457 research outputs found

    A Role-Based Approach for Orchestrating Emergent Configurations in the Internet of Things

    Full text link
    The Internet of Things (IoT) is envisioned as a global network of connected things enabling ubiquitous machine-to-machine (M2M) communication. With estimations of billions of sensors and devices to be connected in the coming years, the IoT has been advocated as having a great potential to impact the way we live, but also how we work. However, the connectivity aspect in itself only accounts for the underlying M2M infrastructure. In order to properly support engineering IoT systems and applications, it is key to orchestrate heterogeneous 'things' in a seamless, adaptive and dynamic manner, such that the system can exhibit a goal-directed behaviour and take appropriate actions. Yet, this form of interaction between things needs to take a user-centric approach and by no means elude the users' requirements. To this end, contextualisation is an important feature of the system, allowing it to infer user activities and prompt the user with relevant information and interactions even in the absence of intentional commands. In this work we propose a role-based model for emergent configurations of connected systems as a means to model, manage, and reason about IoT systems including the user's interaction with them. We put a special focus on integrating the user perspective in order to guide the emergent configurations such that systems goals are aligned with the users' intentions. We discuss related scientific and technical challenges and provide several uses cases outlining the concept of emergent configurations.Comment: In Proceedings of the Second International Workshop on the Internet of Agents @AAMAS201

    Model-driven engineering techniques and tools for machine learning-enabled IoT applications: A scoping review

    Get PDF
    This paper reviews the literature on model-driven engineering (MDE) tools and languages for the internet of things (IoT). Due to the abundance of big data in the IoT, data analytics and machine learning (DAML) techniques play a key role in providing smart IoT applications. In particular, since a significant portion of the IoT data is sequential time series data, such as sensor data, time series analysis techniques are required. Therefore, IoT modeling languages and tools are expected to support DAML methods, including time series analysis techniques, out of the box. In this paper, we study and classify prior work in the literature through the mentioned lens and following the scoping review approach. Hence, the key underlying research questions are what MDE approaches, tools, and languages have been proposed and which ones have supported DAML techniques at the modeling level and in the scope of smart IoT services.info:eu-repo/semantics/publishedVersio

    A review of research works on supervised learning algorithms for SCADA intrusion detection and classification

    Get PDF
    Abstract: Supervisory Control and Data Acquisition (SCADA) systems play a significant role in providing remote access, monitoring and control of critical infrastructures (CIs) which includes electrical power systems, water distribution systems, nuclear power plants, etc. The growing interconnectivity, standardization of communication protocols and remote accessibility of modern SCADA systems have contributed massively to the exposure of SCADA systems and CIs to various forms of security challenges. Any form of intrusive action on the SCADA modules and communication networks can create devastating consequences on nations due to their strategic importance to CIs’ operations. Therefore, the prompt and efficient detection and classification of SCADA systems intrusions hold great importance for national CIs operational stability. Due to their well-recognized and documented efficiencies, several literature works have proposed numerous supervised learning techniques for SCADA intrusion detection and classification (IDC). This paper presents a critical review of recent studies whereby supervised learning techniques were modelled for SCADA intrusion solutions. The paper aims to contribute to the state-of-the-art, recognize critical open issues and offer ideas for future studies. The intention is to provide a research-based resource for researchers working on industrial control systems security. The analysis and comparison of different supervised learning techniques for SCADA IDC systems were critically reviewed, in terms of the methodologies, datasets and testbeds used, feature engineering and optimization mechanisms and classification procedures. Finally, we briefly summarized some suggestions and recommendations for future research works

    Weaving Cognition into the Internet-of-Things: Application to Water Leaks

    Get PDF
    Despite the growing interest in the Internet-of-Things, many organizations remain reluctant to integrating things into their business processes. Different reasons justify this reluctance including things’ limited capabilities to act upon the cyber-physical environment in which they operate. To address this specific limitation, this paper examines thing empowerment with cognitive capabilities that would make them for instance, selective of the forthcoming business processes in which they would participate. The selection is based on things’ restrictions like limitedness and goals to achieve like improved reputation. For demonstration and implementation purposes, water leaks are used as a case study. A BPEL-based business process driving the fixing of water leaks is implemented involving different cognitive-empowered things like moisture sensor

    The Four-C Framework for High Capacity Ultra-Low Latency in 5G Networks: A Review

    Get PDF
    Network latency will be a critical performance metric for the Fifth Generation (5G) networks expected to be fully rolled out in 2020 through the IMT-2020 project. The multi-user multiple-input multiple-output (MU-MIMO) technology is a key enabler for the 5G massive connectivity criterion, especially from the massive densification perspective. Naturally, it appears that 5G MU-MIMO will face a daunting task to achieve an end-to-end 1 ms ultra-low latency budget if traditional network set-ups criteria are strictly adhered to. Moreover, 5G latency will have added dimensions of scalability and flexibility compared to prior existing deployed technologies. The scalability dimension caters for meeting rapid demand as new applications evolve. While flexibility complements the scalability dimension by investigating novel non-stacked protocol architecture. The goal of this review paper is to deploy ultra-low latency reduction framework for 5G communications considering flexibility and scalability. The Four (4) C framework consisting of cost, complexity, cross-layer and computing is hereby analyzed and discussed. The Four (4) C framework discusses several emerging new technologies of software defined network (SDN), network function virtualization (NFV) and fog networking. This review paper will contribute significantly towards the future implementation of flexible and high capacity ultra-low latency 5G communications

    Water transport information security trainer concept

    Get PDF
    The article considers the relevance of using game simulators in distance learning of information security students in water transport. The use of information security simulators for educational purposes ensures the consolidation of theoretical knowledge and their application in practice. It is very important that simulators, on the one hand, be close to real conditions, on the other hand, work on them is interesting and convenient for the student. The game mechanics used in the simulator are described. An example of calculating the risk of an emergency on a ship is considered, options for using calculations in the simulator are proposed. The concept of the simulator itself is described and the concept of the interface is developed

    Middleware Solutions for the Internet of Things: A Survey

    Get PDF
    The Internet of Things (IoT), along with its wider variants including numerous technologies, things, and people: the Internet of Everything (IoE) and the Internet of Nano Things (IoNT), are considered as part of the Internet of the future and ubiquitous computing allowing the communication among billions of smart devices and objects, and have recently drawn a very significant research attention. In these approaches, there are varieties of heterogeneous devices empowered by new capabilities and interacting with each other to achieve specific applications in different domains. A middleware layer is therefore required to abstract the physical layer details of the smart IoT devices and ease the complex and challenging task of developing multiple backend applications. In this chapter, an overview of IoT technologies, architecture, and main applications is given first and then followed by a comprehensive survey on the most recently used and proposed middleware solutions designed for IoT networks. In addition, open issues in IoT middleware design and future works in the field of middleware development are highlighted

    MOCDroid: multi-objective evolutionary classifier for Android malware detection

    Get PDF
    Malware threats are growing, while at the same time, concealment strategies are being used to make them undetectable for current commercial Anti-Virus. Android is one of the target architectures where these problems are specially alarming, due to the wide extension of the platform in different everyday devices.The detection is specially relevant for Android markets in order to ensure that all the software they offer is clean, however, obfuscation has proven to be effective at evading the detection process. In this paper we leverage third-party calls to bypass the effects of these concealment strategies, since they cannot be obfuscated. We combine clustering and multi-objective optimisation to generate a classifier based on specific behaviours defined by 3rd party calls groups. The optimiser ensures that these groups are related to malicious or benign behaviours cleaning any non-discriminative pattern. This tool, named MOCDroid, achieves an ac-curacy of 94.6% in test with 2.12% of false positives with real apps extracted from the wild, overcoming all commercial Anti-Virus engines from VirusTotal

    MOCDroid: multi-objective evolutionary classifier for Android malware detection

    Get PDF
    Malware threats are growing, while at the same time, concealment strategies are being used to make them undetectable for current commercial Anti-Virus. Android is one of the target architectures where these problems are specially alarming, due to the wide extension of the platform in different everyday devices.The detection is specially relevant for Android markets in order to ensure that all the software they offer is clean, however, obfuscation has proven to be effective at evading the detection process. In this paper we leverage third-party calls to bypass the effects of these concealment strategies, since they cannot be obfuscated. We combine clustering and multi-objective optimisation to generate a classifier based on specific behaviours defined by 3rd party calls groups. The optimiser ensures that these groups are related to malicious or benign behaviours cleaning any non-discriminative pattern. This tool, named MOCDroid, achieves an ac-curacy of 94.6% in test with 2.12% of false positives with real apps extracted from the wild, overcoming all commercial Anti-Virus engines from VirusTotal
    • …
    corecore