1,600 research outputs found

    Systemic Risk and Default Clustering for Large Financial Systems

    Full text link
    As it is known in the finance risk and macroeconomics literature, risk-sharing in large portfolios may increase the probability of creation of default clusters and of systemic risk. We review recent developments on mathematical and computational tools for the quantification of such phenomena. Limiting analysis such as law of large numbers and central limit theorems allow to approximate the distribution in large systems and study quantities such as the loss distribution in large portfolios. Large deviations analysis allow us to study the tail of the loss distribution and to identify pathways to default clustering. Sensitivity analysis allows to understand the most likely ways in which different effects, such as contagion and systematic risks, combine to lead to large default rates. Such results could give useful insights into how to optimally safeguard against such events.Comment: in Large Deviations and Asymptotic Methods in Finance, (Editors: P. Friz, J. Gatheral, A. Gulisashvili, A. Jacqier, J. Teichmann) , Springer Proceedings in Mathematics and Statistics, Vol. 110 2015

    Study of new rare event simulation schemes and their application to extreme scenario generation

    Get PDF
    This is a companion paper based on our previous work on rare event simulation methods. In this paper, we provide an alternative proof for the ergodicity of shaking transformation in the Gaussian case and propose two variants of the existing methods with comparisons of numerical performance. In numerical tests, we also illustrate the idea of extreme scenario generation based on the convergence of marginal distributions of the underlying Markov chains and show the impact of the discretization of continuous time models on rare event probability estimation

    Study of new rare event simulation schemes and their application to extreme scenario generation

    Get PDF
    This is a companion paper based on our previous work [ADGL15] on rare event simulation methods. In this paper, we provide an alternative proof for the ergodicity of shaking transformation in the Gaussian case and propose two variants of the existing methods with comparisons of numerical performance. In numerical tests, we also illustrate the idea of extreme scenario generation based on the convergence of marginal distributions of the underlying Markov chains and show the impact of the discretization of continuous time models on rare event probability estimation

    Stochastic finite differences and multilevel Monte Carlo for a class of SPDEs in finance

    Get PDF
    In this article, we propose a Milstein finite difference scheme for a stochastic partial differential equation (SPDE) describing a large particle system. We show, by means of Fourier analysis, that the discretisation on an unbounded domain is convergent of first order in the timestep and second order in the spatial grid size, and that the discretisation is stable with respect to boundary data. Numerical experiments clearly indicate that the same convergence order also holds for boundary-value problems. Multilevel path simulation, previously used for SDEs, is shown to give substantial complexity gains compared to a standard discretisation of the SPDE or direct simulation of the particle system. We derive complexity bounds and illustrate the results by an application to basket credit derivatives

    A Sequential Monte Carlo Approach for the pricing of barrier option in a Stochastic Volatility Model

    Get PDF
    In this paper we propose a numerical scheme to estimate the price of a barrier option in a general framework. More precisely, we extend a classical Sequential Monte Carlo approach, developed under the hypothesis of deterministic volatility, to Stochastic Volatility models, in order to improve the efficiency of Standard Monte Carlo techniques in the case of barrier options whose underlying approaches the barriers. The paper concludes with the application of our procedure to two case studies in a SABR model

    Stochastic Evolution Equations in Portfolio Credit Modelling

    Full text link

    Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models

    Get PDF
    In this paper we assume a multivariate risk model has been developed for a portfolio and its capital derived as a homogeneous risk measure. The Euler (or gradient) principle, then, states that the capital to be allocated to each component of the portfolio has to be calculated as an expectation conditional to a rare event, which can be challenging to evaluate in practice. We exploit the copula-dependence within the portfolio risks to design a Sequential Monte Carlo Samplers based estimate to the marginal conditional expectations involved in the problem, showing its efficiency through a series of computational examples

    Critical Market Crashes

    Full text link
    This review is a partial synthesis of the book ``Why stock market crash'' (Princeton University Press, January 2003), which presents a general theory of financial crashes and of stock market instabilities that his co-workers and the author have developed over the past seven years. The study of the frequency distribution of drawdowns, or runs of successive losses shows that large financial crashes are ``outliers'': they form a class of their own as can be seen from their statistical signatures. If large financial crashes are ``outliers'', they are special and thus require a special explanation, a specific model, a theory of their own. In addition, their special properties may perhaps be used for their prediction. The main mechanisms leading to positive feedbacks, i.e., self-reinforcement, such as imitative behavior and herding between investors are reviewed with many references provided to the relevant literature outside the confine of Physics. Positive feedbacks provide the fuel for the development of speculative bubbles, preparing the instability for a major crash. We demonstrate several detailed mathematical models of speculative bubbles and crashes. The most important message is the discovery of robust and universal signatures of the approach to crashes. These precursory patterns have been documented for essentially all crashes on developed as well as emergent stock markets, on currency markets, on company stocks, and so on. The concept of an ``anti-bubble'' is also summarized, with two forward predictions on the Japanese stock market starting in 1999 and on the USA stock market still running. We conclude by presenting our view of the organization of financial markets.Comment: Latex 89 pages and 38 figures, in press in Physics Report
    corecore