the Landsat overpass for three image 
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acquisition dates, illustrating that in general the observed LE+H fluxes are less than 

Rn-G except for the observed LE+H being significantly larger than Rn-G at WC 25 on 

DOY 182. The averaged closure ratio [CR=(LE+H)/(Rn-G)] for all observations was 

found to be 0.85.  

 

Figure 4.4 Comparison of the observed energy availability (Rn-G) and the sum of 
observed sensible and latent heat fluxes (LE+H), showing the averaged closure ratio (CR) 
of 0.85. 
 
 
 

Twine et al. (2000) have stated that the preferred method of energy balance closure 

is to maintain the Bowen ratio (H/LE) and partition the measured available energy 

(Rn-G), since there was no compelling evidence to discard the measured LE as the 

residual closure does. They also compared the measured LE after forcing closure by the 
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Bowen ratio and residual techniques with that from water budget calculations, indicating 

that the Bowen ratio method showed a closer agreement with the water balance results. 

Anderson et al. (Anderson et al., 2005) found that the observed LE after forcing closure 

by the Bowen ratio method agreed well with aircraft counterparts for the SMACEX site. 

French et al. (2005b) performed the Bowen ratio closure in validation of Two-source 

Energy Balance (TSEB) and Surface Energy Balance Algorithm for Land (SEBAL) at 

the SMACEX site. As such, we performed a closure of the measured LE and H fluxes by 

the Bowen ratio technique.  

 

4.3.4. Remote sensing sources and ancillary data 

There were three cloud-free scenes of Landsat TM/ETM+ imageries acquired across 

the campaign period, i.e., Landsat TM on DOY 174 spanning vegetated canopy cover 

from 50% to 75%, Landsat ETM+ on DOY 182 from 75% to 90%, and Landsat ETM+ on 

DOY 189 from 85% to essentially full cover. Basic information regarding these 

imageries is shown in Table 4.1. 
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Table 4.1 Parameters of Landsat imageries covering the SMACEX site for three study 
days in 2002 
 

Date (DOY) Landsat Path/Row Overpass time 
(local) 

Solar 
elevation 
angle (º) 

Solar azimuth 
angle (º) 

June 23  
(174) TM 26/31 10:29 a.m. 61.50 121.88 

July 1  
(182) ETM+ 26/31 10:42 a.m. 62.93 126.30 

July 8  
(189) ETM+ 27/31 10:45 a.m. 62.24 126.73 

 
 

Digital Elevation Models (DEMs) were obtained from the National Elevation 

Dataset (NED) produced and distributed by the U.S. Geological Survey 

(http://seamless.usgs.gov/index.php), with a spatial resolution of 1 arc-second (about 30 

m). Terrain variables (e.g., elevation, slope, and aspect) were extracted directly from the 

DEMs.  

 

4.3.5. Variable derivation 

Derivation of αm 

Albedo of a composite pixel αm was derived from visible and near-infrared bands of 

Landsat imagery using calibrated atmospheric transmittance and path reflectance 

functions developed by Tasumi et al. (2008). The atmospheric transmittance and path 

reflectance are functions of fitted satellite-dependent constants, the solar zenith angle for 

a horizontal flat surface, satellite view angle, atmospheric pressure, and precipitable 

water in the atmosphere. The former four parameters and variables can be specified or 

determined readily, whereas the precipitable water in the atmosphere requires an 
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empirical relationship with observed near-surface vapor pressure. The empirical 

relationship between precipitable water and near-surface pressure was derived using 

monthly mean atmospheric precipitable water and near-surface vapor pressure data for 

82 sites in the U.S. (Garrison and Adler, 1990). It is noted that this relationship should be 

used with caution on the instantaneous timescale and in regions outside the U.S.  

We recommend that the use of MODIS atmospheric products, MOD05_L2, 

providing the total precipitable water vapor, be able to retain the spatial characteristic of 

precipitable water content and improve the accuracy of αm retrievals. We compared αm 

retrievals from observed near-surface vapor pressure and MOD05_L2, respectively, with 

observed ones. The observed albedo was obtained from the observed outgoing shortwave 

radiation over the observed incoming shortwave radiation from the CNR1 at towers 3, 6, 

24, 25, 33, 152 and 162, and the Radiation and Energy balance (REBS) Q*7 series at 

towers 13, 14, 23, 151, and 161. Results (Fig. 4.5) indicate that in general αm simulations 

using near-surface vapor pressure and MOD05_L2 both show reasonable agreement with 

observations. The use of MOD05_L2 precipitable water content resulted in slightly 

improved accuracy of αm retrievals in terms of a bias of -0.0024 and an RMSD of 0.0065 

for the three study days. The αm retrievals from using observed vapor pressure showed a 

bias of -0.0036 and an RMSD of 0.0069. The advantages of the use of MOD05_L2 will 

be manifested when simulating αm over large heterogeneous areas and/or the absence of 

near-surface vapor pressure measurements.  
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Figure 4.5 Comparison of surface albedo retrievals from Landsat TM/ETM+ imageries 
using observed near-surface vapor pressure and MOD05_L2 precipitable water products, 
respectively. 
 
 

Derivation of Trad 

Trad is derived from the thermal infrared band of Landsat imagery. Prior to 

retrieving Trad, atmospheric corrections for the at-sensor spectral radiance should be 

performed using atmospheric radiation transfer simulation models (e.g., MODTRAN) in 

combination with radiosounding data, ground-based measurements, and/or remotely 

sensed sources (e.g., MOD05_L2). The atmospherically corrected radiance can be 

converted into Trad using the Planck equation (Allen et al., 2007; Li et al., 2004). Li et al. 

(2004) performed atmospheric corrections for the thermal bands of 4 scenes of Landsat 

TM/ETM+ imageries acquired during the SMACEX campaign, providing the simulated 

atmospheric transmittance, spectral radiance added by the atmosphere, and the 

downwelling sky radiance from the atmosphere. We took advantage of such coefficients 

to retrieve Trad for the SMACEX site on DOY 174, 182 and 189.  
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Retrievals of Trad require surface emissivity for the thermal band of the wavelength 

of 10.45-12.42 μm and 10.31-12.36 μm for Landsat TM and ETM+, respectively. Given 

the relatively homogenous and flat study site, we adopted the formula proposed by 

Sobrino et al. (1990) to estimate surface emissivity, in which the term associated with 

the cavity effect is taken to be zero.  

Derivation of Sd 

Downwelling shortwave radiation Sd is the largest contributor of net radiation, 

largely determining the magnitudes of H and LE. It is a function of solar constant I0 

(1367 W m-2), solar zenith angle θ, the relative Earth-Sun distance d (dimensionless), 

and broad-band atmospheric transmissivity τ (dimensionless): 

0
d 2

I cos( )S
d

θ τ=                      (4.52)              

The solar zenith angle θ for a surface can be computed in terms of the geometric 

relationship between the incident beam and the sloping surface described in Section 

2.3.1 in Chapter II. As demonstrated in Section 2.3.1, Sd is most sensitive to τ. Accurate 

determination of τ calls for radiosounding data about atmospheric composite, water 

content, and temperature of the atmospheric profile using radiative transfer models (e.g., 

MODTRAN). In practice, we can estimate τ using the formula provided by Allen et al. 

(2007). 
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4.4. Results 

4.4.1. Surface flux and EF estimates from TTME 

Energy balance components (Rn, G, H, and LE) simulated by TTME were compared 

with tower-based flux measurements which were adjusted for energy balance closure 

using the Bowen ratio method (Fig. 4.6 and Table 4.2). The simulated fluxes were 

averaged over the estimated upwind source-area/footprint (1~2 pixels/~120 m) for each 

flux tower using the approach proposed by Li et al. (2008a). Results indicate that in 

general retrievals of all four components of the energy balance equation agree 

reasonably well with tower-based measurements. The model reproduced measured Rn 

with good accuracy at all sites for the three days, yielding an RMSD of 27.1 W m-2, an 

MAPD of 3.6%, and a bias of 14.2 W m-2. The overestimation of Rn would be probably 

due to an underestimation of Trad and consequently an underestimation of the outgoing 

longwave radiation. The Rn retrievals showed the highest accuracy in terms of the overall 

MAPD of 3.6% for the three days compared with other energy balance components. 
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Figure 4.6 Comparison of Rn, G, H, and LE fluxes (W m-2) from TTME with 
corresponding eddy covariance tower-based measurements (W m-2) at the SMACEX site 
on DOY 174, 182 and 189 in 2002. 
 
 
 
 
 
 
 
 
 
 



137 

 

Table 4.2 Statistics on discrepancies between the simulated energy balance components 
from TTME, and the eddy covariance energy and heat fluxes in the SMACEX site for 
three test dates. The observed fluxes are corrected by the Bowen ratio (BR) technique. 
 

Flux and date Observatio
n number 

Observed 
average 
(W m-2) 

Simulated 
average 
(W m-2) 

Bias 
(W m-2) 

RMSD 
(W m-2) 

MAPD 
(%) 

DOY174 12 572.4 590.5 18.1 28.6 4.1 
DOY182 12 586.5 602.5 16.0 26.0 3.5 
DOY189 11 606.4 614.2 7.9 26.5 3.2 Rn  

Overall 35 587.9 602.1 14.2 27.1 3.6 
DOY174 12 104.1 101.7 -2.4 23.4 21.8 
DOY182 12 74.1 83.1 9.0 18.4 30.8 
DOY189 11 82.7 70.4 -12.3 24.4 24.5 G  

Overall 35 87.1 85.5 -1.6 22.1 25.7 
DOY174 9 346.6 352.4 5.8 36.6 9.2 
DOY182 10 399.8 395.7 -4.1 43.7 8.4 
DOY189 11 501.3 527.4 26.1 53.2 8.5 

L
E  

Overall 30 421.0 431.0 10.0 45.6 8.7 
DOY174 9 123.4 138.6 15.1 34.7 24.7 
DOY182 10 124.6 132.7 8.1 37.7 20.1 
DOY189 11 22.4 16.4 -5.9 28.8 145.7 H 

Overall 30 86.8 91.8 5.0 33.8 67.5 
DOY174 9 0.73 0.71 -0.02 0.06 8.7 
DOY182 10 0.76 0.74 -0.01 0.07 6.8 
DOY189 11 0.96 0.97 0.01 0.06 5.0 EF 

Overall 30 0.82 0.82 -0.01 0.06 6.7 
 

 
 

The G retrievals were taken to be a fraction (=0.35) of Rs, showing an RMSD of 

22.1 W m-2 and an MAPD of 25.7% compared with tower-based measurements. A fixed 

fraction for G might be the principal reason for the discrepancies in the G estimates. 

Calibration of the fraction would improve the agreement. 

LE appeared to be well reproduced by TTME, demonstrating an overall RMSD of 

45.6 W m-2 and an MAPD of 8.7% for the three study dates, in which DOY 189 implied 

a relatively larger RMSD of 53.2 W m-2. This is likely related to the presence of 

advection under high soil wetness conditions on that day.  
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The H estimates for the three dates showed an RMSD of 33.8 W m-2 and an MAPD 

of 67.5%. It is noted that a larger MAPD of up to 145.7% for the H estimates occurred 

on DOY 189, which could be ascribed to the negative and relatively small magnitudes of 

the H measurements due to advection. Of the 11 sites having H measurements on DOY 

189, 4 sites showed negative H measurements on the order of 10~20 W m-2. For the 

other two dates, the H retrievals were in greater agreement with the tower-based 

measurements, showing an RMSD of 34.7 W m-2 and 37.7 W m-2, and an MAPD of 

24.7% and 20.1% for DOY 174 and 182, respectively.  

It is important to note that unlike other types of energy-balance models, TTME does 

not directly compute H; it takes H as the residual term of the energy balance equation. 

All uncertainties in Rn, G, and LE are therefore encapsulated into the H estimates. Even 

though a great discrepancy of H retrievals would take place in some cases (e.g., 

advection), the most interesting component, LE, can be well reproduced.  

For further examining the utility and mechanisms of TTME, we isolated 

uncertainties in Rn and G retrievals from the resulting LE estimates by evaluating the EF 

estimates for the three days. Results (Table 4.2 and Fig. 4.7) show that there is a fairly 

close agreement between the EF retrievals and the tower-based measurements, showing 

an RMSD of 0.06 and an MAPD of 6.7%. This means that if the EF estimates from 

TTME are combined with net energy (Rn-G) measurements, it will produce LE estimates 

with higher accuracy. On the other hand, there is still room for improving the 

parameterization of Rn and G in TTME.  
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Figure 4.7 Comparison of EF from TTME with corresponding eddy covariance 
tower-based EF at the SMACEX site on DOY 174, 182 and 189 in 2002. 
 

Fig. 4.8 shows the spatial distributions of LEc and LEs of the SMACEX site for the 

three study days. Evolution of LEc and LEs estimates for the three days is primarily 

determined by the evolution of Trad and fc. Because of the varying discriminating ability 

of thermal bands for Landsat TM and ETM sensors, the spatial resolution of LEc and LEs 

retrievals are apparently different. The LEc and LEs estimates for DOY 189 show low 

values across the central portion of the modeling domain, with values generally 

becoming large from the centre. 
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Figure 4.8 Spatial distribution of LEc (W m-2) and LEs (W m-2) from TTME at the 
SMACEX site on DOY 174, 182 and 189 in 2002. 
 

In summary, TTME seems to be capable of reproducing surface fluxes under dry 

and wet conditions with model-measurement errors on the order of RMSD within 45 W 

m-2 for energy balance components and 0.06 for EF. Even though a relatively large 

uncertainty in the H estimates would occur due to advection and uncertainties in Rn, G, 

and LE estimates, LE can be well reproduced. The retrievals of EF are in close 

agreement with tower-based measurements.  
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4.4.2. Sensitivity analysis of TTME 

Model sensitivity analysis plays a fundamental role in understanding the 

contributions of variables and parameters to model outputs and consequently provides an 

insight into the mechanisms of error propagation and uncertainty of the model. In this 

study, the sensitivity Si of the most interesting output, LE, from TTME to an input i is 

used, which can be expressed as  

0

0

LE LE( ) 100
LEiS ± −

= ⋅                    (4.53)              

where LE± represents the LE estimates when an input variable is increased (+) or 

decreased (-) with respect to the reference values (original inputs); and LE0 is the LE 

estimates based on the reference values. Given the retrieval accuracy of Trad, 

perturbations of Trad were specified as [-2K, 2K], with a variation step of 0.5 K. 

Perturbations of Ta were also specified as [-2K, 2K], even though uncertainty in Ta 

observations might not be as large as the specified range. Perturbations of the other 

variables were specified as [-20%, 20%], with a variation step of 5%. The reference  
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values were obtained from the SMACEX data set on DOY 174, which showed a range of 

soil moisture and fc conditions. DOY 182 and 189 showed relatively homogeneous soil 

moisture and fc conditions, which might make the model sensitivity be conservatively 

estimated. 

Sensitivity to Trad and Ta 

Results (Table 4.3 and Fig. 4.9a) show that Trad is negatively correlated with LE, but 

Ta is positively correlated with LE. An increase in Trad is a signal of surfaces moving to 

the warm edge within the trapezoid framework; therefore the LE estimates tend to 

decrease. Analogously, an increase in Ta is primarily indicative of surfaces moving 

towards the cold edge, thereby resulting in increases in the LE estimates. Additionally, 

Trad and Ta can also influence the calculation of net radiation components. However, the 

contributions of Trad and Ta to net radiation are considerably smaller than that to the 

resulting LE estimates.  
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Figure 4.9 Sensitivity analysis of TTME to Trad and Ta in (a), αc, αs, αc,max, and αs,max in 
(b), and u*, ea, and hc in (c). 
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Table 4.3 Relative sensitivity Si (%) of LE estimates from TTME to each input variable 
at the SMACEX site on three study days, variations of Ta and Trad are in K and variations 
of the other variables are in percentage (%) 
 

Variation   
     (%/K)  

Variable 

-20 
(-2) 

-15 
(-1.5)

-10 
(-1) 

-5 
(-0.5)

5 
(0.5) 

10 
(1) 

15 
(1.5) 

20 
(2) 

Trad 28.9  21.6 14.4 7.2 -7.2 -14.3  -21.5  -28.6 
Ta -27.7  -20.8 -13.9 -6.9 6.9 13.8  20.7  27.6 
αs 1.3  1.0 0.7 0.3 -0.3 -0.7  -1.0  -1.3 
αc 3.3  2.4 1.6 0.8 -0.8 -1.6  -2.4  -3.3 

αs,max 4.9  3.8 2.5 1.3 -1.3 -2.7  -4.2  -5.7 
αc,max 1.4  1.0 0.7 0.3 -0.3 -0.7  -1.1  -1.4 

u* 12.0  9.0 6.0 3.0 -3.0 -6.1  -9.1  -12.2 
ea -3.7  -2.7 -1.8 -0.9 0.8 1.6  2.4  3.1 
hc 1.5  1.1 0.7 0.4 -0.4 -0.7  -1.1  -1.4 

 
 

A 1 K increase in Trad and Ta could result in a 14.3% decease and a 13.8% increase 

in the LE estimates. A 2 K increase in Trad and Ta could result in a 28.6% decrease and a 

27.6% increase in the LE estimates. This means that Trad and Ta play a critical role in 

determining the relative displacement of pixels to the boundary conditions of LE, and in 

demarcating the boundary conditions of TTME. To that end, restraining errors of TTME 

lies in controlling uncertainty in the Trad retrievals.  

In fact, all satellite-based ET models take advantage of Trad to calculate H, e.g., 

SEBAL, Surface Energy Balance System (SEBS), and TSEB, or to directly deduce EF, 

e.g., triangle models. Sensitivity analysis performed by Timmermans et al. (2007) 

indicated that a 2.5 K increase in Trad would result in a 74% increase in the H estimates 

from TSEB. Given that TTME and TSEB have the similar retrieval accuracies of Rn and 

G shown in Section 4.1, TTME would show less sensitivity to Trad than TSEB. On the 

other hand, uncertainty in Ta observations can be generally small. The use of Ta to be the 
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lower boundary condition of LE seems to circumvent the uncertainty in determining the 

lower boundaries by specifying end-member Trad as the SEBAL model does. 

Sensitivity to albedo components 

It is noted that remotely sensed αm for a composite pixel should be decomposed into 

αc and αs to compute Rc and Rs in terms of algorithms illustrated in Section 4.2.5. In 

addition, αc,max and αs,max deduced from the fc-αm space can also influence the magnitudes 

of Tc,max and Ts,max. Since these albedo components are derived/deduced by the TTME 

algorithm, we investigated the sensitivity of TTME to them.  

Results (Table 4.3 and Fig. 4.9b) show that in general, all albedo components are 

negatively correlated with the LE estimates. This can be explained by radiation budget 

and energy balance equations. With increasing αc or αs, the net radiation will be reduced 

and therefore LEc or LEs and LE tend to be reduced. In a similar vein, with increasing 

αc,max or αs,max, Tc,max or Ts,max tends to decrease, which corresponds to the upper 

boundary condition of TTME moving downward, therefore leading to decreasing LE. A 

20% increase in αc, αs, αc,max, and αs,max can result in -3.3%, -1.3%, -1.4%, and -5.7% 

decreases in the LE estimates, respectively. TTME appears to have the largest sensitivity 

to αs,max in all albedo components. 
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Sensitivity to other variables 

u/u* is involved in the calculation of the aerodynamic resistance of the driest bare 

surface and the driest fully vegetated surface. ea is involved in the estimation of Lu. The 

model sensitivity to the two meteorological inputs was investigated. Furthermore, the 

model sensitivity to a hypothesized hc for the driest fully vegetated surface was also 

examined. Results (Fig. 4.9c) suggest that ea is positively correlated with the LE 

estimates, and u* and hc are negatively correlated with the LE estimates. A 20% increase 

in ea would lead to a 3.1% increase in the LE estimates due to an enhanced effect of Lu, 

thereby causing a slightly larger LE estimate. A 20% increase in u* and hc would result in 

-12.2% and -1.4% decreases in the LE estimates. This means that TTME is not greatly 

sensitive to meteorological observations. More importantly, the hypothesized hc for the 

theoretical driest fully vegetated surface of the trapezoidal framework would not result 

in large uncertainty in the model. 
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In summary, TTME is most sensitive to Trad and Ta. It is noted that Trad is the most 

critical input in all satellite-based ET models. TTME shows less sensitivity to Trad than 

TSEB. The hypothesized hc for the driest fully vegetated surface could not result in large 

uncertainty in the TTME algorithm. TTME is not sensitive to albedo components, which 

can be derived or specified appropriately and therefore would not result in large 

uncertainty in the LE estimates. The TTME model does not seem sensitive to 

meteorological observations of u* and ea. 

 

4.5. Discussion 

4.5.1. Comparison with other models  

The SMACEX data set has been extensively used to perform model validation and 

comparison. The performance of SEBAL, Mapping Evapotranspiration at high 

Resolution with Internalized Calibration (METRIC), SEBS, TSEB, and the triangle 

model at this site has been reported in the literature. Table 4.4 lists statistics of the 

discrepancies between surface flux retrievals and flux tower measurements from 

published studies.



 

Table 4.4 Statistics on discrepancies between flux estimates from SEBAL, SEBS, and TSEB, against eddy covariance-based 
measurements for the SMACEX site in the literature. Closure techniques involve residual (RE) and Bowen ratio (BR) 
methods. Hyphen (-) denotes null value. The unit of bias and RMSD is W m-2 and MAPD is percentage (%) 

 

Model Study Satellite 
imagery DOY Closure 

technique/αc 

ET 
(W m-2/%) 

H 
(W m-2/%) 

Rn 
(W m-2/%) 

G 
(W m-2/%) 

SEBAL (French et 
al., 2005a) ASTER 182 BR Bias:-82 Bias: 63 Bias: -31 Bias: -12 

(Choi et al., 
2009) 

Landsat 
TM/ETM+ 174 and 182 BR Bias:19;  

RMSD: 55 
Bias: -29; 
RMSD: 57 

Bias: -10 
RMSD: 19 

Bias: 0 
RMSD: 19 

(Choi et al., 
2009) 

Landsat 
TM/ETM+ 174 and 182 RE Bias:53;  

RMSD: 75 - - -  
METRIC (Gonzalez-D

ugo et al., 
2009) 

Landsat 
TM/ETM+ 

174, 182, and 
189 RE Bias: 1 

RMSD: 42 
Bias: -1 

RMSD: 42 - - 

Range - - - - 
Bias:-82~53
RMSD:42~7

5 

Bias: -29~63
RMSD:42~5

7  

Bias: -31~-10
RMSD: 19 

Bias: -12~0 
RMSD: 19 

(Li et al., 
2005) 

Landsat 
TM/ETM+ 

167, 174, 
182, and 189 BR/1.3 RMSD: 46 

MAPD: 12 
RMSD: 49 
MAPD: 35 

RMSD: 20 
MAPD: 3 

RMSD: 20 
MAPD: 3 

(Li et al., 
2005) 

Landsat 
TM/ETM+ 

167, 174, 
182, and 189 RE/1.3 RMSD: 45 

MAPD: 9 - - - 

(French et 
al., 2005a) ASTER 182 BR/� Bias: 8 Bias: -20 Bias: 0 Bias: 12 

(Choi et al., 
2009) 

Landsat 
TM/ETM+ 174 and 182 BR/1.26 Bias: 4;  

RMSD: 53 
Bias: 39; 

RMSD: 62 
Bias: 21 

RMSD: 30 
Bias: -22 

RMSD: 32 
(Choi et al., 

2009) 
Landsat 

TM/ETM+ 174 and 182 RE/1.26 Bias: 37;  
RMSD: 60 - - - 

TSEB  

(Gonzalez-D
ugo et al., 

2009) 

Landsat 
TM/ETM+ 

174, 182, and 
189 RE/1.26 Bias: 17 

RMSD: 30 
Bias: 17 

RMSD: 30 - - 

Range - - - - 
Bias:4~37 
RMSD: 
30~60 

Bias:-20~39
RMSD: 
30~62 

Bias:0~21 
RMSD: 
20~30 

Bias:-22~12
RMSD: 
20~32 
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Table 4.4 Continued. 

 
 

 

Model Study Satellite 
imagery DOY Closure 

technique/αc 

ET 
(W m-2/%) 

H 
(W m-2/%) 

Rn 
(W m-2/%) 

G 
(W m-2/%) 

(McCabe and 
Wood, 2006) 

Landsat 
ETM+ 182 - Bias: -6  - - - 

(McCabe and 
Wood, 2006) ASTER 182 - Bias: 18  - - - SEBS 

(McCabe and 
Wood, 2006) MODIS 182 - Bias: -57 - - - 

(Choi et al., 
2009) 

Landsat 
TM/ETM+ 174 and 182 BR Bias: -93 

RMSD: 115
Bias: -93 

RMSD: 108
Bias: 21 

RMSD: 26 
Bias: 14 

RMSD: 24 Triangle (Choi et al., 
2009) 

Landsat 
TM/ETM+ 174 and 182 RE Bias: 133 

RMSD: 146 - - - 
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Different studies using the same data set seem to show generally comparable 

accuracy of surface flux retrievals for the same type of model. Overall, the TSEB models 

(both parallel and series configurations) appear to be capable of reproducing LE and H 

fluxes with a higher accuracy compared with one-source models (SEBAL, METRIC, 

SEBS, and the triangle model). Bias of the LE retrievals from TSEB ranges between 4 W 

m-2 and 37 W m-2 and RMSD ranges between 30 W m-2 and 60 W m-2. Similarly, the 

TSEB models generate H fluxes with bias ranging between -20 W m-2 and 39 W m-2, and 

RMSD ranging between 30 W m-2 and 60 W m-2.  

SEBAL suggests a bias of LE up to 82 W m-2. As a variant of SEBAL, METRIC 

reproduces LE with RMSD ranging between 42 and 75 W m-2, and H with RMSD 

ranging between 42 and 57 W m-2, both of which are slightly larger than that of TSEB 

and TTME. Neither the one-source models are designed to discriminate between soil 

surface evaporation and vegetation transpiration, nor can they reproduce surface fluxes 

at a handful of towers with higher accuracy than TSEB and TTME. Operability, data 

requirements, and objectives in practical applications would be the primary 

considerations for model selection. It is important to note that TTME generally shows a 

comparable accuracy as TSEB, implying a bias of 10 W m-2, an RMSD of 45.6 W m-2, 

and an MAPD of 8.7% for LE from TTME. In addition, retrievals of Rn and G from 

TTME also suggest similar magnitudes of RMSD on the order of 20~30 W m-2 as TSEB. 

It is noted that the LE retrievals from TSEB generally show a positive bias (French 

et al., 2005a; Gonzalez-Dugo et al., 2009; Li et al., 2005) (some studies do not provide 

bias but provide the averaged LE estimates and averaged measurements) compared with 
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observed LE after forcing closure by both the residual and Bowen ratio techniques. This 

means that TSEB has a tendency to overestimate LE. In fact, there is a critical 

assumption involved in TSEB that the Priestley-Taylor formula (Priestley and Taylor, 

1972) with a parameter α of ~1.3 applies for both stressed and unstressed vegetation and 

agricultural crops (French et al., 2005b), but there is no mechanism in the model to 

capture the condition of αc<1.26 and ETs>0 (Agam et al., 2010). Only through the initial 

assumption about canopy transpiration formulated by the Priestley-Taylor formula can 

the model be triggered to partition Trad into Tc and Ts and energy fluxes between soil and 

vegetation. However, as Agam et al. (2010) stated, parameter α built in the TSEB model 

varies to some extent with LAI, water stress status, vegetation type, and vapor pressure 

deficit. Parameter α=1.3 has been found large for stressed, large vapor pressure deficit, 

and naturally vegetated conditions, where a conservative value (e.g., 1 or less than 1) 

might be more suitable. That is to say, TSEB tends to overestimate LE under less soil 

wetness, large drying power of air, and natural vegetation cover conditions.  

In addition, the LE outputs from these models can be evaluated by the observed LE 

after forcing closure by the residual method or the Bowen ratio method. The difference 

should be considered in comparing model accuracy. Furthermore, some studies, e.g., 

(Gonzalez-Dugo et al., 2009), utilized measured Rn and G to facilitate the simulation of 

H and LE, which tends to increase the accuracy of LE if the measured Rn and G are of 

less uncertainty than the modeled counterparts.  
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4.5.2. Advantages of TTME 

    The most significant attribute of TTME is its capability to discriminate vegetation 

transpiration from soil surface evaporation based on the two-source scheme. This 

attribute seems to be more beneficial in effective water use in agricultural crops and 

water resources management compared with one-source models. Validation of TTME 

against flux tower measurements across the SMACEX site on three Landsat TM/ETM+ 

imagery acquisition days in 2002 demonstrates that TTME appears to be capable of 

reproducing EF and LE on the order of MAPD within 10%. The EF estimates even show 

a smaller discrepancy in terms of an MAPD of 6.7%. This means that TTME shows 

comparable or even higher accuracy compared with TSEB, given the overestimation of 

vegetation transpiration using the Priestley-Taylor equation and the determination of the 

Priestley-Taylor parameter of somewhat subjectivity. In particular, TTME enjoys the 

following advantages: 

(1) TTME is unique in its two-source scheme compared to one-source models. Also, 

it deviates from TSEB in explicitly accommodating soil water stress on vegetation 

transpiration. In TSEB, the vegetation transpiration is parameterized by the 

Priestley-Taylor equation for decomposing Trad, The parameterization assumes canopy to 

transpire at potential rates regardless of fc at the first approximation of the canopy 

temperature. Only when LEs is attained with a nonphysical solution, i.e., LEs<0 

corresponding to daytime condensation at the soil surface, can the Priestley-Taylor 

parameter α be manually lowered to account for soil moisture stress on LEc (Crow et al., 

2008; Kustas and Anderson, 2009). If a physical solution is otherwise obtained (i.e., 
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LEs>0) and parameter α is not reduced, overestimates of LE could occur. 

 (2) TTME circumvents parameterization of the resistance networks involved in 

TSEB and the two-source model proposed by Nishida et al. (2003), and consequently the 

specification of variables and parameters (e.g., wind velocity field, canopy height, leaf 

size, leaf perimeter, and LAI ) in surface and canopy resistances. The resistance 

networks seem difficult to handle across large areas. In TTME, only two theoretically 

hypothesized extreme surfaces require the computation of aerodynamic resistance. As 

the two extreme cases necessarily show some simplified physiological and surface 

properties, e.g., typical values of roughness length for the bare surface range from 

0.005-0.02 m, the determination of aerodynamic resistance for the two extreme surfaces 

can be appropriately dealt with. This attribute allows TTME to effectively restrain 

uncertainties in the computation of resistance across large heterogeneous areas where the 

vegetation height, leaf width, and soil surface roughness are difficult to specify. 

    (3) TTME reduces uncertainties arising from the specification of warm and cold 

edges/pixels involved in one-source models by deriving the theoretical boundary 

conditions of EF. The configuration of the trapezoid fc-Trad space is dependent on three 

critical temperatures, i.e., Ts,max, Tc,max, and Ta, which can be derived by solving for 

energy balance and radiation budget equations. By contrast, the boundary conditions of 

SEBAL, METRIC, and the triangle model should be selected by the operator or derived 

from the NDVI-Trad space, which involves large subjectivity and is dependent on the size 

and resolution of satellite imagery being used. 

(4) TTME isolates uncertainties in Rn, G, and H from LE to a certain degree. Many 
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remote sensing-based models calculate LE as the residual term of the energy balance 

equation. Uncertainties in Rn, G, and especially H retrievals have to be encapsulated into 

the resulting LE estimates. In contrast, TTME directly calculates EF and LE without 

calculating H first. Uncertainties in the simulation of H are considerably mitigated by the 

TTME algorithm.  

(5) TTME is robust in terms of model sensitivity. The most sensitive variables of 

TTME are Trad and Ta, which can be retrieved or obtained with reasonable accuracy. 

Furthermore, TTME is not sensitive to some hypothesized physiologic parameters, e.g., 

hc, or deduced surface properties, e.g., αc,max and αs,max.  

(6) TTME requires relatively fewer inputs compared with TSEB. Overall, TTME 

encompasses three types of inputs (see Fig. 4.2). The first type is remotely sensed 

variables, i.e., Trad, fc and α. The three surface characteristic variables are involved in 

most of the satellite-based models for surface flux and LE simulations. The second type 

is atmospheric variables at the satellite overpass, including Ta, ea, and u/u*. It is noted 

that Ta and ea are indispensable variables for estimating radiant energy involved in 

models aimed at reproducing LE. In addition, MOD07_L2 atmospheric products provide 

remotely sensed Ta and dew point temperature (can be converted to ea), which might be 

useful for being incorporated into TTME in the case of the absence of ground-based 

measurements. The wind velocity u or friction velocity u*, involved in most one-source 

models (e.g., SEBAL and SEBS) and two-source models (e.g., TSEB), is also required to 

estimate the aerodynamic resistance for only two extreme surfaces in TTME. The third 

type of input consists of DEM, time related parameters (i.e., DOY and satellite overpass), 
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and surface properties (I0, hc, αc,max and αs,max), which can be readily obtained or 

appropriately specified. The input requirement of TTME has been substantially reduced 

as compared with other two-source models and even one-source models (e.g., SEBS).  

 

4.5.3. Limitations of TTME 

As other types of satellite-based ET models, TTME has its own applicability and 

limitations due to its assumptions: 

(1) Linear weighted sum of temperatures: Trad=fcTc+(1-fc)Ts. It is noted that the 

assumption is also used in the series-TSEB, e.g., Eq. (A5) in (Norman et al., 1995) and 

Eq. (A1) in (Anderson et al., 2007a). As long as the temperature difference between Tc 

and Ts is small compared with Trad, this equation would be generally valid (Nishida et al., 

2003a; Price, 1990). However, the use of the nonlinear combination of temperatures 

would be able to more accurately depict reality. This will be discussed in the future, and 

is beyond the scope of this study. 

(2) Effects of advection on partitioning of turbulent energy fluxes are not explicitly 

accounted for. The use of Ta to be the cold edge of TTME would 

overestimate/underestimate surface temperatures of the wettest surfaces. In fact, pixels 

scattered below the cold edge of the trapezoid space might be indicative of the presence 

of advection, i.e., negative temperature gradients between the land surface and the lower 

atmosphere. Taking Ta to be the limit of EF=1 is, however, an operational way to 

demarcate the lower boundary condition. If there is advection for all wet surfaces with 

varying fc, then determining the lower boundary seems to be infeasible.  
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(3) Derivation of the theoretical boundary conditions of TTME necessitates 

relatively homogeneous meteorological conditions (e.g., Ta, Sd, and u/u*) over the entire 

scene. It could be deduced that the more heterogeneous the meteorological conditions, 

often corresponding to larger areas, the larger the uncertainties in the configuration of 

the trapezoidal boundary conditions. Over large areas, TTME would be applicable by 

geographical stratification. This means that a large study area could be partitioned into 

multiple sub-areas with relatively homogeneous meteorological conditions. Surface 

fluxes could then be simulated for each sub-area. Additional attention is paid to the 

applicability of TTME to semi-arid and arid areas, where soil surface evaporation 

dominates ET and groundwater recharge. Addressing these issues forms the foundation 

of our ongoing work.  

 

4.6. Concluding remarks 

    The study presented in this chapter is primarily motivated by developing a more 

operational two-source remote sensing-based model for ET estimation, which is capable 

of reproducing surface fluxes with reasonable accuracy but requires less data than the 

existing two-source models and substantially reduces subjectivity involved in one-source 

models. A Two-source Trapezoid Model for Evapotranspiration (TTME) using satellite 

imagery has been developed. TTME is based on interpreting the fc-Trad space and the 

concept of isopleths of soil surface moisture availability superimposed in the space. The 

upper boundary condition (Ts,max and Tc,max) of the model is derived by solving for 

radiation budget and energy balance equations for the hypothesized driest bare surface 
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and the driest fully vegetated surface. Air temperature Ta constitutes the lower boundary 

of the model. Determination of these theoretical boundary conditions is dependent on 

less meteorological forcing and surface property parameters, which can be obtained with 

reasonable accuracy or appropriately specified. Radiative temperature Trad of a pixel is 

decomposed into temperature components Tc and Ts by interpolating the slopes of the 

theoretical boundaries for the isopiestic line going across the pixel. Subsequently, 

vegetation transpiration and soil surface evaporation can be separately parameterized. 

TTME is applied to the SMACEX site in central Iowa, U.S., on three Landsat TM/ETM+ 

imagery acquisition dates during the period of rapid growth in corn and soybean crops in 

2002. Results indicate that the model is capable of reproducing EF and LE with an 

MAPD of 6.7% and 8.7% and an RMSD of 0.06 and 45.6 W m-2, respectively. 

Comparison of TTME with other one-source and two-source models using the same data 

set suggests that TTME shows comparable accuracy as TSEB, but requires relatively 

fewer inputs and does not need to compute the resistance networks. In addition, the most 

sensitive variables of TTME, Trad and Ta, can be retrieved or obtained with reasonable 

accuracy. Compared with other one-source models, TTME substantially reduces 

subjectivity in determining boundary conditions, i.e., extreme pixels/edges. Additional 

efforts will be made to validate the model in the semi-arid and arid environments. 

Geographic stratification would make the model applicable to large river basins or 

regional scales.



158 

CHAPTER V 

SENSITIVITY OF SEBAL TO CHANGES IN INPUT VARIABLES, DOMAIN 

SIZE AND SATELLITE SENSOR 

 

5.1. Introduction 

SEBAL (Bastiaanssen et al., 1998a; Bastiaanssen et al., 1998b) was designed to 

simulate surface fluxes across areas with sufficiently large hydrologic contrast by 

incorporating remotely sensed variables and a minimum of ground data. This model has 

been widely used for estimation of water consumption by agricultural crops and natural 

vegetation, crop water productivity and water depletion in a river basin, formulation of 

appropriate irrigation schedules, and assisting in water resources management (Allen et 

al., 2007; Bastiaanssen et al., 2002; Bastiaanssen et al., 2005; Teixeira et al., 2009a). In 

hydrologic and atmospheric modeling, SEBAL-based ET can be utilized to quantify the 

impact of expanding irrigated agriculture on the regional water balance (Teixeira et al., 

2009b) and to improve the spatial representation of water balance components in 

hydrologic models (Droogers and Bastiaanssen, 2002; Immerzeel and Droogers, 2008; 

Schuurmans et al., 2003). Bastiaanssen et al. (2005) summarized the overall accuracy of 

SEBAL-based ET in terms of its application in more than 30 countries to a variety of 

climates and ecosystems at different spatial scales. They asserted that for a range of soil 

wetness and plant community conditions, typical accuracy at the field scale was 85% for 1 

day and it increased to 95% on a seasonal or annual basis (Bastiaanssen et al., 2010).  

SEBAL is based on a set of formulas involved in each component of the energy 
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balance equation. How different variables/parameters in these equations interact with 

each other and vary with the domain scale would largely determine the mechanism of 

error propagation and the magnitude of error in the resulting surface flux estimates. The 

domain scale is defined here as the size of satellite images being used/modeling domain 

being considered. The domain dependence is referred to as the dependence of the 

magnitude and distribution of retrievals from a model on the domain scale. 

SEBAL assumes the difference between the aerodynamic temperature and the air 

temperature to be linearly proportional to remotely sensed LST. Linear coefficients a and 

b (a0 and b0 in Chapter III) should be derived from two extreme pixels selected by the 

operator from images. The selection procedure is, however, influenced somewhat by 

subjectivity (Gao et al., 2008; Timmermans et al., 2007; Winsemius et al., 2008). The 

output of SEBAL would depend on domain scales in that the two extreme pixels would be 

identified at different locations with disparate characteristic variables (e.g., Ts,hot and 

Ts,cold) on varying domain scales. Varying spatial coverage and quality of satellite images 

available and different considerations of the domain of interest would result in different 

extremes. Some studies have reported that it is difficult to properly select pixels 

representing extreme hydrologic conditions; improper selection may cause large 

uncertainties in the resulting surface flux estimates (Bastiaanssen et al., 2010; Singh et al., 

2008; Timmermans et al., 2007). However, the uncertainty arising from the selection 

procedure has not been systematically quantified.  

On the other hand, satellite-based ET algorithms are typically developed and tested at 

the resolution scale of a certain sensor based on the assumption of homogeneity within the 
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pixel resolution. Here the resolution scale is defined as the spatial resolution of satellite 

images being used. Similarly, the resolution dependence is referred to as the dependence 

of the magnitude and distribution of retrievals from a model on the resolution scale. 

There is a tendency to directly apply the algorithms developed at a finer scale to a coarser 

scale (Gebremichael et al., 2010). For instance, SEBAL was first developed and tested 

on the resolution scale of Landsat TM images. However, it was asserted that the model 

can handle thermal infrared images at resolutions between a few meters to a few 

kilometers (Bastiaanssen, 1995; Bastiaanssen et al., 1998a) being applied to a variety of 

satellite platforms, e.g., ASTER (Gebremichael et al., 2010), NOAA-AVHRR 

(Bastiaanssen et al., 2002; Bastiaanssen and Chandrapala, 2003), and MODIS 

(Compaore et al., 2008; Kongo and Jewitt, 2006). A noteworthy concern associated with 

the resolution dependence is: Are the resulting estimates from coarse resolution data 

combined with the algorithm developed at a fine-resolution scale reliable? Are there 

differences in the magnitude and distribution between those estimates?  

It is noted that the resolution dependence of a model is primarily a consequence of 

the resolution of inputs; uncertainty in the outputs are propagated in a large part by the 

resolution of the input rather than the model physics. However, uncertainties arising 

from the resolution dependence in SEBAL might also result in the alteration of the 

model physics by changing coefficients a and b. This means that the resolution 

dependence of SEBAL would be compounded by its domain dependence. 

There have been some studies on the resolution dependence of ET retrievals from 

satellite-based models (e.g., TSEB and SEBS) across a variety of satellite platforms (e.g., 
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Landsat TM/ETM+, ASTER, and MODIS) (Brunner et al., 2008; Kustas et al., 2004; Li 

et al., 2008a; McCabe and Wood, 2006; Su et al., 2007). These studies provide insights 

into variations in ET retrievals at varying resolutions. They are greatly helpful in 

building an understanding of heterogeneity in coarse resolution image-based retrievals. 

However, a few published studies have addressed the domain and resolution 

dependencies of SEBAL, which have not restrained the misuse of this model in 

operational ET estimation.  

Allen et al. (2007) developed a satellite-based image-processing model for mapping 

ET, METRIC, in which the key component for computing H inherits substantially from 

SEBAL. Sensitivity analysis can identify the most sensitive variables/parameters for 

quantifying model uncertainty, and consequently provide valuable insight into the degree 

of effort that should be made to constrain errors of a model. If the sensitive variables of a 

model are domain and/or resolution dependent, variations in the model outputs on a 

variety of scales can be quantified. The sensible heat flux (H) appears to be the most 

critical component in the energy balance-based approach in terms of the proportion of H in 

the energy balance and the complexity of parameterization. However, the sensitivity of H 

estimates from SEBAL to the model input has not yet been fully examined.  

Wang et al. (2009) performed a sensitivity analysis of SEBAL on full, half, and 

sparse cover conditions. We suggest that the application of SEBAL does not depend on 

cover conditions and land use types; the three cover conditions, as a matter of fact, only 

provide three initial value conditions for running the model. A more comprehensive 

sensitivity analysis of SEBAL can therefore be achieved by varying inputs under a 
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broader range of initial value conditions. Marx et al. (2008) performed an uncertainty 

analysis of SEBAL-based H estimates using the Gaussian error propagation, indicating 

that the computed total relative uncertainty in H was 15% for the Tamale site and 20% for 

the Ejura site (both in the central part of West Africa). Nevertheless, they did not quantify 

the effect of extreme pixels in SEBAL, which would not allow a thorough understanding 

of the sensitivity of SEBAL.  

The critical issues mentioned above have significantly hindered a better 

understanding of the behavior of SEBAL and its proper application. If the model 

sensitivity and domain and resolution dependencies were not fully understood, the user 

would not be able to achieve the expected accuracy of model output by properly 

restraining the sources of errors either from input or the model physics. 

In this chapter, a detailed sensitivity analysis on the H algorithm of SEBAL was first 

performed, on the basis of which the domain and resolution dependencies of SEBAL were 

investigated by applying it to the Baiyangdian watershed and its sub-watersheds in North 

China, and to Landsat TM and MODIS imageries. Through a theoretical investigation into 

the model physics, it is expected that SEBAL would be better understood and more 

properly applied to hydrologic modeling and water resources management. If the output 

of SEBAL does change with domain and/or resolution scales, the model output derived at 

the scale where the performance is poor should be used with caution, or scale-independent 

models can be considered. If it does not change with scale, the model can be applied in 

more circumstances. Section 5.2 presents remotely sensed and meteorological data used 

and a description of the study watersheds. Section 5.3 provides sensitivity analysis of the 
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H algorithm of SEBAL. Section 5.4 discusses problems and procedures for selection of 

extreme pixels in SEBAL. Discussion on the domain dependence and resolution 

dependence of SEBAL are presented in Sections 5.5 and 5.6, respectively, followed by 

concluding remarks of this chapter in Section 5.7.  

 

5.2. Study site, data and variable derivation 

5.2.1. Study site 

The Baiyangdian watershed is described in Section 2.2.1 (hereafter watershed I). 

The Zhulong River watershed (hereafter watershed II, Fig. 5.1) with the outlet at the 

Beiguocun hydrologic station was delineated from watershed I, covering an area of 

around 8550 km2. Elevation ranges from roughly 28.0 m to 2784.3 m, with a mean value 

of 478.9 m. There are three weather stations within watershed II, approximately 

distributed in the upper, middle, and lower reaches of the watershed (Fig. 5.1). The mean 

annual precipitation of around 608.7 mm falls in watershed II, showing a generally 

decreasing trend from the upper to the lower reaches. The Sha River watershed (hereafter 

watershed III) with the outlet located at the Wangkuai Reservoir is located in the upper 

reaches of watershed II, covering an area of 3770 km2 (Fig. 5.1). The Fuping hydrologic 

station is located in the middle reaches of watershed III. Elevation of watershed III ranges 

between 180.0-2784.3 m, with a mean annual precipitation of 676.9 mm being observed at 

the Fuping hydrologic station. There is a weather station located in Fuping, providing 

routine meteorological data. 

 



 

 

Figure 5.1 The Baiyangdian watershed (watershed I) with its sub-watersheds, the Zhulong River watershed (watershed II) and 
the Sha River watershed (watershed III) and relevant facilities, North China. 
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5.2.2. Data 

Meteorological data and MODIS data products are described in sections 2.2.2 and 

3.4.2. For investigating the resolution dependence of SEBAL, a scene of Landsat TM 

imagery (path/row 124/33) acquired at 10:54 a.m. (local time) on May 19, 2007 was used, 

with a solar azimuth angle of 130.94° and a solar elevation angle of 63.64°. A set of 

MODIS data products within the spatial coverage of the Landsat TM imagery were also 

obtained. One swath of MOD11_L2 covering about 90% of watershed I was obtained at 

10:25 a.m. on May 19, 2007, and the other swath of MOD11_L2 covering about 10% of 

watershed I was obtained at 12:05 a.m. (local time). Note that the Landsat imagery was 

almost cloud-free except for minor contamination by cirrus clouds; there was about 10% 

cloud cover contamination for the MODIS LST products. Effects of differences in the 

time of image acquisition between Landsat TM and Terra-MODIS on surface flux 

retrievals were assumed to be negligible. 

 

5.2.3. Variable derivation 

For Landsat TM imagery, much more preprocessing work (e.g., geometric and 

radiometric corrections) should be done before retrieving surface variables and then 

simulating surface fluxes by SEBAL. Surface albedo was derived from the visible and 

near-infrared bands (band 1-5, 7). The at-sensor radiance is first converted into at-sensor 

bidirectional reflectance (Chander et al., 2009), on the basis of which the narrowband 

at-surface reflectance and broadband surface albedo can be derived using calibrated 

atmospheric transmittance and path reflectance formulas at the time of satellite overpass 
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(Tasumi et al., 2008). In Tasumi et al. (2008)’s algorithms, vapor pressure, atmospheric 

pressure, and the turbidity coefficient at satellite image time are required to estimate 

atmospheric transmittance and path reflectance. In this study, vapor pressure and 

atmospheric pressure were obtained from meteorological stations within watershed I. A 

value of 1.0 for the turbidity coefficient indicates clean air and a value of 0.5 indicates 

extreme turbidity. We took it as 1 in this study based on observed meteorological 

conditions on that day.  

The brightness temperature was retrieved from band 6 of Landsat TM imagery 

(Chander et al., 2009), which was further processed by atmospheric and emissivity 

corrections to be converted into LST using the algorithm proposed by Jimenez-Munoz and 

Sobrino (2003). In the algorithm, precipitable water content and thermal infrared band 

emissivity were required for LST retrieval. In the absence of radiosounding data depicting 

the atmospheric profile, the precipitable water content can be obtained from the 

MOD05_L2 product. The precipitable water content can be determined with errors 

typically ranging between 5-10% under no-hazy conditions (visibilities less than 10 km 

corresponding to hazy conditions) (Gao and Kaufman, 2003). The visibility over the 

entire watershed I on May 19, 2007, was observed to be approximately 20 km, which 

could be indicative of high confidence in the accuracy of the MOD05_L2 precipitable 

water content product. The thermal infrared band emissivity can be estimated using the 

NDVI thresholds method (Sobrino and Raissouni, 2000).  
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5.3. Sensitivity analysis of H 

Recall that SEBAL estimates H in two steps. The first step is to derive linear 

regression coefficients a and b from the characteristic variables of extreme pixels, i.e., 

Rn,hot, Ghot, Ts,hot, Ts,cold, zom,hot, and ρhot. In this chapter, such variables are defined as local 

variables hereafter for the convenience of discussion in the following sections. The second 

step is to compute H for the remaining pixels except for the extreme pixels in an image in 

terms of their respective characteristic variables, i.e., Ts, zom, ρ, and the derived a and b 

from the first step. The characteristic variables of the remaining pixels are termed global 

variables hereafter. It is noted that u200 is involved in both the first step to derive a and b 

and in the second step to derive u* for other pixels. 

There were 28 sets of reference values selected from 28 cloud-free days in year 2007 

spanning a broad range of atmospheric, soil moisture, and land cover conditions. These 

reference values provided 28 sets of initial value conditions for initialization of the H 

algorithm of SEBAL. The model sensitivity was performed by varying each 

variable/parameter under a given set of reference values at a step of 5% (perturbation) 

with the upper and lower limits of ±50% (a 0.5 K perturbation and the upper and lower 

limits of ±5 K for LST given variations as large as ±50% for LST would not occur in 

reality). Variations in the resulting H estimates due to the variations in inputs were then 

evaluated. This is a general way to perform sensitivity analysis of remote sensing-based 

ET models (Sanchez et al., 2008; Timmermans et al., 2007). 

It is noted that variations in the resulting H estimates are a function of both the initial 

value condition (reference values) and the perturbation of each variable/parameter. Each 
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perturbation can be taken as an integrated effect of uncertainties in model input under 

certain soil moisture and meteorological conditions. As indicated in Section 3.3.1, H can 

be obtained in an iterative manner. The iterative process was terminated as the absolute 

value of the difference between the last two estimates of a, b, and H over the estimates 

next to the last was less than 1%. It is apparent that the number of iterations is not 

necessarily equal to five as indicated by Bastiaanssen (2000), relying on the specified 

termination condition for the iterative process. 

 

5.3.1. Sensitivity to local variables 

In general, all local variables, except Rn,hot, associated with the characteristics of hot 

and cold pixels are negatively correlated with the H estimates. Coefficient a has a 

positive value and coefficient b has a negative one. It is critically important to note that 

the H estimates exhibit the highest sensitivity to Ts,hot and Ts,cold. Fig. 5.2 graphically 

illustrates the maximum, minimum, and mean variations in the averaged H estimates of 

the entire scene for the 28 sets of reference values at each perturbation of Ts,hot and Ts,cold, 

respectively. Results indicate that a 2 K increase in Ts,hot is likely to result in a 9.3% 

increase but a 9.1% decrease in a and b, respectively, and an average of 11.8 % decrease in 

H. Likewise, a 2 K increase in Ts,cold can cause an 11.7% increase and a 12.5% decrease in 

a and b, respectively, and an average of around 14.6% decrease in H estimates (also see 

Table 5.1). Furthermore, with increasing perturbation in Ts,hot, the first-order derivative of 

the curve between the perturbation in Ts,hot and the variation in H estimates tends to 

decrease. By contrast, Ts,cold exhibits an opposite trend, with increasing perturbation in 
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Ts,cold corresponding to an increase in the first-order derivative.  

 

Table 5.1 Sensitivity of SEBAL to all local and global variables for 28 sets of reference 
values for the Baiyangdian watershed in 2007. Variations of the variables and H 
estimates are in percentage and variations of land surface temperatures are in K. Min, 
Max, and Mean represent the minimum, maximum, and mean variations in H estimates, 
respectively 
 

   Variations 
% (K) 

Variable 

-50 
(-5) 

-40 
(-4) 

-30 
(-3) 

-20 
(-2) 

-10 
(-1) 

10 
(1) 

20 
(2) 

30 
(3) 

40 
(4) 

50 
(5) 

Min 32.1 24.2 17.2 10.9 5.2 -9.6 -17.6 -24.4 -30.2 -35.3
Max 96.1 66.2 43.4 25.7 11.5 -4.7 -9.0 -13.0 -16.6 -20.0Ts,hot 
Mean 49.2 36.0 24.8 15.3 7.1 -6.3 -11.8 -16.8 -21.3 -25.3
Min 14.9 12.3 9.5 6.6 3.4 -12.4 -26.1 -41.3 -57.9 -76.0
Max 47.3 39.5 30.9 21.5 11.3 -3.6 -7.6 -11.8 -16.4 -21.4Ts,cold 
Mean 27.3 22.7 17.6 12.2 6.4 -7.0 -14.6 -22.9 -32.1 -42.2
Min -72.2 -57.5 -42.9 -28.5 -14.2 11.7 23.4 35.0 46.5 57.9
Max -60.7 -48.2 -35.9 -23.8 -11.8 14.1 28.2 42.2 56.2 70.2Rn,hot 

Mean -67.1 -53.1 -39.5 -26.2 -13.0 12.9 25.6 38.2 50.7 63.2
Min 12.4 9.9 7.4 5.0 2.5 -4.5 -9.1 -13.6 -18.2 -22.8
Max 22.6 18.1 13.6 9.0 4.5 -2.5 -5.0 -7.5 -10.0 -12.5Ghot 

Mean 18.1 14.5 10.9 7.3 3.6 -3.6 -7.3 -11.0 -14.7 -18.4
Min 84.0 56.7 36.8 21.7 9.7 -8.8 -16.2 -22.4 -27.8 -32.4
Max 95.6 63.9 41.2 24.1 10.7 -8.0 -14.8 -20.6 -25.6 -30.0ρhot 
Mean 90.0 60.5 39.2 23.0 10.3 -8.5 -15.6 -21.6 -26.8 -31.4
Min -1.8 -1.2 -0.8 -0.5 -0.2 -0.7 -1.4 -2.0 -2.6 -3.2 
Max 4.7 3.5 2.5 1.6 0.8 0.2 0.4 0.5 0.6 0.7 

zom,hot 
(zoh.hot 
=0.1) Mean 1.7 1.3 1.0 0.6 0.3 -0.3 -0.6 -0.9 -1.2 -1.4 

Min 18.1 13.1 9.1 5.6 2.6 -4.1 -7.7 -10.9 -13.8 -16.4
Max 33.4 23.9 16.3 10.0 4.6 -2.3 -4.5 -6.4 -8.1 -9.8 

zom,hot 
(zoh,hot

= 
0.1zom,hot) Mean 25.1 18.1 12.4 7.7 3.6 -3.1 -6.0 -8.5 -10.8 -12.9

Min -84.7 -70.8 -55.7 -38.8 -20.2 9.2 18.7 28.3 38.1 48.1
Max -43.1 -34.9 -26.5 -17.9 -9.1 21.8 45.1 69.8 96.0 123.5Ts 

Mean -59.8 -49.1 -37.7 -25.7 -13.1 13.6 27.7 42.3 57.4 72.8
Min -6.9 -5.2 -3.7 -2.4 -1.1 0.2 0.4 0.7 0.9 1.1 
Max -1.0 -0.8 -0.6 -0.4 -0.2 1.1 2.1 3.0 3.9 4.8 

zom 
(zoh=0.

1) Mean -4.5 -3.4 -2.4 -1.6 -0.8 0.7 1.4 2.0 2.7 3.2 
Min -26.2 -20.4 -14.9 -9.7 -4.8 2.6 5.0 7.4 9.6 11.8
Max -16.2 -12.4 -8.9 -5.7 -2.8 4.6 9.1 13.4 17.7 21.8

zom 
(zoh= 

0.1zom) Mean -21.1 -16.2 -11.8 -7.6 -3.7 3.5 6.9 10.2 13.4 16.4
Min -21.7 -16.7 -12.1 -7.7 -3.7 0.9 1.8 2.5 3.2 3.8 
Max -5.7 -4.5 -3.3 -2.1 -1.0 3.5 6.8 9.9 12.8 15.5u200 

Mean -14.0 -10.6 -7.5 -4.8 -2.3 2.0 3.9 5.5 7.0 8.4 
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Figure 5.2 Sensitivity analysis of a, b, and H estimates to Ts,hot and Ts,cold for 28 initial 
value conditions, with the maximum, minimum, and mean variations for the 28 sets of 
reference values at each perturbation of Ts,hot and Ts,cold (0.5 K with the limits of ±5K). 
High-low lines on each plot represent the maximum and minimum variations. Dashed 
lines represent the mean variation. 
 

Rn,hot is closely related to the determination of H in SEBAL, which has not received 

much attention in previous studies. Fig. 5.3 illustrates the maximum, minimum, and 

mean variations in the averaged H estimates of the entire scene for the 28 sets of 
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reference values at each perturbation of Rn,hot and Gn,hot, respectively. It is found that a 

10% increase in Rn,hot can lead to a 9.7% increase and a 9.7% decrease in a and b, 

respectively, and an average of 12.9% increase in H. As such, the energy availability 

(Rn,hot-Ghot) for the hot extreme contributes largely to the resulting H estimates following 

extreme temperatures. This further underlines the relevance of the selection of extreme 

pixels in SEBAL. In particular, the hot pixel is of more importance than the cold pixel. 

 

5.3.2. Sensitivity to global variables 

Sensitivity analysis of the resulting H estimates to the global variables given each 

pair of coefficients a and b derived for each set of reference values was performed. 

Results (Table 5.1) indicate that the model is most sensitive to Ts, with a 2 K increase in 

Ts yielding an average of 27.7% increase in the H estimates. It is apparent that ρ is 

linearly correlated with the resulting H estimates with a correlation coefficient of 1. 

Fortunately, this physical quantity can be readily estimated without causing large 

uncertainty. 
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Figure 5.3 Sensitivity analysis of a, b, and H estimates to Rn,hot and Ghot for 28 initial 
value conditions, with the maximum, minimum, and mean variations for the 28 sets of 
reference values at each perturbation of Rn,hot and Ghot (5% with the limits of ±50%). 
High-low lines on each plot represent the maximum and minimum variations. Dashed 
lines represent the mean variation. 
 

5.3.3. Sensitivity to zom and zoh 

It is noted that there are two versions of the treatment of zom and zoh (z1 in SEBAL). 

First, zoh is taken to be a fixed value of 0.1 m. Second, zoh is taken to be 0.1zom 
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corresponding to a kB-1 parameter of 2.3. Sensitivity analysis of the H algorithm to zom 

under the two conditions was performed. It is found that the resulting H estimate appears 

to be insensitive to zom,hot under both conditions (Fig. 5.4 and Table 5.1). Under the first 

condition, a 10% increase in zom,hot 
 can only lead to a 0.2% decrease but a 0.2% increase 

in a and b, respectively, and an average of 0.3% decrease in H estimates. Under the second 

condition, a 10% increase in zom,hot can result in a 2.6% decrease but a 2.6% increase in a 

and b, respectively, and an average of 3.1% decrease in H estimates. Taking a fixed value 

of zoh=0.1 m has shown a small effect on the resulting H estimates compared with taking 

a kB-1 of 2.3. 

 Note that the hot pixel often corresponds to a bare soil surface. If accurate 

calibration or measurements are not available, a typical value of 0.005 m for zom,hot can be 

used (Allen et al., 2007). This obviates the specification of zom,hot for determining a and b. 

Regarding the global variable zom for the remaining pixels in an image, results show 

that under the condition of zoh=0.1 m, a 10% increase in zom can only result in an average 

of 0.7% decrease in the H estimate. Similarly, under the condition of kB-1=2.3, a 10% 

increase in zom only introduces an average of 3.7% decrease in the H estimate.  
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Figure 5.4 Sensitivity analysis of a, b, and H estimates to zom,hot under the conditions of 
zoh,hot=0.1 m and zoh,hot=0.1zom,hot for 28 initial value conditions, respectively, with 
maximum, minimum, and mean variations for the 28 sets of reference values at each 
perturbation of zom,hot (5% with the limits of ±50%). High-low lines on each plot 
represent the maximum and minimum variations. Dashed lines represent the mean 
variation. 
 
 

In summary, the effects of zom,hot and zom have been substantially reduced in SEBAL 

under both conditions of zoh,hot or zoh =0.1 m and kB-1=2.3. The H estimates are not 
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strongly dependent on zom,hot and zom, which can be specified as 0.005 m in terms of the 

characteristic of the bare surface or appropriately estimated by remotely sensed 

vegetation index or LAI. However, the two different treatments do result in different H 

estimates, suggesting an MAPD of 36.0%. It is noted that more studies on SEBAL have 

used zoh =0.1 m (Allen et al., 2007; Bastiaanssen et al., 2002; Bastiaanssen et al., 2005), 

rather than introducing the kB-1 of 2.3 (Bastiaanssen, 2000; Kalma et al., 2008; 

Timmermans et al., 2007). Investigation of other local and global variables here is based 

on zoh,hot and zoh=0.1 m. 

 

5.3.4. Sensitivity to u200 

It is noted that u200 is defined here both as a local variable determining rah,hot and a 

global variable determining rah for the remaining pixels in that a constant value of u200 

over the entire scene is used in SEBAL. A 10% increase in u200 can only result in a 1.6% 

decrease but a 1.6% increase in a and b, respectively, and a 2.0% decrease in H estimates 

(see Fig. 5.5). In SEBAL, u200 is inferred using a logarithmical wind profile function 

combined with observations of wind velocity at a weather station within or near a study 

site. Sensitivity analysis indicates that u200 plays an immaterial role in the SEBAL 

algorithm. 
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Figure 5.5 Sensitivity analysis of a, b, and H estimates to u200 for 28 initial value 
conditions, with maximum, minimum, and mean variations for the 28 sets of reference 
values at each perturbation (5% with the limits of ±50%). High-low lines on each plot 
represent the maximum and minimum variations. Dashed lines represent the mean 
variation. 
 

It is noted that for all of these local variables, only Ts,hot, Rn,hot, and Ghot show 

certain dependence. An increase in Ts,hot would result in a decrease in Rn,hot due to an 

increase in outgoing longwave radiation and result in an increase in Ghot, both of which 

contribute to decreases in H as discussed in Section 5.3.1. However, fixing Rn,hot and Ghot 

to perform the sensitivity of H to Ts,hot also shows that an increase in Ts,hot could result in 

a decrease in H. This means that the sensitivity of SEBAL to Ts,hot performed here tends 

to be conservative given certain dependence of Ts,hot, Rn,hot, and Ghot. In reality, the 

SEBAL algorithm would show a larger sensitivity to Ts,hot. 

 

5.4. Selection of extreme pixels 

In terms of the sensitivity analysis performed in Section 5.3, selection of two 
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extremes, particularly the hot pixel, plays a vital role in determining regression 

coefficients a and b and subsequently shows a great impact on the H estimates. 

Investigating the domain scale behavior of SEBAL requires a thorough investigation into 

change in the distribution of extreme pixels due to varying domains. 

 

5.4.1. Problems in selection of extremes 

There seems to be no consensus on how to select the hot pixel (Compaore et al., 2008; 

Marx et al., 2008; Timmermans et al., 2007) and the cold pixel; or it is not clear how the 

two extremes are identified in the calculation of the a and b coefficients and then H. 

(French et al., 2005b; Hong et al., 2009; Kongo and Jewitt, 2006; Ramos et al., 2009; 

Teixeira et al., 2009a). A few published studies have addressed procedures for 

identifying the extreme pixels. Most studies related to SEBAL only state the hypothesis 

of extreme pixels and/or provide spatial representation of the resulting fluxes that is highly 

correlated with the distribution of LST. 

In addition to the difficulty of appropriately determining extreme pixels, it is 

suggested that there exist various uncertainties in the distribution of extreme pixels 

resulting from the modeling domains being considered. It is expected that the location and 

characteristic variables of extreme pixels are likely to vary with different domains. This 

problem would be frequently encountered due to a variety of cases below.  

First, pixels satisfying the assumptions in SEBAL would largely rely on the quality of 

remotely sensed images. Good quality images for cloud-free days are not always available 

for operational ET estimation. Contamination of clouds would make portions of an image 



178 

blurred or obstructed, resulting in a reduction in the domain of interest and thus the 

shrinking of the range of LST. It seems that selection of the cold pixel tends to be largely 

impacted by clouds in that a cloud pixel might be mistakenly taken as the cold pixel (Gao 

et al., 2008; Marx et al., 2008).   

Second, pixels satisfying the assumptions in SEBAL would be dependent on surface 

hydrologic contrast (dry and wet land surfaced types) that may vary substantially with the 

modeling domain (French et al., 2005b). If a study watershed is primarily characterized by 

crops or vegetated areas, the possibility of the presence of the hot pixel with negligible ET 

in an image would be largely reduced. Likewise, for a study site where bare soil surfaces 

or impervious areas prevail, the likelihood that the cold pixel with zero H could be 

successfully identified would be decreased.  

Third, even though images for absolute clear skies are available, the resulting surface 

flux estimates would vary with the actual size of images being used. One would derive a 

subset of an image specifically for a study site, take the entire scene of the image, or 

even merge multiple scenes of images. This means that varying sizes of images would be 

used because of emplacement of the study watershed/region in different hierarchical 

river basin systems. In this case, the locations and the corresponding physical and 

geomorphological features of extremes would probably be different.  
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Fourth, the resolution of satellite images would be another major factor affecting the 

distribution of extreme pixels. High-spatial resolution images (e.g., Landsat TM/ETM+ 

and ASTER) can provide more details of the thermal properties of the surface but are 

limited in longer revisit time and coverage. High-temporal resolution images (e.g., GOES 

and MODIS) have adequate coverage but generally provide less detailed information of 

LST and consequently are less useful for identifying the extreme pixels than images with 

high spatial resolution. There is, therefore, a tradeoff between the coverage of an area of 

interest and the spatial resolution of satellite images being used. 

 

5.4.2. Selection of extremes for varying domains 

We selected extreme pixels using scatterplots of LST and NDVI maps (Fig. 5.6), a 

land use map for watershed I (Fig. 2.1b), and geomorphologic features of certain land 

covers obtained from field investigations. Criteria for selection of extremes are described 

in Section 3.4.3. 
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Figure 5.6 Selection of extreme pixels for watersheds I, II, and III, respectively, on May 
6, 14, 25, and 29, 2007 based on scatterplots of NDVI and LST. Black dots represent 
scatterplots for watershed I, red dots for watershed II, and blue dots for watershed III. 
Points of the intersection of black, red, and blue lines show the identified extreme pixels 
for watersheds I, II, and III, respectively. 
 

5.5. Domain scale effect 

5.5.1. Shift of extreme pixels within watersheds  

Extreme pixels for watersheds I, II, and III on May 6, 14, 25, and 29 in 2007, 

respectively, were selected to investigate the domain dependence of SEBAL. The four 
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days had highest quality MODIS data products in the study year. Results clearly show that 

both the hot and cold pixels vary with the domain of the study watersheds (see Fig. 5.7 

and Table 5.2). For instance, the hot pixel for watershed I on May 6, 2007, was identified 

on a dry surface on the boundary of watershed II, whereas it moved to another dry surface 

within watershed II when just accounting for watershed II. For watershed III, the hot pixel 

moved to a dry surface near the outlet of the watershed. Similarly, the cold pixels for the 

three watersheds differed from each other, all being at wet surfaces in the irrigation 

districts or in densely forested land surfaces. The largest difference in LST of the hot 

pixels on May 6, 2007, was up to 3.5 K for watershed I and watershed III, whereas the 

differences in LST of the cold pixels were small (see columns 5 and 6 in Table 5.2). With 

varying locations, the characteristic variables for extreme pixels varied to some extent. 

For instance, the largest difference in Rn,hot between watersheds I and III on May 14, 2007, 

was as large as 72.6 W m-2 (see column 3 in Table 5.2). It is apparent that different 

locations of extremes would probably show different characteristic variables, thereby 

resulting in different magnitudes of coefficients a and b and then different H estimates (see 

Table 5.2).  
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Figure 5.7 Shift of extreme pixels within watersheds I (1), II (2), and III (3) on 6, 14, 25, 
and 29 May 2007. Numbers along the symbols represent extreme (s) for each watershed 
(s). Shift of extreme pixels within watersheds for the same day is represented with the 
same line style.



 

 

Table 5.2 Characteristic variables of extreme pixels for watersheds I, II, and III on May 6, 14, 25, and 29, 2007 for 
investigating the domain dependence of SEBAL  
 

Date Watershed Rn,hot 
(W m-2) 

Ghot 
(W m-2)

Ts,hot 
(K) 

Ts,cold 
(K) 

ρhot   
(kg m-3)

u200 
(m s-1)

zom,hot 
(m) 

a 
(-) 

b 
(K) 

Number 
of 

iterations

Averaged 
H (W 
m-2) 

σ of H 
(W m-2)

Watershed 
I 463.4 134.3 322.2 301.4 1.178 3.0 0.015 0.2431 -73.2620 15 115.3 65.7 

Watershed 
II 468.1 130.2 322.1 301.6 1.179 2.5 0.022 0.2516 -75.8957 18 101.0 74.2 

 
May 

6 
 Watershed 

III 488.0 125.1 318.7 301.5 1.178 4.4 0.037 0.2879 -86.8066 14 175.1 83.5 

Watershed 
I 519.5 150.5 321.1 295.8 1.061 3.5 0.015 0.2297 -67.9535 15 169.8 70.6 

Watershed 
II 577.0 167.2 318.7 295.8 1.148 3.8 0.015 0.2557 -75.6496 14 177.3 83.4 May 

14  
Watershed 

III 592.1 151.8 316.0 295.8 1.140 4.6 0.037 0.2868 -84.8302 14 210.8 91.3 

Watershed 
I 583.3 162.2 312.6 288.8 1.159 4.9 0.022 0.2336 -67.4519 13 223.1 74.8 

Watershed 
II 583.3 162.2 312.6 293.6 1.159 4.2 0.022 0.3027 -88.8771 14 190.7 75.3 May 

25 
Watershed 

III 643.9 165.1 310.5 293.6 1.137 5.8 0.037 0.3402 -99.8691 13 239.9 115.3 

Watershed 
I 542.3 163.8 318.3 294.6 1.069 2.9 0.007 0.2489 -73.3237 15 193.2 68.4 

Watershed 
II 576.3 136.4 316.4 295.3 1.162 2.0 0.052 0.2920 -86.2275 27 200.0 87.3 May 

29 
Watershed 

III 598.5 188.5 313.8 295.8 1.151 3.2 0.100 0.3131 -92.6269 20 222.6 94.9 

183 
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It is interesting to note that on the one hand, extreme pixels vary with the domain 

under consideration. On the other hand, extreme pixels generally center on particular 

patches or fields for a particular watershed. First, the hot pixel primarily concentrates on 

extreme dry surfaces around the middle reaches of watershed II, and dry surfaces in the 

Laiyuan basin located in northwestern watershed I. As for the cold pixel, it is generally 

identified in wet surfaces in irrigation districts or densely forested land surfaces (Fig. 5.7).   

To sum up, even though extreme pixels often show different locations over 

watersheds of varying domains, they tend to concentrate on certain surfaces for a given 

watershed. The more a priori knowledge on land cover, terrain, and geomorphology for a 

study site, the more uncertainties in the selection of the extreme pixels could be reduced. 

 

5.5.2. Comparison of H estimates between different domain sizes 

Comparison of H estimates between different domains was performed by the 

procedures: (1) estimates of H for watersheds I, II, and III were generated by SEBAL, 

respectively, based on coefficients a and b (see Table 5.2) derived from extreme pixels 

within the domain of each watershed; and (2) comparison of the H estimates for pixels 

within the domain of the smaller watershed between watersheds I and II, watersheds I and 

III, and watersheds II and III was performed (Fig. 5.8) 
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Figure 5.8 Comparison of H estimates between watersheds I, II, and III on May 6, 14, 25, 
and 29, 2007, MAPD, RMSD, slope, intercept, and R2. 
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Results indicate that estimates of H for watersheds II and III are quite different from 

that derived for watershed I as a whole. The largest difference in the estimates of H 

between watersheds I and II was observed on May 25, 2007, showing an MAPD and an 

RMSD of 24.29% and 52.52 W m-2, respectively. This corresponds to the largest 

difference in LST for the cold pixel up to 4.8 K (see column 6 in Table 5.2). Also, the 

largest difference in the estimates of H for watershed III with reference to watershed I was 

observed on May 14, 2007, yielding an MAPD and an RMSD of 51.68% and 75.74 W m-2, 

respectively. The largest difference in the estimates of H for watershed III relative to 

watershed II was shown on May 25, 2007, indicating an RMSD of 69.56 W m-2. Still, the 

largest MAPD of 53.91% for watershed III with reference to watershed II occurred on 

May 6, 2007. These discrepancies are considered significant in surface flux modeling. 

Only the estimates of H for watershed II on May 6, 2007, were almost consistent with that 

for watershed I, showing an MAPD and an RMSD of 8.88% and 5.28 W m-2, respectively. 

This is primarily due to the fairly similar extreme pixels selected for the two watersheds, 

showing the LST values for the hot pixels of 322.2 K and 322.1 K, and that for the cold 

pixels of 301.4 K and 301.6 K for watersheds I and II, respectively (see columns 5 and 6 

in Table 5.2).  

Overall, with decreasing domains of watersheds, the range of LST could decrease, 

corresponding to a potential decrease in the LST for the hot pixel and an increase in the 

LST for the cold pixel. According to the sensitivity analysis performed earlier in Section 

5.3, estimates of H by SEBAL for a smaller watershed could be larger than that from a 

larger watershed if the LST for the hot pixel decreases with decreasing domain and the 
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LST for the cold extreme remains substantially invariant. The magnitudes of the 

differences in the H estimates depend primarily upon the variations in Ts,hot, Ts,cold and 

Rn,hot for the selected extremes. Cloud cover, surface hydrologic contrast, and the size of 

modeling domain are the major factors affecting variations in Ts,hot, Ts,cold and Rn,hot. 

Therefore, the domain dependence of SEBAL may be confusing to the user when 

estimating surface fluxes.  

However, one would be more confident with SEBAL when applied to a relatively 

large watershed under absolute clear sky days and spatially homogeneous meteorological 

conditions (i.e., u200 and Ta). For such a case, the presence of surfaces with sufficiently 

large hydrologic contrast would greatly reduce uncertainty in the selection of the two 

extremes. However, if the study domain is too large, the assumption of a linear 

relationship between Ts and dT inherent in SEBAL would break down. Demarcating the 

boundary of a study site within which there exists “sufficiently large hydrologic 

contrast” really poses a big challenge for the appropriate use of SEBAL. 

 

5.6. Resolution scale effect     

5.6.1. Comparison of H estimates from Landsat TM and MODIS imageries 

    After obtaining Rn and G (G is Gs in Chapter III) using the SEBAL algorithm in 

conjunction with the retrieved surface albedo and LST from Landsat TM imagery, H can 

be simulated by first specifying two extreme pixels. It is particularly important to note that 

the extreme pixels would exhibit different spatial distributions due to different resolutions 

of the thermal infrared bands used to retrieve LST, i.e., 1 km for MODIS imagery and 120 



188 

m for Landsat TM image. The extremes identified from the Landsat TM image would 

show a wider range of LST due to a higher discriminating capability. 

Extreme pixels from Landsat TM and MODIS imageries based on scatterplots of 

NDVI and LST are shown in Fig. 5.9. It is clear that the Landsat-based scatterplot of 

NDVI and LST exhibits a wider LST range. It seems difficult to appropriately determine 

the cold pixel from the Landsat-based contextual map in that a group of pixels are 

influenced by cirrus cloud contamination, showing the temperatures of clouds rather than 

the land surface. This phenomenon frequently occurs, in particular for applications at 

regional or watershed scales. The difficulty in specifying the cold pixel appears to be 

serious in terms of the sensitivity analysis performed previously, which is considered a 

significant limitation when using Landsat images to retrieve ET by SEBAL. Even though 

some studies on SEBAL-based ET estimation using Landsat TM data indicate a 

prerequisite of the ‘absolute’ clear skies, it is extremely hard to determine if the seemingly 

cloud-free Landsat images are influenced by thin clouds. Here, the LST for the cold pixel 

for the Landsat platform was technically taken as the lowest LST value for an irrigation 

district in watershed I. 
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Figure 5.9 Extreme pixels from Landsat TM-based and MODIS-based contextual maps 
of NDVI and LST for watershed I on May 19, 2007, points of the intersection of red 
lines represent the locations of the hot pixels and blue lines represent the locations of the 
cold pixels.  
 

It is indicated that the effect of shifting from using finer resolution images to coarser 

ones can be analogous to the case applying SEBAL from a larger watershed to a 

sub-watershed because of the shrinking of the LST range. The LST for the hot pixel 

decreases from 328.7 K for the Landsat TM to 318.2 K for the MODIS images. 

Analogously, the LST for the cold pixel increases from 275.7 K for the Landsat TM to 

285.0 K for the MODIS images. Given these initial value conditions, regression 

coefficients a and b for the Landsat TM and MODIS data were derived as 0.1109 and 

-30.5898 K, and 0.1495 and -42.6148 K, respectively.  

Fig. 5.10 compares the Landsat- and MODIS-based H estimates. The Landsat-based 

H estimates at 120 m resolution were aggregated to 960 m resolution estimates using an 

8×8 moving window with a bilinear resampling method. The output up-scaling scheme 
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(i.e., aggregating outputs) adopted here would result in a better representation of the H 

estimates compared with the input up-scaling scheme (i.e., aggregating inputs first and 

then computing H) (Hong et al., 2009). Results indicate an RMSE as large as 52.3 W m-2 

and a bias of 26.5 W m-2. These discrepancies are considered greater than negligible in 

surface flux modeling. It is noted that the areal averaged H estimates for Landsat TM and 

MODIS data were found to be relatively close, being 201.9 W m-2 and 228.4 W m-2, 

respectively. The MODIS-based averaged H estimate shows a larger value and also a 

slightly larger standard deviation (61.73 W m-2 for MODIS-based H estimates and 58.15 

W m-2 for Landsat-based H estimates, Fig. 5.11).  

 

 

Figure 5.10 Comparison of H estimates from Landsat TM and MODIS images of 
watershed I on May 19, 2007. Landsat TM-based estimates of a 120 m resolution are 
aggregated to that of a 960 m resolution. 
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Figure 5.11 Frequency distributions and relevant cumulative distributions of H estimates 
from Landsat TM and MODIS images of watershed I on May 19 2007. A bin size is set 
to 5 W m-2. 
 

5.6.2. Discussion 

These findings are contrary to what McCabe and Wood (2006) have found. In their 

work, ASTER, Landsat, and MODIS data are used to simulate ET by SEBS, 

demonstrating that finer resolution images could capture more detailed ET across the 

entire study area. The difference between these findings is likely due to different 

mechanisms of ET estimation models used. Given that the MODIS-based flux estimates 

for the two studies both suffer resolution scale effects, SEBAL-based flux estimates are 

additionally impacted by the dependence of model parameters on image resolution. 

Contradictions even occur in studies on investigating the resolution scale effect of 

SEBAL. Hong et al. (2009) examined differences in SEBAL-based LE estimates using 

Landsat ETM+ and MODIS images, indicating that the LE estimates from Landsat ETM+ 

show a greater standard deviation and greater maximum and smaller minimum values of 
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the resulting estimates. Gebremichael et al. (2010) performed a similar study as Hong et al. 

(2009), implying that ET estimates of the MODIS-based resolution (1000 m) aggregated 

by ASTER data (90 m for the thermal infrared band) have a greater standard deviation 

compared to the original ASTER-based estimates. Gebremichael et al. (2010) and Hong 

et al. (2009) tended not to examine in detail the fundamental reasons for the differences in 

variations in the standard deviations of the resulting estimates from SEBAL, which are 

probably caused by the resolution dependence of SEBAL.  

Through our theoretical analysis and simulations, it can be concluded that the 

difference in the standard deviation of the resulting flux estimates from SEBAL using 

different satellite platforms results from the range and magnitude of LST of extreme 

pixels. The use of high resolution LST can result in a higher Ts,hot value and a lower 

Ts,cold value. If the absolute magnitude of the increase in Ts,hot exceeds that of the 

decrease in Ts,cold, it could lead to a smaller coefficient a compared with that from using 

coarse resolution LST retrievals, and consequently a somewhat smaller standard 

deviation and magnitudes of the H estimates. 

It should also be suggested that the magnitude of the pixel-based H estimates using 

coarse images might not be accurate; however, the areal averaged H estimates over the 

study area using fine and coarse images tend to be comparable. Even though the 

pixel-based flux estimates from SEBAL have large uncertainties due to the domain and 

resolution dependencies, information contained in the frequency domain of these 

estimates might be meaningful and requires further study. 
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5.7. Concluding remarks 

Numerous satellite-based algorithms have been developed to estimate ET over large 

heterogeneous areas. However, outputs of some of these algorithms may depend on the 

size of satellite images being used/the modeling domain being considered, which is 

referred to as the domain dependence. In addition, these algorithms are typically 

developed and validated at the spatial resolution of a certain sensor based on the 

assumption of homogeneity within a pixel. Their performance may also be dependent on 

the spatial resolution of satellite images being used, here defined as the resolution 

dependence. The domain and resolution dependencies are considered a significant 

obstacle to the accurate derivation of ET on large scales and an enhanced understanding 

of sub-pixel variations in ET retrievals using coarse satellite images. First, sensitivity 

analysis of SEBAL to the input is performed, indicating that the H estimate is most 

sensitive to the temperatures of hot and cold pixels and the available energy of the hot 

pixel. Second, the domain and resolution dependencies of SEBAL are investigated by 

applying SEBAL to varying modeling domains in the Baiyangdian watershed in North 

China, and to Landsat TM and MODIS sensors. The range of LST can decrease or 

increase to varying degrees due to cloud cover and variation in the domain of interest/the 

spatial coverage of satellite images. This uncertainty can lead to varying temperatures of 

extremes and therefore disparate H estimates. The largest MAPD and RMSD in the H 

estimates between different modeling domains could be as large as 53.91% and 75.74 W 

m-2, respectively, for all study days. In addition, the MODIS-based H estimates showed 

an RMSD of 52.3 W m-2 and a bias of 26.5 W m-2 relative to the Landsat TM-based 
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counterparts. Unlike other models, the standard deviation of H estimates from SEBAL 

using high spatial resolution images could be smaller than that using low spatial 

resolution images. Such differences are caused by the resolution dependence compounded 

by the domain dependence due to the inadequacies in the SEBAL physics. Retrievals of H 

and LE from SEBAL tend to vary with the size of the modeling domain and the satellite 

platform. The study presented in this chapter can provide a clearer picture of the 

performance of SEBAL under a range of circumstances the user often encounters, and 

help correctly interpret the model outputs. In addition, it can also serve as a basis for 

examining scale effects of other remote sensing-based approaches (e.g., TSEB and 

triangular or trapezoidal schemes) and provide meaningful implications for refining 

those scale-dependent models.
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CHAPTER VI 

A MODIFIED SURFACE ENERGY BALANCE ALGORITHM FOR LAND 

(M-SEBAL) BASED ON A TRAPEZOIDAL FRAMEWORK 

 

6.1. Introduction 

SEBAL has been developed and widely used to estimate ET at varying spatial and 

temporal scales over the past 15 years (Bastiaanssen et al., 1998a; Pelgrum and 

Bastiaanssen, 1996). However, the applicability and operability of SEBAL remain 

controversial in the operational ET estimation community due to its one-source 

parameterization scheme and selection of hot and cold extremes involved in the 

calculation of H. Many researchers and practitioners have explored the application of 

SEBAL to estimate ET for improving water use efficiency, water resources allocation 

and management, as well as efficacies of distributed hydrologic models (Bastiaanssen et 

al., 2005). However, the majority of these studies and applications appear to fall short of 

rigorous validation due in large part to the lack of expensive field instruments 

(Compaore et al., 2008; Courault et al., 2009; Karatas et al., 2009; Li and Zhao, 2010; 

Wu et al., 2010; Yao et al., 2010); or only compare the daily ET estimates based on the 

assumption of fairly invariant EF at the satellite overpass with daily ET measurements 

from lysimeters (Allen et al., 2007; Ramos et al., 2009), reference ET-crop coefficient 

based calculations (Ahmed et al., 2010; Bashir et al., 2009; Gao et al., 2008; Oberg and 

Melesse, 2006; Zwart et al., 2010), or from limited number of Bowen ratio or eddy 

covariance towers (Folhes et al., 2009; Wang et al., 2009; Zwart and Bastiaanssen, 2007); 
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or compare longer timescale ET estimates (e.g., monthly and seasonal ET estimates) 

with counterparts from water balance approaches (Bastiaanssen et al., 2002; Mohamed et 

al., 2004; Mohamed et al., 2006). 

We argue that as daily, monthly, or seasonal accumulated ET estimates are a 

function of SEBAL-based EF or crop coefficient at the satellite overpass and daily net 

radiation, errors involved in H and LE estimates at the satellite overpass could be 

cancelled out in the integrated ET estimates over a relatively longer timescale. In other 

words, even though the ET estimates from SEBAL show agreement with some 

integrated counterparts or measurements on a daily or a longer timescale, there is still a 

possibility that the most critical outputs of H and LE at the time of image acquisition 

involve a large uncertainty. Furthermore, the spatial distribution of LE may have been 

distorted due to the inadequacies of model physics. 

There are indeed some relatively rigorous studies addressing validation of SEBAL 

by comparing SEBAL-based estimates at the time of imaging with measurements of 

eddy covariance towers, Bowen ratio techniques, or large aperture scintillometers 

(Kleissl et al., 2009; Marx et al., 2008; Singh et al., 2008; Teixeira et al., 2009a). 

Nevertheless, these studies seem to be less than adequate in examining errors in the 

model outputs from the perspective of model physics, e.g., the highly consistent 

overestimation of H in Melesse and Nangia (2005) and Teixeira et al. (2009a), and the 

consistent underestimation of H in Kleissl et al. (2009), Marx et al. (2008), and Singh et 

al. (2008) are not well expounded, or they presumably attribute all errors and 

uncertainties to two extremes and the one-source parameterization scheme adopted by 
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SEBAL. 

Timmermans et al. (2007) performed an insightful comparison between SEBAL and 

TSEB using the Southern Great Plains ’97 and Monsoon ’90 data sets. Meticulous 

selection of end-members of Trad for one image acquisition date under 5 cases and a 

preliminary sensitivity analysis help with greater understanding of SEBAL. However, 

this study mistakenly takes kB-1=2.3 as part of SEBAL; in fact, SEBAL does not use the 

fixed kB-1 parameter, but rather takes zoh as 0.1 m. Therefore, Timmermans et al. (2007) 

appeared to exaggerate the effect of zoh in SEBAL, attributing in part the discrepancies 

of the model outputs to incorrect causes. French et al. (2005b) conducted a comparison 

between SEBAL and TSEB at the SMACEX site in central Iowa, U.S., for one image 

acquisition day (DOY 182) using one pair of extreme pixels for running SEBAL. They 

obtained significantly larger H estimates from SEBAL compared with that from TSEB 

and eddy covariance towers. We suggest that a more complete picture of the 

performance of SEBAL would be obtained by increasing the number of quasi hot and 

cold extremes and combinations thereof. In Chapter V, the sensitivity of SEBAL to its 

inputs and the domain and resolution dependencies inherent in the model physics were 

comprehensively investigated, indicating that increases in the temperatures of extremes 

will decrease the resulting H estimates, and vice versa. Increases in Rn,hot-Ghot will also 

increase the H estimates. 

It is critically important to note that almost all studies pertaining to SEBAL, 

particularly that of the model developers (Allen et al., 2007; Bastiaanssen et al., 2010), 

recognize the key role of extremes in the resulting estimates; large uncertainty in the 
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model outputs would be introduced by differing extremes identified by the user. The 

consensus on the difficulty of correctly selecting extremes, compounded by limited 

ground-based measurements of surface fluxes which are rarely available for most 

developing countries, seems to hinder further insights into the deficiencies of model 

physics and a substantial improvement in the critical selection procedures involved in 

the model.  

The objective of this chapter was to systematically explore the deficiencies in the 

formulation of SEBAL, and develop a new framework to replace the intractable step of 

selection of two extremes. The performance of the newly developed Modified Surface 

Energy Balance Algorithm for Land (M-SEBAL) will be compared with SEBAL at the 

SMACEX site with a dense flux tower network, which provides an excellent data set for 

validating the two models and comparing and contrasting their advantages and 

limitations. Section 6.2 addresses the deficiencies in SEBAL formulation and the 

formulation of M-SEBAL. Section 6.3 presents the results from SEBAL and M-SEBAL 

and comprehensively compares and contrasts the two models. Section 6.4 provides a 

summary of advantages and disadvantages of SEBAL and M-SEBAL, followed by 

concluding remarks in Section 6.5. 

 

6.2. Model formulation 

6.2.1. Trapezoidal framework of M-SEBAL 

Modifications to SEBAL and illustrations of the deficiencies in SEBAL will take 

advantage of the trapezoid framework illustrated in Chapter IV. For the triangle method 
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based on the contextual space of fc-Trad, EF is linearly correlated with Trad for each class i 

of fc: 

rad ,max rad

rad ,max rad ,min

EF i

i i

T T
T T

−
∝

−
                        (6.1) 

where Tradi,max and Tradi,min are the temperatures of extreme edges of the triangle space at 

the class i of fc. With increasing fc, Tradi,max will decrease, forming a slanting hot edge. 

Fig. 6.1 is a schematic of the scatterplot of remotely sensed fc and Trad. The 

scatterplot of fc and Trad constitutes essentially a quadrangle AB′CD, whose sides and 

vertices are the real physical limits of EF. In AB′CD, point A (fc=0, Trad=Ts,max) is the 

bare surface with the largest water stress, i.e., EF=0, point B′ (fc=0, Trad=Ts,min) is the 

bare surface without water stress, i.e., EF=1, point C (fc=1, Trad=Tc,min) is the fully 

vegetated surface without water stress, i.e., EF=1, and point D (fc=1, Trad=Tc,max) is the 

fully vegetated surface with the largest water stress, i.e., EF=0. Side AD is called the 

warm edge of the fc-Trad space, i.e., EF is zero for pixels on this edge for a full range of fc. 

Side B′C is referred to as the cold edge of the fc-Trad space, i.e., there is no water stress 

for pixels on this edge.  
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Figure 6.1 A schematic of the scatterplot of remotely sensed fc and Trad, colored circles 
represent pixels with varying fc and Trad. Quadrangle AB′CD represents real physical 
limits of the fc-Trad space. Point A represents the bare surface with the largest water stress 
(i.e., EF=0), point B′ represents the bare surface without water stress (i.e., EF=1), point 
C represents the fully vegetated surface without water stress (i.e., EF=1), and point D 
represents the fully vegetated surface with the largest stress (i.e., EF=0). Trapezoid 
ABCD represents the reasonably simplified framework of quadrangle AB′CD, in which 
point B represents the bare surface without water stress (EF=1). Side AD is the warm 
edge representing surfaces of EF=0 for a full range of fc, and side BC is the horizontal 
cold edge representing surfaces of EF=1 for a full range of fc. Red dashed lines (①-③) 
represent hot extremes, which could be selected, involved in SEBAL, corresponding to 
points E, A, and F. Blue dashed lines (④-⑥) represent cold extremes, which could be 
selected, involved in SEBAL, corresponding to points G, C, and H. 
 

Quadrangle AB′CD is also referred to as the theoretical envelope of the fc-Trad space, 

given certain meteorological conditions. As vertices of quadrangle AB′CD appear 

difficult to determine in some cases, quadrangle AB′CD can be simplified as a trapezoid 
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ABCD as shown in Chapter IV or triangle framework, with the aim to make a 

determination of EF and ET feasible without significantly compromising the accuracy in 

practice.  

It is important to note that the trapezoidal framework involved in M-SEBAL is the 

theoretical boundary condition, given certain meteorological conditions and surface 

property parameters. This is different from the determination of the triangle framework 

directly from the scatterplot of fc and Trad. The latter suffers somewhat from subjectivity 

and uncertainty of outliers of Trad retrievals.  

 

6.2.2. Rectangular framework of SEBAL 

SEBAL involves a critical step to visually identify a hot extreme and a cold extreme 

from images, and assumes linearity between Trad and dT throughout a scene. There are 

three possibilities that the hot extreme is selected: (1) point E (Fig. 6.1) whose Trad is 

larger than point A; (2) point A; and (3) point F whose Trad is lower than point A. 

Similarly, the cold extreme is likely to be identified as point G, C, and H, respectively, 

where the Trad of G is larger than Tc,min and the Trad of H is smaller than Tc,min. 

For any combination of the selected hot and cold pixels, the two extreme pixels, as 

a matter of fact, can be analogous to two horizontal extreme edges throughout a scene, 

i.e., a “rectangular” framework. This means that the two identified extremes do not vary 

with fc in SEBAL. All Trad values in an image will be compared with Trad,hot and Trad,cold 

to deduce their dT values. EF from SEBAL for a given class i of fc can be written as 
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where EFi is EF for a pixel at a given fc value or fc at class i, fc,i; ΔEi is the net energy (W 

m-2) for the pixel at fc,i; and rah,i is the aerodynamic resistance (s m-1) at fc,i. For 

unraveling the essential relationship between Trad and EFi in SEBAL, we simulated the 

variation in EFi with Trad for fc=0.2, 0.4, and 0.6, respectively. It is noted that for the 

same fc value or the same class of fc,i, variation in rah,i can be negligible because rah,i is a 

function zom and u200 in SEBAL; both play immaterial roles in determining H as 

illustrated in Sections 5.3.3 and 5.3.4. For the same fc,i, NDVI, hc, and consequently zom 

remain essentially invariant. ΔEi is determined in part by Trad in the calculation of Lu and 

G. However, the magnitudes of Lu and G are both relatively small compared with the 

shortwave radiation component.  

Fig. 6.2 shows that EFi from SEBAL is highly correlated with Trad, suggesting a 

quasi-linear relationship and EFi decreasing with increasing Trad. In addition, it is 

apparent that EFi is zero at hot extreme and 1 at cold extreme for each fc,i. This means 

that SEBAL is, in fact, of the substantially similar form of EFi as the triangle or 

trapezoid methods (Eq. 6.1). The only marked difference between SEBAL and the 

triangle framework lies in extreme edges they adopt which fundamentally determine the 

slope of the linear variation in EFi with Trad. Extremes in SEBAL are both horizontal 

edges; however, the triangle and trapezoid frameworks take advantage of the physically 

meaningful slanting edge shown in Fig. 6.1, which has been observed empirically and 

demonstrated theoretically by a multitude of studies (Carlson, 2007). 
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Figure 6.2 Variation in EF with Trad in SEBAL for fc=0.2, 0.4, and 0.6, respectively, 
given a set of coefficients a (=0.27) and b (=-80.35 K) derived from Trad,hot=316.3 K and 
Trad,cold=300.1 K and other characteristic variables, and typical values involved in ΔEi. 
 

6.2.3. Uncertainty in SEBAL 

SEBAL is significantly beset by the selection of extremes from images (Choi et al., 

2009; French et al., 2005b; Timmermans et al., 2007). As shown in Fig. 6.1, each 

selected extreme forms a limiting edge of the rectangular framework, with points E, A, F, 

G, C, and H corresponding to horizontal limiting edges of 1-6, respectively. It is 

important to state here that the rectangular framework intrinsic in SEBAL is far less than 

satisfactory in approximating the quadrangle AB′CD, which would be the key reason for 
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unrealistic spatial distributions of the H and LE estimates from SEBAL. 

Recall that with increases in Trad,hot and/or Trad,cold in SEBAL, the H estimates will 

decrease and then the LE estimates will increase. With decreases in Trad,hot and/or Trad,cold, 

the H estimates will increase and consequently the LE estimates will decrease. Let us 

first assume that the realistic cold edge, i.e., cold edge 5, can be correctly selected. In 

this case, if hot edge 1 is selected, it will result in a consistent overestimation of Trad for 

hot extreme throughout the space compared with the realistic warm edge, thereby 

resulting in underestimation of H and then overestimation of LE. Furthermore, 

discrepancies will be exacerbated with increasing fc. If hot edge 2 is selected, even 

though hot extreme A at fc=0 is in accordance with the realistic one, the hot edge is 

generally over the real physical warm edge, yet causing an underestimation of H and 

consequently an overestimation of LE. Particular attention needs to be paid to hot edge 3 

that if fc is less than the intersection of the realistic warm edge and hot edge 3, the 

rectangular framework tends to overestimate H and then underestimate LE; however, 

when exceeding the intersection, H will be underestimated as in the previous two cases.  

In a similar vein, if cold edge 6 and hot edge 1 or 2 are selected, the 

underestimation of H could be alleviated or even overestimation of H would occur due 

to the significantly downward shift of cold edge 6. If cold edge 4 and hot edge 1 or 2 are 

selected, the rectangular framework is overall moved upward, thereby resulting in 

underestimation of H and overestimation of ET. If cold edge 6 and hot edge 3 are 

identified, under the condition of fc being less than the intersection of hot edge 3 and the 

realistic warm edge, H will be overestimated; when fc is larger than the intersection, the 
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overestimation would be lessened due to hot edge 3 being over the realistic warm edge.  

The combination of hot edge 3 and cold edge 4 becomes more complicated, 

because the overestimation of H due to a lower hot extreme and underestimation of H 

due to a higher cold edge before the intersection of the realistic warm edge and hot edge 

3 appear to offset each other. But after exceeding the intersection, this case tends to 

underestimate H and consequently overestimate LE. Overestimation or underestimation 

of surface fluxes depends largely on the relative magnitudes of discrepancies of selected 

extremes relative to the corresponding realistic extremes for certain fc ranges. 

In summary, for any combinations of the selected extremes in SEBAL, the 

horizontal extreme edges seem to distort the realistic distribution of EF to varying 

degrees across a range of fc. The rectangular framework intrinsic in SEBAL can result in 

overestimation or underestimation of fluxes and EF induced by the selected extreme 

pixels of large uncertainty. The magnitudes of discrepancy in fluxes and EF depend 

largely on the relative differences between the horizontal extremes and the trapezoidal 

boundary conditions. This attribute would be the most significant inadequacy in SEBAL. 

 

6.2.4. Formulation of M-SEBAL 

M-SEBAL has the same formulation of Rn and G components as SEBAL. It is 

noted that most of the remote sensing-based models share the same formulation of Rn. 

The most significant attribute or difference involved in remote sensing-based ET models 

rests on the parameterization scheme of H. Norman et al. (2006) indicate that several 

linear relationships between Trad and dT with significantly different slopes can in fact 
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exist within a given landscape. Here, M-SEBAL takes advantage of the trapezoidal 

framework and replaces the rectangular framework intrinsic in SEBAL. We assume that 

coefficients a and b for determining dT in the calculation of H vary with fc but remain 

invariant for the same fc or fc class i given as 

ah ,hot n ,hot hot

hot p rad ,hot rad ,coldc
i i i

i
i i i

r R G
a

T Tρ
−

= ⋅
−

                      (6.3) 

rad ,coldi i ib a T= −                            (6.4) 

where subscript i denotes the class i for fc. The other variables in Eqs. (6.3) and (6.4) are 

the corresponding characteristic variables for hot and cold extremes on the realistic 

warm and cold edges involved in the trapezoidal framework. Pixels with the same fc 

value or same class of fc,i use ai and bi to infer their temperature gradient dTi and 

subsequently calculate H.  

In Eq. (6.3), the aerodynamic resistance of point I in Fig. 6.1 rahi,hot can be 

determined using u200 deemed constant across an image and zom specific for fc,i. The air 

density of point I can also be readily specified. Tradi,hot and Tradi,cold can be located on the 

theoretical warm and cold edges at fc=fc,i. Determination of the theoretical limiting edges 

are illustrated in Sections 4.2.3. The available energy of hot extreme at fc,i, i.e., 

Rni,hot-Gihot (ΔEi,hot) can be determined by the low envelope of the fc-ΔE space, 

considering that (1) for extremely dry surfaces, i.e., EF=0, the largest Trad contributes to 

relatively large outgoing longwave radiation; (2) the extremely dry surfaces often show 

relatively large albedo, which contributes to relatively small net shortwave radiation; and 

(3) the largest Trad contributes to the largest G for the same fc,i. All the three contributions 
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would favor the smallest ΔEi,hot for the hot extreme at fc,i, thereby taking the low 

envelope of the fc-ΔE space.  

 

6.3. Results and discussion 

6.3.1. Results from M-SEBAL 

M-SEBAL was applied to the SMACEX site on DOY 174, 182, and 189 in 2002 

when three cloud-free Landsat TM/ETM+ images were acquired. Descriptions of the 

study site, ground-based measurements, satellite imageries, and variable derivation are 

given in Section 4.3. Energy balance components simulated by M-SEBAL were 

compared with tower-based flux measurements. The simulated fluxes were averaged 

over the estimated upwind source-area/footprint (1~2 pixels/~120 m) for each flux tower 

using the approach proposed by Li et al. (2008a). Results (Table 6.1 and Fig. 6.3) 

indicate that M-SEBAL seems to be capable of reproducing surface fluxes with 

reasonable accuracy at the SMACEX site for three test days in 2002. The most 

interesting output of M-SEBAL, LE, shows discrepancies between the retrievals and the 

tower-based measurements in terms of an RMSD of 41.1 W m-2 and an MAPD of 8.9%, 

respectively. These discrepancies are generally within the intrinsic uncertainty in 

tower-based measurements. The retrieval accuracy of M-SEBAL seems to be 

comparable to TSEB models (both series and parallel configurations) which have been 

applied to the study site in a series of validation and comparison studies (Choi et al., 

2009; French et al., 2005b; Gonzalez-Dugo et al., 2009; Li et al., 2005). Furthermore, Rn 

and G can be reproduced reasonably well, showing RMSD on the order of 20~30 W m-2 
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Figure 6.3 Comparison of Rn, G, H, and LE fluxes (W m-2) from M-SEBAL with 
corresponding eddy covariance tower-based measurements (W m-2) for the SMACEX 
site on DOY 174, 182 and 189 in 2002. 
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Table 6.1 Statistics on discrepancies between simulated energy balance components from 
M-SEBAL, and the eddy covariance energy and heat fluxes at the SMACEX site for 
three test dates in 2002. The observed fluxes are corrected by the Bowen ratio (BR) 
technique. 
 

Flux and date Observation 
number 

Observed 
average 
(W m-2) 

Simulated 
average 
(W m-2) 

Bias 
(W m-2) 

RMSD 
(W m-2) 

MAPD 
(%) 

DOY174 12 572.4 592.4 20.0 29.7 4.3 
DOY182 12 586.5 604.6 18.1 27.1 3.6 
DOY189 11 606.4 615.2 8.7 26.7 3.3 Rn  

Overall 35 587.9 603.7 15.8 27.9 3.8 
DOY174 12 104.1 90.4 -13.6 31.0 25.5 
DOY182 12 74.1 85.0 10.9 21.0 36.4 
DOY189 11 82.7 73.9 -8.8 21.7 23.7 G  

Overall 35 87.1 83.4 -3.7 25.1 28.7 
DOY174 9 346.6 350.2 3.7 39.8 10.3 
DOY182 10 399.8 380.9 -19.0 43.3 9.8 
DOY189 11 501.3 503.6 2.3 40.1 6.8 LE 

Overall 30 421.0 416.7 -4.4 41.1 8.9 
DOY174 9 123.4 152.5 29.1 37.6 24.8 
DOY182 10 124.6 145.9 21.3 35.5 30.6 
DOY189 11 22.4 37.6 15.2 19.2 144.4 H 

Overall 30 86.8 108.2 21.4 31.3 70.6 
DOY174 9 0.73 0.69 -0.04 0.07 7.4 
DOY182 10 0.76 0.72 -0.04 0.07 8.5 
DOY189 11 0.96 0.93 -0.03 0.04 3.4 EF 

Overall 30 0.82 0.79 -0.04 0.06 6.3 
 
 
 

To isolate uncertainties in Rn, G, and H retrievals from LE retrievals, we computed 

EF for all sites having all measurements of Rn, G, H, and LE. The EF retrievals from 

M-SEBAL show closer agreement with ground-based measurements compared with LE 

retrievals (Table 6.1 and Fig. 6.4), suggesting an RMSD of 0.06 and an MAPD of 6.3%, 

respectively. 
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Figure 6.4 Comparison of EF from M-SEBAL with corresponding eddy covariance 
tower-based EF for the SMACEX site on DOY 174, 182 and 189 in 2002. 
 
 

It is noted that the H estimates from M-SEBAL suggest a relatively larger 

discrepancy compared with the estimates of other energy balance components, even 

showing an MAPD of up to 144.4% for DOY 189. This could be a consequence of 

relatively small magnitudes of the H observations and the presence of advection on that 

day which led to negative H observations for sites 3, 6, 14, and 24. Since M-SEBAL is 

based on energy conservation in the vertical direction of the Earth’s surface, advective 

energy which may have arisen on DOY 189 was not detected by the M-SEBAL 

algorithm. However, this effect seems to marginally influence the LE estimates, showing 

an RMSD of 40.1 W m-2 and an MAPD of 6.8% on DOY 189, respectively, due 

primarily to the relatively small contribution of the H estimates to the energy balance on 
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that day.  

In addition, M-SEBAL appears to overestimate Rn, showing a bias of 15.8 W m-2 

for the three days. This might be related to an underestimation of Trad, consequently an 

underestimation of Lu and an overestimation of Rn. Note that H fluxes were 

overestimated by M-SEBAL to certain degrees for all three days, showing an overall 

bias of 21.4 W m-2. This may result from the horizontal cold edge formulated in the 

trapezoidal framework. In fact, the realistic cold edge would be slanting and essentially 

above the horizontal one under low fc conditions (i.e., side B′C in Fig. 6.1), with the two 

cold edges intersecting at point C. The downward displaced horizontal cold edge of 

trapezoid ABCD would lead to decreasing cold extremes, thereby an increase in H 

estimates and a decrease in LE estimates. However, substitution of the horizontal cold 

edge for the slanting one is motivated primarily by circumventing the specification of the 

temperature for the bare surface without water stress (point B in Fig. 6.1). This 

simplification would not significantly compromise the retrieval accuracy of LE during 

the growing season. Most importantly, it can greatly reduce uncertainty and subjectivity 

involved in SEBAL to visually indentify the cold pixel which is often influenced by 

cloud contamination and other outliers. 

 

6.3.2. Implementation of SEBAL 

Numerous studies have indicated that the performance of SEBAL is largely 

influenced by selected hot and cold extremes from satellite imagery. However, less 

rigorous validation has been performed to systematically investigate how the 
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performance of SEBAL varies with these selected extremes. Most applications 

pertaining to SEBAL presumably ascribe all uncertainties or errors to the selected 

extremes and relevant procedures. It is particularly important to note that correctly 

implementing a model is critical to accurately examining its advantages and limitations 

in the model physics. Some validation work related to SEBAL did not take adequate 

measures to select pixels which are able to well satisfy the hypothesis of extremes; the 

larger the deviations from the hypothesis of SEBAL, the less the possibility of gaining a 

full understanding of the model performance and the mechanisms of error propagation. 

This can, however, be treated in part as the inadequacy of the model formulation; in 

practice, it is not necessarily feasible to successfully locate two extremes under all 

circumstances.  

On the other hand, a majority of validation studies of SEBAL were conducted by 

comparing 24-h integrated ET retrievals (mm/d) with ground-based counterparts (e.g., 

lysimeter). However, the accumulated ET is also determined largely by daily net 

radiation; errors involved in the H and LE retrievals (or EF) at the time of imaging may 

be cancelled out during the diurnal cycle, even though the accumulated ET shows good 

agreement with ground-based daily measurements. This has hindered a more rigorous 

validation of SEBAL with respect to its core algorithm aimed at generating H and LE 

typically at the satellite overpass. 

Fig. 6.5 shows the fc-Trad space at the SMACEX site derived from Landsat 

imageries acquired on DOY 174 and DOY 182 in 2002, respectively, which can facilitate 

the selection of extremes required by SEBAL. Meanwhile, we extracted coordinates of 
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these selected extremes to check their land cover types on color-infrared composite 

images. It is plausible that there are several options to locate hot and cold extremes with 

varying characteristic variables (i.e., Trad,hot, Trad,cold, and Rn,hot-Ghot) for the two days. 

 

 

Figure 6.5 Scatterplots of fc and Trad for the SMACEX site for DOY 174 and 182 in 2002, 
numbered red circles represent hot extreme candidates, and numbered blue circles 
represent cold extreme candidates. Red and blue lines represent limiting edges of the 
trapezoidal framework, showing Ts,max, Tc,max, and Ts,min(Ta) for both days. 
 
 

Three hot extremes with relatively high Trad and low fc values likely corresponding 

to late plantings of soybean crops, and three cold extremes with relatively low Trad and 

high fc values corresponding to full canopy covers were located for the two days, 

respectively. It is noted that the identified hot extremes were not completely bare 

surfaces, showing fc values ranging between 0.17 and 0.33 and ~0.14 for the two days, 

respectively. For a rainfed area particularly during the period of rapid growth in crops, a 

pure bare surface without ET seems to be non-existent, making the selection of hot 

extreme which completely satisfies the hypothesis from satellite imagery impossible. On 

the other hand, temperatures of the identified cold extremes are generally smaller than Ta 
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at the time of imaging. In fact, there are a certain group of pixels whose temperatures are 

generally lower than Ta, particularly for DOY 174 (Fig. 6.5). This might not necessarily 

result from advection, but rather from uncertainty in Trad retrievals or cloud effects.  

Taking several quasi hot and cold extremes exhibiting certain degrees of variation 

in their characteristic variables would be helpful for capturing the variability 

mechanisms of the performance of SEBAL with different anchor points. There are in 

total 9 combinations of a hot extreme and a cold extreme from 3 hot extreme candidates 

and 3 cold extreme candidates, which constitute inputs along with other characteristic 

variables of these extremes to invert coefficients a and b for calculating H for each day. 

Characteristic variables of these extreme pairs are shown in Table 6.2 For each day, 9 

combinations of hot and cold extremes resulted in 9 pairs of coefficients a and b. 

Subsequently, they constituted inputs to SEBAL for computing H and LE for all 

remaining pixels in the images. 
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Table 6.2 Extreme pixels with their characteristic variables as inputs of SEBAL at the 
SMACEX site for DOY 174 and 182 in 2002, cases 1-9 represent all combinations of 
three hot pixels (numbering 1-3) and three cold pixels (numbering 4-6) selected from the 
satellite imagery 
 

Case Ts,hot (oC) (Rn-G)hot 
(W m-2 ) fc,hot (-) Ts,cold (oC) fc,cold (-) 

174 and 182 174 182 174 182 174 182 174 182 174 182
1 (1, 4) 43.1 51.5 467.0 442.5 0.27 0.14 26.1 28.8 0.84 0.87
2 (2, 4) 42.6 49.6 478.3 440.9 0.17 0.13 26.1 28.8 0.84 0.87
3 (3, 4) 42.3 48.7 481.7 442.5 0.33 0.13 26.1 28.8 0.84 0.87
4 (1, 5) 43.1 51.5 467.0 442.5 0.27 0.14 26.8 29.0 0.92 0.90
5 (2, 5) 42.6 49.6 478.3 440.9 0.17 0.13 26.8 29.0 0.92 0.90
6 (3, 5) 42.3 48.7 481.7 442.5 0.33 0.13 26.8 29.0 0.92 0.90
7 (1, 6) 43.1 51.5 467.0 442.5 0.27 0.14 26.9 30.5 0.94 0.92
8 (2, 6) 42.6 49.6 478.3 440.9 0.17 0.13 26.9 30.5 0.94 0.92
9 (3, 6) 42.3 48.7 481.7 442.5 0.33 0.13 26.9 30.5 0.94 0.92

 
 
 
6.3.3. Results from SEBAL 

Differences between the H and LE retrievals and tower-based measurements are 

listed in Table 6.3. Retrievals of all energy balance equation components under 9 

different combinations of anchor points on DOY 174 and 182 are shown in Figs. 6.6 and 

6.7, respectively. Results indicate that the SEBAL algorithm consistently overestimates 

H and underestimates LE on DOY 174, with RMSD and MAPD of the H retrievals 

ranging between 79~108.3 W m-2 and 65~92.6%, respectively, and RMSD and MAPD 

of the LE retrievals ranging between 55.4~81.2 W m-2 and 13.5~22.2%, respectively. 

SEBAL generally underestimates H and overestimates LE on DOY 182, suggesting 

RMSD and MAPD of the H retrievals ranging between 38.7~51.8 W m-2, and 

21.6~39.8%, respectively, and RMSD and MAPD of the LE retrievals ranging between 

47.3~60.4 W m-2 and 9.8~13.3%, respectively. 
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Table 6.3 Statistics of discrepancies between the H and LE retrievals from SEBAL and 
tower-based measurements at the SMACEX site for DOY 174 and 182 in 2002 under 9 
cases (1-9) representing different combinations of extreme hot pixels (numbering 1-3) 
and cold pixels (numbering 4-6) selected from Landsat TM imagery 
 

Case 
 (hot, cold) 

H: RMSD 
(W m-2) 

H: MAPD 
(%) 

H: bias 
(W m-2) 

All days 174 182 174 182 174 182 
1 (1, 4) 90.2 37.7 77.8 22.1 87.5 -11.2 
2 (2, 4) 102.2 37.4 87.7 21.0 99.3 -1.0 
3 (3, 4) 108.3 38.7 92.6 21.6 105.2 5.2 
4 (1, 5) 80.4 38.6 66.7 22.9 77.0 -14.0 
5 (2, 5) 92.2 37.7 76.2 21.6 88.5 -3.9 
6 (3, 5) 98.2 38.6 81.0 21.7 94.2 2.2 
7 (1, 6) 79.0 51.8 65.0 39.8 75.4 -36.3 
8 (2, 6) 90.7 47.9 74.5 35.9 86.8 -27.7 
9 (3, 6) 96.7 46.4 79.2 34.4 92.6 -22.4 
Case 

 (hot, cold) 
LE: RMSD 

(W m-2) 
LE: MAPD 

(%) 
LE: bias 
(W m-2) 

All days 174 182 174 182 174 182 
1 (1, 4) 64.4 46.6 16.6 10.2 -54.8 13.5 
2 (2, 4) 75.5 46.2 20.3 10.0 -66.6 3.3 
3 (3, 4) 81.2 47.3 22.2 9.8 -72.5 -2.9 
4 (1, 5) 56.5 47.6 13.8 10.4 -44.2 16.3 
5 (2, 5) 67.0 46.8 17.2 10.2 -55.7 6.2 
6 (3, 5) 72.5 47.4 19.1 10.0 -61.5 0.1 
7 (1, 6) 55.4 60.4 13.5 13.3 -42.7 38.6 
8 (2, 6) 65.8 57.1 16.8 12.4 -54.1 30.0 
9 (3, 6) 71.2 55.9 18.6 12.2 -59.8 24.7 
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Figure 6.6 Estimates of Rn (magenta cross), G (green asterisk), H (red cross), and LE 
(blue circle) from SEBAL for 9 cases of combinations of selected extremes at the 
SMACEX site for DOY 174. 
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Figure 6.7 Estimates of Rn (magenta cross), G (green asterisk), H (red cross), and LE 
(blue circle) from SEBAL for 9 cases of combinations of selected extremes at the 
SMACEX site for DOY 182. 
 
 

These differences are essentially large when compared with RMSD and MAPD of 

39.8 W m-2 and 10.3% for the LE retrievals on DOY 174, and that of 43.3 W m-2 and 

9.8% on DOY 182, respectively, from M-SEBAL, except the LE retrievals from SEBAL 

on DOY 182 under case 3 displaying a similar retrieval accuracy with the M-SEBAL 

algorithm and even slightly closer agreement with ground-based measurements for the H 

estimates from SEBAL. It is apparent that the H and LE retrievals from SEBAL are of 

great uncertainty, varying with selected extremes. 
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Furthermore, it is noted that the highest accuracy of H and LE retrievals from 

SEBAL for DOY 174 occurs under case 7 consisting of hot pixel 1 and cold pixel 6, 

which show the highest Trad values in the three respective extreme candidates. The 

lowest accuracy of H and LE retrievals from SEBAL corresponds to case 3 composed of 

hot pixel 3 and cold pixel 4 which show the lowest Trad values in the three respective 

extreme candidates. By contrast, the highest accuracy of H and LE retrievals from 

SEBAL for DOY 182 takes place under case 3 but the lowest accuracy under case 7.  

From the perspective of the contextual relationship between fc and Trad, the two 

anchor points in SEBAL represent essentially two “horizontal” limiting edges of the 

fc-Trad space. SEBAL assumes a positive linear correlation of its H estimates with Trad 

throughout a scene, which, as a matter of fact, corresponds to the quasi negative linear 

correlation of its EF estimates with Trad at a specific fc interval as demonstrated in 

Section 6.2.2. The most marked difference of these spatial variability approaches (i.e., 

SEBAL and the triangle model) lies in the configuration of limiting edges of the fc-Trad 

space or determination of extremes. Downward movement of warm and/or cold edges 

indicated by a reduction in the temperatures of extremes tends to result in increasing H 

estimates and consequently decreasing LE estimates. On the contrary, upward movement 

of the limiting edge (s) has a tendency to lead to decreasing H estimates and therefore 

increasing LE estimates. 

The relative displacement of the rectangular framework intrinsic in SEBAL with 

respect to the trapezoidal framework adopted in M-SEBAL can explain the 

overestimated H from SEBAL for DOY 174 and the generally underestimated H for 
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DOY 182. For DOY 174, two horizontal extremes in SEBAL, i.e., the rectangular 

envelope of the fc-Trad space, are generally shifted downward with reference to the 

trapezoidal framework. Case 7 consisting of hot pixel 1 and cold pixel 6 forms a 

rectangle showing the least deviation from the trapezoidal framework, thereby 

suggesting the least discrepancies of the H and LE retrievals. Case 3 consisting of hot 

extreme 3 and cold extreme 4 shows the largest deviation from the trapezoidal 

framework, therefore leading to the largest discrepancies of model outputs. The same 

explanation could be applied to DOY 182 that the SEBAL-based rectangular framework 

under case 3 approximates the trapezoid best, particularly for the range of high fc values 

where the eddy covariance towers were located, resulting in the least discrepancies of H 

and LE retrievals compared with ground-based measurements. 

 

6.3.4. Relationship between error and fc for SEBAL and M-SEBAL 

For unraveling the mechanisms of error propagation of SEBAL and M-SEBAL, we 

investigated the relationship between the relative error (simulated H-observed H) in the 

H estimates from both models and the corresponding fc values at all eddy covariance 

sites for DOY 174 and 182 (see Fig. 6.8), respectively. SEBAL was run under the case of 

the combination of extreme pixels for which it performed best, i.e., case 7 for DOY 174 

and case 3 for DOY 182. Results indicate that for DOY 174, the relative error in the H 

estimates from SEBAL generally decreases with increasing fc. This is caused principally 

by its rectangular framework and its extreme edges. Cold and warm edges of SEBAL are 

essentially lower than that of the trapezoid framework for DOY 174, resulting in 



221 

 

increased H and decreased LE estimates. However, with increasing fc after exceeding the 

intersection of the realistic warm edge and the selected hot edge, the selected horizontal 

hot edge of SEBAL becomes higher than the slanting one of M-SEBAL, with the 

overestimation of H from SEBAL being mitigated to a certain degree. On the other hand, 

even though the H estimates from M-SEBAL also tend to be larger than the 

measurements, the errors are decreased appreciably compared with those of SEBAL. 

This demonstrates that the use of the trapezoidal framework is capable of more 

realistically reflecting variations in LE with fc and Trad. 

 

 

Figure 6.8 Variation of relative errors of H retrievals from SEBAL (triangle) and 
M-SEBAL (circle) with fc for DOY 174 and 182, respectively. 
 

For DOY 182, unfortunately, the whole picture of the mechanisms of error 

propagation of SEBAL cannot be completely reflected because of limited fc values 

generally ranging from 0.55 to 0.8 at all eddy covariance sites. The errors in the H 
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estimates from SEBAL for high fc values (i.e., larger than 0.75, five sites) tend to be 

smaller than those of M-SEBAL, which might result from a well approximation of the 

rectangular framework to the realistic quadrangular one. However, errors in the H 

estimates from SEBAL are generally larger than those of M-SEBAL for fc lower than 0.7 

(five sites). 

 

6.3.5. Spatial distribution of H and LE Retrievals from SEBAL and M-SEBAL 

We mapped surface fluxes by SEBAL and M-SEBAL for the entire SMACEX site 

for DOY 174 and 182. Figs. 6.9 and 6.10 show spatial distributions and frequencies of 

the H and LE estimates, respectively, from SEBAL and M-SEBAL for DOY 174 and 

182. Results explicitly show that SEBAL generates significantly larger H estimates than 

does M-SEBAL, showing areal mean values of the H estimates from SEBAL and 

M-SEBAL of 208.5 W m-2 and 166.2 W m-2, and 306. 4 W m-2 and 164.6 W m-2 for 

DOY 174 and 182, respectively. The overestimation of H estimates from SEBAL is due 

primarily to the rectangular framework intrinsic in its hypothesis. The downward shift of 

cold edge for DOY 174 and downward shift of hot edge for DOY 182 of SEBAL could 

be responsible for the overestimation of areal H estimates, particularly for lower fc areas. 

In fact, there was about 5.4% area of the study site showing the H estimates from 

SEBAL larger than the available energy (Rn-G) (see the cumulative distribution of LE in 

row 3 in Fig. 6.10). This was taken to be erroneous H retrievals from SEBAL, even 

under the condition of overestimation of Rn and underestimation of G of SEBAL; 

thereby the LE retrievals from SEBAL were artificially set to zero for these pixels. To 
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that end, some portions of the LE map from SEBAL for DOY 182 have to suffer 

somewhat from this artifact. 

On the other hand, there were around 4% pixels whose H retrievals from M-SEBAL 

for DOY 174 were zero (see the cumulative distribution of H in row 2 in Fig. 6.9), which 

results from the cold edge of M-SEBAL being taken as Ta. There are a group of pixels 

whose temperatures lower than Ta at the satellite overpass due to clouds, sloping terrain, 

and other effects. However, their H estimates were mistakenly derived as small 

magnitudes by the SEBAL algorithm due to an unrealistic cold edge identified. In 

general, the LE estimates from SEBAL are essentially smaller than that of M-SEBAL for 

both days in large part due to the rectangular framework. 

In summary, directly relating Trad retrievals to LE throughout a scene based on a 

linear relationship in SEBAL could be unreasonable in generating large-scale LE/ET, 

even though good agreement between the estimates and measurements at a handful of 

sites is shown. Distributions of H and LE from SEBAL may have been distorted to 

varying degrees due to the oversimplified rectangular framework in previous 

applications; the degree of distortion depends on the real physical limits, visually 

identified extremes, and outliers in Trad retrievals. Mapping ET from SEBAL seems to be 

less than satisfactory due to the oversimplified framework it involves and the 

determination of its limiting edges of large uncertainty. The M-SEBAL algorithm 

appears to be capable of reproducing reasonable LE distribution due to the integration of 

the trapezoidal framework. 
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Figure 6.9 Spatial distributions of H estimates from SEBAL and M-SEBAL, frequency 
distributions (on the right of the H maps), and their cumulative curves for DOY 174 and 
182. 
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Figure 6.10 Spatial distributions of LE estimates from SEBAL and M-SEBAL, 
frequency distributions (on the right of the ET maps), and their cumulative curves for 
DOY 174 and 182. 
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6.4. Summary of model advantages and limitations 

In summary, SEBAL tends to overestimate H and consequently underestimate 

LE/ET, if the hot extreme is significantly lower than the real physical limit of the warm 

edge which corresponds to the absence of extremely hot surfaces over areas dominated 

by vegetation or agricultural crops in the growing season or to the situation that there 

indeed exists the extreme surface but it is not able to precisely identified by the operator, 

and/or the cold extreme is significantly underestimated due to outliers incurred by cloud 

or terrain effects. Under the condition that both hot and cold extremes are occasionally 

close to the realistic ones, the horizontal hot extreme in SEBAL tends to be above the 

hypotenuse of the trapezoid with increasing fc. This would lead to an underestimation of 

H and then an overestimation of LE. Under the condition that the hot extreme is 

overestimated, corresponding to an erroneous larger Trad,hot, and the cold extreme is 

underestimated, corresponding to an erroneous smaller Trad,cold value (even smaller than 

Ta exhibited in DOY 174), the retrievals from SEBAL seem to be occasionally 

reasonable for certain fc ranges because discrepancies caused by the two extremes offset 

each other. 

In fact, the rectangular framework in the SEBAL algorithm seems to be inadequate 

to depict the realistic variability of the fc-Trad space. Instead, it should be a trapezoidal 

framework, or at least, a triangular framework observed by numerous studies. Moreover, 

determination of the rectangular framework (i.e., two anchor points) is beset with 

significant subjectivity and uncertainties involved in the Trad retrievals. Outliers of Trad 

retrievals may have been frequently mistakenly taken as extremes of SEBAL in a 
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majority of applications. The large dependence of two extremes of great uncertainty built 

on an oversimplified rectangular framework has been the major source of error of 

SEBAL. 

It is important to note that METRIC modifies energy balances for two extremes by 

introducing a LE term to the hot extreme and an H term to the cold extreme, attempting 

to reflect not completely dry and not completely wet conditions. Nonetheless, this 

treatment does not mean the modification of the rectangular framework it involves and 

the manual selection of two extremes from images is still required. To that end, METRIC 

is of the similar inadequacies as SEBAL illustrated in this chapter.  

The real physical limits of the quadrangular framework seem to be reasonably 

approximated by the trapezoidal framework involved in M-SEBAL, without largely 

compromising its accuracy. It is, however, noted that under low fc conditions, M-SEBAL 

tends to overestimate H and consequently underestimate LE due to the use of the 

horizontal cold extreme. This is primarily due to the difficulty of demarcating cold edges 

directly from the contextual relationship between fc and Trad. Determination of vertices of 

the trapezoidal framework is feasible under certain assumptions on physiological 

properties for the fully vegetated surface without ET.  

M-SEBAL has almost the same data requirements as SEBAL. In addition, 

M-SEBAL incorporates fc into the contextual fc-Trad, fc-α, and fc-ΔE spaces to infer 

relevant variables and parameters. This gives full play to the inherent spatial information 

among remotely sensed surface variables and therefore creates an opportunity to reflect 

realistic EF and LE/ET across large areas with generally homogeneous meteorological 
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conditions. 

 

6.5. Concluding remarks 

SEBAL has been designed and widely used (misused) to estimate ET using 

remotely sensed surface variables and few meteorological data across varying spatial and 

temporal scales over the past 15 years. However, it is beset by manual identification of 

two extremes, hot pixel and cold pixel, to determine the temperature difference between 

the near surface and the reference height, which is assumed to be linearly related to 

remotely sensed Trad throughout a scene. Aiming at unraveling the deficiencies in the 

SEBAL physics and replacing its core component of H scheme, this study demonstrates 

that SEBAL is, in fact, of a rectangular framework of the contextual fc-Trad space, which 

significantly distorts the spatial distributions of H and LE retrievals. In addition, 

determination of its limiting edges, i.e., two anchor points involved in SEBAL, suffers 

significantly from subjectivity.  

SEBAL can overestimate or underestimate H and LE depending on the relative 

displacement between the rectangular framework and the real physical limits which 

indeed constitute a quadrangular framework and are approximated by a trapezoidal 

framework in the M-SEBAL. Determination of the trapezoidal framework is achieved by 

solving radiation budget and energy balance equations for temperatures of the bare 

surface with the largest water stress, and the fully vegetated surface with the largest 

water stress, given certain meteorological conditions. Coefficients of the linear 

relationship between Trad and dT vary with fc but are assumed essentially invariant within 
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the same fc or fc class in M-SEBAL. 

SEBAL and M-SEBAL are applied to the SMACEX site in central Iowa, U.S. 

Results indicate that M-SEBAL is capable of reproducing EF and LE with relatively 

high accuracy, showing an overall RMSE of 0.06 and 41.1 W m-2, and MAPD of 6.3% 

and 8.9%, respectively, for three Landsat TM/ETM+ imagery acquisition dates in 2002. 

The retrieval accuracy of SEBAL depends largely on the selected extremes. In addition, 

the spatial distributions of H and LE retrievals from SEBAL are significantly distorted 

due to its intrinsic rectangular framework. The use of the trapezoidal framework in 

M-SEBAL appears to ensure more reasonable distributions of H and LE across the study 

site.
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CHAPTER VII 

ADDRESSING THE SCALE DEPENDENCIES OF REMOTE SENSING-BASED 

TRIANGLE MODELS 

 
7.1. Introduction 

Amongst satellite-based models for ET estimation, the triangle models are unique in 

interpreting the contextual relationship between NDVI/fc and Trad to deduce EF and ET 

over large areas (Carlson et al., 1994; Gillies and Carlson, 1995; Jiang and Islam, 2001; 

Price, 1990; Sandholt et al., 2002). This type of models manifests advantages in utilizing 

spatial information of visible, near-infrared, and thermal infrared bands to deduce EF 

and ET without depending largely on ground observations, thereby facilitating 

initialization of land surface models.  

There are, however, several common issues associated with triangle models that 

seem to be inadequately investigated and addressed over the past two decades. First, the 

triangle models have consistently underestimated (Choi et al., 2009; Jiang and Islam, 

2003; Wang et al., 2006) or overestimated EF/ET (Batra et al., 2006; Jiang and Islam, 

2001; Jiang et al., 2009) in the majority of published studies. However, reasons for these 

deviations have not been fully investigated and appropriately interpreted from a 

standpoint of model physics and scale effects. Second, most of triangle models are 

combined with moderate or low spatial resolution sensors, i.e., NOAA-AVHRR (Batra et 

al., 2006; Jiang and Islam, 2001; Sandholt et al., 2002), MODIS (Tang et al., 2010; Wang 

et al., 2006), and MSG-SEVIRI (Stisen et al., 2008), for estimating EF/ET over large 

areas. However, applications and investigations of triangle models using high resolution 
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imageries rarely appear in the literature. Determining effective techniques to make use of 

data from various sensors has been the focus of considerable research (McCabe and 

Wood, 2006). 

Third, a recurring issue for the application of derived satellite data is whether 

techniques for one scale are appropriate to another (Carlson et al., 1995b). Methods to 

address spatial and temporal disparities between landscape heterogeneity and sensor and 

model resolution are limited, since an adequately developed theory of scale dependence 

or scaling in hydrology does not yet exist (Beven and Fisher, 1996). Particularly in 

surface flux estimation, little work has been performed to investigate differences in 

model outputs between using easily obtained moderate or low spatial resolution sensors 

and relatively infrequent high spatial resolution sensors, and in outputs between 

successively varying domains of satellite imagery. These issues have been perplexing 

surface flux estimation in the operational ET estimation and hydrological communities.  

It is noted that there would be a significant domain scale effect intrinsic in triangle 

models. There exist two limiting edges constituting the envelopes of the fc-Trad space in 

triangle models. They play a paramount role in determining the magnitudes of EF and 

LE. The upper envelope is referred to as the warm edge, pixels on which are taken as 

surfaces with the largest water stress. By contrast, the lower envelope is called the cold 

edge, pixels on which represent surfaces without water stress, i.e., evaporating and 

transpiring at potential rates. EF and LE for a pixel at a specific NDVI/fc interval are 

deduced by weighting extreme Trad values within the interval in terms of Trad of a pixel. 

To that end, warm and cold edges are essential to configuring the triangle space by 
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prescribing important boundary conditions of the contextual fc-Trad relationship and 

subsequently to determining EF and LE for pixels amid the limiting edges.  

It is expected that the determination of warm and cold edges of the fc-Trad space 

would be dependent upon the domain of a study site being considered or the size of 

images being used. It is common that researchers and practitioners focus primarily on 

the study sites of interest, e.g., the SMACEX site of around 670 km2 in central Iowa, U.S. 

(Choi et al., 2009), the Heihe River basin about 38,000 km2 in northwestern China (Tang 

et al., 2010), and the Southern Great Plains site around 140,000 km2, U.S. (Batra et al., 

2006; Wang et al., 2006). Areas beyond a study site are rarely taken into account, 

especially for relatively small study sites. Nevertheless, a complete picture of the 

extreme edges and variations in EF with Trad would rest on a larger domain. On the other 

hand, the thermal bands of a variety of satellite sensors have varying capacity to 

discriminate the thermal properties of the land surface and therefore to derive Trad. In 

other words, the resolution of retrieved Trad may also influence the definition and 

determination of limiting edges; varying spatial resolutions of imagery are likely to 

generate varying EF and LE for a given study site. 

Carlson et al. (1995b) performed a preliminary investigation into the resolution 

scale effect of triangle models by linearly aggregating Trad of high spatial resolution 

derived from the NS001 multispectral scanner (5 m) to mimic low spatial resolution data, 

with resolutions ranging from 20 m to 80 m to 320 m. They observed a successive 

movement of warm edges towards the cold edge with increasing pixel size, but 

concluded that the objectively determined warm edges coincided with the domain of soil 
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moisture availability isopleths and therefore the triangle with its warm edge was not 

substantially changed. Gillies et al. (1997) indicated that scale issues might influence EF 

and LE retrievals from triangle models, since low resolution data would not necessitate 

the definition of a cold and a warm edge (Gillies and Carlson, 1995). Batra et al. (2006) 

and Venturini et al. (2004) systematically compared and contrasted the utility of triangle 

models between the use of MODIS and AVHRR sensors, showing a similar contextual 

space of NDVI-Trad and EF estimates.  

We suggest that exploring the utility of triangle models in combination with high 

spatial resolution imagery, e.g., Landsat TM/ETM+, and extensively comparing the 

performance of triangle models between the use of high and moderate or low spatial 

resolution sensors are imperative to reveal a complete picture of the resolution scale 

effect involved. Furthermore, conditions under which the triangle models may be applied 

need to be better defined (Goward et al., 2002). In most cases, researchers and 

practitioners apply triangle models without accounting for the size of a usable portion of 

imagery. Comparing the performance of triangles models within successively varying 

domains is the key to unravel the domain dependence of the triangle models. The 

resolution and domain dependencies may have resulted in a large uncertainty in the 

resulting EF and LE/ET estimates from triangle models. As such, much work needs to be 

undertaken to investigate the domain and resolution dependencies of the triangle 

methods. Mechanisms of addressing these scale effects and controlling errors therein are 

required to provide an accurate understanding of EF and ET distributions from the 

triangle models. We suggest that the physical limits of the NDVI-Trad space for a given 
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study site uniquely exist. Derivation of the physical limits would provide determinate 

solutions of the triangle models, which may be useful in restraining uncertainties arising 

from the domain and resolution dependencies of triangle models. 

The objectives of this chapter therefore were to (1) explore the domain dependence 

of triangle models by applying them to varying domains and reveal the mechanisms of 

error propagation; (2) examine the resolution dependence of triangle models using 

MODIS and Landsat ETM+ imageries of the same overpass time; and (3) the use of the 

physical limits of the NDVI-Trad space described in Chapter IV to control errors resulting 

from the domain and resolution dependencies intrinsic in triangle models and validate 

the proposed framework. Section 7.2 presents model formulation of triangle models and 

the framework to address the scale dependencies, followed by Section 7.3 providing a 

systematic analysis of the domain scale effect and Section 7.4 about the resolution scale 

effect of triangle models, along with the demonstration of the proposed framework to 

restrain error propagation. Major findings of this chapter are given in Section 7.5. 

 

7.2. Model formulation 

7.2.1. Formulation of triangle models 

There are a series of triangle models (Batra et al., 2006; Jiang and Islam, 1999; 

Moran et al., 1994; Sandholt et al., 2002) developed which bear similarities in 

interpreting the contextual relationship between NDVI/fc and Trad. In general, the 

envelopes of the NDVI and Trad space constitute a triangle or a trapezoid. The major 

differences of these models lie in the configuration of the space and determination of 
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limiting edges of the triangles. Fig. 7.1 illustrates the triangle space and their limiting 

edges. 

 

 

Figure 7.1 A schematic of the scatterplot of remotely sensed NDVI and Trad, colored 
circles represent pixels with varying NDVI and Trad. Side AC is the warm edge (①) of 
triangle ABC, whose φ values are equal to φmin,i for each NDVI value or NDVI class i. 
Side AE is the warm edge (②) of rectangle models (simplified from triangle models) 
whose φ value is equal to zero. Side AD is the warm edge (③) representing surfaces of 
EF=0 for a full range of NDVI in trapezoid model ABCD. Side BC is the horizontal cold 
edge representing surfaces of EF=1 for a full range of NDVI.  
 

The triangle model (triangle ABC in Fig. 7.1) developed by Jiang and Islam (1999, 

2001) makes use of parameter φ derived from a meaningful contextual space of NDVI 

and Trad to partition net energy so as to estimate LE based on the Priestley-Taylor 

equation: 
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where parameter φ integrates the effects of soil moisture availability, aerodynamic and 

surface resistances on evaporative fraction, which is expressed as 
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where Tradi,max and Tradi,min are the maximum and minimum Trad values for NDVI class i; 

and Tradi is the Trad value of a pixel in NDVI class i; φmax,i is the maximum value of 

parameter φ (=Priestley-Taylor parameter of 1.26), i.e., the parameter φ  for cold edge 

BC is equal to 1.26; φmin,i is the minimum value of parameter φ for NDVI class i, which 

is in fact the parameter φ for warm edge AC. Parameter φmin,i is assumed to be 

proportional to NDVI/fc, i.e., φmin,i =1.26NDVIi/NDVImax where NDVImax is the 

maximum value of NDVI for a scene. In terms of the assumption, parameter φmin,i is 

equal to 0 at NDVI=0 which is assumed to represent the direst bare surface and is equal 

to 1.26 at NDVI=NDVImax, i.e., the point of intersection of AC and BC. Stisen et al. 

(2008) modified the linear correlation of φmin,i with NDVI as a power function with an 

exponent of two within the triangle framework. As such, φmin,i is nonlinearly correlated 

with NDVI, which accounts for a more rapid change of φmin,i for high NDVI values than 

that for low NDVI values along with the warm edge.  

In the computation, Tradi,max and Tradi,min are both obtained from warm and cold 

edges derived from the NDVI-Trad space, respectively, which are a function of NDVI. 

Therefore, the value of parameter φ for a pixel can be uniquely determined by its Trad and 
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NDVI values based on equation (7.2). Combining Eqs. (7.1) and (7.2), EF for a pixel can 

therefore be written as 
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            (7.3) 

It is indicated in Eq. (3) that the quantity of Δ/(Δ+γ) varies slightly with Ta; 

therefore EF is largely determined by Tradi,max and Tradi,min for a given Tradi value in NDVI 

class i. It is particularly important to note that in reality, the contextual relationship 

between NDVI and Trad rarely constitutes a triangle, but a trapezoid. To that end, φmin,i 

values in Eq. (7.3) for the observed warm edge are simplified as zero, which accounts 

for the effects of root zone water stress on vegetated surfaces for a full range of NDVI/fc 

(Choi et al., 2009). 

 

7.2.2. Formulation of rectangle model 

Jiang and his associates (Batra et al., 2006; Jiang et al., 2009) simplified parameter 

φ  in Eq. (7.2) as 
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φ φ
−
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−

                      (7.4) 

where Trad,max and Trad,min are the global maximum and minimum Trad throughout an 

entire scene. It is apparent from Eq. (7.4) that parameter φ on the warm edge, i.e., φmin,i 

in Eq. (7.3), is simplified as zero. The triangle ABC is indeed simplified as a rectangle 

ABCE in which Trad,max forms a horizontal warm edge of the rectangle model. Warm 

edge AE corresponds to the driest surfaces with EF=0 theoretically occurring for a range 
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of NDVI/fc.  

In the rectangle model, Trad,max is deduced by extrapolating the derived warm edge 

to intersect with NDVI=0, which is assumed to be the highest temperature over the bare 

soil (Batra et al., 2006). In triangle or rectangle models, Trad,min is determined by Trad of 

the pixel with the largest NDVI value (Jiang and Islam, 2001), regression analysis as the 

warm edge (Sandholt et al., 2002; Stisen et al., 2008), or the use of Ta as the cold edge 

(Jiang and Islam, 2003). Consequently, φ values for the remaining pixels amid the 

limiting edges can be determined only by their Trad values in terms of Eq. (7.4).  

It is important to note that limiting edges involved in both the original version of Eq. 

(2) and the simplified version in Eq. (4) of triangle models are determined by the 

observed scatterplots of NDVI-Trad. As such, these approaches are only valid when both 

minimum and maximum ET can be observed within the boundaries of the study area 

(Stisen et al., 2008). One important assumption is that the major differences in EF 

estimates are not introduced by atmospheric conditions and surface characteristics (e.g., 

u and hc), but mainly contributed by variation in soil moisture availability. This 

necessitates a large or heterogeneous study area with a broad range of soil wetness 

conditions and at the same time relatively uniform atmospheric forcing.  

Another assumption involved is that the use of triangle models does not allow the 

presence of water stressed full cover vegetation, since the triangle models create a 

singularity at point C (Fig. 7.1). Vegetation with a range of fc transpires at near potential 

rates regardless of the surface soil water content; the triangle models do not account for 

water stress on vegetation (Carlson, 2007).  
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7.2.3. Formulation of trapezoid model 

We argue that first, the real physical limits of the contextual space of NDVI-Trad 

form neither a triangle nor a simplified rectangle in Batra et al. (2006) and Jiang et al. 

(2009), but in fact a trapezoid, i.e., ABCD in Fig. 7.1. This has been justified by Gillies 

et al. (1997), Moran et al. (1994), Tang et al. (2010), and Sandholt et al. (2002). In other 

words, the theoretical warm edge, on which parameter φ and EF are equal to zero, is 

above the hypotenuse of the triangle ABC but is in no way a horizontal edge in the 

simplified rectangle ABCE. This is because partially vegetated surfaces with the largest 

water stress would show lower temperatures than the driest bare surface (point A) as the 

sunlit vegetation is generally cooler than sunlit bare soil (Carlson, 2007). In this case, 

complete stomatal closure will theoretically occur for the vegetated part due to the 

largest water stress (Moran et al., 1994). Even though this is rarely observed for dense 

vegetation covers, the theoretical warm edge does provide a determinate limit for 

deducing EF across the NDVI and Trad space, which obviates large uncertainties in the 

use of observed warm edges from satellite imageries and the determination of φmin. In 

fact, the use of the horizontal warm edge in the rectangle model could result in an 

overestimation of EF/LE due to an overestimation of Tradi,max. This is virtually shown in 

the results of these studies (Batra et al., 2006; Jiang et al., 2009). 

Second, φmin,i in triangle models is assumed to be correlated only with NDVI (Jiang 

and Islam, 2001; Stisen et al., 2008), with the largest value (=1.26) taking place on the 

fully vegetated surface without water stress and the smallest value (=0) on the driest bare 

surface. The assumed linear/nonlinear correlation between φmin,i and NDVI may be true 
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for the two extremes; however it might not the case for the whole range of NDVI/fc due 

to a more complex unknown relationship between φmin,i and other factors. More 

importantly, with varying observed warm edges due to the use of different sizes and 

resolutions of images, φmin,i for the warm edge cannot be uniquely determined. 

We suggest that the derivation of the real physical limits (i.e., trapezoid ABCD) of 

the NDVI and Trad space would be greatly useful in reducing uncertainty associated with 

the determination of φmin values for a full range of NDVI/fc and the observed warm edge 

due to the use of different sizes and resolutions of images. Procedures for derivation of 

theoretical boundaries of the trapezoid framework are presented in Section 4.2.3. 

After the theoretical boundaries are determined, EF from the proposed trapezoid 

model can be derived with the following equation 
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                     (7.5) 

where TradI,max and TradI,min are the temperatures of the physical limits (see Fig. 7.1) of the 

trapezoid model. 

As demonstrated above, the rectangle framework of the NDVI-Trad space seems to 

be inadequate to reflect the theoretical warm limit of EF and therefore estimate EF. To 

that end, the subsequent discussion on scale effects of broadly defined triangle models is 

based on the triangle model proposed by Jiang and Islam (2001). The performance of the 

proposed trapezoid model and the triangle model will be compared and contrasted in 

order to illustrate the capacity of the trapezoid model to address possible scale 

dependencies of the triangle model.   
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7.3. Domain scale effects 

7.3.1. Four domains and three scenarios of limiting edges   

The domain scale effects of triangle models were systematically examined by 

applying them to variable domains covering the SMACEX site within the coverage of 

Landsat TM/ETM+ imagery (a swath of 185 km) for DOY 174 and 182, respectively. It 

is mentioned that our original interesting area of LE distribution was focused on the 

SMACEX site, i.e., rectangle 1 with an aspect ratio of 2:1 shown in Fig. 7.2 (domain 1). 

It is postulated that warm and cold edges of the NDVI-Trad space involved in the triangle 

models would vary with the domain being considered, even though these areas are 

relatively homogenous agricultural fields with low relief. To that end, we partitioned 

three other domains covering domain 1 and derived respective limiting edges and then 

EF with Eq. (7.3). Domains 2 and 3 are rectangles with the length and width being 

extended two times and four times relative to domain 1, respectively. Domain 4 is the 

entire coverage of the Landsat TM/ETM+ imageries acquired.  
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Figure 7.2 False color composite of Landsat TM imagery acquired on June 23, 2002, 
covering the SAMCEX site (domain 1), progressively enlarged domains 2 and 3, and the 
entire scene of the Landsat TM imagery (domain 4). 
 
 

Three scenarios of the combinations of limiting edges for each domain were 

formulated. Scenario 1 makes use of extreme Trad values (maximum and minimum) for 

each NDVI interval derived from each domain (outliers of the extremes are removed 

prior to subsequent processing) to perform regression analysis. The resulting limiting 

edges are also referred to as observed warm and cold edges of the fc-Trad space. This is a 

traditional way to determine limiting edges in triangle models (Jiang and Islam, 2001; 

Sandholt et al., 2002; Tang et al., 2010). Scenario 2 is a combination of the observed 

warm edge from scenario 1 and the cold edge formed by the average Ta (Tm) of domain 1. 
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Taking Tm as the cold edge is primarily motivated by obviating the difficulty of 

demarcating cold edges from the scatterplots of NDVI and Trad due to relatively scattered 

points over low Trad areas. Scenario 3 consists of the theoretical warm edge for domain 1 

and the cold edge of Tm for domain 1. It is indicated that scenario 1 would result in 

varying warm and cold edges for different domains being considered. The cold edge in 

scenario 2 remains invariant due to the use of a constant Tm for domain 1, but the warm 

edge may be varying with the domain. Scenario 3 comprises the theoretical limiting 

edges specific for domain 1, which do not vary with the domain. 

 

7.3.2. Variation in limiting edges and EF with domain 

Appropriately deriving limiting edges is a prerequisite for using triangle models and 

examining their domain scale effects. Figs. 7.3 and 7.4 illustrate scatterplots of NDVI 

and Trad derived from four domains with relevant limiting edges under three scenarios 

for DOY 174 and 182, respectively. Table 7.1 provides regression coefficients of the 

observed limiting edges for both days. It is apparent that the observed warm edges at 

different domain scales are relatively sharp; however, the observed cold edges are poorly 

demarcated, exhibiting many scattered points over areas with low NDVI and Trad values, 

and the warm edges are better defined than the cold edges. The poor demarcation of cold 

edges is particularly exacerbated for domain 4 for both days. It could be concluded that 

with an enlarging domain where a triangle model is applied, the likelihood of effectively 

or automatically delineating the cold edge deceases, in particular from the scatterplots of 

fc and Trad of high spatial resolution imagery or imagery with large coverage. In fact, 
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many applications pertaining to triangle models make use of moderate or low spatial 

resolution data, e.g., MODIS, NOAA-AVHRR, or MSG-SEVIRI imageries for a given 

study site, e.g., (Batra et al., 2006; Stisen et al., 2008; Tang et al., 2010; Venturini et al., 

2004; Wang et al., 2006), which may have circumvented the complexity arising from the 

use of high spatial resolution imageries, e.g., Landsat TM/ETM+. The difficulties of 

demarcating cold edges directly from the NDVI-Trad space are primarily contributed by 

extraneous effects of Trad retrievals for sloping terrain, shading, standing water, and 

clouds (Carlson, 2007; Gillies et al., 1997). This is also the reason why Tm was taken as 

the cold edge in Scenarios 2 and 3 to circumvent uncertainty in the derivation of cold 

edges. In general, the algorithms of deriving observed limiting edges involved in 

scenarios 1 and 2 seem to be effective for each domain except for the scatterplot of 

fc-Trad for domain 4 on DOY 174. In this case, we substituted the observed cold edge 

derived from domain 3 for the erroneous observed cold edge derived from domain 4 for 

further calculation and discussion. 
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Figure 7.3 Scatterplots of NDVI and Trad derived from Landsat TM imagery for four 
domains with relevant observed and theoretically derived limiting edges on DOY 174. 
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Figure 7.4 Scatterplots of NDVI and Trad derived from Landsat ETM+ imagery for four 
domains with relevant observed and theoretically derived limiting edges on DOY 182. 
 
 
Table 7.1 Regression coefficients of observed limiting edges derived from Landsat 
TM/ETM+ imageries for four domains around the SMACEX site on two study days in 
2002 

 

 

Warm edge  Cold edge 

slope intercept slope intercept Domain 

174 182 174 182 174 182 174 182 
1 -22.71 -30.71 51.1 59.9 -3.77 -1.80 30.5 31.5 
2 -27.97 -38.09 55.7 65.7 0.12 -0.42 26.7 29.2 
3 -23.64 -37.53 54.2 65.6 0.70 3.35 26.1 23.7 
4 -22.06 -35.45 59.5 68.1 0.70 1.35 26.1 21.6 



247 

 

We estimated EF with Eq. (7.3) and respective limiting edges for the four domains 

on DOY 174 and 182, respectively. The EF estimates were averaged over the estimated 

upwind source-area/footprint for each flux tower using the approach proposed by Li et al. 

(2008a), and then compared with measurements at each flux tower for both days. Figs. 

7.5 and 7.6 give the EF estimates and the corresponding measurements for four domains 

under three scenarios on DOY 174 and 182, respectively. Fig. 7.7 and Table 7.2 illustrate 

variations in the difference between the estimates and the measurements (MAPD and 

RMSD) with domain. Results indicate that on DOY 174, the triangle model under 

scenarios 1 and 2 significantly underestimates EF within domains 1-3, suggesting an 

MAPD on the order of 30~40% and 20~30% for scenarios 1 and 2, respectively. 

However, emplacement of the triangle model with the observed limiting edges (i.e., 

scenarios 1 and 2) within domain 4 can reproduce EF with acceptable accuracy, showing 

an MAPD of 15.5% and 3.04% for scenarios 1 and 2, respectively.  
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Figure 7.5 Comparison of EF estimates from triangle models and corresponding flux 
tower-based measurements for four domains on DOY 174 under three scenarios. 
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Figure 7.6 Comparison of EF estimates from triangle models and corresponding flux 
tower-based measurements for four domains on DOY 182 under three scenarios. 
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Figure 7.7 Variations in the mean absolute percentage difference (MAPD) and the root 
mean squire deviation (RMSD) between the EF estimates from triangle models under 
three scenarios and the measurements with domain for DOY 174 and 182, respectively.  
 

Table 7.2 Differences between the Landsat TM/ETM+-based EF estimates and the 
measurements, e.g., Root Mean Square Difference (RMSD), Mean Absolute Percentage 
Difference (MAPD), and Bias within four study domains at the SMACEX site on DOY 
174 and 182 under three scenarios of limiting edges 
 

DOY 174 DOY 182 
Domain Difference Scenario 

1 
Scenario 

2 
Scenario 

3 
Scenario 

1 
Scenario 

2 
Scenario 

3 

1 
RMSD 
MAPD 

Bias 

0.33 
45.98 
-0.33 

0.26 
35.69 
-0.25 

0.08 
10.03 
-0.07 

0.36 
44.81 
-0.34  

0.40 
50.19 
-0.38  

0.10 
11.55 
-0.09 

2 
RMSD 
MAPD 

Bias 

0.30 
41.81 
-0.30 

0.18 
24.02 
-0.17 

_ 
0.38 
49.02 
-0.37 

0.36 
46.26 
-0.35 

_ 

3 
RMSD 
MAPD 

Bias 

0.27 
37.76 
-0.27 

0.15 
19.26 
-0.13 

_ 
0.44 
57.08 
-0.43 

0.33 
41.83 
-0.32 

_ 

4 
RMSD 
MAPD 

Bias 

0.12 
15.50 
-0.11 

0.02 
3.04 
0.00 

_ 
0.38 
49.07 
-0.37 

0.19 
22.68 
-0.17 

_ 
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It is important to note that in general scenario 2 results in relatively higher accuracy 

than does scenario 1. In addition, with enlarging domains from 1-4, the discrepancies 

between the EF estimates and the measurements decrease consistently (see DOY 174 in 

Fig. 7). The shift of limiting edges with differing domains can explain these trends. First, 

for domain 1, EF was significantly underestimated with the triangle model and the 

observed limiting edges, which could be ascribed to a significant downward shift of the 

observed warm edge compared with the real physical limit, therefore resulting in the 

underestimated EF in terms of the monotonicity of Eq. (7.3). As the domain is enlarged, 

the observed warm edge tends to move upward (EF tends to increase) and the observed 

cold edge tends to move downward (EF tends to decrease) due to a broader range of 

surface wetness conditions, with the magnitude of variation in the warm edge being 

larger than that of the cold edge. Therefore, the underestimation of EF from the observed 

limiting edges within domain 1 is mitigated to varying degrees as the domain is enlarged 

under both scenarios 1 and 2. In particular, scenario 2 leads to a more efficient 

improvement in these discrepancies due to the use of a fixed cold edge for domain 1.  

For scenario 3, the theoretically determined limiting edges within domain 1 result in 

an MAPD of 10.03% and 11.5% and an RMSD of 0.08 and 0.10 on DOY 174 and 182, 

respectively. This demonstrates that the proposed method of deriving theoretical limits 

for domain 1 can essentially represent the real physical limits for domain 1, greatly 

improving the accuracy of EF estimates from the triangle model in combination with the 

observed limiting edges in terms of MAPD on the order of 30%~50% and RMSD on the 

order of 0.2~0.4. In particular, on DOY 182, the theoretical limiting edges resulted in the 
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highest accuracy in the four comparative domains than did the observed limiting edges. 

The retrieval accuracy of EF on DOY 182 under scenarios 1 and 2 did not result in a 

marked improvement as the domain was enlarged, suggesting an MAPD on the order of 

40~60% and 20~50% for the two scenarios, respectively. This might be introduced by a 

significantly higher real warm edge compared with the observed ones. Even domain 4, 

which is most likely to generate the highest observed warm edge, does not produce a 

reasonable warm edge and then EF estimates. 

It is particularly important to note that even though emplacement of the triangle 

model within domain 4 on DOY 174 under scenario 2 showed greater accuracy than 

scenario 3, it is not the general case in practical applications since absolutely clear 

satellite imageries are not often available. More importantly, the user cannot precisely 

determine on which domain scale the real physical limits exist and can be approximated 

by the observed limits. This corresponds to the case of DOY 182 that even though the 

entire imagery were used to deduce the real limiting edges, the EF estimates were still 

unacceptable.  

 

7.3.3. Summary of domain scale effects of triangle models 

It is concluded that triangle models would fail to generate EF with reasonable 

accuracy due to the absence of a broad range of soil wetness conditions. This situation 

would be exacerbated if the real limiting edges are beyond the range of soil wetness 

reflected by a scene of satellite imagery or a portion of imagery useable. Emplacement 

of triangle models within varying domains could result in varying observed limiting 
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edges and consequently EF estimates. In general, the observed warm edge tends to move 

upward as the domain is enlarged, and the cold edge tends to move in the opposite 

direction. The movement in the observed limiting edges can be ascribed to a broader 

range of soil wetness conditions as the domain is enlarged. To that end, deviations of the 

EF estimates at the smallest domain scale could be exacerbated or alleviated with an 

enlarged domain, depending on the magnitude of displacement of the observed edges 

relative to the real physical limits. The use of the triangle models raises a significant 

scale question associated with the domain of a study site being considered or the size of 

imagery being used. The use of theoretical boundary conditions of the fc-Trad space at a 

given study site with generally uniform meteorological fields can be a promising way to 

address the domain dependence intrinsic in triangle models.  

 

7.4. Resolution scale effects  

The performance of triangle models is largely dependent on their limiting edges of 

the NDVI-Trad space. The limiting edges are traditionally determined by the observed 

envelopes derived from the NDVI-Trad space or by the newly proposed method of 

deducing theoretical limits for a given study site. In addition to the domain where the 

triangle models are applied, varying spatial resolutions of satellite imagery would also 

result in differing Trad retrievals, observed limiting edges, and then EF/LE estimates. 

Here, DOY 182 permitted acquisition of one scene of clear Landsat ETM+ imagery and 

one scene of clear Terra-MODIS Trad covering the entire scene of the Landsat ETM+ 

imagery for almost the same overpass (Landsat ETM+: 10:42 a.m.; MODIS 11:00 a.m.). 
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This provides a unique opportunity to synthetically investigate differences in the 

observed limiting edges and the EF estimates due to differing spatial resolutions of 

satellite imagery. 

 

7.4.1. MODIS-based contextual relationship 

We derived limiting edges for domains 1-4 from the scatterplots of NDVI-Trad from 

MODIS imagery. The MODIS-based scatterplots (Fig. 7.8) were formed by MOD11_L2 

1 km-resolution LST products (including both LST and quality control images) and 

MOD13A2 1 km-resolution NDVI products (including both NDVI and quality control 

images). It is apparent that the MODIS-based scatterplots and their warm edges differ 

significantly from that from the Landsat ETM+ imagery for any of the study domains 

(with reference to Fig. 7.4). In general, the MODIS-based warm edges show gentler 

slopes and smaller intercepts than those derived from the Landsat ETM+ imagery and the 

theoretical warm edge (see Fig. 7.8 and Table 7.3). This is likely due to the disparate 

capacity of the two sensors in discriminating variations in Trad and soil wetness 

conditions. The 1-km resolution of thermal infrared bands of the MODIS sensor is not 

able to discriminate variations in Trad and soil moisture conditions at field scales (e.g., 

<500 m), resulting in reductions in the range of Trad and the generally downward 

displacement of the observed warm limits compared with that derived from the Landsat 

ETM+ imagery for each domain. As such, moderate or low spatial resolution sensors 

would not be able to capture the complete picture of the contextual relationship between 

NDVI and Trad, and the corresponding EF for a given study site. On the other hand, as 
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the domain is enlarged, the warm edges tend to move upward due to the inclusion of a 

broader range of soil wetness. Therefore, the deviation of observed warm edges from the 

real physical one is mitigated to a certain degree.  

 

 

Figure 7.8 Scatterplots of 16-day composite NDVI (MOD13A2 on DOY 177) and Trad 
(MOD11_L2 on DOY 182) for four domains with relevant observed and theoretically 
derived limiting edges. 
 
 
 
 
 
 
 
 
 
 
 
 



256 

Table 7.3 Regression coefficients of observed limiting edges derived from Landsat 
ETM+ imageries and MODIS-based Trad and NDVI products for four domains around the 
SMACEX site on two study days in 2002 

 

7.4.2. MODIS-based EF estimates 

Estimated EF from the triangle model in conjunction with the MODIS-based warm 

edge for each domain and the cold edge of Tm was compared with the corresponding flux 

tower measurements. It is noted that towers 151, 152, and 162 are located within the 

same pixel of the MODIS-based EF estimate. In this case, the EF estimate was compared 

with the averaged EF measurements within the pixel. There is, however, a scale issue of 

site representativeness to sensor pixel scale involved in this kind of comparison 

(McCabe and Wood, 2006). The source areas/footprint of flux towers are generally 

smaller than the pixel resolution of the MODIS-based EF estimates. This would 

introduce uncertainties in comparison and validation. Evaluation of the MODIS-based 

EF estimates still remains a big challenge in the operational ET estimation community. 

Given these limitations, the validation performed here would not be perfect. However, it  

 

 

Warm edge  Cold edge 

slope intercept slope intercept Domain 
Landsat 

ETM MODIS Landsat 
ETM MODIS Landsat 

ETM MODIS Landsat 
ETM MODIS

1 -30.71 -3.44 59.9 40.4 -1.80 -6.68 31.5 39.7 
2 -38.09 -2.15 65.7 39.9 -0.42 -6.76 29.2 37.5 
3 -37.53 -8.27 65.6 45.2 3.35 -1.79 23.7 32.6 
4 -35.45 -2.71 68.1 41.6 1.35 -0.41 21.6 29.4 
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might also provide valuable information about error propagation and the performance of 

the triangle model.  

Results (Fig. 7.9) indicate that the MODIS-based EF estimates from the triangle 

model in combination with the observed warm edges are degraded compared with that 

from the Landsat ETM+ imagery, showing a bias on the order of -0.4~-0.5, an MAPD on 

the order of 50~70%, and an RMSD on the order of 0.4~0.5 for the four domains. The 

EF was significantly underestimated. These differences are substantially larger than that 

from the Landsat ETM+ data. Nonetheless, the triangle model with the theoretical warm 

edge results in an MAPD of 25.53% and an RMSD of 0.22, which are the smallest in the 

results from all observed warm edges within the four domains. This demonstrates that 

the use of the theoretical limiting edges would provide an opportunity to constrain in 

part errors arising from the deviation of the observed limiting edges from the realistic 

ones due to the use of moderate and low spatial resolution satellite sensors.   
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Figure 7.9 MODIS-based EF estimates and corresponding EF measurements for four 
domains on DOY 182, red circles represent EF estimates from the theoretical warm edge 
and the cold edge of average air temperature of domain 1 (Tm), and black symbols 
represent EF estimates from the observed warm edge and the cold edge formed by Tm. 

 

Fig. 7.10 and Table 7.4 show variations in MAPD and RMSD between the 

MODIS-based EF estimates and the corresponding measurements with domain. Results 

suggest that as the domain is enlarged, MAPD and RMSD consistently decrease. 

However, these differences are still considerably larger than those of the Landsat 

ETM+-based estimates for each domain. The mitigation of deviation with enlarging 

domains is a result of a rising warm edge of the MODIS-based NDVI-Trad space as 

shown in Fig. 7.8. On the other hand, even though applying the triangle model to a 

relatively large domain seems to result in ameliorated outputs observed at a handful of 

flux towers, the intrinsic assumption of similar radiation energy for the same NDVI/fc 
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class in the triangle models would not be satisfied. This would result in distorted EF and 

LE distributions across the entire scene.  

 

 

Figure 7.10 Variations in MAPD and RMSD between the MODIS-based EF estimates 
and the corresponding measurements with domain on DOY 182. 
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Table 7.4 Differences between the MODIS-based EF estimates and the measurements, 
e.g., RMSD, MAPD, and bias within four study domains at the SMACEX site on 182 
under three scenarios of limiting edges 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

7.4.3. Coincident good EF estimates from triangle models 

As illustrated in Sections 7.3, 7.4.1, and 7.4.2, triangle models suffer significantly 

from domain scale effects and resolution scale effects due to the dependence of their 

limiting edges on the domain being considered or the resolution of imagery being used. 

However, published studies associated with triangle models seem to report promising 

EF/LE results at a handful tower sites. We suggest that there is a possibility that can 

result in coincident good EF estimates from the triangle models. Fig. 7.11 shows the 

MODIS-based scatterplot of NDVI-Trad for domain 1 with the observed warm and cold 

edges. We simulated EF with the triangle model in combination with both observed 

limiting edges. Estimated EF from this model set up resulted in an MAPD of 27.49% 

and an RMSD of 0.22, which appears to be better than the results from the use of the 

theoretical cold edge for domain 1 (Tm) and the observed warm edge (MAPD of 69.06% 

and RMSD of 0.54). This is primarily because even though the observed warm edge is 

DOY 182 Domain Difference Scenario 1 Scenario 2 Scenario 3 

1 
RMSD 
MAPD 

Bias 

0.28 
29.78 
-0.12 

0.54 
69.06 
-0.53 

0.22 
25.53 
-0.20 

2 
RMSD 
MAPD 

Bias 

0.36 
43.20 
-0.33 

0.50 
63.32 
-0.48 

_ 

3 
RMSD 
MAPD 

Bias 

0.36 
45.00 
-0.35 

0.44 
55.8 
-0.43 

_ 

4 
RMSD 
MAPD 

Bias 

0.42 
52.70 
-0.40 

0.41 
51.48 
-0.40 

_ 
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significantly underestimated, the observed cold edge is significantly overestimated 

compared with the theoretical cold edge. The underestimation of EF due to the 

downward shift of the warm edge and the overestimation of EF due to the upward shift 

of the cold edge seem to offset each other, thereby resulting in seemingly promising 

results at a handful of flux towers in some cases.  

 

 

Figure 7.11 MODIS-based scatterplot of NDVI-Trad for domain 1 with observed and 
theoretically derived limiting edges on DOY 182. 
 
 

It is particularly important to note that the promising results at a handful of flux 

towers do not necessarily mean generally reasonable EF/LE retrievals throughout a 

scene. In extreme cases, pixels on the observed warm and cold edges are mistakenly  
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taken as hydrologic limits (i.e., for the warm edge with the largest water stress and for 

the cold edge EF=1); and EF for pixels in the vicinity of the two pseudo observed 

limiting edges are overestimated (near cold edge) or underestimated (near the warm 

edge). Only pixels located around the middle portion of the Trad distribution would show 

reasonable results as that from the theoretical limiting edges.  

If flux towers are not representatively distributed over a study site (e.g., across a 

range of soil wetness and in particular including extreme Trad surfaces) or primarily 

concentrate on the middle portion of the Trad distribution, i.e., the moderate soil moisture 

conditions, the resulting EF estimates would also be able to show reasonable accuracy. 

Fig. 7.12 gives the MODIS-based Trad distribution for domain 1 and remotely sensed Trad 

values at flux towers, showing that these Trad values are essentially concentrated on the 

middle portion of the Trad distribution. This means that EF estimated from the observed 

limiting edges at these flux towers was probably coincidently reasonable. 
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Figure 7.12 MODIS-based Trad distribution (blue bars with a bin size of 0.5 oC) for 
domain 1 and remotely sensed Trad values at flux towers (red bars) on DOY 182. 
 
 

This is the reason why validation against a number of flux towers representatively 

distributed over a range of land covers and soil moisture conditions plays a critical role 

in the evaluation of remote sensing-based ET modeling results and further applications. 

However, validation of remote sensing-based EF and ET estimates over large 

heterogeneous areas still remains a big challenge for the operational ET estimation 

community due to expensive instruments and other factors. Our simulations and analyses 

have unraveled one possibility of the coincidently promising results produced at a 

handful of flux towers in the use of the triangle models. This further underscores the 

relevance of validation of remote sensing-based ET.  
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7.4.4. Summary of resolution scale effects 

Different sensors onboard a variety of satellite platforms bear varying capacity to 

discriminate the land surface, therefore resulting in different spatial resolutions of 

imageries, in particular for the thermal infrared bands. For a given study site, the use of 

imageries of different spatial resolutions can result in largely different scatterplots of 

NDVI-Trad and consequently different observed limiting edges. This would probably 

result in different magnitudes and distributions of EF and ET estimates. In general, the 

use of moderate or low spatial resolution satellite sensors would lose more information 

on variations in Trad and in particular hydrologic extremes compared with the high 

resolution imagery. To that end, the triangle models suffer somewhat from the resolution 

scale effects. The use of theoretical boundaries of the trapezoid framework could 

alleviate the resolution scale effects to a certain degree. On the other hand, coincident 

good results from triangle models in combination with both observed warm and cold 

edges would take place for pixels with moderate Trad values across the entire scene, 

where flux towers are located.  

 

7.5. Conclusions 

Amongst a series of satellite-based ET models, the triangle models are unique in 

interpreting the contextual relationship between NDVI/fc and Trad to deduce EF and 

LE/ET. However, published studies often show consistent underestimation or 

overestimation of EF/ET from the triangle models. In addition, the triangle models are 

rarely combined with high spatial resolution imageries (e.g., Landsat TM/ETM+) to 
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estimate EF/ET. Furthermore, for some algorithms, their outputs and performance can be 

dependent on the domain of a study site being considered and the resolution of satellite 

imagery being used.  

Motivated by interpreting the consistent underestimation or overestimation of 

EF/ET by triangle models from a standpoint of model physics and scale effects and 

testing out the utility of triangle models in combination with high spatial resolution 

imageries, we performed a comprehensive analysis of the domain and resolution 

dependencies of triangle models by applying them to areas with progressively growing 

domains and to Landsat ETM+ and MODIS imageries, respectively, at the SMACEX site 

in central Iowa, U.S., in 2002. In addition, the trapezoid framework developed in 

Chapter IV was used to restrain the domain and resolution dependencies of the triangle 

models. The major findings are as follows: 

(1) With growing domains, the observed warm edge tends to move upward 

(extreme high Trad values increase) and the observed cold edge tends to move downward 

(extreme low Trad values decrease). The triangle models can be domain-dependent.  

(2) Discrepancies in EF estimates from triangle models for a given study site can be 

alleviated by selecting a larger domain, showing a broader range of soil wetness 

conditions. This effect is more prominent under the condition of taking average air 

temperature for the study site as the cold edge of the NDVI-Trad space. The discrepancies 

between the EF estimates from triangle models and the corresponding measurements for 

a small domain can be alleviated to a certain degree as the domain is enlarged.  

(3) The use of moderate or low spatial resolution satellite imageries could fail to 
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discriminate extreme soil wetness conditions and consequently to detect EF for a given 

study site. The triangle models can be resolution-dependent. The use of high spatial 

resolution sensors may alleviate the resolution scale effect to a certain degree.  

(4) The realistic boundaries of the NDVI-Trad space constitute neither a triangle, nor 

a rectangle, but a trapezoid. Given a study site with a relatively small domain, the 

triangle models can still be applicable by incorporating realistic physical limits.  

(5) The derived physical limits can restrain the domain and resolution dependencies 

of triangle models to a certain degree, making the triangle models applicable to small 

areas.  

(6) The use of observed warm and cold edges may coincidently result in good EF 

estimates for pixels with moderate Trad values across the scene due to an underestimation 

of the warm edge, tending to underestimate EF, and an overestimation of the cold edge, 

tending to overestimate EF. The two effects offset each other. Distorted EF estimates 

may occur over areas close to the observed edges. 
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CHAPTER VIII 

CONCLUSIONS, LIMITATIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

 

8.1. Conclusions 

Satellite remote sensing has provided an unprecedented opportunity to capture 

surface properties and information on heat and water transfer at the interface between the 

land surface and the lower atmosphere. A range of models which primarily incorporate 

remotely sensed land surface temperature (LST)/radiative temperature (Trad) and 

Vegetation Index (VI) have been developed over the past three decades, with the aim to 

provide spatially consistent and temporally continuous ET estimates. There are, however, 

large grey areas in these modeling schemes and techniques. The dissertation research 

presented in Chapters II-VII primarily focuses on improving the spatial and temporal 

representation and retrieval accuracy of ET from satellite imagery and modeling. In 

general, the overall objective is achieved through two aspects: improving the key 

component in the energy balance equation and improving the derivation of boundary 

conditions of latent heat flux (LE)/ET involved in satellite-based models. 

Aiming at improving the key variable in determining daily ET estimation, daily net 

radiation, in Chapter II, a model depicting the geometric relationship between the 

incident radiation and the sloping land surface was adopted to compute available 

shortwave radiation for sloping land surfaces throughout a day. In addition, four 

observations of MODIS-based LST products were tentatively used to estimate daily net 
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longwave radiation. Improvements in the two components of daily net radiation have 

shown to effectively improve the overall representation of daily net radiation for ET 

estimation at large heterogeneous areas on clear sky days. In resulting daily net radiation 

maps, differences in daily net radiation retrievals for different slopes, azimuths, and 

dates are explicitly shown, which restore the realistic heterogeneity in surface radiative 

energy status and consequently improves ET estimation at a daily timescale. 

Satellite-based ET models have been constrained to work under cloud-free days, 

which significantly limit application of satellite-based ET estimates to a variety of 

disciplines and areas. Chapter III provides a new integrated technique of a continuous 

monitoring capability of ET by combining a satellite-based ET model with a large-scale 

feedback model (GG). Conventional temporal extrapolation/interpolation techniques 

based on evaporative fraction or crop coefficient estimates on cloud-free days do not 

seem to conserve the temporal characteristics of the complementary relationship (CR) 

between the potential/pan ET and the terrestrial actual ET. The proposed technique can 

provide spatially distributed and temporal consistent ET estimates by a few scenes of 

usable satellite imageries and routinely observed weather data due to the incorporation 

of strengths of the two methodologies. More importantly, the ET time series from the 

proposed approach can be indicative of CR at the Baiyangdian watershed in North China 

where CR has been shown valid. This attribute lends credence to the integration 

approach. Water budget calculations at an annual scale performed in the watershed 

suggested that the ET time series from the proposed technique has the highest accuracy 

compared with evaporative fraction and crop coefficient methods. 
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Chapter IV gives a new Two-source Trapezoid Model for ET (TTME) based on 

deriving theoretical boundaries of EF and the concept of soil surface moisture 

availability isopleths. Unlike other one-source models which require determination of 

boundary conditions of EF/LE by the operator (e.g., extreme pixels in SEBAL and warm 

and cold edges in triangle models), the TTME algorithm utilizes and derives theoretical 

boundary conditions, which has shown to greatly reduce subjectivity involved in these 

models. In addition, Trad is decomposed into temperature components for soil and 

vegetation (Tc and Ts) based on the isopleths of soil surface moisture availability 

superimposed into the trapezoid space. Vegetation transpiration and soil surface 

evaporation can subsequently parameterize without computing networks of surface, 

canopy, and aerodynamic resistances as Two-source Energy Balance (TSEB). TTME 

was applied to the SMACEX site in central Iowa, U.S., on three Landsat TM/ETM+ 

imagery acquisition days in 2007. Results indicate that TTME shows a comparable 

accuracy of RMSD within 10% for EF and LE with TSEB but requires fewer data. 

Neither the one-source models applied to the same study site showed a higher accuracy 

of EF/LE than TTME and TSEB nor can they discriminate vegetation transpiration from 

soil surface evaporation. 

Most spatial variability models (e.g., SEBAL, METRIC, and triangle models) are 

constrained by boundary conditions of EF/ET to infer EF/ET pixels with moderate Trad 

and fc states. Unfortunately, these boundary conditions should have to be visually 

identified/directly derived from satellite imageries. Different sizes and spatial resolutions 

of satellite imageries being used can result in varying boundary conditions, which is 
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even exacerbated by the subjectivity of the operator. Motivated by investigating the 

resolution and domain dependences of two widely used one-source models, SEBAL and 

the triangle model, and making attempt to address these scale dependencies, systematic 

analyses of the dependences of SEBAL and triangle models on input, domain size, and 

spatial resolution are presented in Chapters V and VII, respectively. Results show that 

these models are both domain and resolution dependent. SEBAL is most sensitive to 

temperatures of two extreme pixels and the available energy for the hot extreme. The 

two extremes show a similar influence on the magnitude and distribution of LE and ET 

retrievals, i.e., with increasing the temperature of the hot/cold extreme, the LE estimates 

would be increased and vice versa. 

Chapter VI develops a modified SEBAL model (M-SEBAL), which does not 

involve visually selected extreme pixels by the operator and assumes that coefficients of 

the linear relationship between the temperature difference and Trad in the H algorithm of 

SEBAL vary with fc but remain invariant within the same fc. Results suggest that the 

M-SEBAL model is capable of reproducing EF and LE with an MAPD of 6.3% and 

8.9%, respectively, at the SMACEX site, and significantly reducing the subjectivity in 

selection of extremes.  

In Chapter VII, the introduction of the trapezoid framework developed in Chapter 

IV has shown to be able to effectively restrain uncertainties/errors of LE/EF retrievals 

from triangle models when applied to the SMACEX site. The domain and resolution 

dependencies involved can be alleviated to a certain extent. 

Overall, the spatial representation and accuracy of ET retrievals from satellite 
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remote sensing have been improved due to improvements in the key variable, daily net 

radiation, and the derivation of boundary conditions (extreme pixels/edges) of spatial 

variability models (i.e., SEBAL and triangle models). In addition, their domain and 

spatial resolution dependencies have been constrained to varying degrees. The proposed 

TTME has the potential to reproduce soil surface evaporation and vegetation 

transpiration with reasonable accuracy using fewer data than TSEB. The ET time series 

modeling system, consisting of TTME, a new algorithm of computing daily net radiation, 

and the GG model, seems to be capable of reproducing ET time series with reasonable 

temporal and spatial distribution on a daily timescale. 

 

8.2. Limitation of research 

Validation plays a critically fundamental role in model development. In particular, 

validating satellite-based flux estimates at pixel scales ranging 102~103 m poses a big 

challenge in the development of satellite-based ET models. LE and ET measurements at 

pixel scales ranging between 102~103 from eddy covariance techniques seem to be 

controversial. The model outputs of H and LE can be interpreted by flux tower 

measurements after forcing closure by the Bowen ratio method or the energy balance 

method. There are a ~20 W m-2 difference in LE measurements between the two closure 

methods. Other ground-based measurement techniques also involve uncertainties, e.g., a 

large aperture scintillometer (LAS) tends to underestimate H. The difficulty of validating 

LE retrievals over heterogeneous landscapes and large river basins would be further 

aggravated. To that end, uncertainties in the “ground truth” of surface fluxes should be 
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taken into account when performing model validation and comparison. 

Only after going through comprehensive validation under a range of climatic, 

environmental, meteorological, and surface wetness circumstances can a model have the 

potential to be used and popularized. Given the availability of ground-based surface flux 

measurements, the new algorithm of daily net radiation and the integration method to 

produce ET time series were validated at a watershed having an area of 312,500 km2 

comprising plains and mountains in relatively equal proportions in the semi-humid 

climatic zone in North China. The modeling scheme of daily net longwave radiation can 

only be effective on cloud-free days. The daily net shortwave radiation estimates under 

rugged terrain conditions from the proposed algorithm warrants further validation based 

on ground radiation measurements. Second, the annual ET estimates from the integration 

technique appear reasonable, and the temporal distribution of the ET time series 

exhibited complementary relationship at watershed scales. However, the daily ET 

estimates at pixel scales from the proposed integration method under cloudy days will be 

further validated.  

The newly developed TTME model, and the framework to restrain the domain and 

resolution dependencies of SEBAL and the triangle model, were validated in a small 

watershed (~100 km2) at the SMACEX site (670 km2) dominated by agricultural crops 

(soybean and corn) in a humid climatic zone on three Landsat TM/ETM+ acquisition 

days during the period from mid-June through early July in 2002. This set-up provides 

generally high fc and large ET conditions. The robustness in satellite-based ET models 

would be manifested under dry and low fc conditions. As illustrated in Section 6.3.4, fc 
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values at 12 flux towers were generally larger than 0.5, which virtually provided a model 

set-up of relatively high fc. Section 4.5.3 has illustrated the limitations of the proposed 

model arising from three important assumptions: linear combination of component 

temperatures, the use of areal averaged Ta to be the cold edge of the lower boundary 

condition of the model, and generally homogenous meteorological conditions. The 

applicability of TTME under the dry environments and arid/semi-arid climatic 

conditions will be further investigated. The data set of the Southern Great Plains in the 

U.S. and the Heihe River basin in northwestern China would be acquired for validating 

the TTME algorithm over large areas and the arid environments.  

 

8.3. Recommendations of future research 

With the experience and insight gained from the studies, the following perspectives 

are recommended for future research: 

(1) Data assimilation may offer a potential way to combine the 

complementary information from measurements and models of the Earth 

system into an optimal estimate of the geophysical field of interest. In 

doing so, data assimilation systems interpolate and extrapolate remote 

sensing observations and provide complete estimates at the scales required 

by the application-both in time and spatial dimensions (Reichle, 2008). 

Data assimilation techniques would also provide an opportunity to more 

effectively incorporate remotely sensed ET estimates into hydrologic 

modeling and make other hydrologic processes and states have more 
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reasonable magnitude and representation. 

(2) Downscaling of ET estimates from coarser spatial resolution images to 

finer ones will be further investigated so as to provide more useful ET 

estimates at field scales by operational satellite data, e.g., MODIS, NOAA, 

and GOES. The core issue of downscaling of satellite-based ET estimates 

lies in the downscaling of coarser LST retrievals. Information on subpixel 

variations in land cover, VI, and terrain would be useful for downscaling 

coarser LST retrievals.  
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