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ABSTRACT 

Semi-arid ecosystems cover approximately 40% of the earth’s terrestrial 

landscape and show high dynamicity in ecosystem structure and function. These 

ecosystems play a critical role in global carbon dynamics, productivity, and habitat 

quality. Semi-arid ecosystems experience a high degree of disturbance that can severely 

alter ecosystem services and processes. Understanding the structure-function 

relationships across spatial extents are critical in order to assess their demography, 

response to disturbance, and for conservation management. In this research, using state-

of-the-art full waveform lidar (airborne and spaceborne) and field observations, I 

developed a framework to assess the complexity and dynamics of vegetation structure, 

function and diversity across spatial scales in a semi-arid ecosystem.  

Difficulty in differentiating low stature vegetation from bare ground is the key 

remote sensing challenge in semi-arid ecosystems. In this study, I developed a workflow 

to differentiate key plant functional types (PFTs) using both structural and biophysical 

variables derived from the full waveform lidar and an ensemble random forest technique. 

The results revealed that waveform lidar pulse width can clearly distinguish shrubs from 

bare ground.  The models showed PFT classification accuracy of 0.81–0.86% and 0.60–

0.70% at 10 m and 1 m spatial resolutions, respectively. I found that structural variables 

were more important than the biophysical variables to differentiate the PFTs in this study 

area. The study further revealed an overlap between the structural features of different 

PFTs (e.g. shrubs from trees).  
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Using structural features, I derived three main functional traits (canopy height, 

plant area index and foliage height diversity) of shrubs and trees that describe canopy 

architecture and light use efficiency of the ecosystem. I evaluated the trends and patterns 

of functional diversity and their relationship with non-climatic abiotic factors and fire 

disturbance. In addition to the fine resolution airborne lidar, I used simulated large 

footprint spaceborne lidar representing the newly launched Global Ecosystem Dynamics 

Investigation system (GEDI, a lidar sensor on the International Space Station) to evaluate 

the potential of capturing functional diversity trends of semi-arid ecosystems at global 

scales. The consistency of diversity trends between the airborne lidar and GEDI 

confirmed GEDI’s potential to capture functional diversity. I found that the functional 

diversity in this ecosystem is mainly governed by the local elevation gradient, soil type, 

and slope.  All three functional diversity indices (functional richness, functional evenness 

and functional divergence) showed a diversity breakpoint near elevations of 1500 m – 

1700 m. Functional diversity of fire-disturbed areas revealed that the fires in our study 

area resulted in a more even and less divergent ecosystem state. Finally, I quantified 

aboveground biomass using the structural features derived from both the airborne lidar 

and GEDI data. Regional estimates of biomass can indicate whether an ecosystem is a net 

carbon sink or source as well as the ecosystem’s health (e.g. biodiversity). Further, the 

potential of large footprint lidar data to estimate biomass in semi-arid ecosystems are not 

yet fully explored due to the inherent overlapping vegetation responses in the ground 

signals that can be affected by the ground slope.  With a correction to the slope effect, I 

found that large footprint lidar can explain 42% of variance of biomass with a RMSE of 

351 kg/ha (16% RMSE). The model estimated 82% of the study area with less than 50% 
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uncertainty in biomass estimates. The cultivated areas and the areas with high functional 

richness showed the highest uncertainties.  Overall, this dissertation establishes a novel 

framework to assess the complexity and dynamics of vegetation structure and function of 

a semi-arid ecosystem from space. This work enhances our understanding of the present 

state of an ecosystem and provides a foundation for using full waveform lidar to 

understand the impact of these changes to ecosystem productivity, biodiversity and 

habitat quality in the coming decades. The methods and algorithms in this dissertation 

can be directly applied to similar ecosystems with relevant corrections for the appropriate 

sensor. In addition, this study provides insights to related NASA missions such as 

ICESat-2 and future NASA missions such as NISAR for deriving vegetation structure 

and dynamics related to disturbance.
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CHAPTER ONE: INTRODUCTION 

Over the last few decades, land degradation has become a critical challenge for 

terrestrial ecosystems. Climate and human driven disturbances modify the structure and 

function of natural ecosystems. Altered ecosystem structure and function provide adverse 

effects on ecosystem services and processes including productivity, biodiversity and 

habitat quality. Understanding the structure and function of global terrestrial ecosystems 

improves the understanding of their interactions with the biosphere, atmosphere, and 

hydrosphere including the cycling of the major biogeochemical elements and water (Diaz 

et al., 2007; Dietze et al., 2017). Further, assessing the effects of climate and human 

driven changes at different levels provide necessary information for national and 

international policy discussion around mitigation targets (Arnell, Lowe, Challinor, & 

Osborn, 2019; Rödig et al., 2019). Quantitative assessments of ecosystem structure, 

function and their spatial diversity at regional to global scales are fundamental to monitor 

the ecosystem state, and the impact to the atmosphere, biosphere, and hydrosphere under 

changing conditions. Among others, semi-arid ecosystems experience a high degree of 

land degradation (Fusco, Rau, Falkowski, Filippelli, & Bradley, 2019) due to both 

climatic (drought, fire, invasion and encroachment, erosion etc.) and anthropogenic 

(grazing, land use, agriculture) disturbances. Semi-arid ecosystems cover approximately 

40% of the global terrestrial surface and are home to about 20% of the world’s population 

(Li et al., 2018; (Nautiyal, Bhaskar, & Khan, 2015). These ecosystems are typically 

heterogeneous, low-stature, and sparsely vegetated. Semi-arid ecosystems comprise a 
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range of intra and inter species structural and functional characteristics. These 

heterogeneous vegetation characteristics provide habitat and biodiversity to unique fauna 

and flora as well as two billion people worldwide (Nautiyal, Bhaskar, & Khan, 2015). 

Further, semi-arid ecosystems play a critical role in global carbon dynamics (Ahlstrom et 

al., 2015; Poulter et al., 2015) and show that afforestation could offset the climate 

warming effects and cool the planet (Yosef et al., 2018).   

Availability of remote sensing data at fine to coarse spatial and temporal scales 

facilitates monitoring the retrospective and prospective states of ecosystems across spatial 

scales needed for ecosystem service management (Abelleira Martínez et al., 2016). 

Importantly, waveform lidar, which digitizes the total amount of lidar return energy at 

high vertical resolution (~1 ns = 15 cm) provides unprecedented opportunities to 

accurately quantify ecosystem structure and function at local to regional scales ( Hovi, 

Korhonen, Vauhkonen, & Korpela, 2016; Qi, Lee, et al., 2019; Yao, Krzystek, & 

Heurich, 2012). With the launch of the Global Ecosystem Dynamics Investigation 

(GEDI) mission, we have new opportunities to map functional types, traits and diversity 

at global scales (Duncanson et al., 2019; Qi, Lee, et al., 2019; Qi et al., 2019; Rödig et al., 

2019).  

The abundance and distribution of plant functional types (PFTs) are important 

indicators for monitoring ecosystem state, as well as its resistance and resilience to 

climate and human driven disturbances (Lavorel, McIntyre, Landsberg, & Forbes, 1997; 

Poulter et al., 2015; Schimel, Asner, & Moorcroft, 2013). Thus, PFTs are frequently used 

as inputs for vegetation dynamics and earth system models (Krinner et al., 2005; Sitch et 

al., 2003; Wullschleger et al., 2014). However, uncertainty in PFTs, especially in semi-
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arid ecosystems between shrub, grass and forest classes reduces the accuracy of these 

models (Hartley, MacBean, Georgievski, & Bontemps, 2017). In semi-arid ecosystems, 

the influence of soil background on the remote-sensing signals is a major challenge. 

Improved methods to capture plant functional types (PFTs) in semi-arid ecosystems are 

needed to accurately assess the ecosystem state. 

A  wealth of research has shown that functional traits are the best representatives 

of ecosystem processes (Bardgett & van der Putten, 2014; Hooper et al., 2006). Research 

evidence further indicates that, though net primary productivity (NPP), nutrient retention, 

and disturbance regimes can describe facets of ecosystem functioning, none of these 

variables can directly quantify the observed diversity in ecosystem functioning (Gough et 

al., 2016). Moreover, disturbance-driven alterations and their ecological impacts are 

highly dynamic in space and time. Morphological, physiological and phenological traits 

within and between species of an ecosystem can represent the ecosystem demography 

and response strategies to the disturbances (Serbin et al., 2019). Thus, remotely sensed 

functional traits and their diversity are widely utilized in forested ecosystems to predict 

variations in ecosystem structure – function relationships (Funk et al., 2017, Wieczynski 

et al., 2019). Yet, several gaps remain in our understanding of how the complexity and 

dynamics of functional diversity in semi-arid ecosystems vary with respect to the 

environmental gradient and in response to disturbance, especially post fire. 

Another important vegetation functional trait is the canopy aboveground biomass 

(ABG). AGB serves to characterize, quantify, understand, and predict whether 

ecosystems are a net carbon sink or source (Duncanson et al., 2019; Li et al., 2015; Qi et 

al., 2019). Hence, accurate estimates of ABG at regional to global scales improves the 
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understanding of carbon fluxes associated with the ecosystem and provides significant 

implications to constrain global vegetation/carbon dynamics. AGB can further help 

assess ecosystem health including biodiversity. Fusco, Rau, Falkowski, Filippelli, & 

Bradley, (2019) demonstrated that both shrublands and woodlands account for significant 

carbon storage, especially in semi-arid ecosystems. Ahlström et al. (2015) showed that 

semi-arid ecosystems control inter-annual variability of global carbon. Nevertheless, 

estimating ABG from remote sensing data, especially over semi-arid ecosystems at 

regional scale has been a long-standing challenge due to the short canopies and their 

sparse distribution in space.   

The overarching goal of this dissertation is to develop novel remote sensing-based 

methods for and to understand the complexity and dynamics of the vegetation structure, 

function and diversity across spatial scales in a semi-arid ecosystem. To address this, 

three main research questions are considered, including:  

1. How can key plant functional types including shrubs, trees, and bare ground 

be differentiated using state-of-the-art full waveform lidar data? 

2. What are the trends and patterns of functional diversity in the study area 

and their abiotic controls?  

a. What is the potential of the newly launched GEDI, the spaceborne 

lidar system to capture functional diversity trends in a semi-arid 

ecosystem?  

3. What is the uncertainty of regional AGB estimates in semi-arid ecosystems 

using the GEDI system?   
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For a test study area, I used the Reynolds Creek Experimental Watershed (RCEW), a 

semi-arid ecosystem of approximately 270 km2 within the Great Basin ecoregion in the 

Western US. The RCEW has a range of topography (1100 m – 2200 m) and a diverse 

vegetation community. While the unique and important sagebrush-steppe with many 

grass and forbs dominates the low elevations, tree communities mark the high elevations. 

In addition, riparian vegetation with cottonwood and willow are found within valleys, and 

along streams across the watershed. The study area is further characterized by a mean 

annual temperature and precipitation that varies between 4.6–9.2 ⁰ C and 230-959 mm, 

along the elevation gradient, respectively. The study area has experienced prescribed and 

natural fires and supports grazing. Consequently, invasion of cheatgrass in native shrub 

areas and juniper encroachment have occurred in this study area during the last few 

decades. The diverse topography, vegetation, and disturbance followed by invasion 

history of the study area provided a unique setting to elucidate the main research 

questions of this dissertation. 

To answer the research questions, I first developed a novel methodological workflow 

for state-of-the-art full waveform lidar to differentiate key plant functional types. In this, 

I decoded structural and biophysical characteristics of vegetation and bare ground 

embedded in the lidar signal (Chapter 2).  Then, I investigated the relationships between 

both functional diversity and environmental gradients (altitude, slope, aspect, topographic 

wetness index, and distance to water) and functional diversity and disturbance 

relationships (e.g. fire). This work focuses on understanding the ecosystem demography 

and response strategies to disturbance (Chapter 3). Finally, I estimated the uncertainty in 

assessing the AGB of this heterogeneous, low-stature, semi-arid ecosystem (Chapter 4). 



6 

 

 

 

In this, I used spatially explicit vegetation structure derived from simulated GEDI lidar, 

especially in support of new measurement capabilities for satellite missions and global 

vegetation/carbon dynamics. 



7 

 

 

CHAPTER TWO: CONSTRAINING PLANT FUNCTIONAL TYPES IN A SEMI-

ARID ECOSYSTEM WITH WAVEFORM LIDAR 

This chapter has been published as: 

Ilangakoon, N. T., Glenn, N. F., Dashti, H., Painter, T. H., Mikesell, T. D., Spaete, L. P., 

Jessica J. Mitchell,  & Shannon, K. (2018). Constraining plant functional types in a semi-

arid ecosystem with waveform lidar. Remote Sensing of Environment, 209, 497-509. 

 

Abstract 

Accurate classification of plant functional types (PFTs) reduces the uncertainty in 

global biomass and carbon estimates. Airborne small-footprint waveform lidar data are 

increasingly used for vegetation classification and above-ground carbon estimates at a 

range of spatial scales in woody or homogeneous grass and savanna ecosystems. 

However, a gap remains in understanding how waveform features represent and 

ultimately can be used to constrain the PFTs in heterogeneous semi-arid ecosystems. This 

study evaluates lidar waveform features and classification performance of six major 

PFTs, including shrubs and trees, along with bare ground in the Reynolds Creek 

Experimental Watershed, Idaho, USA. Waveform lidar data were obtained with the 

NASA Airborne Snow Observatory (ASO). From these data we derived waveform 

features at two spatial scales (1 m and 10 m rasters) by applying a Gaussian 

decomposition and a frequency-domain deconvolution. An ensemble random forest 

algorithm was used to assess classification performance and to select the most important 
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waveform features. Classification models developed with the 10 m waveform features 

outperformed those at 1 m (Kappa (κ) = 0.81–0.86 vs. 0.60–0.70, respectively). At 1 m 

resolution, lidar height features improved the PFT classification accuracy by 10% 

compared to the analysis without these features. However, at 10 m resolution, the 

inclusion of lidar derived heights with other waveform features decreased the PFT 

classification performance by 4%. Pulse width, rise time, percent energy, differential 

target cross section, and radiometrically calibrated backscatter coefficient were the most 

important waveform features at both spatial scales. A significant finding is that bare 

ground was clearly differentiated from shrubs using pulse width.  Though the overall 

accuracy ranges between 0.72 – 0.89 across spatial scales, the two shrub PFTs showed 

0.45 - 0.87 individual classification success at 1 m, while bare ground and tree PFTs 

showed high (0.72 – 1.0) classification accuracy at 10 m. We conclude that small-

footprint waveform features can be used to characterize the heterogeneous vegetation in 

this and similar semi-arid ecosystems at high spatial resolution. Furthermore, waveform 

features such as pulse width can be used to constrain the uncertainty of terrain modeling 

in environments where vegetation and bare ground lidar returns are close in time and 

space. The dependency on spatial resolution plays a critical role in classification 

performance in tree-shrub co-dominant ecosystems. 

Introduction 

Climate and human driven disturbances in dryland ecosystems have adverse 

effects on biodiversity, ecosystem services, carbon storage, and desertification (Ahlstrom 

et al., 2015; Poulter et al., 2011). Furthermore, aridity in drylands is expected to increase 

in the future, causing expansion of land degradation and desertification (Huang et al., 
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2017). Ultimately, changes in the abundance and distribution of plant functional types 

(PFTs) in drylands can alter productivity and the capacity of these lands for carbon 

storage (Chen et al., 2017). Thus, PFTs are important indicators for monitoring the state 

of an ecosystem, as well as its resistance and resilience to climate and human driven 

disturbances (Lavorel et al., 1997; Poulter et al., 2015; Schimel, Asner, & Moorcroft, 

2013). PFTs are frequently used as inputs for vegetation dynamics and earth system 

models (Krinner et al., 2005; Sitch et al., 2003; Wullschleger et al., 2014). However, 

uncertainty in PFTs, especially in dryland ecosystems between shrub, grass and forest 

classes reduces the accuracy of these models (Hartley et al., 2017).  Hence, improved 

methods to capture the structure and function of PFTs in drylands are needed to 

accurately model carbon storage flux in these systems.  

Due to its ability to capture three dimensional structure and some radiometric 

properties, light detection and ranging (lidar) is used to derive vegetation heights and 

digital terrain models, as well as to classify vegetation species, function and structure 

(Dalponte & Coomes, 2016). These products are further used for automated forest 

inventory estimates such as biomass and carbon stocks (Coomes et al., 2017; Dalponte & 

Coomes, 2016; Ene et al., 2017), as well as for ecosystem demography models (Thomas 

et al., 2008) to estimate carbon flux. Waveform lidar, which digitizes the total amount of 

lidar return energy at high vertical resolution (~1 ns = 15 cm), provides potential species-

specific information about the illuminated target (Hancock et al., 2015; Hancock, Disney, 

Muller, Lewis, & Foster 2011; Roncat, Bergauer, & Pfeifer, 2011; Wagner, Ullrich, 

Ducic, Melzer, & Studnicka, 2006). The shape of the returning waveform results from a 

convolution of the temporal shape of the emitted pulse and system impulse (together 
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called “system response/waveform”) with the target cross-section. Thus the backscattered 

waveform contains target characteristics such as size, orientation, and spatial 

arrangement, as well as radiometric characteristics of individual vegetation species (Hovi 

& Korpela, 2014; Korpela, Hovi, & Korhonen, 2013; Wagner et al., 2006).  

Each echo in a waveform signal corresponds to an individual reflection target or set of 

targets. Thus, an echo can be used to detect individual target properties, the position and 

the orientation in 3D space. Through optimal waveform processing techniques, such as 

the commonly used Gaussian decomposition (Wagner et al., 2006), linear fitting or other 

asymmetric fitting techniques (Jutzi & Stilla, 2006; Mallet et al., 2010; Roncat et al., 

2011; Wu, van Aardt, & Asner, 2011), numerous features can be derived from 

backscattered waveforms. Some of these additional waveform features and their 

biophysical relationships to the target are summarized in Table 2.1. 

However, many of these waveform features (e.g. amplitude, pulse width, and 

backscatter cross section) are sensitive to system parameters such as incident angle, range 

and flying height (Abed, Mills, & Miller, 2012; Hovi & Korpela, 2014; Lin, 2015; 

Wagner, 2010). Thus, it is necessary to correct the influence of these system parameters 

on waveform features prior to application (Bruggisser, Roncat, Schaepman, & Morsdorf, 

2017; Fieber et al., 2013; Wagner, 2010).    
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Table 2.1  Summary of waveform features derived from individual waveforms 

and their biophysical relationships to the target. 

ATTRIBUTE BIOPHYSICAL RELATIONSHIP REFERENCE 

Pulse width Surface roughness and slope Fieber et al., 2013 

Amplitude Optical response of the target to the emitted 

lidar wavelength 

Fieber et al., 2013 

Backscatter cross-

section 

Horizontal scattered cross-section of the 

target with respect to the deployed system 

wavelength, range, and incident angle 

Wagner et al., 2006 

Backscatter coefficient The area-normalized backscatter cross-section 

corrected for incidence angle. A function of 

the target reflectance. 

Wagner, Hollaus, 

Briese, & Ducic, 

2008; Wagner, 

2010 

Differential target cross 

section  

Laser system independent true target profile Roncat et al., 2011 

Rise time  Vertical structural distribution of target (e.g. 

in trees the vertical distribution of leaves and 

branches) 

Ranson & Sun, 

2000 

Number of echoes Vertical distribution and height of target Heinzel & Koch, 

2011 

Height/height 

variability 

Vertical distribution of target and its 

separation from ground 

Fieber et al. 2013 

Secondary explanatory 

features derived from 

any of the above 

parameters 

N/A Heinzel & koch, 

2011 

 

Waveform features and height information have been used to estimate vegetation 

structure as well as plant functional type and structural traits at both fine (< 2 m) and 

regional spatial scales (Alexander, Deák, Kania, Mücke, & Heilmeier, 2015; Wagner, 

Hollaus, Briese, & Ducic, 2008). Classification of plant functional types and individual 

species in tree dominant ecosystems show great improvement of classification accuracy 
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with inclusion of one or several of these waveform features (Hovi et al., 2016).  The 

pulse width and location characterize the vegetation components along the waveform 

path and have been used to classify deciduous and coniferous species (Reitberger, 

Krzystek, & Stilla, 2008; Yao, Krzystek, & Heurich, 2012). Wagner et al. (2008) shows 

that the scattering shape of backscattered signals can be used to separate vegetation from 

no vegetation with an accuracy up to 89%. Pulse widths can be used to classify 

vegetation in different patch conditions such as within varying soil roughness, understory 

and density (Hollaus, Aubrecht, Höfle, Steinnocher, & Wagner, 2011).  Vaughn, Moskal, 

& Turnblom (2012) show that inclusion of frequency-domain full-waveform lidar 

features improve a five-species classification accuracy by 6% over discrete-return lidar 

alone, from 79 to 85%.  

Numerous studies using combined features from discrete and waveform datasets 

have improved classification performance of tree and grass species (Heinzel and Koch, 

2011; Neuenschwander, 2009; Vaughn et al., 2012). Backscatter cross-section alone can 

be used to distinguish ground, grass, and trees from each other (Fieber et al., 2013; 

Wagner et al., 2008). Further, lidar-derived height and energy related features have been 

used to delineate individual trees in object-based image analysis (OBIA) studies as the 

OBIA eliminates the discontinuity that is common in pixel-based classification (Zahidi, 

Yusuf, Hamedianfar, Shafri, & Mohamed, 2015).  

In most of these studies, lidar-derived heights or height-based products such as 

canopy height models (CHM) and digital elevation models (DEM) play a critical role in 

delineation of individual tree crowns as well as in differentiating vegetation from bare 

ground (Hovi et al., 2016). Some vegetation studies use lidar returns above a certain 
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height threshold (e.g. ~ 2 m above ground) for classification (Ene et al., 2017; Zahidi et 

al., 2015). However, in low-height vegetation, lidar does not return a separate energy 

peak unless the vegetation height is above the range resolution of the lidar system. Thus, 

bare ground lidar responses are typically mixed with low-height vegetation such as 

shrubs and grasses. This causes difficulties to measure the fractions of bare ground and 

vegetation, an important criterion for plant functional distribution mapping in dryland 

ecosystems (Hartley et al., 2017). Numerous studies in low-height ecosystems have 

documented that lidar heights underestimate vegetation heights (e.g. Streutker & Glenn, 

2006). Similar underestimations and uncertainties appear in almost all studies which use 

lidar-based height features to model low-stature vegetated ecosystems across the world, 

which significantly affects regional ecosystem modeling and upscaling attempts 

(Hopkinson et al., 2005; Rango et al., 2000).  Fortunately, waveform lidar is sensitive to 

the occurrence of low vegetation, where echoes often have a wider pulse than echoes 

from the bare ground. Although this limits the use of traditional lidar heights to separate 

ground from vegetation, the derivation of additional waveform features provides the 

opportunity to uncover hidden vegetation characteristics in the datasets.  

In addition, vegetation distributions in many semi-arid ecosystems are 

topographically controlled and low-height vegetation often coexist with taller tree 

communities. The topographic and species complexity in these ecosystems makes 

classification using optical data challenging. In many instances, classification studies, 

even at high spatial resolution, consider all shrub species in one category (e.g. Zahidi et 

al., 2015). The complexity of heterogeneous semi-arid ecosystems further emphasizes the 

importance of understanding the effects of resolution in retrieving species type and 
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diversity to guide future trade-offs in spaceborne sensors (e.g. GEDI and ICESat-2) 

(Abdalati et al., 2010; Endres, 2016; Qi & Dubayah, 2016) and ultimately, global 

ecosystem modeling. Semi-arid ecosystems cover a significant portion of the global land 

surface, and thus, the ability to map the density of shrubs and trees in these ecosystems 

will advance dynamic global vegetation models that account for vegetation demography 

(Fisher et al. 2018).  For example, the clumping of foliage affects the exposure of bare 

ground and ultimately the land surface water vapor, carbon, and energy exchange. 

The objectives of this study are three-fold. First, we aim to identify small-

footprint waveform features to distinguish characteristics of two major shrub types from 

each other, from bare ground and from three dominant tree species in a pixel-based 

classification scheme in the Reynolds Creek Experimental Watershed (RCEW), Idaho. 

Second, we explore the influence of waveform-derived height features to differentiate 

these vegetation types and bare ground.  Third, we test the effect of scale on waveform 

features used to classify the study site. For this we use two different pixel sizes (1 m and 

10 m) to represent the waveforms and vegetation. 

Materials 

Study area 

RCEW is characterized by a range of topography (1100 m – 2200 m) and plant 

functional types (PFTs) (Figure. 2.1). The study area consists of many varieties of grass, 

forbs, shrubs, trees, and riparian species. This study focuses on major PFTs of low stature 

shrubs (sagebrush (Artemisia tridentata), bitterbrush (Purshia tridentata)), and trees 

(Aspen (Populus tremuloides), juniper (Juniperus occidentalis), and Douglas fir 

(Pseudotsuga menziesii)). Dense tree canopies are observed at higher elevations, within 
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valleys, and along streams. Shrubs and grass dominate throughout RCEW with species, 

density and structure varying by elevation. Further, the study area experiences 

topography-dependent mean annual temperature and precipitation regimes that vary 

between 4.6 – 9.2 ⁰ C and 230-959 mm, respectively. 

 

 

Figure 2.1 Reynolds Creek Experimental Watershed study area with field 

sample locations (n=103 plots) of plant functional types (ASP, DF, JP, BT, SG, and 

GD) and waveform lidar trajectories. Field photos depict the sparse to dense shrub 

and tree communities (from top to bottom photo).  

Field data 

Reference field data of plant functional types (trees – aspen (ASP), juniper (JP), 

Douglas fir (DF)), shrubs – sagebrush (SG), and bitterbrush (BT), grass (native and 

invasive collectively), and bare ground (GD) were collected at 10 m x 10 m plots 

randomly selected over the study area (Figure 1). The plots were divided into PFTs based 

on the majority cover type within each plot. A line intercept method (Canfield, 1941) was 
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employed to measure the percent vegetation cover in each shrub-dominated plot. The plot 

boundaries were collected using a RTK GPS and 5 transects established at 1 m, 3 m, 5 m, 

7 m, and 9 m. Shrub type and the beginning and end points for each occurrence of a shrub 

intercepting a transect were recorded. The total lengths of intercepts for all five transects 

were calculated and summarized into percent cover by type per plot. In each shrub-

dominated plot, we randomly selected six shrubs and collected their geographic position 

within the plot, species, height, and major/minor widths. For trees, we collected species 

information for several trees from each plot, avoiding mixed crowns. In many cases our 

tree plots were within 1 km of each other due to limited accessibility (steep valleys and 

ridges) and low dominance of trees overall in the watershed. In summary, we collected 

103 plot-level (10 m x 10 m) samples containing 178 shrubs, 56 trees, and 23 bare ground 

samples.  

Small-footprint waveform lidar data 

Small-footprint waveform lidar data were acquired in August 2014 using the 

NASA Airborne Snow Observatory’s Riegl LMS-Q1560 (RIEGL Laser Measurement 

Systems GmbH, Horn, Austria), which is a dual laser scanner (1064 nm wavelength). The 

mean above ground level of ASO was 1000 m (700 – 1300 m due to terrain conditions) 

for a footprint of 20 – 60 cm. The scanning angle was ± 30o. The study area was scanned 

at a pulse repetition rate of 400 kHz per laser and the backscattered signal was sampled at 

1 ns per sample. The data were recorded using the low power channel. The resulting 

average point density was 10-14 pts/m2. Numerous flight lines (38 parallel and 2 cross 

flights) were collected across the study area (Figure 1), resulting in multiple acquisition 

characteristics (scan angle, range, point density, and amplitude). 
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Methods 

Decomposition of waveform lidar signals 

In this study, we implemented a Gaussian decomposition technique for echo 

detection and analysis of both emitted and backscattered waveforms (measured in units of 

digital numbers (DN)) because the Riegl LMS-Q series emitted pulse is Gaussian 

(Wagner et al, 2006). We observed nearly symmetric pulses in the backscattered 

waveforms. Thus, we fit Gaussians to the raw waveforms recorded by the instrument. For 

the decomposition, waveforms that had raw amplitudes above a noise level of 6 DNs 

were considered. This noise level was defined based on other studies which have used 

Riegl's LMS-Q series (Mallet et al., 2010; Reitberger et al., 2008).  

 For echo detection using Gaussian decomposition, the maximum number of 

Gaussian echoes was limited to 7 per waveform. The number of observed echoes was 

always below 7, even at sites with tall trees (> 5 m) due to dense canopies and the laser 

footprint size (20 – 60 cm).  The initial amplitudes and their position in space to initialize 

the Gaussian fit were derived using the maxima of Savitzky-Golay smoothed second 

derivatives of the original waveform.  The second derivative was used because it helps to 

detect overlapping echoes with complex waveforms which are not detectable only using 

the local maxima of the first derivative (which is commonly used) (Bruggisser et al., 

2017; Lin, Mills, & Smith-Voysey, 2010).  The trigger for echo detection with the second 

derivative was defined as when the amplitude exceeded 4 and the spacing between 

echoes was larger than half of the initial pulse width. The initial pulse width was defined 

to equal that of the corresponding emitted waveform.  We used a non-negative least 

square fitting algorithm developed in MATLAB (2016b) (The MathWorks Inc., Natick, 
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MA, 2016) with the above initial Gaussian parameters to fit the backscatter signals. From 

the fitted Gaussians, we extracted the number of individual Gaussians in each waveform 

along with their maximum amplitudes, their position in the waveform (which was later 

used to calculate the range in meters), and the pulse widths at full width at half maximum 

(FWHM).  We implemented a lower boundary condition of an amplitude of 17 DN, and a 

pulse width equivalent to that of the corresponding emitted waveform. The 17 DN is the 

marginal maximum amplitude that can produce a trigger amplitude (~ 36% of the 17 DN) 

above the noise level of 6 DN.  The algorithm to extract waveform features from the raw 

lidar waveforms is illustrated in Figure. 2.2. 

 

 
 

Figure 2.2  Workflow illustrating the steps used to derive waveform features 

from the raw backscattered lidar waveform. Processing includes georeferencing, 

data alignment, Gaussian decomposition, deconvolution, and calibration. 
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Additional waveform features derived from Gaussian decomposition 

We used the Gaussian fitted waveforms to derive a number of features (Table 

2.2), including those shown in Figure. 2.3. The number of echoes and their maximum 

amplitudes and locations in each backscattered waveform (detailed above) were used to 

recognize the trigger amplitudes (~ 36% of max amplitude in the leading edge) and their 

georeferenced location in space. These locations were considered the target locations. 

The time duration from the trigger amplitude location to the maximum amplitude location 

is the rise time of each echo. Furthermore, using the spatial (x, y, and z) locations of the 

trigger and the scanner, we calculated the distance from the laser scanner to each echo 

(referred to as the range (R) hereafter) and the echo incident angle (θ). To facilitate the 

subsequent comparison of echo amplitude and energy values from overlapping flight 

lines at various ranges, the waveforms were first corrected using the model driven 

approach explained in Höfle & Pfeifer (2007). From the amplitude corrected waveforms, 

we integrated amplitudes from the trigger location of the first echo to the end location of 

the last echo in each waveform and used these as the cumulative energy of each footprint.  

The end location of the last echo was defined as the last amplitude above the 

noise amplitude in the tailing edge of each echo. Using the cumulative energy curve (top 

to bottom), we calculated height at five energy percentiles from the total energy (10th, 

25th, 50th, 75th, and 90th). This explains the waveform shape and energy distribution along 

the range. The total height was extracted by subtracting the ground elevations from the 

waveform location in 3D space. To obtain the absolute heights, we used a 1 m digital 

elevation model (DEM) derived from the point clouds of the same data set.  Further, we 

calculated the cumulative energy at certain height percentiles (bottom to top) from total 
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height.  These calculations were made because differences in vegetation structure 

typically result in variations in the energy distribution in the returned waveform. For 

example, a dense canopy may have concentrated energy at the beginning of the 

waveform, whereas less dense canopy with ground exposure will cause larger energy 

concentrations near the end of the waveform. Further, different canopy structure or partial 

hits of the waveforms along the canopy edge will result in different waveform shapes.  

The backscatter coefficient of each echo (γi) was calculated from equation (1) 

(Wagner, 2010). 

  

𝛾𝑖 = 𝐶𝑐𝑎𝑙
𝑅𝑖
2�̂�𝑠𝑝,𝑖

�̂�𝜂𝑎𝑡𝑚
 

(1) 

 

In our study, we calculated the backscatter coefficient independent from the flying 

altitude (Wagner, 2010). The backscatter coefficient (γi) can be directly calculated using 

the calibration constant Ccal, the range R (in meters), the amplitude of the backscattered 

echo �̂�, the standard deviation of echo width 𝑠𝑝,𝑖, the amplitude of the system’s pulse �̂�, 

and the atmospheric transmission factor ηatm. The calibration constant Ccal was calculated 

using the backscattered waveforms of a 10 m x 10 m white standard reflectance (58% 

reflectance) tarp at the study site during airborne data collection. We also collected 

reflectance data of the tarp using a FieldSpec® Pro spectroradiometer (Analytical 

Spectral Devices Inc., Boulder, CO, USA) and used the reflectance at 1064 nm (equal to 

lidar wavelength) for calibration. The emitted and backscattered waveforms of the tarp 

were extracted. The waveforms were Gaussian decomposed to extract amplitude, pulse 

widths, range and incident angle following the workflow in Figure. 2.2. Using the 



21 

 

 

 

reflectance (𝜌𝑑 ) and the incident angle (𝜃), the backscattering coefficient (γ𝐶𝑇) per 

waveform was calculated from the equation (2) below (Wagner 2010). 

γ𝐶𝑇 = 4𝜌𝑑 cos 𝜃 

 

(2) 

With these calculated backscattering coefficients, pulse widths, and amplitudes, the 

average calibration constant was calculated using equation (3) and used as the calibration 

constant for the study (Wagner, 2010).  

𝐶𝑐𝑎𝑙 =
1

𝑁𝐶𝑇
 ∑

�̂�𝑗𝜂𝑎𝑡𝑚

𝑅𝑗
2�̂�𝑗𝑠𝑝,𝑗

𝛾𝐶𝑇 
𝑁𝐶𝑇
𝑗=1 , 

(3) 

where 𝛾𝐶𝑇, 𝑁𝐶𝑇 are the backscatter coefficients of the calibration tarp and the number of 

echoes from the tarp used for the calibration, respectively. The ηatm is calculated from 

equation (4), where a is the atmospheric attenuation coefficient in dB/km (Höfle & 

Pfeifer, 2007). 

𝜂𝑎𝑡𝑚 = 10
−2𝑅𝑎/10000 (4) 

 

Frequency-domain deconvolution of lidar waveforms 

Target cross section (𝜎) is another waveform lidar derived parameter and is a 

function of the target reflectivity (𝜀) with respect to the given laser wavelength and the 

illuminated target area (dA) (equation (5)) 

𝜎 =  
4𝜋

Ω
𝜀𝑑𝐴, 

 

(5) 

where Ω is the scattering solid angle of the target (Roncat et al., 2011). Although the raw 

backscattered waveform is a function of the emitted waveform and the laser system 

configuration, the target cross-section does not depend on instrument specifications. 
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Thus, the target cross-section values can be directly used to classify target properties, 

rather than the raw backscattered signal. As prior information about the target reflectivity 

and scattering solid angle are limited, Wagner (2010) shows that the target cross section 

can be directly calculated from the backscattering coefficient (𝛾)  and the laser footprint 

area (𝐴𝑙𝑓) (equation (6)).  

𝜎 = 𝛾𝐴𝑙𝑓 (6) 

 

However, all the lidar parameters described in section 3.2, including the 

backscattering coefficient, depend on the assumed Gaussian behavior of the emitted and 

backscattered waveforms. Thus, the target cross-section calculated using equation (6) 

also becomes a Gaussian function in time. A backscattered waveform can be considered 

as a convolution of the emitted waveform and the derivative of the interacting target 

cross-section (Roncat et al., 2011). To estimate the target cross-section without the 

Gaussian assumption, we deconvolved the emitted waveform from the backscattered 

waveform. We converted each received backscattered waveform (bw) and the emitted 

waveform (ew) into Fourier frequency domain. In frequency domain (f), deconvolution is 

a spectral division of the backscattered waveform by the emitted waveform 

(Equation (7)).  

𝜎(𝑓) =
𝑏𝑤(𝑓)

𝑒𝑤(𝑓)
 

(7) 

 

To suppress division by small numbers (e.g. 0) we used a water-level 

regularization algorithm, which added a small value to the denominator and prevented 

noise enhancement in the deconvolution. In this way, we extracted the target cross-
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section from each laser backscattered waveform in the frequency domain. The frequency-

domain target cross-section was transformed back into the time-dependent target cross-

section (referred to as the differential target cross-section, DEC in Table 1). From the 

differential target cross-section, we calculated the target profile max amplitudes and 

integrated cross-section. The target cross-section (𝜎) is a function of the target reflectivity 

(𝜀) with respect to the given laser wavelength and the illuminated target area (dA) 

(equation (8)) 

𝜎 =  
4𝜋

Ω
𝜀𝑑𝐴, 

 

(8) 

where Ω is the scattering solid angle of the target (Roncat et al., 2011). The number of 

echoes, echo amplitudes and the total energy (integration of the target cross-section) were 

extracted from the deconvolved target cross-section as predictor features.  

Once we completed the waveform feature extraction (sections 3.2 and 3.3), a correlation 

analysis was performed between all features derived from individual backscattered 

waveforms and the incident angle to ensure that the features were not biased by viewing 

geometry. 
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Figure 2.3  Illustration of information contained in a lidar waveform. Peak 1, 2, 

and 3 are the echoes from three scatterers detected by the waveform. Three 

Gaussian functions (Gaussian pulse 1, 2, and 3) were fitted to the raw waveform. 

The peak amplitude is the maximum amplitude of the first echo after Gaussian 

fitting. Pulse width is the full width at half maximum. The stars are the trigger 

locations of each echo. Leading edge is the time distance from trigger to the max 

amplitude. The backscattered area represents the scattered cross-section from the 

first echo. 
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Table 2.2  Features extracted from waveform backscatter lidar. 

Code Variable Description 

Amplitude (First, 

Last, and Total) 

Amplitude (echo maximum) 

in DNs 

Mean of digital numbers (DN) of all 

peaks corrected for the range, 

atmospheric influence and incident 

angle within a given pixel. 

Width (First, Last, 

and Total) 

Pulse width (full width at half 

max) 

Mean of pulse widths measured from 

Gaussian decomposition (ns) within a 

given pixel. 

X, Y, and Z Echo coordinates (X, Y, Z) Georeferenced easting, northing and 

elevation coordinate of each echo 

triggering location in meters. 

Rise time* Rise time of all pulses Number of time bins between 10% - 

90% energy at rising edge of each 

pulse.  

Fall time* Fall time of all pulses Number of time bins between 10% - 

90% energy at trailing edge of each 

pulse. 

θ Incident angle Wave incident angle in degrees. 

Height Heights at percent energies in 

each waveform  

Absolute height from the 

ground to first and last echo 

positions of each waveform 

Absolute heights at cumulative energy 

percentiles (10th, 25th, 50th, 75th, 90th). 

The absolute height was derived by 

subtracting the elevation of the last 

location of the last echo in each 

waveform from elevation at each 

percentile. Units are in m. 

Energy Waveform energy at heights 

from first echo triggering 

location  

Cumulative energy at height 

percentiles (10th, 25th, 50th, 75th, 90th) 

as sum of DNs divided by 100.  

γ (First, Last, and 

Total) 

Backscatter coefficient (per 

pulse and per waveforms) 

Backscatter coefficient calculated as in 

(Wagner, 2010). 

   

Differential σ Differential target cross-

section 

Target waveform profile by 

deconvolution (the system waveform 

influence was removed from the 

backscatter signal). The target profile is 
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an amplitude profile with respect to the 

range in meters.  

Deconvolved 

Amplitude 

Deconvolved wave 

amplitudes 

Digital numbers of echo maximums in 

the differential target cross-section. 

σ Target cross-section Integral of the Differential target cross-

section. 

 First and Last – variable measured from the first & last pulse in multi-pulse backscattering 

waveforms respectively.  Total – Sum of the variable measured from all the pulses from multi-

pulse backscattering waveforms. *The rise time and the fall time are equal in value because we 

use Gaussian decomposition. 

 

Plant functional types classification 

We classified the PFTs at two different spatial scales (1 and 10 m) to account for 

the impact of canopy size variation between shrubs and trees, and to assess the potential 

for upscaling to large-footprint waveform acquisition. Based on the average canopy area 

of shrub (<= 1 m2) and tree (>3 m2) PFTs, and assuming an individual tree is more likely 

to be contained within a 10 m pixel, we expected that waveforms derived from 1 m and 

10 m would better characterize shrubs and trees, respectively. We used all waveforms in 

1 m and 10 m pixels and derived the mean, standard deviation, skewness and kurtosis of 

each waveform feature listed in Table 1. The response feature was the PFT categories 

(sagebrush, bitterbrush, ground, aspen, juniper, and Douglas fir).  

Implementation of random forest classification  

We used an ensemble random forest (E-RF) (Ko, Sohn, Remmel, & Miller, 2016) 

to classify the PFTs at the plot level (using 10 m pixel size) and at individual locations 

(using 1 m pixel size). We used an ensemble approach to reduce classification bias (Ko, 

Sohn, Remmel, & Miller, 2016). The random forest algorithm itself is an ensemble 

classifier where the final classification labels are obtained by combining multiple 

classification trees for categorical predictors using approximately 63% of the data for 
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training (in-bag data) and 37% of the data (out-of-bag (OOB) data) for validation 

(Breiman, 2001). We trained a set of base classifiers using this traditional random forest 

classification algorithm and ensembled the base classifiers to provide the final class using 

the majority vote approach (Ko, Sohn, Remmel, & Miller, 2016). We used binary based 

classifiers because this approach allows “unknown”, or unclassified data in the final 

classification product. In comparison, a traditional supervised random forest 

classification classifies the whole field study area during imputation. The traditional 

random forest model was computed to compare to the ensemble model performance. 

We used 257 individual samples (1 m) and 103 plot scale samples (10 m) for the random 

forest model development. In each spatial scale, we selected 50 % of the response PFT 

categories for training and used the remainder for validation. The selection of 50 % was 

chosen to provide enough samples from each category to train the base classifiers. We 

trained six binary base classifiers (sagebrush (SG)/non-sagebrush, bitterbrush (BT)/ non-

bitterbrush, ground (GD)/non-ground, aspen (ASP)/non-aspen, juniper (JP)/non-juniper, 

Douglas fir (DF) /non-Douglas fir) with and without height-based features and at both 1 

m and 10 m spatial scales (Figure. 2.4). This produced four ensemble RF models (Table 

3). 
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Figure 2.4  Ensemble random forest PFT classification workflow. Feature 

selection and base classifiers were trained using training samples. The selected base 

classifier models were applied to the validation samples and ensembled to make the 

final decision.  

To train the RF models, important features were selected using the “varselRF” 

package in R software (Diaz-Uriarte & Alvarez de Andres, S., 2005).  This package was 

chosen as it selects the important features using iterative backward feature elimination 

until the OOB error stabilizes and has been used successfully in previous lidar studies 

(e.g.  Chen, Li, Wang, Chen, & Liu, 2014).  For each base classifier we set 5000 trees for 

the first forest and 2000 trees for each additional forest for variable selection. We set 0.2 

as the variable drop factor to exclude the features at the next iteration. From the selected 

important features in each case, a RF model was generated and applied to the validation 

data set. In E-RF, the base classifiers simultaneously classify sagebrush (non- sagebrush), 

bitterbrush (non- bitterbrush), ground (non-ground), aspen (non-aspen), juniper (non-

juniper), and Douglas (non-Douglas) in the validation data set.  In cases where there are 

no conflicts in decisions made among the base classifiers, the final decision is made by 
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the classifier voted for by a positive case. If there is a conflict in decision, the final 

decision is made by the class that has the majority positive vote from all base classifiers. 

Where all six classifiers vote negatively, the class is labeled as “unknown” ( Ko, Sohn, 

Remmel, & Miller, 2016). E-RF model performance at both spatial scales was assessed 

using the overall accuracy and Kappa coefficient (κ). The overall accuracy is the ratio 

between the number of correctly classified PFT samples and total reference PFT 

observations tested. Kappa coefficient (κ) is a measure of agreement between overall 

(observed) accuracy with an expected accuracy from random chance (Jensen, 2005). We 

also tested the classification success of each PFT using producer and user accuracies to 

evaluate the best practice. Producer accuracy is the probability of the reference data being 

correctly classified by the method employed. The user accuracy measures how well the 

classified results represent what is observed in the ground (Jensen, 2005).   

Table 2.3  Ensemble random forest (E-RF) models used to evaluate the 

waveform attribute selection and PFT classification. 

RF Model Description 

NH_ E-RF_1 m Ensemble random forest model without lidar derived height features in 

predictor space at 1 m 

H_ E-RF_1 m Ensemble random forest model with lidar derived height features in 

predictor space at 1 m 

NH_E-RF_10 m Ensemble random forest model without lidar derived height features in 

predictor space at 10 m 

H_E-RF_10 m Ensemble random forest model with lidar derived height features in 

predictor space at 10 m 
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Results  

Influence of the viewing geometry on waveform features  

Waveform features derived from all individual backscattered waveforms used in 

this study indicated a low correlation (-0.07 – 0. 22) with incident angle (θ). The 

maximum correlation was with the first return pulse width (0.22). Although the 

maximum possible scan angle of the instrument was 28, the local incident angle of the 

tested samples varied between 0.7 and 32 due to the rough terrain of the study area. The 

amplitude and pulse width of the system waveforms had negligible variability. However, 

wherever necessary (e.g. for initial pulse width during Gaussian decomposition, 

backscattered coefficient estimation) we used amplitude and pulse width values from 

each individual emitted waveform with each respective backscattered waveform to derive 

our features instead of applying a constant emitted pulse width or amplitude.  

Important waveform features for PFT classification 

In almost all of the ensemble RF models we produced (Table 3), percentile energy 

(e.g. 10th, 50th, and 75th percentiles), statistical moments of target cross-section (standard 

deviation of σ), rise time, statistical moments of backscatter coefficient (standard 

deviation of first and total γ), and pulse widths were selected as the most important 

waveform features. These results were observed even when lidar-derived height features 

were included (except for the ASP/non-ASP and SG/non-SG in 1 m). Overall, more 

height features were selected as the most important features in the 1 m than in the 10 m 

classifications. Further, inclusion of heights resulted in a more complex model than those 

without heights at both spatial scales. In comparison between scales, the target cross-

section and the corresponding standard deviation (σ and standard deviation of σ) 
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frequently appeared among 1 m base classifiers, while varieties of backscatter coefficient 

such as standard deviation of first and total γ more often appeared in 10 m base 

classifiers.  The number of peaks was not among the most significant features at any 

spatial scale in this study. 

Figure. 2.5 illustrates the most important features at the 1 m scale analysis for 

each PFT. All tree PFTs (ASP, DF, and JP) stand out by having higher standard deviation 

of 90th percentile energy, 10th percentile height, total width, rise time, and 90th percentile 

height. The vertical structure distribution of tall vegetation tends to generate long 

smeared waveforms with slow rise and multiple peaks. From the selected tree PFTs, ASP 

shows the highest variability in several waveform features. DF stands out by having the 

highest standard deviation of 90th percentile energy, total width, and rise time and may 

represent the tall, dense internal vegetation structure compared to other tree PFTs used in 

this study. The JP PFT had the highest first width and standard deviation of first γ 

responses. Shrub PFTs (BT and SG) and the ground class (GD) show relatively lower 

means of standard deviation of 90th percentile energy, 10th percentile height, total width, 

rise time, and 90th percentile height. However, BT and SG show higher means than bare 

ground for 75th percentile energy, first width, and 50th percentile energy. GD shows 

significantly low values of first width (< 3.2 ns threshold) and rise time (< 6.2 ns 

threshold) reflecting the narrow single pulses from bare ground. Thus, these features can 

be used to distinguish bare ground lidar signals from vegetation signals. 
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Figure 2.5  Box plots showing the variability of values of the most important 

waveform features at 1 m scale among PFTs. Definitions of PFTs are: ASP-aspen, 

DF-Douglas fir, JP-juniper, BT-bitterbrush, SG-sagebrush, GD-bare ground.  From 

left to right, top row:  variability of standard deviation of 90th percentile energy, 

10th percentile height, and 75th percentile energy, respectively; middle row:  

variability of pulse width of first returns (first width), 50th percentile energy, and 

pulse widths of all returns (total width), respectively; bottom row:  variability of 

standard deviation of backscatter coefficient of first returns (first γ), rise time, and 

90th percentile energy, respectively. Note the differentiation of shrubs and bare 

ground with the pulse width and rise time. 

First width, rise time, and 50th percentile energy were always among the most 

important features regardless of the spatial scale. However, different trends and higher 

ranges were observed at 10 m compared to the 1 m spatial scale (Figure. 2.6). Tree PFTs 

show relatively high values for first width, rise time, and standard deviation of σ at 10 m 

spatial scale. For cumulative energy at 50th percentile energy, DF shows the smallest 
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mean in 1 m and the highest in 10 m. Standard deviation of σ of PFTs at both spatial 

scales were similar. At 10 m, DF has the highest value of 50th percentile energy as well as 

the highest variability of rise time, standard deviation of σ, and skewness of last 

amplitude.  Although the mean values of many waveform features of JP were closely 

aligned with DF, the 50th percentile energy and standard deviation of first width metrics 

show an opposite trend allowing JP to be distinct from DF. ASP is distinct at 10 m having 

the highest values for first width, standard deviation of total γ, and standard deviation of 

first width with low variability. Bare ground is well discriminated from all vegetation 

classes at 10 m with first width, rise time, kurtosis of first amplitude and skewness of last 

amplitude. The two shrub PFTs fall between the value ranges for ground and tree 

waveform features.  However, with the exception of skewness of last amplitude, 

bitterbrush has higher means than sagebrush for all waveform features.    
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Figure 2.6  Box plots showing the variability of values of the most important 

waveform features at 10 m scale among PFTs. From left to right, top row:  

variability of pulse width of first return, rise time, and standard deviation of total 

backscattering coefficients, respectively; middle row:  variability of energy at 50th 

percentile height, and standard deviation of first return pulse widths, and standard 

deviation of target cross-section, respectively; bottom row:  variability of kurtosis of 

first return amplitudes and skewness of last return amplitudes, respectively. 

 

RF model performance  

The classification success of each model was assessed based on Kappa and 

overall accuracy values using the validation data sets. Each model was iterated 100 times 

with randomly selected training and validation data sets without replacement. All 10 m 

models outperformed the 1 m models (Table 4).   The random forest model at 10 m 

spatial scale without height (NH_E-RF_10m) showed the highest classification success (κ 

= 0.86, overall acc. = 0.89).  The inclusion of waveform derived heights decreased the 
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accuracy by 4%. However, the inclusion of heights increased the accuracy of PFT 

discrimination by approximately 10 % at the 1m spatial scale (κ /overall acc. = 0.70/0.80 

and 0.60/0.72, with and without height features, respectively).  

Aspen (ASP) and shrub PFTs had the highest producer accuracies with waveform 

heights at 1 m and without waveform heights at 10 m whereas the opposite effect of 

waveform heights was found at 1 m and 10 m for DF and JP. Shrubs had similarly high 

producer's accuracy at both 1 m and 10 m, whereas trees and bare ground generally had 

stronger classifications at 10 m (producer acc. 0.93-1).  

Table 2.4  Producer and user accuracy of each PFT (ASP, DF, JP, BT, SG, and 

GD) in each RF model described in Table 3. 

RF Model Model accuracy  Producer Accuracy  User Accuracy 

1m 

 
Kappa  Overall  ASP DF JP BT SG GD ASP DF JP BT SG GD 

NH_ E-RF_1 m 0.6 0.72 0.14 0.87 0.93 0.45 0.8 0.42 0.93 0.9 0.92 0.66 0.76 0.7 

H_ E-RF_1 m 0.7 0.8 0.47 0.86 0.92 0.56 0.84 0.55 0.9 0.95 0.99 0.75 0.81 0.85 

10 m 

NH_E-RF_10 m 0.86 0.89 0.95 0.96 0.91 0.57 0.85 1 1 0.95 0.94 0.83 0.91 1 

H_E-RF_10 m 0.81 0.86 0.72 0.98 0.93 0.33 0.81 1 1 0.92 0.97 0.65 0.9 1 

 

Discussion 

Differentiating PFTs with waveform features 

Pulse widths (width), rise time, and percent energy (10th, 50th, 75th, and 90th 

percentiles) were among the most important waveform features at both spatial scales to 

distinguish all vegetation types. These results closely align with findings of  Hovi, 

Korhonen, Vauhkonen, & Korpela, (2016) to differentiate tree species. Pulse width and 

the rise time of an echo is a measure of the canopy roughness along the laser path. Thus, 

the lowest pulse width and rise time result from bare ground while the highest can result 
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from tree PFTs (Figure. 2.6 and Figure. 2.7). Within tree PFTs, a range of pulse widths 

are observed from the heterogeneity of the distribution of leaves and branches. For 

example, high-headed deciduous tree canopies like in aspen showed mostly single pulse 

backscattered waveforms with large pulse widths.  Equal canopy density in aspen 

resulted in a lower variability of rise time in the first echo. The pyramidal shaped canopy, 

with closely arranged branches from canopy top to bottom in Douglas fir and juniper, are 

likely to produce smeared backscattered waveforms with one or more echoes. As a result, 

pulse width and rise time had a higher variability than in aspen. The percent energy is a 

measure of backscattered radiation at different heights of the target along the laser path. 

The significant differences in percentile energy (at both 50th and 75th) of Douglas fir and 

juniper may be due to differences in the fraction of woody material and needles 

interacting with the laser beam. Thus, the variability of pulse width, rise time, and 

percentile energy can be used to differentiate broadleaf deciduous and evergreen conifers 

with distinct canopy distributions without adopting an initial individual tree delineation 

process.  

In this study, we included both backscatter coefficient (γ) and target cross-section 

(σ) as waveform features. Some studies have used backscatter coefficient alone or with 

other waveform features (Fieber et al., 2013; Mallet, Bretar, Roux, Soergel, & Heipke, 

2011); however, we found the target cross-sections (σ) to be useful for classification. The 

backscatter coefficient (γ) is a measure of the electromagnetic energy intercepted and 

reflected by objects back towards the sensor. On the other hand, target cross section 

describes the target's structure distribution as a function of range and is independent of 

the laser scanning system and decomposition parameters deployed (Roncat et al., 2011; 
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Roncat, Pfeifer, & Briese, 2012).  Neither γ nor σ were among the most important 

features. Our results in Figure. 2.7 show γ has low variability among and within PFTs 

compared to the σ at both spatial scales. These results confirm that the structure (target 

cross-section) is more important than lidar derived radiometric parameters to separate 

PFTs.   
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Figure 2.7 Distribution of total backscattered coefficient (total γ) and target 

cross-section (σ) of PFTs at 1 m (a) and 10 m (b) spatial resolution. Total 

backscatter coefficient shows less variability than the target cross section within 

PFTs as well as among PFTs. 

Surprisingly, the number of peaks and amplitude were not among the most 

important features (except for the SG and GD classifiers at 10 m spatial scale) as per 

other similar studies (Bruggisser et al., 2017; Cao et al., 2016; Heinzel & Koch, 2011; 

Mallet et al., 2011). This may be due to the range of incident angles (0.7-32 degrees) in 
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our data, resulting in the possibility of some laser beams hitting trees at lower heights and 

producing single pulse backscattered signals. Furthermore, dense tree canopies may 

produce smeared single pulses or high energy first peaks with following echoes being 

equivalent to the noise level in the system. Thus, with the potential to produce single 

pulses from almost all vegetation PFTs, the number of peaks may not be a distinguishing 

characteristic in our study site.  

Peak amplitude was not a strong waveform feature in differentiating PFTs. The 

amplitude is a function of target reflectance at 1064 nm and is further affected by other 

factors such as geometric properties. The similar amplitudes of shrubs and ground 

(Figure. 2.8) is likely due to the influence of high soil and litter exposure (and thus 

reflectance) in this shrubland ecosystem at both spatial scales. Similarly, the large 

variation in amplitude in the aspen and Douglas fir is likely due to varying cover between 

these two PFTs.  
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Figure 2.8 Distribution of amplitude of the selected PFTs at 1 m (a) and 10 m (b) 

spatial scale. Distribution of heights above ground of the PFT samples at 1 m (c) and 

10 m (d) spatial resolution. 

Although the classification results were highly correlated with field observed 

shrub PFTs at both spatial scales, regional scale attribution of these models misclassified 

some of the relatively dense canopy sagebrush (e.g. Wyoming big sagebrush (Artemisia 

tridentate spp. wyomingensis)) as bitterbrush. The variability of waveform features in 

response to size, age, and genotype within the same PFT needs to be further evaluated. In 

the PFT classification, the edges of the tree patches were classified as “unknown”. The 

confusion and edge effects may be reduced by coupling our waveform data with optical 

data from multispectral or hyperspectral data. In addition, the development of physical 

radiative transfer (RT) models incorporating simulated lidar waveforms using known 
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reference target structural and optical properties as well as detailed sensor specifications 

(spatial and spectral resolutions, sensor viewing geometry, platform altitude, and range) 

should be explored. These models will help constrain waveform features as well as 

quantify the influence of vegetation structure on canopy reflectance and image texture 

(Bruniquel-Pinel & Gastellu-Etchegorry, 1998; Gastellu-Etchegorry et al., 2015, 2016; 

Malenovsky et al., 2008). Further, by inversion of waveform lidar RT models with 

known sensor specifications, we have the potential to extract vegetation biophysical 

parameters such as fractional vegetation cover, leaf-area index, and vegetation heights 

and extensions (Koetz et al., 2006). 

Waveform derived heights and differentiating bare ground from vegetation 

In this study, height was one of the least significant features (except for the 

ASP/non-ASP and BT/non-BT classifiers at 1 m spatial scale). However, similar studies 

have noted that airborne waveform lidar derived heights at percent energy 

(Neuenschwander, 2009) or median energy height (Cao et al., 2016) are among the most 

significant features for classification. Many of these studies used tree species in which the 

vegetation height is sufficiently separable from the ground. A similar study to ours in an 

open grassland did not include height as a variable and instead incorporated other leaf-off 

season waveform features (Alexander et al., 2015). The inclusion of height to 

differentiate species requires accurate bare ground elevations as well as low intra-species, 

but high inter-species height variability. In our study the application of a height threshold 

is limited because the variability in heights between shrubs and ground, and between tree 

species were too low. For example, previous studies have shown uncertainty in lidar 

heights to be approximately 30% of shrub height (e.g. Glenn et al., 2011). 
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Regardless, lidar-derived height plays a critical role for digital elevation modeling 

(DEM), digital terrain modeling (DTM), digital surface modeling (DSM), and many 

object-based classification studies (Reitberger et al., 2008; Yao et al., 2012), as well as 

hydrological studies (Painter et al., 2016). The results of this study show that waveform 

features such as rise time, pulse width, statistical distribution of amplitude (skewness and 

kurtosis), backscattering coefficient, and target cross-section can be used as prior 

information to filter ground returns (e.g. pulse width < 3.2 ns) from vegetation returns in 

shrub and savanna ecosystems to constrain the uncertainty in elevation model 

development. Further, the ability to separate bare ground from low-height vegetation 

such as shrub and grass helps accurately map the vegetation and soil fractions, a key 

controller in land surface model uncertainty, especially in drylands. 

Scale dependency of PFT classification 

Our overall results show that small-footprint lidar waveform features can 

differentiate PFTs with high accuracy at both 1 m and 10 m spatial scales (80–89%) in 

semi-arid ecosystems.  Shrubs showed relatively high accuracy at 1 m, whereas trees and 

bare ground were best classified at 10 m. Our study demonstrates that the individual PFT 

classification accuracy depends on both the average individual stand size (shrub or tree) 

and the selection of the pixel size. Most shrubs were contained within a 1 m radius, and 

thus, the waveform features can capture the variation at this scale. However, trees have a 

larger canopy area and although we used the canopy center location to extract waveform 

features of tree PFTs at 1 m, the intra-structure (stem and branches) are beyond this 

radius. This was clearly observed in most aspen stands. Further, waveforms with a higher 
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viewing geometry may belong to more than one pixel.  Thus, at 1m, the extracted tree 

waveform features have less potential to represent actual tree parameters.  

Our study area comprises heterogeneous vegetation species and structure (shrubs, 

forbs, grasses, evergreen and deciduous trees), topography, and sub climatic regions. 

Hence, the suite of waveform features (e.g. pulse width of 3.2 (ns) for ground and shrub 

separation, variability of pulse width, rise time, and percentile energy for deciduous and 

evergreen separation) is likely capable of adapting to ecosystems with similar shrub and 

tree communities. Moreover, additional field attributes such as individual tree height age, 

soil type, and moisture condition of the site, may help to explain the intra-species 

variability of waveform features of tree communities ( Hovi, Korhonen, Vauhkonen, & 

Korpela, 2016). The waveform lidar derived high accuracy PFTs and their uncertainty 

with respect to individual stand and pixel sizes can also be used in dynamic global 

vegetation models in which the PFTs and their structure play a critical role, to evaluate 

the model performance.  

Upscaling to large-footprint waveforms 

Our study results inform the application of future large-footprint waveform data 

such as GEDI (Abdalati et al., 2010) over semi-arid ecosystems. For example, the pulse 

width of the emitting waveform of GEDI (<= 15.6 ns) (ISS: GEDI, retrieved 9_24_2017) 

is much larger than the ground and shrub pulse widths in our study area (3.7 ns). While 

this pulse width is not ideal for differentiating shrubs or shrubs and bare ground in 

sparsely vegetated ecosystems, simulation techniques and a binned (1 ns / 15 cm in both 

the ASO system and GEDI) energy distribution pattern analysis may help identify 

vegetation hits along the waveforms and hence, to approximate related parameters such 
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as vegetation fraction and leaf-area index relevant to dryland ecosystems.  However, the 

accuracy of these simulation and pattern analysis methods heavily depends on the 

superiority of noise tracking and reduction. Our 10 m results can be used as intermediate 

scale observations to bridge high (ASO 20-40 cm footprint) and low (GEDI's 25 m 

footprint) spatial resolution studies over vegetation to understand scale dependency of 

target retrieval (similar to Holm, Nelson, & Ståhl, 2017). However, direct retrieval of 

structural parameters such as canopy height from arid vegetation at the satellite level is 

still limited due to the compromised coarse pulse widths, digitization interval, and laser 

footprint sizes to maintain high signal to noise ratio (SNR) at far range measurements 

(Hassebo, 2012). 

This study was developed using small-footprint slant-range waveforms with a 

high degree of incident angles. Although the vertical resolution is high, slant-range 

waveforms in complex vegetation and terrain conditions does not necessarily represent 

the true target structure. While waveform features were extracted after individual object 

delineation, slant-range backscattered waveforms within individual objects show a range 

of patterns based on where it hits the target and at what angle. This can be partially 

avoided by aggregating the waveforms at the raw level rather than aggregation of features 

either at the object or pixel scale. Our future studies intend to aggregate waveforms 

preserving incident angle information of component waveforms. This will allow us to 

evaluate not only the limitations caused by small-footprint waveforms, but also the 

capability of large-footprint waveforms (using pseudo footprint produced by aggregation 

of raw waveforms) in complex terrain for vegetation studies.  
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Conclusions 

While computationally more challenging than discrete return lidar data, deriving 

waveform features from the ASO data provides new information to map semi-arid 

ecosystems. The Gaussian decomposition and frequency-domain deconvolution 

techniques yield robust predictors in our study area. Pulse width, rise time, percent 

energy, target cross-section, and radiometrically calibrated backscatter coefficient were 

the most important waveform features at both spatial scales to differentiate the shrubs, 

trees, and bare ground from each other. Among those, pulse width and backscatter 

coefficient had the lowest variability within each PFT in comparison to the other 

waveform features.  

The ability to differentiate vegetation from bare ground with ASO waveform data 

is a significant improvement for ecosystems where vegetation height is lower than the 

height uncertainty in discrete return lidar (often +/- 15 cm). The lack of importance of the 

number of peaks for PFT classification demonstrates the capability of waveform features 

to differentiate PFTs even within a lower pulse density scenario. Overall, this study 

shows exciting promise to constrain PFTs in heterogeneous semi-arid ecosystems, 

providing new opportunities for automated inventorying and monitoring and estimating 

biomass and carbon from waveform lidar data.  
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CHAPTER THREE: SPACEBORNE LIDAR REVEALS TRENDS AND PATTERNS 

OF FUNCTIONAL DIVERSITY IN A SEMI-ARID ECOSYSTEM 

Abstract 

Assessing functional diversity and its abiotic controls at continuous spatial scales 

are crucial to understand changes in ecosystem processes and services. Semi-arid 

ecosystems cover large portions of the global terrestrial surface and provide carbon 

cycling, habitat, and biodiversity, among other important ecosystem processes and 

services. Yet, the trends and patterns of functional diversity in semi-arid ecosystems and 

their abiotic controls are unclear. Here, we mapped the functional diversity in a semi-arid 

ecosystem using airborne small footprint lidar data (ALS) and evaluated the potential of a 

newly launched spaceborne lidar system (GEDI) to capture functional diversity trends of 

the same ecosystem. Our results revealed that functional diversity in this ecosystem is 

mainly governed by elevation gradient, soil, and slope.  All three functional diversity 

indices (functional richness, functional evenness and functional divergence) showed a 

diversity breakpoint at elevations around 1500 m – 1700 m. We found a more even and 

less divergent ecosystem in fire disturbed regions of our study area.  The consistency of 

diversity trends between airborne lidar and GEDI confirmed GEDI’s potential of 

capturing functional diversity of semi-arid ecosystems. The number of GEDI footprints 

relative to the size of the fire-disturbed areas restricted the ability to capture the full 

effects of fire disturbance. Future opportunities to fuse GEDI with ICESat-2 and 
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TanDEM-X data to fill gaps, will improve our ability to capture disturbance-driven 

diversity in semi-arid ecosystems.  

Introduction 

Understanding the drivers of ecosystem processes and services at regional and 

global scales provide pivotal knowledge to assess ecosystem responses under changing 

conditions (Diaz et al., 2007; Isbell et al., 2015). A wealth of research use functional trait- 

based approaches, as functional diversity show a greater effect on ecosystem processes 

rather than species diversity (Bardgett & van der Putten, 2014; Hooper et al., 2006; 

Violle, Reich, Pacala, Enquist, & Kattge, 2014).  The distribution of functional traits 

within and between species of an ecosystem represent the demography and response 

strategies to disturbance (Poorter & Markesteijn, 2008; Díaz et al., 2004; Wright, 2004, 

Serbin et al., 2019). Both single and multi-trait indices have been shown to predict 

variations in ecosystem processes under changing conditions (Zhu, Jiang, & Zhang, 

2016). Hence, direct observations of functional traits are widely utilized at various spatial 

and temporal scales, mostly in forested ecosystems to elucidate overall structure, 

function, and diversity (Funk et al., 2017, Wieczynski et al., 2019). In addition, previous 

research has utilized functional traits in assessing community assembly processes across 

a variety of traits (e.g., Pakeman & Stockan, 2014; Medeiros et al, 2019). However, it is 

important to use multiple dimensions of functional diversity as it is not possible to 

completely represent the functional diversity of a community as a single number (Ludwig 

and Reynolds 1988).  

Moreover, selection of representative functional traits and scaling those traits are 

critically important as ecosystem to global scale processes are a function of combined 
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traits of co-occurring species and their abundance (Funk et al., 2017). However, large-

scale functional diversity measurements are strongly limited due to the lack of spatially 

continuous data sets (Jetz et al., 2016). Availability of remote sensing data at fine to 

coarse spatial and temporal scales facilitates upscaling traits relevant for ecosystem 

service management (Martínez et al., 2018; Braun, Damm, Hein, Petchey, & Schaepman, 

2020).  Among many, the traits that represent canopy architecture (morphological 

functional traits) show direct relationships between carbon storage (Rödig et al., 2019), 

habitat distribution and quality (Bae et al., 2019), and biodiversity (Bagaram, Giuliarelli, 

Chirici, Giannetti, & Barbati, 2018), and are widely used to characterize regional to 

global scale ecosystem processes. Importantly, lidar remote sensing provides 

opportunities to accurately calculate the morphological functional traits in order to map 

the morphological diversity at local and regional scales (Schneider et al. 2017). With the 

launch of the Global Ecosystem Dynamics Investigation (GEDI) mission, we have new 

opportunities to map functional traits and biodiversity at global scales (Marselis et al., 

2019; Rödig et al., 2019; Schimel & Schneider, 2019). Nevertheless, the performance of 

GEDI in estimating functional traits and diversity in different ecosystems, and especially 

in semi-arid ecosystems with short and sparse vegetation is yet to be investigated (Qi et 

al., 2019).  

Semi-arid ecosystems cover approximately 40% of the terrestrial landscape and 

show high dynamicity in ecosystem structure and function (Conti & Díaz, 2013). Hence, 

semi-arid ecosystems show an unprecedented influence in global carbon dynamics, 

productivity, and habitat quality (Poulter et al., 2015). Structure-functioning relationships 

in frequently disturbed semi-arid ecosystems are unclear, largely due to gaps in spatially 
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continuous data and the weak response of sparse and short height vegetation in optical 

remote sensing (Kulawardhana, Popescu, & Feagin, 2017, Stavros et al., 2017).  In 

particular, understanding semi-arid ecosystem responses to global change is challenging 

due to the complex and dynamic interactions among multiple ecosystem functions. To 

unravel this complexity, assessing the spatial patterns of functional diversity and the 

abiotic controls are critically important (Schlesinger et al. 1990, D’Odorico, Bhattachan, 

Davis, Ravi, & Runyan. 2013). Especially, understanding how community assembly is 

controlled by the balance of abiotic drivers is important in predicting the response of 

ecosystems to environmental change (Pakeman & Stockan, 2014).  Further, mapping 

functional diversity at continuous spatial scales helps to constrain model accuracies of 

ecosystem processes at landscape scales in different regions across the globe (Braghiere 

et al., 2019; Dashti et al., in review; Stavros et al., 2017).  

In this study, we demonstrate trends and patterns of functional diversity derived 

from three functional traits using both airborne, the gold standard of measuring 

morphological traits, and spaceborne lidar (GEDI) in a semi-arid ecosystem. We selected 

three functional traits: canopy height (CH), plant area index (PAI) and foliage height 

diversity (FHD) that can be accurately measured from airborne lidar and are widely used 

to evaluate ecosystem structure - function relationships in a range of ecosystems from 

forest to savanna. We evaluated the spatial pattern of functional diversity derived from 

NASA Airborne Snow Observatory (ASO) small footprint airborne lidar (ASO hereafter) 

and GEDI with respect to abiotic controls to demonstrate GEDI’s potential of quantifying 

the semi-arid ecosystem processes at regional scales. We selected a range of abiotic 
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controls including topography, distance to water, topographic wetness index, soil, and 

disturbance.  

Materials and Methods 

Study area 

The study was carried out in the Reynolds Creek Experimental Watershed 

(RCEW) in southwest Idaho (Figure. 3.1). The study area is characterized by a range of 

topography (1100 m – 2200 m) and vegetation communities. While many varieties of 

grass, forbs, and shrubs dominate the low elevations, trees of aspen (Populus 

tremuloides), juniper (Juniperus occidentalis), and Douglas fir (Pseudotsuga menziesii) 

mark the high elevations. However, low stature sagebrush (Artemisia tridentata), 

bitterbrush (Purshia tridentata), and grass of varying densities and cover are found 

throughout RCEW. In addition, riparian vegetation with cottonwood and willow are 

found within valleys, and along streams across the watershed. Further, the study area 

experiences topography-dependent mean annual temperature and precipitation regimes 

that vary between 4.6–9.2 ⁰ C and 230-959 mm, respectively. The study area has 

experienced prescribed and natural fires and supports grazing. As a consequence, 

invasion of cheatgrass in native shrub areas and juniper encroachment have occurred in 

this study area during the last few decades. 
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Figure 3.1 Reynolds Creek Experimental Watershed, SW Idaho with the 

topographic gradient and stream network. The black stars represent 10 m x 10 m 

field plots across the watershed. 

Field data 

Reference field data were collected at 10 m x 10 m plots randomly selected over 

the study area (Figure. 3.1).  We established 5 transects at 1 m, 3 m, 5 m, 7 m, and 9 m in 

each plot. We collected canopy heights of all the shrubs, plant area index (PAI) and 

images at 2 m intervals along each transect totaling 20 measurements per plot using a 

ceptometer (AccuPAR LP-80, Decagon Devices Inc., Pullman, WA, USA) and a camera 

(Nikon COOLPIX AW120) respectively. Plot scale PAI was calculated by averaging the 

20 measurements (Glenn et al., 2017). The collected images were extensively analyzed 

using the “Samplepoint” freeware program to estimate the species abundance presented 

within each plot (v1.59,  Booth, Cox, & Berryman, 2006).  Each photo approximately 
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covered 2 m2 on the ground. We placed 100 equally spaced grid points within each photo 

and identified the material under each grid point as vegetation species, dead wood, litter 

or as bare ground which were later used to calculate the percent cover of each material in 

those plots.  

Environmental data 

The topographic variables of altitude, slope, aspect, and topographic wetness 

index were calculated using the small footprint airborne lidar derived 3m digital elevation 

model. The slope data were categorized into 10⁰  groups between 0 – 90⁰ . The aspect 

data were categorized into two major directions as north (+/- 90° – 180° from south) and 

south (0° - +/- 90° from south). We did not use the flat aspect category as there were not 

many pixels in this category due to the complex topography of the study area.  Stream 

networks and soil types were retrieved from the Reynolds Creek Critical Zone 

Observatory database (GIS Server, Reynolds Creek Critical Zone Observatory, 2015). 

Euclidian distance from streams to each pixel was calculated and used as the distance to 

water. In addition, we investigated four different fires that occurred in the study area over 

the past 15 years including the Koke fire (natural fire, 2014), Whiskey mountain fire 

(prescribed fire, 2005), Break fire (prescribed fire, 2002) and Rabbit creek fire (natural 

fire, 1996). The burned areas varied from 0.5 km2 to 2 km2. 

Airborne lidar data 

Small-footprint waveform lidar data were acquired August 2014 using the NASA 

Airborne Snow Observatory (ASO) Riegl LMS-Q1560 (RIEGL Laser Measurement 

Systems GmbH, Horn, Austria) dual laser scanner (1064 nm wavelength). The mean 

above ground level of ASO was 1000 m (700 – 1300 m due to terrain conditions) 
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resulting in a footprint of 20 – 60 cm. The study area was scanned at a pulse repetition 

rate of 400 kHz per laser and the backscattered signal was sampled at 1 ns per sample. 

All the lidar waveforms in each flight line were Gaussian decomposed following the 

workflow of Ilangakoon et al., 2018.We derived spatial coordinates, incident angle, pulse 

width, amplitude, and scattering cross section of all echoes in each waveform. The 

resulting average point density across the watershed was 10-14 pts/m2 with positional 

accuracies of 0.14 m in vertical and 0.11 m in horizontal directions. 

Derivation of bare ground 

Finding the bare ground was critical in this study as it was the base to calculate all 

three selected functional traits. Most ground derivation methods initialize with the last 

return, the lowest elevation points at defined pixel sizes, regardless of the type of lidar 

(waveform or discrete return). However, low-stature vegetation tends to widen the 

waveform without a separate vegetation pulse. Thus, defining ground using the last return 

may remove some vegetation responses especially in this ecosystem. Thus, in our 

method, we used pulse width deviation to initialize the bare ground search. We used a 3.2 

ns pulse width threshold to separate bare ground from vegetation based on Ilangakoon et 

al. (2018). The initial ground surface was generated at 3 m spatial resolution using 

minimums of last returns with pulse widths < 3.2 ns using thin plate smoothing. From the 

initial ground plane, the noisy below ground points (points below 1 m within 0.5 m radii) 

were removed. Then, the mean of the last returns with pulse width < 3.2 ns were used to 

generate the final ground plane at 3 m resolution. We selected 3m in order to have at least 

a few ground returns in dense shrub/tree areas. Though overlapping flight lines provide 

more returns per given area, mismatching between flight lines can be spurious and 
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sometimes greater than 75 cm, which is well above most shrub heights. Thus, we 

initialized the point cloud adjustments at flight line level with stepwise increment adding 

flight line to the process to cover whole study area. The final vertical and horizontal 

errors of airborne lidar data were 0.14 m and 0.11m respectively.   

ASO Functional traits 

In this study, we introduce a new method for PAI calculation and canopy height 

derivation using mutli-angle waveform pulse widths and scattering cross sections. These 

are derived from the lidar. The workflow for the PAI and the overall workflow to derive 

the functional traits is displayed below (Figure. 3.2).  

 

 

Figure 3.2  Summary workflow for deriving plant area index from small 

footprint waveform lidar. 
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Once the ground plane is defined (section 2.5), all lidar returns were normalized 

using the ground plane. Then, the data were aggregated into 10 x 10 m spatial pixels. 

This scale was used with the assumption we captured both trees and shrubs, and small 

variations of functional diversity in shrub dominated areas. At each 10 m pixel, ground 

and above ground points were separated from all flight lines. To calculate the PAI at 

different incident angles, the ground and above ground data were separated based on the 

incident angles. We used groups of incident angles from -30⁰  to +30⁰  (field of view of 

the laser system) at 5⁰  intervals. Once the data were separated, gap fraction at each 

incident angle (P(θ)) was calculated as the ratio between sum of scattering cross sections 

from ground returns to the sum of scattering cross sections to the total returns at a given 

angle range. The plant area index at θ was then calculated using the following equations 

(1):  

 

𝑃𝐴𝐼(𝜃) = 𝐿Ω(𝜃) = − 
𝑙𝑛 (𝑃(𝜃))𝑐𝑜𝑠𝜃

𝐺(𝜃)
      (1) 

Where, P(θ), G(θ), Ω, L are the gap fraction at incident angle θ, extinction coefficient, 

clumping index, and the true leaf area index (Norman and Campbell, 1989). As we do not 

separate woody and leaf materials, and do not correct for the clumping effect, the above 

equation provides the plant area index (PAI). The extinction coefficient G(θ) can be 

calculated using 

𝐺(𝜃) =
(𝑥2 + 𝑡𝑎𝑛2 𝜃 )0.5 cos𝜃

𝑥+1.774 (𝑥+1.182)−0.733
       (2) 

where x is the shape parameter. We used x = 1(spherical leaf distribution) as we did not 

have inclination measurements. To calculate the PAI of the pixel from all data from all 
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incident angles, we used a weighted sum method counting the differences in number of 

laser points at each incident angle range. 

𝑃𝐴𝐼 =  𝐿Ω = 𝜔1. 𝐿Ω(𝜃1) + 𝜔2. 𝐿Ω(𝜃2) + ⋯+ 𝜔𝑛. 𝐿Ω(𝜃𝑛)  

= −

(

 
 

𝜔1. 𝑐𝑜𝑠𝜃1
ln𝑃(𝜃1)

𝐺(𝜃1)
 

+ 𝜔2. 𝑐𝑜𝑠𝜃2
ln𝑃(𝜃2)

𝐺(𝜃2)

+⋯+𝜔𝑛. 𝑐𝑜𝑠𝜃𝑛
ln𝑃(𝜃𝑛)

𝐺(𝜃𝑛) )

 
 

      (3) 

 

To calculate the foliage height density (FHD), above ground lidar points were 

fragmented into 20 cm layers. For each layer, the ratio between numbers of points in each 

layer to the total number of points was calculated. The total foliage height diversity is 

then calculated using the following equation ( MacArthur & MacArthur 1961).  

𝐹𝐻𝐷 = −∑𝑝𝑖 . 𝑙𝑛 𝑝𝑖        (4) 

Where, pi is the ratio of foliage in ith canopy layer. Canopy height is the maximum height 

from all above ground returns from each 10 m x 10 m pixel area.  

Once the three traits were calculated at 10 m x 10 m pixel resolution for the whole 

study area, the trait values within the study area were normalized to vary between to 0 

and 1.  

GEDI waveform simulation and functional traits 

GEDI full waveform lidar signals were simulated for the nominal two year period 

using the GEDI simulator (Hancock et al., 2019).  Discrete return ASO lidar point clouds 

were used to represent the vertical distribution of surface material to simulate the GEDI 

waveforms.  The GEDI simulator shows that the difference between the height metrics 

(e.g. RH50) derived from simulated and observed large footprint waveforms (e.g. LVIS 
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waveforms) is minimal when using Riegl laser systems that produce point clouds with 

pulse density greater 3 beams/m2 (Hancock et al., 2019). In our study, we used a point 

cloud with average point density of 14 pts/m2 derived from a Riegl QLMS 1560 dual 

laser scanner (Ilangakoon et al., 2018). Hence, we assume that the simulated GEDI 

waveforms closely represent the actual GEDI waveforms. To account for data loss due to 

clouds, we used a conservative (based on our study area) estimate of ~50% for the mean 

global cloud cover to derive the GEDI track patterns under cloudy conditions. A GEDI 

waveform was modelled as a Gaussian shaped laser pulse with a FWHM of 15.6 ns (an 

effective footprint size of 22 m) at a sampling rate of 15 cm. We added Gaussian noise to 

the simulations to match the expected performance of the GEDI power beams by night. 

The noisy simulated waveforms were smoothed using a Gaussian function and the mean 

noise was subtracted with a threshold equal to 3.5 times the standard deviation (Hofton, 

Minster, & Blair, 2000). The structural parameters of canopy height (CH), foliage height 

diversity (FHD), and plant area index (PAI) were extracted using the GEDI metric 

calculator. The GEDI metric calculator uses the Gaussian decomposition to define the 

ground and to generate the relative height (RH) metrics. The GEDI estimate of canopy 

height was considered as the 98th percentile (RH98) of the cumulative energy of the 

waveform (Drake et al., 2002). The FHD metric was used as the foliage height diversity. 

The sum of PAIs calculated based on the Gaussian decomposed data (gLAI 10 – gLAI 

40) were used as the PAI (Tang et al., 2012). 

In addition, we generated another set of GEDI waveforms using point clouds 

clipped from field plots to assess the correlation between field observed and GEDI 

derived vegetation structure. Though we used the same simulation process as described 
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above, we modified the point cloud input to the simulator to match the GEDI footprint 

size (25 m). To do that, we created 25 m footprints surrounding each 10 m x 10 m plots 

and clipped the point clouds within each footprint. The vegetation points beyond the 10m 

x 10 m plot boundary were removed. By removing the vegetation points beyond the plot 

boundaries, this allowed us to segregate the GEDI signal from vegetation within the field 

plots. Hence, we can directly compare the GEDI metrics from the simulated waveforms 

at the plot scale to the field observed vegetation heights and PAI.  

Functional diversity 

We calculated the functional diversity around each pixel at a rectangular 

neighborhood with a side length of 500 m. Initial mapping of functional traits showed 

that 500 m is the minimum spatial resolution that could produce a wall to wall map using 

GEDI footprints for the study area. The average number of GEDI footprints per 500 m 

pixels was 20. The neighborhoods were selected using a moving window approach 

following Schneider, et al. (2017). PAI, CH, and FHD of all the pixels within the 

rectangular neighborhood were selected and the functional diversity indices of richness, 

divergence, and evenness were calculated following Villéger, Mason, & Mouillot. (2008) 

and Schneider et al. (2017). The resulting values were assigned as the center pixel 

functional diversity. 

The functional richness is the convex hull volume covered by the PAI, CH, and 

FHD of the pixels within the selected neighborhood mapped in the 3-D trait space. 

Functional divergence (FDiv) is calculated as: 

∆|𝑑| =  ∑
1

𝑆

𝑆
𝑖=1  |𝑑𝐺𝑖 − 𝑑𝐺̅̅̅̅ |  (Schneider et al. , 2017),   (5) 

𝐹𝐷𝑖𝑣 =  
𝑑𝐺̅̅ ̅̅

∆|𝑑|+𝑑𝐺̅̅ ̅̅
  (Schneider et al. , 2017),     (6) 
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Where, S is the number of pixels used to map the functional divergence, dGi is the 

Euclidean distance between the ith pixel and the centre of gravity of 3D trait space 

defined by CH, FHD, and PAI as trait axes, and 𝑑𝐺̅̅̅̅  is the mean distance of all pixels to 

the centre of gravity. 

The calculation of Functional evenness (FEve) requires partial weighted evenness 

(PEW) measurements. To calculate the PEW, the euclidiance distances between nodes 

were calculated using the minimum spanning tree method in MATLAB (Prim, 1957). In 

this study, a node is a pixel defined in the 3D trait space by its PAI, FHD, and CH trait 

axes. The minimum spanning tree was drawn connecting all the pixels in the functional 

space using the minimum possible total edge weight. 

𝑃𝐸𝑊𝑖 =
𝐸𝑊𝑙

∑ 𝐸𝑊𝑙
𝑆−1
𝑖=1

        (7) 

 

𝐹𝐸𝑣𝑒 =  
∑ min(𝑃𝐸𝑊𝑙  ,

1

𝑆−1
)− 

1

𝑆−1
𝑆−1
𝑙=1

1−
1

𝑆−1

       (8) 

 

Where, 𝐸𝑊𝑙 is the euclidian distance of branch l in the minimum spanning tree, and S-1 

is the number of branches. Here, S is the number of pixels used in the pixel space (500 m 

rectangular space in this case). The subscript i represents the 500 m rectangular 

neighborhood space used to calculate the functional diversity. 

Statistical analysis 

To analyze the effects of abiotic factors on functional diversity, we randomly 

selected 200 data points across the watershed that capture the full range of functional 

diversity and the environmental factors. We resampled the environmental factors 
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(elevation, slope, aspect, topographic wetness index, distance to the nearest stream, and 

soil type) to the same 500 m spatial resolution of the functional diversity. We used the 

average of the continuous values (e.g. elevation). For categorical variables (e.g. soil 

type), we used the major category within 500 m space.  We set the minimum distance 

between data points greater than 520 m to avoid the mutual inclusion of niche spaces 

(500 m). A generalized linear model was applied to the scaled environment variables. 

The relative importance of each factor in the linear model was used (R package relaimpo, 

calc.relimp) to assess the capability of  all factors together and each factor separately to 

explain the variance of each diversity index derived from ASO and GEDI. We further 

used ANOVA type 1 to show the statistical significance of each environmental variable 

to explain the functional diversity.  

Results 

We derived three functional traits (CH, FHD, and PAI) from both ASO and GEDI 

full waveform signals. Our field observations showed a range of functional trait values 

for PAI (0.19 – 1.88) and CH (0.31 m – 2.52) with mean values of 0.76 and 1.20 m, 

respectively.  Field observed functional traits showed a high correlation (R2 = 51 - 77%) 

with ASO derived functional traits and a moderate correlation (R2 = 35 - 45%) with those 

derived from simulated GEDI waveforms (Figure. 3.3). The RMSE of GEDI derived 

canopy heights and PAI were 0.60 m and 1.39, respectively. However, the bias in height 

estimates from GEDI in this study is less than the bias observed in a previous study of a 

forested environment (2.35 m – 3.83 m) (Qi et al., 2019). GEDI shows difficulty in 

estimating vegetation heights less than 2 m (red circle in Figure. 3.3c).  We further 
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observed that both ASO and GEDI derived PAI were significantly correlated to their CH 

and FHD values (Figure. 3.4).  

  

  
Figure 3.3  Correlation between a) field measured max vegetation heights and ASO 

derived vegetation heights, b) field measured plant area index (PAI) and ASO derived 

PAI, c) field measured max vegetation heights and GEDI derived vegetation heights, and 

d). field measured PAI and GEDI derived PAI . 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 3.4  Correlation between a) field measured max vegetation heights and 

ASO derived PAI, b) ASO derived FHD and ASO derived PAI, c) field measured 

max vegetation heights and GEDI derived PAI, and d). GEDI derived FHD and 

GEDI derived PAI . 

 

Figure. 3.5 displays the distribution of morphological traits of PAI, FHD, and CH 

of the study area at 10 m pixel size for ASO and at footprint scale (25 m) for GEDI. 

Morphological traits vary from high (dark blue) to low (brown). The ASO derived PAI 

and FHD varied between 0 – 6.87 and 0– 4.9 while those from GEDI varied between 0.0 

– 8.3 and 3.3 – 5.2 (Figure. 3.5a, b, and d, and e).  Due to the vegetation height range (0 – 

29 m) of the study area, the canopy height variability within shrub dominant regions 

(mostly between 0- 1 m) is not clearly visible in the watershed scale map, hence, the log 

canopy height map is presented for both ASO and GEDI (Figure. 3.5c and f). The highest 

PAI, FHD and CH (dark blue regions) are in the southern portion of the study area. These 
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densely vegetated regions consist of a number of tree and shrub species. The north and 

central portions of the study area show a range of ecosystem characteristics ranging from 

low to high vegetation cover (~6% to over 60 %), however, the height range is lower than 

in the southern portion of the watershed. The fine resolution of traits from ASO, 

especially FHD and log canopy height, results in larger distributions across the watershed 

in contrast to the coarser resolution traits from GEDI. However, the tree-shrub ecotone 

transition from south to north is clearly visible in all trait maps except in the GEDI 

derived PAI (Figure. 3.5d). Central and eastern portions of the watershed are comprised 

of low, but consistent trait values (yellow- brown areas in all sub figures except Figure. 

3.5d). These areas are dominated by agriculture and grazing. Among all traits studied, 

FHD and log canopy height distinguish not only tree and shrub dominancy, but also 

variations in shrub cover and density (referring to the variations of green color in the 

shrub dominant central and north regions of the watershed in Figures. 3.5b, c, e, and f). 

Our field measurements of shrub cover and density confirmed the relationships between 

FHD and shrub cover and density, and had strong correlations with both ASO and GEDI 

derived FHD.  

Moreover, we evaluated the functional diversity (functional richness, functional 

evenness, and functional divergence) around 500 m neighborhoods of each pixel center 

throughout the watershed with both ASO and GEDI derived morphological traits. Figure. 

3.6 displays the diversity distribution of the study area from ASO and GEDI respectively. 

Both ASO and GEDI showed very low functional richness values and varied between 0.0 

– 0.11 and 0.0 – 0.2, respectively (Figure. 3.6a and d). The evenness and divergence 

showed relatively higher values compared to the richness. The ASO evenness and 
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divergence ranged between 0.33- 0.99 and 0.55 – 0.87 (Figure. 3.6b and c) while those of 

GEDI varied between 0.58- 0.85 and 0.57 – 1.0 (Figure. 3.6e and f) correspondingly. The 

tree-dominant southern portion of the study area is characterized by high richness with 

low evenness whereas the shrub-dominant central and northern portions of the watershed 

are characterized by the opposite. Highest richness was observed at densely vegetated 

tree dominant regions while the lowest was at sparse shrub dominant regions with shrub 

cover less than 30%. Highest evenness was observed mostly in the eastern and some 

northwest areas. These areas are used for grazing and are shrub and grass dominant.  

Evenness and richness differentiate the tree-shrub ecotones and relative densities within 

shrub dominant areas. Further, relatively low evenness is reported along the stream 

network of the watershed compared to its surroundings (refer to Figure. 3.1 for the stream 

network). A variable functional diversity was observed throughout the watershed 

regardless of the tree-shrub ecotone distribution. Both GEDI and ASO diversity maps 

provide similar patterns across the watershed. The ASO and GEDI showed 54%, 28% 

and 13% correlation between functional richness, functional evenness, and functional 

divergence, respectively (Figure. 3.7). The ASO data showed 64% inverse correlation 

between evenness and richness. 
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Figure 3.5  ASO and GEDI derived functional traits distribution across the 

RCEW. Top row: a). ASO derived PAI, b). ASO derived FHD, c). ASO derived 

CH. Bottom row: d). GEDI derived PAI, e). GEDI derived FHD, f). GEDI derived 

CH. The ASO based maps were derived at 10 m spatial resolution. GEDI data are 

displayed at footprint scale.  The ASO and GEDI canopy heights are displayed as 

log canopy heights to enhance the visualization of canopy height distribution 

across the study area. 
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Figure. 3.6  Functional diversity derived using 500 m spatial neighborhood 

from ASO (top row- richness, evenness, divergence), and GEDI (bottom row- 

richness, evenness, divergence). Functional richness, functional evenness and 

functional divergence of RCEW derived from functional traits distribution across 

500 m neighborhood to each 10 m x 10 m pixel in ASO and 25 m x 25 m footprints 

in GEDI. 
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Figure. 3.7  Correlation between ASO and GEDI based diversity indices at 500 

m spatial neighborhood. 

 

Functional diversity indices demonstrated a range of trends with environmental 

gradients (Figure. 3.8). Both the ASO and GEDI derived diversity showed consistent 

trends with the selected abiotic variables. At altitudes below 1500 m, the richness showed 

little to no change whereas above 1500 m, a drastic increase with ASO and a mild 

increase with GEDI was observed (Figure. 3.8a).  With functional evenness, a consistent 

but opposite trend was demonstrated with the altitude (Figure. 3.8b). Both ASO and 

GEDI evenness showed an increase up to 1500 m and then continuously decreased at 

higher altitudes. The ASO divergence also demonstrated a general increase with elevation 

up to 1700 m and then decreased dramatically, however, GEDI divergence did not show a 

clear trend with altitude (Figure. 3.8c). A very similar trend between aspect and 

functional richness was observed (Figure. 3.8d). While the richness increased with 

aspect, the evenness and divergence did not show a clear trend with aspect (Figure. 3.8e 

and f). However, ASO evenness showed a decrease only at north aspects as with altitude 
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(the red curve in Figure. 3.8e). The ASO and GEDI richness increased with slope up to 

10⁰  and then showed almost an independent behavior at higher slopes (Figure. 3.8g). 

Both ASO and GEDI evenness and divergence exhibited an increase with slope (Figure. 

3.8h and i). Among other factors examined, only ASO evenness showed an increase with 

distance to water up 500 m and showed no change thereafter (Figure. 3.8n).  Our 

generalized linear models developed for diversity indices with abiotic factors demonstrate 

the variance of each diversity explained by the abiotic factors (Figure. 3.9). With all the 

environmental factors combined (elevation, slope, aspect, soil, distance to water and 

topographic wetness index) 24%, 16% and only 4% of the variance of ASO richness, 

evenness and divergence, can be explained. For GEDI, these abiotic factors could explain 

20%, 26%, and 15% of the variance of richness, evenness, and divergence. Within that, 

the results further show that functional richness is strongly controlled by elevation (77% 

in ASO and 80% in GEDI) (Figure. 3.9a and d). The influence of all factors were 

generally less than 10%. The functional divergence is mainly influenced by slope (80% in 

ASO, 75% in GEDI) (Figure. 3.9c and f). In addition, elevation showed some influence 

on functional divergence (ASO- 16%, GEDI- 19%).  In contrast, while the ASO evenness 

is mainly influenced by elevation (41%) and soil (48%), the GEDI evenness is mainly 

influenced by slope (88%) (Figure. 3.9b and e). All other factors showed less than 10% 

importance in explaining the evenness derived from both ASO and GEDI.   
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Figure. 3.8  Functional diversity – environmental gradient trends of RCEW. The red 

and blue curves represent the mean variation of diversity indices from ASO and GEDI 

respectively and the surrounding gray area represents the standard deviation. From top 

to bottom variation of functional diversity with altitude (a,b,c), aspect (d,e,f), slope (g,h,i), 

topographic wetness index (TWI) (j,k,l), and distnace to water (m,n,o) are displayed.  

 

 

   

   

 

Figure. 3.9Variance of functional diversity explained by each abiotic factor; a). 

ASO functional richness, b). ASO functional evenness, c). ASO functional 

divergence, d). GEDI functional richness, e). GEDI functional evenness, f). 

GEDI functional divergence. TWI – topographic wetness index, DTW – 

distance to the nearest stream in meters.  
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 We further investigated functional traits and diversity shifts in response to fire 

disturbances. Figure. 3.10 and Figure. 3.11 are the functional traits and diversity 

distributions derived from ASO within disturbed and surrounding undisturbed areas of 

the fires. The ASO traits data are at 10 m spatial resolution to compare with the field 

observations. Frequency distributions of all three traits show a shift towards lower values 

in disturbed areas than the undisturbed areas. The PAI shows a shift of trait values 

towards the lower end than the other two traits regardless of whether a fire is prescribed 

or natural (Figures. 3.10b, e, h, and k). Further, a shift of traits is clearly visible in 

recently burned areas than the oldest Rabbit Creek burn scar revealing the trends of trait 

recovery. The shift of functional traits clearly demarcates a sharp fire boundary from the 

prescribed fires. In the natural fires (Kirk and Rabbit), the burned region can be 

identified, however, due to the diffuse nature of natural disturbance events, the 

boundaries of the disturbance cannot be demarcated. Functional richness showed a minor 

increase compared to the surrounding of all disturbed areas except the very recent Koke 

fire (Figure. 3.11d, g, and j). The functional evenness has also increased while the 

functional divergence decreased in the fire-disturbed areas compared to their 

surroundings (except Whiskey fire divergence- Figure. 3.11f).  
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Figure. 3.10  Frequency distribution of functional traits within the fire disturbed 

and surrounding undisturbed areas of RCEW. The pink represents the functional 

traits from burned areas while the green represents the functional traits of 

undisturbed areas.  
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Figure. 3.10 Frequency distribution of functional diversity indices of burned and 

unburned areas of RCEW. The pink represents the functional diversity from 

burned areas while the green represents the functional diversity of undisturbed 

areas.  

 We used boxplots instead of frequency distribution curves to show the 

functional traits and diversity of burned and unburned areas from GEDI, as the number of 

GEDI pixels in the burned areas was low (Figure. S.1 and Figure. S.2). Neither functional 
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traits nor diversity showed a clear relationship with fire disturbance, likely due to the 

sparseness and low number of GEDI footprints (2-42) within 500 m neighborhood 

(Figure. S.1 and S.2). However, at least three of the four fires showed a decrease in the 

distribution of functional traits after fire (Figure. S.1). The GEDI functional diversity did 

not show clear shifts between disturbed and undisturbed areas. Finally, we calculated the 

functional diversity of the four fires at a range of spatial neighborhood sizes with 30 m 

increments to enhance our understanding of the scale dependency on functional diversity 

(Figure. 3.12). The time series of fires (over 15 years) also allowed us to evaluate the 

functional recovery post fire. Our analysis showed that the functional richness of the 

disturbed and undisturbed areas are similar when we use smaller neighborhoods and 

increase with the increment of the spatial neighborhood (Figure. 3.12a). The difference of 

functional evenness and divergence between disturbed and undisturbed areas is very high 

with smaller spatial neighborhoods and decreases with an increase of the spatial 

neighborhood (Figure. 3.12b, and c). Further, we observed that functional divergence 

differences decrease when increasing the time since disturbance, and thus showing a 

trend of functional recovery (Figure. 12c).  
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Figure. 3.11 Functional diversity variability with search neighborhood radius at 

four different burned regions. Pink represents the burned areas and the blue 

represents the surrounding unburned areas.   
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Discussion 

Mapping functional traits  

Mapping functional traits and diversity at continuous spatial scales in semi-arid 

ecosystems and identifying their abiotic controls allow us to understand the ecosystem 

function – processes relationships and trends.  We demonstrate the potential of GEDI to 

map functional traits and diversity of semi-arid ecosystems. The moderate correlation 

between GEDI and field estimates of canopy height and PAI show the limitation of GEDI 

in these heterogeneous semi-arid ecosystems.  Though a low correlation is expected from 

large footprint lidar systems over short canopies where remote sensing is highly 

challenging, our results show higher correlations than previous studies (e.g. Qi & 

Dubayah, 2016; Qi et al., 2019).  The wider pulse widths of GEDI (15.6 ns) result 

primarily in single peaks over short height vegetation, combining responses from both 

vegetation and the ground. Previous studies from large footprint laser systems including 

simulated GEDI show that the RMSE of height estimation is 2.35 m – 3.83 m. Our results 

confirm that GEDI data can be used to estimate vegetation heights above 2 m with lower 

RMSE and bias than Qi et al. (2019), who also used simulated GEDI to estimate 

vegetation heights. More than 50% of our field plots contain shrubs, with an average 

shrub height greater than 50 cm and max shrub height greater than 1 m. In addition, the 

average shrub cover of the study plots varies from 6% - 65% allowing the simulated 

GEDI waveforms to capture and incorporate vegetation into the ground signal. These 

vegetation heights and high canopy density of some field plots may have led to the 

relatively high correlation of GEDI. 
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To calculate vegetation height, PAI and FHD, the separation of vegetation from 

ground returns or quantifying the vegetation contribution in the ground return is essential. 

We used the ratio between scattering cross section of lidar points above ground and the 

total lidar cross section coverage per plot as the PAI. In ecosystems with canopy height 

less than 2 m, taller vegetation will have better detection of vegetation returns especially 

from laser systems with wider pulse widths such as ASO (3 ns) and GEDI (15.6 ns).  

Hence, a high correlation can result between any variables that require vegetation – 

ground separation to the canopy height (PAI and FHD in this case). In addition, the 

canopy cover exponentially increases when the shrub height increases, especially in 

Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) and basin big 

sagebrush (A. tridentata ssp. tridentata) (Frandsen, 1983) and has a high correlation with 

leaf area index (R2 = 0.73) (Olsoy, Mitchell, Levia, Clark, & Glenn, 2016). Utilizing 

other techniques such Partial Curve-Fitting (PCF)  (Zhuang & Mountrakis, 2015) or 

deconvolution may have a high potential of separating the vegetation from the ground 

peak, and hence may provide a better estimation of vegetation structure of shrub 

dominant ecosystems from GEDI. However, we observed a consistent pattern of 

functional trait distributions with both the ASO and GEDI across the study area revealing 

GEDI’s feasibility to track trends and patterns of functional traits at regional and global 

scales. All of the functional traits from both ASO and GEDI clearly demarcate the tree-

shrub ecotones. ASO lidar further shows the variations of functional traits within tree and 

shrub ecotones as well as along the watershed’s stream network. The consistency 

between ASO and GEDI functional trait maps further emphasizes the great potential of 



78 

 

 

 

GEDI data to help map functional traits in heterogeneous semi-arid ecosystems across the 

globe.  

Functional diversity in semi-arid ecosystems 

Our results emphasize that the trends and patterns of functional diversity depend 

on the relative distribution of the environmental factors considered here (primarily 

elevation, soil, slope, and aspect). We observed different functional evenness and 

richness patterns over shrub versus tree ecotones, whereas functional divergence did not 

depict a trend based on the ecotone. Functional richness is the niche extent in the trait 

space. The high functional richness in this study is characterized by the extreme values of 

all traits within the considered niche space (500 m radius). We observed high functional 

richness at high elevations and especially with north aspects.  These areas in the southern 

portion of the study area receive the highest precipitation throughout the year, mostly as 

snow, which helps maintain perennial streamflow. In addition, this region shows a mean 

annual temperature range from 4 – 16 C° providing favorable conditions for vegetation 

growth. Due to the high dependency with elevation gradient, we did not include 

precipitation or temperature as abiotic factors. However, future studies including these 

climatic variables and their temporal variability would help us to understand the temporal 

dynamics of the functional diversity. Further, most of the southern portion of the 

watershed is comprised of north facing slopes. Seyfried, Harris, Marks, & Jacob (2000) 

show that soils of the Harmehl-Gabica association, which are dominant at elevations 

higher than 1370 m MSL, are associated with deep soil profiles with thick surficial A 

horizons and contain high organic matter in north facing slopes. Due to the availability of 

water, soil nutrients, and solar radiation, these areas of the watershed provide favorable 
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conditions for conifers, aspen and mountain sagebrush. These species have diverse 

morphological characteristics. Though functional richness may decrease with elevation in 

many other regions due to increased aridity and a decrease in temperatures at high 

elevations (Durán et al., 2019; Schneider et al., 2017; Wieczynski et al., 2019), the deep 

soil profile and low aridity at high altitudes in this study area leads to a high functional 

richness. However, the highest functional richness observed in the study is 0.2.  The high 

topographic gradients over short distances limits the spatial extension of this functionally 

rich zone. Hence, the vegetation in this southern portion of the study area may have 

higher competition for resources leading to a lower functional evenness.  

In contrast, the lower elevations in the central and north portions of the study area 

are relatively dry with lower and intermittent precipitation. The northern watershed 

consists of shallow, rocky soils with mesic soil temperatures favoring sagebrush species.  

This unique and important plant community in the northern Great Basin ecoregion is 

referred to as the sagebrush-steppe and is co-dominated by big sagebrush and several 

perennial grasses and forbs.  The functional evenness is the distribution of trait 

abundance in the occupied niche space.  Our functional trait maps show that the trait 

variability in these regions are minimal.  Rather than the abundance, the distribution of 

structurally similar vegetation in the niche space is reflected by the evenness.  This 

further explains the negative correlation between functional richness and evenness. 

Sparsely distributed, structurally similar shrubs can effectively utilize the entire range of 

resources available. Hence, we observe functionally even, but functionally less rich 

landscapes in the lower elevations of RCEW. This lower functional richness may also be 
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a reflection of environmental tolerance (beta niches) to disturbance such as grazing 

(Tilman & Downing, 1994).  

In this case, the remotely sensed functional diversity can indicate how the niche is 

grouped in trait space. Though we observe similar morphological traits at lower elevation 

and diverse morphological traits at higher elevations, the local grouping or the patchiness 

of the vegetation is mainly governed by the soils and slopes. Within the same soil 

association, the slope changes the soil thickness within close proximities. Hence, the 

different densities of vegetation can be observed in the trait space leading to very 

dynamic divergence characteristics in the study area, in all ecotones. The variable 

functional diversity in the study area may resemble the maximum use of available 

resources.  

Disturbance and time-since-disturbance show a significant influence on driving 

the functional diversity in the study area. Further, the functional diversity in the fire 

regions are highly dependent on the spatial neighborhood size as well as the size of fire. 

The small-sized fires (< 2 km2) with few GEDI shots limited the use of GEDI to infer fire 

effects at coarser resolution (figure S3).  Similar functional richness over disturbed and 

undisturbed areas from ASO data may be due to the standing dead or burned wood in the 

disturbed area. Integrating other remote sensing techniques that can differentiate woody 

materials from leafy vegetation could resolve this (e.g. Li et al., 2018). However, the 

increase of functional richness of both disturbed and undisturbed areas with the 

expansion of neighborhood size is due to the potential merging of different traits 

associations. The intermittent steep slopes in the functional richness curves could be the 
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transition zones of functionally different niches.  These intermittent steps could further 

indicate the relevant scales of spatial organization. 

Functional divergence and functional evenness show a clear separation between 

disturbed and undisturbed areas. Our results emphasize that fire in this region can lead to 

a less even and more divergent ecosystem, and are compatible with the results of Chillo, 

Anand, & Ojeda (2011). The differences disappear at large spatial extents though, where 

functional evenness and divergence of burned and unburned areas converge. This 

convergence emphasizes the importance of using fine resolution remote sensing data such 

as ASO to identify fine-scale disturbance effects. At global scales, this could be 

potentially accomplished fusing GEDI data with ICESat-2 and Synthetic Aperture Radar 

(SAR) (Bae et al., 2019; Qi, Lee et al., 2019, Qi et al, 2019). In addition, a higher 

functional divergence is observed in recent disturbances and this divergence decreases 

with time since fire. However, even after 15 years, these disturbed areas have not 

functionally recovered. Disturbance results in a functionally different and disconnected 

landscape from the surrounding. The slow rate of recovery largely affects native habitat, 

especially for sage grouse (a threatened species), and potential changes in ecosystem 

processes. The ideal habitat for sage grouse requires connected mosaics of sagebrush 

shrublands which allow them safe migration, secure shelter and food resources (Stiver et 

al., 2015). In addition, disturbance-driven fragmentation strongly affects biodiversity and 

resource distributions (e.g. ecological functions and processes), especially along edges of 

the disturbance (Collinge, 1996). Recovery from disturbance in the face of global change 

represents a substantial challenge to agencies that manage these lands. Our study shows 
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that assessing functional diversity can help identify areas for restoration or other 

management activities to consider for treatment.  

Conclusion 

Mapping functional diversity across space and time is pivotal to capturing and 

monitoring the stability and resiliency of ecosystems under changing climate conditions. 

In this study, we assessed the trends and patterns of functional diversity and their abiotic 

controls of a semi-arid ecosystem using small footprint and simulated large footprint 

(GEDI) waveform lidar data.  Our results show that both the fine resolution airborne and 

coarse resolution GEDI can capture functional richness, evenness and divergence of the 

semi-arid ecosystem. We further show that functional diversity is mainly driven by the 

local elevation gradient, elevation breakpoint, slope, and soil type in this study area. Fire 

disturbance results in a more even and less divergent ecosystem that has implications for 

biodiversity and habitat quality. While we found a positive trend of post-fire functional 

recovery, the ecosystem has not fully recovered even after 15 years from disturbance.  

Overall, GEDI’s capability to capture trends and patterns of functional diversity in this 

semi-arid ecosystem demonstrates its exciting potential to identify critical biophysical 

and ecological shifts in similar ecosystems. This information will help monitor the 

changes in carbon-cycle dynamics, habitats and biodiversity across the globe in semi-arid 

ecosystems.  
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CHAPTER FOUR: ESTIMATING ABOVEGROUND BIOMASS IN A SEMI-ARID 

ECOSYSTEM FROM LARGE FOOTPRINT LIDAR DATA: INSIGHTS FOR GEDI 

Abstract 

Aboveground biomass (AGB) is a crucial parameter for assessing carbon stocks 

and ecosystem health including biodiversity and habitat quality. Large footprint full 

waveform lidar data are widely used to estimate aboveground biomass at regional scales 

and is often restricted to forest ecosystems.  The potential of large footprint lidar data to 

estimate biomass in semi-arid ecosystems is not yet being explored due to challenges of 

overlapping vegetation and ground signals.  The objectives of this study are to isolate the 

vegetation-only contribution in the signals from large footprint lidar in order to estimate 

aboveground biomass, and to quantify the associated uncertainty in these estimates, for a 

mountainous, low-stature vegetation ecosystem. This study shows that relative height 

metrics (RH) corrected for ground-effects from simulated waveforms of the Global 

Ecosystem Dynamics Investigation (GEDI) system can be used to estimate the 

aboveground biomass of a semi-arid ecosystem. The linear model with waveform derived 

RH explained 42% of variance of airborne lidar derived reference biomass with RMSE of 

351 kg/ha (16% RMSE). Our model estimated the aboveground biomass of 82% of the 

study area with less than 50% uncertainty. Uncertainties greater than 50% were observed 

in cultivated areas with vegetation heights lower than 0.5 m. Our study shows the 

potential of large footprint lidar data to estimate biomass of semi-arid ecosystems that 

cover a vast majority of the terrestrial landsurface. Biomass estimates from GEDI will 
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help constrain the higher uncertainties in inter-annual variability of global carbon 

dynamics caused by semi-arid ecosystems. In addition, this new capability to estimate 

AGB at global scales can provide early warnings as to whether a semi-arid ecosystem is a 

net carbon sink or source. 

Introduction 

Aboveground biomass (AGB) plays an important role in ecosystem processes 

such as carbon and water cycling, habitats and biodiversity (Urbazaev et al., 2018). Since 

biomass is closely related to both the size and spatial distribution of vegetation, accurate 

estimates of the vegetation structure are essential (Qi & Dubayah, 2016; Qi et al., 2019). 

Lidar remote sensing is a dominant technique for assessing the status and dynamics of 

AGB across spatial extents (Goetz and Dubayah, 2011). Lidar data are used to extract 

canopy height, canopy cover, crown volume and other vegetation structure metrics (LAI, 

FHD, succession etc.) with direct relationships with biomass (Drake et al., 2003; 

Dubayah et al., 2010; Duncanson et al., 2015; Hurtt et al., 2004). However, such studies 

are mostly limited to small areas where airborne lidar are available. To clearly understand 

the dynamics of carbon cycling, biodiversity, and habitat quality, global coverage of lidar 

data are essential (Milenković et al., 2017).   

NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission is now 

collecting large footprint (~ 25 m) waveform lidar signals across the globe from the 

International Space Station. The GEDI mission is expected to collect about 10 billion 

waveform lidar signals digitized at 15 cm intervals (1 ns) over its nominal 2-year mission 

period (Goetz & Dubayah, 2011). The waveform lidar signals provide additional 

capabilities to derive vegetation structure compared to discrete lidar as it digitizes the 
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total amount of lidar return energy at high vertical resolution (~1 ns = 15 cm).  These 

backscattered waveform signals are sensitive to the spatial distribution of the scattering 

component, bare ground and vegetation. The features derived from the waveform lidar 

signals are used to retrieve detailed vegetation structure and biomass.  Among others, the 

relative height metrics (RH) calculated from the cumulative waveform energy are widely 

used in ecological applications. (Qi et al., 2019; Silva et al., 2018).  For example, the 

height at 98th percentile of the cumulative energy profile (RH98) is used to estimate 

canopy height (Qi t al., 2019). 

However, the use of large footprint lidar signals and their features for vegetation 

structure or biomass estimates are not developed in low stature vegetation such as in 

semi-arid ecosystems. These ecosystems cover approximately 40% of the global 

terrestrial land surface and are critical for global carbon dynamics (Ahlstrom et al., 2015; 

Poulter et al., 2015). However, extracting biomass signals from large footprint lidar in 

semi-arid ecosystems is challenging due to the vegetation heights (< 2 m) that are close to 

the range resolution of the lidar system (Zhuang & Mountrakis, 2014). This similarity of 

vegetation height and lidar range resolution tends to generate single backscattered pulses 

combining both the vegetation and ground responses. This ground-vegetation 

assimilation is further enhanced when the ground slope is greater than 10ᵒ (Dong, Tang, 

Min, Veroustraete, 2019) (Figure 4.1). The slope induced backscattered waveforms alter 

the vegetation height estimates, leading to higher uncertainties in biomass estimates 

(Silva et al., 2018). Several studies have investigated the influence of ground slope on the 

backscattered waveform to understand the entire signal that is convolved with the ground 

effects and the vegetation (Gardner 1992; Abshire, McGarry, Pacini, Blair, & Elman 
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1994; Carabajal and Harding 2001; Filin, 2003). Dong et al., 2019 showed that the 

deviation of the backscattered pulse due to the ground slope can be calculated using the 

tangent of the ground slope and the sensor’s field of view. Further, by limiting the size of 

the laser footprint on the ground to 25-30 m, one can minimize the effects on ground 

slope in the backscattered waveforms.  (Pang, Lefsky, Sun, & Ranson 2011). Pang, 

Lefsky, Sun, & Ranson (2011) further showed that the vegetation signal can be 

completely assimilated in the ground single when vegetation height is less than the size of 

the ground pulse deviated by sloped terrain. Though a separate vegetation signal cannot 

be retrieved in such cases, the upper part of the waveform is related to the canopy echo. If 

the ground slope is known, the slope effect in the waveform can be calculated and 

removed (Dong, Tang, Min, Veroustraete, 2019; Wang et al., 2019). As a result, 

improved vegetation metrics and biomass estimates can be achieved from large footprint 

lidar waveforms collected in mountainous terrains (Wang et al., 2019).   
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Figure. 4.1  Assimilation of vegetation signal with ground signal in large 

footprint lidar data over sloped terrain. 

 

In semi-arid ecosystems, the vast majority of large footprint lidar signals are 

single pulse waveforms that include both the vegetation and ground (including slope) 

response. Thus, the aim of this study is to investigate the effectiveness of large footprint 

lidar to estimate aboveground biomass in a mountainous, semi-arid ecosystem. We first 

corrected the GEDI derived RHs using metrics derived from the reference ground 

waveforms. The reference ground waveforms were generated using the respective ground 

slopes. Then, we identified the GEDI RHs that are potentially incorporated with the 

vegetation response. A linear model was developed to estimate GEDI biomass using the 
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selected RH metrics.  Finally, an uncertainty analysis was performed to quantify the 

biomass uncertainty at both GEDI footprint and 1 km scales in a low stature, semi-arid 

ecosystem. 

 

 

 

Methods 

Study area 

The study was carried out in the Reynolds Creek Experimental Watershed 

(RCEW). The study area covers approximately 270 km2 within the Great Basin ecoregion 

in the Western US (Figure. 4.2). This region has a range of topography (1100 m – 2200 

m) and vegetation communities. While many varieties of grass, forbs, and shrubs 

dominate the low elevations, trees of Aspen (Populus tremuloides), juniper (Juniperus 

occidentalis), and Douglas fir (Pseudotsuga menziesii) mark the high elevations. Further, 

low stature sagebrush (Artemisia tridentata), and bitterbrush (Purshia tridentata) of 

varying densities and cover are found throughout RCEW. In addition, riparian vegetation 

with cottonwood and willow are found within valleys, and along streams across the 

watershed. The study area is further characterized by a mean annual temperature and 

precipitation that vary between 4.6–9.2 ⁰ C and 230-959 mm, respectively. This area has 

experienced prescribed and natural fires and supports grazing. As a consequence, 

invasion of cheatgrass in native shrub areas and juniper encroachment have occurred in 

this study area during the last few decades.  
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Figure. 4.2 a) Reynolds Creek Experimental Watershed (RCEW) study area 

vegetation. b) ASO derived reference biomass distribution. The red dots in a) 

represents the spatial distribution of field plots.  

   

Field data 

Vegetation heights and cover data were collected at 43, 10 m x 10 m randomly 

selected plots over the study area during the summers of 2014 and 2015 (Figure 1). The 

plot size of 10 m x 10 m was assigned focusing on a separate study (Ilangakoon et al., 

2018). The ground slopes within plots were between 1.5° to 13°.  Within each plot, we 

established 5 transects at 1 m, 3 m, 5 m, 7 m, and 9 m. We collected canopy heights of all 

shrubs and took images at 2 m intervals along each transect totaling 20 measurements per 

plot using a Nikon COOLPIX AW120 camera. The canopy heights of all shrubs were 

(a) 

(b) 
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then used to calculate the plot scale mean and max vegetation heights. The collected 

images were analyzed using the “Samplepoint” freeware program to estimate vegetation 

cover within each plot (v1.59, Booth et al., 2006).  

 

Airborne lidar data (ASO) 

Small-footprint waveform lidar data were acquired in August 2014 using the 

NASA Airborne Snow Observatory’s Riegl LMS-Q1560 (RIEGL Laser Measurement 

Systems GmbH, Horn, Austria) dual laser scanner (ASO hereafter). The mean above 

ground level of ASO was 1000 m (700 – 1300 m due to terrain conditions) and generated 

footprints of 20 – 60 cm. The study area was scanned at a pulse repetition rate of 400 kHz 

per laser and the backscattered signal was sampled at 1 ns per sample. All lidar 

waveforms in each flight line were Gaussian decomposed following the Ilangakoon et al., 

(2018) workflow. We derived spatial coordinates, incident angle, pulse width, amplitude, 

and scattering cross section of all echoes in each waveform. The resulting average point 

density across the watershed was 10-14 pts/m2. The ASO derived point cloud was used to 

create the reference biomass data and to simulate GEDI waveforms. The use of the same 

ASO point cloud for the GEDI simulation helped to avoid system bias and reduce 

uncertainty. Further, this allowed us to assume that the GEDI system observed the same 

vegetation structure as that of ASO, enabling a direct comparison. 

GEDI simulation 

GEDI full waveform lidar signals were simulated using the GEDI simulator 

(Hancock et al., 2019).  Discrete return ASO lidar point clouds were used to represent the 

true vertical distribution of the surface. We used a Riegl system derived point cloud 
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(point density of 10-14 pts/m2) for the simulation. We assumed our simulated GEDI 

waveforms closely represent actual GEDI waveforms based on a previous study where 

Riegl laser system with point densities > 3 beams/m2 were used in a similar manner 

(Hancock et al., 2019). We used an assumption of ~50% cloud cover (based on our study 

area which has 46 – 63% mean cloudy days per annum) to derive the GEDI track 

patterns. The percent cloudy days of the study area was identified using the mean annual 

cloud cover dataset for the period of 2000-2014 (Wilson & Jetz (2016). A GEDI 

waveform was modelled as a Gaussian shaped laser pulse (FWHM = 15.6 ns) that has an 

effective footprint size of 22 m with a sampling rate of 1 ns (~ 15 cm). We added noise to 

the simulations to match the expected performance of the GEDI power beams. Simulated 

waveforms were smoothed by a Gaussian of FWHM of 11 ns (75% of GEDI system 

pulse) (Hofton et al., 2000). The mean noise was subtracted, and a threshold was set 

equal to 3.5 times the standard deviation. The ground was identified by Gaussian fitting 

the denoised waveforms (Hofton et al., 2000). The noise filtered waveforms were then 

used to derive the relative height metrics (RH metrics) at 2% intervals from the 

cumulative waveform energy profile (Hancock et al., 2019).  

In addition, we generated another set of GEDI waveforms and RH metrics using 

point clouds clipped from field plots. To match the GEDI footprint size (25 m), we 

created 25 m footprints surrounding each 10 m x 10 m plot.  Then the vegetation points 

beyond the 10 m x 10 m plot boundary were removed. This enabled us to directly 

compare the GEDI RH metrics with the field observed vegetation heights.   
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Reference biomass  

We derived the reference biomass using ASO lidar point clouds because we did 

not have field biomass data over the GEDI footprints. We derived percent vegetation 

cover and maximum vegetation heights at 5 m spatial resolution from the ASO point 

clouds using the BCAL LiDAR Tools (Streutker and Glenn, 2006, 

https://github.com/bcal-lidar). Percent vegetation cover in this case is the percentage of 

above ground lidar points (aka vegetation points) to the total lidar points within each 5 m 

pixel space. We used a 25 cm crown threshold in the BCAL lidar tools to obtain the 

optimal vegetation cover for the study area from the airborne lidar data (Li et al., 2015). 

The percent vegetation cover was then used to calculate the biomass at 5 m spatial 

resolution (the middle image in figure 1b) for the study area using equation 1; 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = −2391 + 797.6 (𝑃𝑉𝐶) + 𝜖 (1) 

 

where biomass is measured in grams (g) and the PVC is the percent vegetation cover at 5 

m (Li et al, 2015).  This relationship was developed with a separate airborne lidar dataset 

with calibration and validation using field and terrestrial laser scanner data for the same 

study area (Li et al., 2015).  In this study, the 5m biomass map was resampled to 25 m 

resolution and used as the reference biomass map (ASO biomass hereafter). We further 

resampled the ASO biomass into 1 km spatial resolution to compare with the 1 km GEDI 

biomass.  

https://github.com/bcal-lidar
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GEDI biomass model development 

To remove the slope effect in GEDI waveforms, we simulated ground only 

waveforms considering the ground slope at each GEDI footprint (Wang et al., 2019). The 

ground slopes were extracted using the slope map derived from the ASO point cloud. The 

Gaussian pulse of flat ground (slope = 0°) can be modelled using the equation below; 

𝑦 = 𝐴 ∗ 𝑒𝑥𝑝
(
−𝑥2

2𝜎2
)
 

(2) 

where y is the Gaussian pulse and the A, x, and σ are Amplitude, time, and the standard 

deviation of the pulse respectively. The broadening of the pulse on a sloped terrain can be 

explained by; 

𝜎1 = σ +  β ∗ γ ∗ tan 𝜃 (3) 

where γ is the footprint size (25 m in this case), σ1 is the standard deviation of the pulse 

on the sloped terrain, and θ is the terrain slope.  β in the above equation is the coefficient 

for the conversion from half of the broadened waveform to the Gaussian shape factor 

(i.e., standard deviation).  As in most cases, the laser pulse levels off at 2 times the 

standard deviation. Thus, we used 0.5 for the β. With the corrected pulse deviation, the 

waveform on sloped terrain can be modelled as; 

𝑦 = 𝐴 ∗ 𝑒𝑥𝑝
(

−𝑥2

2(σ+ β∗γ∗tan𝜃)2
)
 

(4) 

 

We used the same signal start as GEDI waveforms for these ground only waveforms. We 

then calculated the RH metrics at 2% intervals from the ground only waveforms (GRH). 

The GRH metrics were subtracted from the RH metrics derived from simulated GEDI 

waveforms to obtain the slope corrected RH metrics. The slope corrected RH metrics 

were then used for the biomass model development as described below.  
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We first performed a correlation analysis between slope corrected RH metrics and 

field estimated vegetation heights. By doing this, we aimed to find the best RH metrics 

that can represent the true vegetation structure, and hence biomass. The RH metrics that 

showed higher correlation (> 20%) with field observed vegetation heights were used to 

find the best model for biomass estimates. We randomly selected 10% of the total 

simulated GEDI footprints across the study area (630 GEDI footprints). GEDI footprints 

with vegetation heights greater than 3 m were excluded from the biomass model 

calibration and validation in order to find the best model for low stature vegetation. The 

ASO reference biomass data at selected GEDI footprints were extracted using ArcMap.  

Forward and backward elimination was used to select the best slope corrected GEDI RH 

predictors for biomass estimates. We used “leapSeq” in the R package “leaps” as it uses 

10-fold cross validation for each model run with both forward and backward elimination. 

The model performance was evaluated using the R2, adjusted R2, root mean square error 

(RMSE) and the bias. We limited our models to use a maximum of five predictors. A 

linear model was developed using the best predictors to estimate the mean biomass at 

each GEDI footprint (~25 m) of the study area. In addition, we estimated 2.5% lower and 

97.5% upper boundaries of biomass within each GEDI footprint. The biomass at the 95% 

credible interval (CI95) was then calculated using equation 5 (Urbazaev et al., 2018). The 

percent uncertainty of biomass in each GEDI footprint was calculated using equation 6.  

𝐶𝐼95 = (𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑎𝑡 97.5% − 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑎𝑡 2.5%)/2 (5) 

 

𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =  
𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑎𝑡 95% 𝑐𝑟𝑒𝑑𝑖𝑏𝑙𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

𝑀𝑒𝑎𝑛 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 
∗ 100 

(6) 
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The footprint level biomass data were resampled to 1 km spatial resolution to 

develop a seamless biomass map for the study area. We included all GEDI footprints to 

generate the seamless 1 km map for the study area because we have few footprints from 

low stature vegetation in high altitude areas. In addition, the uncertainty analysis detailed 

the impact of the inclusion of GEDI footprints with vegetation heights > 3m. The 1 km 

spatial resolution was selected to be compatible with GEDI’s expected Level 4 biomass 

products (Coyle, Stysley, Poulios, Clarke, & Kay, 2015). The 1 km GEDI biomass 

product was directly compared with the 1 km ASO biomass product. The uncertainty of 

GEDI biomass at 1 km resolution was reported as the standard deviation. The processing 

workflow to estimate footprint scale and 1 km scale GEDI biomass using the simulated 

GEDI lidar data is shown in Figure. 4.3. 

 

 
Figure. 4.3 Processing workflow of GEDI biomass and biomass uncertainty 

estimates. 
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Results 

Using the ASO point cloud data, we derived maximum vegetation height, percent 

vegetation cover and the reference biomass maps for the study area. The ASO percent 

cover and max vegetation height of the study area varied between 0.14% - 97% and 0.07 

m – 29.2 m respectively. The southern portion of the study area depicts taller vegetation 

(> 3 m) and denser canopies (percent vegetation cover > 50 %) (Figure. 4.4). The rest of 

the study area is dominated by shorter vegetation (< 3 m) with a range of canopy cover (6 

– 65%). Intermittent dense canopies with taller vegetation are observed throughout the 

watershed (blue area within yellow regions in Figure. 4.4). The ASO derived biomass of 

the study area varied between -96 kg/ha to 3022 kg/ha. The negative biomass occurred in 

cultivated areas where vegetation heights are lower than 0.5 m. 

  

  

 

Figure. 4.4 ASO point cloud derived a) maximum vegetation heights and, b) 

percent vegetation cover maps at 5 m resolution. 

(a) (b) 
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All GEDI RH metrics between RH16 and RH68 showed correlations greater than 

23% with field observed max vegetation heights (23% - 35%). A decreased correlation 

was observed below RH16 and above RH68 (Figure. 4.5). At RH16, the GEDI heights 

varied between -2.45 m to 1.48 m and at RH68, the GEDI heights varied between 0.07 m 

to 2.12 m. The maximum vegetation heights of our plots ranged between 0.3 m to 2.5 m.  

This showed that our field observed vegetation heights are within RH16 – RH68. The 

percent vegetation cover of the field plots varied between 49% - 78%.  

  

 
Figure. 4.5 Correlation coefficients between slope corrected GEDI RH metrics 

and field observed max vegetation heights. 
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The slope corrected RH16 and RH68 were the best predictors to estimate biomass 

from the GEDI data. The final model with best predictors is shown in the equation 7. 

 

𝐺𝐸𝐷𝐼 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 =  −66 − 306 (𝑅𝐻16) + 96 (𝑅𝐻68) (7) 

 

Where the GEDI footprint biomass was measured in kg/ha. The RH16 and RH68 were 

the heights at 16th and 68th percentiles, respectively, of the cumulative waveform energy. 

The two predictor variables were significant at the 0.001 level with a p value of 2.2e-16. 

The model explained 42% (Adjusted R2 = 0.41) variance of the biomass estimates with a 

mean RMSE of 351 kg/ha (mean bias = -2.06 kg/ha) (Figure. 4.6).  This RMSE is 

approximately 16% of average shrub biomass (~13900 kg/ha) in Western US ecosystems 

(Martin et al., 1981; Li et al., 2017)  

 slope   
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Figure. 4.6 Reference ASO biomass versus predicted GEDI footprint biomass 

(kg/ha) with the 1:1 line. 

 

Figure. 4.7 shows the ASO biomass and predicted GEDI biomass at 25 m 

resolution. While the ASO biomass varied between -96 kg/ha to 3022 kg/ha, the GEDI 

biomass varied between -211 kg/ha to 3596 kg/ha. Both ASO and GEDI showed negative 

biomass in cultivated regions where vegetation heights are less than 0.5 m (refer Figure. 

4.2 for cultivated regions). The GEDI footprint biomass at the 95% credible interval 

(CI95) showed a range between 24 kg/ha to 399 Kg/ha. The highest CI95 biomass was 

reported in tree dominant regions (yellow - orange areas, on Figure. 4.8a) while the 

lowest was reported in shrub dominant regions (blue areas, in the Figure. 4.8b). However, 

all the areas with vegetation heights greater than 1 m (tree and shrubs) showed 

uncertainties less than 10% (blue dots in Figure. 4.8c). This was approximately 26% of 

all footprints studied.  From all the GEDI footprints studied, 64% showed uncertainty less 

than 25% and 82% showed uncertainty less than 50%. The areas with shorter vegetation 
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(grass, shorts shrubs, and cultivated areas) showed the highest uncertainties, sometimes 

greater than 100%. These high uncertainty areas made up approximately 9% of all 

footprints. Our predicted footprint biomass showed a right skewedness with 87% of 

footprints with biomass less than 500 kg/ha (Figure. S.5). Excluding pixels with 

uncertainty greater than 100%, the uncertainty also showed a right skewedness (Figure. 

S.5). 

  

  

 

Figure. 4.7 a) ASO reference biomass with vegetation above 3m masked and b) 

predicted GEDI footprint biomass.  

 

    

(a) (b) 
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Figure. 4.8 a) GEDI footprint level biomass; and b) prediction uncertainty 

from the 95% credible interval; and c) percent uncertainty. 

At 1 km scale, the ASO and GEDI biomass ranged from 7 kg/ha to 1500 kg/ha 

and 39 kg/ha to 1364 kg/ha respectively (Figure. 4.9). According to our results, GEDI 

underestimated biomass in tree dominant regions and overestimated biomass in the shrub 

dominant regions (Figure. 4.9b). The minimum differences were observed in areas with 

vegetation heights above 1 m and the canopy cover between 25 – 75 %.  GEDI showed a 

higher underestimation of biomass compared to ASO in dense canopies. The largest 

difference of footprint biomass (3992 kg/ha) within a 1 km pixel was observed in tree-

shrub co-dominant areas. (Figure. 4.10b). Relatively uniform biomass was observed in 

the shrub-dominant central and northern portions of the study area. The highest standard 

deviation at 1 m scale was reported in the southern portion of the study areas (1240 

kg/ha) (Figure. 4.10c). The lowest reported standard deviation within a 1 km pixel was 40 

kg/ha and was from a shrub dominant region.    

(a) (b) (c) 
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Figure. 4.9 ASO and GEDI biomass comparison including a) reference ASO 

biomass resampled to 1 km; b) predicted GEDI biomass resampled to 1 km; and 

c) biomass differences between reference and GEDI at 1 km. 

 

  

(a) (b) (c) 
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Figure. 4.10 Uncertainty of biomass with upscaling to 1 km including a) 

predicted GEDI footprint level biomass; b) range of biomass within each 1 km 

pixel and c) standard deviation of biomass at 1 km pixels derived from the 25 m 

footprint biomass.   

Discussion 

GEDI is expected to deliver 1 km biomass products globally using approximately 

10 billion footprint lidar waveforms collected across the globe during its nominal two-

year period. To generate biomass from the GEDI waveforms, a set of biomass – lidar 

models are being calibrated based on continental regions and plant functional types using 

a set of global training data (Duncanson et al., 2019). The calibrated models will be used 

to estimate biomass at the footprint scale, which will be later resampled to 1km spatial 

resolution. Dryland ecosystems (of which semi-arid is a type of) cover over 40% of the 

terrestrial land surface. Therefore, it is critically important to understand the potential 

opportunities and limitations of GEDI to estimate biomass in these ecosystems. This 

study provides a framework to estimate semi-arid ecosystem biomass from large footprint 

GEDI lidar data using the slope corrected waveform features (RH metrics). The slope 

(a) (b) (c) 
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correction followed by the correlation analysis with field measured heights helped isolate 

the RH metrics that may contain vegetation responses in semi-arid ecosystems.  We used 

all amplitudes from the waveform signal start to signal end to derive the RH metrics. The 

RH metrics below the ground position showed negative values. The RH metrics above 

the ground position depicted positive values. If the bare ground position was located 

incorrectly, the RH metric that represents the canopy bottom can show a negative value. 

The both positive and negative values of our RH16 across the watershed showed its 

association with canopy bottom and sometimes with bare ground. The negative 

coefficient of RH16 in the final biomass model may be due to this ground and canopy 

confusion at lower RH metrics. The RH68 is closely associated with the maximum 

vegetation heights of the field plots and thus we can assume it represents the top of the 

canopy. We can also assume the selection of RH16 and RH68 reflects the height range 

where the vegetation response is distributed within the GEDI waveform (Figure. 4.11). 

 
Figure. 4.11 A sample simulated GEDI waveform with the reference ASO 

waveform and the cumulative energy profile. The reference ASO waveform is 

contained within the GEDI RH16 and RH68. 
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In this study, we compared the simulated GEDI derived biomass with the airborne 

lidar derived biomass as we did not have adequate number of field biomass samples. 

Airborne lidar data has been widely used to accurately estimate the biomass in a range of 

ecosystems including this study area (Ferraz et al., 2016; Li, Glenn, Olsoy, Mitchell, & 

Shrestha, 2015). Airborne lidar derived biomass models have also been used to calibrate 

the spaceborne lidar derived biomass models (Narine et al., 2019). Our slope corrected 

GEDI biomass model explained only about 42 % of the ASO biomass. This low R2 could 

be mainly due to uncertainties of the reference biomass (not calculated in this study). The 

reference biomass model was explicitly developed for shrubs and thus likely did not 

represent the tree biomass. Further, the model we used to generate the reference biomass 

map was developed using a different airborne lidar dataset (Li et al., 2015).  The model 

developed by Li et al. (2015) explained 54% (R2 = 0.54) of the variance of terrestrial 

laser scanner derived biomass.  This inherent low R2 and the differences in point 

densities, lidar sensor capabilities and characteristics between our ASO data and the data 

used in Li et al. (2015) may have biased our results. However, our modeled RMSE is 

about 16% of the average biomass of the dominant shrub type (Artemisia tridentate spp.) 

at 100% crown coverage (data from Martin (1981). According to a study performed in a 

similar study site, our RMSE is roughly 15% of total biomass (2100-2630 kg/ha) (Li et 

al., 2017). The low RMSE compared to other GEDI calibration studies (e.g., Armston et 

al., 2019) could be due to differences in vegetation cover, composition, and the year of 

the data collection between the different studies. 

We assessed the variance of GEDI biomass with ground slope, vegetation heights 

and vegetation cover to confirm our slope corrected biomass estimates are not biased due 
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to the ground slope. Our results revealed that 71% of the variance of the GEDI biomass 

can be explained by vegetation cover, height and ground slope. Among them, less than 

17% was explained by the ground slope (figure S.6). Those three factors collectively 

explained 62% variance of CI95 biomass. From that, only a 0.012% was explained by the 

ground slope (Figure S.6). The variance analysis confirmed that the greatest influence on 

biomass estimates is from vegetation height and cover. Silva et al. (2018) showed that 

taller and denser vegetation can decrease lidar derived biomass uncertainty. However, in 

our study, the uncertainty decreased with vegetation heights up to 10 m and then 

increased (Figure. 4.11a). As expected, the percent uncertainty decreased with an 

increase in percent vegetation cover (Figure. 4.12b). Though the vegetation is short, if the 

vegetation cover is above 30%, biomass can be estimated with uncertainties as low as 

25%. This is consistent with the findings of Glenn et al., (2016), that used Multiple 

Altimeter Beam Experimental Lidar (MABEL) instrument and Landsat 8's Operational 

Land Imager (OLI) to estimate the vegetation cover and biomass of this study area. The 

higher variance in higher vegetation cover may be due to the difficulty of the waveform 

signal to penetrate to the ground.   
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Figure.  4.12 Correlation of percent uncertainty with mean footprint vegetation 

height and percent vegetation cover. 

According to our footprint scale uncertainty analysis, the highest uncertainty was 

observed in the cultivated regions with shorter vegetation (< 0.5 m). There are a few 

footprints scattered across the watershed with uncertainties higher than 100%. These 

footprints may be associated with grazing or grass dominated areas (e.g. short 

vegetation). Overall, our slope corrected GEDI metrics were able to estimate the biomass 

of more than 80% of the study area with less than 50% uncertainty. The overestimation of 

GEDI biomass at 1 km scales in shrub dominant regions can be attributed to the 

overestimation of vegetation heights from GEDI (Chapter 3). The underestimation of 

biomass in tree dominant sites could be due to multiple reasons. Our model selection 

focused on RH metrics that best describe the shrub structure (the RH metrics for trees 

may be different). The uncertainty in detecting canopy tops could also underestimate the 

tree biomass. In addition, the footprint distribution in the tree dominant region may not 

provide a representative sample of actual tree distribution. The highest standard deviation 

of biomass was reported in tree-shrub co-existing regions.  This is mainly due to 

(a) (b) 
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occurrence of the low biomass of shrub-dominant and high biomass of tree-dominant 

footprints within a 1 km space. Our footprint density investigation revealed no trends 

between footprint density and biomass standard deviation at the 1 km scale (Figure. 

4.13). The highest number of footprints per 1 km observed was 110 and the lowest was 2.  

  

 
Figure. 4.13 GEDI footprint density and standard deviation of biomass at 1 km 

pixels. 

Overall, our study highlights the exciting potential to use large footprint lidar to 

estimate biomass in a semi-arid ecosystem. Once the slope influence is corrected, the RH 

metrics from large waveform lidar can predict biomass of ecosystems with vegetation 

heights lower than 2 m.  A future study with field-estimated biomass (rather than airborne 

lidar data) may improve our understanding of the errors associated with large footprint 

waveform lidar. Estimating biomass and associated uncertainties further helps to quantify 

fuel loads, post disturbance biomass dynamics and their spatial distributions across the 

landscape at scales relevant to fire management and land conservation.  Further, biomass 

estimates across spatial extents provides better understanding of habitat quality. 
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Conclusion 

The ability to estimate biomass in mountainous, semi-arid ecosystems using large 

footprint lidar data would significantly improve our capacity to monitor biomass and 

carbon dynamics at local to global scales. In order to do this accurately, future studies 

should focus on the thresholds in which GEDI performs well across a range of dryland 

ecosystems, and across spatial scales. We need to consider the GEDI footprint density 

and distribution, topography, and vegetation characteristics (cover and height), as these 

factors govern the accuracy of estimates. Ultimately, biomass datasets of field, terrestrial 

laser scanning, and airborne lidar data that provide calibration and validation of GEDI (or 

other spaceborne large footprint lidar data) are needed. These robust calibration and 

validation datasets across dryland ecosystems will provide uncertainty estimates that can 

be used at local scales as well as in global models of biomass and carbon dynamics.  
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CHAPTER FIVE: CONCLUSION 

In chapter two, I developed a novel methodology to distinguish semi-arid shrubs 

from bare ground and co-dominant tree communities using full waveform lidar derived 

structural and biophysical variables. I found that structural variables are more important 

than the biophysical variables in distinguishing the vegetation from each other and from 

bare ground. Further, I found that the differentiation of PFTs are scale dependent. My 

main contribution in this study is finding a novel approach to distinguish semi-arid shrub 

vegetation from bare ground. Vegetation distributions in many semi-arid ecosystems are 

topographically controlled and low-height vegetation often coexists with taller tree 

communities. The topographic and species complexity in these ecosystems makes 

classification using optical remote sensing data challenging. Though high-resolution 

terrestrial laser scanning (TLS) can be used to distinguish shrubs and grass from bare 

ground, the use of TLS is limited to a maximum of a few hectares. Nonetheless, the 

adverse effects of climate driven changes on biodiversity, habitat quality and ecosystem 

productivity are discernable at regional to global scale measurements. The ability to 

differentiate vegetation from bare ground using airborne lidar waveforms is a significant 

improvement for ecosystems where vegetation height is lower than the height uncertainty 

in discrete return lidar (often +/- 15 cm). The lack of importance of the number of peaks 

for PFT classification demonstrates the capability of waveform features to differentiate 

PFTs even within a lower pulse density scenario. Overall, in this study I showed the 

exciting promise to constrain PFTs in heterogeneous semi-arid ecosystems, providing 
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new opportunities for automated inventorying and monitoring, and estimating biomass 

and carbon from waveform lidar data. The results of this chapter are published in Remote 

Sensing of Environment (Ilangakoon et al., 2018) and are used as a basis for the 

remaining chapters of my dissertation. 

In chapter three, I mapped functional diversity (functional richness, functional 

evenness, and functional divergence) using structural traits derived from airborne and 

spaceborne full waveform lidar. In this study, I showed that the spatial patterns of 

functional diversity can be explained by elevation gradient, slope and soil type. In 

particular, I found an elevation breakpoint (1500 m – 1700 m) in which diversity indices 

change drastically.  I showed the potential of the newly launched GEDI to capture the 

trends and patterns of functional diversity in this semi-arid ecosystem. The disturbance-

functional diversity relationships I developed showed that fires can lead this ecosystem 

into more even and less divergent states. According to my results, disturbed areas show a 

trend of post-fire functional recovery; however, they were not completely recovered even 

after 15 years since disturbance. My contribution from this chapter is multifold. Changes 

in vegetation structure and other ecosystem properties from disturbance can cause shifts 

in carbon pools and fluxes that may have far-reaching consequences. In addition, habitat 

quality and availability for local fauna are likely to be affected accordingly. Here I 

provided a detailed framework to map functional diversity in a spatially continuous way 

at both fine and coarse scales. Spatially continuous functional diversity maps can reveal 

several important biophysical and ecological shifts occurring in semi-arid ecosystems that 

help monitor the changes in carbon-cycle dynamics, habitats and biodiversity. In this 

chapter, I further discussed the key environmental factors that govern functional 
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distributions. My methodology can be used to elucidate post-fire recovery for mitigation 

strategies and decision making. 

In my fourth chapter, I estimated aboveground biomass from large footprint 

waveform data. I showed that the GEDI system has the potential to estimate AGB in this 

semi-arid ecosystem with less than 50% uncertainty over 80% of the area. This finding is 

remarkable given that our study area is dominated by low-height shrubs. I found it was 

necessary to remove slope effects in the GEDI lidar metrics. I showed that both 

vegetation height and percent vegetation cover influence the waveform shape and hence 

the waveform derived metrics. I found greatest uncertainties in upscaling in areas where 

trees and shrubs co-exist in close proximity whereas homogeneous vegetation, regardless 

of shrub or tree dominance, had the lowest uncertainties in AGB estimation. My main 

contribution in this study is, expanding the mission capabilities of large footprint lidar 

data to include semi-arid ecosystems.  With near global coverage of GEDI, we have the 

potential to constrain the higher uncertainties in inter-annual variability of global carbon 

dynamics caused by semi-arid ecosystems. In addition, the capability to estimate AGB at 

global scales can provide early warnings whether the ecosystem is a net carbon sink or 

source.  

My work advances the understanding of complexity and dynamics of semi-arid 

vegetation structure, function, and diversity. The methodologies and findings can be used 

to assess ecosystem services and processes. This information may be of interest to 

agencies such as United States Department of Agriculture (USDA) and Bureau of Land 

management (BLM) in the US and other agencies across the globe who have direct 

involvement in understanding and managing semi-arid ecosystems.  For example, 
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information about potential postfire diversity trends can be used to implement best 

management practices (e.g. artificial seeding) to protect habitats and maintain 

biodiversity.  Further, detailed parametrization of key environmental factors (elevation, 

slope, and soil) and plant functional types in studies of semi-arid ecosystem demography 

and process modeling can help to constrain model uncertainty. In sum, a better 

understanding of ecosystem functions and processes can be obtained with the data and 

methods presented in this work. 

The methodology I developed to distinguish short height vegetation from bare 

ground and other tree communities can be applicable to other similar ecosystems. Laser 

pulse deviation is a function of travel time (footprint size), system noise, atmospheric 

noise, and the emitted pulse width as well as the target characteristics. Hence, care must 

be taken to consider deployed system noise, emitting pulse width, and lidar footprint size 

and atmospheric conditions at the time of data collection before making ground-

vegetation separation thresholds. In this study, the influence of precipitation and 

temperature were not considered as potential confounding factors due to the sparseness of 

those measurements. Further, the point measurements of precipitation and temperature 

showed a clear linear relationship with elevation (figure S.4) Hence, the use of elevation 

data incorporated the effects of precipitation and temperature.   

There are a number of future studies that can be undertaken based on my findings. 

In this study, I calculated the functional diversity at a 500 m spatial neighborhood size. 

Though it provided consistent functional diversity measurements between airborne and 

GEDI systems, the lower number of GEDI footprints within small-sized fire boundaries 

(< 1 km2) limited the use of GEDI to infer disturbance effects. Further, higher 
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uncertainties of biomass estimates resulted in areas with diverse vegetation structure 

across fine scales. Future studies with fusion of GEDI with other data sources that also 

can provide accurate estimates of vegetation structure such as ICESat-2 and TanDEM-X 

may provide the capability to study small-sized disturbances and to constrain the 

uncertainties of AGB estimates at global scales. Building upon the methods and 

techniques introduced in this study, mission capabilities of NASA’s future missions such 

as NISAR can be improved to estimate vegetation structure, biomass / carbon dynamics 

beyond the woody plants and forests. In this study, I evaluated the functional diversity 

distribution across the study area and explained the overall confounding environmental 

factors. Previous studies in the same and similar ecosystems have shown that aspect is 

one of the major abiotic factors that control lower elevation vegetation distributions, with 

diminished effects at higher elevations (McNamara et al., 2018; Poulos., 2016). Hence, 

future studies may consider elevation breakpoints to primarily divide the ecosystem and 

perform detailed functional diversity studies on low and high elevation sites separately. 

This would allow understanding of the impact of other factors that drive functional 

diversity and hence, ecosystem processes. 
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Supplementary figures for chapter 3 



138 

 

 

 

   

   

   

   

Figure S.1  Boxplots of CH, PAI, and FHD derived from GEDI of burned and 

surrounding unburned areas of Koke fire (a, b, c), Whiskey fire (d, e, f), Break 

fire (g, h, i), and Rabbit Creek fire (j, k, l).  
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Figure S.2 Boxplots of functional richness, functional evenness, and 

functional divergence calculated using GEDI functional traits of burned and 

surrounding unburned areas of Koke fire (a, b, c), Whiskey fire (d, e, f), Break 

fire (g, h, i), and Rabbit Creek fire (j, k, l). The first column represents 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 
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Figure S.3 GEDI footprints colored by functional diversity of the 

four different fires studied. The first column represents functional 

richness while the second and third columns represent functional 

evenness and functional divergence respectively. 

functional richness while the second and third columns represent functional 

evenness and functional divergence respectively. 
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Figure S.4  RCEW precipitation and temperature variation with elevation 

gradient. Precipitation: average for the period of 1963-2010, temperature: mean 

normal air temperature for the period of 1984 – 2014 (PRISM Climate Group, 

2016, CZO Dataset: Reynolds Creek, 2016)  
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Supplementary figures for chapter 4  

 

  

Figure S.5  Frequency distribution of a) predicted GEDI biomass and b) 

percent uncertainty at GEDI footprint scale. 

 

 

 

  

Figure S.6  Variance of predicted footprint biomass and percent uncertainty 

explained by Slope, Vegetation heights and percent vegetation cover. 
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