467 research outputs found

    Assessing the Limitations and Capabilities of Lidar and Landsat 8 to Estimate the Aboveground Vegetation Biomass and Cover in a Rangeland Ecosystem Using a Machine Learning Algorithm

    Get PDF
    Remote sensing based quantification of semiarid rangeland vegetation provides the large scale observations required for monitoring native plant distribution, estimating fuel loads, modeling climate and hydrological dynamics, and measuring carbon storage. Fine scale 3-dimensional vertical structural information from airborne lidar and improved signal to noise ratio and radiometric resolution of recent satellite imagery provide opportunities for refined measurements of vegetation structure. In this study, we leverage a large number of time series Landsat 8 vegetation indices and lidar point cloud - based vegetation metrics with ground validation for scaling aboveground shrub and herb biomass and cover from small scale plot to large, regional scales in the Morley Nelson Snake River Birds of Prey National Conservation Area (NCA), Idaho. The Landsat vegetation indices were trained and linked to in-situ measurements (n = 141) with the random forest regression to impute vegetation biomass and cover across the NCA. We also validated our model with an independent dataset (n = 44), explaining up to 63% and 53% of variation in shrub cover and biomass, respectively. Forty six of the in-situ plots were used in a model to compare the performance of lidar and Landsat data in estimating vegetation characteristics. Our results demonstrate that Landsat performs better in estimating both herb (R2 ~ 0.60) and shrub cover (R2 ~ 0.75) whereas lidar performs better in estimating shrub and total biomass (R2 ~ 0.75 and 0.68, respectively). Using the lidar only model, we demonstrate that lidar metrics based on shrub height have a strong correlation with field-measured shrub biomass (R2 ~ 0.76). We also compare processing the lidar data with raster-based and point cloud-based approaches. The results are scale-dependent, with improved results of biomass estimation at coarser scales with point cloud processing. Overall, the results of this study indicate that Landsat and lidar can be efficiently utilized independently and together to estimate biomass and cover of vegetation in this semi-arid rangeland environment

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management

    Complexity and Dynamics of Semi-Arid Vegetation Structure, Function and Diversity Across Spatial Scales from Full Waveform Lidar

    Get PDF
    Semi-arid ecosystems cover approximately 40% of the earth’s terrestrial landscape and show high dynamicity in ecosystem structure and function. These ecosystems play a critical role in global carbon dynamics, productivity, and habitat quality. Semi-arid ecosystems experience a high degree of disturbance that can severely alter ecosystem services and processes. Understanding the structure-function relationships across spatial extents are critical in order to assess their demography, response to disturbance, and for conservation management. In this research, using state-of-the-art full waveform lidar (airborne and spaceborne) and field observations, I developed a framework to assess the complexity and dynamics of vegetation structure, function and diversity across spatial scales in a semi-arid ecosystem. Difficulty in differentiating low stature vegetation from bare ground is the key remote sensing challenge in semi-arid ecosystems. In this study, I developed a workflow to differentiate key plant functional types (PFTs) using both structural and biophysical variables derived from the full waveform lidar and an ensemble random forest technique. The results revealed that waveform lidar pulse width can clearly distinguish shrubs from bare ground. The models showed PFT classification accuracy of 0.81–0.86% and 0.60–0.70% at 10 m and 1 m spatial resolutions, respectively. I found that structural variables were more important than the biophysical variables to differentiate the PFTs in this study area. The study further revealed an overlap between the structural features of different PFTs (e.g. shrubs from trees). Using structural features, I derived three main functional traits (canopy height, plant area index and foliage height diversity) of shrubs and trees that describe canopy architecture and light use efficiency of the ecosystem. I evaluated the trends and patterns of functional diversity and their relationship with non-climatic abiotic factors and fire disturbance. In addition to the fine resolution airborne lidar, I used simulated large footprint spaceborne lidar representing the newly launched Global Ecosystem Dynamics Investigation system (GEDI, a lidar sensor on the International Space Station) to evaluate the potential of capturing functional diversity trends of semi-arid ecosystems at global scales. The consistency of diversity trends between the airborne lidar and GEDI confirmed GEDI’s potential to capture functional diversity. I found that the functional diversity in this ecosystem is mainly governed by the local elevation gradient, soil type, and slope. All three functional diversity indices (functional richness, functional evenness and functional divergence) showed a diversity breakpoint near elevations of 1500 m – 1700 m. Functional diversity of fire-disturbed areas revealed that the fires in our study area resulted in a more even and less divergent ecosystem state. Finally, I quantified aboveground biomass using the structural features derived from both the airborne lidar and GEDI data. Regional estimates of biomass can indicate whether an ecosystem is a net carbon sink or source as well as the ecosystem’s health (e.g. biodiversity). Further, the potential of large footprint lidar data to estimate biomass in semi-arid ecosystems are not yet fully explored due to the inherent overlapping vegetation responses in the ground signals that can be affected by the ground slope. With a correction to the slope effect, I found that large footprint lidar can explain 42% of variance of biomass with a RMSE of 351 kg/ha (16% RMSE). The model estimated 82% of the study area with less than 50% uncertainty in biomass estimates. The cultivated areas and the areas with high functional richness showed the highest uncertainties. Overall, this dissertation establishes a novel framework to assess the complexity and dynamics of vegetation structure and function of a semi-arid ecosystem from space. This work enhances our understanding of the present state of an ecosystem and provides a foundation for using full waveform lidar to understand the impact of these changes to ecosystem productivity, biodiversity and habitat quality in the coming decades. The methods and algorithms in this dissertation can be directly applied to similar ecosystems with relevant corrections for the appropriate sensor. In addition, this study provides insights to related NASA missions such as ICESat-2 and future NASA missions such as NISAR for deriving vegetation structure and dynamics related to disturbance

    A COMPARATIVE ANALYSIS OF PIXEL-BASED AND OBJECT-BASED APPROACHES FOR FOREST ABOVE-GROUND BIOMASS ESTIMATION USING RANDOM FOREST MODEL

    Get PDF
    Providing an accurate above-ground biomass (AGB) map is of paramount importance for carbon stock and climate change monitoring. The main objective of this study is to compare the performance of pixel-based and object-based approaches for AGB estimation of temperate forests in north-eastern of New York State. Second, the capabilities of optical, SAR, and optical + SAR data were investigated. To achieve the goals, the random forest (RF) regression algorithm was used to model and predict the AGB values. Optical (i.e. Landsat 5TM, Landsat 8 OLI, and Sentinel-2), synthetic aperture radar (SAR) (Sentinel-1 and global phased array type L-band SAR (PALSAR/PALSAR-2)), and their integration have been used to estimate the AGB. It is worth mentioning that the airborne light detection and ranging (LiDAR) AGB raster has been used as a reference data for training/testing purposes. The results demonstrate that the OBIA approach enhanced the RMSE of AGB estimation about 5.32 Mg/ha, 8.9 Mg/ha, and 5.29 Mg/ha for optical, SAR, and optical + SAR data, respectively. Moreover, optical + SAR data with the RMSE of 42.63 Mg/ha and R2 of 0.72 for pixel-based and RMSE of 37.31 Mg/ha and R2 of 0.77 for object-based approach provided the best results

    GEO-SPATIAL MODELING OF CARBON SEQUESTRATION ASSESSMENT IN DATE PALM, ABU DHABI: AN INTEGRATED APPROACH OF FIELDWORK, REMOTE SENSING, AND GIS

    Get PDF
    The United Arab Emirates (UAE) has undertaken huge efforts to green the desert and afforestation projects (planted mainly with date palms) hence, reducing its carbon footprint, which have never been accounted for, because of lack of implemented mechanisms and tools to assess the amount of biomass and carbon stock (CS) sequestered by plants in the country. The purpose of this dissertation is to implement a new approach towards assessing the carbon sequestered by date palm (DP) plantations in Abu Dhabi, in both their biomass compartment as well as the soils under beneath, using geospatial technologies (RS and GIS) assessed by field measurements. The methodology proposed in this dissertation relied on both fieldwork and labwork, besides the intensive use of geospatial technology including, digital image processing of multi-scale, multi-resolution satellite imagery as well as Geographical Information Systems (GIS) modelling. For detecting and mapping the DP, the research proposes a framework based on using multi-source/ multi-sensor data in a hierarchical integrated approach (HIA) to map DP plantations at different age stages: young, medium, and mature. The outcomes of the implemented approach were the creation of detailed and accurate maps of DP at three age stages. The overall accuracies for mixed-ages DP the value reached up to 94.5%, with an overall Kappa statistic estimated at 0.888 with total area of DP equal to 7,588.04 ha and the total number of DP planted in the study area counted an estimated number of 8,966,826 palms.The study showed that the correlation of mature DP class alone (\u3e10 years) with single bands was significant with shorwave infrared 1 (SWIR1) and shortwave infrared 2 (SWIR2), while the correlation was significant with all tested vegetation indices (VI) except for tasseled cap transformation index for brightness (TCB) and for greenness (TCG). By using different types of regression equations, tasseled cap transformation index for wetness (TCW) showed the strongest correlation using a second-order polynomial equation to estimate the biomass of mature DP with R² equal to 0.7643 and P value equal to 0.007. The exponential regression equation that uses renormalized difference vegetation index (RDVI) as RS predictor was the best single VI and had the strongest correlation among all RS variables of Landsat 8 OLI for AGB of non-mature DP, with an R2 value of 0.4987 and P value equal 0.00002. The findings of the dissertation work are promising and can be used to estimate the amount of biomass and carbon stock in DP plantations in the country as well as in arid land in general. Therefore, it can be applied to enhance the decision-making process on sustainable monitoring and management of carbon sequestration by date palms in other similar ecosystems. The research’s approach has never been developed elsewhere for date palms in arid areas

    Temporal changes in mediterranean pine forest biomass using synergy models of ALOS PALSAR-Sentinel 1-Landsat 8 Sensors

    Get PDF
    Currently, climate change requires the quantification of carbon stored in forest biomass. Synthetic aperture radar (SAR) data offers a significant advantage over other remote detection measurement methods in providing structural and biomass-related information about ecosystems. This study aimed to develop non-parametric Random Forest regression models to assess the changes in the aboveground forest biomass (AGB), basal area (G), and tree density (N) of Mediterranean pine forests by integrating ALOS-PALSAR, Sentinel 1, and Landsat 8 data. Variables selected from the Random Forest models were related to NDVI and optical textural variables. For 2015, the biomass models with the highest performance integrated ALS-ALOS2-Sentinel 1-Landsat 8 data (R2 = 0.59) by following the model using ALS data (R2 = 0.56), and ALOS2-Sentinel 1-Landsat 8 (R2 = 0.50). The validation set showed that R2 values vary from 0.55 (ALOS2-Sentinel 1-Landsat 8) to 0.60 (ALS-ALOS2-Sentinel 1-Landsat 8 model) with RMSE below 20 Mg ha−1. It is noteworthy that the individual Sentinel 1 (R2 = 0.49). and Landsat 8 (R2 = 0.47) models yielded equivalent results. For 2020, the AGB model ALOS2-Sentinel 1-Landsat 8 had a performance of R2 = 0.55 (validation R2 = 0.70) and a RMSE of 9.93 Mg ha−1. For the 2015 forest structural variables, Random Forest models, including ALOS PAL-SAR 2-Sentinel 1 Landsat 8 explained between 30% and 55% of the total variance, and for the 2020 models, they explained between 25% and 55%. Maps of the forests’ structural variables were generated for 2015 and 2020 to assess the changes during this period using the ALOS PALSAR 2-Sentinel 1-Landsat 8 model. Aboveground biomass (AGB), diameter at breast height (dbh), and dominant height (Ho) maps were consistent throughout the entire study area. However, the Random Forest models underestimated higher biomass levels (>100 Mg ha−1) and overestimated moderate biomass levels (30–45 Mg ha−1). The AGB change map showed values ranging from gains of 43.3 Mg ha−1 to losses of −68.8 Mg ha−1 during the study period. The integration of open-access satellite optical and SAR data can significantly enhance AGB estimates to achieve consistent and long-term monitoring of forest carbon dynamics

    Remote Sensing of Savannas and Woodlands

    Get PDF
    Savannas and woodlands are one of the most challenging targets for remote sensing. This book provides a current snapshot of the geographical focus and application of the latest sensors and sensor combinations in savannas and woodlands. It includes feature articles on terrestrial laser scanning and on the application of remote sensing to characterization of vegetation dynamics in the Mato Grosso, Cerrado and Caatinga of Brazil. It also contains studies focussed on savannas in Europe, North America, Africa and Australia. It should be important reading for environmental practitioners and scientists globally who are concerned with the sustainability of the global savanna and woodland biome

    Changes in global terrestrial live biomass over the 21st century

    Get PDF
    Live woody vegetation is the largest reservoir of biomass carbon, with its restoration considered one of the most effective natural climate solutions. However, terrestrial carbon fluxes remain the largest uncertainty in the global carbon cycle. Here, we develop spatially explicit estimates of carbon stock changes of live woody biomass from 2000 to 2019 using measurements from ground, air, and space. We show that live biomass has removed 4.9 to 5.5 PgC year −1 from the atmosphere, offsetting 4.6 ± 0.1 PgC year −1 of gross emissions from disturbances and adding substantially (0.23 to 0.88 PgC year −1 ) to the global carbon stocks. Gross emissions and removals in the tropics were four times larger than temperate and boreal ecosystems combined. Although live biomass is responsible for more than 80% of gross terrestrial fluxes, soil, dead organic matter, and lateral transport may play important roles in terrestrial carbon sinkThis study was funded by NASA Interdisciplinary Science Program (NNH16ZDA001N-IDS). M.L. and Y. Yang have been supported by the NASA Postdoctoral Program, administered by Universities Space Research Association under contract with NASA.G.-J.N. was supported by the European Union H2020-VERIFY project (776810)

    An assessment of tropical dryland forest ecosystem biomass and climate change impacts in the Kavango-Zambezi (KAZA) region of Southern Africa

    Get PDF
    The dryland forests of the Kavango-Zambezi (KAZA) region in Southern Africa are highly susceptible to disturbances from an increase in human population, wildlife pressures and the impacts of climate change. In this environment, reliable forest extent and structure estimates are difficult to obtain because of the size and remoteness of KAZA (519,912 km²). Whilst satellite remote sensing is generally well-suited to monitoring forest characteristics, there remain large uncertainties about its application for assessing changes at a regional scale to quantify forest structure and biomass in dry forest environments. This thesis presents research that combines Synthetic Aperture Radar, multispectral satellite imagery and climatological data with an inventory from a ground survey of woodland in Botswana and Namibia in 2019. The research utilised a multi-method approach including parametric and non-parametric algorithms and change detection models to address the following objectives: (1) To assess the feasibility of using openly accessible remote sensing data to estimate the dryland forest above ground biomass (2) to quantify the detail of vegetation dynamics using extensive archives of time series satellite data; (3) to investigate the relationship between fire, soil moisture, and drought on dryland vegetation as a means of characterising spatiotemporal changes in aridity. The results establish that a combination of radar and multispectral imagery produced the best fit to the ground observations for estimating forest above ground biomass. Modelling of the time-series shows that it is possible to identify abrupt changes, longer-term trends and seasonality in forest dynamics. The time series analysis of fire shows that about 75% of the study area burned at least once within the 17-year monitoring period, with the national parks more frequently affected than other protected areas. The results presented show a significant increase in dryness over the past 2 decades, with arid and semi-arid regions encroaching at the expense of dry sub-humid, particularly in the south of the region, notably between 2011-2019
    corecore