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Abstract 

The dryland forests of the Kavango-Zambezi (KAZA) region in Southern Africa are 

highly susceptible to disturbances from an increase in human population, wildlife 

pressures and the impacts of climate change. In this environment, reliable forest 

extent and structure estimates are difficult to obtain because of the size and 

remoteness of KAZA (519,912 km²). Whilst satellite remote sensing is generally 

well-suited to monitoring forest characteristics, there remain large uncertainties 

about its application for assessing changes at a regional scale to quantify forest 

structure and biomass in dry forest environments. This thesis presents research 

that combines Synthetic Aperture Radar, multispectral satellite imagery and 

climatological data with an inventory from a ground survey of woodland in 

Botswana and Namibia in 2019. The research utilised a multi-method approach 

including parametric and non-parametric algorithms and change detection models 

to address the following objectives: (1) To assess the feasibility of using openly 

accessible remote sensing data to estimate the dryland forest above ground 

biomass (2) to quantify the detail of vegetation dynamics using extensive archives 

of time series satellite data; (3) to investigate the relationship between fire, soil 

moisture, and drought on dryland vegetation as a means of characterising 

spatiotemporal changes in aridity. The results establish that a combination of 

radar and multispectral imagery produced the best fit to the ground observations 

for estimating forest above ground biomass. Modelling of the time-series shows 

that it is possible to identify abrupt changes, longer-term trends and seasonality in 

forest dynamics. The time series analysis of fire shows that about 75% of the study 

area burned at least once within the 17-year monitoring period, with the national 

parks more frequently affected than other protected areas. The results presented 

show a significant increase in dryness over the past 2 decades, with arid and semi-

arid regions encroaching at the expense of dry sub-humid, particularly in the south 

of the region, notably between 2011-2019.  

Keywords: Above ground biomass, Remote sensing, Synthetic Aperture Radar 

(SAR), Multispectral data, Climate change, Dryland forest change, Burned area 

mapping, Biodiversity  
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1 INTRODUCTION AND RESEARCH CONTEXT 1 

 2 

1.1 Background and Motivation 3 

Tropical forests play an important role in global carbon storage and are therefore 4 

an important natural component of climate change mitigation (Baccini et al., 2017). 5 

Tropical dryland forests (TDFs) make up ca. 40% of all tropical forest region, 6 

however, they are facing threats both from human-induced and natural factors 7 

(Murphy et al., 1986). During the 20th century, substantial change in TDFs through 8 

land-cover conversion and modification has been unprecedented throughout Sub-9 

Saharan Africa, resulting in loss of forest biodiversity and land degradation (Eva et 10 

al., 2006; Petheram et al., 2006). Brink et al. (2009) noted that the greatest amount 11 

of deforestation in Africa is taking place in dryland forests, accounting for about 12 

70% of forest loss between 1975 and 2000 compared to moist tropical forest loss 13 

which accounted for 16% of forest loss. Deforestation in Southern Africa is a major 14 

concern, with ca. 1.4 million ha of net forest loss annually, contributing to 15 

increased land degradation and the ensuant impacts on the balance of ecosystem 16 

function (Lesolle, 2012). According to Intergovernmental Panel on Climate Change 17 

(IPCC), these changes have impacts on carbon emissions to the atmosphere and 18 

forest biodiversity loss, reducing the region’s adaptive capacity and resilience to 19 

the impact of high temperatures and varying precipitation (IPCC, 2014).  20 

Tropical countries are beginning to develop policies and initiate projects to reduce 21 

greenhouse-gas emissions from deforestation and forest degradation (e.g., 22 

REDD+), seeing forests both as environmental resources and carbon sinks (Gibbs 23 

et al., 2007; UNCCD, 2015). For these, resource managers, stakeholders, 24 

governments, and United Nations (UN) agencies need high-quality reliable 25 

information on biomass carbon stocks, forest structure, and the REDD+ -related 26 

research in TDFs monitoring (Gizachew et al., 2017; UNCCD, 2009). Recently, the 27 

UN called for all to mobilise to deliver 17 Sustainable Development Goals (SDGs) 28 

by 2030, including the aim to ensure the conservation, restoration, and sustainable 29 
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use of forests (SDG 15; UN, 2015). These objectives require the ability to localise, 30 

measure, and monitor forest change at both community and regional levels.  31 

The UN argues that to mitigate climate change and biodiversity loss, and to stop 32 

degradation and deforestation processes, action must be taken at all levels: people, 33 

local, regional, global, and by all countries: poor, middle-income, and rich (UN, 34 

2011). Recently, ecologists have embraced remote sensing to study forest change 35 

and biodiversity and have used this to prepare conservation responses to potential 36 

threats (Schulte to Bühne & Pettorelli 2018; Dawson et al., 2016). However, remote 37 

sensing in tropical forests faces challenges including accessibility to and/or the 38 

suitability of different remote sensing data; methods for relating vegetation 39 

structural changes to remotely sensed proxies across different ecosystem types; 40 

and access to suitable data for validating the estimates of forest changes to detect 41 

trends in dryland forests (Lehmann et al., 2015; Privette et al., 2005). 42 

This study was designed and undertaken to further understand the large-spatial 43 

and temporal-scale variation of dryland forests dynamics, focussing on the 44 

development of an integrated assessment method for use in the context of climate 45 

change. In line with the multiple threats forced by climate change and 46 

anthropogenic activities, and the challenges of using remote sensing in these 47 

landscapes, this research examined these issues in Kavango Zambezi Conservation 48 

Area (KAZA) in Southern Africa. This focus constitutes the research gap that this 49 

study addresses, by assessing and estimating forest biomass and structural 50 

parameters, fire, and climatic impacts at a regional scale using novel application of 51 

remote sensing.  52 

This chapter introduces with fundamental aspects of the research problem and 53 

aims to demonstrate the appropriateness of remote sensing as the best tool to 54 

address fundamental questions about changes in dryland forests. 55 

1.2 Conceptual frameworks 56 

Many of the unique properties of TDFs relate to their rainfall regimes. TDFs are 57 

characterised by prolonged dry seasons of six months or more, with rainfall less 58 

than 100 mm, which in turn determines the distinctive phenology of the forest 59 
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(Murphy et al., 1986). The definition of “dryland forest” remains debatable and 60 

controversial, which contributes to be difficulty in accurately assessing and 61 

measuring its distribution patterns and status (Blackie et al., 2014). The lack of a 62 

clear and comprehensive understanding of general terms including “drylands” and 63 

“forests” makes it a challenge to explicitly define dryland forests (Charles-D et al., 64 

2015). Given the fact that dryland forests progressively grade into other vegetation 65 

types such as wet forests, woodlands and savannas, also makes clear definitions 66 

complex (Putz et al., 2010). Walter et al. (1971) noted that the accuracy of 67 

estimates of all tropical forest areas is constrained by uncertainty in the 68 

distribution of open woodlands in dryland areas, which are extensive in Africa, 69 

Australia, and Latin America.  70 

In the general literature, many different names have been applied to TDFs, 71 

including savanna forests, Sudanian woodland and miombo woodland in Africa, 72 

monsoon forest in Asia, neotropical dry forests in South America (Chidumayo, 73 

2013; Linares-Palomino et al., 2011; Suresh et al., 2011). The neotropical dry 74 

forests in South America have a plethora of names from “caatinga” in northeast 75 

Brazil, to “bosque tropical caducifolio” in Mexico, and “cuabal” in Cuba, which in 76 

part hinders comparisons (Mayes et al., 2017; Sánchez‐Azofeifa et al., 2005). For 77 

example, Dexter et al. (2015) identified dry deciduous forest in India (Suresh et al., 78 

2011), miombo woodland in southern Africa (Chidumayo, 2013), and deciduous 79 

dipterocarp forest in continental Asia (Bunyavejchewin et al., 2011) as a form of 80 

savanna, and not TDFs, despite the formal classification as TDFs by these studies, 81 

and the FAO (FAO, 2001). 82 

There are several definitions currently available for TDFs, but there is still a lack of 83 

consensus in developing a common understanding. Mooney et al. (1995) defined 84 

TDFs as forests occurring in the tropical regions characterised by pronounced 85 

seasonality in rainfall, where there are several months of severe, or even absolute 86 

drought. A widely accepted definition is that of the FAO, that has identified TDFs as 87 

a Global Ecological Zone (GEZ), which includes the drier type of miombo and 88 

Sudanian woodlands, savannah (Africa), caatinga and chaco (South America), and 89 

dry deciduous dipterocarp forest and woodlands (Asia) (FAO, 2001). 90 

Sánchez‐Azofeifa et al. (2005) broadly defined TDFs as a vegetation type typically 91 
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dominated by deciduous trees (at least 50% of trees present are drought 92 

deciduous), where the mean annual temperature is ≥ 25 °C, total annual 93 

precipitation ranges between 700 and 2000 mm, and there are three or more dry 94 

months every year (precipitation < 100 mm per month).  95 

For the scope of this present study, TDFs are defined as forests occurring in 96 

tropical regions which include the drier type of miombo and Sudanian woodlands, 97 

savanna forests (Africa), caatinga and chaco (South America), and dry deciduous 98 

dipterocarp forest and woodlands as defined by FAO (see: Fig. 1.1). The thesis 99 

adopted the definition of FAO because it recognises forests occurring in the dry 100 

tropical climate globally, then those based entirely on climate definitions. The 101 

current climate does not define the biogeography of TDFs, particularly in the 102 

context of future unprecedented climate change (IPCC, 2007). If climates become 103 

sufficiently warmer and drier in the tropics, dry forests may expand into areas that 104 

are currently dominated by rain forests (Putz et al., 2010). The research however 105 

acknowledges the diverse definitions and views of different researchers on the 106 

topic, such as those pointed out by Dexter et al. (2015) and Murphy et al. (1986). 107 

 108 

 109 

Fig. 1. 1 The graphic illustration shows the relative distribution of tropical dry forests. 110 

Source: FAO, (1999). Reproduced with permission. 111 

 112 

 113 
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1.3 Importance of dryland forests 114 

TDFs provide ecosystem services to more than two billion people, including 115 

providing habitat for numerous rare and endemic organisms, supporting 116 

significant crop production, and forage for wildlife and domestic livestock 117 

(Petheram et al., 2006). The dryland ecosystem (including dry forests) harbors 118 

considerable biodiversity in terms of species richness, endemism, and functional 119 

diversity of plants and animals that sometimes even exceeds that of moist forests 120 

(Pennington et al., 2018). Furthermore, TDFs are known to play an important role 121 

in supporting the agricultural systems on which millions of rural subsistence 122 

farmers depend, and so TDFs are central to achieving broader food security 123 

(Chidumayo et al., 2010; Sunderland et al., 2015).  124 

Beyond subsistence farming, TDFs contribute to the direct and indirect provision 125 

of various products, including timber and non-timber products to their inhabitants 126 

(Petheram et al., 2006). Other ecosystem services provided include flood control, 127 

tourism revenue, pollination, local diets with wild fruits, bushmeat, and medicinal 128 

plants (Djoudi et al., 2015; Safriel et al., 2006). In dry forested regions, majority of 129 

people use firewood and charcoal from TDFs as a source of energy (Sunderland et 130 

al., 2015). Drylands have major global climate benefits; their carbon storage 131 

(including soil carbon) accounts for more than one-third of global stocks (Durant 132 

et al., 2012; Pennington et al., 2018). The capacity to store carbon depends on 133 

many factors including climate, past land use, and opportunity for management 134 

change (UN, 2011). Growing pressure on dryland forests to meet human and 135 

socioeconomic development needs means that TDFs are increasingly being utilised 136 

unsustainably, and so the degradation of these resources poses a serious problem 137 

(Petheram et al., 2006). 138 

1.4 Threats to tropical dryland forests 139 

1.4.1 Degradation/Deforestation 140 

For more than 20 years, TDFs have been recognised among the world’s most 141 

threatened ecosystems when compared across all major tropical forest types 142 
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(Janzen, 1988). These activities may take place either abruptly (land cover 143 

conversion) or gradually (land cover modification) (Hayward et al., 2001; Lambin 144 

et al., 2003). Land cover conversion is defined as a shift from one land cover class 145 

to another, whilst modification is subtle changes in continuous properties within 146 

classes (e.g., plant biomass, canopy cover, leaf area) (Hansen et al., 2012). Human 147 

activity causes deforestation through logging of timber and clearing of the forest 148 

where extraction exceeds regeneration.  149 

Land degradation, which is sometimes used synonymously with desertification in 150 

dryland areas, is a term that refers to the many processes that drive the decline or 151 

loss in biodiversity, ecosystem functions or productivity (Scholes et al., 2018). 152 

Land degradation includes the degradation of all terrestrial ecosystems (e.g., dry 153 

land, semi-arid land, rain-soiled areas in sub-humid areas or grassland, rangeland, 154 

forest, and wetland) (Xie et al., 2020). Forest degradation is land degradation that 155 

occurs within forest land and is most often loosely defined as a loss of particular 156 

forest attributes that negatively affect the structure or function of the stand or site 157 

(IPCC, 2003; ITTO, 2003; Scholes et al., 2018; Simula, 2009). Lund, (2009) provides 158 

a detailed review of more than 50 definitions of forest degradation. FAO, (2011) 159 

defines forest degradation as the change process caused by natural disturbance, 160 

and human-induced that leads to the reduction of the capacity of a forest to 161 

provide goods and services. Services might include biomass, carbon sequestration, 162 

water regulation, soil protection, and biodiversity conservation. According to 163 

Simula, (2009) land degradation acts synergistically with forest degradation. 164 

Figure 1.2 shows degradation thresholds which shows that degradation can 165 

usually be reversible through restoration and management interventions. On the 166 

other hand, degradation is sometimes long-term or permanent leading to the 167 

irreversible loss of forest (Lund 2009). As shown in Fig. 1.2, it’s considered forest 168 

degradation when there is a reduction of the canopy cover or carbon stock within a 169 

forest, provided that the canopy cover stays above 10% (FAO, 2000). The status of 170 

degraded areas is distinguished in terms of the degree of degradation (e.g., 171 

slightly/moderately/severely degraded), as it could help identify priority areas for 172 

preventive or corrective action when monitoring changes. The ability to identify a 173 

degraded forest is essential to help develop techniques to establish systems for 174 

monitoring forest degradation and practical approaches to restore forest cover and 175 
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structure, species composition and forest regeneration as well as rehabilitation 176 

(see: Fig. 1.2 and 1.3) (Chazdon et al., 2016;). In this study, land degradation and 177 

vegetation degradation are used to describe degradation taking place in forests 178 

and non-forests, while forest degradation was used to refer to degradation largely 179 

taking place in forested areas.  180 

Biggs et al. (2008) reported that degradation of dryland landscapes in Southern 181 

Africa happen through alteration of intact ecosystems, for example, the 182 

fragmentation of habitats, the modifications of forests to pasture, and conversion 183 

of extensive land uses to intensive ones, causes a severe loss in biodiversity. Forest 184 

degradation has been described using variables such as changes in canopy cover, 185 

understory tree density, plant or animal species richness, biomass loss from 186 

extensive standing forests, and changes in vegetation attributes as measured 187 

against a baseline undisturbed condition (Thompson et al., 2013; Washington-188 

Allen et al., 2008). These changes can be caused by natural disturbance such as 189 

wildfire, storms or drought, and also can be human-induced such as via harvesting, 190 

road construction, poor agricultural practices, or grazing, which may each vary in 191 

extent, severity, and frequency. While deforestation is the rapid transformation 192 

from forest to the non-forest area, forest degradation is usually a gradual process 193 

though it may be induced by quick, single events such as hurricanes, and it is 194 

typically more difficult to discern and quantify than deforestation (Thompson et 195 

al., 2013).  196 

These alterations in land-cover/land-use could also impact global and regional 197 

climate through alterations in the length of the growing seasons, changes in the 198 

climatic regimes, including extreme high temperatures or rainfall, and increases in 199 

perturbation regimes such as fires, which in turn impact the structure and function 200 

of the dryland forest (Le Houérou, 1996; Naik, 2015). Along with deforestation, 201 

forest degradation contributes to global carbon emissions, and reporting on both is 202 

required by the United Nations Framework Convention on Climate Change 203 

(UNFCCC) through incentives for developing countries through the REDD+ 204 

programme (UNFCCC, 2009). 205 
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 206 

Fig. 1. 2 Illustration of the degradation thresholds within forest and non-forest typically 207 

caused by disturbances which vary in terms of the extent, severity, quality, origin, and 208 

frequency (Simula, 2009). 209 

1.4.2 Climate and drought 210 

TDFs are known to be extremely vulnerable to predicted changes in climate 211 

(Huang et al., 2017), and the effects of these changes are already being experienced 212 

in biodiversity showing significant shifts in species ranges in Africa (McClean et al., 213 

2005). There is now abundant evidence from models and observations that 214 

suggest rainfall regimes in the seasonal tropics are changing to hotter and drier 215 

conditions, with predicted elevated temperatures (Chadwick et al., 2016; Dai, 216 

2013), likely exacerbating the risk of further land degradation (Huang et al., 2016). 217 

Dryland CO2 uptake is strongly associated with variations of both precipitation 218 

and temperature, and changes in aridity. The effectiveness of each is impacted by 219 

deforestation, widespread increases in plant disturbances, and declines in 220 

ecosystem function (Williams et al., 2013). Dryland vegetation responses to 221 

environmental perturbations depends upon the frequency and magnitude of 222 

disturbances (e.g., temperature, precipitation, fire, land use), and the resilience of 223 

the ecosystem concerned (see: Fig. 1.2) (Lambin et al., 2010). 224 

African dryland forests are identified as the most threatened and least protected 225 

ecosystem on the continent, largely as a result of population growth, climate 226 

change, and poor environmental governance and policy frameworks (Brink et al., 227 
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2009). The IPCC reported that when climate threats are coupled with a growing 228 

population and future changes in land use could lead to severe dry forest biome 229 

shifts and biomass degradation, particularly in Southern Africa (King, 2014; Niang 230 

et al., 2014). The role of climatic variation, land-use practices, and disturbance 231 

regimes, such as herbivory, has been identified by several studies to be among the 232 

main drivers of ongoing changes in dryland ecosystems leading to forest 233 

degradation and land cover change in Southern Africa (Fig. 1.3) (Anyamba et al., 234 

2002; Prince, 2012; Privette et al., 2005; Shackleton et al., 2010). Biodiversity in 235 

the region has responded with significant recorded shifts in species ranges, 236 

impacting species composition and productivity (IPCC, 2014; King, 2014). Given 237 

that the availability of water is a determinant of forest resources in drylands, these 238 

types of change affect forest tree cover, demographic processes, biological 239 

diversity, trait composition, habitat quality, and in turn movements of wildlife 240 

(Naidoo et al., 2016). Fig. 1.3 provide a schematic representation of factors 241 

controlling temporal and spatial heterogeneity of biomass plants. This schematic is 242 

not exhaustive but provides a framework of changes in vegetation land cover and 243 

main dryland forest attributes, i.e., composition, structure and function, which is 244 

addressed in this research. This thesis report on the development of open access 245 

codes to map forest structural parameters such as biomass and monitor changes in 246 

dryland forests because of climate change and other disturbances such as 247 

fire/logging. The changes are mapped using a combination of ground and Earth 248 

observation data including multispectral and synthetic aperture radar (SAR) 249 

satellite imagery at a regional scale of Kavango Zambezi region.   250 

On a regional level, few studies have evaluated the forest structural parameters 251 

and changes in dryland forests of Southern Africa (David et al., 2022a). Majority of 252 

these studies are done in Republic of South Africa, for example, Mathieu et al. 2013 253 

and Naidoo et al. (2015) found in dryland forests in Kruger National Park that 254 

Woody vegetation cover is accurately mapped with Synthetic Aperture Radar 255 

(SAR) data, however these studies observe an overestimation of woody cover 256 

below 20% as a results of surface contributions to the signal, such as roughness in 257 

radar retrievals (Mathieu et al. 2013; Santoro et al. 2011). There is, however, very 258 

limited spatial information on structural parameters such as above ground 259 

biomass distribution and forest changes in other part of Southern Africa. To date in 260 
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most of Southern Africa, most quantitative spatial data on forests are available 261 

from products developed globally, such as the pantropical African savanna 262 

biomass map (Bouvet et al., 2018), tree density map (Glick et al., 2016), global 263 

forest height map (Simard et al., 2011), Global Land Cover Map (Arino et al., 2012), 264 

and global tree cover maps (Hansen et al., 2013; Sexton et al. 2013). However, 265 

there is unreliability regarding the accuracies of these maps at regional scales, 266 

particularly in open forest ecosystems such as savannas and dry forests, because 267 

these products were developed primarily to track tropical forest losses (Bastin et 268 

al., 2017). Underestimation for the woody cover above 60% has been observed 269 

likewise in other studies (Bouvet et al. 2018) because of saturation in dense 270 

canopies.  271 

To identify changes to dryland forest, and their drivers, and to separate these from 272 

long- and short-term trends, it is essential to select remote sensing data with good 273 

temporal coverage (time series data) but also with a sufficiently frequent revisit 274 

period and spatial resolution. This is however not an easy task, since the 275 

availability of remote sensing data for long-term monitoring purposes is 276 

constrained by sensor characteristics (e.g., revisit time) and then the data utility 277 

can be significantly influenced by environmental factors (e.g., cloud cover) 278 

(Donoghue, 2000; Kuplich et al., 2013). 279 
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 280 

 281 

Fig. 1. 3 Conceptual framework depicting the key abiotic factors (disturbance and soil 282 

resource availability) and biotic factors (vegetation/forest structure, diversity, and trait 283 

composition) controlling temporal and spatial heterogeneity of demographic processes 284 

(biomass growth, and degradation). Physical damage by wildfire, mega-herbivores, e.g., 285 

elephants, and deforestation e.g., logging/coppicing are one of the main disruptions to the 286 

ecosystems. Forest structure (e.g., plot basal area, tree density) is based on all alive trees 287 

in the selected plots, while diversity and trait composition are based on the individuals of 288 

that demographic group (i.e., vegetation recruits). The dryland forests ecosystem has an 289 

option of closed woodland form and open grass form depending on the soil resource 290 

availability, climate, disturbances, and anthropogenic disruption e.g., fire. (Reproduced 291 

from Van-der-Sande et al., 2017). 292 

1.5 Application of remote sensing 293 

1.5.1 Optical and Synthetic-Aperture Radar (SAR) remote 294 

sensing in dryland forests  295 

Remote sensing has contributed greatly to the mapping and understanding of the 296 

tropical forest ecosystems in relation to local and global environmental change 297 
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(Foody, 2003). Advances in the remote detection of burned areas (Zhang et al., 298 

2011), land-use and land-cover (De Oliveira et al., 2019), forest structure (Hyde et 299 

al., 2006), biomass (Cutler et al., 2012) and biodiversity (Rampheri et al., 2020) 300 

have also changed the understanding with regards to forest functioning. From the 301 

TDF resources perspective, satellite remote sensing has been used to provide three 302 

levels of information. The first is information on the spatial extent of forest cover 303 

and forest change patterns; the second level comprises information on forest type; 304 

and the third provides information on the biophysical and biochemical properties 305 

of forests (Boggs, 2010; Higginbottom et al., 2018; Wood et al., 2012). Several 306 

studies have established the many advantages of remote sensing over traditional 307 

field investigation methods for measuring and monitoring tropical forests (Hyde et 308 

al., 2006; Puhr et al., 2000). The most obvious advantages include the potential to 309 

survey large areas rapidly or over longer periods at low cost, especially in remote, 310 

inaccessible, and sometimes dangerous environments (Rumiano et al., 2020). 311 

In general terms, Earth Observation (EO) platforms have carried two types of 312 

sensor: optical and active SAR. The optical systems measure reflected radiation of 313 

one or more discrete wavelengths located in the spectral range 400–3000 nm, 314 

wherein the wavelengths are notably several orders of magnitude smaller than the 315 

leaves, needles, and branches that make up a forest canopy, and so these 316 

components absorb and scatter radiation (Boyd et al., 2005). Synthetic-Aperture 317 

Radar (SAR) systems measure backscattered microwave radiation at wavelengths 318 

between 1 cm and 1000 cm, characterising scattering from leaves, branches, stems 319 

trunks and the ground (Mitchard et al., 2009). Optical remote sensing systems may 320 

provide information on the amount of foliage and its biochemical properties, while 321 

SAR (microwave) systems provide information on woody biomass and forest 322 

structure (Armston et al., 2009; Higginbottom et al., 2018). Many SAR sensors can 323 

both transmit and receive microwaves with two different polarisations, which 324 

enhances the information provided, particularly that which describes surface 325 

roughness and geometric regularities in the forest stand (Kasischke et al., 1997). 326 

Therefore, satellite remote sensing signals provide additional proxy information 327 

that can be linked to forest parameters and health indicators, as well as 328 

disturbance factors when using vegetation indices. 329 
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1.5.2 Vegetation Indices  330 

In satellite remote sensing for forests, vegetation indices, biophysical variables, 331 

and data transformations are often used for data analyses (Morley et al., 2019; 332 

Yengoh et al., 2015). The various materials of the earth’s surface absorb and reflect 333 

different amounts of energy at different wavelengths. The magnitude of energy 334 

that an object reflects or emits across a range of wavelengths is called its spectral 335 

response pattern (Aggarwal, 2004). The graph below illustrates the spectral 336 

response patterns of soils, water, and vegetation (Fig. 1.4). The healthy vegetation 337 

has a unique spectral reflectance signature that is dictated by various plant 338 

attributes. The visible reflectance of plants is mainly characterised by absorption 339 

of the leaf pigments like chlorophyll, carotenoids and xanthophylls (Gibson et al., 340 

2013). Stressed vegetation will give off a different spectral 341 

signature corresponding to the effect of the stress on the various leaf pigments. 342 

Knowing the typical spectral response characteristics makes it possible to 343 

distinguish forests, crops, and soils, and to evaluate their condition (e.g., stressed 344 

plants) using remotely sensed images (Ranjan et al., 2012). In the case of 345 

vegetation, the measured spectral reflectance values from two or more 346 

wavelengths are usually used to estimate vegetation indices. NDVI is one of such 347 

indices, commonly used to distinguish live green plant canopies, calculated as a 348 

ratio of near-infrared to red vegetation reflectance (Rouse, 1974; Tucker, 1979). 349 

NDVI has been used as a proxy of vegetation greenness and has been shown to 350 

relate closely to leaf area index (LAI), biomass, and the fraction of 351 

photosynthetically active radiation absorbed by vegetation (fAPAR) (Curran, 352 

1980).  353 
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 354 

Fig. 1. 4 Spectral signatures as functions of wavelength for vegetation, soil and water. 355 

Source: https://seos-project.eu/classification/classification-c01-p05.html/ (accessed 02 356 

May 2021). 357 

Ringrose et al. (1994) and Turner et al. (1999) indicate that the strength of the 358 

relationships between forest LAI and vegetation indices, such as the NDVI, is site-, 359 

time- and species-specific and that above a LAI of about 5 or 6, NDVI may not be 360 

sensitive to LAI variation. Several well-known limitations of NDVI for robust 361 

estimation of biomass in drylands exist. NDVI is sensitive to green components and 362 

insensitive to woody components where the majority of carbon is stored (Tucker, 363 

1979). Also, Above Ground Biomass (AGB) production is not always uniformly 364 

linked to either greenness or plant structure (herbaceous and woody 365 

compositions), as moisture content and vegetation species composition have been 366 

shown to impact the biomass-NDVI relationship (Asner et al., 2009; Wessels et al., 367 

2006). These observations may help explain reportedly weak relationships 368 

between NDVI and tropical forest canopies, particularly for areas with complex 369 

and high vegetation amounts as in TDFs (Foody et al., 2001; Sader et al., 1989). For 370 

example, Madonsela et al. (2018) investigated the interactions between seasonal 371 

NDVI and woody canopy cover in the savanna of the Kruger National Park (NP) to 372 

model tree species diversity using a factorial model and found that the interaction 373 

between NDVI and woody canopy cover was insignificant. It is also widely 374 

reported that the NDVI signal is influenced by woody canopy foliage, underlying 375 

canopy background, and soil moisture in sparse vegetative areas (LAI <3), which 376 
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reduces the apparent NDVI signal and seasonal variations in vegetation phenology 377 

(Pettorelli et al., 2005; Wagenseil et al., 2006).  378 

These challenges have led to the development of alternative formulations which 379 

include correction factors or constants introduced to account for or minimise, the 380 

varying background reflectance (Gitelson et al., 1996; Huete et al., 1999). The 381 

Enhanced Vegetation Index (EVI) is a modification of NDVI that provides 382 

complementary information about the spatial and temporal variations of 383 

vegetation while minimising many of the contamination problems present in the 384 

NDVI, such as those associated with canopy background and atmospheric 385 

influences (Huete et al., 2002). Other closely related indices include the Simple 386 

Ratio (SR), the Green Normalised Difference Vegetation Index (GNDVI), Soil-387 

Adjusted Vegetation Index (SAVI) amongst others. Xue et al. (2017) provides a 388 

detailed review of vegetation indices. Critically, an increase in availability of EO 389 

data with improved spatial, spectral, and radiometric resolution combined with 390 

the machine or deep learning techniques and development in computational 391 

resources would enhance the potential dryland forest information to be exploited 392 

(Ali et al., 2015). The constraint in spectral, spatial, and radiometric resolutions of 393 

remote sensing data may result in different saturation values of AGB depending on 394 

vegetation characteristics (Zhao et al., 2016). The spatial resolution of images such 395 

as NOAA AVHRR, SPOT Vegetation, and MODIS imagery data particularly at 1-8 km 396 

spatial resolution has been reported to result in poor spectral purity and limited 397 

identification of broad forest types such as coniferous and lack sufficient spatial 398 

details, particularly for less abundant species broad-leafed forests (Immitzer et al., 399 

2018; Xu et al., 2021). Stratoulias et al. (2015) showed that the 10 m spatial 400 

resolution of Sentinel 2 allows for detecting fragmented patches in the lakeshore 401 

ecosystems but argued that enhanced spectral and spatial capabilities provide 402 

further potential in habitat monitoring and classification of environmentally 403 

complex areas. Other studies such as Wulder et al. (2004) and Xu et al. (2021) 404 

concluded that medium-high resolution Earth observation satellites can be used to 405 

produce more accurate results of forest species composition and land cover use 406 

classification by providing detailed spectral features of the canopy of tree species 407 

(Salajanu and Olson, 2001). Dube et al. (2014) have concluded that fine spatial 408 

resolution data with improved spectral bands (e.g., red edge) contains more 409 
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spectral information critical for accurately predicting forest metrics such as 410 

biomass in South Africa. Other remotely sensed studies estimated forest biomass 411 

at different scales and concluded that coarse spatial resolution optical sensors are 412 

useful for biomass mapping at continental and global scales rather than at local 413 

scales because the limited spatial detail of these coarse-resolution images misses 414 

the biomass variability in heterogeneous forests (Avitabile et al., 2012; Dube et al., 415 

2014; van der Wer et al., 2006; Zhang and Kondragunta, 2006; Zhu and Liu, 2015). 416 

Lu (2006) demonstrated that the use of coarse spatial resolution sensors (i.e., 417 

Landsat, MODIS etc.) for AGB estimation resulted in poor prediction accuracy due 418 

to the presence of mixed pixels together with a mismatch between the size of field 419 

measurements and the pixel (Avitabile et al., 2012). Various statistical methods, 420 

vegetation indices and textures have been explored to reduce the impacts of data 421 

saturation in Landsat imagery on AGB estimation accuracy (Lu et al., 2016). 422 

Studies such as Basuki et al. (2013) and Kajisa et al. (2009) observed that the 423 

application of statistical methods, spectral mixture analysis and integrating radar 424 

data with Landsat images improves forest AGB estimation accuracy significantly. 425 

Time series of Landsat imagery is another alternative explored that can result in 426 

more accurate AGB estimation and reduce saturation effects compared to the use 427 

of a single NDVI (Gasparri et al., 2010; Zhu and Liu, 2015). 428 

 429 

1.5.3 Forest biomass and structural parameters  430 

1.5.3.1 Forest biomass estimation in dryland forests 431 

Biomass, in general, includes the above-ground and below-ground living mass, and 432 

is usually expressed as dry weight (Lu, 2006). AGB includes all living biomass 433 

above the soil surface that includes the stem, stump, branches, bark, seeds, and 434 

foliage. Measuring forest biomass and its change acts as an indicator of climate 435 

change and forest health (Pause et al., 2016), however, the majority of studies on 436 

biomass have focused on boreal and temperate forests (Dong et al., 2003; Naidoo 437 

et al., 2006). Studies on TDFs are limited because they are dynamic with complex 438 

species composition and structure, coupled with environmental conditions which 439 

are difficult to assess and model (McElhinny et al., 2005). AGB estimation requires 440 
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field measurements as a prerequisite for developing estimation models, but field 441 

measurements are often difficult to implement, especially in remote areas (Lu, 442 

2006; Wingate et al., 2018), and they cannot provide the spatial distribution of 443 

biomass across large areas. Thus, remote sensing techniques offer the most 444 

practical approach to estimating dryland forest biomass and monitoring changes in 445 

forest structure, overcoming the limitations of sample size, timeliness, expense, 446 

and access (Lu, 2006; Lucas et al., 2015).  447 

With increasing concern regarding greenhouse gas emissions, there is a need to 448 

better quantify the biomass of forests associated with regeneration and clearance 449 

(FAO, 2011; UN, 2011). Such information needs to be obtained at scales ranging 450 

from entire regions to individual forest stands (e.g., for carbon accounting 451 

purposes). However, assessments of biomass are typically obtained by applying 452 

species-specific allometric equations to forest inventory data (Chave et al., 2005). 453 

Although many studies have investigated the ability to estimate the biomass of 454 

forests, including tropical moist forests (Asner et al., 2009), dryland forests 455 

(Gizachew et al., 2016), temperate forests, and boreal forests (Dong et al., 2003) 456 

from remotely sensed data, a number of problems have been encountered. Of key 457 

concern is the generalisation of relationships derived for the accurate prediction of 458 

biomass at a specific location or time period (e.g., generalisation between images 459 

of one location acquired over a period of time to estimate characteristics at 460 

another location) (Woodcock et al., 2001). This problem is common in less well 461 

studied ecosystems such as dryland forests and can substantially limit the 462 

contribution remote sensing can make to environmental studies. Overall, regional 463 

variations in forest biomass arise as a result of differences in tree stem density, 464 

growth and disturbances rates, and other species-specific attributes, such as wood 465 

density (Asner et al., 2009). 466 

1.5.3.2 Application of optical and SAR sensor in forest biomass  467 

Different remote sensing sensors have been successful in forest biomass studies 468 

(Gizachew et al., 2016; Powell et al., 2010). However, in the tropics, where the 469 

cloud cover is common, optical data could not be used over large areas. Optical 470 

sensors are also less sensitive to variations within dense forests, and can only 471 
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provide spectral and horizontal distribution and not the vertical distribution (e.g. 472 

tree height or difference between single-story and multi-story vertical structural 473 

classes) of canopy elements in forests (Joshi et al., 2016). Under these conditions, 474 

radar remote sensing provides an alternative (Michelakis et al., 2014; Paradzayi et 475 

al., 2013). SAR has the advantage that it includes: the ability to collect data in all 476 

weathers, and during day and night; the sensor penetrates cloud, vegetation, dry 477 

soil, sand, dry snow; the data is sensitive to surface roughness, dielectric 478 

properties and moisture content; and the reflected signal is sensitive to 479 

polarisation and frequency (HH, VV, HV, and VH), and can be used for volumetric 480 

analysis (Balzter, 2001; Mitchard et al., 2009). However, radar remote sensing also 481 

has limitations including uncertainties in estimation, expensive datasets, 482 

difficulties in data processing, and data saturation problems (Balzter, 2001; 483 

Mitchard et al., 2009). Furthermore, Light Detection and Ranging (LiDAR) has 484 

become popular for deriving tree height variables closely related to the AGB 485 

(Unger et al., 2014), and a few studies have combined optical and LiDAR for AGB 486 

mapping (Lu et al., 2012). However, the applicability of this technique is limited to 487 

local regions because of its high economic costs and labour-intensive collection 488 

(Gibbs et al., 2007). Alternatively, other authors have explored the combination of 489 

optical and SAR (e.g., Cutler et al., 2012; Wingate et al., 2018). Combining 490 

frequently available SAR observations with less frequent (due to cloud cover) 491 

optical remote-sensing data may provide a sound information source in the 492 

tropics, but there remain few studies of this nature in tropical dryland forests.  493 

Accurate delineation of biomass distribution at scales from local (ca. 1 x 10-1 km) 494 

to pantropical is significant in reducing the uncertainty of carbon emissions and 495 

sequestration, understanding their roles in influencing land degradation, and 496 

wider environmental processes (Foody, 2003). However, the lack of spatially 497 

explicit maps of biomass and forest structural parameters over dryland forests 498 

areas in Southern Africa is one of the largest sources of uncertainty in estimates of 499 

carbon emissions (Midgley et al., 2011; Timothy et al., 2016). With regards to 500 

tropical forests, forest biomass and structure are often relatively well studied in 501 

the tropical rainforests as compared to dryland forests, but rainforests are 502 

progressively shifting to TDFs, especially in South America and Africa, often 503 
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irreversibly because of fire events (Zhao et al., 2021). This phenomenon justifies 504 

the importance of studying TDF carbon stocks. 505 

 506 

1.5.4  The benefits and challenges of remote sensing in 507 

dryland forests 508 

The development of the Earth observation satellites during the past decades has 509 

enhanced our ability to assess the status and dynamics of vegetation change as 510 

well as impacts of climate change at a large scale (Nicholson, 2011). In forest 511 

ecosystems, identifying changes in canopy cover with remote sensing generally re- 512 

quires data at frequent intervals because the spectral signature changes rapidly 513 

with regrowth. Optical sensors provide the best alternative for vegetation change 514 

mapping and biomass estimation to field sampling due to global coverage and 515 

repeatability, given the ability to estimate characteristics such as forest type and 516 

leaf area index (LAI) (Lu, 2006; Symeonakis et al., 2018). Such sensors are 517 

however limited in the degree to which they can generate structural information 518 

and are restricted by cloud occlusion which is particularly problematic in tropical 519 

regions (Herold, 2007; Symeonakis et al., 2018). Light Detection Ranging (LIDAR) 520 

and Hyperspatial data can observe tree crowns, basal area, tree height and 521 

biomass but cannot cover large areas (Falkowski et al., 2008, Blackburn, 2007). 522 

The selection of suitable satellite data depends on the ecological characteristics of 523 

the ecosystems, spatial and temporal scales of interest (Estes et al., 2018). As the 524 

region of interest and temporal extent increases, the volume of data, and the 525 

complexity of image-processing becomes significant and an obstacle to many 526 

researchers and operational users with limited access to high-performance 527 

computing infrastructures (Smith et al., 2019). 528 

Due to the inherent trade-offs between spatial and temporal resolution in EO data, 529 

and geographic coverage, the vegetation patterns on both spatial and temporal 530 

domains have been revealed by various technological advances resulted in the 531 

growing availability of remote sensing data and methods (Toth and Jóźków, 2016; 532 

Zhou et al., 2020). The application of non-parametric machine learning regression 533 
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algorithms, such as decision trees, random forests (RF), support vector machines 534 

(SVMs), and k-nearest neighbour have become more predominant and 535 

demonstrate the ability to outperform widely used parametric approaches, such as 536 

polynomial and multiple linear regression variables used with remotely sensed 537 

data in a forest environment (Breiman, 2001; Latifi et al., 2010). Non-parametric 538 

machine and deep learning models are sufficiently versatile to uncover 539 

complicated nonlinear relationships and able to extract combinations of the input 540 

data that are difficult to describe explicitly by humans, particularly, in areas with 541 

high structural variability such as dryland forests (Hastie et al., 2009; Shao et al., 542 

2017). Machine and deep learning have been used by many remote sensing studies 543 

to provide in-depth forest investigation from the perspectives of hyperspectral 544 

image analysis, interpretation of SAR/ LiDAR images, interpretation of high-545 

resolution satellite images and classification, and multimodal data fusion (e.g., the 546 

fusion of Hyperspectral, SAR, LiDAR and optical data (Guirado et al., 2020; Shao et 547 

al., 2017; Trier et al., 2018). Improved techniques in remote sensing such as 548 

Vegetation Indices, VOD, and machine and deep learning have been utilised to 549 

estimate dryland forest attributes globally and other dryland ecosystems, 550 

however, very few of these focused on the local and regional scale of Southern 551 

Africa (e.g., Symeonakis et al., 2020). 552 

 The uncertainties reported in many dryland forests studies relating to remote 553 

sensing (Bastin et al. 2017), could be decreased following further development, 554 

application, and comparison of these improved approaches in future works at 555 

local, regional, and continental studies in dryland forest ecosystems. It has been 556 

discovered that there is plausible trade-off between spatial resolution, image 557 

coverage and frequency in data acquisition, and many studies has shown that 558 

coarse spatial resolution optical sensors are useful for biomass mapping at 559 

national and global scale rather than at local scale (Wulder et al. 2004; Lu, 2006). 560 

For example, Dube et al., (2014) used spaceborne multispectral RapidEye sensor 561 

with a fine spatial resolution have the potential to satisfactorily predict intra-and-562 

inter species predicting forest metrics, such as biomass in areas of closed and 563 

dense vegetation. The RapiEye have the capability to provide a better prediction 564 

for biomass because they contain more spectral information critical for vegetation 565 

mapping in comparison to the existing broadband multispectral images (Dube et 566 
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al., 2014). The rise of innovative and high-performance computing facilities and 567 

web-based software tools such as Google Earth Engine (GEE) platform and 568 

growing use of machine learning algorithms helps to overcome many barriers¸ 569 

enabling large volumes of data to be integrated, processed, and analysed for large 570 

areas and over long time periods (Warren et al., 2015). For a detailed review of 571 

machine learning and deep learning for remote sensing and Sustainable 572 

Development Goals, see Zhu et al. (2017) and Holloway and Mengersen (2018). 573 

Also, more information on research trends, benefits, and challenges of remote 574 

sensing in dryland forests are provided in David et al., 2002a, (Chapter 2). Using 575 

the new advances in data management and cloud computing capabilities of Google 576 

Earth Engine led to a recent discovery that forests in drylands exceeds previous 577 

estimates by over 40% (Bastin et al., 2017).  578 

1.5.5 Google Earth Engine platform  579 

The Google Earth Engine (GEE) platform provides pre-processed satellite imagery¸ 580 

enabling large volumes of data to be integrated, processed, and analysed for large 581 

areas and over long time periods (Warren et al., 2015). The platform provides 582 

online access to extensive imagery including the entire Landsat archive, complete 583 

archives of data from MODIS, Sentinel-1 and Sentinel-2. GEE also co-locates climate 584 

forecast data, land cover data, and many other environmental and socioeconomic 585 

data covering much of the planet. All processing and computations are done on-586 

the-fly in the cloud which allows the user to process data in close to real-time 587 

(Hansen et al., 2013). The catalogue is continuously updated, and users can request 588 

the addition of new datasets to the public catalogue, or they can upload their 589 

private data via a REST (representational state transfer) interface using either 590 

browser-based or command-line tools (Gorelick et al., 2017).  591 

GEE's functionality affords a unique opportunity to overcome the limitations 592 

imposed by the volume of data and the scale of analysis that would otherwise 593 

prevent analysis in many organisations in tropical dryland regions (Hansen et al., 594 

2013; Shelestov et al., 2017). Although GEE has removed many computational and 595 

analysis barriers, the technology is not yet comprehensive. The approach is still 596 

evolving and there are shortcomings around the challenges of completing analysis 597 
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that would normally be better suited to a GIS environment, such as the intersection 598 

of raster- and vector-based datasets. This thesis has, therefore, utilised other 599 

analytical software such as R and ArcGIS since GEE allows files and data to be 600 

imported and exported for use elsewhere. 601 

 602 

1.6 The world’s largest conservation park 603 

The Kavango-Zambezi Transfrontier Conservation Area (KAZA TFCA) was 604 

established in 2011 by its member states of Angola, Botswana, Namibia, Zambia, 605 

and Zimbabwe, with support from World Wide Fund for Nature (WWF) and the 606 

Peace Parks Foundation (WWF, 2016). KAZA TFCA is the World’s largest 607 

transfrontier conservation area covering a land area of 519,912 km2 (200,739 sq. 608 

mi, equivalent to the area of Spain or Thailand) (Murphy, 2008). About 71% of 609 

KAZA is protected to create economic development and conserve the unique 610 

biodiversity within the region, and only 29% of the land is not protected.  611 

One key aim of KAZA is to connect and coordinate efforts across protected areas 612 

and create free movement for wildlife within its borders, without political 613 

boundaries hampering the ability to meet conservation objectives (Cumming, 614 

2008). KAZA links several conservation areas including 20 protected national 615 

parks, 103 wildlife management areas, 85 forest reserves, 11 game management 616 

areas, 11 sanctuaries, and communal lands (Fig. 1.5) (Karidozo et al., 2016). The 617 

area hosts the largest population (ca. 250,000) of the African elephant, one quarter 618 

(25%) of the African wild dog population, amongst other wildlife, and a human 619 

population of 2,677,086 (Karidozo et al., 2016). The growing human population 620 

and increasing wildlife population in KAZA have given rise to human 621 

encroachment and increased human-wildlife conflict (Stoldt et al., 2020). 622 
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 623 

Fig. 1. 5 Map of the study area showing KAZA region in Southern Africa and the and land 624 

management classes as designated by the World Database on Protected Areas (WDPA). 625 

1.6.1 Rationale of the study  626 

It is important to acknowledge the inherent pressure on dryland resources from 627 

the perspective of the local population that depends on these ecosystems for 628 

livelihoods, even in the remote and protected areas of the KAZA region. The 629 

vegetation structure of KAZA consists of desert shrubs in the southwest, and 630 

dryland forest in the northeast, with Baikiaea, miombo, mopane, and acacia 631 

woodland species occupying by far the greatest portion of the area (Cumming, 632 

2008). Within this region, forest loss and degradation are a major concern because 633 

TDFs are already severely degraded as a result of competing land use, and from 634 

overuse (Kamwi et al., 2020; Shackleton et al., 2010), as shown by field photos 635 

collected in 2019, from Namibia and Botswana (Fig. 1.6).  636 
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These changes do not only directly impact wildlife species distribution, but can 637 

also undermine efforts to maintain, expand and link wildlife populations and 638 

economic sustainability (Naidoo et al., 2016). Dryland vegetation in arid, semi-arid, 639 

and dry sub-humid areas of Southern Africa are highly sensitive because 640 

precipitation is scarce and typically more or less unpredictable, temperatures are 641 

high, humidity is low and soils generally contain small amounts of organic material 642 

(King, 2014; Meadows, 2006; Niang et al., 2014).  643 

For KAZA, no large-scale study exists that provides spatially explicit and up-to-date 644 

information on both the protected areas and forests throughout the region, that 645 

also includes detailed information on forest biomass, vegetation density, fire and 646 

drought impact, and land degradation (Cumming, 2008). This hampers efforts to 647 

mitigate the threats against KAZA. For example, many species (flora and fauna) are 648 

identified as endangered or threatened and would almost certainly merit Alliance 649 

for Zero Extinction (ACE) ranking (IUCN, 2020). For example, the Baikiaea 650 

plurijuga (Zambezi Teak) is on the International Union for Conservation of Nature 651 

(IUCN) red list due to overexploitation through logging and fire damage in Zambia 652 

and Namibia. The Zambezi and Kavango East regions within KAZA have low levels 653 

of income and high levels of poverty and are the most heavily forested regions in 654 

Namibia (USAID, 2010). A large part of the Zambezi region’s land surface is state-655 

run protected areas, where there is an ongoing land-use pressure, agricultural 656 

expansion, and conversion of closed woodland into secondary woods and shrubs 657 

(Kamwi et al., 2015). Due to the remoteness of the area, wildlife dangers, and the 658 

fact that KAZA extends across international borders, continuous and in-situ field 659 

sampling to measure and assess vegetation characteristics is an effectively 660 

impossible and expensive task. With a view on time and expense, satellite remote 661 

sensing is therefore here considered as an appropriate methodology for measuring 662 

changes in the dryland of KAZA, building on a limited number of localised previous 663 

studies (e.g., Schultz et al., 2018). This study provides an initiative for a significant 664 

advancement in mapping the dryland forests using remote sensing technology. 665 
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 666 

Fig. 1. 6 Example of ground data captured during a field campaign in February to May 2019; (A) 667 

deforestation in Zambezi state forest in Namibia; (B) forest degradation in Chobe National Park in 668 

Botswana; (C) Burned forest for cultivation near the protected area of Mudumu NP, Namibia; (D) 669 

elephant browsing; (E) Sampling diameter at breast height of all tree per plot; (F) Meeting and 670 

interviews with community members concerning dryland forests. 671 

 672 

 673 

 674 



Chapter 1 
 
 

Page | 49  
 

1.7 Aims and Objectives 675 

Aims 676 

The fundamental aim of this thesis is to estimate and characterise forest 677 

parameters, disturbance, and land cover change in the context of climate change in 678 

the KAZA region of Southern Africa. Throughout the thesis, the goal is to explore 679 

the use of novel application of remote sensing approaches and the fusion of 680 

multiple remote sensing data from optical and SAR sensors. The research seeks to 681 

consider their combination to ascertain the potential insights into the spatial and 682 

temporal change of dryland forests that remote sensing is able to provide. To 683 

address the aim, the thesis will tackle the following objectives: 684 

Objectives 685 

Objective 1: Provide a systematic review of the scientific literature related to the 686 

use of remotely sensed data within the context of dryland forests, with a focus on 687 

Southern Africa. 688 

o Provide a detailed overview of the current approaches and limitations for 689 

monitoring dryland forests using optical and radar remote sensing data.  690 

o Quantify general trends in remote sensing data studies focusing on 691 

monitoring dryland forests in Southern Africa.  692 

o Identify research gaps and make recommendations for monitoring dryland 693 

forests using remote sensing data. 694 

 695 

Objective 2: To assess the feasibility of using remote sensing data derived from 696 

SAR, multispectral, and ground measurements to estimate dryland forest above 697 

ground biomass.  698 

o Develop empirical models to determine the relationship between field-699 

measured AGB and Sentinel-1 SAR backscatter coefficients, S Sentinel-2, 700 

and Landsat-8 multispectral reflectance in the dryland forest environment. 701 
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The focus will be on the contribution and prediction potential of SAR data, 702 

multispectral bands, and their spectral indices, both individually and in 703 

combination.  704 

o Develop parametric and non-parametric models for estimating and testing 705 

the accuracy of AGB estimation and mapping. 706 

o To compare these models to different published biomass estimates in the 707 

dryland forest environment.  708 

o To discuss the suitability of different models for land and wildlife 709 

management at different spatial scales (regional to global).  710 

Objective 3: Investigate the evidence for water stress conditions across KAZA and 711 

to test the utility of structural breaks for detecting dryland forest changes using 712 

two methods: (1) BFAST and (2) BEAST change detection in the dryland forests of 713 

KAZA. 714 

o Spatial characterisation of climatic data with vegetation indices as a proxy 715 

indicator of climate variability to improve understanding of vegetation 716 

response to drought. 717 

o Compare the common vegetation index NDVI with GNDVI to evaluate their 718 

respective sensitivities and performance in detecting changes. 719 

o To characterise changes in trends and phenological patterns using Breaks 720 

for Additive Seasonal and Trend (BFAST), and Bayesian Estimator of Abrupt 721 

change, Seasonality, and Trend (BEAST). 722 

Objective 4: Investigate the relationship between fire and different climate effects 723 

on vegetation spectral characteristics at the regional scale of KAZA. 724 

o To characterise drought conditions using climatic data (SPEI, root soil 725 

moisture, temperature, and precipitation) and explore the variability of 726 

drought using monitoring indicators (i.e., the drought duration, severity, 727 

and magnitude)  728 
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o To characterise the frequency, seasonality, and extent of fires through time 729 

on different land use management in the KAZA region 730 

o To investigate the spatiotemporal changes in aridity in the KAZA region 731 

from 2002 to 2010 and 2011 to 2019 732 

1.8 Thesis Structure 733 

The thesis comprises six chapters structured as follows. 734 

Chapter 1 has introduced the general background, motivation and critically 735 

examines concepts and remote sensing of TDFs. 736 

Chapter 2 presents a detailed review of the scientific literature related to the use 737 

of remotely sensed data including synthetic aperture radar (SAR) and optical 738 

sensors within the context of dryland forests, with a focus on Southern Africa. The 739 

research presents examples of the literature from 1997 to 2020 that summarises 740 

past achievements, current efforts, and geoinformation knowledge gaps.  741 

Chapter 3 assesses the combination of synthetic-aperture radar (SAR) and 742 

multispectral data to estimate in dryland forests. Different parametric and non-743 

parametric models for estimating parameters are developed and resulting maps 744 

accuracy is tested with ground measurements and different published biomass 745 

models in the dryland forest environment. 746 

Chapter 4 examines water stress conditions on vegetation and changes in dryland 747 

forests using multiple data streams for time series assessment over National parks 748 

and surrounding communal areas within KAZA. BFAST and BEAST algorithms 749 

were applied to evaluate their sensitivity to detect changes in trend and 750 

seasonality in tropical dryland forests. Different vegetation indices suitability in 751 

drylands were tested. 752 

Chapter 5 seeks to investigate the relationship between fire and different climate 753 

effects on vegetation spectral characteristics at the regional scale of KAZA. The 754 

chapter investigating the impacts, severity, and characteristics of drought a 755 

conditions in drylands. The fire dynamics are also investigated at the regional scale 756 



Chapter 1 
 
 

Page | 52  
 

of KAZA. The purpose is to expand the understanding from Chapter 4, linking it to 757 

climate and fire.  758 

Chapter 6 draws together the key findings presented in Chapters 2-5, addressing 759 

the research aim, bringing the findings into the wider research context, and 760 

contains the primary recommendations and conclusions of the research presented 761 

in the thesis. 762 

 763 

 764 

 765 
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2 REMOTE SENSING FOR MONITORING TROPICAL 766 

DRYLAND FORESTS: A REVIEW OF CURRENT 767 
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 800 

Abstract 801 

Climate change, manifest via rising temperatures, extreme drought, and associated 802 

anthropogenic activities, has a negative impact on the health and development of 803 

tropical dryland forests. Southern Africa encompasses significant areas of dryland 804 

forests that are important to local communities but are facing rapid deforestation 805 

and are highly vulnerable to biome degradation from land uses and extreme 806 

climate events. Appropriate integration of remote sensing technologies helps to 807 

assess and monitor forest ecosystems and provide spatially explicit, operational, 808 

and long-term data to assist the sustainable use of tropical environment 809 

landscapes. The period from 2010 onwards has seen the rapid development of 810 

remote sensing research on tropical forests, which has led to a significant increase 811 

in the number of scientific publications. This review aims to analyse and synthesise 812 

the evidence published in peer review studies with a focus on optical and radar 813 

remote sensing of dryland forests in Southern Africa from 1997-2020. For this 814 

study, 137 citation indexed research publications have been analysed with respect 815 

to publication timing, study location, spatial and temporal scale of applied remote 816 

sensing data, satellite sensors or platforms employed, research topics considered, 817 

and overall outcomes of the studies. This enabled us to provide a comprehensive 818 

overview of past achievements, current efforts, major research topics studies, EO 819 

product gaps/challenges, and to propose ways in which challenges may be 820 

overcome. It is hoped that this review will motivate discussion and encourage 821 

uptake of new remote sensing tools (e.g., Google Earth Engine (GEE)), data (e.g., 822 

the Sentinel satellites), improved vegetation parameters (e.g., red-edge related 823 

indices, vegetation optical depth (VOD)) and methodologies (e.g., data fusion or 824 

deep learning, etc.), where these have potential applications in monitoring dryland 825 

forests. 826 

Keywords: Remote sensing, Dryland forests, Southern Africa, Forest monitoring, 827 

SAR, Optical, Systematic review 828 

829 
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2.1 Introduction 830 

2.1.1  Tropical dryland forest  831 

Approximately 40% of the Earth's tropical and subtropical land surface is covered 832 

by open or closed forests. Of this, tropical dryland forests account for the largest 833 

share at 42%; the remaining 33% is moist forest, and only 25% is rain forest 834 

(Murphy et al., 1986; Janzen, 1988). The largest proportion of dryland forests 835 

ecosystems are found in Africa, accounting for 60 - 80% of the total biome area 836 

(three times the area covered by African rain forest) (Bodart et al., 2013; Bullock et 837 

al., 1995). Dryland forests hold a significant amount of terrestrial organic carbon 838 

that may contribute more to climate mitigation and adaptation than previously 839 

appreciated (Valentini et al., 2014). Dryland forests also provide diverse ecosystem 840 

services, including water regulation and erosion control, the provision of food, fuel, 841 

and tourism opportunities (Djoudi et al., 2015; Schröder et al., 2021). On the other 842 

hand, dryland forests are subject to prolonged dry seasons and their rate of 843 

conversion to secondary forests has historically been higher than other tropical 844 

forest types (Pennington et al., 2018). According to the Intergovernmental Panel 845 

on Climate Change (IPCC), these changes have impacts on carbon emissions to the 846 

atmosphere and forest biodiversity loss that reduce adaptive capacity and 847 

resilience to the impact of high temperatures and varying precipitation (IPCC, 848 

2014). 849 

The definition of “dryland forest” remains debatable and controversial, which 850 

contributes to the difficulty in accurately assessing and measuring its distribution 851 

patterns and status (Blackie et al., 2014). The lack of a clear and comprehensive 852 

understanding of general terms including “drylands” and “forests” makes it a 853 

challenge to explicitly define dryland forests (Charles-D et al., 2015). Given the fact 854 

that dryland forests progressively grade into other vegetation types such as moist 855 

tropical forests, woodlands, and savannas, also makes clear definitions complex 856 

(Putz et al., 2010). Walter et al. (1971) noted that the accuracy of estimates of all 857 

tropical forest areas is constrained by uncertainty in the distribution of open 858 

woodlands in dryland areas, which are extensive in Africa, Australia, and Latin 859 

America.  860 
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In the scientific literature, many different names have been applied to tropical 861 

dryland forests, including savanna forests, Sudanian woodland and miombo 862 

woodland in Africa, monsoon forest in Asia, neotropical dry forests in South 863 

America (Chidumayo, 2013; Linares-Palomino et al., 2011; Suresh et al., 2011). The 864 

neotropical dry forests in South America have a plethora of names from “caatinga” 865 

in northeast Brazil, to “bosque tropical caducifolio” in Mexico, and “cuabal” in 866 

Cuba, which in part hinders comparisons (Mayes et al., 2017; Sánchez‐Azofeifa et 867 

al., 2005). For example, Dexter et al. (2015) identified dry deciduous forest in India 868 

(Suresh et al., 2011), miombo woodland in southern Africa (Chidumayo, 2013), 869 

and deciduous dipterocarp forest in continental Asia (Bunyavejchewin et al., 2011) 870 

as a form of savanna, and not TDFs, despite the formal classification as TDFs by 871 

these studies, and the FAO (FAO, 2001). The Caatinga and Chaco vegetation in 872 

Latin America is also considered by some authors as part of the dry forests 873 

(Gasparri and Grau, 2009; Pennington and Ratter, 2006), although Olson et al., 874 

(2001) classifies these regions as a shrubland ecosystem. 875 

There are several definitions currently available for TDFs, but there is still a lack of 876 

consensus in developing a common understanding. Mooney et al. (1995) defined 877 

TDFs as forests occurring in the tropical regions characterised by pronounced 878 

seasonality in rainfall, where there are several months of severe, or even absolute 879 

drought. Sánchez‐Azofeifa et al. (2005) broadly defined TDFs as a vegetation type 880 

typically dominated by deciduous trees (at least 50% of trees present are drought 881 

deciduous), where the mean annual temperature is ≥ 25 °C, total annual 882 

precipitation ranges between 700 and 2000 mm, and there are three or more dry 883 

months every year (precipitation < 100 mm per month). A widely accepted 884 

definition is that of the FAO, which has identified TDFs as a Global Ecological Zone 885 

(GEZ), experiencing a tropical climate, with a dry period of 5 to 8 months and 886 

annual rainfall ranges from 500 to 1500 mm; GEZ includes the drier type mbo and 887 

Sudanian woodlands, savannah (Africa), caatinga and chaco (South America), and 888 

dry deciduous dipterocarp forest and woodlands (Asia) (FAO, 2001). For the scope 889 

of this review, the FAO. (2001) definition of TDFs was followed because it 890 

recognises forests occurring in the dry tropical climate globally including areas 891 

with relatively open canopies such as woodlands, and woody stands, then those 892 

based entirely on climate definitions. The growing body of evidence suggests that 893 
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the current climate does not define the biogeography of TDFs or determine biome 894 

distributions (Staver et al., 2011; Sunderland et al., 2015), particularly in the 895 

context of future unprecedented climate change (IPCC, 2007). If climates become 896 

sufficiently warmer and drier in the tropics, dry forests may expand into areas that 897 

are currently dominated by moist tropical forests (Putz et al., 2010). 898 

  899 

2.1.2  Recent research trends on tropical dry forests 900 

2.1.2.1 Geographical research trends on tropical dry forests 901 

Studies have pointed out that dryland forests generally receive a lower number of 902 

scientific publications and are under-represented in research in comparison with 903 

tropical moist forests (Miles et al., 2006; Quesada et al., 2009). Global reviews on 904 

dryland forests addressed the imbalance in the geographical coverage of dryland 905 

forest publications using remote sensing with certain tropical countries such as 906 

Latin America receiving the highest publications on dryland forests in comparison 907 

to most places in Africa (Blackie et al., 2014; Schröder et al., 2021). To investigate 908 

the geographical distribution of tropical dry forest studies, the study initially 909 

searched for publications in ISI web of knowledge and Scopus on tropical dryland 910 

forests from Asia, Africa, America, and Australia. This search was conducted by 911 

using the keywords ‘Dry Forest’, ‘Dryland Forest’ ‘Savan* Woodland’, ‘Savan* Tree’, 912 

‘Dryland Vegetation’, ‘Dry Vegetation’ ‘Satellite’, ‘Remote Sensing’, ‘Optical’, ‘Radar’, 913 

‘Image’, ‘SAR’, ‘Earth Observation’, ‘country/continent e.g., Africa’. In the search 914 

period from 1997 to 2020, the study identified 1662 papers for Africa, 1639 for 915 

Australia, 1338 for America, and 1134 for Asia. In Africa, when the search was 916 

narrowed to individual countries, the results showed that about 743 publications 917 

are from the Republic of South Africa (RSA) while 355 publications were from the 918 

Sahel region of Nigeria. The study also investigated scientific publications from 919 

other Southern African countries with dryland forest and 369 publications were 920 

identified, including from Botswana (87), Zimbabwe (69), Mozambique (60), 921 

Namibia (68), Zambia (49), Angola (24), Lesotho (6), Swaziland (5). When the 922 

review combined the scientific publications from the above 8 Southern African 923 

countries, the results were 369 publications, indicating that publications on 924 
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dryland forests for the Republic of South Africa were 2.01 times higher than all 8 925 

Southern African countries combined. These results confirm that much less 926 

progress has been made in developing objective methods for assessing the rates of 927 

deforestation/conservation and threats to dryland forests ecosystems in most 928 

Southern African countries except for the Republic of South Africa.  929 

The dryland forests in other parts of the world like Latin America are increasingly 930 

well studied at local, regional, national and continental scale, particularly with 931 

regards to carbon/biomass (Chazdon et al., 2016; Marín-Spiotta et al., 2008), fire 932 

(Campos-Vargas et al., 2021; White, 2019; Pereira et al., 2014), climate change 933 

(Mendivelso et al., 2014; Castro et al., 2018; González‐M et al., 2021), floristic and 934 

diversity composition (Alvarez‐Añorve et al., 2012; Gillespie et al., 2000), 935 

ecosystem services (Castillo et al., 2005; Paruelo et al., 2016), Payment for 936 

Environmental Services (PES) (Alcañiz and Gutierrez, 2020; Corbera et al., 2009), 937 

novel conservation approaches (e.g., sustainable intensification for 938 

protected/conservation areas) (Méndez et al., 2007; Reynolds et al., 2016) and has 939 

the most comprehensive forest change/deforestation and biophysical aspects 940 

including species population changes, with extensive use of remote sensing (do 941 

Espírito-Santo et al., 2020; Gasparri and Grau, 2009; Stan and Sanchez-Azofeifa, 942 

2019; Trejo and Dirzo, 2000; Portillo-Quintero et al., 2012). In terms of reviews, 943 

many remote sensing reviews are providing valuable information on TDF’s 944 

biophysical, ecological and socioeconomic at a regional level of Latin America 945 

(Castro et al., 2003; Metternicht et al., 2010; Portillo, 2010; Sanchez-Azofeifa et 946 

al.,2003; Sánchez‐Azofeifa et al., 2005; Sánchez‐Azofeifa et al., 2013; Stan and 947 

Sanchez-Azofeifa, 2019; Quijas et al. 2019), and Australia (Lawley et al., 2016; 948 

Moore et al., 2016; Fensham et al., 2002). Also, reviews of current progress on 949 

dryland forests in individual countries can be found in many neotropics countries 950 

such as Mexico (Castillo et al., 2005; Curry, 2020), Venezuela (Fajardo et al., 2005; 951 

Rodríguez et al., 2008), and Costa Rica (Frankie et al., 2004; Stoner et al., 2004) 952 

enabling the identification of knowledge gaps and aiding in the development of a 953 

policy-relevant approach to conservation of these forests (Miles et al., 2006).  954 

Latin America is one of the best-represented areas for remote sensing research in 955 

dryland forests, for example, Portillo-Quintero and Sánchez-Azofeifa. (2010) 956 
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utilised remote sensing data at continental America, dryland forests ecoregion, and 957 

neotropics countries to show that 66% of tropical dry forest in the region has 958 

already been converted and that in some countries the conversion rate is as high as 959 

86% and 95%, respectively. Aide et al. (2012) using Moderate Resolution Imaging 960 

Spectroradiometer (MODIS) satellite data estimated that 200,000 km2 of woody 961 

vegetation of Latin American and the Caribbean region were lost due to 962 

deforestation between 2001 and 2010. Nanni et al. (2019) utilised MODIS satellite 963 

data at 250 m spatial resolution to assess reforestation at the regional level and 964 

reported that the reforestation hotspots cover 167,667.7 km2 (7.6 %) of Latin 965 

America between 2001 and 2014. While there are continental studies in Africa 966 

utilising remote sensing on biophysical parameters such as biomass/deforestation 967 

(Bouvet et al., 2018; Bodart et al., 2013), as compared to Latin America, these 968 

studies may not consider the empirical observations of dryland forests 969 

extent/change per region or country level. In addition, most continental studies in 970 

Africa rather focus the attention on tropical rainforest in Central Africa (e.g., core 971 

Congolese forest) which may under-represent dryland forest (e.g., Aleman et al., 972 

2018). Global applications often report general land use/cover change which 973 

results in inaccurate or poor estimates of dryland forest (Smith et al., 2019; 974 

Aleman et al., 2018).  975 

Several studies using optical and passive microwave instruments in the African 976 

Sahel (Horion et al., 2014; Brandt et al., 2016; Olsson et al., 2005; Tian et al., 2017) 977 

has reported that the density/size of woody vegetation stands have increased, with 978 

few areas in northern Nigeria reported to experience logging and agricultural 979 

expansion into forest reserves. Deforestation in Southern Africa is a major concern, 980 

with ca. 1.4 million ha of net forest loss annually, contributing to increased land 981 

degradation and the ensuant impacts on the balance of ecosystem function 982 

(Lesolle, 2012). A global study by Tian et al. (2017) utilising the optical Normalised 983 

Difference Vegetation (NDVI) index and passive microwave VOD across tropical 984 

drylands has reported a decreasing trend in woody vegetation in Southern African 985 

countries such as Botswana and Zimbabwe. Mitchard and Flintrop. (2013) 986 

conducted a coarse-scale analysis of changes in woody vegetation from 1982 to 987 

2006 using NDVI time series from the Global Inventory Modeling and Mapping 988 

Studies (GIMMS) dataset and found that significant woody encroachment is 989 
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occurring in most west African countries, but, in contrast, in Southern Africa, a 990 

rapid reduction in woody vegetation (deforestation) is occurring. Bodart et al. 991 

(2013) used Landsat satellite imagery between 1990 and 2000 to estimate forest 992 

cover and forest cover changes in the African continent and found that 84% of the 993 

total deforested area occurred in the dry ecosystems of the Southern African 994 

region, with large spatially concentrated areas of forest loss found in Angola, 995 

Mozambique, Tanzania, Zambia and Zimbabwe, and isolated hotspots found in 996 

Nigeria and the border of the humid forest in Ghana. While such global and 997 

continental level studies are useful to highlight and reinforce the need to direct 998 

more attention and resources to these threatened/poorly studied ecosystems, 999 

research efforts on forest change/deforestation and climate change impacts of 1000 

dryland forests at the regional level of Southern Africa are much harder to come by 1001 

(Blackie et al., 2014).  1002 

2.1.2.2 Remote Sensing approaches research trends in tropical dry 1003 

forests 1004 

In recent decades, satellite remote sensing or Earth observation (EO) has proved a 1005 

valuable tool in forest ecology, owing to its capability to perform systematic, 1006 

frequent, and synoptic observation of the Earth, resulting in large data volumes 1007 

and multiple datasets at varying spatial and temporal scales (Donoghue, 2002; Zhu, 1008 

2017). There are several sensors including multi-spectral scanners, laser scanners 1009 

(LiDAR), hyper-spectral scanners as well as satellite-borne Synthetic Aperture 1010 

Radar (SAR), that provide information on the colour and structure of forest 1011 

environments (Donoghue, 2002). EO has been applied to mapping the distribution, 1012 

changes in cover and condition including deforestation, desertification, fire 1013 

damage, and climate impact (Dogru et al., 2020; Smith et al., 2019). Additionally, 1014 

these data have been used to estimate biophysical characteristics such as total 1015 

above ground biomass (AGB), leaf area index (LAI), woody area index, tree 1016 

diameter, and canopy height which are key inputs into a variety of ecological 1017 

models, as well as calculations of carbon balance and primary production (Barbosa 1018 

et al., 2014; Donoghue, 2000). The continuous forest metrics obtained using EO 1019 

data can be extracted at leaf and crown level to evaluate spectral elements of leaf 1020 

or species properties and at stand-level and plot-level, or beyond to understand 1021 
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the variation between and among species, and through time (Muraoka et al., 2009). 1022 

Monitoring of dryland forest cover and forest metrics using EO data also helps to 1023 

improve the understanding of the ecological drivers behind land cover change 1024 

dynamics (Chambers et al., 2007; Veldkamp et al., 2001).  1025 

Biomass has extensively been estimated based on the spectral reflectance values 1026 

from two or more wavelengths, and the sensitivity of optical and near-infrared 1027 

wavelengths to photosynthetic canopy cover has long been used for vegetation 1028 

analyses (Rouse, 1974; Tucker, 1979). Spectral vegetation indices (VIs), including 1029 

the NDVI index, are commonly used as a proxy of vegetation cover and have been 1030 

shown to relate closely to LAI, biomass, and the fraction of photosynthetically 1031 

active radiation absorbed by vegetation (fAPAR) (Curran, 1980). Several well-1032 

known limitations of NDVI for robust estimation of biomass in drylands exist. NDVI 1033 

is sensitive to green components and insensitive to woody components where the 1034 

majority of carbon is stored (Tucker, 1979). Also, AGB production is not always 1035 

uniformly linked to either greenness or plant structure (herbaceous and woody 1036 

compositions), as moisture content and vegetation species composition have been 1037 

shown to impact the biomass-NDVI relationship (Asner et al., 2009; Wessels et al., 1038 

2006). These observations may help explain reportedly weak relationships 1039 

between NDVI and tropical forest canopies, particularly for areas with complex 1040 

and high vegetation amounts as in TDFs (Foody et al., 2001; Sader et al., 1989). For 1041 

example, Madonsela et al. (2018) investigated the interactions between seasonal 1042 

NDVI and woody canopy cover in the savanna of the Kruger National Park (NP) to 1043 

model tree species diversity using a factorial model and found that the interaction 1044 

between NDVI and woody canopy cover was insignificant. These challenges have 1045 

led to the development of alternative formulations which include correction 1046 

factors or constants introduced to account for or minimise, the varying 1047 

background reflectance (Gitelson et al., 1996; Huete et al., 1999). The Enhanced 1048 

Vegetation Index (EVI) is a modification of NDVI that provides complementary 1049 

information about the spatial and temporal variations of vegetation while 1050 

minimising many of the contamination problems present in the NDVI, such as 1051 

those associated with canopy background and atmospheric influences (Huete et al., 1052 

2002). Other closely related indices include the Simple Ratio (SR), the Green 1053 

Normalised Difference Vegetation Index (GNDVI), Soil-Adjusted Vegetation Index 1054 
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(SAVI) amongst others. Xue et al. (2017) provides a detailed review of vegetation 1055 

indices.  1056 

Although vegetation monitoring has been largely based on the multispectral 1057 

“greenness” indices, which have proven invaluable for monitoring biophysical and 1058 

biogeochemical parameters, it has been widely reported in the literature that they 1059 

suffer from several weaknesses in dryland ecosystems (Tian et al., 2016; Shi et al., 1060 

2008). Other remote sensing systems such as the passive microwave-based 1061 

satellite systems capture the biomass signal in the parameter termed vegetation 1062 

optical depth (VOD) which has been used to monitor changes in vegetation 1063 

dynamics (Andela et al., 2013; Brandt et al., 2018a; Brandt et al., 2018b). Unlike the 1064 

optical remote sensing-based vegetation indices that are sensitive to chlorophyll 1065 

abundance and photosynthetically active biomass of the leaves, the vegetation 1066 

information (e.g., VOD) deriving from passive microwave instruments is sensitive 1067 

to the water content in the total aboveground vegetation, including both the 1068 

canopy (e.g. woody plant foliage) and non-green woody (e.g. plant stems and 1069 

branches) components due to greater penetration and sensitivity (Liu et al., 2011; 1070 

Shi et al., 2008). The passive microwave observations VOD is relatively insensitive 1071 

to signal degradation from solar illumination and atmospheric effects and provide 1072 

a valuable alternative tool for rapid monitoring of carbon stocks and their changes 1073 

(Jones et al., 2011). One of the advantages of passive microwave-derived VOD is 1074 

that it continues to distinguish biomass variations at a relatively high biomass 1075 

density, as compared to optical-based vegetation indices which are likely to 1076 

become saturated over dense canopies (Jones et al., 2011; Liu et al., 2015). The 1077 

main disadvantage of passive microwave observations is the relatively coarse 1078 

spatial resolution (>10km), as compared to satellite data in the visible and near-1079 

infrared parts of the spectrum; however, these data still have highly useful 1080 

applications at regional and global scales (Liu et al., 2015; Rahmoune et al., 2013; 1081 

Owe et al., 2001). Some recent global and local studies from Latin America and 1082 

Africa in the dryland ecosystems found VOD to be more robust against the NDVI 1083 

drawbacks of saturation effect and continues to distinguish structural differences 1084 

for vegetation with a near-closed canopy when used as a proxy for vegetation 1085 

productivity (van Marle et al., 2015; Cui et al., 2015; Liu et al., 2011; Tian et al., 1086 

2016). Apart from the VOD and NDVI, an intercomparison between several 1087 
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vegetation indices including other passive microwave-based vegetation indices, 1088 

such as the Microwave Polarisation Difference Index (MPDI) (Becker & Choudhury, 1089 

1988), and the Microwave Vegetation Indices (MVIs) (Shi et al., 2008) would be of 1090 

benefit in monitoring dryland biomes.  1091 

2.1.3 Review focus justification  1092 

The majority of the residents of Southern Africa are poor and about 75% of them 1093 

live in rural areas with high reliance on dryland forests (Bond 2010). Additionally, 1094 

these dryland areas display a high susceptibility to bush encroachment (O'Connor 1095 

et al., 2014) and economic reliance on tourism (Ferreira 2004) and forest products 1096 

(Kamwi et al., 2020), which means that both agriculture and tourism development 1097 

encroach on the dryland forests, resulting in loss of forest biodiversity and land 1098 

degradation (Eva et al., 2006; Petheram et al., 2006). Across Southern Africa, 1099 

sustainable management of dryland ecosystems is hindered by complex land 1100 

tenure due to historical legacy, weak links between policy and woodland use and 1101 

management, and cultural drivers (Balint and Mashinya, 2006; Dewees, 1994). 1102 

Also, the dryland ecosystems of Southern Africa are dominated by private land 1103 

ownership, a high concentration of wildlife and human populations, and 1104 

agriculture where TDFs occur (Child et al. 2012). This review focuses on Southern 1105 

Africa because there is a gap in knowledge on carbon storage, biomass, and the 1106 

long-term trend of forest distribution and degradation in dryland forests. Much of 1107 

the research on dryland forests in Southern African has concentrated on 1108 

livelihoods, community forest management, and conservation/development trade-1109 

offs (Chidumayo et al., 2010; Chidumayo and Gumbo, 2010; Chidumayo, 2019; 1110 

Djoudi et al., 2015, Dewees 1994; Du Preez, 2014; Ryan et al., 2016), leaving forests 1111 

highly vulnerable to deforestation and degradation (Keenan et al., 2015). The 1112 

social and economic aspects are important given the large numbers of African 1113 

people that rely on dry forests for their livelihoods and a range of goods and 1114 

services. However, the gap in biophysical aspects, threats status, and adaptation to 1115 

climate change identified for Southern African TDFs at the regional and national 1116 

level (Blackie et al., 2014; Sunderland et al., 2015), presents an urgent need for an 1117 

assessment of the effectiveness of the EO scientific foundation on current 1118 

understanding of TDFs in Southern Africa; this can aid in the development of 1119 
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policy-relevant approaches and long-term, regional perspective for planning and 1120 

conservation of the TDFs.  1121 

With the prospects of multiple free datasets from optical and SAR sensors being 1122 

available; combining information from optical sensors on photosynthetic activity 1123 

(e.g., through various vegetation indices) with SAR-derived information on forest 1124 

structure and volume brings the benefits of higher spectral resolution and 1125 

compensating for the shortcomings of using single data products alone. Based on 1126 

this hypothesis, this review focuses on examining the studies using optical and SAR 1127 

sensors, both individually and the combination of the two types of EO data in 1128 

monitoring tropical forests. While forest distribution, carbon storage, and reducing 1129 

emissions from deforestation and forest degradation (REDD+) related research 1130 

exists in African dryland forests, the geographical focus has tended to be confined 1131 

to several West/Central African countries, whereas Southern Africa is relatively 1132 

poorly analysed (Lewis et al., 2013; Sunderland et al., 2015). Although numerous 1133 

reviews have been conducted discussing the application of optical and radar 1134 

remote sensing, they are either concentrated on mangroves forests (Kuenzer et al., 1135 

2011; Wang et al., 2019), rain forests (Dupuis et al., 2020), or ecosystem services 1136 

(Barbosa et al., 2015). To date, reviews on remote sensing and EO in Southern 1137 

Africa have focused on research conducted in the Republic of South Africa (RSA) 1138 

(Hoffman et al., 2000; Mutanga et al., 2016; Mutanga et al., 2009).  1139 

As shown in Fig. 2.1, the climate threats coupled with a growing human population 1140 

and future anticipated changes in land use are predicted to lead to severe dry 1141 

forest biome shifts and degradation across the whole of Southern Africa, hence the 1142 

need to expand the geographical scope of this review from previous work (IPCC, 1143 

2014; King, 2014). This paper provides a systematic review of the scientific 1144 

literatures related to the use of Earth observation data including SAR and optical 1145 

sensors used to study dryland forests, with a focus on Southern Africa. To achieve 1146 

this, examples from the literature that summarise past achievements, current 1147 

efforts, and knowledge gaps are presented. The objectives of this review are to (i) 1148 

to provide a detailed overview of the current approaches and limitations for 1149 

monitoring dryland forests using optical and radar remote sensing data. (ii) to 1150 

provide a critical evaluation and synthesis of the literature monitoring dryland 1151 
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forests using remote sensing data and discuss how EO data can contribute to 1152 

dryland forest monitoring and forest conservation in Southern Africa. (iii) to 1153 

identify knowledge gaps and make recommendations for research that will 1154 

enhance monitoring of dryland forests using remote sensing data. 1155 

 1156 

Fig. 2. 1 (a) Projected biome change from the periods 1961–1990 to 2071–2100 using the 1157 

MC1 Dynamic Vegetation Model. (b) Vulnerability of ecosystems to biome shifts based on 1158 

historical climate (1901–2002) and projected vegetation (2071–2100) (source: IPCC, 1159 

2014). 1160 

 1161 

2.2 Remote sensing applications in dryland forest 1162 

2.2.1 Optical data 1163 

In broad terms, the satellite platforms developed over the past 40 years (since 1164 

1972) have carried two broad types of sensor systems; passive optical and active 1165 

synthetic aperture radar (SAR). Successful change detection and parameter 1166 

estimation over tropical dryland forests require: (a) correct selection and 1167 

application of sensor type; (b) coupling with field observation data for calibration 1168 
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and validation, and (c) data integration and appropriate techniques for modelling 1169 

(Fig. 2.2). Optical sensors have been widely used for land cover and forest resource 1170 

mapping, providing access to long-term data dating back to the launch of Landsat 1171 

ERTS (Earth Resources Technology Satellite) satellites in 1972. Landsat and 1172 

several other coarse/medium spatial resolution optical sensor missions (National 1173 

Oceanic and Atmospheric Administration (NOAA) - Advanced Very High-1174 

Resolution Radiometer (AVHRR); the National Aeronautics and Space 1175 

Administration (NASA) -Aqua/Terra- Moderate Resolution Imaging 1176 

Spectroradiometer (MODIS); Indian Remote Sensing Satellites-1C/1D (ISRO-IRS-1177 

1C/D), Sentinel-2) provide well-calibrated, nadir-viewing, near-global systematic 1178 

coverage which have built up a valuable archive of image data that can be used to 1179 

analyse ecosystem dynamics (Congalton, 2018; Donoghue, 2000). In 2014, ESA 1180 

launched the Multispectral Instrument (MSI) onboard Sentinel-2 as part of its 1181 

Copernicus EO mission. Sentinel-2 MSI uses two identical satellite sensors to 1182 

measure the Earth’s reflected radiance with a revisit time of 5 days and a fine 1183 

spatial resolution of 10 - 20 m pixel size. The length of the Sentinel-2 archive is 1184 

short (from 2015), compared to the Landsat mission from 1972-present, NOAA-1185 

AVHRR 1979-present; Satellite Pour l'Observation de la Terre VEGETATION 1186 

(SPOT/VGT) (1998-present), IRS-1C/1D (ISRO-IRS-1C/D) (1995-2010), ENVISAT - 1187 

Medium Resolution Imaging Spectrometer (MERIS) (2002-2010) and the NASA - 1188 

MODIS (2000-present) and the French Space Agency (CNES-Centre national 1189 

d’études spatiales) high-resolution SPOT satellite constellation (6 m - 20 m pixel 1190 

size) - SPOT-1 in 1986-1990, SPOT-2 in 1990-2009, SPOT-3 in 1993-2009; SPOT-4 1191 

in 1990-2013; SPOT-5 in 2002-present; SPOT-6 in 2012-present; SPOT-7 in 2014-1192 

present. The VEGETATION 1 (VGT 1) (1998-2012) and VEGETATION 2 (VGT 2) 1193 

(2002-2014) instrument on the SPOT 4 and SPOT 5 (SPOT/VGT) satellites 1194 

provided global daily monitoring of vegetation cover, and it is successor the 1195 

European PROBA-V satellite (2013-present), with a pixel size of 1 km, 300 m and 1196 

100 m are supplied by the VEGETATION image Processing Centre (CTIV) of VITO 1197 

(Belgium), which can be accessed through the internet site http://free.vgt.vito.be. 1198 

Although a large number of satellite sensors have been launched that are capable 1199 

of observing land dynamics, and their pixel size has decreased from 80 m of the 1200 

Landsat-1 to 0.41-1.65 m of the GeoEye-1 satellites (Aguilar et al., 2013), very few 1201 
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sensors provide well-calibrated multispectral, nadir-viewing observations and 1202 

even fewer systematically capture all global data and provide a long-term archive 1203 

of data free of charge to the public. Except for AVHRR and Landsat, no other sensor 1204 

or sensor line offers the chance of long-term monitoring of an area to be monitored 1205 

back in time to the 1970s, covering about four decades. 1206 

There are several non-systematic commercial high-resolution satellites that allow 1207 

the detection of individual trees or populations. Maxar Technologies Inc. launched 1208 

4 very fine resolution satellites - WorldView-1 in 2007, WorldView-2 in 2009, 1209 

WorldView-3 in 2010, and WorldView-4 in 2019 that acquire images with spatial 1210 

resolution of 0.5, 0.41, and 0.31 m, respectively. From 2009 onward, Planet labs 1211 

launched a swarm of micro-satellites including PlanetScope (PS), RapidEye (RE), 1212 

and SkySat (SS) Earth-imaging constellations with multispectral imaging capability 1213 

with the aim of acquiring daily image capture for any part of the world at a spatial 1214 

resolution of 3.125 m to 6.5 m (Marta, 2018). In 2011 and 2012, the Space Agency 1215 

of France (CNES) launched the Pléiades – fine resolution optical imaging satellite 1216 

constellation (Pléiades-1A and Pléiades-1B), with a fine spatial resolution of 0.7 – 1217 

2.8 m. Other very fine-resolution commercial space imaging satellites include 1218 

Earlybird (1997), GeoEye (2008), EROS-A (1998), IKONOS (1999), QuickBird 1219 

(2001), OrbView (2001) (Maglione, 2016). In Africa, South Africa started satellite 1220 

developments in the 1990s, with the successful launch of SunSat-1 with a spatial 1221 

resolution of 15 m in 1999 and SumbandilaSat low orbit satellite with a high fine 1222 

resolution of 6.25 m in 2009 (Cho et al., 2012; Mutanga et al., 2016). While the first 1223 

Nigerian satellite, a microsatellite called NigeriaSat-1, was successfully launched 1224 

into low earth orbit in 2003, followed by Nigeriasat-2 with a higher spatial 1225 

resolution of 2.5 – 5 m, built by Surrey Satellite Technology Limited (SSTL) of UK 1226 

(Agbaje, 2010).  1227 

Nevertheless, the use of data acquired by higher spatial resolution optical sensors, 1228 

particularly at regional and global scales, can be limited by their relatively high 1229 

cost, huge data volumes, and low frequency of data acquisition compounded 1230 

further in tropical regions where cloud cover is prevalent (Lehmann et al., 2015; 1231 

Zhu et al., 2012). The temporal resolution of sensors has also increased from, for 1232 

example, 16 days for Landsat to nearly 1 day for the NOAA-AVHRR, NASA-1233 
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Aqua/Terra-MODIS, NOAA-AVHRR, SPOT, SPOT/VGT (PROBA-V), and/or 1234 

ENVISAT-MERIS data, but with a coarse spatial resolution of 250 m to 1 km (Arino 1235 

et al., 2007; Herold et al., 2008). Although lacking fine spatial detail, the daily 1236 

temporal resolution of such sensors enables frequent estimation of deforestation, 1237 

detection of disturbances using dense time series data, and enables gaps due to 1238 

cloud cover to be overcome (Mbow et al., 2015). It is important to mention that the 1239 

acquisitions of some satellites such as NOAA-AVHRR, IRS-1C/1D, and MERIS 1240 

ceased operations, however, the Sentinel, MODIS, SPOT-VGT, and Landsat series 1241 

continue to operate, with ongoing continuity of data collection ensured with the 1242 

recent launch of Landsat-9 in September 2021. 1243 

 1244 
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Fig. 2. 2 Interaction mechanisms for dryland forest canopies and source of variability and 1245 

challenges related to each stage of remote sensing monitoring tropical dryland forest 1246 

extents. Adapted from Barbosa et al., 2014. 1247 
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 1249 

2.2.2 Synthetic Aperture Radar (SAR)  1250 

SAR sensors for civilian applications first appeared in 1978 with NASA’s SeaSat but 1251 

have grown in importance as a tool for forest studies. SAR sensors can operate at 1252 

different frequencies and polarisations; these system parameters provide 1253 

information on the roughness and scattering properties of forest canopies and data 1254 

can be captured day and night independent of weather conditions (Durden et al., 1255 

1989). Since SAR can penetrate cloud, rain, smoke, and haze, and it is a valuable 1256 

source of data when atmospheric conditions hamper optical data capture, 1257 

particularly in the tropical dryland forest such as Southern Africa where the cloud 1258 

and smoke from forest fires are prominent features (Le Canut et al., 1996). Radar 1259 

signals are sensitive to moisture, variations, surface roughness, and vegetation 1260 

structure properties, whereas data from optical systems use characteristics related 1261 

to reflected solar illumination or surface temperature (for thermal infrared 1262 

sensors) as a basis for discrimination of the land cover (Kasischke et al., 1997; 1263 

Mitchard et al., 2009). Cloud cover-free SAR images have great potential in the 1264 

dryland tropical areas but have been used less often for forest monitoring 1265 

applications compared to optical imagery, partly because of the scarcity of data 1266 

(Castro et al., 2003). Since the launch of the Sentinel-1A and B, dense SAR time-1267 

series data are now available over tropical forest areas freely and openly, with 1268 

systematic acquisitions at a 10 m spatial resolution and a 6 - 12 day revisit time 1269 

(dependent on the location) in all weather conditions. 1270 

Over the last 30 years, several satellite-borne SAR has been launched, including the 1271 

United State Spaceborne Imaging Radar-Synthetic Aperture Radar (SIR-C/X-SAR), 1272 

European Remote Sensing (ERS-1/-2), Advanced Synthetic Aperture Radar (ASAR), 1273 

Japanese Earth Resources Satellite (JERS-1), Advanced Land Observation Satellite 1274 

(ALOS/PALSAR-1/-2), German TerraSAR-X, and the Canadian RADARSAT-1/-2 1275 

(Shimada, 2018). Depending on the sensor configuration, a single channel 1276 

(wavelength/frequency) or multiple channels may be recorded in either single or 1277 

multiple polarisations. Generally, studies have reported that the longer the 1278 

wavelength (e.g. P (30–100 cm) and L (15–30 cm)), the further is its penetration 1279 
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into the forest and the greater the importance of scattering beyond the upper 1280 

canopy (Huang et al., 2015). Besides the greater sensitivity of longer radar 1281 

wavelengths to forest structure, different studies indicate that cross-polarised 1282 

backscatter (HV-horizontally transmitted, and vertically received, VH-vertically 1283 

transmitted and horizontally received) often exhibits greater sensitivity to forest 1284 

biomass than like-polarised backscatter (co-polarised bands: HH-horizontally 1285 

transmitted and horizontally received, VV-vertically transmitted and vertically 1286 

received) (Kasischke et al., 1997). 1287 

2.2.3 Limitations of optical and radar, and benefits of 1288 

combining sensors  1289 

Despite the different generations and types of satellite sensors, no one sensor 1290 

currently meets fully the requirements of a comprehensive forest resource 1291 

assessment EO system. The selection of an appropriate source of data requires first 1292 

the identification of the ecological question being asked, identification of the 1293 

limitations and advantages of each sensor. The varying temporal, spatial, spectral, 1294 

and radiometric resolutions unique to the individual sensor system, result in 1295 

different advantages and disadvantages to the monitoring of dryland ecosystems 1296 

(Lu, 2006). Optical data are limited in the monitoring of this forest type. For 1297 

example (1) cloud and smoke severely limit the use of optical products (Le Canut 1298 

et al., 1996); (2) Dramatic seasonal changes in the dryland forests conditions 1299 

including droughts and leaf shedding make it unsuitable for systematic all-season 1300 

monitoring of this forest type (Boggs, 2010). One of the reasons for this is 1301 

associated with the seasonality of the tropical vegetation: during the wet season, 1302 

cloud-free satellite imagery is difficult to acquire, while during the dry season 1303 

when the imagery is more available, the leaf-off configuration of the forest causes 1304 

misclassification with savanna shrubland or grassland; (3 Optical data is sensitive 1305 

at the early stages of growth but as forest canopies close, reflected radiation is no 1306 

longer sensitive to biomass as the reflectance signal saturates at higher biomass 1307 

values (Lu, 2006); (4) Passive optical sensors only detect the surface top layer, 1308 

meaning that forest canopy obscures the understory, and similarly grasses/crops 1309 

obscure soil; (5) Changes in the spectral properties of the soil and atmosphere can 1310 
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also hinder the inference of forest cover properties (Santos et al., 2002; Wang et al., 1311 

1998). 1312 

Similarly, there are a number of challenges to analysing and interpreting radar 1313 

images for tropical forest applications, which include: (1) Difficulty in interpreting 1314 

radar backscatter, including, for example, speckle, which is unwanted random 1315 

noise inherent in all SAR images, which may increase measurement uncertainty 1316 

and make interpretation difficult (Klogo et al., 2013); (2) Topography is a major 1317 

limitation in mountainous regions due to geometric and radiometric effects such as 1318 

radar shadowing caused by foreshortening and layover when the satellite is not 1319 

able to illuminate the whole ground surface (Mitchard et al., 2009); (3) SAR 1320 

observations often lack a long-term and dense time series because they demand a 1321 

relatively high energy provision on satellite platforms. Until recently, satellite-1322 

based SAR data for multi-temporal assessments over large areas were constrained 1323 

by coarse spatial and temporal coverage at medium resolution, although this now 1324 

may be overcome with acquisitions from the recently launched C-band Sentinel-1 1325 

and L-band ALOS-2 satellite missions (Reiche et al., 2016). 1326 

Rather than using EO data from a single satellite sensor, the synergy of remotely 1327 

sensed data from multiple sensors, particularly SAR systems with those acquired 1328 

by optical sensors, has been shown to be beneficial for forest resource assessment 1329 

(Lehmann et al., 2015). Because optical data is capable of measuring the 1330 

reflectance of the topmost layer of the forest canopy and SAR data deliver useful 1331 

within-canopy biophysical parameters without being affected by cloud cover and 1332 

weather conditions, one dataset may compensate for the shortcomings of the other 1333 

(Reiche et al., 2016). Previous research indicated that integration of optical and 1334 

radar can improve land and forest cover characterisation (Symeonakis et al., 1335 

2018). For example, the fusion of optical and radar sensor data has the potential to 1336 

improve AGB estimation because it may compensate for the mixed pixels in a 1337 

tropical forest area. In addition to the spectral synergy afforded, the cloud 1338 

penetrating capability of microwave radar sensors allows areas that have missing 1339 

optical data to be included in analyses, particularly if multi-temporal methods are 1340 

being employed (Reiche et al., 2016). 1341 
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2.3 Methodology 1342 

This review focused on scientific papers studying tropical dryland forests 1343 

and made use of remote sensing data to monitor and estimate changes in dryland 1344 

forests. Airborne remote sensing studies were excluded from this review process, 1345 

since the review’s major focus lies on satellite Earth observation of dryland forests 1346 

and because the acquisition of airborne sensors have low area coverage and high 1347 

cost per unit area of ground coverage (e.g., the airborne hyperspectral images), 1348 

making them spatially and temporally limited in most African countries. The 1349 

systematic search approach taken to querying the literature was carried out by 1350 

making use of selective keyword searches in the form of structured queries using 1351 

field tags and Boolean operators through the Web of Science 1352 

(http://apps.webofknowledge.com) and Scopus (http://www.scopus.com) 1353 

databases. At each query, terms and keywords such as ‘Dryland forests’, ‘Savan*’, 1354 

‘Woodland’, ‘Tree’, ‘Vegetation’, ‘Satellite’, ‘Remote Sensing’, ‘Optical’, ‘Radar’, 1355 

‘Image’, ‘SAR’, and ‘Earth Observation’ were used to produce an extensive list of 1356 

articles, where * is a wildcard search. The results were further refined with 1357 

keywords such as ‘Forest change’, ‘Degradation’, ‘Deforestation’, ‘Trend’, 1358 

‘Biodiversity’, ‘Phenology’, ‘Biomass’, ‘Structural parameter’, and also keywords 1359 

representing the countries in Southern Africa, such as ‘Botswana’, ‘Namibia’, 1360 

‘Mozambique’, ‘South Africa’, to provide a comparison in terms of the numbers of 1361 

studies undertaken across the region. Within the context of this review, all 1362 

research articles were categorised into eight categories, including: ‘Land-use/land-1363 

cover’, ‘Forest cover/types’, ‘Biomass’, ‘Forest structure’, ‘Biodiversity/habitats’, 1364 

‘Phenology’, ‘Plant traits’, and ‘Disturbances’. Articles with a publication date 1365 

between 1997 and 2020 were considered, capturing a period of two decades 1366 

within the review, based on a broad set of inclusion criteria: 1367 

1. The paper should address dryland forests and remote sensing as either 1368 

main or secondary subjects. 1369 

2. The selection terms and keywords should exist as a whole in at least one of 1370 

the fields: title, keywords, and abstract. 1371 

3. The paper should be published in a peer-reviewed scientific journal. 1372 

http://apps.webofknowledge.com/
http://www.scopus.com/
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4. The paper should be written in the English language. 1373 

During the data extraction process and literature search, the research aimed to 1374 

find studies meeting the criteria for peer-reviewed publications, available through 1375 

the chosen indexed bibliographic databases. For this reason, the literature search 1376 

did not include general non-scientific reports, books, grey literature, thesis 1377 

documents or dissertations, extended abstracts, or presentations. The initial steps 1378 

of the search process returned 1,478 published articles. Additional publications 1379 

were added to the total set of studies by identifying relevant literature found in the 1380 

reference lists of these selected papers that conform to the inclusion criteria. The 1381 

review methodology was guided by the Guidelines for Systematic Review and 1382 

Evidence Synthesis in Environmental Management (Collaboration for 1383 

Environmental Evidence, 2013). A systematic review and meta-analysis were 1384 

undertaken and framed based on the PICO (population, intervention, comparison, 1385 

outcomes) model (McKenzie et al., 2019) and reported using PRISMA (Preferred 1386 

Reporting Items for Systematic reviews and Meta-Analyses) flow diagram (Moher 1387 

et al., 2009). The 1,478 articles were reduced to 870 articles as only the studies 1388 

that had a full text available in English, papers published in peer-reviewed journals 1389 

were selected for inclusion in the review, and all repetitions across databases were 1390 

removed. Initially, the titles and abstracts were screened to assess eligibility, by 1391 

searching for predefined keywords and terms of the abstract or summary, 1392 

identifying terms ‘dry or dryland forests and the country or countries where the 1393 

research took place. In this way, studies not conducted in Southern Africa or 1394 

dryland forests were filtered out, which reduced papers from 870 to 599 papers. 1395 

The screening was followed by a full-text assessment that reduced the papers to 1396 

270 by excluding studies that, for example, mentioned the term ‘dryland forest’ 1397 

once in the abstract but did not investigate dryland forests, as outlined in the 1398 

PRISMA flow diagram in Fig. 3.3. The search was subsequently refined by assigning 1399 

the papers to each of the study aims they addressed and to each category for the 1400 

variables identified in the search protocol, reviewing the methodologies of each 1401 

publication, excluding them from further analysis if they did not meet the inclusion 1402 

criteria on review. These steps reduced the total number of entries to 137 1403 

scientific publications. The selected literature was reviewed systematically, 1404 

searching for specific information regarding the publication temporal 1405 
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development, study location, remote sensing sensor/platform used, spatial and 1406 

temporal coverage, remote sensing product (e.g., biophysical indices) used, and 1407 

application areas of the study (e.g., land cover, forest biomass). The parameters 1408 

used to extract relevant information from the remaining 137 identified scientific 1409 

publications are in Table 2.1. Fig. 3.3 is a PRISMA schematic representation of the 1410 

methodology used and the derivation of the final number of articles selected. 1411 

 1412 

Fig. 2. 3 PRISMA follow diagram (Moher et al., 2009) showing the flow of information 1413 

through the different phases of the systematic review 1414 

1415 
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 1416 

Table 2. 1 Parameters used to extract relevant information for this review 1417 

General information 

Paper Id 

1st author’s institution 

Research institute city 

Publication year 

Publishing Journal 

Journal category 

No of Citation  

Study type 

Site specific information 

Location of the study area 

Study country 

Forest management area 

Predominant forest type 

Information on remote sensing data 

Sensor Type 

Instrument name 

Image resolution 

Time period observed 

Temporal resolution of EO data 

Database used 

Information on research 

Research topic considered: 

Forest cover/type, disturbance, phenology, biodiversity/habitats, plant traits, land cover/land 

use 

Parameters examined in the study 

Examined object scale 

Applied methodology 

Information on validation and accuracy of results 

Database used 
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2.4 Results 1418 

2.4.1 Temporal development of publications and author 1419 

affiliations  1420 

From the literature search, the cumulative number of published research papers 1421 

integrating remote sensing data in dryland forests of Southern Africa grew 1422 

exponentially from 2 in 1997 to 155 in 2020. The temporal development of the 137 1423 

investigated research articles is illustrated in Fig. 2.4. The graphic shows that the 1424 

number of studies has increased significantly over the last 23 years, with the 1425 

majority of the studies published from 2013. More than 105 (80%) of articles were 1426 

published from 2009 to 2020 and only 4 (3%) of articles were published before 1427 

2000. The growth in number is also related to the increased availability of remote 1428 

sensing platforms, sensors, data, for example, Landsat 8 in 2013 and Sentinel 1429 

satellite in 2014, respectively. 1430 

 1431 

Fig. 2. 4. Number of papers included in the review integrating remote sensing and dryland 1432 

forests in Southern Africa published annually between 1997 and 2020. 1433 

 1434 
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In the review, only studies within Southern Africa were considered; however, the 1435 

majority of first authors, 83 (61%) of 137 investigated papers, are mainly 1436 

scientists from international research institutions outside of the focus region, 1437 

mainly the USA, UK, Portugal, Germany, and The Netherlands (Fig. 2.5). Conversely, 1438 

the majority of first author institutions from Africa, 37 (27%) of published papers, 1439 

were from RSA research institutions. The state funded research institutions in 1440 

Southern Africa shown in Fig. 2.5 include South African Council for Scientific and 1441 

Industrial Research (CSIR), South African National Space Agency (SANSA), Water 1442 

Resource Commission of South Africa, South Africa Agricultural Research Council, 1443 

Range and Forage Institute, Botswanan Harry Oppenheimer Okavango Research 1444 

Centre, Desert Research Foundation of Namibia, and Namibia Ministry of 1445 

Environment and Tourism. Considering the 137 studies conducted, about 120 1446 

(90%) of the first authors are affiliated with either International and RSA 1447 

institutions, but no first authors were from Zambia, Lesotho, or Angola. 1448 
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 1449 

Fig. 2. 5. Number of papers by research institutions. 1450 

 1451 

2.4.2  Spatial coverage, spatial extent, and investigated 1452 

protected areas 1453 

Looking at the spatial scale of the study areas, the research distinguished between 1454 

studies done at a local community level in a single country, termed local scale, and 1455 

studies done at more than one local community or province termed regional scale. 1456 

Also studies done at the national level and the whole of Southern Africa were 1457 

considered. If a study covered more than three countries, it was counted as an 1458 

analysis of Southern Africa. The spatial extent of the studies in the review is shown 1459 

in Fig. 2.6. The majority 88 (64%) of the investigated studies focused on a local 1460 

scale, despite the need for regional scale information on dryland forest 1461 

distribution. From Fig. 2.6, out of 137 investigated research papers, 20 (15%) and 1462 



Chapter 2 
 
 

Page | 80  
 

13 (9%) research papers covered regional and national scales, respectively. Only 1463 

10 (7%) out of 137 research papers dealt with transboundary protected areas, 1464 

while 6 (4%) of research papers were covering Southern African, considering the 1465 

region as a whole, using mainly multispectral data of large spatial resolution of 1466 

1km to 8km (MODIS, SPOT, and AVHRR) to generate information on phenology, 1467 

and vegetation condition (fire or drought), as shown in Fig. 2.8. 1468 

 1469 

Fig. 2. 6. Spatial extent of investigated studies. 1470 

 1471 

From Fig. 2.7, it is evident that considerable gaps in geographical focus of research 1472 

on tropical dryland forests mapping still exist in Southern Africa. With respect to 1473 

spatial coverage of the research, most studies, 50 (36%) of research papers were 1474 

carried out in RSA, followed by Namibia and Botswana, with 22 (16%) and 18 1475 

(13%) of research papers, respectively. Swaziland, Angola, and Lesotho were the 1476 

least frequently investigated, each with < 10 papers. Angolan dryland forests are 1477 

even less well studied with 4 (6%) of research papers, despite being found 1478 
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extensively in that country. Fig. 2.7 also shows the location of the most frequently 1479 

studied protected areas. By far, the most studied was the Kruger National Park 1480 

(NP) in RSA, involving research by local and foreign researchers from as far afield 1481 

as the USA, the UK, and beyond. With this interest in the Kruger NP, there is, 1482 

unfortunately, a lack of attention on other conservation areas and parks in 1483 

Southern Africa. Kruger NP was the only subject of more than one-third, 23 (37%) 1484 

of the 61 of all reviewed papers on protected areas. The second most frequently 1485 

studied protected areas are the Etosha NP in Namibia with 6 (8%) of papers, 1486 

Chobe NP with 4 (7%) of papers, and Kwando, Kavango and Zambezi 1487 

transboundary NP with 8 (13%) of papers). Malipati Safari Area, South Luangwa 1488 

NP, Gorongosa NP, and Central Kalahari Game Reserve were each studied 3 (5%) 1489 

and 2 (3%) times. 1490 



Chapter 2 
 
 

Page | 82  
 

 1491 

Fig. 2. 7. Number of studies per country and National Park in Southern Africa. (Note: The 1492 

data are not scaled to the proportion of dryland forest area of countries, and National 1493 

Parks with fewer or no publications are not shown. Source: FAO, (1999). Reproduced with 1494 

permission). 1495 

To identify land surface changes and the drivers behind these, as well as short- and 1496 

long-term trends, it is essential that EO temporal coverage has sufficiently frequent 1497 

revisit periods and resolutions. Nonetheless, this is not an easy task since the 1498 

availability of remote sensing data for long-term monitoring is constrained by 1499 

sensor characteristics (e.g., revisit time) and environmental factors (e.g., cloud 1500 

cover). Looking at the temporal resolution of the EO datasets used, the research 1501 

distinguished between data acquired at a single point in time on a monthly basis, 1502 

termed mono-temporal analyses, and on a single annual basis, termed mono-1503 

annual analyses. In addition, multi-temporal and multi-annual to separate monthly 1504 
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and yearly analyses studies were considered. From Fig. 2.8 it is seen that the 1505 

majority of published material has focused on a single temporal period. The 1506 

majority of studies involved mapping over two or more years (multi-1507 

temporal/multi-annual) comparing images at two or more different times, with a 1508 

bi-temporal approach based on discrete classification (e.g., Chiteculo et al., 2018; 1509 

Coetzer-Hanack et al., 2016; Matavire et al., 2015). Although the bi-temporal 1510 

approach is mathematically simple and does not require large data storage, it is 1511 

less useful compared to the time series approach that can provide a more 1512 

comprehensive understanding of the complexity of the Earth’s land surface 1513 

dynamics. Very few studies feature time series analysis, which is required to 1514 

perform continuous long-term monitoring of changes in a tropical forest 1515 

ecosystem. The majority of articles on time series analysed multi-annual data, 1516 

which masks within-year variations, as compared to the detail provided at a 1517 

monthly temporal scale (e.g., Akinyemi et al., 2019; Venter et al., 2020; Verlinden et 1518 

al., 2006a; Wessels et al., 2006). Only 22 (16%) out of the 137 studies analysed 1519 

more than 15 years and only 11 (8%) studies covered more than 20 years using 1520 

monthly time series (e.g., Bunting et al., 2018; Schultz et al., 2018). 1521 

 1522 

 1523 

 1524 

 1525 
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 1526 

Fig. 2. 8. Temporal duration of studies included in the review integrating remote sensing 1527 

and dryland forests in Southern Africa between 1997 and 2020. 1528 

 1529 

2.4.3 Research topics 1530 

The study classified the large number of research topics into eight broad 1531 

categories that cover the diversity of research into dryland forests. The eight 1532 

categories, and the number of studies belonging to each of them, are shown in Fig. 1533 

2.9. 1534 
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 1535 

Fig. 2. 9. Research topic categories of reviewed articles between 1997 and 2020. Note that 1536 

some studies cover different topics, which may result in multiple entries. 1537 

 1538 

2.4.3.1 Land cover/land use 1539 

Land-cover change is one of the most researched areas using EO in Southern 1540 

Africa, with 36 (23%) publications making it the second most common topic. Land-1541 

use/cover describing land surface classification, typically represented in thematic 1542 

maps of different dryland vegetation were considered. Land-use/cover changes 1543 

with a specific focus on other dryland vegetation such as rangelands, grassland, 1544 

coastal vegetation, or plantation forests without covering dryland forests were 1545 

excluded. The majority of publications on land-use/land-cover used optical data. 1546 

For example, Landsat data have been used by more than 90% of publications, 1547 

except Daskin et al. (2016) and Hüttich et al. (2011) which used RapidEye and 1548 

MODIS data. Only one publication used a combination of Radar and optical data 1549 

(Symeonakis et al., 2018). Sentinel data have not been utilised for land cover and 1550 

land use study in the reviewed papers, probably due to the relatively recent 1551 

availability of these data. Looking at scale, the majority of papers on land-cover 1552 

change focused on the local scale in Southern Africa, but there is still a general lack 1553 
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of synthesis of land-use /cover change assessment at the regional, national or 1554 

subcontinental scale (Fig. 2.6). 1555 

2.4.3.2 Forest cover/type 1556 

The majority of publications, 46 (31%) of studies cover the topic “Forest 1557 

cover/type”. The forest cover/type comprises the generation of a forest/non-forest 1558 

mask (Dlamini, 2017; Heckel et al., 2020), forest cover change estimation (Erkkilä 1559 

et al., 1999; Ringrose et al., 2002), forest type discrimination between dryland 1560 

forests (McCarthy et al., 2005), forest health assessment (Herrero et al., 2020), 1561 

woody cover (Boggs, 2010; Ibrahim et al., 2018), and tree species classification 1562 

(Adelabu et al., 2013; Hüttich et al., 2009). The majority of forest type/cover 1563 

mapping was undertaken with optical multi-spectral data including Landsat, 1564 

MODIS, and AVHRR and a few studies used high-resolution data such as RapidEye, 1565 

GeoEye, and WorldView. On the other hand, a few studies on forest cover/type 1566 

mapping used a combination of multispectral and spaceborne SAR data (X-band, C-1567 

band, and L-band) such as Landsat and JERS-1 (Bucini et al., 2009), Landsat and 1568 

ALOS PALSAR (Higginbottom et al., 2018; Naidoo et al., 2016) and Sentinel-1 and -1569 

2 (Heckel et al., 2020) (Fig. 2.10).  1570 

A few studies on forest cover/type mapping relied on field data (Bucini et al., 2009; 1571 

Ibrahim et al., 2018; Schultz et al., 2018) or forest inventory plots (Heckel et al., 1572 

2020). Most studies did not include detailed field measurements (species 1573 

composition, density, frequency, dominance, and basal area, percentage soil cover, 1574 

total height) and had very few field samples (Gessner et al., 2013). Other studies 1575 

relied on fine resolution EO data (Dlamini, 2017; Higginbottom et al., 2018), and 1576 

published maps (Westinga et al., 2020) as reference data to validate their results. 1577 

The majority of studies did not perform any form of accuracy assessment or 1578 

validation of quantitative estimates (e.g., Campo-Bescós et al., 2013; Harris et al., 1579 

2014). Forest cover and species mapping is essential for many forestry-related 1580 

tasks and play a key role in sustainable forest management; the importance of 1581 

these topics can be seen in the fact that they are addressed across all countries in 1582 

Southern Africa, with the majority of studies conducted in RSA, followed by 1583 

Namibia and Botswana (Fig. 2.11).  1584 
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 1585 

Fig. 2. 10. Number of studies based upon platform and sensor type. Note that studies 1586 

investigating forest change with multiple platforms were counted multiple times. 1587 

 1588 

2.4.3.3 Forest biomass and structures 1589 

Fifteen research papers (10%) studied forest biomass, and fourteen publications 1590 

(10%) assessed “forest structure”. Studies on biomass included the estimation of 1591 

AGB (Dube et al., 2018; Mutanga et al., 2006), and changes in carbon stock (Gara et 1592 

al., 2017). Some of the publications used National Forest Inventory (NFI) data 1593 

(Halperin et al., 2016; Verbesselt et al., 2007), and field-based samples (Mareya et 1594 

al., 2018; Tsalyuk et al., 2017) to estimate biomass in Southern Africa. 1595 

Forest structure in the review includes research on stand structure (Mathieu et al., 1596 

2013), canopy cover (Erkkilä et al., 1999; Huemmrich et al., 2005), canopy gaps 1597 

(Cho et al., 2015), and stand density (Adjorlolo et al., 2013). The majority of studies 1598 
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on “forest structure” in Southern Africa dealt with canopy cover (e.g., Adjorlolo et 1599 

al., 2014; Yang et al., 2000). Very few studies considered vertical forest structure 1600 

including tree height and tree crown diameter (e.g., Verlinden et al., 2006b). 1601 

Mareya et al. (2018) utilised freely available fine resolution Google satellite 1602 

imagery in combination with object-based image analysis (OBIA) to estimate tree 1603 

crown areas in miombo forests and found the overall accuracy to be low and 1604 

unsuitable when high accuracy is required. Some of the “forest structure” 1605 

publications are also assigned to the research topic “biomass”, which discusses the 1606 

relevance of forest structure for biomass (Meyer et al., 2014). Forest structure is 1607 

also a very important parameter when it comes to habitat suitability, species 1608 

diversity, biodiversity estimation, and conversation studies and thus some 1609 

publications cover both topics (e.g., Akinyemi et al., 2019).  1610 

The methods applied in the biomass and forest structure publications are diverse. 1611 

Most studies employed some sort of regression analysis between in-situ field data 1612 

and EO data, with the most popular methods being random forests, support vector 1613 

machines, kriging, linear and generalised linear models (Berger et al., 2019; 1614 

Carreiras et al., 2013; Halperin et al., 2016; Mutanga et al., 2006; Wingate et al., 1615 

2018). Williams et al. (2013) utilised the simple ensemble model to analyse 1616 

biomass dynamics and found that biomass distributions can diagnose disturbance 1617 

processes in miombo woodlands. Most studies utilised the normalised difference 1618 

vegetation index (NDVI) in dryland forest mapping to correlate with biomass 1619 

(Gizachew et al., 2016; Wessels et al., 2006), but very few studies considered other 1620 

vegetation indices such as red-edge (RE)-computed indices (e.g., Dube et al., 2018; 1621 

Gara et al., 2016). For the most part, optical sensors were used to derive forest 1622 

biomass and structures, only four papers utilised radar data, and one paper used a 1623 

combination of radar and optical data to estimate biomass (Wingate et al., 2018). 1624 

More research is needed to explore the improvement of forest AGB and forest 1625 

structure estimation through multi-sensor (optical and radar) data fusion. 1626 

2.4.3.4 Climate change and disturbances 1627 

Here the study refer to dryland forests stress monitoring e.g., damage due to fire, 1628 

climate/weather-related hazards including drought events, floods, extreme 1629 
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temperatures as part of climate change and disturbances. Twenty-one papers 1630 

(13%) investigated disturbances to forest cover. Among the different forms of 1631 

disturbance, fire damage was the most commonly studied (Mayr et al., 2018; 1632 

Pricope et al., 2012; Roy et al., 2019; Silva et al., 2003). In the context of threats of 1633 

climate change, other disturbances included drought (Lawal et al., 2019; 1634 

Marumbwa et al., 2021; Urban et al., 2018) and floods (Pricope et al., 2015). A 1635 

regional studies Lawal et al. (2019) used gridded climate data from the Climate 1636 

Research Unit and GMMS NDVI to characterise the impact of drought to vegetation 1637 

in southern Africa from 1981 to 2005; They found that the responses of vegetation 1638 

varied according to season and biome, and showed that droughts had extensive 1639 

impacts over the central parts of South Africa and Namibia, and the southern 1640 

border of Botswana and the western parts of Zambia. In this review, only studies 1641 

that investigated climate change in terms of temperature/drought in dryland 1642 

forests where satellite data are a primary or secondary source of data were 1643 

considered. Although there are a number of studies on climate change modelling in 1644 

Southern Africa, the results show that there is a striking lack of studies 1645 

investigating climate change into dryland forest change and stress monitoring. 1646 

The sensors used to detect disturbances differs, with most studies using MODIS 1647 

(Alleaume et al., 2005; Archibald et al., 2009; Chongo et al., 2007; Giglio et al., 1648 

2009), two publications used SPOT-VGT (Silva et al., 2003; Verbesselt et al., 2006), 1649 

and one Landsat and Sentinel-2 (Roy et al., 2019). Only two publications utilised 1650 

SAR data. Mathieu et al. (2019) investigated SAR Sentinel-1A C-band images for 1651 

detecting surface fires in the Kruger NP, while Williams et al. (2013) used ALOS 1652 

PALSAR to analyse known disturbance agents in tropical woodlands in 1653 

Mozambique. The research by Urban et al. (2018) used Sentinel-1 SAR time series 1654 

NDVI from Sentinel-2 and Landsat-8 to derive surface moisture for drought 1655 

monitoring in the Kruger NP between 2015 and 2017. A combination/fusion of 1656 

SAR and Optical data for detecting disturbances is not tested by any study. Only 1657 

one study used field data as input data for validation (Alleaume et al., 2005), while 1658 

two studies used forest inventory data (Verbesselt et al., 2006; Verlinden et al., 1659 

2006a). 1660 
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2.4.3.5 Biodiversity, plant traits, and phenology 1661 

 1662 

Fig. 2. 11. Research topic by country. Note that the order of the mentioned topics has 1663 

changed when compared to Fig. 2.9 as some studies were conducted in several countries. 1664 

 1665 

Twelve (8%) of the reviewed publications dealt with research questions in the 1666 

context of forest biodiversity. Almost half of the papers on forest biodiversity 1667 

examined plant species diversity (Adjorlolo et al., 2014; Chapungu et al., 2020; 1668 

Mapfumo et al., 2016). Others looked at animal species and habitat suitability (e.g., 1669 

Cáceres et al. (2015) for birds, Ducheyne et al. (2009) for tsetse flies, impala (Van 1670 

Bommel et al., 2006), and elephants (Marston et al., 2020). Forest biodiversity is 1671 

often related to structural canopy parameters. Most studies, nine (75%) of twelve 1672 

used Landsat to derive parameters such as plant canopy height, species 1673 

occurrence, richness, and diversity. Three (25%) of the studies used MODIS data 1674 

(e.g., Fullman et al. (2014) used MODIS at 250 m pixel resolution and a Moving 1675 

Standard Deviation Index (MSDI) to detect elephant-modified vegetation along the 1676 

Chobe riverfront in Botswana; Akinyemi et al. (2019) utilised 1 km spatial 1677 
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resolution of SPOT - VGT and PROBA-V annual time series of 18 years to 1678 

understand species diversity and richness assessment based on the Vegetation 1679 

Degradation Index in Palapye Botswana.; Adjorlolo et al. (2014) investigated the 1680 

utility of SPOT-5 multispectral data to assess tree equivalents and total leaf mass to 1681 

model grazing and browsing capacity in KwaZul-Natal province in RSA. 1682 

Five papers (3%) dealt with different plant characteristics, known as plant 1683 

functional traits. These include canopy chlorophyll content (Cho et al., 2012), leaf 1684 

nitrogen concentration (Cho et al., 2013), and vegetation water content (Verbesselt 1685 

et al., 2006), and Leaf Area Index (LAI) (Scholes et al., 2004). Plant functional traits 1686 

including vegetation biophysical and biochemical properties (e.g., pigment levels, 1687 

nitrogen content) are often related to patterns of biodiversity. Huemmrich et al. 1688 

(2005) explored monthly MODIS data at 1 km spatial resolution over two years to 1689 

estimate LAI and the fraction of absorbed photosynthetically active radiation 1690 

(FAPAR) and found that ground‐measured LAI values correspond well with MODIS 1691 

LAI, and showed a discrepancy with FAPAR. Cho et al. (2012) utilised variogram 1692 

analysis and the red edge shift from SumbandilaSat and SPOT 5 to estimate canopy 1693 

chlorophyll content in Dukuduku forest in Southern Africa and found that 1694 

SumbandilaSat provides additional information for quantifying stress in vegetation 1695 

as compared to SPOT image data. All studies on plant traits were undertaken at the 1696 

local scale.  1697 

Looking at research categories per country, biodiversity/habitat publications were 1698 

mainly undertaken in Botswana and RSA (Fig. 2.11). All studies in the context of 1699 

forest biodiversity and plant traits covered only mono-temporal and multi-annual 1700 

classifications. Only two studies utilised multi-annual time series (Akinyemi et al., 1701 

2019; Verbesselt et al., 2006), and one study used MODIS multi-temporal time 1702 

series over two years (Huemmrich et al., 2005). All of these studies focused on a 1703 

coarse resolution of 1 km. 1704 

Phenology is also strongly linked to plant traits, but analysis puts more emphasis 1705 

on the seasonal variations including growing season (green-up date) (Archibald et 1706 

al., 2007; Whitecross et al., 2017), end of the season, and length of the season 1707 

(Davis et al., 2017). To date, phenological research in Southern African dryland 1708 

forests is limited, and more than half of the published papers on phenology focused 1709 
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only on examples from RSA. In the few studies that have analysed phenology, most 1710 

studies dealt with estimating leaf flush and early-greening dates (Chidumayo, 1711 

2001; Higgins et al., 2011). For example, Archibald et al. (2007) developed an 1712 

intricate algorithm that used MODIS NDVI products and field-based parameter 1713 

estimates to predict green-up dates for grass and tree components at a site in the 1714 

Kruger NP in RSA. Jolly et al. (2004) compared a water balance model to a 3-year 1715 

NDVI time series and found the deviation between the onset of leaf flush predicted 1716 

by the model and empirical data was between 10 and 40 days. 1717 

2.5 Discussion 1718 

2.5.1 Temporal extent  1719 

In this article, the current research with EO on dryland forests, with a particular 1720 

focus on Southern Africa were synthesised. Although the volume of scientific 1721 

literature has demonstrated a sharp increase, the use of remote sensing is still 1722 

limited, and up until 2013, the number of publications on this topic was relatively 1723 

small. Substantial research on the dryland forests of Southern African is mainly 1724 

based on single-date observations, and comparing classified images at two or more 1725 

different times. Maps that relate successive land cover change between two dates 1726 

typically lack information regarding underlying processes and do not enable 1727 

insights on the nature of the transformations present, such as the rate or 1728 

persistence of change (Lambin et al., 2003). Time series analysis on dryland 1729 

forests, which enables tracking changes is scarce, only 22 (16%) out of 137 studies 1730 

feature time series lengths that exceed 15 years and only 11 (8%) studies that 1731 

cover more than 20 years. Longer time series of remote sensing data afford the 1732 

ability to assess the dynamics of forest structures, biodiversity, degradation, 1733 

disturbance from climatic extremes, and change in phenology, in which a gap still 1734 

exists. 1735 

2.5.2 Spatial scale  1736 

Another finding that stands out from the analyses is that there are very few studies 1737 

at the national and regional levels. Despite new sensor and EO data availability, it 1738 
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is clear that a systematic and consistent regional monitoring of dryland forests is 1739 

not yet fully exploited and is still in its infancy in Southern Africa. In fact, the 1740 

majority of publications 88 (64%) concentrated their research efforts on local 1741 

scale investigations (Fig. 2.6). Desanker et al. (2001) and Geist (2002) also 1742 

emphasised that Southern Africa is limited to local-scale studies, thereby lacking a 1743 

simultaneous analysis of the impacts of these changes at a larger scale. To fully 1744 

assess regional and long-term implications for tropical dryland forest change 1745 

studies, analyses on large(r) scales are needed, ideally with higher spatial 1746 

resolutions and longer temporal duration. 1747 

2.5.3 Accuracy assessment  1748 

Through evaluation of the literature, the review identified that the assessment of 1749 

accuracy for thematic/classified maps and statistical data to be another important 1750 

issue, with only 54 (39%) of the studies appearing to have performed some form of 1751 

accuracy assessment. The results show there is limited information on sources of 1752 

error and uncertainty levels of the estimates provided by most studies. The review 1753 

found that most forest and vegetation-related scientific outputs in Southern Africa 1754 

are not yet strongly linked to field measurements and forest inventory data. 1755 

Among the reviewed studies, very few studies utilised field test sites/ ground-1756 

based independent datasets for accuracy assessment, while other studies 1757 

estimated uncertainties using other procedures e.g., using a sample of finer spatial 1758 

resolution remote sensing data, or did not report the map uncertainty. Some 1759 

studies employed root-mean-square error to assess model accuracy (RMSE) (e.g., 1760 

Adjorlolo and Mutanga, 2013; Higginbottom et al., 2018), while many studies used 1761 

an error matrix to assess map uncertainties, which was employed for instance (e.g., 1762 

Adelabu et al., 2013; Hüttich et al., 2011). However, some studies used sample 1763 

points below the desirable target number of validation points per class (e.g., Cabral 1764 

et al., 2011), while studies briefly mentioned that a confusion matrix was 1765 

calculated but did not report how many sample points were used for validation 1766 

(e.g., Chagumaira et al., 2016). Congalton. (1988) suggests planning to collect a 1767 

minimum of 50 samples for each map class for maps of less than 1 million acres in 1768 

size with less than 12 classes. It has been empirically confirmed that a good 1769 

balance between statistical validity and practicality for larger area maps or more 1770 
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complex maps can be achieved with about 75 to 100 sample sites per class 1771 

(Congalton & Green, 2009). 1772 

Globally, owing to TDFs low commercial importance in comparison to other 1773 

tropical forests such as moist forest, they are often not assessed by field surveys, or 1774 

surveyed regularly by governments (Keenan et al., 2015). Independent validation 1775 

data for dryland forest estimations are rarely available because acquiring 1776 

appropriate field survey data is a time-consuming and expensive task. In Southern 1777 

Africa, these areas are often remote and dangerous to visit in the field, due to the 1778 

hazard posed by wildlife and if present, unexploded landmines, almost 1779 

impracticable to obtain independent validation data for large(r) area studies, 1780 

especially for many protected areas. Despite challenges to obtain ground-based 1781 

observation, effective integration of these data and remote sensing methods will be 1782 

key to accurately mapping and monitoring dryland forest across a range of spatial 1783 

scales and in reporting the accuracy of models. However, the applicability of 1784 

remotely measured geospatial data is reliant on quality and translating remote 1785 

sensing data into accurate and meaningful information is often a challenge prone 1786 

to errors (Congalton et al., 2009; Donoghue, 2002). In this context, it is critical to 1787 

ensure the validity of these data and their suitability for each particular 1788 

application, particularly where coarse spatial maps can be misleading. In addition, 1789 

characterising dryland forest for large areas of Africa cannot entirely rely on global 1790 

and pantropical monitoring studies for dry forest estimation because global forest 1791 

monitoring generally underestimates, and in some instances overestimates, 1792 

dryland biomes (Bastin et al., 2017). 1793 

2.5.4 Research topics and geographical focus  1794 

The classification of studies into eight broad subject categories revealed forest 1795 

cover/types 41 (26%) and land cover/land use 36 (23%) to be the most commonly 1796 

researched topics. Topics receiving less attention included phenology, plant traits, 1797 

and biodiversity/habitats, and disturbances with regards to climate change (Fig. 1798 

2.9). With regards to disturbances, fire damage was the most commonly studied 1799 

but there is a missing body of literature on the climate change impact on the 1800 

composition, biodiversity, and ecological health of dry forest ecosystems in most 1801 
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countries of Southern Africa. The thesis also found an interesting, non-uniform 1802 

spatial distribution of dryland vegetation and forest studies using spaceborne 1803 

remote sensing, particularly when considering disparities among countries and 1804 

across protected areas. The distribution of research categories by country reveals 1805 

that RSA is, by far the most studied nation across all categories in Southern Africa 1806 

(Fig. 2.7). It should be noted that care should be taken here not to assume that the 1807 

number of studies equates to research quality, which remains difficult to articulate 1808 

from a review of this nature. However, the dryland forests of Mozambique, 1809 

Lesotho, Swaziland, and Zambia are noticeably very poorly studied. Studies on the 1810 

dryland forests of Angola are even less frequent, receiving relatively little global 1811 

attention, and the few studies conducted on its forests were mostly conducted by 1812 

researchers from Portuguese Universities (Catarino et al., 2020; Leite et al., 2018). 1813 

The focus of publications tended to be biased towards conservation and national 1814 

parks, particularly as a large proportion of studies were undertaken in the Kruger 1815 

NP, leaving many other private and international protected areas relatively 1816 

understudied. Transboundary conservation areas, such as Kavango-Zambezi 1817 

(KAZA), have received relatively little attention but merit further research in terms 1818 

of the vast dryland forests extent, biodiversity, species abundance and diversity, 1819 

and the potential for this area to form important corridor areas for wildlife 1820 

animals. There is a further concern as a result of such gaps because some of the 1821 

dryland forests, and species to which they are home, notably in countries like 1822 

Angola and Zambia, are listed on the IUCN red list and would almost certainly 1823 

merit Alliance for Zero Extinction (ACE) ranking (Cumming, 2008). Furthermore, 1824 

future efforts to estimate important variables such as forest cover and biomass 1825 

need not be restricted by country boundaries. Future studies, based on medium-1826 

fine resolution EO and validated with field data, will provide information to 1827 

improve the understanding of African dryland vegetation and its management. 1828 

2.5.5 Vegetation indices, optical, SAR, and fusion of optical 1829 

and SAR sensors  1830 

The most commonly used vegetation index was the NDVI, with more than half of 1831 

the studies, 84 (54%) of papers utilising this index, but only 13 (8%) of papers 1832 

used Enhanced Vegetation Index (EVI) and soil-adjusted vegetation index (SAVI). 1833 
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Other vegetation indices such as the Green Normalised Difference Vegetation Index 1834 

(GNDVI) and Sentinel red-edge related indices and passive microwave 1835 

observations such as Vegetation Optical Depth were not utilised in studies 1836 

considered in this review. One major problem commonly encountered in the less 1837 

studied ecosystems, such as dryland forests, is that of generalising or transferring 1838 

knowledge and methods derived from remotely sensed imagery over both space 1839 

and time (Foody et al., 2003). For example, commonly used vegetation indices and 1840 

classification schemes are in general mainly been calibrated on other, better-1841 

studied ecosystems, such as temperate or rain forests, and this has led to poor 1842 

accuracy results when extrapolated, to for example, tropical dryland forests. This 1843 

phenomenon justifies the importance of utilising a range of vegetation indices 1844 

when studying dryland forests using EO data. Imagery from optical sensors is most 1845 

commonly used, out of all sensor types, providing the data used in 90% of papers 1846 

reviewed, followed by SAR data with 6%. The fusion of optical and radar data was 1847 

rarely used, with only 4% of publications exploring this. The most frequently used 1848 

platforms are Landsat, followed by MODIS and AVHRR. Imagery taken by the 1849 

Sentinel-1/2 satellites only makes up a small portion of the remote sensing data on 1850 

dryland forests. For example, Sentinel-2 was only used by 2% of investigated 1851 

studies, but this may reflect the relatively short period (since 2015) when these 1852 

data have been available. 1853 

2.5.6 Remote sensing platforms and cloud-based computing  1854 

Most of the EO data used in the publications reviewed were downloaded, and are 1855 

available at no cost from a number of online portals, including the Oak Ridge 1856 

National Laboratory (ORNL), the United States Geological Survey (USGS) 1857 

Distributed Active Archive System (DAAC) and Earth Explorer (EE) tool. The lack 1858 

of remote sensing research centres in most Southern African research institutions 1859 

may contribute to limit the number of African Scientists engaged in monitoring 1860 

forests resources. For example, most studies in RSA made use of remote sensing 1861 

data through the University of the Witwatersrand, Satellite Application Centre 1862 

(SAC), the South African National Space Agency (SANSA), and the Council of 1863 

Science and Industrial Research (CSIR). The development of remote sensing 1864 

capacity at local universities has inevitably contributed to RSA universities and 1865 
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research institutions conducting the majority of studies in Southern Africa (Fig. 1866 

2.5). To improve EO data access, and the skills to handle and interpret this across 1867 

Southern Africa, there is a need to increase the number of local institutions that 1868 

distribute the remote sensing data, and who have the capacity to access and use 1869 

innovative web-based platforms such as the Google Earth Engine (GEE) and 1870 

Amazon Web Services to overcome some of the logistical and financial constraints 1871 

of this type of research. 1872 

Southern African countries face considerable technical challenges with remote 1873 

sensing, particularly in respect to REDD+-related research on dryland forests 1874 

monitoring. Freely available tools, for example, the cloud-based geospatial analysis 1875 

platform Google Earth Engine (GEE), make it easier to access powerful computing 1876 

resources for processing and analysing pre-processed large-scale datasets 1877 

(Shelestov et al., 2017). However, only nine papers (6%) out of 137 used GEE to 1878 

access or analyse remote sensing data. The “near real-time” remote sensing data 1879 

offered by GEE is of particular interest for monitoring changes and automating the 1880 

analysis of time-series, when detecting and tracking trends in surface reflectance 1881 

properties. With increasing spatio-temporal coverage of satellite data and 1882 

computational platforms that reduce the need for costly local infrastructure (e.g., 1883 

GEE), there is an opportunity to overcome the limitations previously enforced by 1884 

large volumes of data and the scale of analysis, whereby the knowledge of dryland 1885 

forest dynamics can be improved in the upcoming years. 1886 

2.6 Conclusion 1887 

This review summarises research progress towards the use and integration of 1888 

remote sensing data within the context of monitoring dryland forests in Southern 1889 

Africa, using a systematic review methodology that focused on 137 most relevant 1890 

research articles. The study has systematically reviewed the temporal and spatial 1891 

coverage of these studies, their application area, and the remote sensing platforms 1892 

and sensors used. Based on the results, the following conclusions can be drawn. 1893 

There is a broad range of topics covered by research on dryland forests, from 1894 

which land-use/land-cover and forest cover and disturbances from the fire were 1895 

the most frequently studied. However, there is still a relative lack of studies 1896 
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assessing dryland forest structure, phenology, biodiversity/habitats, plant traits, 1897 

and disturbance from climatic extremes, suggesting additional research is 1898 

required. The majority of studies relied on single-date or annual data and bi-1899 

temporal discrete classification; only a very few studies employed time series 1900 

analysis.  1901 

The thesis considers some of the limitations of the research reviewed, which 1902 

indicates a need for more frequent use of field and inventory data, a greater use of 1903 

validation/accuracy assessments, and testing other vegetation indices beyond 1904 

NDVI and EVI such as the Vegetation Optical Depth and Sentinel-2 red-edge related 1905 

indices. In addition, further improvements should focus on for extensive 1906 

combination and fusion of SAR and optical data in order to have a temporally and 1907 

spatially consistent data set necessary for several applications in dryland forests. 1908 

Given the state of decline of woody vegetation condition in Southern Africa, long-1909 

term monitoring of monthly time series of EO data at regional and transboundary 1910 

scale clearly hold potential to capture dryland forests dynamics and to understand 1911 

their current status and future trends. A significant move from EO predictions that 1912 

are extremely site-dependent to large(r) ecoregional level monitoring approach 1913 

that integrates a range of remotely-sensed data of sufficiently fine spatial and 1914 

temporal resolution with field measurements and using machine/deep learning 1915 

models could provide a sound basis for assessing dryland forest-related changes 1916 

and dynamics. Information inferred from these kinds of models would be 1917 

extremely useful for the current knowledge, management and conservation of the 1918 

dryland forests as well as for understanding their responses to disturbance 1919 

(natural or anthropogenic) and climatic change at regional to sub-continental level. 1920 

Finally, there is significant geographical heterogeneity in study coverage; whilst 1921 

there is substantial research on the forests in the Kruger NP and across RSA, the 1922 

same cannot be said for other areas of Southern Africa. The EO interventions not 1923 

only assess deforestation rate, but also support other forest related REDD+ 1924 

activities such as sustainable forest management which reduce forest degradation 1925 

and enhance forest carbon stocks at a range of scales, transcending both provincial 1926 

and national boundaries e.g., Kavango-Zambezi Transfrontier Conservation Area 1927 

(KAZA TFCA). Nevertheless, REDD+-related research on dryland forests in most 1928 

Southern African countries and protected areas has been limited, with clear gaps 1929 
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across Angola, Mozambique, Zambia, and Zimbabwe. Finally, Africa has the 1930 

potential to emulate other continents, such as Latin America, that have made 1931 

notable progress in employing freely available remote sensing data to monitor 1932 

tropical dryland forest area change and biomass on a large scale. 1933 
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Abstract 1997 

Having the ability to make accurate assessments of above ground biomass (AGB) at 1998 

fine spatial resolution is invaluable for the management of dryland forest 1999 

resources in areas at risk from deforestation, forest degradation pressure and 2000 

climate change impacts. This study reports on the use of satellite-based synthetic-2001 

aperture radar (SAR) and multispectral imagery for estimating AGB by correlating 2002 

satellite observations with ground truth data collected on forest stands from 2003 

dryland forests in the Chobe National Park, Botswana. The study undertooks 2004 

nineteen quantitative experiments with Sentinel-1 (S1), Sentinel-2 (S2) and 2005 

Landsat 8 OLI (LC8) and tested simple and multivariate regression including 2006 

parametric (linear) and non-parametric (random forests) algorithms, to explore 2007 

the optimal approaches for AGB estimation. The largest AGB value of 145 Mg/ha 2008 

was found in northern Chobe while a large part of the study area (85%) is 2009 

characterised by low AGB values (< 80 Mg/ha), with an average estimated at 51 2010 

Mg/ha. The results show that the AGB estimated using SAR backscatter values 2011 

from vertical transmit receive (VV) polarisation is more accurate than that based 2012 

on horizontal receive (VH) polarisation, accounting for 58% of the variance 2013 

compared to 32%. Nevertheless, the combination of S1 SAR and S2 multispectral 2014 

image data produced the best fit to the ground observations for dryland forests 2015 

explaining 83% of the variance with an accuracy of 89%. Furthermore, the optimal 2016 

AGB model performance was achieved with a multivariate random forest (MRF) 2017 

regression trees algorithm using S1 (SAR) and S2 (multispectral) image data (R2 = 2018 

0.95; RMSE = 0.25 Mg/ha). From the 11 vegetation indices tested, GNDVI, 2019 

Normalised Difference Red Edge (NDRE1), and NDVI obtained the highest linear 2020 

relationship with AGB (R2 = 0.71 and R2 = 0.56, p < 0.001), however, GNDVI and 2021 

NDRE1 improved the AGB estimation at medium to high-density forests compared 2022 

to NDVI. The GRVI and EVI were the least correlated with AGB (R2 = 0.09 and R2 = 2023 

0.31) at a significance level of p < 0.001, respectively. The thesis shows that NDVI 2024 

saturates in areas with >80 Mg/ha AGB, whereas the inclusion of SAR backscatter 2025 

and optical red edge bands (B5) significantly reduces saturation effects in areas of 2026 

high biomass. GNDVI and red edge (B5) derived vegetation indices have more 2027 

potential for estimating AGB in dryland forests than NDVI. This study results 2028 

demonstrate that dryland AGB can be estimated with a reasonable level of 2029 
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precision from open access Earth observation data using multivariate random 2030 

forest regression. 2031 

Keywords: Dryland forests, Above ground biomass, Random forest, Linear 2032 

regression, Sentinel, SAR, Southern Africa, Chobe, Conservation   2033 

3.1 Introduction 2034 

Dryland forests in Southern Africa are currently experiencing high rates of forest 2035 

loss as a result of overexploitation, wildfire, and herbivory, and are projected to 2036 

experience the impacts of climate change (Miles et al., 2006). Although large 2037 

uncertainties surround the contribution of tropical savanna forests and open 2038 

woodland (hereafter referred to as dryland forests) to the global carbon budget, 2039 

recent studies have shown that dryland above ground biomass (AGB) is a more 2040 

dominant driver of variations in the global carbon cycles when compared with 2041 

moist tropical forests (Ahlström et al., 2015; Poulter et al., 2014). However, 2042 

wildfires and a high density of mega-herbivores in most protected/conservation 2043 

areas (particularly elephants, Loxodonta africana) can have a significant impact on 2044 

tree cover and structural diversity by modifying vegetation structure through 2045 

grazing and physical damage thereby making trees less tolerant to fire (Ben-2046 

Shahar, 1996; Shannon et al., 2011). With these pressures degrading the dryland 2047 

forests, techniques are urgently needed to measure, map, and monitor the forest 2048 

stand parameters reliably and to produce this information at appropriate scales to 2049 

support conservation and management actions. AGB estimates from sub-tropical 2050 

dryland forests have received less attention than many other biomes and so 2051 

estimates of AGB remain highly uncertain, despite the importance of these areas as 2052 

carbon stores and for ecosystem services (Pennington et al., 2018; Olson and 2053 

Dinerstein, 2002). For instance, studies of tropical moist forests are well 2054 

represented in the scientific literature (Salis et al., 2006; Williams et al., 2008), 2055 

primarily because they have the highest carbon (C) uptake of the World’s forests 2056 

(Olson and Dinerstein, 2002). The largest proportion of dryland forests ecosystems 2057 

are found in Africa, accounting for 60 - 80% of the total biome area (three times 2058 

the area covered by African rain forest) (Bodart et al., 2013; Bullock et al., 1995), 2059 

which provides a significant carbon stock for the African continent. 2060 
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 2061 

AGB is recognised as an essential terrestrial climate variable (ECV) by the Global 2062 

Climate Observing System (GCOS) led by the UN Framework Convention on 2063 

Climate Change (UNFCCC) (Bojinski et al., 2014). In addition, having information 2064 

on AGB, and other biophysical structural parameters such as canopy height and 2065 

habitat density in dryland forests can feed into a wide range of activities related to 2066 

carbon accounting and conservation purposes (Wulder et al., 2012). Information 2067 

about the distribution of biomass at local, regional, and global scales can also 2068 

detect land changes due to factors such as deforestation (a reduction in a 2069 

woodland area) and forest degradation (Harris et al., 2012; Saatchi et al., 2011). 2070 

However, at the same time, dryland forests experience an increase in woody 2071 

carbon stock, including widespread regrowth following shifting cultivation, bush 2072 

encroachment, and a reduction in browsing megaherbivores (McNicol et al., 2018). 2073 

Southern Africa, particularly the KAZA region, is experiencing large-scale shifts in 2074 

vegetation cover, biomass degradation, and increased vulnerability to climate 2075 

change which hold significant implications for forest ecosystem function 2076 

(Cumming, 2008; King, 2014; Niang et al., 2014). Yet, the location and rates of the 2077 

AGB and biomass loss and regrowth, and the above ground woody carbon stocks 2078 

are largely unknown (David et al., 2022a). 2079 

Estimates of biomass using conventional techniques based on field measurements 2080 

are the most accurate ways of collecting biomass data. However, extensive 2081 

fieldwork is not feasible due to the inaccessibility, and logistical challenges of such 2082 

field surveys which limit the number of plots that can reasonably be surveyed 2083 

which impact AGB characterisation over large areas (Næsset et al. 2016). Biomass 2084 

measurements based on Earth observation measurements are obtained through 2085 

statistically-based integration of tree-level allometric equations with biophysical 2086 

or structural information derived from satellite data (Boisvenue & White, 2019). 2087 

The shortcoming of utilising satellite imagery for AGB estimation is related to 2088 

selecting suitable models and data availability (Houghton et al., 2009; Lu, 2006). In 2089 

terms of optical sensors, Landsat is one of the most utilised datasets because it 2090 

provides freely accessible imagery, at a high temporal coverage with a medium 2091 

spatial resolution (Dogru et al., 2020). In their study within miombo forests, 2092 

Gizachew et al. (2016) identified a linear relationship between AGB and Landsat 8 2093 
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derived spectral variables, concluding that the approach was suitable for 2094 

monitoring and reporting of biomass baselines in low-biomass, open-canopy 2095 

woodlands for REDD+ projects. The launch of the Sentinel-2 series satellites 2096 

through the EU Copernicus program provides new opportunities to enhance forest 2097 

monitoring in tropical countries on a large scale (ESA, 2020). Compared to 2098 

Landsat, the Sentinel-2 data provides four additional spectral bands strategically 2099 

positioned in the red-edge region that are expected to contribute to improved AGB 2100 

estimation and mapping (Li et al., 2021; Mutanga et al., 2012). Previous studies 2101 

that compared Sentinel 2 to Landsat 8 found Sentinel 2 to have spatial and spectral 2102 

capabilities that improved the estimation of AGB in different vegetations (Sibanda 2103 

et al., 2016; Forkuor et al., 2018). Such optical sensors are however limited in the 2104 

degree to which they can generate structural information because they have 2105 

difficulty penetrating beyond upper canopy layers and optical data can be 2106 

obscured by frequent cloud cover (Hyde et al., 2006). Certain limitations related to 2107 

data saturation also exist, particularly at sites with high woody cover, or those 2108 

areas with complex vegetation structures such as dryland vegetation, as so many 2109 

satellite sensors can be insensitive to large AGB variations (Lu et al., 2012; Powell 2110 

et al., 2010). Optical sensors are also limited in their ability to estimate higher 2111 

biomass levels as they are more sensitive to canopy density/cover rather than 2112 

canopy height (Joshi et al., 2016). Biomass saturation for low and medium spatial 2113 

resolution passive optical sensors such as the Moderate Resolution Imaging 2114 

Spectroradiometer (MODIS) or Landsat is a well-recognised problem (Steininger, 2115 

2000; Zhao et al., 2016). 2116 

Space-borne Synthetic Aperture Radar (SAR) sensors such as Sentinel 1, TerraSAR-2117 

X, ALOS PALSAR can be used to estimate AGB through cloud, as well as provide 2118 

detailed vegetation structural information from backscatter (Berninger et al., 2119 

2019; Lucas et al., 2008). SAR data has the advantage that it includes the ability to 2120 

collect data in all weathers, during both day and night; the sensor has the 2121 

capability to penetrate through cloud and forest canopy; data are sensitive to 2122 

surface roughness, dielectric properties, and moisture content (Balzter, 2001; 2123 

Santos et al., 2002). The radar backscatter and the reflected signal is sensitive to 2124 

polarisation and frequency (HH, VV, HV, and VH), and can be used for volumetric 2125 

analysis rather than just the colour and density of leaves and so has the potential 2126 
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to be more sensitive to AGB in the woodlands of savanna (Balzter, 2001; Mitchard 2127 

et al., 2011). Recent research has shown that SAR data are suitable for classifying 2128 

vegetation types and assessing biomass at regional scales (Omar et al., 2017). Minh 2129 

et al. (2016) used SAR tomography to model tropical forest biomass and height in 2130 

central French Guiana and found a high correlation between the backscatter signal 2131 

and AGB in the high-biomass forest areas. In Africa, Bouvet et al. (2018) created an 2132 

ALOS PALSAR map at 25-m spatial resolution using an L-band PALSAR mosaic 2133 

produced by JAXA and in situ data, to estimate AGB over the whole of Africa. 2134 

Conversely, the saturation problem is also common in radar data at the middle to 2135 

high biomass levels, depending on wavelength and forest type, as documented by 2136 

Balzter (2001) and Lucas et al. (2008). The saturation level has been found to vary 2137 

as a function of the wavelength and polarisation of the incident radiation and 2138 

studies have reported saturation at approximately 30 - 50 Mg/ha, 60–100 Mg ha 2139 

and 100–150 Mg ha for C-, L- and P-band respectively (Lucas et al., 2006; Lucas et 2140 

al., 2015). Water content, forest spatial structure, and surface geometry (terrain 2141 

slope) derive errors and can cause saturation (Balzter, 2001). Studies have 2142 

successfully demonstrated the capabilities of Light Detection And Ranging (LiDAR) 2143 

for measuring vegetation distribution and estimating associated biophysical 2144 

parameters (Popescu, 2007). LiDAR can be used to directly estimate a spatially 2145 

explicit 3D canopy structure as a laser pulse emitted from the LiDAR sensor can 2146 

penetrate the multi-layered tree canopies reaching the ground, which has great 2147 

potential for improving the estimates of vegetation parameters (Pearse et al., 2148 

2019). This leads to more accurate estimations of basal area, tree height and stem 2149 

volumes (Pirotti, 2011), but such approaches remain intensive and unsuited to 2150 

regional or global coverage (Gibbs et al., 2007). For the direct derivation of 2151 

biomass from optical, radar and LiDAR data, no single data type can fulfil all 2152 

requirements with each limited by either weather, saturation, and other bio-2153 

physical conditions (Kellndorfer et al., 2010). Given these limitations, research 2154 

exploring the fusion of different data types is crucial to develop accurate AGB maps 2155 

(Koch, 2010).  2156 

To assess and monitor forest structural parameters, various approaches to reduce 2157 

the impacts of data saturation in optical imagery in AGB estimation have also been 2158 

explored. Vegetation indices and textures generated from optical and airborne 2159 
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LiDAR data are often used as an alternative (Zhao et al., 2016). Many factors 2160 

influence data saturation, ranging from spectral, spatial, and radiometric 2161 

resolutions, vegetation type, or topographic features, which may lead to different 2162 

saturation values of AGB (Lu et al., 2016). For example, Lu et al. (2004) compared 2163 

different vegetation indices in the moist tropical region of the Brazilian Amazon 2164 

and found that vegetation indices including near-infrared (NIR) improved 2165 

correlations with AGB in relatively simple forest stand structures. Gizachew et al. 2166 

(2016) used Landsat 8 derived NDVI to estimate total living biomass (TLB) in the 2167 

miombo woodlands of Liwale district, south-eastern Tanzania. Despite its wide 2168 

application, NDVI has major limitations for modelling the spatial variability of 2169 

biomass including its instability. The NDVI signal is influenced by the underlying 2170 

canopy background, varying with soil colour, canopy structure, leaf optical 2171 

properties, and atmospheric conditions (Tucker, 1979; Pettorelli et al., 2005). 2172 

Madonsela et al. (2018) investigated the interactions between seasonal NDVI and 2173 

woody canopy cover in the savanna of the Kruger National Park (KNP) to model 2174 

tree species diversity using a factorial model and found that the interaction 2175 

between NDVI and woody canopy cover was insignificant. NDVI is known to give 2176 

poor estimates in the growing seasons and in estimates of areas with high-density 2177 

wood cover. These challenges have led to the development of alternative 2178 

formulations which include correction factors or constants introduced to account 2179 

for or to minimise the varying background reflectance, such as the Enhanced 2180 

Vegetation Index (EVI) (Huete et al., 1999). Xue et al. (2017) reviews other closely 2181 

related indices that include the Normalised Burn Ratio (NBR), the Green 2182 

Normalised Difference Vegetation Index (GNDVI), Soil-Adjusted Vegetation Index 2183 

(SAVI), the Transformed Soil Adjusted Vegetation Index (TSAVI) and the Green Red 2184 

Vegetation Index (GRVI) amongst others. Some studies have demonstrated that the 2185 

use of vegetation indices derived from the NIR narrow and red-edge bands 2186 

situated between red and near-infrared at wavelengths 680–780 nm can yield a 2187 

higher accuracy of AGB estimation as compared to conventional NDVI (Cho et al., 2188 

2007; Laurin et al., 2016). Ramoelo et al. (2015) and Li et al. (2021) found a strong 2189 

correlation between biomass and the red edge position for a rangeland and 2190 

grassland ecosystem in South Africa and China, respectively. Comparable research 2191 

in dryland forested regions remains extremely limited (Michelakis et al., 2014; 2192 

Forkuor et al., 2020),  2193 
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thus this study has tested vegetation indices derived from the NIR narrow and red-2194 

edge bands, GNDVI, EVI, NDVI, NBR, NBR2, SAVI, MSAVI in dryland forest of 2195 

Southern Africa. In this study vegetation indices such as NDVI, GNDVI, NBR, and 2196 

NDRE (Table 3.2) were selected because they all use a NIR band but differ in terms 2197 

of the second band, e.g., NDVI utilised the red band, GNDVI the green band, NBR 2198 

the SWIR2 and NDRE the red-edge band. Furthermore, it is important to choose a 2199 

suitable method to estimate forest AGB. The linear and multiple regression (LR and 2200 

MLR) method has been the most commonly utilised statistical algorithm for AGB 2201 

estimation in past research (Propastin, 2012). However, it is documented that the 2202 

linear regression method does not effectively explain the complex nonlinear 2203 

relationship between biomass and Earth observation data and has been known to 2204 

be unreliable at values beyond a saturation point of the canopy reflectance (Lu, 2205 

2006; Puhr and Donoghue, 2000). Also, identifying suitable variables for 2206 

developing a multiple regression model is critical because some variables are 2207 

weakly correlated with AGB or are likely to suffer from multicollinearity (Jong et 2208 

al., 2003). Thus, understanding the performance and contribution of multiple 2209 

sources of data and methods for forest biomass estimation has the potential to 2210 

exploit the strengths of each and can help minimise the limitations of single 2211 

sensors. 2212 

Several assessments have indicated that global forest cover datasets based on 2213 

satellite data have clear limitations for characterising forest structural parameters 2214 

in areas where the tree canopy is open, such as in savannas (McElhinny et al., 2215 

2005). Approaches that integrate forest structural parameters and remote sensing 2216 

need to be replicated and tested across different regions, and geographic scales 2217 

(Lehmann et al., 2015; Mitchard et al., 2013). Furthermore, Foody et al. (2003) and 2218 

Woodcock et al. (2001) have pointed out concerns of generalising or transferring 2219 

methods and results derived from remotely sensed imagery over both space and 2220 

time. Many studies lack field data to build and validate AGB models, particularly in 2221 

tropical dryland forests where national forest inventory data is not available 2222 

(Grainger, 1999; Schimel et al. 2015). To the best of the author’s knowledge, there 2223 

are very few studies that have tested the combination of synthetic-aperture radar 2224 

(SAR) and multispectral data to map AGB in Southern African dryland forests. Such 2225 

structural diversity maps are an invaluable data source for monitoring and 2226 
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managing biodiversity of forests and conservations of wildlife habitats and 2227 

corridors reducing the isolation of wildlife populations. Such maps also contribute 2228 

to the ecological functioning and health of savanna ecosystems. This study aims to 2229 

assess the feasibility of using remote sensing data derived from SAR, multispectral, 2230 

and ground measurements to estimate AGB in an area of typical African dryland 2231 

forests. The study developed parametric and non-parametric models for 2232 

estimating and testing the accuracy of AGB estimation and mapping. The models 2233 

developed by this thesis are compared to different published biomass models in 2234 

the dryland forest environment (Avitabile et al., 2016; Baccini et al., 2017; Bouvet 2235 

et al., 2018. The study presents a novel remote-sensing approach of dataset 2236 

combination and methodology, that can, in principle, be applied to the estimation 2237 

and mapping of AGB in dryland forest sites worldwide. 2238 

3.2 Materials and methods  2239 

3.2.1 Study area 2240 

This study area is situated in Chobe National Park, in the north-east of Botswana 2241 

covering an area of around 10,589 km2 (18.7˝S and 24.5˝E) (see: Fig. 3.1) within 2242 

the Kavango Zambezi Transfrontier Conservation Area (KAZA) of Southern Africa. 2243 

KAZA is the World’s largest conservation area with an enclosed area of 519,912 2244 

km2. KAZA is shared by Angola, Botswana, Namibia, Zambia, and Zimbabwe and 2245 

links together over 36 proclaimed protected areas including national parks, forest 2246 

reserves, and wildlife management areas. Chobe National Park was chosen as the 2247 

field site because it is one of the largest protected areas in Botswana featuring an 2248 

impressive population of large mammals and several endemic plant species, 2249 

including large areas of the dryland forests and globally significant wetlands. 2250 

Within these habitats, there is a broad range of vegetation types ranging from low 2251 

herbaceous to high-density woody cover (McIntyre, 2010). The largest population 2252 

of African elephants (>150,000) is in northern Botswana drawn by the Chobe River 2253 

basin which serves as a source of surface water in the dry season when animals 2254 

converge on this stretch of water (Fullman, 2009). 2255 

Chobe NP is a relatively flat area with an average elevation of 980 m. The climate is 2256 

semiarid with a highly variable mean annual rainfall of about 600 - 700 mm, 2257 
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mainly falling between November and March and a mean annual temperature of 2258 

21.8 °C (Fullman and Child, 2013). There is a general absence of rainfall in the dry 2259 

season (April–October). The nearest permanent water source is the Chobe River 2260 

forming the northern boundary of the park and the political border between 2261 

Botswana and Namibia. A high concentrations of large mammalian herbivores 2262 

including elephant, giraffe (Giraffa camelopardalis (L.)), impala (Aepyceros 2263 

melampus), and buffalo (Syncerus caffer) are found along the Chobe River front 2264 

during the dry season when seasonal pans are dry (Melton, 1985). Vegetation in 2265 

Chobe National Park is dominated by savanna grassland and low-density 2266 

woodland. Within these habitats, there is a broad array of vegetation types from 2267 

low herbaceous to high-density woody cover (McIntyre, 2010). The vegetation 2268 

found on the banks of the river is riparian woodland including Capparis tomentosa, 2269 

Trichilia emetica, Acacia nigrescens, and Croton megalobotrys. Because of the 2270 

intense pressure from elephants, vegetation along the Chobe riverfront has been 2271 

heavily impacted and is now dominated by low shrubs and very few large trees 2272 

(Fullman and Child, 2013). Often, the remains of dead trees suggest they have been 2273 

ring-barked, heavily browsed and toppled by elephants causing mortality. In the 2274 

south of the Chobe River, the most dominant woodland species are Baikiaea 2275 

plurijuga, Burkea africana, Ochna pulchra (Mosugelo et al., 2002).  2276 

The high population of elephants has a wider destructive influence on vegetation, 2277 

especially within the Chobe River basin as they migrate to neighbouring countries 2278 

including Angola, Zambia, and Namibia. According to the United Nations 2279 

Framework Convention on Climate Change (UNFCCC) many of the countries of 2280 

southern Africa, including Botswana, Zambia, and Namibia, has been classified as 2281 

highly vulnerable to climate change and its effects (McGann, 2004). The visible 2282 

forest loss, especially that along the Chobe River frontage, has caused concerns 2283 

among stakeholders regarding dryland forest degradation pressure and 2284 

accompanying loss of biodiversity (see: Fig. 3.2A-F) (Nichols et al., 2017). In 2285 

addition to climate change and wildlife damage, it is estimated that 55% of year-2286 

old saplings across all woodland species are killed by fire in Chobe National Park 2287 

(Fidzani, 2014). The KAZA region has been identified as biodiversity hot spot and 2288 

estimates of dryland forest cover and distribution not only are important tools to 2289 

help conservation and sustainable management of forests but also because of the 2290 
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risk to dryland forest areas from several potential threats: climate change, forest 2291 

fragmentation, fire, conversion to agriculture, and increasing wildlife population 2292 

density (Cumming, 2008). 2293 

 2294 

 2295 

Fig. 3. 1. Location of the study area highlighting the countries (Botswana, Namibia, Angola, 2296 

Zambia and Angola) and Chobe National Park where the field work was conducted. The 2297 

coloured polygons around the sampled points indicate the type of vegetation structural 2298 

formation and a range of land cover types that field sites represent (e.g., green-coloured 2299 

circle: closed forests, purple-coloured square: open forests, orange-coloured square: 2300 

shrubs, red-coloured square: grassland). 2301 

 2302 

3.2.2 Fieldwork and sampling design  2303 

Fieldwork was carried out during March 2019, which is the growing season, when 2304 

the vegetation photosynthetic activity is still high. Sentinel-2 (S2) and Landsat 8 2305 

OLI (LC8) wet season images (February - April) were acquired then classified into 2306 



Chapter 3 
 

Page | 112  
 

four classes (forests, open woodland, shrubs, and grassland) as these classes 2307 

represent the main land cover types in the study area of Chobe NP. The allocation 2308 

of field plots followed a stratified random sampling approach based on the four 2309 

strata (forest, open woodland, scattered trees with low herbaceous cover, and non-2310 

forest) that represent broad vegetation types, and capture change between key 2311 

land cover types well. Measurements were collected from a total of 101 individual 2312 

sample plots throughout the savanna landscape of Chobe National Park. The 2313 

sample plots were widely distributed across Chobe NP (Fig. 3.1) and encompassed 2314 

relatively homogeneous tracts across a range of typical ecosystems (e.g., savanna 2315 

grasslands, shrubs) and structural formations (open woodland to closed forest). 2316 

Data from 61 of the 101 plots surveyed represented forest, and 40 samples 2317 

described represented non-forest land cover types. Examples of the collected 2318 

ground truth of typical forest cover types and recent vegetation degradation 2319 

activities through herbivory, drought, and burning captured during the field 2320 

campaign in 2019 are shown in Fig. 3.2. Within the 61 sample plots, a total of 4337 2321 

individual trees were measured. Table 3.1 presents stand parameters statistics 2322 

based upon this survey for dryland forests. Fig. A. 1 shows the density and 2323 

histogram plots of Aboveground biomass (AGB) and Carbon stock (Mg/ha) of each 2324 

field plot within savanna forest. 2325 

Prior to fieldwork, the size of field sampling plots was defined based on S2 with 10, 2326 

20 m and LC8 multi-temporal data with 30 m pixel resolution, respectively. Hence, 2327 

plot sizes of (20 m × 20 m, 0.04 ha) and (10 m × 10 m, 0.01 ha) were considered 2328 

adequate in this study to ensure correspondence between field-measurement and 2329 

pixel size in the image. This area was large enough to contain almost the complete 2330 

diversity of the known plant community. 0.04 ha plots have been widely applied in 2331 

the National Forest Monitoring Plan in Botswana (Manatsha and Malebang, 2016) 2332 

and in different forests elsewhere (Baker et al., 2004; Carreiras et al., 2013) as it 2333 

normally encompasses a representative sample of trees within a single stand and 2334 

allows detection of changes in vegetation structure.  2335 

The field measurements of stand characteristics included: mean height, diameter 2336 

at breast height (DHB), tree density, canopy closure, and tree species. Sample plots 2337 

were circular and the UTM coordinates at the centre of each plot were recorded in 2338 

the field with a hand-held Garmin GPS 64S. Tree height of each individual tree was 2339 
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measured using an ultrasonic Vertex III hypsometer which requires finding a 2340 

suitable position to observe each tree tip (Božić et al., 2005), while stem diameter 2341 

was measured using a Diameter above Breast Height (DBH) tape. All trees with a 2342 

stem diameter of >3 m and >1.5 m height were recorded. Fractional vegetation 2343 

cover (FVC) of shrubs between 1 and 6 m in height was estimated visually within 2344 

all plots in the field. In the case of multi-stemmed species, such as Burkea Africana, 2345 

Compretum collinum and Baikiaea plurijuga, individual stems are recorded as an 2346 

individual.  2347 

 2348 

Table 3. 1. Summary statistics for field sample data in Chobe National Park.  2349 

Variables AGB  

(Mg/ha) 

Carbon Stock 

(Mg/ha) 

BA 

(m2/ha) 

MDBH 

(cm) 

MH 

(m) 

TD 

(no. trees/ha) 

Minimum 2.07 1.03 0.62 4.73 3.14 103.50 

Maximum 166.98 83.49 35.42 30.07 15.23 4297.20  

Mean 54.99 26.93 11.18 8.78 5.58 1183.40 

S.D. 44.27 22.34 8.80 4.69 1.87 1019.68 

*AGB= above ground biomass, MDBH=mean diameter at breast height, BA=basal area, 2350 

MH= mean height, TD= tree density, S.D. =standard deviation.  2351 
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 2352 

Fig. 3. 2. Examples of collected ground truth captured during a field campaign in Chobe 2353 

National Park in 2019. The photos represent typical forest cover types and recent 2354 

degradation activities resulting from A: drought impacts, B: Trees toppled by elephants 2355 

causing mortality, C and D: Trees destroyed by wildfire, and E and F: elephant and 2356 

herbivory browsing. 2357 

3.2.3  Satellite image data collection 2358 

The imagery included Sentinel-1 Synthetic Aperture RADAR (S1-SAR), Sentinel-2 2359 

Multispectral Instrument (MSI) data, and Landsat 8 - Operational Land Imager 2360 

(OLI) were all accessed via Goggle Earth Engine (GEE) (Table 3.2). The GEE 2361 

platform provides pre-processed top and bottom-of-atmosphere reflectance data¸ 2362 

enabling large volumes to be integrated, processed, and analysed for extensive 2363 

areas over long time periods (Warren et al., 2015). The Sentinel 1 and 2 data were 2364 

acquired as close in time to the fieldwork as shown in Table A 1.   2365 
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3.2.3.1 Sentinel-1 image pre-processing 2366 

S1 is a C-band SAR remote sensing satellite launched into orbit on 03.04.2014. 2367 

There are four imaging modes (Stripmap [SM], Interferometric Wide swath [IW], 2368 

Extra Wide swath [EW], and Wave [WV]), but the level-1 Interferometric Wide 2369 

(IW) Ground Range Detection (GRD) were also used in the study. Radar data were 2370 

analysed using the single co-polarisation with vertical transmit/receive and dual-2371 

band co-polarisation, with vertical transmit and horizontal receive (VV + VH) from 2372 

Sentinel-1A and 1B C-band SAR. Within GEE, S1 images are pre-processed using 2373 

the S1 Toolbox (ESA, 2020) to an analysis-ready format using border and thermal 2374 

noise removal, radiometric calibration, and orthorectification (Google, 2020). 2375 

Radar data is not significantly affected by cloud cover, so a considerable number of 2376 

complete images can be obtained each month. However, radar data can be affected 2377 

by recent rainfall or wind and so an image from a period of good weather 2378 

(14.3.19), close to the field data collection date, was selected for analysis. The date 2379 

closest to the date of field collection (February-March 2019) was selected because 2380 

2019 was an extreme drought year in Southern Africa including Chobe NP, and 2381 

there was minimal recorded rainfall or soil moisture in the area during the time 2382 

period, hence soil moisture will have a minimal influence on the backscatter 2383 

(Chikoore and Jury, 2021; Lucas et al., 2006; Liu and Zhou, 2021). 2384 

3.2.3.2 Sentinel-2 image pre-processing 2385 

S2 MSI data, processed to level-2A were used. These data have been orthorectified 2386 

and radiometrically corrected providing Bottom-Of-Atmosphere (BOA) corrected 2387 

reflectance values (ESA, 2013). S2 images were further pre-processed with an 2388 

automatic cloud masking procedure using QA bands provided for the S2 2A 2389 

product, masking both opaque and cirrus cloud cover. Ten of the thirteen bands 2390 

from S2 (4 visible, 4 red edge, 2 short-wavelength infrared (SWIR)), were 2391 

extracted for pre-processing and analysis. The 20 m bands of S2 (SWIR and red 2392 

edge bands) were resampled to 10 m using the cubic convolution algorithm. S2 2393 

spectral indices, (see: Table 3.2 for all indices and their derivation) were used to 2394 

create the “indices” datasets. Previous studies suggested that numerous spectral 2395 

vegetation indices provided more information than the individual spectral bands 2396 

for retrieval of forest structure (Lu et al., 2012). Eleven spectral vegetation indices 2397 
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from S2 previously shown useful for biomass modelling and estimation were 2398 

computed (Hawryło et al., 2018). 2399 

3.2.3.3 Landsat 8 image pre-processing 2400 

LC8 was launched on 11.03.13 and provides multispectral images at 30 m 2401 

resolution with a 16-day return cycle. The study used LC8 Level 2 Tier 1 ortho-2402 

rectified collections from 15.03.19. These data are derived from L8’s OLI/TIRS 2403 

sensors and have been orthorectified and atmospherically corrected to obtain 2404 

surface reflectance. The LC8 reflectance orthorectified product was used because 2405 

GEE has already converted digital number (DN) values into surface reflectance 2406 

data as a result of standardising across image products to a common radiometric 2407 

scale (Chander et al., 2009). A cloud masking procedure was applied using the 2408 

Function of Mask (FMask) band included with the Landsat data (Zhu and 2409 

Woodcock, 2012). Eight spectral indices from LC8 were computed as “indices” 2410 

datasets. As shown in Table 3.2, a total of 39 initial variables were used for the 2411 

statistical analysis of the forest parameter estimation in this study.  2412 

3.2.3.4 Land Cover Classification 2413 

In order to allocate field plots throughout landscape using a stratified random 2414 

sampling approach, the sentinel 2 images in 2019 were independently classified 2415 

into four main land cover classes in GEE using a RF classifier because of its 2416 

robustness (Belgiu et al., 2016; Breiman, 2001). Based on the prior knowledge of 2417 

the study area, spectral clusters from the classification were assigned to four 2418 

general land cover classes: Forests, open forests, grassland, and shrubs. A total of 2419 

367 ground points were randomly distributed on the study area, and they were 2420 

split equally into 50% of points as reference points for image classification and the 2421 

remaining 50% of points used for accuracy assessment. 2422 

 2423 

Table 3. 2. Description of predictor variables for the AGB estimation.  2424 

Satellite Band Description, wavelength, 
spatial resolution) 

S1 GRD ( 14.03.2019) VV - Vertical transmit-vertical 
channel  

5.6 cm (10 m) 

 VH - Vertical transmit-horizontal 5.6 cm (10 m) 
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channel 
   
 Band 1 – Coastal aerosol 0.443nm - (60 m) 
 Band 2 – Blue 0.490nm -(10 m) 
 Band 3 – Green 0.560nm - (10 m) 
 Band 4 – Red 0.665nm -(10 m) 
S2 SR (14.03.2019) Band 5 – Vegetation red edge 0.705 nm -(20 m) 
 Band 6 – Vegetation red edge 0.740 nm - (20 m) 
 Band 7 – Vegetation red edge 0.783 nm - (20 m) 
 Band 8 – NIR 0.842 nm - (20 m) 
 Band 8A – Narrow NIR 0.865 nm - (20 m) 
 Band 11 – SWIR 1.61 nm - (20 m) 
 Band 12 – SWIR 2.19 nm - (20 m) 
LC8 OLI TOA               
(15.03.2019) 

Band 1 Coastal 
0.43 - 0.45 nm (30 m)  

 Band 2 Blue 0.45 - 0.51 nm (30 m) 
 Band 3 Green 0.53 - 0.59 nm (30 m) 
 Band 4 Red 0.63 - 0.67 nm (30 m) 
 Band 5 NIR 0.85 - 0.88 nm (30 m) 
 Band 6 SWIR 1 1.57 - 1.65 nm (30 m) 
 Band 7 SWIR 2 2.11 - 2.29 nm (30 m) 
Vegetation Indices Normalised vegetation index 

(NDVI) 
(NIR −R/NIR + R) 

 Green red vegetation Index (GRVI) (G-R)/(G + R) 
 Enhanced Vegetation Index (EVI) 2.5NIR−RED(NIR+6RED−7.5

BLUE)+1 
 Green NDVI (GNDVI) (NIR − G)/(NIR + G) 
 Normalised Difference NIR/SWIR2 

NBR) 
NIR−SWIR/NIR+SWIR 

 Normalised Difference 
SWIR1/SWIR2 ( NBR2) 

(SWIR1 – SWIR2) / (SWIR1 
+ SWIR2) 

 Soil-adjusted vegetation index 
(SAVI) 

(NIR −R)/(NIR + R + L)*1.5 

 Modified Soil-adjusted vegetation 
index (MSAVI2) 

(2 * NIR + 1 – sqrt ((2 * NIR 
+ 1)2 – 8 * (NIR – R))) / 2. 

 Normalised Difference Index 45 
(NDI45) 

B5-B4/B5+B4 

 Inverted red-edge chlorophyll 
index ( IRECI) 

RE3 −R/(RE1/RE2) 

 Normalised difference red edge 
index (NDRE1) 

(NIR −RE1)/(NIR + RE1) 

*RE: Red-edge; NIR: Near infra-red; SWIR1: Short-wave infra-red 1; SWIR2: Short-wave 2425 

infra-red 2.  2426 

3.2.4 Methods and modelling 2427 

A full overview of the methodological approach for AGB is shown in Fig. 3.3. For all 2428 

forest parameters, analysis was undertaken using S1 backscatter values (VV and 2429 

VH polarisations) the reflectance values from individual spectral bands (B2-12), 2430 
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and spectral vegetation indices from S2 and LC8 OLI (NDVI, GRVI, EVI, GNDVI, 2431 

NBR, NBR2, SAVI, MSAVI2, NDI45, IRECI, and NDRE1) as shown in Table 3.2. All 2432 

models and their combinations are shown in Table 3.3 and 3.4.   2433 

 2434 

Fig. 3. 3. Overview of methodological approach 2435 
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3.2.4.1 Calculation of AGB at the tree level  2436 

Locally defined allometric equations are not available for most of the species in the 2437 

study area; AGB in kilograms per tree was estimated using the following 2438 

generalised biomass estimation model (Eq. 3.1) developed for tropical dry forests 2439 

(Chave et al., 2005). 2440 

 
))                                                                                                                                          

) 
(Eq.3.1) 

Where AGB is the above ground biomass in kg per tree; H = height (m); 2441 

D = diameter at breast height; ρ = wood density (g cm−3). 2442 

The AGB of each individual tree was first calculated based on wood density, and 2443 

then the total AGB per plot was summed based on the number of trees and the 2444 

proportion between species. The wood density for species was obtained from the 2445 

World Agroforestry Database (worldagroforestry, 2019). The biomass values were 2446 

produced using the allometric equation developed by Chave et al. (2005) using 2447 

Statistical Package R software (version 4.1.1) (R Core Team, 2013). Three tree-2448 

specific variables (tree wood density, DBH, height) were then generated and 2449 

normalised by the area of the plots to estimates AGB in Mg/ha. The allometric 2450 

model accounts for uncertainty and error in the estimation due to both data 2451 

measurement and model uncertainty by averaging out the tree-level uncertainties 2452 

at the stand scale, which is typically less than 10% of the mean as detailed in Chave 2453 

et al., 2014. According to Baker et al. (2004) and Chave et al. (2005) excluding 2454 

wood density and height would result in a poor overall AGB prediction and 2455 

overestimation of the forest AGB. Rahman et al., 2021 showed that the generic 2456 

allometric models overestimated AGB between 22% and 167% compared to the 2457 

species-specific models and AGB was overestimated by up to 20% when using plot 2458 

top height and underestimated by 8% using plot average height data from 2459 

databases rather than individual tree heights in the mangroves (Rahman et al., 2460 

2021).  2461 

The allometric equation used in the study was specifically developed for tropical 2462 

dryland forests and already includes the uncertainty and correction factor. The 2463 
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dryland forest model typically achieves 90% accuracy in AGB stock estimation and 2464 

the standard error in estimating stand biomass was 12.5% if height is available, 2465 

and 19.5% if height is not available for dryland forests (Chave et al., 2005). 2466 

Therefore, this research used species-specific models and individual tree 2467 

measurements including DBH, tree height and wood density as independent 2468 

variables in the allometric equation to reduce uncertainty and improved the 2469 

quality of the AGB prediction. This study didn’t calculate the allometric equation 2470 

uncertainty since the error due to the DBH, height, and wood density 2471 

measurements are already calculated and factored in one error term of the 2472 

allometric equation (Chave et al., 2004). The average and total AGB and carbon 2473 

stocks per land cover class (i.e., closed forest, open forest) were estimated, as well 2474 

as the total AGB and carbon stock in the forests of Chobe NP. The amount of carbon 2475 

in biomass was determined by multiplying by a factor of 0.5 to obtain the amount 2476 

of carbon existing in dry wood biomass, assuming biomass is approximately 50% 2477 

of dry weight (Brown and Lugo, 1982; Chave et al., 2005). Table 3.1 presents plot 2478 

summary statistics (minimum, maximum, mean, and standard deviation) for the 2479 

variables of interest. The density and histogram plots of AGB and carbon stock 2480 

(Mg/ha) of each field plot with woodland trees are presented in the supplementary 2481 

materials as Fig. A3. 2482 

3.2.4.2 Extraction of remote sensing data at field plot location 2483 

Each circular field plot had a radius of 10 and 20 m, and for each plot location, the 2484 

coordinates of each plot centre were established with GPS. Field plot location data 2485 

were then overlaid on the SAR and S2 images to create a vegetation plot region-of-2486 

interest (ROI) map, based upon plot centre GPS position. Although the coordinates 2487 

of each plot centre were collected with a high-quality device with GPS and 2488 

GLONASS sensors, there may be small positional errors, especially when 2489 

differential corrections are unavailable (errors up to 8–10 m are common). To 2490 

compensate for possible positional errors, a 20 m radius buffer was created 2491 

around the plot centre. This buffer was used to collect biomass image spectra. All 2492 

pixels inside each 20 m buffer were extracted, with several metrics computed 2493 

(mean, minimum, maximum, and standard deviation) (see Table 3.1), and these 2494 

data were used to establish relationships with the AGB at plot level. As the original 2495 

Sentinel data mosaic had a 10 m resolution and the buffer around each plot centre 2496 
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was set to 20 m, the extracted values per plot were those located approximately on 2497 

a 4 × 4-pixel window size, thus extracting from a 40 × 40 m area. 2498 

3.2.4.3 Selection of relevant predictors 2499 

The selection of suitable variables is critical for developing biomass estimation 2500 

models, as some variables are weakly correlated with AGB, or the variables can be 2501 

co-dependent. Selected variables should be significantly correlated with AGB, but 2502 

independent (Lu, 2006). In order to obtain valid predictor variables, correlation 2503 

analysis was first used for candidate variable selection. Pearson correlation 2504 

coefficients (p) and scatterplots were used to examine the nature of the AGB 2505 

correlation, then variables were accepted for further analysis based on their 2506 

significance (P < 0.05). In addition to the p-value, the variation inflation factor 2507 

(VIF) generated for each predictor variable was used to minimise multicollinearity 2508 

in the model. The VIF measures the increase in the variance of an estimated 2509 

regression coefficient due to collinearity, indicating how much larger the variance 2510 

is compared to when the independent variables are not linearly related in the 2511 

model (Fox, 2015). A VIF of 1, indicates no collinearity and several studies have 2512 

used a VIF < 10 to avoid serious multicollinearity between the chosen predictor 2513 

variables. Generally, a VIF greater than 10 indicates high collinearity with other 2514 

predictor variables in the model and interpreting the regression estimates 2515 

associated with a high VIF predictor variable can lead to unstable estimates (James 2516 

et al., 2013; O’Brien, 2007). VIF has been used in the field of remote sensing to 2517 

check multicollinearity in a model with independent predictors (Tu et al., 2018; 2518 

Yang et a l., 2012). To test for collinearity between the selected variables, a 2519 

variance inflation factor (VIF) threshold of 10 was applied. 2520 

3.2.4.4 Model development and selection 2521 

Different statistical models were developed including parametric linear regression 2522 

and non-parametric machine learning using random forest regression in the R 2523 

programming platform. The dataset was first subjected to linear regression 2524 

(Simple linear (SL) regression, Multivariate linear (ML) regression, and STEPWISE-2525 

AIC regression) to determine the optimum model (Bozdogan, 1987). Since biomass 2526 

is usually nonlinearly related to remotely sensed variables, to improve the 2527 
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nonlinear estimation of the biomass model, non-parametric random forest (RF) 2528 

models are widely used in satellite-based estimation of the forest AGB (Nandy et 2529 

al., 2017; Wu et al., 2014). RF does not make a priori assumptions regarding the 2530 

probability distribution of variables, and thus offers a significant advantage over 2531 

parametric statistical models which assume a Gaussian distribution. Ensemble 2532 

learning methods like RF (Breiman, 2001) play a significant role in remote sensing 2533 

and forest mapping because of their robustness, processing ability for high-2534 

dimensional features, and ability to handle complex relationships between 2535 

independent variables in biomass estimation modelling (Belgiu et al., 2016; Adam 2536 

et al., 2014). 2537 

A challenge is to select the fewest number of predictors that offer the best 2538 

predictive power and help in the interpretation of the final model. 12 experiments 2539 

were conducted to explore the suitability of different datasets (SAR, optical 2540 

spectral bands, and indices) and their combinations, in estimating AGB. To 2541 

overcome the challenge of selecting the fewest number of predictors that offer the 2542 

best predictive power and to help in the interpretation of the final model, the RF 2543 

was used to rank the predictor variables. This was followed by a backward feature 2544 

elimination method (BFE) as part of the evaluation process for the final model 2545 

selection (Guyon and Elisseeff, 2003). The BFE starts with all the possible 2546 

predictors and progressively drops the least promising variable, in this case, the 2547 

SAR, optical spectral bands, and indices. The model optimisation and comparison 2548 

was based on absolute and relative measures of fit: by calculating the accuracy 2549 

assessment (Acc%) and error statistics for the models including Root Mean 2550 

Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage 2551 

Error (MAPE), coefficient of determination (R2), adjusted R2 (R2adj), and Akaike 2552 

information criterion (AIC) and VIF. The concordance index was adopted to rank 2553 

the effectiveness of the ML and RF models (Gerds et al., 2012). The smallest subset 2554 

of variables with the highest coefficient of determination (R2), accuracy, adjusted 2555 

R2 (R2adj), and lowest RMSE, VIF, and AIC were then selected to predict the AGB. 2556 

Table 3.4 details the 19 multivariate models and the datasets used for estimating 2557 

AGB.  2558 

The RF regression tree algorithm was selected to model forest parameters after 2559 

analyses showed that it performed better than ML regression algorithms. The 2560 
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decision tree‐based models such as random forests, make no assumptions 2561 

regarding the distribution of the input data and can capture non‐linear 2562 

relationships between the response and predictor variables (Breiman, 2001; Liaw 2563 

and Wiener, 2002). It is essential to optimise the model with the best combination 2564 

of parameters. For RF, only two parameters need to be tuned: ntree (with a default 2565 

value of 500 trees) that controls the number of trees to grow (k), and mtry (with a 2566 

default value is 1/3 of the total number of the predictors) that controls the number 2567 

of variables randomly sampled at each split (m). The study dentified the number of 2568 

trees (k = 1000) and mtry (the default was accepted) because it minimised the 2569 

error rate and produced the best results for AGB estimation in this study. 2570 

3.2.4.5 Model Validation  2571 

The field dataset (n = 101) was randomly split 70/30 for training and validation, 2572 

respectively (Ismail et al., 2006). The training dataset was used to optimise the 2573 

random forest regression and train the prediction model, and to assess the 2574 

goodness of fit of each model, the accuracy and the reliability of the prediction 2575 

model were assessed using the 30% validation sample. A regression equation 2576 

developed from the training data set (n = 71) was then used to predict AGB on the 2577 

independent test data set (n = 30). Validation techniques such as leave one out for 2578 

cross-validation and k-fold cross-validation are widely used in previous studies to 2579 

assess the model performance using reference data (Fassnacht et al., 2014). Cross-2580 

validation is very similar to the out-of-bag (OOB) estimate, which is a formal 2581 

approach to quantify the predictive performance of a model, automatically 2582 

accounting for model complexity (Hastie et al., 2009). The sensitivity of the model 2583 

to the selection of the training and validation datasets was evaluated using a 2584 

repeated k-fold cross-validation and bootstrapping where the data are randomly 2585 

divided and spatially independent. The k-fold cross-validation procedure was used 2586 

to test for overfitting by partitioning the data K times (K=5), using the shuffle 2587 

option of three repetitions (S=3) when splitting the samples into 5 folds. In 2588 

addition, to assess the model uncertainty, a 1000 runs of bootstrapping was used. 2589 

The random forest regression performance in estimating AGB was compared with 2590 

the commonly utilised multiple linear regression. The correlation between 2591 

measured and predicted AGB from the independent validation plots was examined. 2592 
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3.3 Results  2593 

3.3.1 Land cover classification 2594 

The results of the land cover classification are presented in Fig. A. 5. Open forests 2595 

were the dominant form of land-cover occupying 43%, followed by grassland with 2596 

25%, forests with 23% and shrubs with a total of 9% of the land total area (see 2597 

Table A 2). The difficulty was experienced in the separation of forests and open 2598 

woodland due to difficulty in interpreting them. As shown in Table A 3, the overall 2599 

classification accuracy was 97% and the Kappa statistic of 60% which denotes a 2600 

good agreement between classes indicating generally low misclassification error, 2601 

with the highest confusion arising between forests and open woodland. The 2602 

validation overall accuracy was 67% which is reasonable for the random 2603 

stratification purpose. A total of 101 ground plots were surveyed in Chobe NP. A 2604 

total of 61 of the 101 plots surveyed represented forest, and 40 samples 2605 

represented non-forest land cover types as shown in Fig. 3.2.  2606 

3.3.2 Simple linear regression (SLR) 2607 

Table 3.3 summarises the strength of the linear relationship between all variables 2608 

derived from S1, S2, and LC8 data. S1 VV polarisation is substantially more 2609 

sensitive to AGB (R2 = 0.58 and RMSE =0.70 Mg/ha) as compared to VH 2610 

polarisation (R2 = 0.32 with RMSE = 0.89 Mg/ha) at 99% confidence level. Among 2611 

the S2 spectral bands, the highest coefficient of determination for AGB was 2612 

obtained using spectral bands blue (B2), green (B3), red edge 1 (B5) (R2=0.73, 2613 

R2=0.73, and R2=65 at p-value 0.001, respectively). The relationships of S1 2614 

polarisations and selected S2 spectral bands (B3 and B5) with AGB are shown in 2615 

Fig. A. 4A-D. S2 spectral indices Green Normalised Difference Vegetation Index 2616 

(GNDVI) and Normalised Difference Red Edge (NDRE1) and Normalised Difference 2617 

Vegetation Index (NDVI) obtained the highest linear relationship with AGB (R2 = 2618 

0.71 and R2 = 0.56) at 99% confidence level, respectively.  2619 

 2620 

Table 3.3. Simple linear relationship of satellite-based predictors with AGB. The 2621 

backscatter polarisation, spectral bands, and indices with a strong linear relationship with 2622 
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AGB are highlighted in bold. The R2 >0.5 is considered to indicate relatively a strong 2623 

relationship between the variable (Silvy et al., 2020). 2624 

Modelling 

Group 

Response Bands/Predictors Intercept Slope R2 RMSE 

error 

Mg/ha 

AIC 

S1 AGB VV 9.35 0.51 0.58*** 0.70 104.06 

  VH 39.04 -0.04 0.32*** 0.89 125.95 

S2  B2 6.69 -72.99 0.73*** 0.56 83.15 

  B3 6.98 -47.73 0.73*** 0.56 83.23 

  B4 6.15 -36.09 0.63*** 0.66 98.48 

  B5 7.37 -31.21 0.65*** 0.64 95.61 

  B6 10.84 -30.22 0.41*** 0.83 119.68 

  B7 8.76 -18.05 0.15* 1.0 136.30 

  B8 7.65 -13.86 0.09* 1.03 139.47 

  B8A 8.12 -14.32 0.09* 1.03 139.50 

  B11 9.97 -24.19 0.57*** 0.71 104.50 

  B12 7.079 -20.75 0.57*** 0.71 104.89 

  NDVI -1.70 8.52 0.56*** 0.72 106.40 

  GRVI 3.48 5.93 0.09* 1.03 139.29 

  EVI -0.73 10.44 0.31*** 0.90 126.56 

  GNDVI -4.09 12.43 0.71*** 0.59 87.38 

  SAVI -1.72 13.53 0.39*** 0.84 121.01 

  MSAVI -0.82 11.82 0.36*** 0.87 123.34 

  NBR 1.52 7.29 0.46*** 0.80 115.79 

  NBR2 -0.05 15.86 0.52*** 0.75 109.86 

  NDI45 0.80 10.04 0.33*** 0.89 125.54 

  IRECI 1.18 5.24 0.35*** 0.87 123.96 

  NDRE1 -0.52 9.67 0.56*** 0.72 105.92 

  NDRE2 0.59 28.63 0.46*** 0.80 115.71 

LC8  B2 10.62 -78.30 0.52*** 0.75 109.72 

  B3 7.77 -49.61 0.54*** 0.73 108.16 

  B4 6.27 -34.78 0.48*** 0.78 113.80 

  B5 7.25 -12.48 0.07. 1.05 140.65 

  B6 8.27 -21.99 0.41*** 0.83 119.50 

  B7 6.29 -22.15 0.43*** 0.81 117.58 

   NDVI -2.59 10.42 0.52*** 0.75 110.38 

   GRVI 2.98 11.42 0.26*** 0.93 130.16 

  EVI -2.40 11.77 0.43*** 0.82 118.29 

   GNDVI -5.89 16.90 0.62*** 0.67 99.53 

   NBR -0.27 13.80 0.44*** 0.81 117.44 

  NBR2 0.24 7.89 0.44*** 0.81 116.71 

   SAVI -3.95 19.95 0.45*** 0.80 116.47 

   MSAVI -2.98 18.43 0.42*** 0.82 118.37 

 Significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  2625 

3.3.3 Multivariate linear (ML) regression models  2626 

Table 3.4 presents the multivariate relationships and validation results of the 19 2627 

experiments conducted with S1 SAR signals, S2, and LC8 spectral bands, and 2628 

indices for AGB. The results show that the relationship strength with AGB, and 2629 



Chapter 3 
 

Page | 126  
 

associated errors, are improved when the polarisation variables are combined. 2630 

Further improvements were attained when predictors are combined, from either a 2631 

single sensor or by integrating both sensors. Taking the linear relationship from S1 2632 

VV and VH polarisation, with R2 of 0.58 and 0.32 respectively, the R2 increased to 2633 

0.61 when combined. On the other hand, a combination of both S1 and S2 bands 2634 

generated a higher R2 of 0.85 and reduced the RMSE to 0.42 Mg/ha with an 2635 

increased estimation accuracy of 90%. A step-wise regression obtained the highest 2636 

R2 of 0.95, a very low RMSE of 0.25 Mg/ha, and the highest accuracy of 94% for S1 2637 

backscatter and S2 spectral variables. 2638 

 2639 

However, although the models with all S2 and LC8 spectral variables and stepwise-2640 

regression models have high R2 values and low errors, they were excluded from 2641 

estimation because of high co-dependence between spectral bands and indices, 2642 

resulting in a high VIF (Table 3.4). A backward stepwise approach is useful to 2643 

reduce the number of parameters within the model in a systematic way. Based on 2644 

R2, MAE, and RMSE, the most suitable predictive model was obtained with S1 SAR 2645 

VV polarisation, the green (B-3) and red edge spectral band (B-5) of S2, explaining 2646 

82% of the variance but with a VIF of less than 10 for AGB (Table 3.4). The 2647 

inclusion of SAR data with optical data strengthens the relationship between 2648 

biomass and remote sensing variables, and consequently improves the model 2649 

performance as shown in Table 3.4. The results of the repeated k-fold cross-2650 

validation shown in Supplementary materials in Fig A 3, show that the model fit is 2651 

not sensitive to the selection of training and validation sampling. The results of the 2652 

bootstrap validation in Fig A. 4 indicate that the model performance was stable 2653 

across bootstrap replicates. The bootstrap distribution, errors, and intercepts 2654 

correspond very closely to the linear model estimates, see Table 3.5 and 3.6 for 2655 

parameter values. If the predicted bootstrapping R2 was found to be significantly 2656 

smaller than the original multiple linear model R2, that would indicate that the 2657 

model was over-fitted which is not the case with the linear model. The lower = .025 2658 

and upper = .975 of the 95-percent confidence interval for the coefficients of the 2659 

multiple linear and the bootstrap regression are shown in Table 3.6. The bootstrap 2660 

approach yields a similar estimation for AGB without relying on assumptions, and 2661 

this helps to confirm the stability of the model coefficients for the multiple linear 2662 

regression used in this study. 2663 
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Table 3.4. Multivariate linear relationship and validation results of 19 2664 

experiments/models conducted for AGB modelling (label a-k represents S1 and S2) and 2665 

(label l-p represents LC8). The best model is highlighted in grey.  2666 

AGB 

Model 

Label 

Variables R2 RMSE 

(Mg/ha)   

MAE MAPE ACC

% 

AIC VIF 

a S1 bands all                          0.61 0.68 0.55 0.21 0.84 102.8 1.46 

b S2 bands all 0.79 0.50 0.41 0.14 0.88 88.48 67.70 

c S2 bands & S1 bands all 0.85 0.42 0.35 0.12 0.90 77.25 77.17 

d S2 indices all  0.85 0.42 0.35 0.12 0.89 83.39 19063.

24 

e Step regression S1 bands, 

S2 bands & indices all 

0.95 0.25 0.19 0.06 0.94

  

47.79 11600.

7 

f Step backward selection 

with selected S1 & S2                         

B3, B5, S1 VH, S1 VV, 

GRVI, GNDVI, NDRE1, 

NDI45 

0.88 0.38 0.31 0.10 0.90 61.92 2927.9

0 

g Step backward selection 

with selected S2 Bands & 

indices B3, B5, GRVI, 

GNDVI, NDRE1, NDI45 

0.82 0.46 0.36 0.13 0.89 74.34 2493.0

0 

h Step Backward Selection 

with selected S1 & S2                            

B3, B5, S1 VV, S1 VH, 

GNDVI, NDRE1 

0.84 0.43 0.37 0.13 0.89 69.13 1143.5

0 

i Step Backward Selection 

with selected S1 Bands & 

S2 indices                                            

GNDVI, NDRE1, S1 VV, 

S1 VH 

0.82 0.45 0.38 0.14 0.88 69.98 9.8 

j Step Backward Selection 

with selected S1 & S2 

Bands                                  

B3, B5, S1 VV, S1 VH 

0.83 0.45 0.37 0.13 0.89 69.15 10.1 

k Selected AGB model                 

B3, B5, S1 VV 

0.82 0.45 0.36 0.13 0.90 67.92 9.9 

l LC8 bands all 0.68 0.62 0.47 0.18 0.87 102.00 75.28 

m LC8 Indices all 0.69 0.60 0.45 0.18 0.87 104.28 9408.0 

N Step regression LC8 

bands and indices  

0.72 0.57 0.42 0.17 0.88 99.23 11926.

0 

o Step backward selection 

with selected LC8 bands 

& indices B3, B4, B7, 

GNDVI, NBR2 

0.68 0.61 0.45 0.18 0.87 98.97 282.24 

p Step backward with 

selected LC8 indices                                

GNDVI, NBR2 

0.67 0.62 0.47 0.19 0.86 94.94 9.1 

 2667 

Table 3. 5. Summary statistics and coefficients of linear and bootstrap regression for AGB 2668 

 Linear Regression Bootstrap 
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R2 0.82 0.80 

RMSE 0.45 0.42 

MSE 0.36 0.32 

Intercept 8.65 8.54 

B3 -52.46 -56.11 

B5 13.15 13.66 

S1-VV 0.26 0.23 

 2669 

Table 3. 6. Confidence intervals (95 %) of linear and bootstrap regression for AGB 2670 

 2.5% 97.5% 2.5% 97.5% 

 Linear Regression Linear Regression Bootstrap Bootstrap 

Intercept 7.58 9.72 7.47 9.65 

B3 -78.68 -26.23 -74.88 -37.35 

B5 -5.12 31.42 0.13 26.83 

S1-VV 0.15 0.38 0.11 0.36 

 2671 

3.3.4 Comparing parametric and non-parametric machine 2672 

learning for estimating stand parameters  2673 

 2674 

Table 3.7 shows the summary statistics for the ML and RF regression models for 2675 

AGB using the three optimum predictor variables (S1 VV polarisation, S2 green 2676 

(B3), and red edge (B5)) hereafter referred to as S1S2), from the final models. It 2677 

can be seen that features derived from the MRF regression model offer the most 2678 

accurate estimates for all forest parameters compared to the ML regression model. 2679 

Graphical illustrations for the performance of the AGB models are presented in Fig. 2680 

3.4 that show the ML and RF fitted regression models for AGB and the associated 2681 

residuals. The plots of observed vs predicted AGB and residuals, indicate that the 2682 

RF residuals were rather stable across medium and high AGB values and had an 2683 
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average around zero compared to ML that under predicted AGB across the same 2684 

data range. It can also be seen that low AGB values are not estimated well by any of 2685 

the regression methods, although RF still had a more accurate estimation than the 2686 

ML regression model. For AGB, the RF regression has the highest R2 of 0.95 and an 2687 

RMSE of 0.25 Mg/ha compared to ML regression model with an R2 of 0.82 and 2688 

RMSE of 0.45 Mg/ha. Based on R2, RMSE, MSE, and concordance between predicted 2689 

and observed value, the MRF regression performed better than the ML and so the 2690 

MRF regression model was used for estimating forest stand parameters. Graphical 2691 

illustrations for the performance of the AGB models are presented in Fig. 3.4.  2692 

Table 3. 7. Summary diagnostics for the AGB models developed by ML and RFR regression 2693 

methods using the S1S2 model. In this study, the best model throughout the study was the 2694 

RF regression model, highlighted in grey.   2695 

Model Type  R2 RMSE  MSE Concordance 

ML Regression AGB 0.82 0.45 0.21 0.88 

RF Regression AGB 0.95 0.25 0.06 0.95 

 2696 

 2697 

Fig. 3. 4. Optimal AGB model. A: Observed and predicted AGB using ML regression. B: ML 2698 

regression standardised residuals. C: Observed and predicted AGB using MRF regression. 2699 

D: MRF regression standardised residuals.  2700 

 2701 
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3.3.5 Spatial distribution of AGB  2702 

Fig. 3.5 maps the spatial distribution of the AGB estimations across the study area using 2703 

the RF regression-based model and S1 SAR and S2 spectral bands (S1S2). The 2704 

distribution of AGB ranges from 4.0 Mg/ha to 145 Mg/ha, which closely corresponds to 2705 

the range of values measured in the field where the highest AGB values were 167 2706 

Mg/ha. The estimated AGB map revealed that the highest AGB values range from 80 to 2707 

145 Mg/ha in northern Chobe, while a large part of the study area (80%) is characterised 2708 

by low AGB values < 80 Mg/ha, with an average AGB estimated at 51 Mg/ha. In the 2709 

southern part of the study area, there is a mixture of high and low-density forests, as 2710 

shown in both the modelled maps and S2 imagery. Similarly, the lowest AGB estimates 2711 

were found in the central part of the study area, which is consistent with field conditions 2712 

where grassland, shrubs, and scattered trees are found, as a result of degradation 2713 

associated with overgrazing and wildfire. The field photos corresponding to the mapped 2714 

land cover types are shown in Fig. 3.6A, which shows an example of a typical forest 2715 

plot where AGB ranges from 80 Mg/ha to 145 Mg/ha, as shown in dark green colour in 2716 

Fig. 3.5A. Fig. 3.6B represents an open woodland with AGB ranging from 41 Mg/ha to 2717 

80 Mg/ha, shown in light green colour in Fig. 3.5. The field photo in Fig. 3.6C shows an 2718 

example of scattered trees with herbaceous cover, corresponding to AGB ranges 2719 

between 11 Mg/ha and 40 Mg/ha, as shown in yellow colour in Fig. 3.5. Fig. 3.6D 2720 

represents non-forest land cover with occasional scattered trees and/or shrubs which 2721 

matches AGB values of <10 Mg/ha. 2722 
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 2723 

Fig. 3. 5. Modelled AGB maps of a dryland forest landscape of the study area and the RGB 2724 

432 S2 image (10 m).   2725 

 2726 

2727 
Fig. 3. 6. Examples of dryland forest types and their respective ground pictures across 2728 
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Chobe National Park. A: closed canopy forest. B: open canopy woodland. C: scattered trees 2729 

with low herbaceous cover. D: non-forest land cover.  2730 

 2731 

This study selected and compared the combination of S1 C-band SAR, LC8 and S2 2732 

optical data (S1S2), S1 polarisations and vegetation indices (NDRE1 and NDVI) 2733 

that were suitable for forest structural parameter estimation. The results in Fig. 3.7 2734 

show that the combination of S1 C-band SAR and S2 optical data estimated 2735 

medium to high biomass density with a higher level of accuracy as compared to 2736 

either sensor alone. A saturation effect for the S2 NDVI (S2NDVI) model was 2737 

observed, wherein the sensitivity to biomass variability declines when biomass 2738 

density exceeds 80 Mg/ha (see Fig. 3.7A). The saturation points for S1 polarisation 2739 

(Fig. 3.7B) and NDRE1 (Fig. 3.7C) models were higher in comparison to NDVI. The 2740 

combination of S1 backscatter values and S2 red edge position bands (S1S2) are 2741 

capable of estimating biomass > 80 Mg/ha (black colours) and did reduce the 2742 

saturation effect in high-density forest areas as shown in Fig. 3.7B. The maps in Fig. 2743 

3.7 confirm that the S1S2 model produced the best fit with the ground 2744 

observations for dryland forests, while reducing the under-estimation of large AGB 2745 

values estimated by the S2NDVI model. The study observed a small but noticeable 2746 

over-estimation for low values of biomass areas in the S2-NDVI model, although 2747 

this was more prevalent in the degraded and fragmented vegetation areas e.g., 2748 

along the Chobe River frontage (see: Fig 3.7). 2749 
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 2751 

Fig. 3. 7. A: AGB maps and histograms with the A: S1S2 model. B: S1 VV model. C: Modelled 2752 

AGB map with NDRE1 model. D: Modelled AGB map with the NDVI model (the NDVI model 2753 

saturates at values >80 Mg/ha). 2754 

 2755 

In addition to cross-validation, the AGB map was evaluated by comparison with 2756 

the most recent published pan-tropical AGB datasets (Avitabile et al., 2016; Baccini 2757 

et al., 2017; Bouvet et al., 2018). The differences between models were analysed as 2758 

displayed in Fig. 3.8, 9, and 10. Avitabile et al. (2016) integrated two existing global 2759 

datasets of AGB from Saatchi et al., (2011) and Baccini et al. (2012) to create an 2760 

improved pan-tropical AGB map at 1 km resolution, using an independent 2761 

reference dataset of field observations to reduce bias and improve the accuracy. 2762 

Baccini et al. (2017) used Landsat data to produce an AGB map at 30 m resolution, 2763 

while Bouvet et al. (2018) used an ALOS PALSAR mosaic produced by JAXA in 2764 

2010 to produce an AGB map at 25 m resolution for continental Africa. 2765 

Fig. 3.8 shows a comparison between this study AGB estimates with these three 2766 

published pan-tropical AGB datasets. A comparison with Avitabile et al. (2016) 2767 

predicts low AGB values in the 0 to 30 Mg/ha range with a very low R2 of 0.20 and 2768 
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a precision of 36.21 Mg/ha. The result from Bouvet et al. (2018) using ALOS 2769 

PALSAR shows the highest agreement with this study with a coefficient of 2770 

determination R2 of 0.50, compared to Baccini et al. (2017) which reported 2771 

precision for the AGB estimates of 31.31 Mg/ha and an R2 of 0.41. The pan-tropical 2772 

maps all exhibited a high RMSE and a low R2 when compared with this study, 2773 

which has AGB estimates with R2 of 0.95 and RMSE of 0.25.  2774 

Fig. 3.9 shows the spread, and distribution of the AGB from this study and three 2775 

published pan-tropical AGB datasets. The mean AGB varied from 5.92 Mg/ha with 2776 

the Avitabile et al. (2016), 18.5 Mg ha−1 for Baccini et al., (2015), 26.7 Mg/ha for 2777 

Bouvet et al., (2018) to the highest 51 Mg/ha for this study (Fig. 3.9). The lowest 2778 

median is observed in Avitabile et al. (2016) and a relatively high variance is 2779 

observed in this study. Some bimodality is suggested by Avitabile et al. (2016) and 2780 

Baccini et al., (2015). This study and Bouvet et al., (2018) have a similar AGB 2781 

spread and the highest mean AGB estimation, with this study estimating a AGB of 2782 

145 Mg ha compared to 66 Mg/ha from Bouvet et al., (2018), 49 Mg/ha from 2783 

Baccini et al., (2015) and 28.8 Mg/ha from Avitabile et al. (2016). Bouvet et al. 2784 

(2018) was derived by limiting the model-based inversion method in predicting 2785 

AGB of forest plots to not exceed 85 Mg/ha for dryland ecosystem, and this could 2786 

explain the low AGB estimation in the high-density forest of the study area.  2787 

 2788 
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 2789 

Fig. 3. 8. Comparison between A: This Study AGB estimates and the AGB estimates from 2790 

Bouvet et al. (2018). B: This Study AGB estimates and the AGB estimates from Baccini et al. 2791 

(2017). C: This Study AGB estimates and the AGB estimates from Avitabile et al. (2016).  2792 

 2793 



Chapter 3 
 

Page | 137  
 

Fig. 3. 9. Comparison of AGB distribution (Mg/ha) among the different AGB estimates from 2794 

this study, Avitabile et al. (2016), Baccini et al. (2017), and Bouvet et al. (2018). The 2795 

models are arranged from the highest median AGB to the lowest. The horizontal line of the 2796 

box plot for each model represents the median and the width of violin plot represents the 2797 

proportion of the data using a kernel probability density. 2798 

 2799 

3.4 Discussion 2800 

3.4.1 Relationship between S1 SAR, S2, and LC8 with AGB 2801 

In this study, simple linear regression models from S1 backscatter, S2, and LC8 2802 

spectral coefficients were statistically significant (p < 0.001). However, the simple 2803 

models estimating the AGB from all sensors provided low R2 values and high RMSE 2804 

that are considered unreliable for estimating forest structure parameters for 2805 

practical forest management and habitat mapping. The RMSE observed in this 2806 

study is lower than other AGB studies reported in the region, but it is similar to 2807 

Mutanga et al. (2012) who predicted biomass using a similar sized plot from 2808 

homogeneous areas (20 m × 20 m) to compute 3 NDVIs from the WorldView-2 red 2809 

edge and NIR bands and yielded an RMSE of 0.441 kg/m2. The highest R2 was 2810 

generated using multivariate models that employed both SAR and optical data 2811 

(S1S2) highlighted in grey in Table 3.4, indicating the responsiveness of SAR to 2812 

forest parameters particularly when sensors are used in combination for 2813 

monitoring structural parameters in dryland forests, as reported by Townsend 2814 

(2002).  2815 

In terms of the radar polarimetric parameters, VV polarisation showed a better 2816 

correlation and relationship with AGB and is shown to be more useful for the AGB 2817 

estimations as compared to VH. However, the combination of VV and VH 2818 

polarisation improves the R2 and lowers the RMSE. This result is not consistent 2819 

with the results obtained by Liu et al. (2019) but it is similar to the results of Omar 2820 

et al. (2017) and (Pham et al. (2020) who found VV polarisation to perform better 2821 

in estimating AGB and sensitive to the increase in AGB as compared to VH. 2822 

Nizalapur and Madugundu, (2010) used backscatter intensities obtained in X, C, L 2823 

and P- bands from DLR-¬ESAR data in Indian tropical forests, in which VV was 2824 
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found to correlate with biomass when compared to HH, HV and VH polarisations. 2825 

The selection of VV polarisation and their strong correlation with AGB and forest 2826 

parameters estimation also aligns with the studies by Ouaadi et al. (2020) and 2827 

Wijaya et al. (2015). 2828 

Further, it could be observed that the SAR data was better at detecting 2829 

aggregations of individual trees in the savanna landscape than its optical 2830 

counterpart, while overestimating AGB and tree density cover in this area. This 2831 

effect was also shown in a study that was conducted in the Sahel dryland 2832 

ecosystems using S1/2 data (Zhang et al., 2019). The overestimation of AGB was 2833 

reduced from the combined use of S1 and S2 as compared to the single use of any 2834 

of the sensors.  2835 

For optical data, although NDVI and EVI remain two of the most widely used 2836 

vegetation indices, they were outperformed by the NDRE1 and GNDVI in 2837 

estimating AGB, for dryland forests. The results are in agreement with the study by 2838 

Wang et al. (2007) that tested the capabilities of GNDVI for estimating the Leaf 2839 

Area Index (LAI), which were tested under different circumstances, and found that 2840 

GNDVI performed better than the conventional NDVI in both circumstances. The 2841 

results also align with the study by Otsu et al. (2019) who found that GNDVI 2842 

performed best in distinguishing broad leaf from needle leaf forests as compared 2843 

to NDVI. Another study by Yoder et al. (1994) used the green channel in a 2844 

vegetation index and found that it had a better correlation with the photosynthetic 2845 

activity of the tree canopy in miniature Douglas-firs as compared to the red 2846 

channel. The main reason for the difference in the performance of NDVI and GNDVI 2847 

is likely because the former is more sensitive to low chlorophyll concentrations, 2848 

while GNDVI is more sensitive to high chlorophyll concentrations and so is more 2849 

accurate for assessing chlorophyll content at the tree crown level (Gitelson et al., 2850 

1996). Besides the use of the green channel in a vegetation index, the red edge 2851 

band is found to be more effective in estimating AGB at high canopy density as 2852 

compared to conventional vegetation indices because it covers chlorophyll 2853 

absorption and leaf cell structure reflection (Mutanga and Cho., 2012, Eitel et al., 2854 

2011).  2855 



Chapter 3 
 

Page | 139  
 

The study found that a combination of S1 polarisation, S2 green, and red edge 2856 

bands, have led to the mitigation of data saturation in high-density biomass, when 2857 

compared to S2 NDVI models that saturate at biomass levels above 80 Mg/ha. The 2858 

saturation of the relationship between biomass and the NDVI due to strong 2859 

absorption in the red wavelength is a well-recognised problem (Zhao et al., 2016). 2860 

SAR acquired across the range of frequencies (namely C-, L- and P-band) has a 2861 

demonstrated capacity to quantify biomass up to a saturation level after which 2862 

sensitivity is lost, depending on the frequency used. For example, it is reported that 2863 

the C-band radar backscatter response saturates at biomass values of 30 Mg/ha to 2864 

50 Mg/ha, and the L-band backscatter is generally reported to occur between 70 2865 

Mg/ha and 150 Mg/ha and P-band backscatter can measure from 100 Mg/ha 2866 

up to 200 Mg/ha (Lucas et al., 2015). For this study, the synergy between the two 2867 

data sources, particularly the inclusion of SAR backscatter values from VV 2868 

polarisation and the red-edge (B5) spectral bands have reduced saturation effects 2869 

typical in optical and radar backscatter remote sensing data for the dense or 2870 

mature forest with complex stand structures in dryland forest (Liu et al., 2019). 2871 

3.4.2 Selection of suitable algorithms and methods 2872 

The estimations derived from the machine learning algorithm showed the ability 2873 

for improved the estimation of all forest parameters including AGB. Although the 2874 

results from ML regression models exhibited a strong linear relationship, this 2875 

study found that the RF regression algorithm performed better than ML 2876 

regression, reducing the RMSE for the estimation models by almost 50% in all 2877 

instances. In this study, ML regression derived relationships between observed 2878 

and estimated AGB and residuals show some linearity, that is, overestimations and 2879 

underestimations for the low and high biomass observations, respectively. This 2880 

demonstrates the problem of using linear regression models, as identified by Zhao 2881 

et al. (2016) who used Landsat and linear regression to estimate biomass 2882 

saturation values in the Zhejiang Province of Eastern China.  2883 

Even though MRF regression models reduce the overestimation and 2884 

underestimation of biomass compared to ML regression models in this study, there 2885 

remains room for improvement. Specifically, the RF regression model estimated 2886 

medium and high-density forests with good accuracy but showed variation in low-2887 
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density forests <30 Mg/ha. Most of these low-density forest plots include 2888 

understoreys and low herbaceous cover such as grassland, open forest, and burned 2889 

woodlands, often with relatively low canopy density. Therefore, soil and moisture 2890 

conditions under the canopy would have a significant impact on surface 2891 

reflectance and considerably influence AGB estimation. These results are similar to 2892 

numerous studies that assessed dryland forests using radar backscatter signals 2893 

and decision tree models (Baccini et al., 2004; Santos et al., 2002; Wang et al., 2894 

1998) which all found that variations in understorey and ground conditions had an 2895 

impact on the interaction of microwave radiation with vegetation cover. Using 2896 

Radar C- and L-band, Wang et al. (1998) noted that the sensitivity of SAR to surface 2897 

parameters is most pronounced for co-polarisation signals C-VV and C-HH angles 2898 

at low biomass levels, with a sensitivity decrease for high biomass stands. This was 2899 

also an issue in this study because data were acquired during the wet season 2900 

where errors associated with moisture are likely (Mitchard et al., 2013).  2901 

 2902 

3.4.3 Comparing regional AGB estimates with pan-tropical 2903 

maps  2904 

The spatial distribution of high values of AGB (>145 Mg/ha) closely corresponds to 2905 

field measurements, with the forests in the northern part of Chobe National Park 2906 

found to have the highest AGB values. This can be attributed to the predominance 2907 

of species with large DBH such as Zambezi teak (Baikaea Pluijuga). Also, the 2908 

impacts of fire on the northern part of Chobe Park are better controlled than the 2909 

southern areas, as they commonly experience a higher burning frequency (Dube, 2910 

2013). 2911 

Fig. 3.10 (I) shows a detailed view of a subset of forests in the northern part of the 2912 

study area, dominated by high density forests. The inability to estimate AGB 2913 

heterogeneity and a large under-estimation of biomass in dryland forests can be 2914 

clearly seen in the AGB map of Avitabile et al. (2016) when compared to all the 2915 

other AGB datasets. In contrast, Baccini et al. (2017) using Landsat imagery 2916 

underestimate AGB in the area of high-density forest around the airport situated to 2917 

the northeast of the study area (0-10 Mg/ha). Bouvet et al. (2018), using ALOS 2918 
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PALSAR, predict higher levels of biomass than Baccini et al. (2017) around the 2919 

airport area (10-30 Mg/ha), but these estimates are lower than this study 2920 

estimates of >80 Mg/ha. This study estimates higher biomass stocks in large areas 2921 

of northern Chobe > 80 Mg/ha particularly when compared to Bouvet et al. (2018) 2922 

and Baccini et al. (2017). 2923 

The area shown in Fig. 3.10(II) is along the Shimwanza Valley, characterised by 2924 

bare ground, gullies, tall shrub savanna, and open woodland with a mixture of 2925 

medium and large trees. Results showed very large discrepancies from the pan-2926 

tropical map in this area. For example, it can be seen that Bouvet et al. (2018) 2927 

underestimated a large portion of large and mature individual trees and were not 2928 

able to characterise the variability in dryland forests or the patterns of open 2929 

woodland. In addition, Bouvet et al., (2018) estimated high biomass of 50 Mg/ha to 2930 

70 Mg/ha in the degrading forest along the Chobe River frontage (see: Fig. 3.9B). 2931 

The S2 image reveals that there are actually fewer trees in this area with more 2932 

bare ground in between. The S1S2 model from this study was able to clearly show 2933 

the fine details of trees in different AGB ranges, with a mix of very low biomass 2934 

(due to different degrees of degradation) to intermediate biomass for certain areas 2935 

with very large but scattered trees, as shown in S2 imagery (see: Fig. 3.10E). 2936 

Baccini et al. (2017) shows a broad range of AGB (low to intermediate) similar to 2937 

this study AGB estimates in the Chobe River frontage; although their study 2938 

estimated lower biomass in high-density forest areas (see: Fig. 3.10C). 2939 
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 2940 

Fig. 3. 10. Biomass map in a subset of forests in the (I) northern part of the study area and 2941 

(II) Shimwanza valley. A: estimated AGB map by this study. B: estimated AGB map by 2942 

Bouvet et al. (2018). C: estimated AGB map by Baccini et al. (2017). D: estimated AGB map 2943 

by Avitabile et al. (2016). E: RGB 432 S2 image.  2944 
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3.4.4 Suitability of different models for land and wildlife 2945 

management 2946 

Optical Landsat imagery utilised by Baccini et al. (2017) was able to capture broad-2947 

scale information on forest biomass but was less able to describe fine-scale 2948 

disturbance. Where it captured the patterns of biomass fragmentation, it mostly 2949 

overly overestimated AGB (Baccini et al., 2017). While Bouvet et al. (2018), using 2950 

ALOS PALSAR L-band, was effective in mapping biomass structural density, but it 2951 

was less capable at distinguishing biomass from degraded habitat areas, and 2952 

largely failed to capture biomass variability and relatively small-scale changes 2953 

associated with features such as roads, which were captured by this study and to a 2954 

larger extend by Baccini et al. (2017) (see: Fig. 3.11). The large discrepancies in 2955 

biomass distribution from Pan-tropical datasets can also be attributed to forest 2956 

masks derived from different land cover maps which excluded certain 2957 

woodland/vegetation types from their estimation. For example, Avitabile et al. 2958 

(2016) used the GLC2000 map from Bartholomé & Belward. (2005) as a forest 2959 

mask, while Bouvet et al. (2018) masked out forest classes (broadleaf evergreen 2960 

closed to open forest) using the ESA CCI Land Cover 2010 map from ESA (2014), 2961 

which can have a large impact on the estimation of biomass and carbon stocks in 2962 

dryland forests. The AGB map generated by this study is the most accurate and 2963 

detailed published for the study area and complements the global products, 2964 

therefore facilitating regional to international reporting of biomass and carbon 2965 

dynamics. This is in agreement with (Lucas et al., 2008) who utilised ALOS PALSAR 2966 

data and the Landsat-derived Foliage Projected Cover (FPC) in Queensland, 2967 

Australia, and reported that the combination of radar and optical data has the 2968 

ability to allow better assessment of deforestation patterns, regeneration and 2969 

woody thickening, tree death from climate change, and biomass change. In 2970 

addition, the AGB model from this study showed that biomass for dryland forests 2971 

exceeds estimates derived from pan-tropical products which underestimate 2972 

biomass and forests in dryland ecosystems of less-studied areas such as the KAZA 2973 

region, which are often neglected in this type of analysis (David et al., 2022a). The 2974 

sensor fusion explored here complements this study and encouragingly suggests a 2975 

high potential for separating biomass in dryland cover types that are structurally 2976 

distinct but spectrally similar, which are notably those areas that are challenging 2977 
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to distinguish through optical remote sensing alone (Buhne and Pettorelli, 2018; 2978 

Treuhaft et al., 2004).  2979 

In addition to sensor integration, issues of scale are critical for biomass and habitat 2980 

mapping, where the adequacy of spatial resolution is key (Buhne and Pettorelli, 2981 

2018). For example, biomass mapping at a regional scale utilising the fusion of 2982 

optical and radar data in this study reduced the saturation effect at high AGB 2983 

values above 80 Mg/ha, allowing the identification of habitat fragmantation, and 2984 

small-scale degradation patterns of biomass compared to broader scale maps. 2985 

Maps of AGB, if sufficiently detailed, can assist conservation managers, 2986 

practitioners, and policymakers to formulate specific practices (e.g., corridor 2987 

planning, tree thinning, fire control, biodiversity surveys, etc.) that are appropriate 2988 

to support the conservation of forest habitats and their management. Many 2989 

countries presently lack the capacity to produce their own local maps of forest 2990 

biomass and so must rely on existing biomass maps founded upon broader pan-2991 

tropical and global datasets. Whilst the AGB maps produced by Baccini et al. 2992 

(2017) and Bouvet et al. (2018) may be used to meet national-scale emissions 2993 

reporting requirements when no finer scale information is available, these maps 2994 

need to be validated against local forest stock surveys or local/regional AGB maps 2995 

from higher resolution satellite imagery. Given the decision-making on 2996 

sustainability at national and subnational levels, this study contends that the pan-2997 

tropical and global data sets are unable to provide finer scale mapping of aspects 2998 

that are relevant to wildlife habitat and biodiversity in dryland forests. These 2999 

results support the assertion that countries should not rely on pan-tropical 3000 

datasets but should rather estimate biomass and carbon stocks at the regional and 3001 

local level, which in turn feeds into meeting the United Nations' Sustainable 3002 

Development Goals (SDGs), as suggested by Mitchard et al. (2013). This is essential 3003 

for land and forest management in these areas, particularly in protected zones, 3004 

given the vulnerability to anthropogenic pressure, disturbance from wildlife, and 3005 

climatic fluctuations. 3006 
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 3007 

Fig. 3. 11. A: RGB 432 S2 image. B: S2 a difference map between this study and Bouvet et 3008 

al., 2018 (This study –Bouvet et al., (2018), C: This study AGB map. D: Bouvet et al., 2018 3009 

AGB map.  3010 

 3011 

 3012 

 3013 

 3014 
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3.5 Conclusion 3015 

This study combined satellite-based synthetic-aperture radar (SAR) and 3016 

multispectral imagery with ground truth data to map above ground biomass 3017 

throughout the dryland forests in the Chobe region of Botswana. The main finding 3018 

from the results is that using a combination of data types (SAR and multispectral 3019 

sensors) it is possible to estimate above ground biomass in dryland forests with a 3020 

good level of precision. The estimations of AGB reveal that the highest biomass 3021 

values of 80-145 Mg/ha were found in northern Chobe where the dominant tree 3022 

species are Baikiaea plurijuga, Burkea africana, and Pterocarpus angolensis. A large 3023 

part of the study area (85%) is characterised by low AGB values (< 80 Mg/ha). In 3024 

Southern Chobe and along the Chobe River frontage area, a high burning frequency 3025 

and degradation associated with overgrazing and elephant damage may have 3026 

contributed to the generally low AGB values observed. Three main conclusions can 3027 

be drawn from this study: 3028 

First, combining freely available SAR and multispectral imagery (S1 and S2) has 3029 

the potential to estimate biomass at local and regional levels with a good level of 3030 

precision compared to using single sensors alone. The research observed that the 3031 

relatively fine resolution of Sentinel (10 m pixels) reduced the mixed pixel 3032 

problem observed in medium spatial resolution data (30 m pixels; e.g. Landsat 8), 3033 

which led to an increase in the precision of biomass estimation. The results 3034 

demonstrated that SAR backscatter in conjunction with the strategically positioned 3035 

optical bands (red edge wavebands) significantly improved forest stand parameter 3036 

estimations and the reduced saturation effect in areas of high biomass in dryland 3037 

forests. The NDRE1 and GNDVI yielded a higher linear relationship than NDVI, 3038 

while GRVI and EVI yielded the lowest correlation with AGB.  3039 

Secondly, dryland forest ecosystems and conservation organisations can use global 3040 

and continental datasets as sources of information that could provide early 3041 

warnings of regional-scale ecological change. However, regional and local studies 3042 

are critical and serve to provide useful information in evidence-based decision 3043 

making for improved estimation of carbon stocks, monitoring the impacts of 3044 

climate change, and the conservation of dryland forest habitats under pressure. 3045 
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Finally, after comparing and analysing the effects of the various empirical models 3046 

using ML and RF regression approaches, this study found that the decision tree 3047 

model (RF regression algorithm) is the most robust for estimating AGB in dryland 3048 

forests, as compared to linear analysis. The precise and timely quantification of 3049 

AGB can help improve the understanding of dryland forest habitats and to plan and 3050 

monitor land and forest resources in conservation areas, which are critical for 3051 

wildlife function and sustainable land management at present and into the future.  3052 
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 3065 

3.7 Supplementary Information 1 3066 

Table A. 1. Image acquisition date and scene ID. 3067 

Satellite Cloud cover Acquisition 

Date 

Satellite Name 

S1 0 15/03/2019 COPERNICUS/S1_GRD 

S2 0 14/03/2019 COPERNICUS/S2_SR/20190314T080709_20190

314T083245_T35KKA 

LC08 0 15/03/2019 LANDSAT/LC08/C01/T1_SR/LC08_174072_2019

0315 

 3068 

 3069 

Fig A. 1. Density and histogram plots A: Aboveground biomass (AGB); B: Carbon stock 3070 

(Mg/ha) of each field plot with woodland trees. 3071 
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 3072 

Fig A. 2. Relationships of S1 polarisations and S2 spectral bands with stand forest 3073 
parameters in the study area. A: S1 VV polarisation vs AGB. B: S1 VH polarisation vs AGB. 3074 
C: S2 B3 vs AGB. D: S2 B5 vs AGB. 3075 

 3076 

Fig A. 3. Dispersion diagram of the observed versus predicted biomass at each fold on a log 3077 

scale using 70% of the training data. 3078 



Chapter 3 
 

Page | 150  
 

 3079 

Fig A. 4. Linear and Bootstrap regression of Sentinel 2 Band 3 on a standardised scale. 3080 

 3081 

Fig A. 5. Land cover classification map of Zambezi region in Namibia and Chobe District in 3082 

Botswana for 2019 3083 

 3084 

 3085 
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Table A. 2. Area statistics of the land cover classes.   3086 

Land cover classes Total Area 

(km2) 

Percentage 

(%) 

Forests 4,475 23 

Open woodland 8,216 43 

Grassland 4,910 25 

Shrubs 1,719 9 

Sum 19,321 

 

100% 

 3087 

Table A. 3. Accuracy assessment of the land cover classification 3088 

Accuracy Percentage (%) 

Overall Accuracy 97%  

Validation Overall Accuracy 67% 

Kappa coefficient 60% 
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4 IDENTIFYING AND UNDERSTANDING DRYLAND 3090 

FOREST CHANGES AND DISTURBANCES IN SOUTHERN 3091 

AFRICA USING LANDSAT AND MODIS TIME SERIES 3092 

AND FIELD VEGETATION DATA 3093 
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 3116 

Abstract 3117 

The Kavango Zambezi (KAZA) Transfrontier Conservation Area is sensitive to 3118 

water availability, and drought, in addition to anthropogenic disturbances, impacts 3119 

vegetation cover in the region. An effective method for change detection to 3120 

examine vegetation response across KAZA needs to account for seasonal as well as 3121 

abrupt changes over at fine temporal resolutions (e.g., monthly) rather than yearly 3122 

basis. In this study, an approach that quantifies dryland forest change by 3123 

combining Landsat and MODIS imagery with climate data, validated against 3124 

ground-based measurements collected from Namibia and Botswana was 3125 

presented. The Breaks for Additive Seasonal and Trend (BFAST), and Bayesian 3126 

Estimator of Abrupt change, Seasonality and Trend (BEAST) algorithms were 3127 

applied to evaluate their ability to detect changes in both long-term trend and 3128 

seasonality based upon the MODIS normalised difference vegetation (NDVI) and 3129 

Green normalised difference vegetation (GNDVI) time series. The results 3130 

demonstrate that there is a close relationship between the ground survey data and 3131 

the estimated changepoints. The Bayesian analysis (BEAST) was found to give the 3132 

best performance in identifying abrupt changes associated with fire, drought, and 3133 

seasonal changes driven by climate and clear-cutting events as compared to 3134 

BFAST. BFAST failed to detect seasonal shifts in the entire study period. GNDVI 3135 

was an effective dataset for detecting both small and large magnitude changes (e.g., 3136 

deforestation, fire, and drought), while the NDVI was most effective in detecting 3137 

large magnitude changes, particularly those that resulted in complete land-cover 3138 

class changes (e.g., deforestation). The study found that the NDVI was more 3139 

influenced by canopy background variations and herbaceous layers when 3140 

detecting changes with regrowth of herbaceous layers than the GNDVI. Tropical 3141 

dryland forests in KAZA are highly dynamic and water-sensitive with high rates of 3142 

deforestation and widespread degradation, which mainly result in abrupt 3143 

vegetation changes, continuous vegetation recovery and regrowth. The approach 3144 

presented can accurately identify the vegetation changes, phenological variations 3145 

and time of disturbance in both the spatial and temporal domains. Therefore, it can 3146 

contribute to the understanding of forest decline and habitat changes and their 3147 
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vulnerability in the context of land cover change, climate change and sustainable 3148 

development policies in tropical dryland forests. 3149 

Keywords: Change detection, Time-series decomposition algorithm, Forest 3150 

disturbance, Bayesian estimators, BFAST, Abrupt change, Southern Africa 3151 

4.1 Introduction 3152 

Tropical dryland forests experience a high degree of pressure from human activity 3153 

but monitoring forest degradation in these systems is challenging due to high 3154 

canopy complexity, phenology, climatic variability, and diverse degradation 3155 

drivers (Grainger, 1999, McElhinny et al., 2005, McNicol et al., 2018). Protected 3156 

Areas (PAs) underpin global efforts to preserve the Earth’s biodiversity and 3157 

maintain functional terrestrial and aquatic ecosystems (Wiens et al., 2009). The 3158 

Kavango Zambezi Transfrontier Conservation Area (KAZA TFCA) is the largest 3159 

“hyper” hotspot for endemism and conservation support. However, the tropical 3160 

savanna forests and woodlands (hereafter referred to as “dryland forest”) face an 3161 

increasing number of threats, ranging from those originating from climate, 3162 

disturbance by large mammalian herbivores, to those associated with the 3163 

increasingly invasive competition for diminishing resources. These multiple 3164 

threats have led to deforestation and degradation of protected landscapes, which 3165 

directly impacts wildlife species distributions (Cumming, 2008). Changes in 3166 

climate regimes and competition for the available natural habitats have 3167 

contributed to the escalation of human-wildlife conflict (HWC) in the KAZA region, 3168 

especially in Namibia and Botswana (FAO, 2009). Furthermore, climate modelling 3169 

of Africa has shown that dryland forest in and around KAZA TFCA is among the 3170 

world’s most vulnerable at warming levels of 1.5–2.0° (IPCC, 2014).  3171 

Monitoring long-term ecological processes in these PAs is therefore crucial to 3172 

ecological conservation and biodiversity (FAO, 2009). The possibility that arises 3173 

when changes are not monitored routinely is that the adverse impacts may have 3174 

already occurred and it may be too late to reverse the change or even adapt to it 3175 

(Sheffield et al., 2008). This will lead to large-scale destruction of important 3176 

habitats for many species and a dramatic decrease in wildlife habitats. Thus, for 3177 

conservation goals to be met, it is essential to detect whether vegetation changes 3178 
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and degradation are occurring within the forests of PAs and their causes. 3179 

Assessment of the regional impacts of land use and land cover (LULC) change are 3180 

fundamental for determining the appropriate policy responses to forest decline, 3181 

increased human-wildlife conflicts, and managing of animal movement patterns 3182 

and wildlife corridors in KAZA TFCA (Stoldt et al., 2020). Such efforts are equally 3183 

important for enhancing forest carbon sequestration and avoiding deforestation 3184 

for developing nations, as encouraged by Reducing Emissions from Deforestation 3185 

and forest Degradation (REDD+) schemes.  3186 

In Africa, almost all remaining dryland forests in PAs are threatened by 3187 

deforestation and degradation and so should be given high conservation priority 3188 

(Clark et al., 2008). Although the focus in detecting forest cover loss using different 3189 

indices soon after they occur overwhelmingly remains in humid forests (Janzen, 3190 

1988; Masiello et al., 2020), dryland forests are beginning to receive more 3191 

attention. However, published studies on dryland forests in Africa are generally 3192 

concentrated on the Sahel in West Africa (Liu et al., 2017), while most studies in 3193 

Southern Africa have been confined to Kruger NP (Bucini et al., 2010). 3194 

Unfortunately, the forests in PAs of other parts of Southern Africa such as KAZA 3195 

TFCA have received far less attention. An additional challenge is understanding the 3196 

sensitivity and therefore suitability of conventional satellite-based NDVI 3197 

measurements in detecting large and small-scale forest disturbances and seasonal 3198 

change in highly heterogeneous forest environments such as drylands (Blackie et 3199 

al., 2014). The lack of historical disturbance events in KAZA TFCA constitutes a 3200 

challenge for in-depth temporal and spatial analysis which is crucial to ecological 3201 

conservation and biodiversity. This is raising concerns that disturbances within 3202 

the dryland, natural resources and wildlife habitat management areas might 3203 

increasingly interfere with continuous and sustainable provisioning of ecosystem 3204 

services to society and wildlife.  3205 

The availability of MODIS satellite data and new automated data processing 3206 

techniques that provide high-quality continuous time-series data represent a 3207 

major advancement for the automated monitoring at monthly rather than annual 3208 

intervals which potentially masks considerable within-year variations. The daily 3209 

temporal resolution of the MODIS NDVI has a significant advantage over Landsat 3210 

data for monitoring the disturbance and recovery state. The limitation of MODIS 3211 
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based Vegetation Indices (VIs) for change detection is associated with the 3212 

moderate spatial resolution. With the advancement of cloud computing, 3213 

particularly the Google Earth Engine (GEE) platform, which provides an archive of 3214 

data including MODIS and Landsat with associated data processing capacity at no 3215 

cost (Gorelick et al., 2017), has become a valuable tool for change monitoring in 3216 

tropical environments. Access to such temporally rich time series has also led to an 3217 

increase in methods that aim to track the occurrence of disturbance events at 3218 

regional scale. It is reported that disturbance rates in dryland forests have 3219 

increased in recent decades, and there is evidence that climate change and past 3220 

land use both have contributed to the disturbance increasing rate (Wilcox, et al., 3221 

2011). Continuous disturbances in an area consisting of natural habitats result in 3222 

habitat fragmentation and reduce its ability to support the ecosystems and 3223 

surroundings that are essential for their sustainability (Visscher, 2006). The 3224 

accurate reconstruction of past forest disturbance dynamics at spatial, temporal, 3225 

and thematic scales offered by time series will allow ecological analyses to help 3226 

provide a better understanding of disturbance regimes (Senf et al., 2017). The 3227 

dense time series information enables the quantification and characterisation of 3228 

disturbances in terms of disturbance magnitude, duration, and attribution of 3229 

recent disturbance activities (Kennedy et al., 2012). Before the availability of time 3230 

series analysis, forest change detection mapping was done using bi-temporal 3231 

differences or supervised image classifications (David et al., 2022a). Bi-temporal 3232 

image classifications were able to detect large-scale deforestation, but they are less 3233 

useful for assessing small-scale deforestation, degradation, and regrowth because 3234 

they fail to capture the dynamic behaviour of vegetation during the year and over 3235 

longer time periods (Hamunyela et al., 2020; Zhu and Woodcock, 2014). Moving 3236 

from a relatively static, bi-temporal view of change toward a more continuous view 3237 

of ecosystem dynamics can improve understanding regarding the disturbance’s 3238 

spatiotemporal patterns, their causes, and consequences (Kennedy et al. 2014). 3239 

Effective change detection ideally identifies variations at the seasonal scale while 3240 

simultaneously detecting abrupt, and subtle changes in any long-term trends. 3241 

Breaks For Additive Seasonal and Trend (BFAST), BFAST Seasonal and Bayesian 3242 

Estimator of Abrupt change, Seasonality and Trend (BEAST) algorithms have been 3243 

developed to do this (Verbesselt et al., 2012; Zhao et al., 2019). However, their 3244 
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effectiveness in tropical dryland forests, where vegetation response is typically 3245 

aseasonal, has yet to be assessed. 3246 

This paper aims to provide a systematic assessment of vegetation dynamics and 3247 

spatially detailed patterns of change in the dryland forests. To do this, the research 3248 

employs multiple data streams for the time series assessment of forest change over 3249 

parks and surrounding areas within KAZA TFCA from 2002–2019. The premice is 3250 

that by taking advantage of the different characteristics of vegetation indices and 3251 

different change detection model, change detection results could be improved in 3252 

dryland forests. The general objective was to investigate the evidence of water 3253 

stress conditions and assess the suitability of the change detection model on 3254 

MODIS time series data for mapping forest disturbances (e.g., clear-cutting, 3255 

drought) in dynamic and diverse tropical dryland forests. Specifically, this paper 3256 

reports three steps: (1) spatial characterisation of climatic data with vegetation 3257 

indices as a proxy indicator of climate variability to improve understanding of 3258 

vegetation response to drought; (2) Compare the commonly used NDVI vegetation 3259 

index with GNDVI and evaluate their sensitivities and performances in detecting 3260 

changes; and (3) Characterise changes in trends and phenological patterns using 3261 

BFAST and BEAST algorithms. (4) Quantify and identify the LULC change, 3262 

locations, types, and trends of the land cover during the 19-year period in 3263 

communal and protected areas of Zambezi region. Ideally, such an analysis will 3264 

provide conservation efforts with frequently updated information for monitoring 3265 

disturbances and potentially deforested areas, allowing targeted mitigation actions 3266 

to be taken. 3267 

 3268 

4.2 Materials and methods  3269 

4.2.1 Study area 3270 

The KAZA TFCA (18.00°S, 23.00°E) in Southern Africa, is an iconic PA that inhabits 3271 

a rich ecology and enormous wildlife. KAZA TFCA is established in March 2013 3272 

with an enclosed area equivalent to the size of France at 519,912 km2 (Cumming, 3273 

2008), and is situated in the Kavango and Zambezi River basins- and is shared by 3274 
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Angola, Botswana, Namibia, Zambia, and Zimbabwe. Within this area, 371,394 km2 3275 

are under conservation and the remaining 148,520 km2 are mainly used for 3276 

agricultural activities including rangeland.  3277 

This conservation area is considered to be an important means to create economic 3278 

development and conserve the unique biodiversity by establishing links between 3279 

fragmented habitats with a particular focus on large-scale migrations of wildlife 3280 

(WWF, 2016). KAZA links together over 36 proclaimed PAs including national 3281 

parks (NPs), forest reserves, community conservancies, and wildlife management 3282 

areas. PAs carry substantial populations of large mammals and several plant 3283 

endemic plant species, including large areas of the dryland forests, and globally 3284 

significant wetlands. The dryland vegetation domain in KAZA ranges from forest 3285 

formations with a dense canopy cover to shrubs and grasslands ranges, which are 3286 

also considered a biodiversity hotspot. However, these areas are under severe 3287 

pressure from agricultural expansion and settlement, wildlife, large-scale burning, 3288 

and timber harvesting (NACSO, 2014) (see: Fig. 4.1). This study focuses on the 3289 

Namibian and Botswanan components of the KAZA TFCA. In particular, the study 3290 

was conducted in three protected areas situated in the Okavango Zambezi region: 3291 

(a) Chobe NP in Botswana, (b) Zambezi state forest (ST) in Namibia, and (c) 3292 

Mudumu NP in Namibia. The selection of study sites depended on the ecological 3293 

importance and the land conservation practices implemented within the region. 3294 

The selection of sites in Namibia included state-run protected areas such as 3295 

Zambezi state forest (red-coloured polygon), a conserved forest area which was 3296 

traditionally protected by the government and residents in the area (see: Fig. 4.1). 3297 

Zambezi state forest is designed to be only used sustainably used for timber and other 3298 

forest products but has now been pushed back by human settlement (Bollig and 3299 

Vehrs, 2021). The Mudumu National Park (Aqua-coloured polygon) is one of the 3300 

largest protected areas in the Zambezi region established as a core wildlife area 3301 

with animals migrating from the park to surrounding communal conservancies, 3302 

where they can be used for quota hunting or through tourism (O’Connell et al., 3303 

2000). The unprotected surrounding communal area including the communal 3304 

conservancies that depend on agriculture and tourism development and both 3305 

encroach on the dryland forests (Hank, 2003).  3306 
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The Chobe NP, in the north-east of Botswana (18.7°S, 24.5°E), features the largest 3307 

number of elephants in KAZA; the number of elephants in northern Botswana 3308 

alone is estimated at more than 156,000 (Junker, 2009). The Chobe River basin 3309 

serves as a source of surface water for the Chobe District and in the dry season, 3310 

animals converge on this stretch of water from Northern Botswana (Hanks, 2003). 3311 

Chobe NP contrasts with the Namibian component of KAZA TFCA. The Zambezi 3312 

Region (17.8° S, 23.9° E), in the heart of KAZA, is a long strip of land with multiple 3313 

land uses, containing several national parks much smaller by comparison to Chobe 3314 

NP. The Mudumu NP, in north-eastern Namibia, and is bordered by the Kwando 3315 

River. The park is in the centre of KAZA TFCA and as there is no boundary fence, it 3316 

acts as a corridor for large game species such as African elephants, as migrating 3317 

between Botswana, Zambia, Angola, and Zimbabwe. The Zambezi ST area is 3318 

surrounded by conservancies and communally governed areas. The Zambezi ST 3319 

generally features very high population densities with consequent overgrazing and 3320 

widespread unsustainable wood harvesting with many areas considered now 3321 

degraded. 3322 

Topography in both parks is relatively flat characterised by low elevations ranging 3323 

from 910 to 1100 m above sea level (Omphile et al., 2002). Climatically, the sites 3324 

have similar rainfall patterns throughout the year, and so the KAZA region has a 3325 

subtropical dry climate characterised by highly variable rainfall. The annual 3326 

average rainfall is approximately 650 mm, with almost all falling between 3327 

November to March, followed by a dry season from April to October. Daytime 3328 

temperatures increase towards the end of the dry season, when the heat soars and 3329 

the expectation of rain is high. Average temperatures range between 15.2°C - 3330 

30.2°C.  3331 
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 3332 

 3333 

Fig. 4. 1. Location of the study area in KAZA TFCA. The yellow circles show sampling sites 3334 

in Zambezi ST, and Mudumu NP Namibia (top), and Chobe NP (bottom). Examples of 3335 

sample plots representing disturbance types and recent degradation activities captured 3336 

during a field campaign in 2019 are shown, A) clear-cut deforestation of forest area in 3337 

Zambezi ST Namibia, B) Burned forest for cultivation near protected area of Mudumu NP, 3338 

Namibia, C) the visible forest loss, especially the woodland along the Chobe riverfront, D) 3339 

high population of elephants destructive influence on vegetation.  3340 
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4.2.2 Fieldwork and sampling design  3341 

Survey fieldwork was undertaken to record forest tree stands and observe the 3342 

different land cover types present in the study area during the growing season (1st 3343 

February - 30th April 2019). The field samples of the five main land cover classes 3344 

(forests, open woodland, shrubs, grassland, and bare land) were collected at three 3345 

sites in the KAZA TFCA region; one park was located in Botswana, the Chobe NP. 3346 

The other two sites are located in Namibia - the Mudumu NP, and Zambezi ST (see: 3347 

Fig. 4.1). These sites were chosen because dryland forests within and around the 3348 

PAs are particularly susceptible to disturbance and drought, warranting particular 3349 

attention (Feng et al., 2013). However, these areas are often remote and dangerous 3350 

to visit in the field, due to the hazard posed by wildlife and if present, unexploded 3351 

landmines (see: Fig. 4.1). Another challenge is there are very little plot data in the 3352 

dryland forests, which are more sensitive to inter-annual variations in climate than 3353 

humid forests (Grainger, 1999). This is particularly true for the forest in the KAZA 3354 

region that experienced several extreme droughts in recent.  3355 

The allocation of plots followed a stratified random sampling approach based on 3356 

the four strata (forest, open woodland, scattered trees with low herbaceous cover, 3357 

and non-forests). The plot sizes of (20 m × 20 m) and (10 m × 10 m) were 3358 

considered adequate to enable sampling a good number of trees in each plot. 3359 

Smaller plot sizes of (10 m × 10 m) were adopted only in areas of very high tree 3360 

density that were dangerous to visit due to the hazard posed by wildlife. In total, 3361 

measurements were collected from 271 individual sample plots randomly 3362 

distributed throughout the dryland landscape. A total of 101 plots in Chobe NP, 3363 

115 plots in Zambezi ST, and 50 plots in Mudumu NP were visited. In Botswana, 61 3364 

sample plots represent woody vegetation, 40 sample plots represented non-3365 

woodland cover, while in Namibia 95 sample plots represent woody vegetation, 3366 

and 75 represented non-woodland cover. The total number of individual trees 3367 

measured was 4337 in Botswana, 2400 trees in Zambezi ST, and 1600 trees in 3368 

Mudumu NP. For each tree inside the plot, mean height, diameter at breast height 3369 

(DHB), tree density, canopy closure, and tree species were recorded. The UTM 3370 

coordinates at the centre of each plot were taken with the hand-held GPS. Although 3371 

the coordinates of each plot centre were collected with a high-quality device with 3372 
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GPS and GLONASS sensors, there may be small positional errors, especially when 3373 

differential corrections are unavailable (errors up to 8–10 m are common). The 3374 

images used in this chapter have a spatial resolution of 30 m for Landsat and 500m 3375 

for MODIS data which have a coarser pixel size which compensated for the 3376 

possible positional error of the GPS used. Heights of individual trees were 3377 

measured using an ultrasonic Vertex III hypsometer which requires finding a 3378 

suitable position to observe each tree tip (Božić et al., 2005), while stem diameter 3379 

was measured using a Diameter above Breast Height (DBH) tape. The diameters of 3380 

all the trees in each plot were measured at breast height, which is at 1.37 m above 3381 

the ground surface. All trees with a stem diameter >3 cm and 1.5 m height were 3382 

recorded. Field surveys of woody plants were conducted on sites where damage to 3383 

plants was specifically observed to identify where drought had an obvious impact.  3384 

4.2.3 CHIRPS precipitation data  3385 

Climate data were selected under the assumption that plant growth in the region is 3386 

limited by water availability, temperature, and/or incident radiation (Field et al., 3387 

1995). Changes in either of these parameters might induce changes in vegetation 3388 

productivity and the proxy NDVI signal. For this region, water availability is 3389 

determined by the amount of precipitation, and so the study confined this 3390 

parameter to precipitation as productivity here is water rather than temperature 3391 

limited (Nemani et al., 2003). However, for most parts of Africa, and especially the 3392 

semi-arid lands, the network of climatological stations is not dense enough to 3393 

provide a coherent spatial picture of climate variability. As a result, the spatial 3394 

characterisation of the effects of drought events on the land surface is not well 3395 

defined. The study used satellite-based monthly precipitation estimates from the 3396 

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) product 3397 

(0.05° × 0.05°). CHIRPS data span from 1981 to the present. CHIRPS incorporates 3398 

in-situ station data and CHPclim, 0.05° resolution satellite imagery to represent 3399 

sparsely gauged locations such as Southern Africa (Funk et al., 2015a). To be 3400 

consistent with MODIS VIs, the CHIRPS rainfall data from 2002 to 2019 was used. 3401 
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4.2.4 Vegetation indices from remote sensing imagery  3402 

The vegetation datasets used in this study include NDVI and GNDVI greenness 3403 

vegetation indices derived from the MODIS sensors. The vegetation indices use the 3404 

wavelength and intensity of the reflected light within the visible and near-infrared 3405 

wavelengths to measure the density of green leaf vegetation, acting as proxies for 3406 

leaf area index (LAI), fractional vegetation cover, and photosynthetic capacity 3407 

(Broge et al., 2001). Generally, the plant is under stress when there is a change in 3408 

the health condition of the plant foliage, reflected by a corresponding decrease of 3409 

LAI. Under stress conditions, plants increase their reflectance in the green and red 3410 

portions as leaves become yellowish or chlorotic. This has led to the suggestion 3411 

that the VIS portion is the most consistent leaf reflectance indicator of plant stress 3412 

(Carter, 1993). 3413 

The Normalised Difference Vegetation Index (NDVI) is a commonly used 3414 

vegetation index that measures green healthy vegetation as it utilises the regions 3415 

of the electromagnetic spectrum most associated with high absorption of 3416 

chlorophyll in the red band, and high reflectance of NIR by mesophyll layers in 3417 

green leaf biomass (Rouse, 1974). It is calculated as a normalised ratio between 3418 

Red and NIR reflectance values (Eq. 4.1). Higher NDVI values suggest higher 3419 

amounts of photosynthetic active biomass. The NDVI was used in this study 3420 

because it is a biophysical parameter that correlates with the photosynthetic 3421 

activity of vegetation and is an indicator of the greenness of the biomes (Robinson 3422 

et al., 2017; Tucker, 1979). NDVI is also able to offer valuable information to 3423 

monitor vegetation health, drought effects, changes in plant growth, land 3424 

degradation, deforestation, change detection/monitoring, and in relating large-3425 

scale inter-annual variations in vegetation to climate (Smith et al., 2019). 3426 

Restrictions, however, have existed due to the effects of external factors, for 3427 

example, soil and dead material, solar and viewing geometry as well as 3428 

meteorological events, all of which pose a challenge in carrying out a proper 3429 

assessment (Zhu et al., 2012). Particularly, in drylands with generally low 3430 

vegetation canopy cover, the soil background tends to significantly influence NDVI, 3431 

leading to a need for further development of vegetation indices. The study includes 3432 

another greenness index, which is a variation of the NDVI and designed to reduce 3433 
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saturation issues identified with this index. The GNDVI is computed similarly to the 3434 

NDVI, but the Green band is used instead of the Red band (Eq. 4.2) (Gitelson et al., 3435 

1996). Thus, GNDVI is more sensitive to chlorophyll concentration than NDVI and 3436 

ranges from 0 to 1.0. It is related to the proportion of photosynthetically absorbed 3437 

radiation and is linearly correlated with Leaf Area Index (LAI) and biomass (Hunt 3438 

et al., 2008). By exploring various combinations of available spectral bands, the 3439 

study additionally examined the sensitivity of other indices such as MSAVI, EVI to 3440 

find the most sensitive VI to detect changes in the dryland forest. MSAVI and EVI 3441 

were outperformed by GNDVI and thus GNDVI is presented in comparison to NDVI.  3442 

 3443 

 
NDVI                                                                                                        

                                (Eq. 4. 1) 

 
GNDVI    

                                 (Eq. 4. 2) 

Table 4. 1. Characteristics of the main datasets used in this study 3444 

Climate Data 

Dataset Timespan Resolution Source 

MODIS 8-day Terra 

Surface Reflectance 

(MOD09A1.006) 

2002-2019 500m GEE 

Climate Hazards Group 

InfraRed Precipitation with 

Station Data (CHIRPS) 

2002-2019 0.05 degrees GEE 

MODIS vegetation Data  

Terra Surface Reflectance 8-

Day Global 500m 

2002-2019 500m GEE 
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(MOD09A1.006)  

LANDSAT Data 

Landsat 5 ETM sensor- 

Surface Reflectance 

2002-2012 30m GEE 

Landsat 8 OLI sensor-

Surface Reflectance 

2013-2019 30m GEE 

4.2.5  Landsat Imagery 3445 

In the Google Earth Engine platform, 2004 Landsat-5 TM (Thematic Mapper and 2019 3446 

Landsat-8 OLI (Operational Land Image) surface reflectance 30 m spatial resolution 3447 

satellite images were utilised for landcover cover classification over the study region 3448 

(Gorelick et al., 2017). For both Landsat 5 and Landsat 8 data, only optical 30 m spatial 3449 

resolution spectral bands (visible and infrared) were selected for classification. Bands 1 3450 

and 9 were not used due to strong atmospheric absorption. The study aims to use 3451 

Landsat images from 2002 for the classification, however, the year 2002 had 0 images 3452 

available for the study site, while 2003 had 5 images available for the study area, and 3453 

they only cover 1/5 of the study area. Therefore, the Landsat images for 2004 were used 3454 

because it was the closest date to 2002 with a total of 35 available images which cover 3455 

the whole study area. In 2019, a total of 84 images were available and selected for 3456 

classification. 3457 

4.2.6 Validating data 3458 

The ground field sample points were used to validate the change detected by the 3459 

algorithms. The verification was carried out quantitatively using field data 3460 

collected from the field and the classified/change maps by generating a confusion 3461 

matrix to assess the effectiveness of the land cover classification generated by the 3462 

Random Forest classification in section 4.3.5. The BFAST change detection was 3463 

validated using an area change using sample-based estimates in section 4.3.6. 3464 

Additional verification was also conducted through visual interpretation of the 3465 

Landsat surface reflectance 30 m spatial resolution satellite images 3466 

(LANDSAT/LT05/C01/T1_SR) and (LANDSAT/LC08/C01/T1_SR) that are 3467 

atmospherically corrected using LEDAPS and using LaSRC to ensure the data 3468 
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consistency and comparability (see: Table 4.1) (Claverie et al., 2015). The 3469 

acquisition date of the Landsat image in which the disturbance event was first 3470 

visible was used as a surrogate time for when the disturbance has occurred, and 3471 

such data was used to verify the detected changes of BFAST and BEAST and note 3472 

the timing of the change. This interpretation is commonly used by other 3473 

comparable studies on change detection using BFAST (Cohen et al., 2010; Dutrieux 3474 

et al., 2015). Using high resolution data, Cohen et al. (2010) used visual detection 3475 

of a large proportion of historic change processes in the forest. Their study 3476 

highlighted the importance of visual interpretation technique of change points 3477 

using high resolution images and photo interpretation because historic events can 3478 

be very difficult to ascertain. For example, DeVries et al. (2015) and Hamunyela et 3479 

al. (2016) visually examined the Landsat image time series data to validate forest 3480 

change occurred for a specific pixel detected using BFAST algorithm. Zhao et al. 3481 

(2019) developed the BEAST algorithm (also tested in this study) and visually 3482 

validated the ground-reference data on disturbances and changepoints by 3483 

interpretation of multisource imagery. 3484 

4.3 Methods 3485 

An overview of the methods for this research is shown in Fig. 4.2. The four main 3486 

steps were as follows: (1) high-quality NDVI time series data preparation. A time 3487 

series was first pre-processed to remove noise and obtain an uninterrupted data 3488 

stream. (2) Temporal and spatial analysis of climate and vegetation time series to 3489 

detect anomalies and drought impacts. (3) Trend and seasonal breakpoint 3490 

detection using BFAST and BEAST algorithms. (4) Validation of the change 3491 

detection algorithms and discussion of the potential factors driving vegetation 3492 

change. 3493 
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 3494 

Fig. 4. 2. Flow chart of data and methods. 3495 

4.3.1 Preparation of high-quality MODIS datasets 3496 

Satellite image time series are rarely complete. Noise in a time series is brought 3497 

about by cloud contamination and other factors such as snow or device 3498 

malfunction (Vermote et al., 2002). Tropical environments such as Southern Africa 3499 

present a unique challenge for optical time series analysis, primarily owing to 3500 

fragmented data availability, persistent cloud cover, and atmospheric aerosols. 3501 

Pre-processing is necessary to reduce this noise because it may conceal actual 3502 

trends in a time series. In this study, although the monthly maximum value 3503 

composite (MVC) method has been used to decrease cloud and other atmospheric 3504 

effects in the original VIs data (Holben, 1986), residual noise resulting from poor 3505 

atmospheric conditions, cloud cover, aerosol loading and unfavourable sun sensor 3506 

surface viewing geometries remain (Huete et al., 2002). Therefore, the 3507 

corresponding MODIS quality assurance (QA) data layer was used to help identify 3508 

and remove low-quality observations, and only the time points in a time series that 3509 

are higher quality, cloud-free, and have nadir-view pixels with minimal residual 3510 

atmospheric aerosols are retained. The cloud-contaminated pixels and extreme off-3511 

nadir sensor view angles are considered lower quality were excluded from the 3512 

composite.  3513 
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In addition to the QA data, to retain good quality values throughout the time series, 3514 

an assessment for data transmission errors, such as line drop out or moving from 3515 

cloudy to clear sky conditions, which can cause localised Vegetation Indices (VIs) 3516 

to increase or suddenly drop, were conducted. These fluctuations in VIs are not 3517 

compatible with the gradual process of plant regrowth. The algorithm uses a 3518 

threshold of 20% as an acceptable percentage increase in VIs for regrowth from 3519 

fire or drought for arid/semi-arid dryland grassland though to dryland forests 3520 

(Viovy et al., 1992). A low filtering threshold means that most MODIS VIs pixels 3521 

with high-frequency noise related change are included, while a high filtering 3522 

threshold produces a smoother temporal profile and can smooth out important 3523 

changes. This study used a 20% threshold to reject fluctuations attributed to data 3524 

errors. By utilising the MVC, QA data, and implementing the test for sudden drops, 3525 

the observation points contaminated by noise were detected and discarded from 3526 

the time series. The presence of contaminants such as clouds and cloud shadows, 3527 

caused anomalous values which can be detected and removed to some degree, 3528 

leaving gaps in the time series (see: Fig. B. 1). As with noise, robustness to missing 3529 

data is therefore a crucial component to evaluate when considering change 3530 

detection methods, especially when applying change detection to parts of the 3531 

world with persistent cloud such as Southern Africa. The missing values at those 3532 

points were then filled by implementing a linear average interpolation method 3533 

(see: Fig. B. 1). However, this method still requires a time series of images with low 3534 

cloud cover. The linear interpolation method has been proven to be efficient, and 3535 

most of the time it is better than non-linear interpolations for predicting missing 3536 

values in ecological phenomena time series (Gnauck, 2004). Fig. 4.3 shows the time 3537 

series of the main land cover present in the study area, including forest, grassland, 3538 

altered forest, and agricultural land. 3539 
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 3540 

Fig. 4. 3. Time series representing forest, grassland, altered forest, and agricultural land. 3541 

 3542 

4.3.2 Vegetation and precipitation time series anomaly 3543 

Here, satellite data was used to first quantify the extent and severity of rainfall 3544 

anomalies and droughts with respect to long-term patterns, with a baseline of 17 3545 

years, and then to investigate the impacts of droughts and water stress on the 3546 

dryland forest vegetation. The study focused on summer vegetation activity during 3547 

the growth period. Hence the main season of interest here is January–March (JFM) 3548 

since it is a period that contributes significantly to the summer rainy season across 3549 
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Southern Africa and approximately coincides with the mature phase of El Niño 3550 

(Lyon et al., 2007).  3551 

For this study, to identify and map the spatial extent of drought response in 3552 

vegetation, the NDVI and GNDVI anomalies for a different season (the growing 3553 

season is presented) for the KAZA region are calculated relative to a base period of 3554 

2002–2019. The anomalies are constructed by subtracting the growing season VIs 3555 

(calculated over 2002–2019) from the long-term mean patterns for that period 3556 

(e.g., month or seasons). The departures from a base mean period are used to 3557 

detect periodic temporal patterns in VIs. This isolates the variability in the 3558 

vegetation signal and establishes a meaningful historical context to determine 3559 

relative drought severity. The NDVI and GNDVI anomaly was calculated using 3560 

MODIS data. The 2010 to 2019 period is presented because it is representative of 3561 

the record of the 21st century where drought events are extreme.  3562 

4.3.3 Change detection algorithms  3563 

Remote multispectral and hyperspectral measurements, especially in recent 3564 

years, have been an imperative source of data for drought and vegetation dynamics 3565 

assessment. Satellite remote sensing complements traditional ground-based data 3566 

collection through synoptic spatial coverage and reduced costs (Galiatsatos et al., 3567 

2020). Numerous time-series methods have been introduced to study the temporal 3568 

trends in pixel values across remote sensing images addressing the detection of 3569 

temporal-scale changes including seasonal, abrupt, and gradual changes. These 3570 

methods include BFAST (Verbesselt et al., 2010a), LandTrendr (Kennedy et al., 3571 

2010), Estimating Segments in Trend (DBEST) (Jamali et al., 2015), and BEAST 3572 

(Zhao et al., 2019). These change detection methods detect when a pixel value 3573 

drastically changes, indicating a change in surface reflectance, and thus, in land 3574 

cover or land use (Zhu, 2017). 3575 

Producing forest cover change information requires approaches that also account 3576 

for intra-annual seasonal or cyclic signals to identify changes in the phenological 3577 

patterns, which indicates species’ responses to environmental conditions (Menzel 3578 

et al., 1999). The study utilised BFAST and BEAST algorithms because the two 3579 

approaches use a season-trend decomposition model to take account of both inter- 3580 
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and intra-year variation in a time series, unlike other methods. These algorithms 3581 

consider seasonal changepoints in plant phenology caused by changes in 3582 

temperature and rainfall regimes as opposed to other trend detection methods 3583 

such as Detecting Breakpoints and Estimating Segments in Trend (DBEST) which 3584 

do not consider seasonality if any. 3585 

4.3.3.1  BFAST  3586 

BFAST is a widely used method for detecting trends and seasonal breaks in time 3587 

series. The BFAST approach iteratively decomposes a time series to find both trend 3588 

and seasonal changes in vegetation dynamics over a univariate time-series object 3589 

(Verbesselt et al., 2010b). The function fits a model to the data by Ordinary Least 3590 

Square (OLS) fitting on a stable history period, and to check for stability of that 3591 

same model during the monitoring period. The nonlinearity in the trend 3592 

component is also simplified into a number of individual trend segments, in order 3593 

to identify sudden structural shifts. The trend is composed of segments with 3594 

gradual changes, separated from each other by relatively brief, abrupt changes 3595 

(Verbesselt et al., 2010a). The discrepancy between the model predictions and the 3596 

data during the monitoring period is estimated using a moving sum of residuals 3597 

(MOSUM) window to test whether one or more breakpoints occur. When observed 3598 

data significantly deviate from the model, a break is detected (DeVries et al., 2015). 3599 

The hypothesis of structural stability is rejected when the MOSUM 3600 

window significantly deviates from 0 and crosses a boundary defined by the 3601 

functional central limit theorem (Zeileis et al., 2005). The difference between the 3602 

intercept and slope terms of consecutive models is used to calculate change 3603 

magnitude between breakpoints (Verbesselt et al., 2010a). Having a sufficiently 3604 

long stable history period for model fitting is critical for accurate detection of 3605 

change. The history period needs to be free of disturbances and is referred to as a 3606 

‘stable history’. Verbesselt et al. (2012) provide a guideline of a stable history 3607 

equal to or longer than two years for change monitoring with BFAST. Detailed 3608 

descriptions of BFAST can be found in Verbesselt et al. (2010a). 3609 
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4.3.3.2 BEAST  3610 

The Bayesian estimator of abrupt change, seasonal change, and trend (BEAST) is a 3611 

recent algorithm that fits both linear and nonlinear trends and disentangles trends 3612 

from seasonality; it further pinpoints abrupt shifts in the two isolated signals 3613 

(Zhao et al., 2019). The model structure of BEAST applies a Bayesian ensemble 3614 

modeling technique to aggregate numerous competing models to reduce 3615 

uncertainty, overfitting, and model misspecification. From the numerous 3616 

competing candidate models, BEAST evaluates how probable each of them is to be 3617 

a true model and synthesises these into an average to capture multiple and subtle 3618 

phenological changes (Zhao et al., 2019). BEAST algorithm uncovers complex 3619 

nonlinear dynamics from time-series of any variables, such as LAI, climatic data, or 3620 

soil moisture. To detect the rate of change in trends, BEAST infers the sign of the 3621 

change (e.g., greening, or browning) as well as the associated error and probability 3622 

of having a phenological shift, greening or browning at any time. Time series 3623 

decomposition was performed using BFAST R package and RBEAST R package in R 3624 

version 4.0.3 (R Development Core Team, 2013). Detailed descriptions of BEAST 3625 

can be found in Zhao et al. (2019). 3626 

4.3.4  Land cover classification 3627 

Figure 4.2 presents a flow chart to classify land cover from Landsat data using 3628 

Random Forest (RF) classifier. The less-cloudy, multiple-temporal Landsat images 3629 

for the selected years (2004 and 2019), were collected and merged over the study 3630 

area. This study used Quality Assurance bands and Function of Mask (Fmask) 3631 

algorithm (Zhu and Woodcock, 2012) to mask out cloud and cloud shadows. The 3632 

Quality Assurance (QA) band sets a cloud score threshold, and any pixel scoring 3633 

higher than the threshold will be masked and merged with another image from the 3634 

same area that doesn’t have any clouds. Essentially, a cloud score greater than 0.2 3635 

for a pixel shows that the pixel is a cloud (Housman et al., 2018). The composite 3636 

algorithm in Earth Engine library was also used to reduce the effect of the cloud 3637 

(Lück and van Niekerk, 2016). In the end, all imagery used for land cover detection 3638 

used in this study are free of clouds. Before land cover classification, a spatial 3639 

clipping operation was performed on images to extract the exactly defined area of 3640 

study sites within GEE.  3641 
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Ground surveys to collect data on forests, open forests, agriculture, 3642 

shrubs/grassland and other land cover classes were conducted in fieldwork in 3643 

Namibia in 2019, see section 4.2.2 for details on fieldwork and sampling design. A 3644 

total of 165 points were visited and collected from the field, and additional points 3645 

of 498 points were randomly added. A total of 674 points were available for the 3646 

land cover mapping. Half of the 674 points collected for training the classifiers (i.e., 3647 

‘train’ points on GEE), and the other half (341 points) were used for accuracy 3648 

assessment. Additional ground truth data for land cover classification training and 3649 

verification for 2004 was also collected through Landsat, Sentinel 2, high-3650 

resolution Google Earth, and Open Street Map using a visual interpretation. These 3651 

sources were selected because they are freely accessible, consist of high-quality 3652 

images, and this technique was also used by previous studies (Rwanga and 3653 

Ndambuki, 2017). Based on local knowledge, this study categorised land cover into 3654 

five groups, including forest, open forests/shrubs, agriculture/barren, water, and 3655 

urban areas. 3656 

The classification of multi-temporal satellite imagery was performed on a per-pixel 3657 

basis using RF classification (Li et al., 2017). The classifiers are trained with the 3658 

spectral characteristics of these known areas, by assigning each pixel to the five 3659 

target classes including forest, open forests/shrubs, agriculture/barren, water, and 3660 

urban areas. RF is a popular method of classification and clustering based on an 3661 

ensemble of decision trees (DT). RF was used because it overcomes problems of 3662 

overfitting experience by other decision trees (DT) classifiers such as Classification 3663 

and Regression Tree (CART) (Cánovas-García et al., 2017). RF is a development of 3664 

the CART method by applying bagging and random feature selection to DT, which 3665 

is to randomly select several trees that have many iterations so that they resemble 3666 

forests (Breiman, 2001).  3667 

 3668 

4.3.5 Accuracy assessment  3669 

Once the Land cover classification is completed, the final step is to conduct an accuracy 3670 

assessment to quantitively assess the effectiveness of the method in correctly assigning 3671 

the pixels to the proper land cover classes. Accuracy assessments are one of the most 3672 
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important steps of classification because it validates the output classification product as 3673 

well as the quality of the data itself, by comparing the pixels of the classified image 3674 

with ground truth data (Congalton et al., 1983). In this study, the full set of 165 training 3675 

data visited and collected in the field and 498 added training data were divided into two 3676 

subsamples, one used for algorithm training and the other used for error testing so that 3677 

the same sample is never used for both training and testing (Geiß et al., 2017). For each 3678 

classification accuracy assessment, this study used the popular measures extracted from 3679 

confusion matrix reports, such as overall accuracy (OA), producer accuracy (PA) and 3680 

user accuracy (UA) (Janssen and Vanderwel, 1994; Story and Congalton, 1986). An 3681 

error matrix is generated by comparing the Land cover types calculated by the algorithm 3682 

for a given pixel with the true Land cover class identified by the ground truth sample. 3683 

The error matrix is a simple grid that lists the target classes and their respective number 3684 

of correct and incorrect pixel classifications (Congalton et al., 1983). The uncertainty in 3685 

estimated classification accuracy depends on the uncertainty in the true accuracy of the 3686 

classifier, the number of samples and the accuracy of the observed ground truth 3687 

(Carlotto, 2009). An overall classification error including kappa coefficient, 3688 

commission and omission statistics were also calculated (Fung and LeDrew, 1988). 3689 

4.3.6 Validation of estimated forest changes and disturbance 3690 

The BFAST change detection was conducted to provide precise estimates of changed 3691 

and unchanged forest areas. To evaluate the accuracy of the change map and validate 3692 

the estimates of the predicted change for the whole study area, the study used 341 points 3693 

in total, 165 points were visited and collected in the field and 176 points were randomly 3694 

added as detailed in the above section. A change analysis using a stratified random 3695 

sampling design was conducted to provide precise estimates of disturbances in the study 3696 

area. Stratification was on patterns of past disturbances selected according to "the risk 3697 

of disturbances". The communal areas that are unprotected were assigned “High risk”, 3698 

the Zambezi State Forest that is semi-protected (red-coloured polygon) was assigned 3699 

“Medium risk” and the Mudumu National Park (Aqua-coloured polygon) that is 3700 

protected was assigned “Low risk” (see: Fig. 4.1). The accuracy of detected changes and 3701 

unchanged estimates from BFAST was independently identified using various 3702 

information sources including ground observation data collected from the field in 2019, 3703 

land cover classification and image interpretation of high spatial resolution satellite 3704 

imagery including Landsat, Google Earth images, and Sentinel 2. The study used the 3705 
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method of accuracy assessment as recommended by the GOFC-GOLD, 2014 guidelines 3706 

to help identify and quantify uncertainty in the level and rate of disturbances in dryland 3707 

forest areas (GOFC-GOLD, 2014). Watt et al. (2020) and Galiatsatos et al. (2020) 3708 

utilised this method to develop monitoring, reporting and verification (MRV) systems to 3709 

quantify and validate the accuracy of the change in forest cover carbon and carbon 3710 

emissions in Guyana. This study adopted this method to validate the estimated changes 3711 

because it allows the generation of detailed, consistent, transparent, and verifiable 3712 

assessment of forest area change (GFOI, 2016). 3713 

3714 
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 3715 

4.4 Results  3716 

4.4.1 Spatial pattern of vegetation and drought stress in 3717 

KAZA TFCA  3718 

To provide insights into the relationship between precipitation and disturbances, 3719 

and the general vegetation dynamics response to drought, the spatial and temporal 3720 

variations of the VIs (NDVI and GNDVI) anomaly for the growing seasons of 2002 3721 

to 2019 were plotted as shown in Fig. 4.4. The spatial pattern of both NDVI and 3722 

GNDVI anomaly shows vegetation productivity increased (green to dark green 3723 

colours; > 0.05) in 2006, 2008, and 2017 which correspond to higher than average 3724 

rainfall in these years. Regionally, negative seasonal vegetation anomalies (NDVI 3725 

and GNDVI) were mainly caused by large-scale droughts. The anomalies of 3726 

precipitation in the JFM season (see: Fig. 4.4) remained negative over the entire 3727 

KAZA region in 2002-2003, 2015-2016, and 2019 (red to dark red colours). The 3728 

centre of the maximum rainfall deficit was mostly concentrated eastward of KAZA 3729 

in 2016 and 2018. For vegetated land areas in KAZA, precipitation is a dominant 3730 

factor controlling the growing season in the region, as indicated by the anomaly in 3731 

vegetation and rainfall (see: Fig. 4.4). A close comparison indicates that the 3732 

extreme droughts in 2015 and 2019 (red to dark red colours) greatly reduced 3733 

vegetation productivity (brown colours in NDVI and GNDVI) which is coincident 3734 

with severe water stress in these years. The lag in vegetation greenness between 3735 

drought stress and browning rates extending to 2016, stands out based on the 3736 

extent of severe decrease of greenness regardless of rainfall returning to normal.  3737 
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 3738 

 3739 

Fig. 4. 4. Spatial pattern of ndvi and gndvi and precipitation anomalies for the 21st century 3740 

from 2010 through 2019. 3741 

 3742 
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4.4.2 Comparison of the sensitivity of BFAST and BEAST 3743 

algorithms 3744 

The study examined and compared the effectiveness of two time-series 3745 

decomposition algorithms (BFAST and BEAST) on three events to illustrate the 3746 

proposed methodology, which included: 1. Clear-cut and burnt forest, 2. Drought 3747 

impact and degradation forest, and 3. A stable, recovering forest. Table 4.2 shows 3748 

the dates of detected trend and seasonal breakpoints identified using BFAST and 3749 

BEAST algorithms for both NDVI and GNDVI time series.  3750 

 3751 

Table 4. 2. Dates of trend and seasonal breakpoint detection relative to BFAST and BEAST 3752 

algorithms. The Bold date represents the seasonal shift with the highest probability with a 3753 

vertical dotted line.  3754 

Clear-cut and burnt forest 

  Trend change Date Seasonal change Date 

BFAST NDVI  2003, 2005, 2018 0 

GNDVI 2003, 2005, 2009, 

2018 

0 

BEAST NDVI 2003, 2005, 2007, 

2017, 2018 

2015-2017 

GNDVI 2003, 2005, 2006, 

2007, 2009, 2017, 

2018 

2015-2017, 2019 

Degrading Forest  

BFAST NDVI  0 0 

GNDVI 2004, 2005, 2017 0 

BEAST NDVI 2004, 2005, 2015, 

2017, 2019 

2008-2009, 2012-

2013 
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GNDVI 2004, 2005, 2010, 

2015, 2016, 2017, 

2019 

2008-2009, 2011-

2013, 2018-2019 

A stable, recovering forest  

BFAST NDVI  0 0 

GNDVI 0 0 

BEAST NDVI 2017 2008, 2010-2011, 

2015-2016 

GNDVI 2017 2006, 2008, 2015-

2016 

 3755 

4.4.2.1  Clearing of forest to non-forest 3756 

Fig. 4.5 and 6 show a forest stand plot that was forest initially, however the forest 3757 

experienced a series of disturbances including a fire event around 2017 causing a 3758 

sudden loss in forest cover, and a clear-cut activity that resulted in complete forest 3759 

loss between 2018 and 2019. There were also major drought events that took 3760 

place in 2002-2003, 2005, 2015 and 2019 (see: Fig. 4.4). Photos taken in February-3761 

May 2019 of each corresponding stand forest plot and Landsat time series images 3762 

illustrating changes are shown in the supplementary information (see: Fig. B. 1 and 3763 

B. 2). 3764 

4.4.2.1.1 BFAST algorithm application on a Clear-cut and burnt forest:  3765 

As shown in Fig 4.5, BFAST algorithm decomposed the NDVI time series and fitted 3766 

seasonal, trend, and remainder components. BFAST algorithm applied on the NDVI 3767 

time series detected three breakpoints in the trend component. BFAST predicted a 3768 

disturbance around 2003 and 2005 because of severe drought in the region, which 3769 

caused the forest to be stressed and the NDVI to decrease significantly. BFAST 3770 

algorithm run on the NDVI time series also identified the occurrence of a 3771 
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breakpoint from clear-cut forest conversion to non-forest at the end of 2018. 3772 

Around 2017 this location undergoes burning which triggered disturbance around 3773 

the plot, however, BFAST failed to identify this trend in the NDVI trajectory. 3774 

Furthermore, BFAST algorithm applied to the NDVI time series also failed to 3775 

identify the disturbance in forest caused by a moderate drought event in 2007 and 3776 

its recovery in 2009. 3777 

On the other hand, BFAST algorithm run on the GNDVI time series produced four 3778 

breakpoints in the trend component: three breakpoints in 2003, 2005 as a result of 3779 

severe drought and deforestation towards the end of 2018. Further, using the 3780 

GNDVI time series, BFAST identified the abrupt changes caused by vegetation 3781 

recovery in 2009 that are not identified by the NDVI time series trajectory as 3782 

shown in Fig 4.5. Even though using GNDVI time series, BFAST identified the 3783 

vegetation recovery in 2009, it also failed to identify the breakpoint caused by a 3784 

moderate drought event in 2007. BFAST algorithm did not detect abrupt changes 3785 

in the seasonal component of NDVI and GNDVI time series (Fig. 4.5).  3786 

 3787 
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 3788 

Fig. 4. 5. Example of the corresponding BFAST algorithm output for NDVI and GNDVI 3789 

extracted from a forest stand that underwent conversion from clear-cut to non-forest 3790 

vegetation. The vertical dotted lines represent the dates of detected breakpoints, while the 3791 

red horizontal bars represent the associated confidential intervals. The raw time series 3792 

(Yt), the seasonal component (St), the trend component (Tt), and the noise (et) 3793 

component, are also shown. The location of the corresponding pixels, field photo taken in 3794 

Namibia in 2019 and Landsat time series images illustrating changes are shown in the 3795 

supplementary information (see: Fig. B. 1 and B. 2). 3796 

4.4.2.1.2 BEAST algorithm application on a Clear-cut and burnt forest:  3797 

Fig. 4.6 shows BEAST algorithm applied to the NDVI and GNDVI time series to 3798 

detected phenological and trend changes. BEAST algorithm applied on the NDVI 3799 

time series detected five breakpoints in the trend component. The four 3800 

breakpoints including two breakpoints in 2003 and 2005 as a result of severe 3801 

drought, one breakpoint in 2018 from deforestation and one abrupt change caused 3802 

by 2009 moderate drought, similar to the changes identified by BFAST on the 3803 

GNDVI time series in Fig. 4.5. However, the application of BEAST algorithm on the 3804 

NDVI time series also detected one breakpoint in the trend component in 2017 as a 3805 

result of vegetation increase (due to increase in rainfall in 2017) following the fire 3806 

event in 2017 that neither application of BFAST was able to detect.  3807 

The application of BEAST algorithm to the GNDVI time series detected the 3808 

occurrence of five breakpoints, two from drought in 2003 and 2005, the fire event 3809 

of 2017, the forest clear-cut in 2018, and vegetation increase in 2017, similar to 3810 

exploring the NDVI signal with BEAST algorithm. However, BEAST algorithm 3811 
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applied to the GNDVI time series was also able to uncover the beginning of 3812 

vegetation disturbance and the vegetation recovery, for example it captures the 3813 

correct year of the subtle decrease in forest cover in 2007 due to 2007 drought and 3814 

its recovery in 2009. Similarly, it detects another decrease in forest cover due to 3815 

drought in 2015 and its recovery in 2017 that was not detected using BEAST on 3816 

NDVI time series. For both indices, BEAST algorithm detected phenological 3817 

changes resulting from the 2015-2016 drought. BEAST applied to the GNDVI time 3818 

series further detected a seasonal shift associated with 2019 logging and drought 3819 

(see: Fig. 4.6). In contrast, BFAST algorithm uncovered a stable seasonal trajectory 3820 

(see: Fig. 4.5), suggesting no phenological change during this period (2002-2019).  3821 

 3822 

 3823 
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Fig. 4. 6. Example of the decomposition generated by the application of BEAST algorithm 3824 

for the NDVI and GNDVI time series extracted from a forest stand that underwent 3825 

conversion from clear-cut to non-forest vegetation. Seasonal and Trend represent the best 3826 

fitted seasonal and trend signals (red line), respectively. The vertical dotted lines 3827 

represent the dates of detected breakpoints in the trend/seasonal components, while the 3828 

black lines at the bottom panels represent the probabilities of the changepoint in the 3829 

seasonal/trend components. The location of the corresponding pixels, field photo taken in 3830 

Namibia in 2019 and Landsat time series images illustrating changes are shown in the 3831 

supplementary information (see: Fig. B. 1 and B. 2). 3832 

 3833 

4.4.2.2  Drought impact and degraded forest  3834 

Fig. 4.7 and 8 show the results from modelling a forest stand plot that has 3835 

undergone multiple disturbances from drought coupled with wildlife grazing and 3836 

mega-herbivore pushovers, as a result of its location near to the Chobe river 3837 

frontage. Photos taken in February-May 2019 of each corresponding stand forest 3838 

plot and Landsat time series images, both illustrating changes are shown in the 3839 

supplementary (see: Fig. B. 3 and B. 4).  3840 

 3841 

4.4.2.2.1 BFAST algorithm application on a degraded forest:  3842 

Fig. 4.7 presents BFAST algorithm decomposition of the NDVI and GNDVI time 3843 

series. BFAST was not able to capture any meaningful information relating to 3844 

disturbances to the forest from the trend and seasonal components throughout the 3845 

period of 2002 to 2019. None of the severe climatic events or moderate drought 3846 

years were identified, and the NDVI trend appeared stable when using BFAST 3847 

algorithm. This is despite the original time series showing some instances of an 3848 

NDVI drop during this period.  3849 

However, using BFAST algorithm on the GNDVI time series, three breakpoints 3850 

were detected in 2004, 2005 and 2017. The two abrupt changes in 2004 and 2006, 3851 

correspond to the drought event in 2003 and 2005 (or to an increase in rainfall in 3852 

2004 and 2006 after the drought), were detected (see: Fig. 4.4 and 7). The 3853 
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breakpoint in 2017 represent a vegetation increase as a result of rainfall increase 3854 

in 2017. BFAST did not detect abrupt changes in the seasonal component of NDVI 3855 

and GNDVI time series as shown in Fig. 4.7.  3856 

3857 

 3858 

Fig. 4. 7. Example of the corresponding BFAST for NDVI and GNDVI extracted from a forest 3859 

stand of a degraded forest. The vertical dotted lines represent the dates of detected 3860 

breakpoints, while the red horizontal bars represent the associated confidential intervals. 3861 

The raw time series (Yt), the seasonal component (St), the trend component (Tt), and the 3862 

noise (et) component, are also shown. The location of the corresponding pixels, field photo 3863 

taken in Botswana in 2019 and Landsat time series images illustrating changes are shown 3864 

in the supplementary information (see: Fig. B. 3 and B. 4). 3865 

 3866 

4.4.2.2.2 BEAST algorithm application on a degraded forest: 3867 

BEAST algorithm applied to the NDVI time series (Fig. 4.8) detected five 3868 

breakpoints as a result of extreme effects of the 2005, 2015, 2019 droughts and the 3869 

increase in rainfall in 2004, 2006, and 2017, which BFAST algorithm applied to the 3870 
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same time series did not detect, as shown in Fig. 4.7. The application of BEAST 3871 

algorithm to the GNDVI time series was able to detect seven breakpoints, including 3872 

the similar extreme droughts as shown with the NDVI, which were timed to similar 3873 

dates. The increase in rainfall in 2008, and the drought stresses of 2010-2012, 3874 

which both have a smaller magnitude of abrupt change, were also identifiable in 3875 

the trend within the GNDVI, but not in the NDVI. BEAST algorithm was also able to 3876 

describe the magnitude of drought impacts and recovery more clearly than when 3877 

using BFAST. The drought impact detected by applying BEAST algorithm to the 3878 

GNDVI time series in 2010, which is smaller in terms of the magnitude of the 3879 

abrupt change, was not detected when using NDVI by either algorithm, as shown in 3880 

Fig. 4.8. The Bayesian approach (BEAST) detected a phenological shift in 2008 3881 

when applied to the NDVI time series. Three seasonal shifts resulting from changes 3882 

in precipitation in 2008, 2010, and the 2019 drought, were noticeable in BEAST-3883 

derived seasonal trend of the GNDVI time series as shown in Fig. 4.8.  3884 

 3885 
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 3886 

Fig. 4. 8. Example of the decomposition generated by the application of BEAST algorithm 3887 

for the NDVI and GNDVI time series extracted from a forest stand of a degraded forest. 3888 

Seasonal and Trend represent the best fitted seasonal and trend signals (red line), 3889 

respectively. The vertical dotted lines represent the dates of detected breakpoints in the 3890 

trend/seasonal components, while the black lines at the bottom panels represent the 3891 

probabilities of the changepoint in the seasonal/trend components. The location of the 3892 

corresponding pixels, field photo taken in Botswana in 2019 and Landsat time series 3893 

images illustrating changes are shown in the supplementary information (see: Fig. B. 3 and 3894 

B. 4). 3895 

4.4.2.3 Stable forest  3896 

Fig. 4.9 and 10 show the results from modelling a forest stand plot that has 3897 

experienced limited human and wildlife disturbance and is considered to be stable. 3898 

Photos taken in February-May 2019 of each corresponding stand forest plot and 3899 

Landsat time series images, both illustrating changes are shown in the 3900 

supplementary (see: Fig. B. 5 and B. 6). 3901 

4.4.2.3.1 BFAST algorithm application on a stable forest:  3902 

BFAST algorithm detected no breakpoints in trend and seasonality using both the 3903 

NDVI and GNDVI time series. Both indices show a gradual increase in the forest 3904 

cover. In both indices, the application of BFAST failed to detect any seasonal 3905 

change. 3906 
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 3907 

 3908 

Fig. 4. 9. Example of the corresponding BFAST algorithm output for NDVI and GNDVI 3909 

extracted from a forest stand that considered stable. The vertical dotted lines represent 3910 

the dates of detected breakpoints, while the red horizontal bars represent the associated 3911 

confidential intervals. The raw time series (Yt), the seasonal component (St), the trend 3912 

component (Tt), and the noise (et) component, are also shown. The location of the 3913 

corresponding pixels, field photo taken in Namibia in 2019 and Landsat time series images 3914 

illustrating changes are shown in the supplementary information (see: Fig. B. 5 and 4. 6). 3915 

 3916 

4.4.2.3.2 BEAST algorithm application on a stable forest:  3917 

BEAST algorithm showed a gradual increase in forest, and no abrupt trend as a 3918 

result of a disturbance was identified in in either the NDVI or the GNDVI time 3919 
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series as shown in Fig. 4.10. One exception was an abrupt change as a result of 3920 

forest cover increases was evident in 2017, as indicated by a high probability of 3921 

this change in both indices, which was associated with plentiful rainfall in 2017. In 3922 

terms of a seasonal signal, both indices show the phenological shifts around the 3923 

2008 and 2015-2016 drought events, although the GNDVI time series was able to 3924 

detect a larger number of seasonal shifts. These seasonal changes are detected in 3925 

severe drought years that were followed by an increase in rainfall. For example, 3926 

the seasonal shift in the 2005 drought was followed by an increase in rainfall in 3927 

2006, and the seasonal shift in the 2015-2016 drought was followed by relatively 3928 

high levels of precipitation in 2017, as shown in Fig. 4.4 and 4.10. 3929 

 3930 

 3931 
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Fig. 4. 10. Example of the decomposition generated by the application of BEAST algorithm 3932 

for the NDVI and GNDVI time series extracted from a forest stand that considered stable. 3933 

Seasonal and Trend represent the best fitted seasonal and trend signals (red line), 3934 

respectively. The vertical dotted lines represent the dates of detected breakpoints in the 3935 

trend/seasonal components, while the black lines at the bottom panels represent the 3936 

probabilities of the changepoint in the seasonal/trend components. The location of the 3937 

corresponding pixels, field photo taken in Namibia in 2019 and Landsat time series images 3938 

illustrating changes are shown in the supplementary information (see: Fig. B. 5 and B. 6). 3939 

  3940 

4.4.3 Robustness of predicting forest dynamics using 3941 

breakpoints and change magnitude 3942 

The examples shown in Fig. 4.11 demonstrate the differences in magnitude of 3943 

GNDVI that were commonly observed to be associated with varying degrees of 3944 

forest cover change. The cumulative probability of each of the change classes 3945 

(deforestation, degradation, vegetation regrowth, or no-change) detected from the 3946 

application of BFAST algorithm using the MODIS time series from 01/01/2010 to 3947 

31/12/2019 is shown in Fig. 4.11 and 12. The study only shows the breakpoints 3948 

from 2010 to 2019 as these years help to highlight the impact of exceptional 3949 

drought events (Fig. 4.4), fire, and large-scale forest clear-cutting events in the 3950 

Mudumu NP and Zambezi ST, resulting in a negative breakpoint magnitude. Fig. 3951 

4.11A presents 2002 Landsat 5 (LC5) ETM, 2019 Landsat 8 (LC8) OLI images, and 3952 

the cumulative change map overlaid with field points collected with land cover and 3953 

vegetation measurement (black-coloured circles) mapped in Zambezi ST. The 3954 

results of the survey plot (black circle coloured blue) shown with an arrow are 3955 

represented in Figure 4. 11 A-C. Figure 4. 11A shows the Landsat image in 2002 3956 

and 2019 with the survey plot undisturbed (forest) in 2002, and when it is turned 3957 

into a non-forest in 2019. A cumulative change map of MODIS produced with 3958 

BFAST in Figure 4. 11 A shows the negative break of the same survey plot. 3959 

Similarly, figure 4. 11 B shows the time series of the forest pixel with a negative 3960 

break detected in April 2015, while Figure 4. 11 C represents the actual 3961 

photograph of the survey plot with cut-down trees on the ground. This approach 3962 

used prior knowledge of disturbances such as clearing, and BFAST allowed the 3963 
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most significant change event in the time series to be detected. Prior knowledge of 3964 

disturbances such as clearing was used in this approach and BFAST allowed the 3965 

most significant change event in the time-series to be detected. For mapping 3966 

cumulative change, the probability of the deforestation class increased with 3967 

decreasing change magnitude, showing a strong negative relationship with change 3968 

magnitude, whilst the probability of the degradation class showed a weak negative 3969 

relationship with change magnitude. The probability of vegetation growth class 3970 

increased with increasing change magnitude, showing a positive relationship with 3971 

change magnitude.  3972 

Maps showing the time of the changepoint event and the magnitude of the GNDVI 3973 

change are displayed in Fig. 4.11 and 12. Fig. 4.11A shows the negative breakpoint 3974 

with high mean negative magnitude of change due to forest logging and clear-3975 

cutting to almost no vegetation between 2018 and 2019 as shown by the top circle. 3976 

Other breakpoints with high mean negative magnitude due to forest clearing for 3977 

agriculture and urban areas are also observed and shown with the two bottom 3978 

circles. The breakpoint with positive mean magnitude is observed in a square 3979 

showing an agricultural area (farmland) that was abandoned and vegetation 3980 

regrowth gradually increased by 2019 (Fig. 4.11A). As shown by the plot shown by 3981 

the black arrow (see: Fig. 4.11A), the negative break in the forest pixel is detected 3982 

in April 2015 and is associated with extreme drought, as shown by the red vertical 3983 

line in the GNDVI time series in Fig. 4.11B. Another disturbance in the forest stand 3984 

plot caused a large reduction in GNDVI in 2019 as a result of forest clear-cutting 3985 

for timber, as also illustrated in the change map (Fig. 4.11A), the time series (Fig. 3986 

4.11B), and the field photo taken in 2019 (Fig. 4.11C).  3987 
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   3988 

Fig. 4. 11. A: 2002 LC5 ETM, 2019 LC8 OLI image and a map of the magnitude of change in 3989 

the trend component from 01/01/2010 to 01/12/2019 generated by BFAST algorithm in 3990 

and around the Zambezi ST and Mudumu NP; the colour scale represents the magnitude 3991 

and direction of change. The circles here represent abrupt changes with a negative 3992 

magnitude; a square represents a vegetation regrowth with a positive magnitude, and the 3993 

arrow shows a forest stand plot for a forest disturbed by drought and subsequent forest 3994 

canopy clearing. Fig.4.11. B: MODIS time series from 01/01/2002 to 31/12/2019 for a plot 3995 

shown by an arrow in Fig. 4.11. A. Fig. 4.11. C: Shows the photograph of the selected plot 3996 

(location coordinate is 17.49°S, 24.21°E) in Fig. 4.11. A, with logged for timbers 3997 

photographed during a field campaign in Zambezi ST near the border of Namibia and 3998 

Zambia in 2019. 3999 

 4000 

4.4.4 Spatial pattern of predicted forest changes using 4001 

breakpoints and magnitude 4002 

Fig. 4.12 presents the spatial pattern of the extracted trend classification, showing 4003 

the predicted magnitude of change in the trend component and the estimated date 4004 

of change generated from BFAST algorithm applied to the GNDVI time series on the 4005 

A 

C B 
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Zambezi region, Namibia. The final disturbance map showing disturbed versus 4006 

undisturbed areas highlights distinct spatial patterns across the study area. Fig. 4007 

4.12A shows the predicted abrupt change in the trend component. It can be seen 4008 

that the Mudumu NP remains undisturbed, although there are distinct spatial 4009 

patterns of forest degradation indicated by low magnitude negative breakpoints at 4010 

the edge of the park, around the communal villages in Sobbe conservancy. 4011 

Examining the disturbance map, forest decline from clear-cutting and forest 4012 

conversion to agricultural land were observed in Zambezi ST and in the 4013 

community conservancy and communal area surrounding the Zambezi SF and 4014 

Mudumu NP. The disturbance trends and extreme vegetation loss from 4015 

deforestation and clear-cuts are shown by extreme magnitude negative breaks and 4016 

vegetation degradation (Fig. 4.12A). Although most of the clear-cuts are associated 4017 

with an extreme magnitude negative breakpoint, some cases are associated with a 4018 

low magnitude negative/positive breakpoint. This is shown, for example, in areas 4019 

with forest clear-cuts replaced by matured shrubs in the northernmost section of 4020 

the study area (Zambezi ST) near the border between Namibia and Zambia.  4021 

The map also shows continuous patches of forest showing a positive magnitude 4022 

breakpoint, which denotes a forest recovery, vegetation regrowth that follows an 4023 

earlier event, and vegetation less affected by disturbance as shown by positive 4024 

magnitude of change in Fig. 12 A. More than 50% of the breakpoint dates are in the 4025 

period between 2016 and 2019, with 2018 having the highest number of 4026 

breakpoints. The high percentage of breakpoints detected in this period, and a 4027 

negative magnitude, reflect both the impact of the 2015/2016 and 2018/2019 4028 

droughts, coupled with clear-cutting of the forest stands. 4029 
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 4030 

Fig. 4. 12. A. shows the magnitude of change in the trend component and the predicted 4031 

time of change generated by BFAST; red colour represents negative breakpoint typically 4032 

associated with vegetation loss. Green colour represents positive breakpoint associated 4033 

with vegetation gain. The turquoise polygon shows Zambezi ST, and the black polygon 4034 

shows Mudumu NP. B: shows the estimated year of change from 2010 to 2019.  4035 

 4036 

4.4.5  Validation of spatial pattern of predicted forest 4037 

changes and disturbances 4038 

The BFAST model was used to estimate forest disturbance for the complete study 4039 

area (Fig. 4.12). The validation assessment used a weighted average of the within-4040 

stratum estimates to ensure the weights are proportional to size of high, medium 4041 
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and low ‘risk of change’ strata. The results of the comparable land cover classes for 4042 

the BFAST time series analysis and the interval-based per-pixel Random Forest 4043 

classification are shown in Tables 4.3 and 4.4. The complete tables with all the area 4044 

change classes for the two approaches are in the supplementary material (Tables 4045 

B.2, B.3 and B.4). The land cover classes for the interval-based per pixel 4046 

classification in Table B.3 were calculated based on post-classification 4047 

reorganisation of land cover area transition table (Table B. 4), where the similarly 4048 

classified class areas were summed together.  4049 

The results are presented in Table 4.4 and both methods show a land transition 4050 

from forest to non-forest (deforestation) in the region. The interval-based per-4051 

pixel classification estimated that the conversion of forest to non-forest land was 4052 

87,251 ha. The BFAST time series estimates of deforestation are corresponding to 4053 

the two-interval pixel-based classification showing an area change of 99,911 ha 4054 

(SE 9,753 ha) throughout the entire 2002–2019 period. The two-interval 4055 

classification estimated that the total unchanged forest area was 147,875 ha. These 4056 

values are higher as compared to 106,390 ha of unchanged forest land estimated 4057 

by BFAST time series analysis. The interval-based pixel-based classification which 4058 

bases the change estimates on differencing between images at only two points in 4059 

time has little capability to distinguish forest degradation, which is the progressive 4060 

reduction/losses in forest cover that do not qualify as deforestation. As a result, it 4061 

is likely that the interval-based classification does not detect forest degradation as 4062 

well as BFAST (time series) approach. The BFAST time series analysis captures the 4063 

subtle change of forest conversion to the degraded forest with an estimate of 4064 

33,131 ha (SE 6,859 ha). In addition, BFAST time series analysis found that 4065 

approximately 23,409 ha (SE 556,8 ha) of degraded forest was converted to forest 4066 

land. However, the degraded forest estimates from the BFAST time series are not 4067 

comparable with the two-based interval per pixel classification because it does not 4068 

detect degradation (see: Table 4.4). The BFAST algorithm can iteratively estimate 4069 

and characterize temporal changes (time) and characterizes the spatial change by 4070 

its magnitude and direction (“deforestation”, “degradation” and “no change”). The 4071 

sample-based estimates and validation of BFAST used in this study also provide 4072 

the standard error for the continuous changes. For this study, the standard error 4073 

for the non-disturbed forest class was lower as compared to the disturbed classes 4074 
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(see: Table 4. 3). It is also important to note that the region has no Landsat images 4075 

available in 2002, and few images for the year 2003, therefore the two-interval 4076 

classification used the starting year of 2004, which can account for some difference 4077 

in land cover class areas. In summary, BFAST (time series) approach at one level 4078 

agrees with a two-interval traditional classification when identifying discrete 4079 

change but it also identifies areas of more subtle change and so adds value to the 4080 

analysis and interpretation. In broad terms, the two approaches agree where direct 4081 

comparison is possible, but the differences also help to stimulate important 4082 

questions about the differences. 4083 

 4084 

Table 4. 3. Area changes of BFAST using sample-based estimates and the observed 4085 

disturbance change rates. 4086 

Change identified by BFAST Area 

Hectares 

(ha) 

Standard 

Error (ha) 

2.5 % 

(ha) 

97.5 % 

(ha) 

Non-disturbance (no change)  

(Stable Forest) 

106,390 9,817 87,148 125,631 

Non-disturbance -low negative change 

(Stable forest to Degradation)  

33,132 6,859 19,688 46,576 

Non-disturbance -large negative change 

(Stable Forest to Deforestation)  

99,911 9,753 80,795 119,027 

Low negative break -large negative change 

(Degradation to Deforestation)  

59,515 8,154 43,533 75,497 

Low negative changes -non-disturbance 23,409 556,8 12,497 34,322 
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(Degradation to Stable Forest)  

 4087 

Table 4. 4. Types of changes identified by BFAST and Random Forest classification for the 4088 

period 2004 and 2019. 4089 

Type of Changes Two interval 

Classification 

2004 and 

2019 

Area(ha) 

BFAST Time Series analysis 

2002 to 2019 

Area (ha) 

Forest 147,875 106,390 

Forest to Non-forest 87,251 99,911 

Forest to Degraded Forest - 59,515 

Degraded Forest to Forest - 33,131 

Degraded Forest to Non-

forest 

- 23,409 

Non-forest-Forest 41,447 54,517 

 4090 

4.4.6  Land cover classification 4091 

The land cover classifications using the RF algorithm, in 2004 and 2019, are illustrated 4092 

in Fig. 4.13. To quantify the land use changes over the years, the study analysed the 4093 

error matrix which showed any classification errors that may have occurred such as a 4094 

pixel being misclassified. Table 4.6 presents the confusion matrix and accuracy 4095 

assessment for land cover classification in the years 2004 and 2019. For classification 4096 

accuracy, Landis and Koch et al (1977) suggested the Kappa result with values ≤ 0 4097 

indicate no agreement and 0.01–0.20 denote none to slight, 0.21–0.40 fair, 0.41– 0.60 4098 

moderate, 0.61–0.80 indicate substantial, and 0.81–1.00 as almost perfect agreement 4099 

(Sim and Wrigh, 2005). The accuracy assessment on the 2004 and 2019 classified 4100 
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images showed an overall classification accuracy of 82% and 88%, and an overall 4101 

Kappa Statistic of 0.74 and 0.83, respectively. The classification results and Kappa 4102 

statistics obtained in this study show a very good agreement between classes which is 4103 

considered sufficient for the land cover map in the Zambezi region. The five classes that 4104 

were used (forest, open forests/shrubs, agriculture/barren, water, and urban areas) 4105 

resulted in 100% accuracy for the water and urban areas, and 90% for agriculture. 4106 

However, accuracy was somewhat lower in the other two classes of forest and open 4107 

forest/shrubs areas, with 82% and 76% accuracy, respectively (Table 4.6). The reason 4108 

for the high accuracy of water was due to the small area comprised of water and urban 4109 

areas. The two classes had a low number of training sample pixels because the training 4110 

points were distributed proportionally to the study area. The classification for forests, 4111 

open forest/shrubs and agriculture/barren exhibited low scores in both user accuracy and 4112 

producer accuracy. The reason for the low accuracy of open forests/Shrubs was due to 4113 

this class being often mixed with forests and agriculture/barren in this study, reducing a 4114 

large percentage of accuracy (more than 20% reduction). 4115 

 4116 

Fig. 4. 13. Land cover classification in 2004 and 2019; panel A1 and A2 are zoom in of land 4117 

cover in 2004 and 2019. 4118 
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 4119 

Table 4. 5. Confusion matrix of land cover classification in 2004 and 2019 using Random 4120 

Forest. 4121 

Specifi

cation 

 

 

 

 

 

 

 

Ground Truth  

 

Class 

Name 

Water Forest Open 

Forest

s/ 

Shrub

s 

Urban Agricult

ure 

Total User’

s 

Accu

racy 

Error of 

commissi

on (%) 

 

 

 

 

 

 

 

Classif

ied 

Map 

2004 

Water 21 0 0 0 0 21 1 0 

Forest 3 111 20 0 2 154 0.82 0.16 

Open 

Forests/ 

Shrubs 

1 23 101 2 6 133 0.76 0.24 

Urban 0 0 0 22 0 22 1 0 

Agricultu

re 

0 0 1 2 26 29 0.90 0.1 

Total  25 134 122 26 34 341   

Producer

’s 

Accuracy 

0.84 0.83 0.83 0.85 0.76 Overall 

Accura

cy 

0.82  

Error of 

omission 

(%) 

0.16 0.17 0.17 0.15 0.24 Kappa 

coefficie

nt 

0.74  

2019 

Classif

ied 

Map 

Water 27 0 0 0 0 27 1 0 

Forest 0 40 10 0 1 51 0.78 0.21 

Open 

Forests/ 

Shrubs 

0 8 109 0 9 126 0.87 0.13 

Urban 0 0 2 24 0 26 0.92 0.07 
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Agricultu

re 

0 1 9 0 101 111 0.91 0.09 

Total 27 49 130 24 111 341   

Producer

’s 

Accuracy 

1 0.82 0.84 1 0.91 Overall 

Accura

cy 

0.88  

Error of 

omission 

(%) 

0 0.18 0.16 0 0.09 Kappa 

coefficie

nt 

0.83  

 4122 

4.4.7 Land cover change detection  4123 

The land cover change map conversion from 2004 to 2019, is illustrated in Fig. 4.14. In 4124 

general, open forest/shrubs were the dominant land cover type followed by forests in both 4125 

years. In the northeast of the Zambezi State Forests, there was a significant change as 4126 

forested areas were replaced by barren/agricultural land as a result of forest logging. A 4127 

closer inspection of the classified maps revealed that most of the agricultural expansion 4128 

occurs primarily around the communal areas in the northern part of the study area, in 4129 

comparison to the southern part where protected areas such as Mudumu National Park 4130 

are found. The conversion from forests to open forest/shrubs was significant with 4131 

76345.98 ha (15%) and occurred mainly in the Mudumu National Park in the Southern 4132 

part and Zambezi State Forest in the northern part of the region. Table B 1 presents the 4133 

land cover change matrix between 2004 and 2019. Three major changes were an increase 4134 

in open forests/shrubs and agricultural/barren land and a reduction in forest land. In 4135 

2004, agricultural/barren land accounted for only 2.8% (143,77.87 ha) of total land. In 4136 

2019, this figure increased to 8.47% (429,36.31 ha) (see: Table B 1). On the contrary, 4137 

forest land experienced a significant decline of 9.04%, from 46.41% (235,140.91 ha) to 4138 

37.37% (189,334.60 ha) of the total area in 2004 and 2019, respectively (see: Table B 1). 4139 

The forest loss mainly was due to conversion to open forest/shrub (76,345.9), followed by 4140 

agricultural/barren land (10,634.1 ha) (see Fig. 4.14). At the same time, other land uses 4141 

are also converted to forest. For example, 40,172.9 ha of open forests/shrubs was 4142 

converted to forest, followed by agricultural/barren land (236,77.1 ha) (see Fig. 4.14).  4143 
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 4144 

Fig. 4. 14. Changed areas for the epoch (2004–2019) in the study area 4145 

 4146 

4.5 Discussion 4147 

4.5.1 Effectiveness of BFAST and BEAST algorithms for 4148 

characterising change in dryland forests 4149 

4.5.1.1 Trend 4150 

Despite BFAST and BEAST algorithms being able to handle unfiltered data, the 4151 

study found in the preliminary testing phase of the analysis that the use of filtered 4152 

MODIS time series yields accurate results and improved forest change detection, as 4153 

compared to the unfiltered data (see supplementary: A1). Identified changes that 4154 

occur in the trend component indicate both gradual and abrupt changes in land 4155 

cover, while changes occurring in the seasonal component indicate phenological 4156 

variation. In terms of deforestation, BFAST and BEAST algorithms identify a 4157 

consensus in time of breakpoints of larger magnitude, such as those associated 4158 

with clear-cutting of the forest to non-forest. This agreement shows that both 4159 

algorithms can be used to detect large-scale disturbances in the dryland forest. In 4160 
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terms of drought, BEAST algorithm was found to be the most successful in 4161 

identifying abrupt changes from vegetation disturbance caused by drought. BFAST 4162 

algorithm performed well in detecting abrupt changes of some known large 4163 

magnitude drought events, however, BFAST did not identify abrupt changes in 4164 

forest response for most drought and fire events, especially the lower magnitude 4165 

of change. A study by Watts et al. (2014) reported that BFAST did not detect abrupt 4166 

changes in vegetation as a result of well-known flood events. In this study, the 4167 

advantage of BEAST was the capability to detect the impact of exceptional climatic 4168 

conditions in both high and low magnitude drought years of 2002/03, 2005, 4169 

2010/11, 2015/16, and 2019 on forest stand development. Conversely, BFAST 4170 

algorithm was not able to detect such abrupt changes, as was seen in an example of 4171 

a fire event in 2017 that resulted in a known disturbance within the forest plot. In 4172 

this study, when using BFAST, sometimes ‘minor changes’, such as beginning or 4173 

end of periods of disturbance and recovery are not included in the identified trend, 4174 

and these breakpoints are often (incorrectly) counted as false positives. With such 4175 

limitations in the performance of BFAST algorithm, disturbance or drought events 4176 

can therefore be easily missed. A similar problem was found in a study by Wu et al. 4177 

(2020), where BFAST algorithm was applied to an NDVI time series to detect 4178 

changes within forest areas in China. They found that BFAST algorithm failed to 4179 

detect slow urban expansion which resulted in a partial forest cut within the pixel, 4180 

until the whole area of the pixel was changed.  4181 

By comparing MODIS vegetation indices in detecting disturbance and trends in 4182 

dryland forests, GNDVI outperformed NDVI in both algorithms. Particularly, BEAST 4183 

algorithm generated change model using the GNDVI time series performed better 4184 

overall. Both NDVI and GNDVI predicted large-scale clear-cut deforestation events 4185 

accurately. However, GNDVI was more sensitive to detecting the abrupt changes 4186 

due to droughts, fire, and small-scale disturbances. The analysis of the NDVI time 4187 

series sometimes failed to detect abrupt changes in areas that did not undergo 4188 

complete land cover class changes. The sensitivity of NDVI to background 4189 

variations in the canopy and herbaceous layers could explain why the use of NDVI 4190 

failed to detect disturbances and drought impacts in these areas (Huete et al., 4191 

2002). For stable or recovered forests, BFAST and BEAST algorithms performed 4192 

similarly in detecting gradual changes using NDVI and GNDVI time series. The 4193 
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similarity in the performance of the two indices can be attributed to the fact that 4194 

the study area is covered in trees and less of herbaceous layer (see supplementary: 4195 

D1 and D2 for field photo and LC8 time series images). The gradual increase in 4196 

forest cover of the stable forest can be a result of limited disturbance from fire, 4197 

wildlife, and logging. This suggests that the dryland forest can quickly recover from 4198 

drought in areas where multiple disturbances have not been experienced.  4199 

4.5.1.2 Phenology 4200 

In this research study area, the dryland forests have a very pronounced seasonality 4201 

controlled mainly by humidity, with a rapid response to the onset of the rainy 4202 

season, reflected in the abrupt changes in NDVI and GNDVI responses. The 4203 

interannual variation in precipitation caused the change detection algorithms to 4204 

flag breakpoints related to dryland forest phenology (Grogan et al., 2016, Zhao et 4205 

al., 2019). BEAST algorithm detected phenological changes resulting from drought 4206 

years followed a large increase in precipitation and clear-cut deforestation in NDVI 4207 

and GNDVI time series (Table 4.2). BFAST also failed to detect any seasonal change 4208 

using both NDVI and GNDVI time series. The ability of BFAST algorithm to capture 4209 

seasonal changes triggered by interannual variations or disturbances in the 4210 

dryland biomes is limited. Studies that tested BFAST algorithm on different forest 4211 

types also reported poor performance in detecting seasonal changes. This included 4212 

limitations in identifying changes in the amplitude of the seasonal curve, or 4213 

changes in the number of seasons in which tropical dryland forests were 4214 

characterised by high inter-annual seasonal variability (Gao et al., 2021, Grogan et 4215 

al., 2016).  4216 

The difference in the performance of the algorithms tested here can be attributed 4217 

to the fact that BEAST incorporates non-linear change models (Burkett et al., 4218 

2005). BEAST not only detects the changepoints, but also quantifies their 4219 

probability of being true, providing a confidence measure to interpret the changes 4220 

in both trend and seasonality. A shortcoming of BFAST algorithm is that by relying 4221 

on linear segments to describe underlying fluctuating trends, the model assumes 4222 

vegetation trends are quasi-linear processes (i.e., regular, or stable seasonality) 4223 

(Grogan et al., 2016). Deterministic models used within BFAST algorithm often do 4224 

not therefore capture nonlinear behaviour as thresholds and complex interactions 4225 
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among ecosystem processes are unaccounted for (Burkett et al., 2005). For 4226 

example, Jamali et al. (2014) accounted for non-linear vegetation changes in the 4227 

Sahel using a polynomials fitting-based scheme to an annual NDVI time series and 4228 

found it to describe general non-linear change trajectories. It has been widely 4229 

observed that vegetation dynamics and land cover change can often occur in a non-4230 

linear pattern (Lambin et al., 1997). Additionally, climatic variations and change in 4231 

moisture regimes, such as short- or long-term changes in rainfall patterns or 4232 

temperature, may also drive nonlinear progressions in vegetation cover (Foley et 4233 

al., 2003).  4234 

These results demonstrate that accounting for variations at the seasonal scale 4235 

while simultaneously uncovering complex nonlinear trends in forest dynamics is 4236 

important, particularly for dryland forests where seasonality may vary 4237 

significantly in amplitude from year to year. Projected rapid climate change is of 4238 

major concern in these regions, especially when viewed with other population 4239 

stresses such as habitat conversion, the impacts of fire, and herbivores 4240 

disturbances. In KAZA, it is reported that competition between wild species occurs 4241 

when habitats become degraded, especially by elephants (FAO, 2009). These 4242 

synergistic stresses are likely to prove to be the greatest challenge to wildlife 4243 

conservation in the 21st century, hence tracking the occurrence of disturbance 4244 

events and phenological shift events as they occur is an essential task in PAs 4245 

conservation efforts.  4246 

4.5.2 Spectral index sensitivity in dryland forests 4247 

The study found that BFAST and BEAST change models using the GNDVI time 4248 

series performed better than the more commonly used NDVI. Comparing results 4249 

from NDVI and GNDVI and related these to the precipitation anomaly shows that 4250 

the maximum differences in vegetation index performance occurred over the 4251 

dryland forest relative to the grassland, and then shrubs. There is a general 4252 

agreement between indices in areas undergoing browning and greening in the 4253 

non-forested area (see: Fig. 4.4). GNDVI had the best performance in distinguishing 4254 

browning and greening of forest from herbaceous layers affected by droughts. For 4255 

example, analysis of the NDVI was able to detect a strong greening in forest areas 4256 

in the severe droughts of 2015-2016 and 2019. These results are similar to a study 4257 
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by Loranty et al., (2018) that found positive decadal trends in NDVI in Siberian 4258 

forests that ranged from sparse to dense canopy cover, which correspond to 4259 

increases in understory productivity rather than an increase in forest cover. This 4260 

study results also concur with the study by Otsu et al. (2019) that found that 4261 

GNDVI performed best in distinguishing broad leaf from needle leaf forests as 4262 

compared to NDVI. Another study by Yoder et al. (1994) used the green channel in 4263 

a vegetation index and found that it had a better correlation with the 4264 

photosynthetic activity of the tree canopy in miniature Douglas-fir trees as 4265 

compared to the red channel. The main reason for the difference in the 4266 

performance of NDVI and GNDVI is likely because the former is more sensitive to 4267 

low chlorophyll concentrations, while GNDVI is more sensitive to high chlorophyll 4268 

concentrations and so is more accurate for assessing chlorophyll content at the 4269 

tree crown level (Gitelson et al., 1996). A study by Grogan et al., (2016) tested 4270 

BFAST on Land Surface Water Index (LSWI) and used NDVI on dry-deciduous and 4271 

evergreen forests and found that the LSWI time series outperformed the more 4272 

commonly used NDVI and EVI indices. 4273 

In conjunction with observations from the field, these results indicate that 4274 

understory vegetation likely exerts a strong influence on NDVI. It has been shown 4275 

in other research that different plant functional types, including canopy 4276 

background variations and herbaceous vegetation, also have a pronounced 4277 

seasonal effect on the NDVI signal, while also not being directly correlated with 4278 

woody cover (Grogan et al., 2016, Prince, 1991). This is apparent in my 4279 

observations and suggests that the NDVI pattern of a higher-than-average anomaly 4280 

during the growing season of 2015 and 2019 may correspond primarily to 4281 

increases in understory productivity rather than an increase in forest cover. For 4282 

this study, a possible explanation for this is that tropical vegetation greenness can 4283 

recover rapidly soon after forest clearing as the low herbaceous cover such as 4284 

grassland and saplings grow vigorously due to increased light levels, resulting in 4285 

reduced sensitivities to detect disturbances in greenness-based indices such as 4286 

NDVI. The use of VIs for biophysical parameter retrievals is therefore a challenging 4287 

task and there remains much work in understanding VI sensitivity across and 4288 

within dryland biomes (Huete et al., 2002). Ground field validation test sites are 4289 

essential in this regard and help provide valuable insight in interpreting spatial 4290 
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and temporal variability in VI that arises from vegetation-related properties, 4291 

including LAI, canopy structure, and understory vegetation. Hence, both soil 4292 

characteristics and the reflectance of lower plant communities may lead to 4293 

misinterpretations of the open dry forest dynamics and an under or 4294 

overestimation of ecosystem productivity in similar semiarid environments.  4295 

4.5.3 Land cover classification and spatial pattern of forest 4296 

changes using breakpoints and magnitude  4297 

This study applied remote sensing techniques to classify satellite imagery of the 4298 

Zambezi region of Namibia in 2004 and 2019. Despite the good classification 4299 

obtained in this study, there were some general issues which may have reduced 4300 

the accuracy of the overall classification. For example, the spectral signature of 4301 

forests was mixing with the signature of open forests/shrubs, resulting in low 4302 

producer’s accuracies for both classified map due to their noisy Landsat spectral 4303 

signatures and difficulty in interpreting them. A similar problem was also 4304 

encountered by Lu et al. (2003) and Zhao et al. (2016). To overcome this mixed 4305 

pixel problem, higher spatial resolution multispectral images such as SPOT images 4306 

reduced the mixed pixel problem, resulting in improved forest classification 4307 

accuracy (Lu et al., 2008). However, using higher spatial resolution with pixel-4308 

based tree species classification approaches also increased spectral variations, 4309 

especially in savannas with open forests, because of their complex forest stand 4310 

structure and canopy shadows, resulting in poor classification accuracies (Lu and 4311 

Weng, 2005; Myeong e al., 2001; Pu et al., 2018; McElhinny et al., 2005). 4312 

Incorporation of these relatively medium spatial resolution images such as Landsat 4313 

with 30-meter spatial resolution with other data sources such as digital elevation 4314 

models (along with their derivatives such as slope and aspect), spatial texture, and 4315 

SAR can improve classification accuracy (Myeong e al., 2001).  4316 

In this study, the LULC change trajectories included the conversions to-and-from 4317 

land cover classes. Unchanged areas, particularly forest land and open 4318 

forest/shrub land, are of exceptional importance for biodiversity management, 4319 

providing forest habitat and increases connectivity between forest patches for 4320 

wildlife population dynamics, and migratory species (Stoldt et al., 2020; Wegmann 4321 

et al., 2015; Wintle et al., 2019). In addition, unchanged areas provide timber and 4322 
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non-timber product supply, and carbon storage in the study area (David et al., 4323 

2022a). The large areas of unchanged forest land may provide an indication of the 4324 

effectiveness of intensified efforts for forest protection and biodiversity 4325 

management such as forest fire protection programs and awareness creation on 4326 

the sustainable use of forests implemented by the Government (Russell-Smith et 4327 

al., 2017). Conversely, the large area of forest conversion to open forests/shrubs 4328 

and agricultural/Barren land could also indicate the degradation of forests from 4329 

continuous drought events and logging of forests for timbers from the Chinese 4330 

companies in the Zambezi region (Asanzi et al., 2014; Chikoore and Jury, 2021; 4331 

Weng et al., 2015). The most valuable timber tree species in Namibia include 4332 

Pterocarpus angolensis, Baikiaea plurijuga, and Guibourtia coleosperma. However, 4333 

the harvest of these trees has increased because of the high demand for timber 4334 

from dense tropical hardwood species from Chinese (Asanzi et al., 2014).  4335 

Making full use of the opportunities that the Landsat and MODIS archive provides, 4336 

this study provides an assessment of land cover change and forest disturbances in 4337 

the KAZA region, from 2002/2004 to 2019, explored with change detection 4338 

algorithms. The main aim was to quantify and identify the Land cover change, 4339 

locations, types, and trends of the land cover during the 19-year period in 4340 

communal and protected areas of Namibia. Methodologically, this study showed 4341 

that dryland forest disturbances associated with deforestation and degradation 4342 

can be mapped reliably with both BFAST and BEAST change detection algorithms. 4343 

In terms of the performance of indices utilised, this study suggests that the GNDVI 4344 

was found to have the best performance in monitoring degradation and detecting 4345 

disturbances from droughts and fires as compared to NDVI. This study found the 4346 

NDVI is less sensitive to changes in dryland forests as compared to GNDVI, and this 4347 

result is consistent with studies that found that metrics based on the short-wave 4348 

infrared (SWIR) outperform NDVI in temperate and savanna ecosystems in the 4349 

USA (Jin and Sader, 2005, Kennedy et al., 2010, Zhu, Woodcock and Olofsson, 4350 

2012).  4351 

Thematically, this study yielded three main insights. First, the study found diverse 4352 

spatial patterns of forest disturbances are more prevalent in the communal areas 4353 

and state forests such as the Zambezi ST, particularly when compared to protected 4354 

areas such as Mudumu NP. These changes are driven by different disturbance 4355 
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agents, including both natural processes (e.g., drought) and anthropogenic impacts 4356 

(e.g., timber logging, fire). This suggests disturbance attribution is central for 4357 

understanding the drivers and impacts of forest degradation. According to land 4358 

cover change analysis in Fig. 4.13, agricultural/barren land has increased 4359 

dramatically during 2004 to 2019. Agricultural/ barren land may be caused by (1) 4360 

cut trees for households and wood processing businesses, or (2) slash-and-burn 4361 

agricultural activities (Kamwi et al., 2017) and (3) timber trade (Asanzi et al. 4362 

2014). That unsuitable farming practice is mainly taken by local ethnic groups 4363 

living in the province, while the tree logging is due to a strong presence of logging 4364 

companies primarily from China (Nott et al, 2019). This is in agreement with 4365 

previous studies on land cover and land use analysis such as Kamwi et al. (2017) 4366 

that found agricultural expansion to be the most predominant driver in the same 4367 

study area. 4368 

Second, the study found large areas of the dryland forest in the Zambezi ST have 4369 

experienced major disturbances from 2016 to 2019 from clear-cut of forests 4370 

coupled with fire, and extreme drought events, suggesting deforestation and 4371 

degradation is a widespread phenomenon in KAZA. Similar to the research 4372 

presented by Kamwi et al. (2015), the land cover analysis from this study (see: Fig. 4373 

4.13 and Fig.4.14) found that small-holder agriculture and shifting cultivation was 4374 

largely responsible for breakpoints of large magnitudes in the communal areas of 4375 

the Zambezi region detected by BFAST change detection (see: Fig 4. 12). The 4376 

BFAST change detection also detected vegetation disturbances/degradation, stable 4377 

vegetation, and vegetation regrowth, and these level of disturbances, trend and 4378 

direction of change were not detected by the bi-temporal classification. Third, a 4379 

clear association between forest disturbance and precipitation was found. Forest 4380 

disturbance was particularly widespread during severe drought years such as 4381 

2015-2016 and 2019. This study results also showed positive magnitude 4382 

breakpoints, which represented forest recovery and vegetation regrowth, which 4383 

could be attributed to increased precipitation and lack of disturbance in protected 4384 

areas such as Mudumu NP, as compared to community conservancies and the 4385 

Zambezi SF. This study disturbance maps, land cover change and field observations 4386 

suggest that drought, forest logging, agricultural expansion, large herbivore 4387 

disturbance, and increased fire may explain some of the observed pattern by the 4388 
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BFAST and BEAST change detection algorithms (Kamwi et al., 2017); Nott et al, 4389 

2019), (also see: Fig. B2, B3, B4 and B5). Similar patterns of increases in forest 4390 

disturbance during drought seasons were found both in the Amazon and the Gran 4391 

Chaco of Argentina (Bullock et al., 2020, De Marzo et al., 2021).  4392 

Previous land cover mapping research in the KAZA region has shown contrasting 4393 

results. Kamwi et al. (2015) reported forest and woodlands are expanding in 4394 

communal land in the Zambezi region, while Meyer et al. (2021) reported that 4395 

woodland cover reduced by 2.1% within the same study area and time period of 4396 

1990 to 2010. The land cover mapping from this study shows that forests reduced 4397 

by 9% in the same region between 2004 and 2019. The deforestation and 4398 

widespread degradation identified in this study are consistent with findings by 4399 

McNicol et al. (2018) that found Southern African woodland is highly dynamic with 4400 

widespread degradation and deforestation, but also extensive vegetation 4401 

regrowth. The further step on assessing the magnitude of change reported in this 4402 

study demonstrates first that forest change occurs in an incremental manner, and 4403 

second, by making use of the magnitude parameter, that conventional bi-temporal 4404 

classification studies could further be improved and complimented by extent and 4405 

severity of forest disturbances derive here (DeVries et al., 2015). The ability to 4406 

describe these change processes with high temporal detail highlights the 4407 

advantage of a time series change detection approach used here and the additional 4408 

information they provide to conventional bi-temporal classification maps of forest 4409 

versus non-forest maps conducted in KAZA region (Kamwi et al., 2017, Meyer et 4410 

al., 2021, Fox et al., 2017).  4411 

4.6 Conclusion 4412 

This study evaluated the applicability of BFAST and BEAST algorithms to detect a 4413 

range of abrupt, gradual, and seasonal changes using MODIS vegetation index (VI) 4414 

time series data in tropical dryland forests in Southern Africa from 2002–2019. 4415 

The change detection algorithms complemented the bi-temporal Land cover 4416 

change detection in Zambezi region from 2004 and 2019. The study has shown 4417 

that analysis of monthly MODIS VI time series, climate data, and field validation 4418 

can effectively describe and help to interpret longer-term changes of vegetation 4419 
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dynamics. Changes occurring in the trend component identified indicate both 4420 

gradual and abrupt changes, while giving insights into the influence of drought and 4421 

phenological variation on the forest. Four main conclusions can be drawn from this 4422 

study: 4423 

First, dryland forests are highly dynamic and water sensitive with high rates of 4424 

deforestation and widespread degradation, but also continuous vegetation 4425 

recovery and regrowth are identified in protected areas compared to unprotected 4426 

areas.  4427 

Second, BEAST algorithm was found to give the best performance overall, correctly 4428 

identifying abrupt changes of vegetation response to fire and drought impacts. 4429 

BFAST did not perform well in identifying abrupt changes resulting from fire and 4430 

low magnitude drought events. Based on the results, the best decomposition of 4431 

trend and seasonal breakpoints were given by BEAST using the GNDVI.  4432 

Third, BEAST algorithm outperformed BFAST algorithm in detecting seasonal 4433 

changes driven by climatic and clear-cutting events. BEAST algorithm detected the 4434 

abnormality of deforestation and climate-driven changes in seasonality, which 4435 

helped identify the potential drivers of these phenological shifts. However, BFAST 4436 

failed to detect any seasonal changes within the entire study period (2002-2019) 4437 

using either the NDVI or GNDVI.  4438 

Fourth, conventional NDVI was highly influenced by canopy background variations 4439 

and herbaceous layers, as compared to the GNDVI. NDVI performed best in the 4440 

robust detection of areas with complete land cover class changes, while GNDVI 4441 

performed well in detecting changes within areas of partial (low magnitude 4442 

change) and complete land cover class changes. The analysis suggests that GNDVI 4443 

is more sensitive to chlorophyll concentration in vegetation when the leaf area 4444 

index is moderately high as is the case in tropical dryland forests, while NDVI is 4445 

more sensitive to forest types with low chlorophyll concentrations.  4446 

Finally, the study shows that the droughts that took place in 2015 and 2019 were 4447 

longer and more extreme than the droughts in 2002-2003, 2005, 2007 and 2011-4448 

2013. Overall, the results also show that a large part of the growing season and 4449 
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phenology is highly influenced by seasonal and inter-annual variations in climatic 4450 

conditions, particularly in the case of severe drought in the KAZA region. 4451 

These results highlight the importance of complementing the conventional bi-4452 

temporal classification studies on Land cover change with improved time series 4453 

change detection algorithms to detect the magnitude, extent, and severity of forest 4454 

disturbances with high temporal detail. The study also showed the importance of 4455 

considering the sensitivities of VIs used in forest monitoring when trying to 4456 

identify non-linear dynamics of dryland forests. Two extreme record droughts in 4457 

less than two years (2015-2016 and 2018-2019) are evidence of the negative 4458 

impacts of extremes of climate variability and climate change in the region. 4459 

Therefore, an in-depth assessment of the intensity, spatial coverage, and 4460 

geography of impacts of future droughts are of fundamental importance to the 4461 

region. The approach described above is transferable to other tropical forest areas 4462 

with high inter-annual variability that is influenced by seasonal climatic variations 4463 

and disturbance. These methods are subject to further tests with other datasets of 4464 

higher spatial resolution such as Landsat, Sentinel, or simulated datasets, to ensure 4465 

their efficacy. 4466 
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 4478 

4.8 Supplementary Information 2 4479 

MODIS Data Processing and Filtering 4480 

 4481 

Fig. B 1. Temporal profiles of raw and cleaned MODIS NDVI data for a forest plot: (a) 4482 

original time series after MCV method; (b) time series retained after filtering, and (c) time 4483 

series with linear interpolation on filtered points over a 17-year period. 4484 

 4485 

Clear-cut and burnt forest  4486 

Fig. B 2. A and B shows field photo evidence of a deforestation event in a dryland forest 4487 

dominated by Baikiaea plurijuga species, the area was burned in 2017 and clear-cut for 4488 
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timbers in around 2018-2019. The photo location coordinate is 17.49°S, 24.21°E taken 4489 

from ground survey in Namibia in 2019.                    4490 

 4491 

Fig. B 3. Shows the corresponding time series of Landsat images with no cloud cover in the 4492 

pixels documenting changes in the forest (forest to shrubs) from 2015 to 2019, 4493 

respectively. The yellow dot represents the location ID (coordinate: 17.49°S, 24.21°E). The 4494 

year 2002 and 2005 was included because it is a drought year and 2001 was used as a 4495 

baseline year. 4496 

 4497 

Drought impacts and degraded forest 4498 

 4499 
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  4500 

Fig. B 4. shows field photo evidence of a degrading forest dominated by baobabs and 4501 

riparian woodlands species near Chobe River frontage. The photo location coordinate is 4502 

17.80°S, 24.95°E taken from ground survey in Botswana in 2019.                             4503 

 4504 

 4505 
 4506 

Fig. B 5. shows the corresponding time series of Landsat images with no cloud cover in the 4507 

pixels documenting changes in the plot from 2015 to 2019, respectively. The yellow dot 4508 

represents the location ID (coordinate: 17.80°S, 24.95°E). The year 2002 and 2005 was 4509 

included because it is a drought year and 2001 was used as a baseline year.             4510 
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                4511 

A stable and recovering forest 4512 

 4513 

 4514 

Fig. B 6. Shows field photo evidence of a forest that has not experienced any disturbance 4515 

for the period of the study. The photo location coordinate is 17.57°S, 24.28°E taken from 4516 

ground survey in Botswana in 2019.                             4517 

 4518 
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Fig. B 7. shows a time series of LC8 images from 2015 to 2019 is shown below. The yellow 4519 

dot represents the location ID (coordinate: 17.57°S, 24.28°E). The year 2002 and 2005 4520 

was included because they are drought years and 2001 was used as a baseline year 4521 

Table B. 1. Land cover areas in the study area per year (2004 and 2019) in km2 and 4522 
hectares. 4523 

Class name 2004 Area 

(km2) 

2004 Area 

(ha)  

2004 

Area (%) 

2018 Area 

(km2)  

2018 Area 

(ha) 

2019 

Area (%) 

Water 5 508 0 6 600 0 

Forest 2,351 2351,411 46 1,893 189,335 34 

Open 

forests/Shrub 

2,564 256,410 51 2,735 273,512 54 

Urban 3 262 0 3 318 0 

Agriculture 143 14,378 3 429 42,934 8 

 4524 

Table B. 2. Area changes of BFAST (2002-2019) using sample-based estimates and the 4525 
observed disturbance change rates in hectares. 4526 

Change identified by BFAST Area (ha) Standard 

Error (ha) 

2.5 % 

(ha) 

97.5 % 

(ha) 

Non-disturbance (No change)  

(Stable Forest) 

106,390 9,817 87,148 125,631 

Low negative changes (no change)  

(Degradation) 

90,929 10,636 70,083 111,776 

Large negative changes (No change)  

(Non-forest) 

38,873 7,162 24,836 52,910 

Non-disturbance -Low negative 

changes  

(Stable forest to Degradation) 

33,132 6,859 19,688 46,576 

Non-disturbance -Large negative 99,911 9,753 80,795 119,027 
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changes  

(Stable Forest to Deforestation) 

Low negative changes -Large negative 

changes  

(Degradation to Deforestation) 

59,515 8,154 43,533 75,497 

Low negative changes -Non-

disturbance 

(Degradation to Stable Forest)  

23,409 556,8 12,497 34,322 

Large negative changes -Low negative 

changes  

(Deforestation to Degradation) 

48,537 8,353 32,167 64,908 

Large negative changes -Non-

disturbance 

(Deforestation to Stable Forest)  

5,980 2,966 167 11,792 

Total  506,676    

 4527 

Table B. 3. Area changes for the Random Forest classification in the Zambezi region in 4528 
hectares. 4529 

Change identified by two-interval classification Area (ha) 

Forest-Forest 147,876 

Non-forest-Non-forest (no change) 201,157 

Forest - Non- Forest 87,251 
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Non-forest - Forest 41,447 

Non-forest  - Non-Forest (change) 28,944 

Total 506,676 

 4530 

Table B. 4. Area-based transition among land cover categories for the Random Forest 4531 
classification for the period 2004–2019 in the Zambezi region in hectares. 4532 

 4533 

 4534 
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Land cover class Change 
  

Re-organisation Area Change 
 (ha) 

Area Change 
(%) 

Agriculture-Agriculture Non-forest-Non-
forest (no 
change) 

8,501 2 

Agriculture-Forest Non-forest -
Forest 
 

1,109 0 

Agriculture-Open forest/Shrub Non-forest -Non-
Forest (change) 

4,707 1 

Agriculture-Urban Non-forest -Non-
forest (change) 

58 0 

Agriculture-Water Non-forest -Non-
forest (change) 

4 0 

Forest-Agriculture Forest to Non- 
forest 

10,634 2 

Forest-Forest Forest-Forest 14,7876 29 

Forest- Open forest/Shrub Forest to Non- 
forest 

76,346 15 

Forest-Urban Forest to Non- 
forest 

16 0 

Forest-Water Forest to Non- 
forest 

256 0 

Open forest/Shrub -Agriculture Non-forest -Non-
forest (change) 

23,677 5 

Open forest/Shrub -Forest Non-forest -
Forest 
 

40,173 8 

Open forest/Shrub - Open 
Forest/Shrub 

Non-forest-Non-
forest (no 
change) 

192,313 38 

Open forest/Shrub -Urban Non-forest -Non-
forest (change) 

205 0 

Open forest/Shrub -Water Non-forest -Non-
forest (change) 

34 0 

Urban-Agriculture Non-forest -Non-
forest (change) 

115 0 

Urban-Forest Non-forest -
Forest 
 

5 0 

Urban- Open forest/Shrub Non-forest -Non-
forest (change) 

101 0 

Urban-Urban Non-forest-Non-
forest (no 
change) 

39 0 

Urban-Water Non-forest -Non-
forest (change) 

1 0 

Water-Agriculture Non-forest -Non-
forest (change) 

7 0 

Water-Forest Non-forest -
Forest 
 

161 0 
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4535 

Water- Open forest/Shrub Non-forest -Non-
forest (change) 

36 0 

Water-Urban Non-forest -Non-
forest (change) 

0 0 

Water-Water Non-forest-Non-
forest (no 
change) 

305 0 

 
 

  

Total  506,676 100 
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5 A SPATIO-TEMPORAL DROUGHT AND FIRE ANALYSIS 4536 

FOR SEMI-ARID DRYLAND ECOSYSTEMS IN SOUTHERN 4537 

AFRICA USING MODERATE RESOLUTION SATELLITE 4538 

IMAGERY.  4539 

 4540 
 4541 

 4542 

 4543 

 4544 
 4545 
 4546 

4547 
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 4586 

Abstract 4587 

The dryland ecosystem of Southern Africa is fire-prone and has a long history of 4588 

recurrent droughts that in turn, affect its ecology, structure, function and 4589 

distribution. This chapter presents a spatiotemporal analysis of drought, water 4590 

stress, fire impacts on dryland vegetation between 2002 and 2019 for the largest 4591 

conservation area: Kavango-Zambezi Transfrontier Conservation Area (KAZA). To 4592 

disentangle the relative contribution of climatic and fire regimes to dryland 4593 

vegetation, Normalised Difference Vegetation Index (NDVI), precipitation data, 4594 

temperature data, evapotranspiration, Root Soil Moisture (RSM) and Active Fire 4595 

and Burned Area data products were used. For drought condition, this study shows 4596 

most severe drought was in 2002/2003, 2005, 2015/2016 and 2018/2019. The 4597 

worst drought with the longest duration and highest magnitude was recorded in 4598 

2019. In the KAZA region, about 149,410 km2 of land is burned on an annual basis 4599 

over the period 2002–2019, however significant differences were observed in the 4600 

fire patterns among the five countries of KAZA. Fire incidence was higher in Angola 4601 

and Zambia where burning is not strictly controlled; midrange fire incidences were 4602 

observed in Namibia where fire control policy and awareness programs were 4603 

introduced in 2006; and fire incidence was lower in Botswana and Zimbabwe, 4604 

where there are effective and strict fire management policies. These results reveal 4605 

that the areas with high dryland forests (or high tree cover), high rainfall, and long 4606 

dry season length coincide with areas of high fire frequency resulting in relatively 4607 

large burned areas. The combination of drought, water stress and high fire 4608 

frequency observed in this study has led to an increase in land area classified as 4609 

arid and semi-arid at the expense of dry sub-humid and humid land classes, which 4610 

were reduced by 10% in the period 2002 to 2019. These findings have important 4611 

implications on wildlife habitat management and climate change in Southern 4612 

Africa’s dryland forest ecosystems.  4613 

Keywords: Dryland vegetation, climate change, soil moisture, drought, forest fire, 4614 

Southern Africa, remote sensing 4615 

 4616 
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5.1 Introduction  4617 

5.1.1 Drought stress on dryland vegetating 4618 

Drought is a regular and recurrent feature of Southern African climate, and climate 4619 

change scenarios predict large-scale biogeographical shifts in vegetation in 4620 

response to the severe drought and intense moisture surplus which will be 4621 

exacerbated by higher temperatures (Diffenbaugh et al., 2017). Growing evidence 4622 

suggests that the effects of drought on vegetation under warmer conditions can be 4623 

severe, as highlighted by recent observations of regional-scale woody-plant die-off 4624 

across Southern Africa (Naidoo et al., 2013), the Sahel (Anyamba et al., 2005), and 4625 

more widely around the globe (De Jong et al., 2013). In Southern Africa’s arid and 4626 

semiarid areas, droughts are a frequent occurrence and can have severe ecological 4627 

and economic consequences (Mason et al., 2000). While these events may be short 4628 

duration followed by recovery during subsequent years of higher rainfall, in some 4629 

cases droughts can trigger substantial and irreversible ecological and 4630 

socioeconomic changes (Ellis et al., 1988). 4631 

The effects of drought on vegetation can vary considerably across ecosystems, 4632 

depending on plant adaptations and interactions with other ecological processes 4633 

(Engelbrecht et al., 2007). The responses of vegetation to variations in climate are 4634 

expected to be most sensitive and extreme in tropical open woodlands and forests 4635 

in arid and semi-arid ecosystems (Watson et al., 1996). Tropical open woodlands 4636 

(hereafter called “dryland forest or woodland”) are forests comprising mixtures of 4637 

trees, shrubs, and grasses in which the tree canopies do not form a continuous 4638 

closed cover (Grainger, 1999). There is evidence that anomalies in tropical 4639 

vegetation greenness are linked to global inter-annual variations in sea surface 4640 

temperature (SST), land surface temperature and precipitation, as evidenced in the 4641 

dryland forests (Huang et al., 2017). The xeric areas of the dryland biome often 4642 

have unreliable rainfall and are often subject to a substantial multi-year rainfall 4643 

deficit. Furthermore, the impacts of drought tend to be aggravated by 4644 

deforestation, land degradation, growing water demand and extremes of 4645 

temperature, as a result of climate variability, anthropogenic activities and global 4646 

warming (Dale et al., 2001). For example, Chagnon et al. (2004) found a large shift 4647 

in local rainfall and seasonality with increases in deforested areas in the Amazon, 4648 
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associated with local atmospheric circulation that were changed by gradients in 4649 

vegetation. Monitoring drought stress in vegetation is a critical component of 4650 

proactive drought planning designed to mitigate the impact of this natural hazard. 4651 

Although it is not possible to avoid drought, its impacts can be managed through 4652 

preparedness planning. The success of drought preparedness and management 4653 

depends, among others, on how well the droughts are defined and drought 4654 

characteristics (e.g., intensity and duration) are quantified temporally and 4655 

spatially.  4656 

A drought is a naturally recurring hazard and can alternatively be defined as a 4657 

temporary, recurring reduction in the precipitation in an area. Droughts have a 4658 

slow initiation and they are usually only recognised when the drought is already 4659 

well established. The deficiency in precipitation is the main causes of all drought 4660 

types, including: meteorological, agricultural, hydrological, and socioeconomic. 4661 

Meteorological drought relates to precipitation deficiencies in absolute totals for a 4662 

given period and is one of the primary causes of wider drought. On the other hand, 4663 

agricultural drought is characterised by a soil moisture deficit and changed plant 4664 

behaviours during the plant-growing period. The longer and the more spatially 4665 

extensive this deficiency, the more likely the occurrence of other types of droughts, 4666 

such as hydrological that is a reduction of streamflow, lake or reservoir storage, 4667 

and a lowering of ground-water levels. Socioeconomic drought occurs when the 4668 

demand for an economic good exceeds supply as a result of a weather-related 4669 

shortfall in water supply (Maliva et al., 2012). Drought indices derived from 4670 

meteorological data can be used to monitor not only meteorological droughts but 4671 

also agricultural and hydrological droughts, and to categorise the seriousness of 4672 

the drought, which is important for a wide range of management and planning 4673 

decisions. Drought indices commonly applied around the world are summarised by 4674 

Svoboda et al. (2016). Consequent impacts of warm droughts could include a 4675 

reduction in habitat for wildlife, enhanced opportunities for invasion by exotic 4676 

species, formation of novel communal areas, imbalances in the hydrologic cycle, 4677 

and temporal disruptions to ecosystem goods and services (Rands et al., 2010).  4678 
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5.1.2 Fire impacts on dryland vegetation 4679 

In addition to drought, within the forest-dryland mosaics other natural 4680 

disturbances that affect forests include large pulses of forest disturbances from 4681 

agents such large mammalian herbivore damage, insect outbreaks, strong winds 4682 

and wildfires (Geist et al., 2004). Fire is considered a major determinant of the 4683 

ecology and distribution of Africa's dryland forests and the frequency and severity 4684 

of large wildfires has increased during some extremely dry years in past decades 4685 

(Archibald et al., 2018). The burning of natural vegetation is common and 4686 

widespread throughout the tropics and is considered to be a significant source of 4687 

aerosol, trace gas and particles to the global atmosphere (Frost, 1999). Within the 4688 

tropical landscape, 42% of CO2 emissions are estimated to come from Africa, 29% 4689 

from Asia, 23% from South America, and 6% from Oceania (Andreae et al., 1998). 4690 

In Africa, fire is generally viewed as key to ecosystem structure and function. For 4691 

example fire is used to maintain grasslands by suppressing bush encroachment 4692 

(Chidumayo, 1997). In Southern Africa, fire is started either by people or by 4693 

lightning, and is intensified by a prolonged annual dry season combined with 4694 

relatively rapid rates of fuel accumulation. Often, fires originate outside of 4695 

protected areas but later burn uncontrolled into protected areas. Uncontrolled 4696 

wildland fires can destroy extensive landscapes, posing a major threat to the 4697 

survival of dryland tree species, human life and property, encouraging society and 4698 

policy makers to take measures that mitigate its effects (Turner et al., 1999).  4699 

The fire regime of an area is defined by several variables, including the patterns of 4700 

frequency, season, type, severity and extent. All of these characteristics are 4701 

intricately linked to ecosystem structure and function, and are highly dependent 4702 

on weather and climate oscillations (Archibald et al., 2009; Gill, 1975). Reliable 4703 

observed data on fire frequency (or, alternately, the reciprocal of the fire return 4704 

time) for calculating biomass burned at regional scales are fundamentally 4705 

important (Frost, 1999). This is partly because biome characteristics, mainly 4706 

biomass loads and moisture levels, determine fire behaviour, but also fire alters 4707 

vegetation structure, composition and development (Bond et al., 2005; Hantson et 4708 

al., 2016). On the other hand, climate affects fire occurrence through temperature 4709 

and precipitation cycles, but climate is also affected by fire through by gaseous 4710 
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emissions (Bojinski et al., 2014). These mutual influences between vegetation, 4711 

climate and fire highlight the importance of having long-term burned area (BA) 4712 

and climate information that serves as an input for a holistic vegetation analysis. 4713 

Therefore, better fire observations and improved estimates of fire impacts will 4714 

reduce uncertainty and improve prediction for future ecosystem feedbacks on 4715 

atmosphere interactions.  4716 

Recent research has also pointed out a decline of forest resilience to wildfires 4717 

because of an intensification of the interactions between extreme droughts and fire 4718 

(Brando et al., 2019). Fire and grazing regimes, in conjunction with changes in 4719 

climate characteristics affecting soil moisture status, relative humidity, or drought 4720 

stress, will have the greatest influence on grassland-woody species boundaries 4721 

(Barros et al., 2018). A drying climate, in combination with non-adapted and 4722 

unsustainable land-use therefore increases the risk of desertification (Geist et al., 4723 

2004). Intensifying disturbance regimes are thus expected to be among the most 4724 

severe impacts of climate change on forest ecosystems and can bring forests to a 4725 

threshold for massive die-off (Turner, 2010). The killing of plants causes 4726 

substantial vegetation change and limits productivity, thereby causing shifts in 4727 

plant communities resulting in species loss (Williams et al., 2013). Such forest 4728 

disturbances significantly affect the global carbon cycle by, for example, vegetation 4729 

loss or changing forest phenology. This is raising concerns that disturbances to 4730 

dryland natural resources in these areas might increasingly interfere with 4731 

sustainable provision of ecosystem services and wildlife habitat management in 4732 

the tropics (Scholes et al., 2004).  4733 

A drying climate, in combination with unsustainable land use practises, in already 4734 

water-scarce regions, increases the risk of drying conditions (Reynolds et al., 4735 

2007). Desertification is a complex phenomenon, driven by socio-economic and 4736 

climate-related processes, such as increasing aridity and more frequent and/or 4737 

severe droughts (Reynolds et al., 2007) (Fig. 5.1). Desertification is not confined to 4738 

drylands, however, they are some of the most vulnerable regions to land 4739 

degradation processes due to the delicate balance between natural resources (e.g., 4740 

limited rainfall, low soil moisture, high temperature, low vegetation productivity) 4741 

(Vogt et al., 2011) (Fig. 5.1). Consequently, an important contribution in the fight 4742 

against desertification is to quantify whether the extent of drylands has changed 4743 
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and, if this process has taken place, where and to what degree it has occurred 4744 

(UNCCD, 1994). In addition, this knowledge would allow natural resource 4745 

managers to implement best management practices under drought conditions and 4746 

other decision makers to better target assistance and response activities (e.g., early 4747 

detection of hot spots for wildfires) in a timely manner.  4748 

 4749 

 4750 

Fig. 5. 1. Conceptual model depicting theoretical relationships among moisture availability, 4751 

temperature, plant growing conditions, and disturbance (fire frequency), water scarcity 4752 

(droughts) and their effects on dryland vegetation cover directly or indirectly as it 4753 

characterises desertification. 4754 

 4755 

 4756 

The interrelations between dryland fire regimes and vegetation dynamics are 4757 

indeed complex; they are conditioned by various climatic, biotic and anthropogenic 4758 

factors involving different feedbacks. Although many studies have been 4759 
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undertaken in southern Africa (see (Chidumayo, 1997; Korontzi et al., 2003), very 4760 

few of these have investigated the combined effects of all these on dryland 4761 

vegetation cover. The majority of research on the potential impacts on fire regimes 4762 

and climate change on drylands has focused on the Amazon and West Africa (e.g., 4763 

Sahel) (Aragão et al., 2007; Herrmann et al., 2005; Samanta et al., 2011). By 4764 

contrast, the regional studies that analyse the impacts of climate and fire on 4765 

dryland forests and vegetation in many parts of Southern Africa have been more 4766 

sparse (Blackie et al., 2014). There is, to my knowledge, no study that has 4767 

investigated drought and fire impacts on dryland vegetation cover across the KAZA 4768 

region over a long-term basis. A study published by Pricope et al. (2012), did 4769 

consider fire frequency from 2000 to 2010 in KAZA region, but only focused on the 4770 

central part, while Mpakairi et al. (2019) only focused on Zimbabwean component 4771 

of KAZA. Neither study considered the whole region and were solely based on fire 4772 

analysis without incorporating vegetation information. 4773 

This chapter analyses trends of fire regimes of all the five of the national 4774 

constituents of KAZA, noting that each country manages fire differently. Some aim 4775 

to prevent fires, others legislate for seasonal prescribed burns, and others witness 4776 

more uncontrolled fires in protected and unprotected areas. To investigate the 4777 

drivers underlying the observed long-term vegetation cover change in the KAZA 4778 

region, a conceptual model was constructed (see: Fig. 5.1) based on the knowledge 4779 

that there are direct and indirect effects of climate, soil moisture, and fire on 4780 

woody vegetation cover. Fire disturbance and soil moisture were included in the 4781 

climate-vegetation analyses because they are considered an Essential Climate 4782 

Variable (ECV) by the Global Climate Observing System (GCOS) program, which 4783 

encourages the generation of long-term time series of ECVs to better understand 4784 

climate trends (Bojinski et al., 2014; Mason et al., 2009). The present study was 4785 

designed to investigate the relationship between moisture availability as a function 4786 

of effective rainfall, rainfall seasonality, evapotranspiration, and root soil moisture, 4787 

temperature, fire incidence and frequency, drought and vegetation index. This was 4788 

used to characterise spatiotemporal changes in aridity in the KAZA region using 4789 

long-term time series from both ground and satellite observations from 2002 to 4790 

2019.  4791 
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5.2 Aims and Objectives 4792 

Aims 4793 

The aims of this study are to investigate the relationship between fire and different 4794 

climate effects on vegetation spectral characteristics at the regional scale of KAZA.  4795 

Objectives 4796 

o To characterise drought conditions using climatic data (SPEI, root-soil 4797 

moisture, temperature, and precipitation) and explore the variability of 4798 

drought using monitoring indicators (i.e., the drought duration, severity and 4799 

magnitude)  4800 

o To characterise the frequency, seasonality, and extent of fires through time 4801 

on different land use management in KAZA region 4802 

o To investigate the spatiotemporal changes in aridity in KAZA region from 4803 

2002 to 2010 and 2011 to 2019 4804 

4805 
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5.3 Materials and methods 4806 

5.3.1 Study Area 4807 

The Kavango Zambezi Transfrontier Conservation Area (KAZA TFCA) (18.00°S 4808 

23.00°E) in Southern Africa, is a large multi-nationally managed network of 4809 

national parks (NP), wildlife and game management areas, forests reserves and 4810 

communal. The KAZA TFCA is the largest transfrontier conservation area in the 4811 

world, and encompasses an area of approximately almost 520 000 km2 shared by 4812 

Botswana, Namibia, Zambia, Zimbabwe, and Angola (KAZA, 2014). The KAZA was 4813 

established to improve the cooperative management of shared resources, to 4814 

improve links between wildlife habitats, to create economic development to the 4815 

local communities adjacent to protected areas through tourism. KAZA was also 4816 

intended as a means to contribute to peace and friendly relationships between 4817 

participating countries through cooperation in nature protection and development 4818 

(Stoldt et al., 2020). The region hosts the largest elephant population (Loxodonta 4819 

africana) in the world and it is characterised by large-scale migrations of 4820 

megafauna such as buffalo (Syncerus caffer), leopard (Panthera pardus), zebra 4821 

(Equus quaaga). The region is home to numerous red-listed tree species, and 4822 

contains the world-heritage listed Okavango Delta (Matswiri, 2017; Naidoo et al., 4823 

2012). The largest portion of KAZA is generally water- and nutrient-poor due to its 4824 

location in the Kalahari Basin, and has a climate that is characterised by a single 4825 

rainy season and a long dry season (see: Fig. 5.4), with an annual rainfall average 4826 

of 300–950 mm from 1983 to 2019 (see: Fig. 5.3). During the dry season, as most 4827 

natural pans dry up, water is mostly available at a large number of artificial 4828 

waterholes across parts of the landscape and most animals migrate between 4829 

seasons to other parts of KAZA converging to rivers such as Zambezi and Chobe 4830 

Rivers in northern Botswana, and Gwaii river in Zimbabwe (Cumming, 1981; 4831 

Tshipa et al., 2017). This rainfall seasonality provides a fire-prone climate such 4832 

that the drylands of Africa are thought to experience the most extensive biomass 4833 

burning in the world (Lehmann et al., 2014).  4834 
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 4835 

 4836 

Fig. 5. 2. Location of the study area in KAZA Conservation Area Southern Africa, showing 4837 

the yellow circles representing the sampling sites, protected areas and land management 4838 

classes as designated by the World Database on Protected Areas (WDPA). Examples of 4839 

sample plots representing degradation from fire captured during a field campaign in 2019 4840 

are shown, A) Burned Forest for cultivation near the protected area of Mudumu NP, 4841 

Namibia, B) Forest scorched by wildfire with dead trees that could not recover in the 4842 

Zambezi state forests (ST) C) forest or woodland burned down to create a field.  4843 
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5.3.2 Fieldwork and Sampling Design  4844 

Field work was undertaken to measure forest stand characteristics from three 4845 

locations with different land cover characteristics to provide ground validation in 4846 

the KAZA region. The 2019 was one of the most severe droughts this century, 4847 

which caused major impacts on vegetation and generated an economic shock felt 4848 

throughout the region. Measurements were made in forests and woodlands, 4849 

shrubland areas, and grassland agricultural land. One was located in Botswana, 4850 

which is within the Chobe NP (18.7°S, 24.5°E). The other two site were located in 4851 

Namibia, Mudumu NP and Zambezi ST (17.8° S, 23.9° E) (Fig. 5.2). These sites were 4852 

chosen because dryland forests within and around the protected area have been 4853 

particularly susceptible to disturbance and drought during the 21st century, with 4854 

severe events in 2015 and 2019, warranting particular attention. For this reason, 4855 

survey fieldwork was undertaken to record forest tree stand characteristics, and to 4856 

observe the different land cover types present in the study area during the 4857 

growing season (1st February - 30th May 2019). The 2019 was one of the most 4858 

severe droughts this century, which caused major impacts on vegetation and 4859 

generated an economic shock felt throughout the region. At each sample plot, and 4860 

before the biophysical measurements, plot information such as land use, land 4861 

cover, vegetation type, soil, and disturbance history (e.g., evidence of fire) was 4862 

recorded (Fig 5.2). Also, information about regeneration, deadwood, and stumps 4863 

was collected. Field sites were chosen to cover a range of landscapes given the 4864 

constraints of road accessibility, wildlife danger, and public access restrictions 4865 

allowed. Measurements were collected from a total of 250 individual sample plots. 4866 

Field surveys of woody plants were conducted on sites where damage was 4867 

specifically observed to identify sites where drought had an obvious impact. These 4868 

sites can be used for further long-term monitoring. 4869 

5.3.3 Ground-based Climate Data 4870 

5.3.3.1  Rainfall Data 4871 

The climate in the region is considered subtropical with an annual rainfall of about 4872 

600-700 mm, dry winters, and hot, wet summers (Fig. 5.3 and 4). The daily and 4873 

monthly rainfall data values recorded at Kasane and Kavimba have been used in 4874 



Chapter 5 
 

Page | 234  
 

this study (Table 5.1). The data set spans a period of 60 years from 1960 to 4875 

2019/20 from Kasane meteorological gauging station, and a period of 46 years 4876 

from 1971 to 2017 for Kavimba meteorological police gauging station. The Kasane 4877 

meteorological station data have a consistent and longer record and so was used in 4878 

this study. All the rainfall observation data were from the Botswana Department of 4879 

Meteorological Service (BDMS) Data Network. 4880 

 4881 

Fig. 5. 3. Monthly (top) and annual (bottom) precipitation (mm) for the period 1983 to 4882 

2019 using data obtained from Kasane meteorological station in Botswana. 4883 

 4884 

5.3.3.2  Temperature Data  4885 

Monthly meteorological data (minimum and maximum temperature) were 4886 

acquired from BDMS. A long record of temperature data was obtained from Kasane 4887 

and Pandamatenga meteorological stations. The temperature data from the Kasane 4888 

meteorological station is used in this study because it has a longer timespan 4889 

covering 38 years from 1982/3 to 2019/20, compared to Pandamatenga 4890 

meteorological station which is continuous only since 1989 (Table 5.1).  4891 
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The climograph in Fig. 5.4 shows that rains in the region are expected in 4892 

November, peaking in January and February and ending around March. These are 4893 

warm summer months, with temperatures and humidity high. January averages 4894 

the highest amount of precipitation and October observes the highest temperature.  4895 

 4896 

Fig. 5. 4. Climograph of average monthly precipitation and temperature from 1983 to 2019 4897 

using data obtained from Kasane meteorological station in Botswana. 4898 

 4899 

Table 5. 1. Weather stations in the study area. 4900 

Station Name Data Type Data Span Data length 

Kasane Precipitation 1960 to 2019/20 60 

Kavimba Precipitation 1971 to 2017 46 

Kasane Max and Min 

Temperature 

1982/3-2019/20 38 

Pandamatenga Max and Min 

Temperature 

1989-2020 31 

 4901 

 4902 
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5.3.4 Remote sensing based rainfall - Climate Hazards Group 4903 

Infrared Precipitation with Station Data (CHIRPS)  4904 

The characteristics of the main satellite-based data used in this study is shown in 4905 

Table 5.2. Drought monitoring has been historically carried out using ground-4906 

based observations (Chen et al., 2002). However, many regions do not have 4907 

adequate gauge instruments, particularly in Africa (e.g., remote regions or 4908 

agricultural areas) to obtain detailed precipitation, temperature, relative humidity 4909 

and wind speed data, necessary for accurate assessment of drought (Washington-4910 

Allen et al., 2006). Furthermore, gauge (point) data do not capture the spatial 4911 

variability of drought events. Satellite measurements overcome the limitations of 4912 

gauge-based meteorological observation through continuous spatial observation 4913 

that allows drought conditions to be determined where gauge sampling is 4914 

otherwise unavailable. Often satellite-only rainfall estimates are merged with 4915 

gauge-based observations for calibration and validation. This results in merged 4916 

data sets, which exploit the strengths of each of the data source, and so improve 4917 

the overall quality of key environmental variables (Xie et al., 1995).  4918 

Climate Hazards Group Infrared Precipitation (CHIRP) with Station Data (CHIRPS) 4919 

is a recently-developed, high-resolution, daily, pentadal, decadal, and monthly 4920 

precipitation dataset, from 1981 to near present. It was created by the US 4921 

Geological Survey (USGS) Earth Resources Observation and Science (EROS) Centre, 4922 

with collaborators at the University of California, Santa Barbara, Climate Hazards 4923 

Group (Funk et al., 2015a). It was developed for drought early warning and 4924 

environmental monitoring to support the Famine Early Warning Systems Network 4925 

(FEWS-NET). It was produced by blending a set of satellite-only precipitation 4926 

estimates with monthly and pentadal station observations. The CHIRP is based on 4927 

infrared cold cloud duration (CCD) estimates calibrated with the Tropical Rainfall 4928 

Measuring Mission Multi-Satellite Precipitation Analysis v.7 (TMPA 3B42 v.7) and 4929 

the Climate Hazards Group Precipitation Climatology (CHPclim). The estimates are 4930 

available at a resolution of 0.05° × 0.05° resolution, or at a coarser resolution of 4931 

0.25° × 0.25° (Funk et al., 2015). The fine resolution 0.05° × 0.05° dataset was used 4932 

in this study.  4933 

 4934 
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5.3.5 Root Soil Moisture (GLEAM) 4935 

GLEAM stands for Global Land Evaporation Amsterdam Model, and is designed to 4936 

estimate land surface evaporation and root-zone soil moisture from satellite 4937 

observations and re-analysis data (Miralles et al., 2011). The potential evaporation 4938 

is computed from surface net radiation and near-surface air temperature data 4939 

using a Priestley & Taylor equation. The root-zone soil moisture (SMroot) is 4940 

calculated using a multi-layer running water balance model, which combines 4941 

observed precipitation and soil moisture observations (Martens et al., 2017). 4942 

GLEAM v3.3b provides global monthly potential and actual evaporation, 4943 

evaporative stress conditions and root zone soil moisture spanning the 4944 

approximately 18-year period between 2003–2020 at a spatial resolution of 0.25°. 4945 

The vegetation fractional cover in v3.5b comes from MOD44B and uses the latest 4946 

version of CERES radiation (v4.1), AIRS temperature (v7.0), MSWEP precipitation 4947 

(v2.8), and ESA-CCI soil moisture (v5.3) (Martens et al., 2017). GLEAM datasets 4948 

have already been comprehensively evaluated and used for multiple drought 4949 

analysis and monitoring applications (Peng et al., 2019; Vicente-Serrano et al., 4950 

2018). For this study, the GLEAM root zone soil moisture was used. GLEAM 4951 

datasets are openly available globally at daily temporal resolution and 0.25° spatial 4952 

resolution for 1980–2019 (https://www.gleam.eu/#downloads/(accessed 10 July 4953 

2020).  4954 

5.3.6 Vegetation Indices from Remote Sensing Imagery  4955 

Vegetation indices uses vegetation reflectance in the near and shortwave infrared 4956 

regions for reducing the effects of irradiance and exposure, and enhancing the 4957 

contrast between vegetation and the ground (Xue et al., 2017). NDVI has been 4958 

widely used in many studies to monitor drought impacts on vegetation and forests, 4959 

predict agricultural production, assist in hazardous fire zone prediction, and to 4960 

map desert encroachment which defines the vegetation growth status (Anyamba et 4961 

al., 2005; Myneni et al., 1997; Xulu et al., 2018). The NDVI was used in this study 4962 

because it is a biophysical parameter that correlates with the photosynthetic 4963 

activity of vegetation and is an indicator of the greenness of the biomes (Robinson 4964 

et al., 2017; Tucker, 1979). NDVI is also able to offer valuable information to 4965 

monitor vegetation health, drought effects, changes in plant growth, land 4966 
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degradation, deforestation, change detection/monitoring, and in relating large-4967 

scale inter-annual variations in vegetation to climate (Smith et al., 2019).  As 4968 

shown in Eq. 5.1, vegetation reflectance is at a minimum in the visible (red) part of 4969 

the electromagnetic spectrum due to absorption of radiation by chlorophyll 4970 

pigments, whereas maximum reflection is in the Near Infra-Red (NIR) spectral 4971 

region owing to refraction of radiation by leaf cellular structure. The NDVI index 4972 

outputs values range between -1.0 and 1.0, and has been shown to correlate well 4973 

with leaf area index (LAI), and fraction of photosynthetically active radiation 4974 

absorbed by vegetation (fAPAR) (Fensholt et al., 2004; Tucker, 1979). Negative 4975 

values are mostly due to clouds, snow, water, and values near zero are generally 4976 

generated from rock and bare soil. Lower NDVI values often correspond to 4977 

stressed or sparse vegetation. Shrubs and grasslands have moderate values (0.2 to 4978 

0.5) and high values (0.5 to 0.8) are typical of healthy vegetation with different 4979 

densities. I analysed the NDVI patterns during the growing season (January – 4980 

March) using 2002 to 2019 time series data from the MODIS (MYD09A1.006) 8-4981 

day product, with a 500 m spatial resolution.  4982 

 
NDVI                                                                                                   

(Eq. 5. 1) 

 

where NIR is the near infrared range of the electromagnetic spectrum (841–876 4983 

nm) and RED is the red spectrum of the electromagnetic spectrum (620–670 nm), 4984 

respectively, as measured by the MODIS sensor.  4985 

5.3.7 Product of burnt area MODIS MCD64A1  4986 

Satellite-based strategies for large-area burn assessment may rely on two types of 4987 

remote sensing data including postfire reflectance images and active fires and can 4988 

be used in combination or separately (Fraser et al. 2000). So, this study used 4989 

Burned Area Products of 500 m spatial resolution for analysing spatial dynamics of 4990 

burned areas and FIRMS Active Fire Products was used for seasonal temporal 4991 

variations. This is because Active Fire Products are unable to estimate burned 4992 

areas with an acceptable degree of accuracy due to coarse resolution of 1 km 4993 
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spatial resolution, and untrivial spatial and temporal sampling issues as stated by 4994 

Giglio et al. (2006b). The burnt area data were obtained from the MODIS burnt 4995 

area sensor monthly product MCD64A1 v.6, and was accessed via Google Earth 4996 

Engine (GEE). MCD64 (Giglio et al., 2009) is the latest product from the MODIS 4997 

Burnt Area product, and was updated as reported in Giglio et al., (2018). This is a 4998 

global grid-level 3 product at 500 m spatial resolution containing per-pixel burnt-4999 

area and quality information. It is based on an automated hybrid approach that 5000 

employs 500 m surface reflectance imagery coupled with 1 km MODIS active fire 5001 

observations. The algorithm applies dynamic thresholds to composite images 5002 

generated from a burn sensitive vegetation index, which in turn are derived from 5003 

MODIS shortwave infrared surface reflectance band 5 and 7, and a measure of 5004 

temporal texture (Giglio et al., 2016). Data layers include a recording of burn date, 5005 

data uncertainty, quality assurance and the first and last day of reliable change in 5006 

the year. The date on which the burn occurred with values assigned to unburnt 5007 

land pixels is encoded in a single data layer as the ordinal day of the calendar year. 5008 

The data layer also contains additional values reserved for missing data and water 5009 

grid cells. Overall, the MCD64A1 has improved the detection of burnt areas, 5010 

provides better detection of small fires and has proven adaptability to different 5011 

regional conditions in multiple ecosystems. 5012 

5.3.8 MODIS MCD14ML Active Fire Product 5013 

Fire point location were obtained from the Aqua & Terra MODIS wildland fire data, 5014 

with a spatial resolution of 1 km, Collection 6, from January 2002 to December 5015 

2019, available from the NASA Fire Information for Resource Management System 5016 

(FIRMS) at https://firms.modaps.eosdis.nasa.gov/download/ (accessed 21 March 5017 

2020). The data have a 1-day temporal resolution, and the location of the fire 5018 

nominally corresponds to the centre of a 1x1 km pixel, signalled by the algorithm 5019 

as containing one or more fires within that pixel. A full description of the 5020 

algorithms used to acquire the data can be found in Davies et al. (2008). FIRMS 5021 

was developed to provide a simpler and faster means to obtain MODIS active fire 5022 

locations and expand the distribution of MODIS fire data to a broader range of fire 5023 

and forest monitoring organisations around the world. In this study, active fire 5024 

products were used to determine fire seasons by determining the months when 5025 

https://firms.modaps.eosdis.nasa.gov/download/
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fire activity is very high. The fire seasons were determined from the cumulative 5026 

ratio of active fires on a regional scale detected during each month across the 5027 

seventeen years of observation (2002-2019) and the proportion of this number to 5028 

the overall number of fires. FIRMS is an extension to the MODIS Rapid Response 5029 

(MRR) system for near-real-time active fire information in a format that is easy to 5030 

use, and for users that could not handle image files (Ilavajhala et al., 2014).  5031 

Table 5. 2. Characteristics of the main datasets used in this study. 5032 

Dataset Timespan Resolution Source 

Climate Data 

Climate Hazards Group InfraRed 

Precipitation with Station Data (CHIRPS) 

2002-2019 0.05 degrees GEE 

High resolution Standardised Precipitation 

Evapotranspiration Index (SPEI) dataset 

for Africa 

2002-2016 5 km CHIRPS and GLEAM 

The Global Land Evaporation Amsterdam 

Model (GLEAM v3.3b) 

2003-2019 0.25° x 0.25° GLEAM 

Rainfall Data 1975-2020 - Botswana department of 

Meteorological Service 

(BDMS) 

Minimum and Maximum Temperature Data 1983-2020 - Botswana department of 

Meteorological Service 

(BDMS) 

Vegetation Data  

MODIS 8-day time series (MOD13Q1) 2002-2020 250m GEE (MODIS09, 2020). 

MODIS Terra Surface Reflectance 8-Day 

Global 500m (MOD09A1.006) and 

(MYD09A1.006) 

2002-2019 500m GEE (MODIS09, 2020). 

Fire Data 
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MODIS burnt area 

(MCD64A1) 

2002-2019 500m GEE (MODIS09, 2020). 

MODIS wildland fire point data 2002-2019 500m FIRMS 

 5033 

5034 
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 5035 

5.4 Methods 5036 

5.4.1 Calculating the standardised precipitation 5037 

evapotranspiration index (SPEI) from ground observation 5038 

Satellite-based drought indices are capable of characterising spatial and temporal 5039 

variability of drought based on the magnitude, duration, and intensity, and so they 5040 

represent promising tools for monitoring drought at regional scales, which is 5041 

important for developing a drought watch system for an area. A variety of drought 5042 

indices have been developed to quantify whether or not a region is experiencing a 5043 

drought, and to categorise the seriousness of that drought. Dryness severity was 5044 

quantified using the multiscalar Standardised Precipitation Evapotranspiration 5045 

Index (SPEI), calculated from ground meteorological data (rainfall and 5046 

precipitation) from the Kasane meteorological station. Drought severity is 5047 

predominantly caused by either precipitation decreases or increases in 5048 

temperature induced evapotranspiration. Hence, precipitation does not represent 5049 

the only control on ecologically and socially relevant water resources, such as 5050 

stream flow, reservoir storage, and soil moisture (Cook et al. 2004). SPEI is used to 5051 

measure environmental water stress by combining information from both 5052 

evaporation and precipitation. The SPEI is a drought indicator that determines 5053 

deviations from a location’s average water balance (the ratio of temperature and 5054 

precipitation) over a specified timeframe which is then fitted to a statistical 5055 

distribution (Vicente-Serrano et al. 2012). The SPEI was quantified based on the 5056 

Hargreaves equation (Hargreaves, 1994) using the ‘SPEI’ package (Bergueria et al., 5057 

2014) in the R software package. Due to the complex computation of Potential 5058 

Evapotranspiration (PET), which involves several variables, including surface 5059 

temperature, air humidity, soil, incoming radiation, water vapour pressure, and 5060 

ground–atmosphere latent and sensible heat fluxes, this study made use of 5061 

Hagreaves’ and Samani’s temperature-based method for PET estimation. The 5062 

Hargreaves approach has the advantage of only requiring data on monthly mean 5063 

minimum and maximum temperatures.  5064 
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 5065 

The SPEI was chosen over the commonly used Standardised Precipitation Index 5066 

(SPI) because it includes PET as well as precipitation (Stagge et al. 2014). PET is 5067 

the amount of evapotranspiration that could occur if enough water were available 5068 

(Oudin et al. 2005). For example, Dutrieux et al., (2015) used SPI and they found it 5069 

to perform poorly in tropical dry forest and concluded SPI was not the ideal way to 5070 

include moisture conditions in the dryland environment. Limitations of SPI, which 5071 

considers rainfall anomalies alone without including evaporative demand have 5072 

also been discussed by Trenberth et al. (2014). The SPEI is calculated based on the 5073 

accumulated difference between precipitation (P) and temperature used to 5074 

compute potential evapotranspiration (PET). The SPEI can comprehensively 5075 

reflect the change in surface water balance, hence automatically capturing the 5076 

well-known temporal lag of vegetation response to rainfall (Stagge et al. 2014; 5077 

Potop et al., 2014). Since SPEI is a standardised variable it can be used to compare 5078 

droughts over different spatial and temporal scales. SPEI produces a graph with 5079 

values ranging from 2 to -2 (Table 5.3).  5080 

This study places emphasis on moderate to extreme droughts and the SPEI index 5081 

scale is given as: extreme drought (≤-2); severe drought (−2 to −1.5); and, 5082 

moderate drought (−1.5 to −1). A continuously negative SPEI generally implies an 5083 

abnormally drier climate/drought period based on intensity, severity, magnitude, 5084 

and duration, while positive values correspond to abnormally wet periods. It 5085 

should be noted that drought ends when the SPI/SPEI approaches zero and 5086 

progresses to a positive value. For this study, the duration of the drought is 5087 

considered as the number of months for which the drought has occurred, whilst 5088 

the magnitude of the indices indicates the severity of the drought. Vegetation has 5089 

been found predominantly responsive to short-term drought time scales, hence 1, 5090 

3 and 12 months were determined as an appropriate time scales for 5091 

contextualizing meteorological, vegetation/crop and hydrological drought on 5092 

vegetation (Vicente-Serrano et al. 2012). Two data periods were used in the SPEI 5093 

analysis. The 1983–2019 period was used as the baseline period based on 5094 

availability of the high-quality observed data for temperature and rainfall. The 5095 

2002-2019 time period was used in SPEI analysis to investigate sensitivity of the 5096 

vegetation to drought events. 5097 
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Table 5. 3. Categories of dry and wet conditions indicated by SPEI values. 5098 

 5099 

 5100 

5.4.2 Calculation of the satellite-based aridity index (AI) 5101 

The degree of dryness is not determined by precipitation alone. If the temperature 5102 

is high/low, evaporation is either large or small. Therefore, the degree of dryness 5103 

is normally expressed as the ratio of PET and precipitation, giving the aridity 5104 

index, which is an important indicator of regional climate. The study adopted the 5105 

aridity index (AI) recommended by the United Nations Educational, Scientific and 5106 

Cultural Organisation (UNESCO), the Global Environment Monitoring System 5107 

(GEMS), the Global Resource Information Database (GRID), and the Desert Cure 5108 

and Prevention Activity Centre (DC/PAS), to reflect the aridity changes of the KAZA 5109 

region. The AI was calculated using the following form (Eq. 5.2).  5110 

 
AI                 

(Eq. 5. 2) 

where PET is the Potential Evapotranspiration (in mm) and PRE is the 5111 

precipitation (in mm). The aridity index (AI) has been widely used to divide 5112 

climate zones and to assess changes in aridity trends. Under this quantitative 5113 

indicator, drylands are defined as regions with AI < 0.65 and are further divided 5114 

into subtypes of: hyper-arid (AI < 0.03); arid (0.03 ≤ AI < 0.2); semiarid (0.2 ≤ AI < 5115 

0.5); dry subhumid (0.5 ≤ AI < 0.65); and, humid (AI > 0.65) regions, as shown in 5116 

Table 5.4 (Middleton et al., 1997).  5117 
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 5118 

AI was calculated using the MODIS data products MOD16A2 v.6 5119 

Evapotranspiration/Latent Heat Flux product, which is an 8-day composite 5120 

product produced at 500 m resolution. The algorithm used for the MOD16A2 5121 

product is based on the logic of the Penman-Monteith equation, which includes 5122 

inputs of daily meteorological reanalysis data along with MODIS data on vegetation 5123 

property dynamics, albedo, and land cover. The pixel values for the PET layer are 5124 

the sum of all values in the 8 days within the composite period. 5125 

Table 5. 4. UNESCO (1979) aridity classification and bioclimatic index thresholds 5126 

Threshold 0.03 ≤ AI < 

0.2 

0.2 ≤ AI < 0.5 0.5 ≤ AI < 0.65 AI > 0.65 AI > 0.75 

Arid conditions Arid Semi-arid Dry sub-humid Humid  

Desertification 

risk 

Risk    No risk 

 5127 

5.4.3 Evaluation Criteria  5128 

Most of the currently employed indexes in climate and drought regionalisation 5129 

reflect meteorological variables, without taking the diversity of landscape (such as 5130 

soil condition) into consideration. Therefore, a single index is insufficient for a 5131 

nationwide drought regionalisation program. In this respect, the regionalisation 5132 

indexes presented above that can be used to reflect climate wetness and assess 5133 

agricultural and plant droughts were developed. The SPEI at fine spatial resolution 5134 

based on CHIRPS and GLEAM v3 (root zone soil moisture) is compared temporally 5135 

and spatially to the CHIRPS precipitation dataset. In addition, the NDVI can also 5136 

serve as an indicator for drought and vegetation health and was used to assess the 5137 

performance of drought indices (Vicente-Serrano et al., 2013; Aadhar and Mishra, 5138 

2017). Furthermore, root zone soil moisture is an ideal hydrological variable for 5139 

plant (soil moisture) drought monitoring. 5140 

 5141 
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 A critical issue for identifying and quantifying droughts is the local historic 5142 

climatic distribution (i.e., what is ‘‘normal’’?). The sample size must be large 5143 

enough to guarantee that sample statistics are reasonable approximations of the 5144 

corresponding population parameter (Maliva et al., 2012). For a region to receive 5145 

its long-term average annual precipitation in a year should be a rare event; most 5146 

years will be either wetter or drier than the mean or median. To facilitate direct 5147 

comparison between SPEI, precipitation, NDVI and RSM, both precipitation, NDVI 5148 

and RSM are standardised by subtracting their corresponding (2002–2019) mean 5149 

and are expressed as the resulting anomalies in terms of numbers of standard 5150 

deviations (Eq. 5.3). The monthly and seasonal standardised anomalies (std. 5151 

anomaly) for vegetation and climate parameters were computed using Eq. 5.3, 5152 

below  5153 

 
std.anomaly                                                                                                 

(Eq. 5. 3) 

where  is the value of NDVI/climate at a particular time (month/season), and 5154 

δ are the average (monthly/seasonal) and standard deviation (monthly/seasonal), 5155 

respectively, over the study time period, 2002-2019. This standardisation has been 5156 

applied by many studies to evaluate drought indices (e.g., Anderson et al., 2011; 5157 

Mu et al., 2013; Zhao et al., 2017). 5158 

5159 
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 5160 

5.5 Results 5161 

5.5.1 Temporal analyses drought and water stress  5162 

5.5.1.1 Drought index at different scales 5163 

To demonstrate the temporal variation of drought at different time scales (1, 3 and 5164 

12 months) for the study period (1982–2019) in the KAZA region, the SPEIs were 5165 

generated and presented in Fig. 5.5. All three timescales had SPEI values close to 5166 

the extreme drought level of -2 for the entire hydrological year of 2019. In general, 5167 

the index data show the same pattern of variability for each timescale, with 5168 

different durations and magnitudes of drought. Also, the frequency of occurrence 5169 

of droughts was higher for the shorter, compared to the longer timescales; hence, 5170 

the meteorological droughts (1-month) show the highest frequency of occurrence, 5171 

followed by agricultural droughts (3-months), and lastly the hydrological droughts 5172 

(12-months). The number of drought events observed at the 3- and 12-month time 5173 

scales were 77, compared to 80 in the 1-month time scale (Supplementary, Table C 5174 

1). It takes a shorter time (at most 1-month) of prevailing water deficiency for a 5175 

meteorological drought to develop, hence the high variability of droughts. 5176 

However, at the longer timescales the drought lasts longer and the SPEI magnitude 5177 

increases. The variability shows that at the 12-month timescale, SPEI was found to 5178 

be of greater severity and magnitude compared to the 1- and 3-month timescales. 5179 

The SPEI event with the greatest magnitude at the 12-month scale was found in 5180 

2019 with the SPEI value >2.5 (Fig. 5.5). 5181 

 5182 
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 5183 

 5184 

Fig. 5. 5. SPEI for 37 years calculated from ground precipitation and temperature at 5185 

different timescales. SPEI index scale is given as, extreme drought (≤-2), severe drought 5186 

(−2 to −1.5) and moderate drought (−1.5 to −1). 5187 

 5188 

Given that it takes up to 3 months for most vegetation to be fully developed, a 5189 

water deficiency accumulation of at least 3 months during the growing season will 5190 

adversely impact vegetation and crop yields, thus quickly developing into an 5191 

agricultural drought. On the other hand, a longer period of water deficit 5192 
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accumulation or depletion of water storage in rivers and reservoirs is required for 5193 

a hydrological drought to occur. Fig. 5.6 shows the number of droughts per year at 5194 

a time scale of 3 months, including the drought categories. For the period under 5195 

observation (1983–2019), drought was more extreme in 1998/1999, 2002/2003, 5196 

2005, 2015/2016 and 2018/2019. Severe drought was also observed in 1987, 5197 

1992, 1994, and 1999. The SPEIs calculated for 2019 show the worst drought and 5198 

accompanying effects on crops and vegetation ever recorded over the Southern 5199 

African region. 5200 

 5201 

Fig. 5. 6. Number of drought events for the years that experienced droughts in the period 5202 

of 1983 to 2019 using a 3-month time scale, ranked by number of drought months.  5203 

5.5.1.2 Drought index, precipitation and vegetation relationship 5204 

To contextualise the drought impacts on vegetation, the 3-month SPEI, 5205 

precipitation from the ground station, and monthly NDVI values of a forested area 5206 

between 2002 and 2019 were plotted to determine the interplay between 5207 

vegetation and climate variability. Monthly NDVI varied closely as a function of 5208 

rainfall distribution, as shown in Fig. 5.7. Low NDVI values appear to coincide with 5209 

large drops in SPEI and these correspond to abnormally dry years as shown in the 5210 

graph of precipitation. The lowest NDVI range was recorded in 2002-2003, 2005, 5211 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought
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2010/2012, 2015/2016, and 2019, corresponding to the low rainfall values and 5212 

drought years, visible in the SPEI data. Similarly, the highest NDVI was observed in 5213 

2004, 2006, 2008 /2009, and 2017, which are associated with good rainfall in the 5214 

growing season. The SPEI values show that 2019 experienced extreme drought 5215 

with a negative anomaly from the mean conditions reaching the level of -2, and this 5216 

corresponds with reduced NDVI and rainfall levels.  5217 

 5218 

 5219 

 5220 

Fig. 5. 7. Top: SPEI from 2002 through 2019 calculated from ground precipitation and 5221 

temperature at 3 months timescales. SPEI index scale is given as, extreme drought (≤-2), 5222 
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severe drought (−2 to −1.5), and moderate drought (−1.5 to −1). The different vertical line 5223 

colours represent the drought scale (yellow colour shows mild drought and red colour 5224 

shows extreme drought). Bottom: Temporal variation of the NDVI (black circles) and 5225 

inverted monthly precipitation from ground station data (red squares) from 2002 through 5226 

2019.  5227 

 5228 

5.5.2 Spatial analyses of drought and water stress on 5229 

vegetation  5230 

The precipitation, SPEI and RSM dataset are compared with NDVI to gain more 5231 

insight into their significance, and to assess which climatic variables explain spatial 5232 

patterns of forest and vegetation in this region. Fig. 5.8 shows the results of the 5233 

spatial and temporal comparison from 2010 to 2019 for NDVI, precipitation, and 5234 

RSM. Noter that SPEI maps end in 2016 due to lack of data availability. In general, 5235 

these four variables reflect a progressive dry-out during the events from 2010-5236 

2019. The period between 2010 to 2019 was chosen because it is the period with 5237 

more years experiencing severe drought events. For example, a severe drought is 5238 

revealed by the SPEI in 2012, with values < −1, mostly in the west of the KAZA 5239 

region, coinciding with a decline in NDVI in this area. The drought of 2012 in 5240 

western KAZA could be exacerbated by low rainfall values in 2011 which lead to a 5241 

considerable decrease in RSM and SPEI values. However, in 2012, the eastern part 5242 

of KAZA experienced an increase in vegetation cover, despite receiving less than 5243 

average rainfall. The high NDVI in eastern KAZA corresponds to high RSM with 5244 

values >1.5 in the same area, which can be attributed to high rainfall, wet 5245 

conditions, as reflected in the in SPEI and high RSM values from 2011 in the 5246 

eastern KAZA. In 2013, extremely low rainfall was recorded which is reflected by a 5247 

severe drought in SPEI with values <-1.5 over almost the whole of the KAZA region. 5248 

This drought resulted in a decreased vegetation productivity, although not as 5249 

severely as the RSM which was still high for most parts of KAZA. In 2015, the entire 5250 

KAZA region experienced extremely low precipitation, with a value <-1. This 5251 

resulted in a strong and extreme drought, as shown by the SPEI and RSM, with 5252 

extremely low values <-1.5 across >80% of KAZA. The 2015 drought event 5253 

impacted vegetation in the region severely, with an NDVI value <-1 in >50% of 5254 

KAZA. Precipitation returned to normal in 2016, which corresponds to the SPEI 5255 
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data, as there was no drought or dry condition experienced in 2016. However, the 5256 

NDVI progressively declined through 2016, which is explained by RSM values <-1 5257 

across the whole of KAZA, despite precipitation and SPEI showing a different 5258 

pattern.  5259 

The slight increase in NDVI values in northern KAZA corresponds to the very few 5260 

areas with average RSM in 2016. The RSM reflected the main drought conditions 5261 

that are shown also by negative values in NDVI, rather than rainfall or SPEI. The 5262 

extreme drought of 2015-2016 is followed by a high level of precipitation in 2017 5263 

over almost the entirety of KAZA region, showing wet condition values of >1.5. 5264 

This corresponds to an increase in NDVI and RSM over most of the region, 5265 

although most dryland forest in northern and central KAZA remained negative. In 5266 

2019, the whole of the region received extremely low precipitation with values 5267 

<1.5. This resulted in a distressing drought with extremely low RSM values 5268 

coinciding with a decline in NDVI. The location of the maximum precipitation and 5269 

RSM deficit is concentrated in the north and east of KAZA in both 2015 and 2019. 5270 

While the wetter conditions were mostly concentrated in south of KAZA, where it 5271 

is more arid with less dryland forest such as in 2014 and 2017. RSM was useful in 5272 

explaining the spatial-temporal patterns of vegetation lag effects and revealing the 5273 

cumulative effect of climate anomalies on vegetation conditions, that were not 5274 

explained by precipitation or SPEI. 5275 
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 5276 

Fig. 5. 8. Spatial distribution of PRECIPITATION, NDVI, SPEI and RSM anomalies expressed 5277 

as numbers of standard deviations sampled from the monthly data in the growing season 5278 

from 2010 to 2019. Extreme droughts (≤-2), severe drought (−2 to −1.5) and moderate 5279 

drought (−1.5 to −1), mild droughts (-1 to -0.5) and no drought (-0.5 to 0.5). The map 5280 

shows the whole of KAZA region as represented by the study area in Fig. 5.2.  5281 
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Comparisons of climate variables against the NDVI values show that reduced NDVI 5282 

uniformly coincide with extremely high temperatures and with low precipitation. 5283 

Similarly, low SPEI values (< −0.5) moisture coincides with low NDVI values 5284 

(Fig. 5.9). SPEI values indicate that the drought event of 2019 was the worst with 5285 

SPEI values falling below −1, followed by the drought event of 2015. The root soil 5286 

moisture shows that the dry forest vegetation corresponds strongly to the drought 5287 

events of 2019 and 2015, with both years experiencing the lowest root-soil 5288 

moisture resulting in low NDVI values. In contrast, high NDVI values are captured 5289 

for the year 2017 strongly responding to the high moisture availability as 5290 

illustrated by the high value of precipitation, root soil moisture, and SPEI. The max 5291 

and average temperature also show a sharp contrast of the drought years (2015 5292 

and 2019) and the wet years (2017 and 2014). The drought year (2019 and 2015) 5293 

has the highest average and maximum temperatures, with low NDVI values 5294 

coinciding with extremely high temperatures. On the other hand, the high NDVI 5295 

values of wet years (2017 and 2014) correspond with the lowest average and 5296 

maximum temperature. There is a lag observed in dryland vegetation productivity 5297 

in some years following drought events such as 2016 and 2013, in which the NDVI 5298 

remain very low despite an increase in precipitation and positive values in SPEI. 5299 

The min temperature does not uniformly coincide with the NDVI deviation, with 5300 

low NDVI values weakly responding to both low and high min temperatures 5301 

(Fig. 5.9). 5302 

 5303 

 5304 

 5305 

 5306 

 5307 
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 5308 

Fig. 5. 9. Association between climate variables and NDVI from the Kavango Zambezi 5309 

region. The average daily mean, maximum temperatures, precipitation, SPEI and Root Soil 5310 

Moisture were calculated from the monthly data in the growing season from 2010 to 2019. 5311 

 5312 

The correlations of NDVI, precipitation, SPEI, root soil moisture, minimum 5313 

temperature and maximum temperature are presented in Fig. 5.10. The NDVI 5314 

shows a strong correlation with the root soil moisture (r = 0.66), highlighting the 5315 

constraints imposed by root soil moisture deficit on dryland vegetation. The 5316 

results also indicate a higher correlation between NDVI and SPEI (r = 0.58), as well 5317 

as the NDVI and precipitation (r = 0.50), reaffirming the consistent mechanism of 5318 

influence of drier conditions. The NDVI - maximum temperature correlation (r = -5319 

0.45) was also notable. The SPEI index showed a strong negative correlation with 5320 

maximum temperature (r = -0.71), and a positive correlation with precipitation 5321 

(r = 0.63).  5322 



Chapter 5 
 

Page | 256  
 

 5323 

Fig. 5. 10. Pearson’s correlation of the NDVI, precipitation, SPEI, root soil moisture, 5324 

minimum temperature and maximum temperature. 5325 

5.5.3 Temporal analyses of fire 5326 

5.5.3.1 Fire seasonality and extent 5327 

Fig. 5.11 shows the area burnt for each country in the KAZA region. Every year, 5328 

between 110,173 km2 (21%) and 203,849 km2 (39%) of the land area in the KAZA 5329 

region were burnt on an annual basis in the period 2002 to 2019. The year 2011 5330 

experienced the highest degree of burning with 203,849 km2 (39%), followed by 5331 

2010 and 2012 with 177,493 km2 (34%) and 184,186 km2 (36%), respectively. 5332 

The year 2019 experienced the lowest burning with only 110,173 km2 (21%). In 5333 

KAZA region, a mean 149,410 km2 of land is burnt on an annual basis in the period 5334 

2002–2019. Most of this burnt area is situated in Angola and Zambia, with an 5335 

average of 47,492 km2 (32%; Angola) to 50,935 km2 (35%; Zambia), respectively, 5336 
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of the land area burnt on an annual basis between 2002 and 2019 respectively. The 5337 

average area burnt annually in Namibia, Botswana, and Zimbabwe was lower, 5338 

varying between 23,806 km2 (16%; Namibia), 19,554 km2 (13%; Botswana) and 5339 

7,623 km2 (5%; Zimbabwe), respectively (see supplementary: Fig. C. 1 and Table C 5340 

1).  5341 

 5342 

Fig. 5. 11. Total area burnt annually for each country of KAZA from 2002 to 2019 in 5343 

km2 based on the MODIS Burnt Area product data. 5344 

Fig. 5.12 shows the cumulative monthly seasonal distribution of fires in KAZA 5345 

between 2002 to 2019, as determined from an analysis of the 1 km FIRMS fire 5346 

activity data. The FIRMS data are reported to have considerable amount of 5347 

uncertainty on individual fire number/size distribution. Therefore, FIRMS point 5348 

data were used as complementary to MODIS burned data (Mouillot et al., 2014). 5349 

Vegetation burning in the KAZA region occurs mainly in the dryland forests during 5350 

the dry season between May to October each year. The highest degree of burning is 5351 

experienced during the late dry season, with the months of August and September 5352 

representing the peak months for fire incidences. More than 96% of the incidences 5353 

are due to dry season fires from May to October. There is a relatively low level of 5354 

fire incidences in the months of November, December, January, February, March 5355 
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and April (Fig. 5.12). Looking at burning incidences per individual country, 5356 

Namibia, Botswana and Zimbabwe have the highest levels in September, while 5357 

Zambia and Angola have the highest levels in August (see supplementary, Fig. C . 5358 

2). On a regional scale, August shows the highest burning rate followed by 5359 

September because Zambia and Angola experience the highest burning incidences 5360 

on an individual basis in comparison to the other three countries (Botswana, 5361 

Namibia and Zimbabwe) combined, as shown below (Fig. 5.12).  5362 

 5363 

Fig. 5. 12. Cumulative monthly fire incidences for the whole of KAZA from 2002 to 2019 5364 

using FIRMS fire activity data. 5365 

 5366 

5.5.4 Spatial analyses of fire seasonality and extent  5367 

 5368 

Fig. 5.13 shows comparison between the fires burnt in September in drought and 5369 

wet years. Data from the month of September are used because it represents the 5370 

peak month for fire incidences in most of the KAZA countries. Spatial analysis 5371 

indicates that the years with extreme drought, including 2002, 2005, 2015 and 5372 

2019, experience the lowest extent of area burnt as compared to normal and wet 5373 

and less drought affected years. The burnt area was greatest in the wet years of 5374 

2004, 2006, 2008-2010 and 2017, and in the very low drought years (2011 to 5375 
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2013) for all the five countries in the study area, and most of the burnt area is 5376 

situated within National Parks. As shown in Fig. 5.13, the Chobe NP has no fire 5377 

incidences during the drought years, but fire intensified in the normal/wet years. It 5378 

can be noted that the northeastern section of Chobe NP (near Kasane Forest 5379 

Reserve) is more prone to fire than the north and southern part of the park. The 5380 

national parks including Chobe NP, Mudumu NP, Sioma Ngwesi NP and Luengue-5381 

Luiana NP and Kafue NP are more vulnerable to fires in wet years as compared to 5382 

drought years. The Nxai Pan NP and Makgaikgadi Pans NP of Botswana and 5383 

Hangwe NP of Zimbambwe has little to no fire incidence in most years. The 5384 

National Parks in Angola, Zambia, and Namibia including Sioma Ngwesi NP and 5385 

Luengue-Luiana NP, Kafue NP and Mudumu NP experience severe burning in both 5386 

dry and wet years, even though the national parks are more vulnerable to fire in 5387 

wet years as compared to drought years. 5388 
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 5389 

Fig. 5. 13. Burnt area derived from the September month of MODIS MCD64A1 product for 5390 

selected drought years (2002, 2005, 2015 and 2019) and wet years (2004, 2006, 2008 and 5391 

2017) based on SPEI data. 5392 

 5393 

5.5.5 Fire frequency index  5394 

Fire-affected pixels were considered as those area that burnt at least once in the 5395 

17-year monitoring period. As shown in Fig. 5.14, between 2002 and 2019, about 5396 

390,678 km2 (75%) of the land area is classified as fire-affected at least once, and 5397 

127,989 km2 (25%) of the area is not affected by fire (Fig. 5.14). Of the 390,678 5398 

km2 (75%) of fire-affected area, 90,895 km2 (18%) of the area burnt only once or 5399 



Chapter 5 
 

Page | 261  
 

twice during the 17 years, indicating a low overall fire frequency overall. The 5400 

majority of the area, 114,222 km2 (22%), burnt 2-6 times, while 87,955 km2 (17%) 5401 

burnt 6-10 times over the same period. About 28,177 km2 (13%) burnt frequently, 5402 

>10-14 times, and 28,177 km2 (5%) burnt every in >14 of the 17 years indicating a 5403 

high frequency overall (Table C 2). The national parks are affected by higher levels 5404 

of fire occurrence than other protected areas such as forest reserves. The fire 5405 

frequency map shows that Zambia including Sioma Ngwesi NP and Luengue-5406 

Luiana NP, Kafue NP experienced high rates of fire return with many of the same 5407 

areas burning every year, during the monitoring period, with very large areas 5408 

burnt in >14 out of 17 years. In Namibia, Mudumu, Bwabwata and Khaudum NPs 5409 

also experienced very high rates of fire return for the majority of their total area 5410 

ranging returning in 10 to 17 years. In Botswana and Zimbabwe, fire return is 5411 

generally <6 years, with the exception of the Northeasten Chobe NP, Chizarirae NP 5412 

and Matusadona NP, which had a fire return of between 6 to 14 years. Hwange NP 5413 

in Zimbabwe experienced a fire return >6 years for a very small proportion of the 5414 

northeast area adjacent but outside Hwange NP, and the two parks at the 5415 

southernmost tip of Botswana (Makgadimkadi Pan NP, and Nzai Pan NP) have the 5416 

lowest fire reoccurrence of <6 times out of the 17 monitored years. A large portion 5417 

of the 25% of unburnt pixels were recorded south of Zambezi River in Botswana 5418 

and Zimbabwe. By comparison, the fire return and incidence of burning are higher 5419 

in Botswana than in Zimbabwe.  5420 

 5421 
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Fig. 5. 14. The area affected by fire determined from monthly using MODIS Burnt Area data 5422 

from 2002 to 2019 for different land categories in the region. Colours indicate the number 5423 

of times pixels were classified as burnt. White areas represent pixels that were classified 5424 

as unburnt over the time period.  5425 

Fig. 5.15 shows climate, fire and vegetation indices data from 2002 to 2019. Very 5426 

high and extremely low burnt areas coincide with a certain combination of climatic 5427 

factors. A comparison of the distribution of these climatic data and burnt areas, 5428 

with the spatial distribution of NDVI values, an index of ‘greenness’ of the 5429 

vegetation also derived from the MODIS sensor, shows that burning is closely 5430 

related to areas with proportions of high dryland forests. The areas with high 5431 

dryland forests (or high tree cover), high rainfall, and dry season length 5432 

correspond to areas with high fire frequency and large burnt areas (Fig. 5.15). For 5433 

example, areas with high dryland tree cover and vegetation with NDVI >0.4 5434 

receiving mean annual precipitation >150 mm were burnt in approximately 6 to 5435 

17 out of the 17 monitored years, here it was common that the same areas burned 5436 

frequently and recurrently. The areas with low tree cover and vegetation with 5437 

NDVI <0.4 receiving mean annual precipitation <150 mm were burnt 1 to 6 times 5438 

out of 17 years. The very dry areas, such as the succulent deserts, burnt once and, 5439 

in most cases, remained unburnt in the 17 years. The precipitation variations 5440 

corresponded with the highest degree of spatial similarity to the root soil moisture, 5441 

and with consistent high rainfall in northern part of KAZA, and the extremely low 5442 

rainfall (<150 mm) in the southern part of the region.  5443 

In contrast, the potential evapotranspiration has the lowest variation in the 5444 

northern part of the study area (>550 mm) and highest variations in the south 5445 

(<5500 mm). This is consistent with the root soil moisture, which have high 5446 

variations (>0.25) in the northern part of the region in comparison to the northern 5447 

side with very low soil moisture (<0.25). The northern part of the region is 5448 

situated in the countries with the largest dryland forest cover, Angola and Zambia, 5449 

which is consistent with high NDVI (light and dark green colours in Fig. 5.15). 5450 

However, these areas also have a very high rate of burning in consecutive years, 5451 

with a fire return of between 14 to 17 years within 17 years, as shown by the fire 5452 

frequency index. The high fire return rate is also prevalent in other areas with 5453 

dryland forests, such as the forest reserves and national parks in Namibia and 5454 
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Botswana (e.g., Mudumu, Chobe NP, Zambezi ST and Kasane forest reserves), 5455 

which display a fire return of between 6 to 14 in 17 years, with proportions of 5456 

their areas experiencing fire recurrences in more than 14 years. The south of 5457 

Zambezi River shows a very low fire frequency and a large portion of the 25% of 5458 

unburnt pixels from 2002 to 2019 are recorded here (see supplementary: Table C 5459 

2).  5460 

 5461 

 5462 
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Fig. 5. 15. Areas where the fire frequency is under varying degrees of climatic condition 5463 

(precipitation, potential evapotranspiration, root soil moisture), and NDVI sampled from 5464 

the averaged monthly-mean of the growing season of 2002 to 2019. 5465 

5.5.6 Spatiotemporal changes in the Aridity Index  5466 

Fig. 5.16 presents the spatiotemporal aridity changes in the whole of the KAZA 5467 

region to explore whether frequent drought and fire dynamics in recent years have 5468 

led to increased dryness, and subsequent vegetation change. A subset of the AI 5469 

data over the last 9 years of the period (2011–2019) is compared with the first 9 5470 

years (2002 - 2010) to highlight these temporal changes. The temporal changes of 5471 

AI showed a significant increasing dryness since 2002. Observed areal changes 5472 

(Fig. 5.16) are apparent, with the change to drier subtypes being dominant and 5473 

mainly located in southern side of the region as compared to the northern side in 5474 

the period of 2002-2010, as compared to 2011-2019. An increase in the drying 5475 

variations and changes in the aridity index were observed in transition zones 5476 

between arid, semi‐arid, and sub-humid regions between 2011 and 2019. The arid 5477 

and semi-arid regions have increased at the expense of neighbouring dry sub-5478 

humid areas, and represented 5.56% and 4.84%, respectively. The sub-humid 5479 

areas experienced a significant decrease of approximately 10% of the KAZA land 5480 

area. The largest expansion of drylands occurs in semiarid regions, which account 5481 

for nearly half of the total dryland expansion and cover >70% of the region (Table 5482 

C 3). The AI indicator detected areas with increasing aridity to be mainly in 5483 

southern KAZA, and these areas are shifting towards more arid and hotter classes, 5484 

while northern the KAZA areas with semi humid regions are shifting into semi-arid 5485 

regions and, therefore, increasing climatological drying risk. 5486 
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 5487 

Fig. 5. 16. Spatial distribution of averaged aridity over KAZA region for 2002-2010 and 5488 

2011-2019.  5489 

 5490 
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5.6 Discussion  5491 

5.6.1 Drought impacts on vegetation  5492 

Temporal analysis of the SPEI index, precipitation and soil moisture anomalies all 5493 

reveal that the 2019 drought event surpasses the severity of events in 2002, 2005, 5494 

2010, and 2015, which were all considered severe drought events. The results 5495 

show that the dryland vegetation in the region has a strong correlation with 5496 

precipitation and closely responds to variability in precipitation and drought (see: 5497 

Fig. 5.7). A study by Caylor et al. (2005) showed that vegetation in the Kalahari 5498 

region depends on the stochastic distribution of rainfall events and interannual 5499 

variation in rainfall that can induce shifts in vegetation structure with prolonged 5500 

periods of wet (or dry) regime. Comparing the satellite-based rainfall anomalies 5501 

(CHIRPS) with ground-based rainfall observations also indicates that the results 5502 

are not sensitive to the precipitation data used in this analysis. The multi-year 5503 

spatial patterns of change in climate, soil moisture and vegetation were 5504 

categorised from 2002 through 2019 (see: Fig 5.8). Fig 5.8 shows the results of 5505 

2010 to 2019 as this period was more affected by drought impacts as compared to 5506 

the period 2002-2009. As shown in Fig. 5.8, the severity and extensiveness of the 5507 

2015 and 2019 drought resulted in considerable precipitation and soil water 5508 

deficit, which caused a significant change in dryland forest vegetation. A similar 5509 

pattern was seen by Liu et al. (2013) who found climate variability to be extreme 5510 

in dryland trees and grassland in the KAZA region. The browning hotspots are 5511 

concentrated in unprotected woodland and grassland, although significant 5512 

browning patterns were also observed in protected national parks (e.g., Chobe NP 5513 

and Kafue NP). On the one hand, some large‐scale browning patterns are not 5514 

corresponding to the low precipitation values and drought years, which implies 5515 

that they could not be directly associated with climate change (see: Fig. 5.8). 5516 

Agricultural expansion, deforestation, and frequent fire burning could be 5517 

associated with these changes, particularly in Namibia and Zambia.  5518 

The lag in greening rate in dryland biomes can be seen in some years following 5519 

drought (e.g., 2016), with most dryland trees suffering drastically reduced growth 5520 

rates despite an increase in rainfall and a subsequent lack of a dry spell, as shown 5521 

in the SPEI of 2016 (see: Fig. 5.8 and 5.9). The root soil moisture data explained the 5522 
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consistent decrease in vegetation productivity in 2016, despite precipitation and 5523 

the SPEI showing a positive trend, indicating that RSM root soil moisture is one of 5524 

the major controlling factors that helps to explain changes in vegetation cover 5525 

across the KAZA region, as indicated by Caylor et al. (2005). Sporadic, erratic and 5526 

extremely poor rainfall accompanied by high temperatures in preceding years, 5527 

seems to have resulted in an absence of soil water storage with root soil moisture 5528 

levels becoming very low, resulting in potential carry-over effects on plants. 5529 

Although SPEI considers the effects of both temperature and precipitation, and has 5530 

been very useful in detecting vegetation drought in many studies (Marumbwa et 5531 

al., 2020; Vicente-Serrano et al., 2015), the RSM showed a better performance in 5532 

explaining the climatic relationship with vegetation vulnerability to prolonged 5533 

drought resulting in lack of moisture in plant roots (see: Fig. 5.8 and 9). This 5534 

finding is similar to Anderegg et al. (2013) and Case et al. (2019) who also 5535 

observed lag-effect patterns between drought stress and extended multiyear tree 5536 

disturbances in 2015-2016 in temperate forests in North America and dryland 5537 

woodland in Kruger NP. These results confirm that MODIS-derived VIs time series 5538 

coupled with climatic variables, soil moisture and ground measurements of forest 5539 

stands can provide insights into the influence of water stress on dryland biomes.  5540 

5.6.2 Fire 5541 

Changes in fire regime were analysed in conjunction with climate data as the 5542 

climate variability and change also modify the risks of fires, pest and pathogen 5543 

outbreaks, which each negatively affect vegetation (IPCC, 2014). The data show 5544 

that every year, between 110173 km2 (21%) and 203849 km2 (39%) of the land 5545 

area in the KAZA region were burned in the period 2002 to 2019. The year 2011 5546 

experienced the highest amount of burning with 203849 km2 (39%), and 2019 5547 

experienced the lowest burning with only 110173 km2 (21%). The results show an 5548 

increase in annual precipitation in the study region has led to a potential increase 5549 

in fire incidence, and the reoccurrence of drought events have exacerbated fire 5550 

incidences in the wet years. During wet years (2004, 2006, 2008-2009 and 2017) 5551 

and less drought prone years (2011 to 2013), fire incidence in the KAZA was 5552 

greatest across protected areas. By comparison, dry years of 2002-2003, 2005, 5553 

2015-2016 and 2018-2019 show unusually low fire incidence and notably, 2019 5554 
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which experienced extreme drought conditions also experienced the lowest 5555 

number of fire incidences (see: Fig. 5.11 and 13). The findings of this study are in 5556 

agreement with Fox et al. (2017) who analysed fire incidences in Chobe NP from 5557 

2001 to 2013, and found more active fires recorded in years with higher rainfall. In 5558 

addition, during wet seasons or low drought years, fire is also used to remove 5559 

biomass from land being cleared for agriculture, shifting cultivation, weed and 5560 

disease control, or, afterwards, for removal of the previous-year’s agricultural 5561 

waste (Eriksen, 2007; Frost, 1999). However, inverse results were found in the 5562 

Amazon, where many studies demonstrate that fire incidence and extent increases 5563 

in drought years (Aragão et al., 2007; Nobre et al., 2009).. 5564 

One explanation for the high incidence of fire in wet years is that in the KAZA 5565 

region, more than 90% of fire incidences are due to dry season fires in June to 5566 

October, the highest number of burning incidences occur in the late dry season 5567 

between August and September (see Fig. 5.12), and the end of dry season affects 5568 

the amount of fuel available in wet years (see: Fig 5.4). During the dry season, the 5569 

herbaceous vegetation is either dry/dead (annual grasslands), and deciduous trees 5570 

have shed their leaves, thereby contributing to the build-up on the surface of 5571 

ignition sources after only a few weeks of dry weather (Higgins et al., 2000; 5572 

Lehmann et al., 2014). This evidence suggests that most fires in the region are set 5573 

by people, because there are few thunderstorms in the late dry season months that 5574 

might naturally trigger fires. The late dry seasons are normally hot, windy with 5575 

extremely dry conditions, which means the fires can spread easily and are difficult 5576 

to control, and subsequently burn large areas (Archibald et al., 2010). On the other 5577 

hand, severe drought conditions with very low rainfall does not permit the 5578 

accumulation of sufficient fuel to become a source of ignition and then to sustain 5579 

extensive fires (Stott, 2000). The fieldwork of 2019 revealed that a frequent late 5580 

dry season fire transforms woodland into open, tall grass savanna with only 5581 

isolated fire-tolerant canopy trees. This suppresses the regrowth of woody plants 5582 

resulting in scattered understorey trees and shrubs. Similarly, in the Amazon, huge 5583 

and successive fires have substantially increased forest disturbances and favoured 5584 

the occurrence of short-life-cycle pioneer species (Nobre et al., 2016).  5585 

Between 2002 and 2019, about 390678 km2 (75%) of the land area was classified 5586 

as fire-affected at least once, and 127989 km2 (25%) of the area was not affected 5587 
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by fire (see: Fig. 5.14). Even though all of the KAZA member countries have fire 5588 

suppression policies that largely date back to colonial days, the striking difference 5589 

in fire incidence and extent of area burnt is due to the different types of fire laws, 5590 

and the enforcement of these laws. The national parks are more affected by high 5591 

fire occurrence as compared to other protected areas, such as forest reserves, 5592 

game reserves and wildlife management areas. The fire frequency map shows that 5593 

a large portion of the 75% burned pixels were located in the Zambian and Angolan 5594 

areas of KAZA. The two countries experienced high rates of fire return, with many 5595 

of the same areas burning every year, in the last two decades, with very large areas 5596 

burned in 14 to 17 years out of 17 years. Within Angola, anthropogenic fire is 5597 

thought to be a significant cause of deforestation and the fire incidence rate is 5598 

significantly higher during the dry season, which has a negative impact on forest 5599 

resources and biodiversity in Kuando-Kubango Province (the Angolan component 5600 

in KAZA), as recorded by United States Forest Service report (Zweede et al., 2006). 5601 

Although there is legislation and regulation on fire control in Angola, these are 5602 

rarely enforced, and so uncontrolled dry-season burning for clearing land and to 5603 

flush animals for hunting are common practices (USAID, 2013). In Zambia, fire is 5604 

perceived as an important land management tool in agricultural and caterpillar 5605 

breeding. The Zambian State Forestry Department and local NGOs encourage 5606 

burning earlier in the dry season to enable fire suppression in the late dry season 5607 

across most national parks and other protected areas. Even though there is 5608 

existing state law on fire regimes in Zambia, these laws are not strictly followed, 5609 

again due to the difficulty of enforcement, and potentially a lack of understanding 5610 

of the laws in many remote rural areas (Eriksen, 2007). A separate study by 5611 

Archibald et al. (2010) also reported similar results, whereby Angola and Zambia 5612 

have the highest burnt areas amongst Southern African countries, with much of 5613 

their area burned >4 in the 8-year period monitored. 5614 

In Namibia, fire return periods for most of areas are midrange compared to other 5615 

areas of KAZA (e.g., Mudumu, Bwabwata and Khaudum NP experienced high rates 5616 

of fire return for most of its total area ranging from 10 to 17 years out of the 17 5617 

years). In Namibia, a fire management project that includes the establishment of a 5618 

community fire break, and the implementation of awareness programs on fire, to 5619 

manage and reduce wildfires was established in 1996 through the Namibia–5620 
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Finland Forestry Programme (NFFP) (Verlinden et al., 2006). In addition, an 5621 

innovative integrated fire management program (Integrated Rural Development 5622 

and Nature Conservation Caprivi Program) was implemented between 2006 and 5623 

2010 to support national parks and forestry agencies via decentralization of fire 5624 

management decision-making to include community members in decision-making 5625 

(Russell-Smith et al., 2017). Tire management in the Namibian section of the 5626 

Wildlife Dispersal Area (WDA) has progressed significantly through collaborative 5627 

efforts between the Directorate of Forestry, NGOs and local communities (KAZA, 5628 

2014). According to Verlinden et al. (2006), the implementation of fire 5629 

management into schools and community meetings, through awareness raising 5630 

interventions in Namibian were very effective and the results appear to show a 5631 

significant decrease in burned area in comparison to the prior era.  5632 

A large portion of the 25% of unburned pixels from 2002 to 2019 are recorded in 5633 

Zimbabwe and south of Zambezi River around the Makgadikgadi Pans National 5634 

Park and Nxai Pan National Park in Botswana. This is due to the generally drier 5635 

environment with low precipitation and low tree cover as both Makgadikgadi Pans 5636 

National Park and Nxai Pan National Park are physically and ecologically part of 5637 

the “Kalahari Desert,”, and possibly due to better controlled fire regimes in these 5638 

areas (Chinamatira et al., 2016; EMA, 2007). The incidence of burning is lower in 5639 

Botswana than in Zimbabwe, despite the higher human population density in the 5640 

latter. In the two countries, the fire return is generally low with <6 years 5641 

experiencing burning from 17, with the exception of northeast of Chobe NP, the 5642 

northeast of Hwange NP, Chizarirae NP and Matusadona NP, which have a fire 5643 

return of between 6 and 14 years. This is in line with the findings by Mpakairi et al. 5644 

(2019) who reported fire hotspots in Chizarira, Matusadona NP and northeast of 5645 

Hwange NP. Botswana has a fire suppression management strategy through the 5646 

use of fire breaks and firefighting crews including the military, police and 5647 

volunteer members of the general public, mobilised through the District 5648 

Commissioner (Dube, 2013). The Zimbabwean component have strict laws on fire 5649 

management and control in place, dating back to colonial days bolstered by recent 5650 

laws passed in 1998 (Zweede et al., 2006). The Zimbabwean Environmental 5651 

Management Authority passed regulations on fire suppression in 2007, such that 5652 

anyone caught setting a wildfire outside a residential or commercial premises 5653 
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during the dry summer period from 31 July to 31 October of each year are 5654 

arrested, face expulsion from the area, or can be fined by decree (Chinamatira et 5655 

al., 2016; EMA, 2007).  5656 

5.6.3 Changes in aridity 5657 

Understanding the long-term areal change in the aridity is essential for taking 5658 

early action to prevent the aggravation of drying conditions. The results shown in 5659 

Fig. 5.16 confirm that the KAZA region is becoming drier in the 20th century, and 5660 

there is an increased risk of arid conditions as result of enhanced warming, 5661 

wildfires and the rapidly growing human population in the drylands of KAZA 5662 

region. Such an expansion of arid areas detected in this study is in agreement with 5663 

the projection by IPCC (2007) that by 2020, most African countries are projected 5664 

to be exposed to increased water stress due to climate change and this would lead 5665 

to reduced carbon sequestration and enhanced regional warming, resulting in 5666 

increased warming trends over the drylands. In the scientific literature, there are 5667 

many publications dealing with aridity changes, but as there is no study of aridity 5668 

change at a regional scale across KAZA, it is difficult to make detailed comparisons. 5669 

At regional scale, climate shifts can be notably different to those observed at global 5670 

scale. The most relevant precursor to this study aridity maps can be the global 5671 

maps produced by Huang et al. (2017). Huang et al. (2017) compared aridity data 5672 

over 10 years, from 1996 to 2005, to a 10 year period between 1948 to 1957. Their 5673 

study found that most vegetation change from dry sub-humid to semi-arid 5674 

occurred in the area of the KAZA region in Southern Africa. In comparison to this 5675 

study, an increase in the drying variations and changes in the aridity index were 5676 

observed in the arid and semi-arid regions represented by 5.56% and 4.84% 5677 

between 2002 to 2019 (this study), as compared to 1.16% and 2.32% in the arid 5678 

and semi-arid regions between 1948 to 1957 observed in Huang et al. (2017).  5679 

Another global study by Spinoni et al. (2015) compared AI from 1951 to 2010 5680 

using FAO AI and the KG climate classification. Their study found that the extent of 5681 

arid lands increased in Africa by 1.95%, followed by Asia (0.55%) and decreased in 5682 

the North and South Americas by -0.47 and -70%, respectively. Their study found 5683 

that that the arid lands in Southern Africa are larger by the end of the period 1981 5684 

to 2010, as compared to the period 1951-1980, and the largest increase in arid 5685 
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regions of Southern Africa were located in the KAZA region (Southern Zambia, 5686 

Zambezi region of Namibia and western Zimbabwe) as compared to any other part 5687 

of Southern Africa. These findings more or less agree with the results presented 5688 

here, with one exception: the shifts identified in this study were found to be larger 5689 

in dry-sub-humid and humid area, with 10.40% of the regional land area becoming 5690 

arid compared to the previously published 1.95% at a continental scale. The 5691 

difference could be attributed to the difference in data, as this study used high-5692 

resolution precipitation and PET data at a much smaller scale, while the global 5693 

studies used a more coarser resolution Global Precipitation Climatology Centre 5694 

(GPCC) and the Climatic Research Unit (CRU) for precipitation and PET. This 5695 

difference could also be due to the fact that the thesis considered data up to 2019, 5696 

and the 21st century recorded the worst drought periods, notably in 2012-2013, 5697 

2015-2016 and 2018-2019.  5698 

As a result of the multiple effects of consecutive droughts, many countries such as 5699 

Namibia and Angola, declared a state of emergency in response to drought 3 times 5700 

in a period of 6 years, with the drought of 2019 declared as the worst in the last 90 5701 

years (Shikangalah, 2020). In addition, projected aridification-prone areas overlap 5702 

with regions at risk of severe drought, marked soil moisture depletion, and shifts 5703 

in potential vegetation distributions. This suggests that, compared with globally 5704 

averaged aridity changes, the KAZA region show a much drier climate than most 5705 

regions in Africa, and globally. The results sows that if future precipitation 5706 

extremes become more severe, this region is likely to have vegetation that is more 5707 

unstable or may even to experience extreme vegetation shifts that will be hard to 5708 

adapt to, as predicted by (IPCC, 2014). Therefore, being able to understand areas at 5709 

risk of risk of drying conditions through drought indices should give land 5710 

managers information that may allow the implementation of mitigation or 5711 

adaptation measures, which can be fundamental in terms of dryland vegetation 5712 

sustainability.  5713 

 5714 
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5.7 Conclusion 5715 

This study detected spatial and temporal patterns of climate, burnt areas and 5716 

dryland vegetation across KAZA, using a combination of ground-data and remote 5717 

sensing imagery to understand the ecological effects of climate and fire. The long-5718 

term climate, fire, and vegetation data analysis led to the following conclusions:  5719 

First, the extreme droughts of 2015 and 2019 resulted in considerable 5720 

precipitation and soil water deficits. Dryland forest vegetation is to be more 5721 

susceptible to changes in soil moisture trends, as opposed to changes in rainfall 5722 

and drought index. 5723 

Second, at decadal time scales, interannual variability in fire frequency and burnt 5724 

area is likely to be driven largely by variation in rainfall, vegetation distribution 5725 

and dry season length. The areas with high tree cover, high rainfall, and less severe 5726 

drought season coincide with areas of high fire frequency and large burned areas, 5727 

while low tree cover (e.g., succulent deserts), low rainfall and extended severe 5728 

drought conditions correspond to areas with low fire frequency.  5729 

Finally, the detected aridification-prone areas overlap with regions at risk of 5730 

severe drought, marked soil moisture depletion, and shifts in potential vegetation 5731 

distribution. The KAZA region has become drier due to aridification in the period 5732 

between 2002 to 2019 as a consequence of both drought and wildfire, which 5733 

critically affect agriculture, water quality, vegetation productivity, and biodiversity.  5734 

The identification of the areas with significant trends of change is extremely 5735 

important in tropical dryland areas where low levels of field data are available and 5736 

limited financial resources can be invested in monitoring and assessment, as is the 5737 

case in much of the KAZA region. The detailed relationship between remotely 5738 

sensed drought/fire indicators and vegetation stress at the regional scale shown 5739 

here allow us to make several suggestions to move towards a more impact-5740 

oriented drought and fire monitoring approach, with the potential to provide early 5741 

warnings in to devise more practical measures to control aridity in vulnerable 5742 

areas.  5743 

5744 
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 5745 

5.8 Supplementary Information 3 5746 

Temporal analyses: burned area 5747 

 5748 

Fig C 1. Total area burned annually for each country of KAZA from 2002 to 2019 in 5749 

km2 based on the MODIS Burned Area product data. 5750 

 5751 

 5752 
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 5753 

Fig C 2. Cumulative monthly fire frequency for all the countries from 2009 to 2019 using 5754 

MODIS Active Fire product. 5755 

Spatial analyses: burned area 5756 

Table C 1. Estimates of the total area of burnt and unburnt areas in km2 and their % from 5757 

2002 to 2017 in KAZA region 5758 

Year  Burnt area(km2) Burnt (%) Unburnt (km2) Unburnt (%) 

2002 142235  27 376463 73 

2003 145168 28 373530  72 

2004 154911 30 363783 70 

2005 1501678 29 368530 71 
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2006 143703 28 374995 72 

2007 149365 29 369333 71 

2008 165706 32 352991 68 

2009 142975 28 375723 72 

2010 177493 34 341205 66 

2011 203849 39 314849 61 

2012 184186 36 334511 64 

2013 153835 30 364863 70 

2014 142463 27 376234 73 

2015 137259 26 381439 74 

2016 127181 25 391516 75 

2017 138072 27 380626 73 

2018 121363 23 397335 77 

2019 110173 21 408525 79 

 5759 

Table C 2. Recorded areal fire frequencies of burnt and unburnt areas in km2 and their % 5760 

from 2002 to 2017 in KAZA region 5761 

Year  Area (km2) Area (%) 

Unburnt 127989 25 

1-2 90895 18 

2-6 114222 22 

6-10 87955 17 
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10-14 66819 13 

14-17 28177 5 

 5762 

Table C 3. KAZA shifts of AI per class from 2001-2010 to 2011-2020 5763 

Class (SbAI) 2001-2010 

(km2) 

2001-2010 

 (%) 

2011-2020 

(km2) 

2011-2010 

 (%) 

Shift 

% 

Arid 33957 6.75 61897 12.31 5.56% 

Semi-Arid 368016 73.13 392072 77.97 4.84% 

Dry Sub-humid 82464 16.39 35369 7.03 -9.36% 

Humid 18769 3.73 13503 2.7 -1.04% 

Drought 5764 

Table C 4. Drought years and drought categories of SPEI at different time scales 5765 

 
SPEI1 SPEI3 spei12 

Year moderate severe    extreme Σ moderate severe extreme Σ moderate severe extreme Σ 

1983 2 - - 2 - - - - - - - - 

1984 - - - - 1 - - 1 1 - - 1 

1985 1 - - 1 - - - - - - - - 

1986 - - - - - - - - - - - - 

1987 1 - - 1 1 2 - 3 3 1 - 4 

1988 - - - - 2 - - 2 - - - - 

1989 - 1 - 1 1 - - 1 1 - - 1 

1990 2 2 - 4 - - - - - - - - 

1991 - - - - - - - - - - - - 

1992 2 - 1 3 1 2 - 3 2 1 - 3 

1993 1 - - 1 - - - - - - - - 

1994 1 1 - 2 2 1 
 

3 2 1 - 3 

1995 2 
 

- 2 3 - - 3 1 - - 1 

1996 5 - - 5 2 - - 2 3 - - 3 
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1997 2 - - 2 - - - - - - - - 

1998 1 2 1 4 2 2 1 5 5 - 1 6 

1999 1 1 
 

2 - 1 - 1 2 - - 2 

2000 1 - - 1 - - - - - - - - 

2001 2 1 
 

3 1 - - 1 1 
 

- 1 

2002 2 4 1 7 2 2 1 5 4 2 1 7 

2003 1 - - 1 3 1 1 5 4 3 1 8 

2004 2 - - 2 1 - - 1 1 
  

1 

2005 2 2 1 5 - 4 1 5 - 3 1 4 

2006 1 - - 1 - - - - - - - - 

2007 - - - - 1 - - 1 1 
 

- 1 

2008 1 - - 1 2 - - 2 - - - - 

2009 2 - - 2 
 

- - - - - - - 

2010 - - - - - - - - - - - - 

2011 2 - - 2 4 
 

- 4 3 - - 3 

2012 3 - - 3 3 
 

- 3 2 - - 2 

2013 2 - - 2 1 
 

- 1 1 - - 1 

2014 1 - - 1 - - - - - - - - 

2015 5 - - 5 5 
 

- 5 4 - - 4 

2016 2 
 

1 3 3 1 1 4 3 1 1 5 

2017 
 

- - - - - - - - - - - 

2018 1 1 2 4 1 3 1 5 2 
 

2 4 

2019 4 1 2 7 6 3 2 11 4 6 2 12 

Σ 55 16 9 80 47 22 8 77 50 18 9 77 

  5766 
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6 DISCUSSION 5767 

5768 
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 5769 

6.1 Introduction  5770 

Changes in climate, land-cover, and land-use intensification have contributed to 5771 

land degradation and desertification in tropical forest ecosystems (Allen et al., 5772 

2010; Brink et al., 2014; Brown et al., 2002). Extreme climate events and human-5773 

induced environmental changes such as deforestation can act synergistically (Le 5774 

Houérou, 1996). In tropical dryland ecosystems, deforested and degraded areas 5775 

can affect regional climate, and the regional climate, in turn, can amplify 5776 

deforestation and forest degradation (Chagnon et al., 2004; Huang et al., 2017). 5777 

Climate change and anthropogenic processes appear to amplify fire occurrence 5778 

and spreading, and land degradation in dryland tropical forest ecosystems (Fox et 5779 

al., 2017).  5780 

As a consequence forests, plant species, and biomass have experienced changes in 5781 

their species range, abundances, and shifts in their seasonality, resulting in an 5782 

impacts on biodiversity and forest ecosystem services (Desanker et al., 2001). 5783 

Severe dry forest biome shifts and land degradation as a result of climate change 5784 

are predicted to be most severe in Southern Africa (IPCC, 2014; King, 2014). 5785 

Already deforestation in Southern African countries is high, with about 1.4 million 5786 

ha net forest loss annually (Darkoh, 2009; Lesolle, 2012). In Southern Africa, a 5787 

range of policy options have been advocated to reduce the continuing loss and 5788 

degradation of dryland forests, including expansion of protected area networks, 5789 

improving governance and better management of dryland forests (Cumming, 5790 

2008; Hanks, 2003; KAZA, 2014). However, high-quality, long-term, and reliable 5791 

information on dryland forests and ecosystems over large areas are needed to 5792 

estimate and manage the impacts of forest changes on biodiversity, biomass 5793 

carbon stocks and dryland ecosystem functions accurately. 5794 

There are significant advantages to forest analysis, such as remote sensing to 5795 

better improve estimates of forest changes and biomass, characterise forest 5796 

structures, and to understand the dynamics of tropical dryland forests in the 5797 

context of climate changes (Andela et al., 2013; Donoghue, 2002; Lu, 2006). 5798 
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However, such approaches that integrate forest studies and remote sensing need 5799 

to be replicated and tested across different regions, geographic scales, and over 5800 

relevant time periods to change (decades) (Lehmann et al., 2015; Mitchard et al., 5801 

2013). Existing literature shows limitations in terms of methodological 5802 

inconsistency and generalisation, and constraints on the spatial and temporal 5803 

scales of investigation which limits the actual effectiveness of integrating remote 5804 

sensing into the tropical dryland forest assessment (Foody et al., 2001; Woodcock 5805 

et al., 2001).  5806 

Given these challenges, this thesis set out to overcome such limitations to 5807 

contribute to the ability to characterise above ground biomass, forest structural 5808 

parameters, land cover change, and disturbances in the context of climate change 5809 

in the dryland forests of the Kavango Zambezi Transfrontier Conservation Area 5810 

(KAZA TFCA) of Southern Africa. KAZA is a conservation area with over thirty-six 5811 

protected areas including national parks, game reserves, community conservancies 5812 

and game management areas. It established to merge fragmented wildlife habitats 5813 

into an interconnected mosaic of protected areas and transboundary wildlife 5814 

corridors, to enhance the free movement of animals across international 5815 

boundaries and to create economic development in the region (Cumming, 2008; 5816 

Stoldt et al., 2020). However, the region is experiencing large-scale shifts in 5817 

vegetation cover, biomass degradation and increased vulnerability to climate 5818 

change, manifesting through altered disturbance regimes which hold significant 5819 

implications for forest biodiversity and ecosystem function of this region. By 5820 

addressing the above limitations, the thesis explored the use of novel application of 5821 

improved satellite remote sensing approaches and datasets including optical and 5822 

SAR, and their combination, that can in principle improve estimates of forest 5823 

biomass and structural parameters, disturbances, and climatic impacts at a 5824 

regional scale.  5825 

The research presented here was structured around three research priorities 5826 

identified in a systematic review (chapter 2, David et al., 2022a). Specifically, the 5827 

review identified a need to address (i) the feasibility of combining SAR, optical 5828 

remote sensing data and ground measurements to estimate the forest stand 5829 

parameters, (ii) vegetation dynamics, and spatially detailed patterns of change 5830 

using different remote sensing proxies, (iii) characterisation of spatiotemporal 5831 
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changes in climate and fire using different climatic and vegetation time series data 5832 

at regional scale. By combining improvements across each of the three research 5833 

priorities, this thesis aims to combine ground measurements and multiple remote 5834 

sensing including climate, fire, and vegetation data to enable estimates of forest 5835 

biomass, and changes in dryland forests, across different spatial and temporal 5836 

scales.  5837 

6.2 Suitability of remote sensing data 5838 

6.2.1 Combining sensors 5839 

Remote sensing techniques can be applied to detect changes, estimate forest 5840 

structural parameters including biomass, and to monitor the extent in tropical 5841 

dryland forest cover at different spatial scales, from individual trees, large blocks 5842 

of the unbroken canopy, to regional and pantropical or even global extents (Baccini 5843 

et al., 2004). However, there are large discrepancies in the methodologies used to 5844 

quantify forest structural changes in tropical dryland forests, including attempts to 5845 

relate forest cover and biomass to optical remote sensing measurements (Mitchell 5846 

et al., 2017; Sexton et al., 2016). In the research presented in this thesis, the use of 5847 

the medium to coarse resolution optical data, such as NASA’s MODIS sensor, 5848 

demonstrate an approach to monitoring forest cover change and degradation due 5849 

to clear-cutting, fire, and drought (chapter 4 & 5), but also showed that certain 5850 

types of change remain difficult to detect. The quantitative assessment of the 5851 

ability of sensors with different spatial resolutions, and the integration of multiple 5852 

datasets from optical and SAR sensors, to improve estimates of forest biomass and 5853 

structures in the dryland ecosystems are limited and have not been carried out in 5854 

Southern Africa (Chapter 2, David et al., 2022a). Consequently, there is an 5855 

opportunity to exploit the benefits of different remote sensing in this context, 5856 

alongside a need to consider the trade-offs between spectral and spatial resolution, 5857 

and geographic coverage, when estimating biomass and forest structural 5858 

parameters in dryland forests ecosystems (chapter 2, David et al., 2022a).  5859 

This thesis combined freely available Sentinel 1 (S1) SAR, Sentinel 2 (S2) and 5860 

Landsat 8 (LC8) multispectral imagery to estimate biomass at regional level and 5861 

the relatively fine resolution of S2 (10 m pixels) which reduced the mixed pixel 5862 
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problem observed in medium spatial resolution data (30 m pixels; e.g. LC8), and 5863 

led to an increase in the precision of biomass estimation compared to using single 5864 

sensors alone (Chapter 3, David et al., 2022b). In this research, AGB is more 5865 

accurately estimated when adding Sentinel 1 SAR and Sentinel 2 to a Random 5866 

Forest algorithm (instead of using multispectral or SAR on its own). For example, 5867 

this research found that SAR data was better at detecting aggregations of 5868 

individual trees in the dryland landscape than optical data. But this research also 5869 

found that SAR data alone overestimated AGB in the dryland area (Fig 3.7, Chapter 5870 

3, David et al., 2022b). A similar problem of SAR overestimating AGB was noted by 5871 

other studies such as Zhang et al. (2019), and this problem was overcome by fusing 5872 

SAR and multispectral data in this thesis (Fig 3.7, Chapter 3, David et al., 2022b). 5873 

The comparison of recently published pan-tropical AGB datasets (Avitabile et al., 5874 

2016; Baccini et al., 2017; Bouvet et al., 2018) with the regional scale maps 5875 

produced in this thesis, using a combination of optical and SAR datasets with DBH 5876 

and tree height measurement of more than 4300 tree ground-validation, resolves 5877 

realistic spatial patterns in estimated biomass for the study area (Fig. 3.5, chapter 5878 

3, David et al., 2022b). Here, S1 SAR and S2 data were combined to show in fine 5879 

detail AGB ranges, including a mix of very low biomass (due to different degrees of 5880 

degradation) to intermediate biomass for certain areas with very large but 5881 

scattered trees, through to higher biomass areas in high-density forests (Fig.3.7, 5882 

chapter 3, David et al., 2022b).  5883 

Partly, this study has improved biomass estimation by investigating the 5884 

capabilities and correlation of AGB with diverse spectral bands from Sentinel 2, 5885 

Landsat 8, and radar backscatter polarisation from Sentinel 1 SAR data. For optical 5886 

data, although NDVI and EVI remain two of the most widely used vegetation 5887 

indices, they were outperformed by the red edge index (NDRE1) and the green 5888 

channel index (GNDVI) in estimating AGB for dryland forests (Table 3.3, Chapter 3, 5889 

David et al., 2022b). NDVI is utilised in biomass mapping by different studies such 5890 

as (Cunliffe et al., 2020; Gizachew et al., 2020), however this study detected 5891 

saturation in NDVI when the spectral values remain insensitive to increases in 5892 

forest AGB value beyond 80 Mg/ha (Fig. 3.7, Chapter 3, David et al., 2022b). 5893 

Gitelson et al., 1996 found the green channel index to be much more sensitive to 5894 

the Chlorophyl concentration and enabled precise estimation of pigment 5895 
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concentration than the original "red" NDVI. The red edge-based indices were found 5896 

to have a better correlation with the photosynthetic activity of the tree canopy and 5897 

leaf cell structure reflection (Cho et al., 2008; Mutanga and Skidmore, 2004).   5898 

There has been concern that structural variation and understory herbaceous cover 5899 

reduce measurement precision when mapping from remotely sensed estimates in 5900 

semi-arid savanna and dryland forests (Baccini et al., 2004; Santos et al., 2002). 5901 

Combining information from optical sensors that describe photosynthetic activity 5902 

(e.g., through various vegetation indices) with SAR-derived information on forest 5903 

structure and biomass in winter months, brings the benefits of higher spectral 5904 

resolution, and compensates for the shortcomings of using single data products 5905 

alone that are commonly subject to saturation, temporal gaps, and clouds cover 5906 

(chapter 3, David et al., 2022b). Comparing the performance of ML and RF 5907 

regression algorithm and considering the collinearity between predictor variables 5908 

also improved biomass mapping and reduced uncertainty in the models. ML 5909 

regression overestimated low values, and underestimated high biomass values, 5910 

which is also common in previous studies using ML (Fuchs et al., 2009; Zheng et al., 5911 

2007). RF had a positive impact on the biomass estimation accuracy, and 5912 

performed better than ML regression, reducing the RMSE for the estimation 5913 

models by almost 50%. Therefore, it is important to assess the ability of combining 5914 

improved methods and freely available optical and SAR data with sample plot 5915 

survey data/forest inventory to characterise large-area biomass distributions to 5916 

provide regional estimates of forest carbon stocks. Although this study has 5917 

improved AGB estimation in dryland forests, there is room for improvement, for 5918 

example RF regression model estimated medium and high-density forests with 5919 

good accuracy but showed variation in low-density forests that include 5920 

understoreys and low herbaceous cover such as grassland often with relatively low 5921 

canopy density. This study did not consider multitemporal seasonal time series 5922 

data and texture information from images in AGB modelling which provides 5923 

additional information on seasonal variations and reduce the impacts of 5924 

heterogeneity as suggested by studies in temperate and evergreen broad leaf 5925 

forests (Sarker and Nichol, 2011; Zhu and Liu, 2015). Incorporation seasonal time 5926 

series and textural information in AGB modelling in dryland forests could improve 5927 

biomass modelling and is a topic for future research. Despite these limitations, this 5928 
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study aimed to improve the performance of the regional forest biomass model and 5929 

can provide a reference and support for future plans of relevant forestry 5930 

departments.  5931 

6.2.2 Spatial scale 5932 

In sensor integration, issues of scale are critical for biomass and habitat mapping, 5933 

where the adequacy of spatial resolution to the problem in hand is key. Pan-5934 

tropical and global maps derived from satellite imagery can show large uncertainty 5935 

in the extent and distribution of tropical dryland forest recorded, and typically 5936 

underestimate the extent of forest cover and biomass in dryland areas (Bastin et 5937 

al., 2017). This is illustrated by the substantial spatial disagreements between 5938 

recent satellite-based global (Giri et al., 2005) and pantropical forest maps 5939 

(Mitchard et al. (2013), and is further hindered by the relative scarcity of large-5940 

scale studies assessing forest cover in dryland biomes (Chapter 2; David et al., 5941 

2022a). The distribution of AGB and precision varied between this study and 5942 

pantropical maps (Fig. 3.9, Chapter 3 David et al., 2022b). The observed 5943 

discrepancies may have arisen due to satellite data characteristics (such as spatial 5944 

resolution), unavailability of cloud-free images, availability of ground-truth 5945 

information, and forest definitions (such as tree cover thresholds) used in the 5946 

analyses (De Sy et al., 2012). In the research presented in this thesis, comparing 5947 

three recent pan-tropical forest maps to estimate above ground biomass (AGB) 5948 

revealed important differences: 0-30 Mg/ha using the pan-tropical AGB map (1 km 5949 

resolution), 0-50 Mg/ha using Landsat (30 m), 0-70 Mg/ha using ALOS PALSAR 5950 

(25 m); and 0-145 Mg/ha from this study using combined optical and SAR (10 m) 5951 

(Fig. 3.8, Chapter 3, David et al., 2022b). This research has a high mean estimate of 5952 

biomass of 51 mg/ha in comparison to Bouvet et al. (2018) using radar data, that 5953 

estimated mean biomass of 26.7 Mg/ha which is 50 % less compared to this study 5954 

mean biomass (Fig. 3.9, Chapter 3, David et al., 2022b). Avitabile et al. (2016) only 5955 

estimated the mean biomass of 5.92 Mg/ha for the study area and predicted AGB 5956 

values in the 0 to 30 Mg/ha range.   5957 

In this research, biomass mapping at a regional scale using SAR backscatter in 5958 

conjunction with the strategically positioned optical bands (red edge wavebands) 5959 

improved estimation at high AGB values and allowing the identification of small-5960 
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scale degradation patterns of biomass such as roads compared to either sensor 5961 

alone (Fig. 3.11, chapter 3, David et al., 2022b). In addition, the AGB model from 5962 

this study showed that biomass for dryland forests exceeds estimates derived from 5963 

pan-tropical products which underestimate biomass and forests in dryland 5964 

ecosystems of less-studied areas such as the KAZA region, which are often 5965 

neglected in this type of analysis (Chapter2; David et al., 2022). 5966 

However, the advent of free Landsat data combined with improving computational 5967 

and data storage capabilities mean that large area Landsat land cover products are 5968 

increasingly being generated. In this study, a large volume of Landsat data using 5969 

high quality training data derived from the field survey was demonstrated using 5970 

Google Earth Engine and Random Forest classifier (Fig. 4.13-4.14, Chapter 4). A 30 5971 

m Landsat land cover map was generated and was able to detect large scale 5972 

deforestation and changes with an acceptable classification accuracy >80% 5973 

(Chapter 4). This study used medium spatial resolution Landsat data because land 5974 

cover maps based on coarse spatial resolution imagery (nominally at 500 or 250 5975 

m) limits the ability for detecting changes and provide a highly generalised 5976 

representation of land cover and ultimately land cover change, over large areas 5977 

(Hamunyela et al., 2020; Zhu and Woodcock, 2014). Using a two point in time 5978 

classification is useful to detect changes in land cover, however such bi-temporal 5979 

change detection approach can have some limitation of potentially masking 5980 

considerable within-year vegetation dynamic and variations (Chapter 2; David et 5981 

al., 2022a). For example, this type of change estimates risks interpreting natural 5982 

phenological change as actual changes in the land cover (DeVries et al., 2015). 5983 

Therefore, this study has moved from a relatively static, bi-temporal view of 5984 

change toward a more continuous mapping of vegetation dynamics to improve the 5985 

detection of disturbance’s spatiotemporal patterns using change detection 5986 

algorithms of BFAST and BEAST (Chapter 4). These change detections algorithms 5987 

were useful in assessing small scale deforestation, degradation, and regrowth by 5988 

capturing vegetation changes during the year and over longer time-periods at the 5989 

regional scales (Chapter 3, David et al., 2022b). Such large area analyses on change 5990 

detection conducted in this research can be used to adjust and update global land 5991 

cover and biomass estimates. The pan-tropical and global maps are limited in their 5992 

spatial resolution and temporal coverage, and most of them provide inadequate 5993 
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information for policymaker regarding restoration intervention efforts that are 5994 

needed for regional- or local-scale restoration projects (Abbas et al., 2020). At 5995 

regional-to-national scales, the adoption and application of satellite technology is 5996 

highly variable across countries in the tropics. For example, many countries across 5997 

Southern African are faced with scarcities of technology, finances, and computer 5998 

time limitations, preventing the use of conventional downloaded high-resolution 5999 

satellite data (chapter 2, David et al., 2022a). To overcome these limitations, the 6000 

thesis utilised the recent developments in cloud computing platforms, such as 6001 

Google Earth Engine (GEE), which have greatly increased access to pre-processed 6002 

optical, SAR, and climatic datasets, enabling a comprehensive analysis of multiple 6003 

threats including deforestation, and degradation from fire and climatic impacts on 6004 

vegetation at regional scale (chapter 3, 4 & 5).  6005 

6.2.3 Temporal scale 6006 

To characterise vegetation and climate interactions, changes in forest cover must 6007 

be quantified over different temporal scales, to capture both short term and 6008 

gradual changes experienced by dryland ecosystems (chapter 2, David et al., 6009 

2022a). The study has shown that the impact of degradation varies from fine-scale 6010 

structural changes in canopy, to broad-scale rapid loss of biomass (chapter 3 David 6011 

et al., 2022b). Several methods and techniques are proposed in the literature to 6012 

address land cover characterisation and forest cover change. Mapping changes 6013 

through comparing images at two different times, based on discrete classification, 6014 

are one of the most common forms of remote sensing change detection utilised 6015 

(Jensen, 1996). This is despite change detection between two dates (pre-and post-6016 

disturbance imagery) is generally limited to the detection of broad-scale changes 6017 

(chapter 2, David et al., 2022a).  6018 

Change detection is more powerful, however, when the signal is analysed over a 6019 

long time period (decadal, or longer) in a continuous and consistent manner, 6020 

providing an improved signal-to-noise ratio, detection of subtle/transient changes 6021 

in forest cover or phenology and condition (Huang et al., 2009; Verbesselt et al., 6022 

2012). Here, the ability to make precise estimates of change in dryland forest 6023 

distribution was improved by combining a long high frequency time-series of 6024 

MODIS data with pixel-based break detection (chapter 4). The abrupt changes (e.g., 6025 
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deforestation), gradual change (e.g., forest degradation), and other slow processes 6026 

(e.g., seasonal changes) in response to wildfire, disease, and climate variability 6027 

were each detected effectively (chapter 4). In the research presented in this thesis, 6028 

the fire estimates in the KAZA region reveal that between 2002 and 2019, about 6029 

390,678 km2 (75%) of the landmass is classified as fire-affected for at least one 6030 

time in the monitored period, leaving 127,989 km2 (25%) of the area not affected 6031 

by fire. This showed that national parks are more affected by high fire occurrence 6032 

than other protected areas (chapter 5). As shown in this thesis, the failure of 6033 

vegetation to recover and browning intensification following drought years 6034 

reaffirm the consistent multiple threats from severe drought, soil moisture deficit, 6035 

and high fire reoccurrence on dryland vegetation responses (chapter 4 & 5). 6036 

Consequently, this combined approach to change assessment using long term 6037 

monitoring (> decadal), as used here, allows spatiotemporal aridity information to 6038 

be extracted, thereby enabling quantification of vegetation shifts and increased 6039 

risks of land degradation and drying risk that cumulatively occur over many years 6040 

in the dryland forest ecosystems (chapter 4 & 5). In addition to visual detection 6041 

validation of historic change using high resolution data proposed by Cohen et al. 6042 

(2010), this study demonstrated that the change estimates and precision from 6043 

BFAST can be validated and improve using a stratum-based estimate of variance 6044 

that will be more precise than using simple random sampling (Stehman and 6045 

Czaplewski, 1998; Stehman, 2009; Potapov et al., 2014). As shown in this study 6046 

(Chapter 4), the large-scale changes such as clear felling of woodland for 6047 

agriculture are comparable while more subtle changes such as land degradation 6048 

were detected by BFAST better than interval-based per-pixel classification. Since 6049 

this study used a rather small sample size (341 points), the change estimates need 6050 

to be tested with training data of a larger sample size to be conclusive. In addition, 6051 

the research conducted here can be improved with recently developed new 6052 

algorithm such as Continuous Change Detection and Classification (CCDC) that 6053 

make better use of the temporal domain of Landsat data to improve both 6054 

continuous change detection and land cover classification at medium spatial 6055 

resolution and high temporal frequency (Zhu and Woodcock, 2014) . CCDC use all 6056 

available Landsat clear observation data to classify land cover from multiple time 6057 

period. In addition to land cover classification from any time period in history, it 6058 

can monitor large scale deforestation and small-scale changes such as degradation 6059 
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in near real time as the algorithms updates the time series model every time new 6060 

observations are available (Arévalo et al., 2020).  6061 

6.2.4 Ecological relevance of mapping changes 6062 

There are two parts to the problem that this research has addressed; one was to 6063 

show changes within the forest ecosystems (deforestation and degradation) and 6064 

the other was to characterise forest structural parameters and to estimate biomass 6065 

distribution in the forest. In both situations, methodologically consistent 6066 

approaches were identified as one of the important needs to improve upon current 6067 

monitoring of dryland forests (Mitchell et al., 2017); (chapter 2, David et al., 6068 

2022a). At the regional scale, monitoring poses a number of methodological 6069 

challenges including the lack of quantitative, spatially explicit, and statistically 6070 

representative methods, which have previously resulted in simplistic 6071 

representations (Coppin et al., 2004). Therefore, as shown in this thesis, testing 6072 

different models and their suitability to characterise trends and phenological 6073 

patterns can reveal suitable algorithms for estimating dryland forest covers 6074 

(chapter 4). Furthermore, Foody et al. (2003) and Woodcock et al. (2001) have 6075 

pointed out concerns of generalising or transferring methods derived from 6076 

remotely sensed imagery over both space and time, based on lessons learned in far 6077 

better-studied ecosystems. Generalisation also limits the interpretation of change 6078 

patterns and the impacts that these changes will have on the biodiversity of 6079 

forests, conservation of wildlife habitats conservation, and dryland ecological 6080 

function (chapter 2, David et al., 2022a). 6081 

Whilst models based on remote sensing data can show promising results in 6082 

different ecosystems (e.g., rain forests), it can fail to detect non-linear vegetation 6083 

patterns (e.g., degraded areas) in largely climate and fire-driven ecosystems, such 6084 

as drylands, as shown here (chapter 4). This observation justifies the importance 6085 

of testing and utilising a range of sensors and vegetation indices for forest 6086 

structure parameter and change detection estimation. The results in this thesis, 6087 

reveals that spectral indices based on the red edge spectral region and green 6088 

normalised vegetation index (GNDVI) have a stronger relationship skill in 6089 

describing dryland forests than conventional NDVI (chapter 3 & 4). Consequently, 6090 

there is good reason to believe that NDVI is not an ideal indicator of stress 6091 
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response in dryland forests despite the widespread use of this index in studies of 6092 

forest health decline. In the research presented in this thesis, indices based on fire, 6093 

such as the fire frequency index, and several climatological indices, such as SPEI 6094 

and the aridity index, were tested in dryland forest cover to assess vegetation 6095 

response to environmental change over large areas (chapter 5). This was 6096 

undertaken because testing different algorithm and sensor combinations can help 6097 

detect specific strengths and limitations for a dryland ecosystem, particularly 6098 

where climate change and variability negatively affecting dryland vegetation and 6099 

biomass (chapter 3, 4 & 5).  6100 

Oliveira et al. (2021), working in Brazil, modelled biomass in tropical dryland 6101 

forests using linear regression, and recommended testing the ability of non-6102 

parametric machine learning algorithms over linear regression analysis in dryland 6103 

forests. Some image classification algorithms and traditional statistical approaches 6104 

make unrealistic assumptions about the distributional properties of forests, and 6105 

are unable to describe underlying fluctuating trends as these models assume 6106 

vegetation trends to be quasi-linear (i.e., regular, or stable seasonality) (Grogan et 6107 

al., 2016). In this research, multivariate machine learning models, integrated with 6108 

stepwise-regression methods, enabled better adjustment and fit to ground 6109 

measurement, which was tested against more than 4300 individual trees (Chapter 6110 

3, David et al., 2022b). This approach enabled both the interpretation and 6111 

validation of remotely sensed forest structure and biomass estimates, providing a 6112 

very high R2 of 0.95 and a low RMSE error of 0.25 Mg/ha (Chapter 3, David et al., 6113 

2022b).  6114 

Despite prior concerns raised over the need to use ground truth verification for 6115 

estimating biomass and changes in forest mapping (Grainger, 2008), there are few 6116 

vegetation-related studies that link vegetation estimates to field measurements 6117 

and forest inventory data (Chapter 2, David et al., 2022a). As shown in this thesis, 6118 

obtaining field data for validation of remote sensing data in dryland ecosystems of 6119 

protected areas, such as National parks, can be challenging because many areas are 6120 

very remote and often dangerous to visit due to hazardous, and if present and in 6121 

some cases unexploded landmines (chapter 3, David et al., 2022b). Consequently, 6122 

most detected changes in the spectral signature that occur due to an increase in 6123 

woody biomass, deforestation and forest degradation in the dryland ecosystems of 6124 
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Southern Africa have not been validated (chapter 2, David et al., 2022a). The 6125 

optical sensors at 250 m-1 km resolution (e.g., MODIS) used here make consistent 6126 

and frequent measurements over large areas building a long time series, which 6127 

helps identify locations of active forest change (‘hotspots’) with good precision and 6128 

that was validated against ground-truth data (chapter 4). However, where 6129 

possible, important areas of change and in particular for key forest structural 6130 

parameters, such as AGB that are needed for baseline carbon stock maps, there are 6131 

benefits to further ground measurement for validation and finer spatial resolution 6132 

data. Maps of AGB, if sufficiently detailed, can assist conservation managers, 6133 

practitioners, and policymakers to formulate specific interventions (e.g., corridor 6134 

planning, tree thinning, fire control, biodiversity surveys) that are appropriate to 6135 

support the conservation of forest habitats and their management.  6136 

6.3 Recommendation for policy and practice  6137 

Dryland forests in protected areas such as KAZA face an increasing number of 6138 

threats ranging from those originating from climate change and competing 6139 

economic pressures, especially when they span international borders. Learning 6140 

from this research and past experience on dryland forests in KAZA (Cumming, 6141 

2008; WWF, 2016), there are often conflicting views related to the amount of 6142 

biomass and changes in forest cover in dryland ecosystems. These differences are 6143 

however not confined to science only, but also between the understanding of 6144 

dryland monitoring programmes and policies (Appendix A: N8 AgriFood policy 6145 

brief). These challenges present also an opportunity for a mutual benefit; with 6146 

more freely accessible data, such as that explored in this thesis, scientists and 6147 

policy makers may now refine their focus to share knowledge on the management 6148 

of forestry, and the interface with land uses, including wildlife management and 6149 

ecosystem function (Sexton et al., 2016). Based on the findings of this research, 6150 

along with the challenges and lessons learnt throughout, there are three 6151 

recommendations that can be made for policy and practice, which can 6152 

subsequently be used in decision making of the KAZA region, and beyond, in 6153 

Southern Africa more widely. 6154 
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First, a large part of the knowledge base for dryland forest landscapes in Southern 6155 

Africa is derived from research generated outside of Africa (chapter 2, David et al., 6156 

2022a), and so there is an opportunity to change academic narratives by working 6157 

in partnership with local organisations to foreground local research and 6158 

knowledge. Given the growing technical capacity for monitoring, reporting and 6159 

verification, there is a need to shift the focus to producing and sharing transparent 6160 

research maps with resource managers. Technology platforms such as the cloud-6161 

based image-analysis pipeline using freely available remote sensing imagery, as 6162 

used here, is an opportunity to overcome the limitations previously enforced by 6163 

data scarcity, volumes and costs, and can enhance substantially the collective 6164 

knowledge of dryland forest environments (chapter 3, 4 &5). Sharing of research 6165 

outputs and often captivating satellite imagery with the news media to inform 6166 

citizens and to create awareness about the extent and location of deforestation 6167 

hotspots is a potentially important component of the KAZA monitoring 6168 

programme. If such information can influence local practitioners and public 6169 

opinion, it can exert pressure on policymakers in democratic societies to 6170 

strengthen enforcement and to tighten regulations around forest management and 6171 

protection. Improved monitoring of forest cover itself is unlikely to produce any 6172 

change in behaviour unless it is linked to research, forest management and 6173 

practice, and all key stakeholders in these regions (Olsson et al., 2019). 6174 

Second, the process of monitoring dryland forests could be enhanced through the 6175 

greater involvement of stakeholders in the modelling process itself. Building on the 6176 

existing regional networks in the KAZA region, workshops could be facilitated 6177 

between academic scientists, decision makers and practitioners to identify current 6178 

gaps in knowledge, data requirements and training needs. Most studies in KAZA 6179 

region on drought, fire and vegetation analyses are done at local level (e.g., within 6180 

a single community) and others cover only a part of the KAZA region (Mpakairi et 6181 

al., 2019; Pricope et al., 2012), making it impossible to compare to a regional 6182 

perspective. Similar research studies on tropical dryland forest change analyses at 6183 

large(r) scales (chapter 3, 4 & 5) are needed, ideally retaining fine spatial 6184 

resolutions and a longer temporal duration. A significant proportion of studies in 6185 

Southern Africa have been undertaken in Kruger National Park, leaving many other 6186 

national parks and protected areas in KAZA relatively understudied. Furthermore, 6187 
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future efforts to estimate changes in important variables such as forest cover and 6188 

biomass, need not be restricted by country boundaries but can extend across the 6189 

less well studied private and international protected areas (chapter 2, David et al., 6190 

2022a). Such workshops would allow stakeholders and other users to have an 6191 

opportunity to present their work, examine the research outputs in their area of 6192 

interest with reference to existing or predicted scenarios of future change. 6193 

Consequently, such structures can harness a wealth of existing research and 6194 

expertise and help to provide a support network to stimulate high quality 6195 

published outputs from scientists, and to facilitate input from local experts and 6196 

practitioners (Appendix A: N8 AgriFood policy brief). 6197 

Lastly, the KAZA region concept recognises that borders are political rather than 6198 

ecological and aims to ensure that key ecological processes continue to function 6199 

where borders have previously divided ecosystems and/or wildlife migration 6200 

corridors. Based on my own engagement with stakeholders such as WWF Namibia 6201 

and the KAZA secretariat, Botswana, there is a willingness to work together and 6202 

support research, across KAZA region to ensure such information will continue to 6203 

support future conservation efforts and economic development in countries such 6204 

as Angola, Botswana, Namibia, Zambia, and Zimbabwe. Such interdisciplinary 6205 

knowledge and evidence-based policy, generated through partnership and data 6206 

sharing, is urgently needed. In this region, climate change will cause large-scale 6207 

shifts in vegetation cover and biomass degradation resulting in increases in the 6208 

vulnerability of ecosystems across large areas of dryland forest in Southern Africa, 6209 

which represents risks faced by all stakeholders. 6210 

6.4 Future work  6211 

The work presented in this thesis offers a platform to improve the understanding 6212 

of biomass, disturbance patterns, and climate change relationships in dryland 6213 

forest ecosystems. The thesis considered the factors that cause changes in forest, 6214 

biodiversity, and ecological function. Numerous spectral indices have been 6215 

developed to assess vegetation cover and growth dynamics, which provide useful 6216 

insights for applications in forestry, biodiversity conservation, agriculture, and 6217 

other related fields. However, most of these indices are derived from a limited 6218 
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selection of species and are typically developed in often quite different regions and 6219 

ecosystems. The research presented in this thesis tested optimum spectral indices 6220 

from multispectral data in dryland forests that improve the ability to effectively 6221 

estimate forest stand characteristics (chapter 3, David et al., 2022b), identify shifts 6222 

in vegetation dynamics and the timing of key phenological events (chapter 4), and 6223 

helps us to assess forest health and vulnerability to different stressors, including 6224 

fire and climate change (chapter 5).  6225 

One potential future avenue for research is different sensors. For example, 6226 

airborne imaging spectroscopy can provide up to 2000 contiguous narrow-band 6227 

spectral information across the solar spectrum, often at fine spatial resolution 6228 

(Morley et al., 2020). Asner et al. (2016) used airborne imaging spectroscopy and 6229 

satellite data trained on spectroscopy data to estimate water lost from California's 6230 

forest ecosystems over the drought years between 2011 and 2015. To detect a 6231 

decline in forest cover and shifts in the timing of phenological events requires 6232 

spectral indices that are sufficiently sensitive to chlorophyll content, and in 6233 

particular to capture the response of trees to a stress event. Therefore, further 6234 

research could explore the potential to relate dryland forest cover to hyperspectral 6235 

data, to identify more sensitive spectral bands corresponding to different 6236 

vegetation species, and to identify the most important wavelength regions for 6237 

predicting drought and fire-sensitive species. 6238 

Optical sensors have recently been presented as a viable alternative for estimating 6239 

biomass and carbon stock in tropical forests, due to their global coverage, 6240 

frequency of capture, and cost-effectiveness (Kumar et al., 2015). Furthering the 6241 

research presented in this thesis, the primary challenge of MODIS data, despite its 6242 

high temporal resolution, is the large spatial resolution of between 250 m and 500 6243 

m. The temporal resolution of Landsat (16-days, and now 8 days with the recent 6244 

launch of Landsat 9), which is often occluded by cloud cover can be a major 6245 

obstacle, despite the relatively fine spatial resolution of 30 m. The integration of 6246 

MODIS with Landsat to combine fine spatial and temporal resolutions could 6247 

therefore be used in future to improve the mapping of forests patterns of changes 6248 

and disturbances.  6249 
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On the other hand, there is a need to incorporate satellite imagery with a fine 6250 

spatial resolution information for estimating biomass and carbon stock. For 6251 

example, the thesis has shown that Sentinel-2 data show a better ability to improve 6252 

the estimation of above ground biomass and forest structure in tropical dryland 6253 

forests as compared to Landsat-8 (Chapter 3, David et al., 2022b). Despite 6254 

improvements in the spatial precision of optical data, such as Sentinel-2, improved 6255 

characterisation of forest structure may not be possible using multispectral 6256 

imagery alone due to the spectral similarities between structural classes. 6257 

Furthering the research presented in this thesis by improving the characterisation 6258 

of forest structure using a fusion of data such as that from airborne light detection 6259 

and ranging (LiDAR), collected from airborne platforms, SAR, and/or other forms 6260 

of optical data, could further advance the understanding of the detailed structural 6261 

information and accurate vertical distribution of canopy in tropical dryland forests. 6262 

Li et al. (2017) highlighted that metrics derived from a LiDAR point cloud led to 6263 

improved biomass estimates at nearly all resolutions in comparison to raster-6264 

derived metrics in the drylands of the US. Despite these benefits, LiDAR data are 6265 

not widely available in many dryland ecosystems, particularly in developing 6266 

countries, and the acquisition of new data sets can be prohibitively expensive. 6267 

However, new satellites such as the Global Ecosystems Dynamics Investigation 6268 

(GEDI) LiDAR and the Multi-footprint Observation Lidar and Imager (MOLI) 6269 

promise space-borne imaging with laser altimetry, which can contribute to the 6270 

development biomass, forest distribution, and its relationship with climate in 6271 

tropical dryland forests (Coyle et al., 2015; Kimura et al., 2017). MOLI includes 6272 

LIDAR to measure canopy height, vegetation phenology, vegetation indices, and an 6273 

optical imager to measure the position of the canopy for improving biomass 6274 

estimation (Sakaizawa et al., 2018). GEDI estimates mean aboveground biomass 6275 

density at 1 km grid and provides metrics of tree height and canopy cover at a 6276 

footprint of 25 m (Dubayah et al., 2020), and can be used in fusion with other 6277 

existing radar data such as Sentinel-1, ALOS PALSAR, along with other optical data 6278 

sets such as from Landsat and Sentinel-2. The successful unification of forested 6279 

vegetation monitoring data with detailed information on three-dimensional (3-D) 6280 

structure would represent a significant improvement in the capacity of ecologists 6281 

and decision makers to estimate the impacts of forest cover change on 6282 
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biodiversity, wildlife habitat, and forest management approaches more widely, and 6283 

should be a core focus of future research. 6284 

 6285 

6.5 Conclusion 6286 

In this thesis, the close integration of field data, Sentinel-1 SAR, Landsat-8 and 6287 

Sentinel-2, regional climate and MODIS time-series data, has enabled a more 6288 

precise estimation of biomass and forest stand structural parameters, which has 6289 

enabled the quantification of changes in vegetation patterns. The long-term 6290 

changes and trends identified enabled the characterisation of various influences, 6291 

from climate, fire and animals to be assessed in terms of their impact on forest 6292 

biodiversity and dryland ecosystem function. The KAZA region has the highest 6293 

population of elephants in Africa, which have a destructive influence on forest 6294 

diversity and density, forest structure, and the wider landscape. The increasing 6295 

human population, occurrence of wildfires, and changing climate variability, set in 6296 

a wider context of limited levels of development, are aggravating forest and 6297 

vegetation decline. Such declines risk the loss of dryland tree species, wildlife, and 6298 

pose a significant threat to dryland biodiversity. Ongoing monitoring of changes 6299 

within dryland forest ecosystems integrating open-access Earth observation data 6300 

alongside improved methods of analysis is vital in the context of future climate 6301 

change, and the expected impacts of this on dryland forest areas. The key findings 6302 

of the research are therefore summarised as follow: The thesis has demonstrated 6303 

that using a combination of radar backscatter in conjunction with strategically 6304 

selected multispectral optical imagery at fine resolution (10 m pixels) significantly 6305 

improved above ground biomass and forest stand structural parameter 6306 

estimations, and reduced saturation effects in areas of high biomass, across large 6307 

areas with mixed forest stands compared to using single sensors alone. This part of 6308 

the thesis highlighted the importance of considering spatial scale when mapping 6309 

forest characteristics that are relevant to management of biodiversity and wildlife 6310 

in dryland forests, which can help improve the wider understanding of these 6311 

habitats.The study demonstrated that long-term monthly time-series analysis in 6312 

combination with change detection models (Breaks for Additive Seasonal and 6313 
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Trend (BFAST) and the Bayesian analysis (BEAST)) can identify abrupt and 6314 

gradual changes associated with fire, drought and seasonality driven by climate 6315 

changes and clear-cutting. Critically, the results emphasised the importance of 6316 

considering the sensitivity of the chosen vegetation indices, and the need to adopt 6317 

advanced change detection methods, such as BEAST algorithm, that can fully 6318 

characterise the complex non-linear dynamics of dryland forest ecosystems. This 6319 

research has demonstrated that an analysis of long-continuous time series data 6320 

describing drought, water stress and fire impacts across large spatial scales can 6321 

reveal regional trends in vegetation change, drying patterns, and the expansion of 6322 

drylands (arid and semi-arid). These findings highlighted the importance of a 6323 

precise and timely assessment of the intensity and geography of impacts of 6324 

droughts within and across conservation areas, both at present and into the future. 6325 

This approach therefore creates a valuable evidence base for understanding the 6326 

multiple and interacting impacts on forest biodiversity, wildlife and ecosystem 6327 

function at a regional-scale, which has hitherto not been possible, and which is 6328 

essential for more effective management of these critical ecosystems.  6329 

 6330 
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Appendix A 

A policy brief published with N8 AgriFood at https://policyhub.n8agrifood.ac.uk/  

https://policyhub.n8agrifood.ac.uk/
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Appendix B 

The analytical codes used in this thesis have been written in R 
and Google Earth Engine developed by Ruusa David. The 
substantial code will be uploaded in GitHub. 

 

CHAPTER 2  

2A. R CODE FOR ANALYSING AND PLOTTING DATA 

This part of the R code is for analysing data for the systematic review  

 

 Number of papers integrating remote sensing and dryland forests 
in Southern Africa. 
 
# Install needed packages through the pkgTest which is a helper function to 

load packages and install packages only when they are not installed yet. 

pkgTest <- function(x) 

{ 

  if (x %in% rownames(installed.packages()) == FALSE) { 

    install.packages(x, dependencies= TRUE) 

  } 

  library(x, character.only = TRUE) 

} 

neededPackages <- c("sp","zoo", "ggplot2", "dplyr") 

for (package in neededPackages){pkgTest(package)} 

 

#Load the library 

library(ggplot2)   

library(dplyr)   

library(tidyverse) 

library(sf) 
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library(scales) 

library(ggrepel)   

 

#path to data 

path=("C:/ ") 

 

#Read the data 

No_study_SA <-read.csv(paste(path,"File.csv",sep="",collapse=""))  

 

#Create the chart 

No_study_SA_plot1<- ggplot(No_study_SA, aes(y = NoPublication, x = Year, 

width=.60)) + geom_col(fill = "aquamarine4", colour = "grey38", width=.85) 

No_study_SA_plot2<- No_study_SA _plot1 + labs(x = "Year", y = "Number of 

publications")+scale_x_continuous(breaks=seq(1997,2020,2))+scale_y_continuous

(breaks = breaks_width(2))+theme_bw()+geom_smooth(method = "lm", 

colour="red", linetype="dashed", size=1.5,se=FALSE)  

                                                                                                                                                                  

No_study_SA_plot2<- No_study_R_topic_country_plot2 + 

theme(text=element_text(family="Tahoma",colour="black", size = 15),  

                     axis.text.x=element_text(colour="black", size =12), 

                     axis.text.y=element_text(colour="black", size = 12)) 

 

#run lm to get the intercept and slope 

lm(formula = NoPublication ~Year, data = No_study_SA_plot2) 

 

#plot a trend line on the line graph 

No_study_SA_plot2<- No_study_SA _plot2 + geom_abline(intercept = -1100.7132 , 
slope =  0.5509    , colour="red", linetype="dashed", size=1.5) 

#Plot the Chart 

No_study_SA_plot2 

 

 Number of papers by research institutions. 

 
#Read the data  
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No_study_Inst <-read.csv(paste(path," File.csv ",sep="",collapse=""))  

 

#Create the Chart 

No_study_Inst_plot1<- ggplot(No_study_Inst (x = NoPublication, y 

=Institution.Category, fill = Institution.Type)) +  geom_col() 

No_study_Inst_plot2<- No_study_R_topic_country_plot1 + labs(x = "Published 

papers", y = "1st author Country")+ scale_fill_brewer(palette = "Dark2")  

+theme_bw() 

No_study_Inst_plot2<- No_study_R_topic_country_plot2 + 
theme(text=element_text(family="Tahoma",colour="black", size = 15),  

                     axis.text.x=element_text(colour="black", size = 12), 

                     axis.text.y=element_text(colour="black", size = 12)) 

No_study_Inst_plot2<- No_study_Inst_plot2 + 

guides(fill=guide_legend(title="Institution category")) 

#Plot the Chart 

No_study_Inst_plot2 

 

 Spatial extent of studies. 
#Read the data 

No_study_S_extent <-read.csv(paste(path," File.csv ",sep="",collapse=""))  

 

#Create the chart 

No_study_S_extent_plot1<- ggplot(No_study_S_extent, aes(x =Scale, y 
=NumberofPublication, fill = fct_inorder(Scale))) + 

  geom_col(colour = "grey50",width=0.9) 

No_study_S_extent_plot2<- No_study_R_topic_country_plot1 + labs(x = "Spatial 

extent", y = "Number of publications")+  scale_colour_brewer() 

+scale_y_continuous(breaks = breaks_width(4))+ theme_bw() 

 

No_study_S_extent_plot2<- No_study_S_extent_plot2 + 

theme(text=element_text(family="Tahoma",colour="black", size = 15),  

                     axis.text.x=element_text(colour="black", size =12), 

                     axis.text.y=element_text(colour="black", size = 12)) 
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No_study_S_extent_plot2<- No_study_S_extent_plot2 + 

guides(fill=guide_legend(title="Spatial scale")) 

#Plot the Chart 

No_study_S_extent_plot2 

 

 Temporal duration of studies. 
#Read the data 

No_study_T_extent <-read.csv(paste(path," File.csv ",sep="",collapse=""))  

 

#Create the chart 

No_study_T_extent_plot1<- ggplot(No_study_T_extent, aes(x = Year, y 

=NoPublication, fill = TemporalResolution, width=.85)) + 
geom_col(colour="grey39", size=0.60) 

No_study_T_extent_plot2<- No_study_T_extent_plot1 + labs(x = "Temporal extent 

(years)", y = "Number of publications")+  scale_fill_brewer(palette = "Set1") 

+scale_x_continuous(labels = 1:34, breaks = 1:34)+scale_y_continuous(breaks = 

breaks_width(4))+ theme_bw() 

No_study_T_extent_plot2<- No_study_T_extent_plot2 + 

theme(text=element_text(family="Tahoma",colour="black", size = 15),  

                     axis.text.x=element_text(colour="black", size =10), 

                     axis.text.y=element_text(colour="black", size = 12)) 

No_study_T_extent_plot2<- No_study_T_extent_plot2 

+guides(fill=guide_legend(title="Temporal resolution")) 

 

#Plot the Data 

No_study_T_extent_plot2 

 

 Research topic categories  
#Read the data 

No_study_R_topic <-read.csv(paste(path," File.csv.csv",sep="",collapse=""))  

 

# Add label position   #Note, calculate this before adding % sign to the number 

of publication 

No_study_R_topic <- No_study_R_topic %>% 



 

Page | 352  
 

  arrange(desc(Research.focus)) %>% mutate(midpoint = 

cumsum(Number.of.Publication) - 0.5*Number.of.Publication) 

 

mycols <- c("#0073C2FF", "#EFC000FF", "#868686FF", 

"#CD984CFF","#007672FF", "#EFC000CC", "#896686FF", "#CD529CFF") 

 

ggplot(No_study_R_topic, aes(x = "", y =Number.of.Publication, fill = 

Research.focus)) + 

  geom_bar(width = 1, stat = "identity", colour = "white") + coord_polar("y", start = 
0)+ 

  geom_text(aes(y = midpoint, label = Number.of.Publication), colour = "white")+ 

  scale_fill_manual(values = mycols) +  theme_void() 

 

#add columns for percentage 

No_study_R_topic <- No_study_R_topic %>% 

  mutate(Research.focus = factor(Research.focus,  

                       levels = Research.focus[length(Research.focus):1]), 

         cumulative = cumsum(Number.of.Publication), 

         midpoint = cumulative - Number.of.Publication / 2, 

         labels = paste0(round((Number.of.Publication/ sum(Number.of.Publication)) 

* 100, 0), "%" , " (", Number.of.Publication, ") ")) 

 

# Get the Pie Chart positions 

No_study_R_topic <- No_study_R_topic%>%   mutate(csum = 

rev(cumsum(rev(Number.of.Publication))),  

         pos = Number.of.Publication/2 + lead(csum, 1), 

         pos = if_else(is.na(pos), Number.of.Publication/2, pos)) 

 

#Plot the chart 

ggplot(No_study_R_topic, aes(x = "" , y =Number.of.Publication, fill = 
fct_inorder(Research.focus))) + 

  geom_col(width = 1, colour = 1) + 

  coord_polar(theta = "y") + 

  scale_fill_brewer(palette = "Set3") + 
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  geom_label_repel(data = No_study_R_topic, 

                   aes(y = pos, label =labels), 

                   size = 4.5, nudge_x = 0.14, show.legend = FALSE) + 

  guides(fill = guide_legend(title = "Resesarch topic")) + 

  theme_void() 

 

 Number of studies based upon platform and sensor type. 
#Read the data 

No_study_R_sensor <-read.csv(paste(path," File.csv ",sep="",collapse=""))  

#Create the chart 

No_study_R_sensor_plot1<- ggplot(No_study_R_sensor, aes(x =InstrumentName, y 

=NumberofPublication, fill = Sensor.Type,width=.60)) + 

  geom_col() 

No_study_R_sensor_plot2<- No_study_R_sensor_plot1 + labs(x = "Platform", y = 

"Number of publications")+  scale_colour_brewer(palette = "Greens") 

+scale_y_continuous(breaks = breaks_width(10))+ theme_bw()+theme(axis.text.x 

= element_text(angle = 90)) 

No_study_R_sensor_plot2<- No_study_R_sensor_plot2 + 

theme(text=element_text(family="Tahoma",colour="black", size = 15),  

                     axis.text.x=element_text(colour="black", size =12), 

                     axis.text.y=element_text(colour="black", size = 12)) 

No_study_R_sensor_plot2<- No_study_R_sensor_plot2 + 

guides(fill=guide_legend(title="Sensor Type")) 

#Plot the Chart 

No_study_R_sensor_plot2 

 

 Research topic by country 
#Read the data 

No_study_R_topic_country<-read.csv(paste(path,"Article 
Assessment_reseracharea_bycountry_2.csv",sep="",collapse=""))  

#Create the chart 

No_study_R_topic_country_plot1<- ggplot(No_study_R_topic_country, aes(x = 
Country, y =Publications, fill = Research.Topic,width=.60)) + geom_col() 

No_study_R_topic_country_plot2<- No_study_R_topic_country_plot1 + labs(x = 

"Country", y = "Number of publications")+ scale_fill_brewer(palette = 
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"Set2")+theme_bw()+scale_y_continuous(breaks = 

breaks_width(5))+theme(axis.text.x = element_text(angle = 90)) 

No_study_R_topic_country_plot2<- No_study_R_topic_country_plot2 + 

theme(text=element_text(family="Tahoma",colour="black", size = 15),  

                     axis.text.x=element_text(colour="black", size =12), 

                     axis.text.y=element_text(colour="black", size = 12)) 

 

#Plot the Chart 

No_study_R_topic_country_plot2 

 

CHAPTER 3  

3A. GOOGLE EARTH ENGINE CODE FOR DOWNLOADING IMAGES, 

CLASSIFICATION AND CHANGE DETECTION 

Google Earth Engine Code for downloading Landsat, Sentinel 1 and 2 

images, satellite image classification and change detection 

Image classification for Landsat 2004  

https://code.earthengine.google.com/5f543641fb703ab0bbf23ea869e3d4a8?nolo

ad=1  

 

Image classification for 2018 code 

https://code.earthengine.google.com/57348f290a26907372d530f21762c718?nol
oad=1 

 

Perform a Change detection  

https://code.earthengine.google.com/d7618eedeaf46fcf53a7de56df0af330?noloa
d=1 

 

Landsat image code 

https://code.earthengine.google.com/421117de52df03e0fabf48edac554aae?nolo

ad=1 

 

https://code.earthengine.google.com/5f543641fb703ab0bbf23ea869e3d4a8?noload=1
https://code.earthengine.google.com/5f543641fb703ab0bbf23ea869e3d4a8?noload=1
https://code.earthengine.google.com/57348f290a26907372d530f21762c718?noload=1
https://code.earthengine.google.com/57348f290a26907372d530f21762c718?noload=1
https://code.earthengine.google.com/d7618eedeaf46fcf53a7de56df0af330?noload=1
https://code.earthengine.google.com/d7618eedeaf46fcf53a7de56df0af330?noload=1
https://code.earthengine.google.com/421117de52df03e0fabf48edac554aae?noload=1
https://code.earthengine.google.com/421117de52df03e0fabf48edac554aae?noload=1
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Sentinel image code 

https://code.earthengine.google.com/33b7477b23ad3a8bf1f220486c283da1?nol
oad=1 

 

3B. R CODE FOR ESTIMATING FOREST STAND PARAMETERS 

 This part of the R code is for estimating forest stand parameters 

 Estimates for forest stand parameters using Chave et al., 2005 

allometric Equation 
 

 ESTIMATES FOREST STAND PARAMETERS  

# Install needed packages through the  pkgTest  

pkgTest <- function(x) 

{ 

  if (x %in% rownames(installed.packages()) == FALSE) { 

    install.packages(x, dependencies= TRUE) 

  } 

  library(x, character.only = TRUE) 

} 

neededPackages <- c("rgeos "," raster ", "ggplot2", "dplyr") 

for (package in neededPackages){pkgTest(package)} 

#Load the library 

library(rgdal) 

library(raster) 

library(rgeos) 

library(ggplot2) 

library(rcompanion)   #for transforming 

library(Hmisc)  # compute significance levels for pearson 

library(dplyr)  # to use select  

library(ggpubr) #for ggscatterForest 

library(ggpmisc) 

library(corrplot)    #Forest correlation 

library(MASS)   #for BOXCOX Transformation 

library(devtools) 

library(ithir)  #To check regression prediction 

library(MASS)  

library(car)#for vif to test multicollinearity 

https://code.earthengine.google.com/33b7477b23ad3a8bf1f220486c283da1?noload=1
https://code.earthengine.google.com/33b7477b23ad3a8bf1f220486c283da1?noload=1
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library(performance)  #To test model performance 

library(randomForest) 

library(DAAG) #for k fold validation in linear regression 

to test multicollinearity 

library(performance) 

 

#Apply the allometric equation from  Chave et al., 2005 for dry forest  

ForestPlots <-  plotdata %>% 

  mutate(BasalArea_m2 = 0.0001*pi*(DBH/2)^2, 

         standBasalArea_m2=0.0001*pi*(DBH/2)^2/0.05*20, 

         WoodDensity = 0.79, 

         

 #Estimate DBH  

AGB_kg_Chave_DBH = WoodDensity*exp(-

0.667+(1.784*log(DBH))+(0.207*(log(DBH))^2)-(0.0281*(log(DBH))^3)))   

 

   #Estimate with DBH and total tree height (H)  

 AGB_kg_Chave_H_DBH = exp(-2.187+(0.916*log(WoodDensity*DBH^2*Height))),  

         

 CALCULATE/ ESTIMATES OF STAND LEVEL PARAMETERS  

(including DBH, Basal Area, Height, AGB, Carbon etc) 

StandPhysicalParams <- Plotmeta %>% 

  group_by(ForestID) %>% 

  mutate(PlotArea_m2 = pi * PlotSize^2, 

         scalingFactor = 10000/PlotArea_m2)   #convert to hectare 

 

StandForestParams <- ForestPlots %>% 

  group_by(ForestID) %>% 

  summarise(DBH_mean = mean(DBH, na.rm = T), 

            DBH_sd = sd(DBH, na.rm = T), 

            DBH_median= median(DBH, na.rm = T), 

            BA_mean = mean(BasalArea_m2, na.rm = T), 

            BA_sum = sum(BasalArea_m2, na.rm = T), 

            BA_sd = sd(BasalArea_m2, na.rm = T), 
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            standBA_sum=sum(standBasalArea_m2, na.rm = T), 

            standBA_mean=mean(standBasalArea_m2, na.rm = T), 

            Height_mean = mean(Height, na.rm = T), 

            Height_median = median(Height, na.rm = T), 

            Height_sd = sd(Height, na.rm = T), 

            Tree_Density = n(), 

            AGB_kg_sum_Chav_Height_DBH = sum(AGB_kg_Chave_H_DBH, na.rm = T), 

            AGB_kg_sum_Chav_DBH =sum(AGB_kg_Chave_DBH, na.rm = T)) 

standParams <- left_join(StandPhysicalParams,StandForestParams, by = 

"ForestID") %>% 

  mutate(Tree_DensityHa = Tree_Density*scalingFactor, 

         BA_m2Ha = BA_sum*scalingFactor, 

          AGB_kgHa_Chav_H =  AGB_kg_sum_Chav_Height_DBH*scalingFactor, 

          AGB_tHa_Chav_H = AGB_kgHa_Chav_H/1000, 

          AGB_tCHa_Chav_H = AGB_tHa_Chav_H*0.5, 

           

         AGB_kgHa_Chav_DBH =  AGB_kg_sum_Chav_DBH*scalingFactor, 

         AGB_tHa_Chav_DBH = AGB_kgHa_Chav_DBH/1000, 

         AGB_tCHa_Chav_DBH = AGB_tHa_Chav_DBH*0.5) 

 

# Plots of forest stand parameters  

library (cowplot) 

library(ggpubr) 

#Stand forest DBH  

Stand_DBH <-  

  ggplot(aes(ForestID, DBH_mean),  

         data = standParams[1:78,]) + 

  geom_col(aes()) +  

  theme_bw() + 

  theme(panel.grid.major.x = element_blank(), 

        text = element_text(size=12), 

        axis.text.x = element_text(angle = 55, hjust = 1)) + 
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  labs(x = "Plot ID", y = "Mean DBH (cm)") + 

  geom_errorbar(aes(ymin=DBH_mean-DBH_sd, ymax=DBH_mean+DBH_sd), 

                width=.5)  

 

# Stand forest Basal Area  

Stand_BA <-  

  ggplot(aes(ForestID, BA_mean),  

         data = standParams[1:78,]) + 

  geom_col(aes()) +  

  theme_bw() + 

  theme(panel.grid.major.x = element_blank(), 

        text = element_text(size=12), 

        axis.text.x = element_text(angle = 55, hjust = 1)) + 

  labs(x = "Plot ID", y = "Mean Basal Area (m2)") + 

  geom_errorbar(aes(ymin=BA_mean-BA_sd, ymax=BA_mean+BA_sd), 

                width=.5)  

 

# Stand forest  Height  

Stand_Height <-  

  ggplot(aes(ForestID, Height_mean),  

         data = standParams[1:78,]) + 

  geom_col(aes()) +  

  theme_bw() + 

  theme(panel.grid.major.x = element_blank(), 

        text = element_text(size=12), 

        axis.text.x = element_text(angle = 55, hjust = 1)) + 

  labs(x = "Plot ID", y = "Mean Tree Height (m)") + 

  geom_errorbar(aes(ymin=Height_mean-Height_sd, ymax=Height_mean+Height_sd), 

                width=.5)  

 

# Stand forest Tree Density  

Stand_Density <-  
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  ggplot(aes(ForestID, Tree_DensityHa),  

         data = standParams[1:78,]) + 

  geom_col(aes()) +  

  theme_bw() + 

  theme(panel.grid.major.x = element_blank(), 

        text = element_text(size=12), 

        axis.text.x = element_text(angle = 55, hjust = 1)) + 

  labs(x = "Plot ID", y = "Tree Density (Trees ha-1)")  

 

# Above Ground Biomass using DBH for CHAVE 

Stand_AGB_tha_DBH_Chav <-  

  ggplot(aes(ForestID, AGB_tHa_Chav_DBH),  

         data = standParams[1:78,]) + 

  geom_col(aes()) +  

  theme_bw() + 

  theme(panel.grid.major.x = element_blank(), 

        text = element_text(size=12), 

        axis.text.x = element_text(angle = 55, hjust = 1)) + 

  labs(x = "Plot ID", y = "AGB with DBH; (t ha-1)")  

 

Stand_AGB_tCha_DBH_Chav <-  

  ggplot(aes(ForestID, AGB_tCHa_Chav_DBH),  

         data = standParams[1:78,]) + 

  geom_col(aes()) +  

  theme_bw() + 

  theme(panel.grid.major.x = element_blank(), 

        text = element_text(size=12), 

        axis.text.x = element_text(angle = 55, hjust = 1)) + 

  labs(x = "Plot ID", y = "Total Carbon with DBH; (t C ha-1)")  

 

 

# Stand forest AGB with Height 



 

Page | 360  
 

Stand_AGB_tha_H_Chav <-  

  ggplot(aes(ForestID, AGB_tHa_Chav_H),  

         data = standParams[1:78,]) + 

  geom_col(aes()) +  

  theme_bw() + 

  theme(panel.grid.major.x = element_blank(), 

        text = element_text(size=16), 

        axis.text.x = element_text(angle = 55, hjust = 1)) + 

  labs(x = "Plot ID", y = "AGB (Mg/ha)")  

 

Stand_AGB_tCha_H_Chav <-  

  ggplot(aes(ForestID, AGB_tCHa_Chav_H),  

         data = standParams[1:78,]) + 

  geom_col(aes()) +  

  theme_bw() + 

  theme(panel.grid.major.x = element_blank(), 

        text = element_text(size=16), 

        axis.text.x = element_text(angle = 55, hjust = 1)) + 

  labs(x = "Plot ID", y = "Total Carbon (Mg/ha)")  

 

#Plot the forest stand parameters Individually 

plot_grid(Stand_DBH) 

plot_grid(Stand_BA) 

plot_grid(Stand_Height) 

plot_grid(Stand_Density) 

plot_grid(Stand_AGB_tha_H_Chav) 

plot_grid(Stand_AGB_tCha_H_Chav,labels = "auto", 

          label_size = 18, 

          align = "v") 

plot_grid(Stand_AGB_tha_DBH_Chav) 

plot_grid(Stand_AGB_tCha_DBH_Chav) 
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#Plot the forest stand parameters in one Figure 

StandFigure <- hist(Stand_AGB_tha_H_Chav,Stand_AGB_tCha_H_Chav, 

  ncol = 1, nrow = 2, align = "v", axis = "r",labels="auto", label_size = 18) 

StandFigure 

 

 PLOT THE DENSITY AND HISTOGRAM PLOTS FOR AGB AND CARBON 

3.1 Create density and histogram plots for Aboveground biomass (AGB)of each field 

plot with woodland trees.   

AGB<-ggplot(standParams[1:78,], aes(x=AGB_tHa_Chav_H)) + 

  geom_histogram(aes(y =..density..), 

                 breaks=seq(2, 170, by = 10), 

                 col="Black",  

                 fill="#FF6666", alpha = .1 ) +  theme_bw()+ 

  geom_density(alpha=.2, fill="black") +       

 # labs(title="AGB (Mg/ha)") + 

  labs(x="AGB (Mg/ha)", y="Count")  + 

  theme(axis.line = element_line(size=1, colour = "black"), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.border = element_blank(), 

        panel.background = element_blank(), 

        plot.title=element_text(size = 20,face="bold"), 

        text=element_text(size = 16), 

        axis.text.x=element_text(colour="black", size = 14,face="bold"), 

        axis.text.y=element_text(colour="black", size = 14,face="bold"), 

        axis.title.x = element_text(colour="black", size=16, face="bold"), 

        axis.title.y = element_text(colour="black", size=16, face="bold"), 

        axis.text=element_text(colour="black", size=14)) 

 

3.2 CARBON: Create density and histogram plots Carbon stock (Mg/ha) of each field 

plot with woodland trees.   
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carbon<-ggplot(standParams[1:78,], aes(x=AGB_tCHa_Chav_H)) + 

  geom_histogram(aes(y =..density..), 

                 breaks=seq(1.03, 84, by = 10), 

                 col="black",  

                 fill="#FF6666", alpha = .1 

  ) +  theme_bw()+ 

  geom_density(alpha=.2, fill="black") +       

  # labs(title="AGB (Mg/ha)") + 

  labs(x="Total Carbon (Mg/ha)", y="")  + 

  theme(axis.line = element_line(size=1, colour = "black"), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.border = element_blank(), 

        panel.background = element_blank(), 

        plot.title=element_text(size = 20,face="bold"), 

        text=element_text(size = 16), 

        axis.text.x=element_text(colour="black", size = 14,face="bold"), 

        axis.text.y=element_text(colour="black", size = 14,face="bold"), 

        axis.title.x = element_text(colour="black", size=16, face="bold"), 

        axis.title.y = element_text(colour="black", size=16, face="bold"), 

        axis.text=element_text(colour="black", size=14)) 

# Plot the density and histogram plot for carbon 

carbon 

  

#Combine all the plots  

ggarrange(AGB, carbon,  

          labels = c("A", "B"),common.legend=TRUE,legend = "top",# specify the legend 

position and specify whether they should share the common legend or not. 

          ncol = 2, nrow = 2) # column and row numbers 

2. Estimates the AGB using Linear Model (Raster data) 

 
#Read the csv data 
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S2chobezam_wo.num<-read.csv(paste(path,"File.csv",sep="",collapse=""))  

 

#Transform the data for normality 

S2chobezam_wo.num$AGBL<-log(S2chobezam_wo.num$AGB_tHa_Chav_H)      

 

#display histogram for transformed AGB 

hist(S2chobezam_wo.num$AGBL)  

 

#choose variables to work (Sentinel 1, Sentinel 2 and Landsat 8 bands and 

indices) 

S2chobezam_wo.num=dplyr::select(S2chobezam_wo.num,AGBL,B2,B3,B4,B5,B6,B

7,B8,B8A,B11,B12,S1_VH,S1_VV,ndvi,grvi,evi,savi,msav,nbr,nbr2,gndvi,nR1,nR2,nR

3,nR4,ndi45,ireci,srtm) 

 

#read in Raster data-sentinel  

 # NB: Load Sentinel 1, Sentinel 2, and Landsat 8 tif files, Below is an example of 

Sentinel 2 data loaded in r 

S2_chobe<-list.files ("Path/", pattern = ".tif$",  full.names = TRUE)    

 

#stack all bands 

#covariates are of the same scale in terms of resolution and extent. 

S2_03_chobe<- stack(S2_chobe[]) 

 

# Linear Model prediction 

hv.MLR.rh <-lm(AGBL~B3+B5+S1_VH+S1_VV, data =S2chobezam_wo.num) 

vif(hv.MLR.rh)    

summary(hv.MLR.rh) 

 

#Estimate AGB using Linear Model        

#predict from raster data  

map.MLR1<- exp(predict(S2_03_chobe,hv.MLR.rh,format = "GTiff", datatype = 

"FLT4S", overwrite = TRUE))  # backtransform the log data to original 

plot(map.MLR1, main = "S2 Biomass prediction with linear model") 
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  # including all bands and indices, and choose the right variables 

tempD <- data.frame(cellNos = seq(1:ncell(S2_03_chobe)))   

vals <- as.data.frame(getValues(S2_03_chobe)) 

tempD <- cbind(tempD, vals) 

tempD <- tempD[complete.cases(tempD), ] 

cellNos <- c(tempD$cellNos) 

gXY <- data.frame(xyFromCell(S2_03_chobe, cellNos, spatial = FALSE)) 

tempD <- cbind(gXY, tempD) 

str(tempD) 

 

# backtransform the log data to original scale with exp 

map.MLR <- exp(predict(hv.MLR.rh, newdata = tempD))    

map.MLR <- cbind(data.frame(tempD[, c("x", "y")]), map.MLR)   #include x and y 
coordinates 

 

#rasterise the predictions for mapping 

map.MLR.r <- rasterFromXYZ(as.data.frame(map.MLR[, 1:3]))   #include the cell 
numbers         

plot(map.MLR.r, main = "S2 Biomass prediction with glm forest") 

 

 Validate the AGB using Linear Model 
# validate the Linear  model  

#split the data 70 and 30% for validation  

set.seed(123) 

training <- sample(nrow(S2chobezam_wo.num), 0.7 * 

nrow(S2chobezam_wo.num)) 

 

#display the calibration data  

training 

 

#fit the model  
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hv.MLR.rh <-lm(AGBL~B3+B5+S1_VH+S1_VV+gndvi+ndi45,  data 

=S2chobezam_wo.num,y=TRUE, x=TRUE) 

AGB.pred.F <- predict(hv.MLR.rh, S2chobezam_wo.num) 

#Evaluate the model with goof: 

goof(observed = S2chobezam_wo.num$AGBL, predicted= AGB.pred.F,plot.it = 
TRUE)   

 

#Check model performance 

model_performance(hv.MLR.rh)    

 

#Evaluate the calibration model  

AGB.pred.C <- predict(hv.MLR.rh, S2chobezam_wo.num[training, ]) 

goof(observed = S2chobezam_wo.num$AGBL[training], predicted 

= AGB.pred.C,plot.it = TRUE) 

 

#Evaluate the validation model  

AGB.pred.V <- predict(hv.MLR.rh, S2chobezam_wo.num[-training, ]) 

goof(observed = S2chobezam_wo.num$AGBL[-training], predicted 

= AGB.pred.V,plot.it = TRUE) 

 

# set the CRS to +zone=35 +south +datum=WGS84 

crs(map.MLR.r) <- "+proj=utm +zone=35 +south +datum=WGS84 +units=m 

+no_defs +ellps=WGS84 +towgs84=0,0,0" 

 

#Export the map 

writeRaster(map.MLR.r,  filename="Path", datatype = "FLT4S", overwrite = TRUE) 

 Estimated AGB vs Field-based AGB for Linear Models (Calibration 
Data: 70%) 

 
#Plot the predicted vs the observed for Linear Model 

#fit the model 

chobe.MLR<-lm(AGBL~B3+B5+S1_VV, data =S2chobezam_wo.num) 

summary(chobe.MLR) 
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predicted_AGB <- predict(chobe.MLR, S2chobezam_wo.num) 

goof(observed = S2chobezam_wo.num$AGBL, predicted= predicted_AGB) 

 

#plot the model 

gg0 <- ggplot(S2chobezam_wo.num,aes(  

AGBL,predicted_AGB))+geom_point(aes()) #colour by forest types   

gg0<-gg0+geom_point( size=4) 

gg1 <- gg0 + geom_smooth(method="lm",se=FALSE, 

colour="black")#+geom_abline(linetype="dashed",col="red") 

gg1 

glm1<-  gg1+stat_regline_equation (aes(label =  paste(..adj.rr.label.., sep = 

"~~~~")), label.x.npc = "left", label.y.npc = 0.95,hjust=0,size=5.5,face="bold")    
#include Y  

 

# Calculate RMSE  

chobe.MLR1 <-lm(AGBL~predicted_AGB, data =S2chobezam_wo.num) 

rmse <- round(sqrt(mean(resid(chobe.MLR1 )^2)), 2) 

 

#plot the rmse  

gg<-glm1 + geom_text(aes(x=0.5, y=4.8,size=30, label= paste("RMSE= ", rmse, 

"Mg/ha"), hjust=0)) 

gg<-gg+theme_bw() 

gg<-gg + labs(y="Predicted AGB (Mg/ha)", x = "Observed AGB (Mg/ha)", title = "(a) 

MLR AGB Model") 

rmse_xy<-gg + theme( 

  plot.title = element_text(colour="black", size=20, face="bold.italic"), 

  axis.title.x = element_text(colour="black", size=20, face="bold"), 

  axis.title.y = element_text(colour="black", size=20, face="bold"), 

  axis.text=element_text(colour="black", size=20, face="bold") 

) 

rmse_xy 

 

#Calculate the residuals  
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chobe.MLR <-lm(AGBL~B3+B5+S1_VV, data =S2chobezam_wo.num) 

 

predicted_AGB <- predict(chobe.MLR, S2chobezam_wo.num) 

 

err<-predicted_AGB- S2chobezam_wo.num$AGBL 

 

df<-data.frame(residuals=err, fitted.values=predicted_AGB )  

 

df2<-df[order(df$fitted.values),] 

 

plot(residuals~fitted.values, data=df2, ylab="Residuals", xlab="AGB (Mg/ha)",  

     main="(a MLR AGB residuals ", cex.lab=2.0, cex.main=2.0, 

cex.axis=2.0,pch=19,cex=1.4, font = 2, font.lab=2,font.main=4) +abline(0,0, 

col="black")  

 

 Estimated AGB vs Field-based AGB for Linear Models (Validation 
Data: 30%) 
 
#Plot the predicted vs the observed for Linear Model  

#fit the model 

chobe.MLR<-lm(AGBL~B3+B5+S1_VV, data =S2chobezam_wo.num) 

summary(chobe.MLR) 

predicted_AGB <- predict(chobe.MLR, S2chobezam_wo.num) 

goof(observed = S2chobezam_wo.num$AGBL, predicted= predicted_AGB) 

 

#plot the model 

gg0 <- ggplot(S2chobezam_wo.num,aes(  
AGBL,predicted_AGB))+geom_point(aes()) #colour by forest types   

gg1 <- gg0 + geom_smooth(method="lm",se=FALSE, 

colour="black")#+geom_abline(linetype="dashed",col="red") 

gg1 

glm1<-  gg1+stat_regline_equation (aes(label =  paste(..adj.rr.label.., sep = 

"~~~~")), label.x.npc = "left", label.y.npc = 0.95,hjust=0,face="bold")    #include Y  

# Calculate RMSE  
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chobe.MLR1 <-lm(AGBL~predicted_AGB, data =S2chobezam_wo.num) 

rmse <- round(sqrt(mean(resid(chobe.MLR1 )^2)), 2) 

 

#plot the rmse  

gg<-glm1 + geom_text(aes(x=0.5, y=4.8, label= paste("RMSE= ", rmse, "Mg/ha"), 

hjust=0)) 

gg<-gg+theme_bw() 

gg<-gg + labs(y="Predicted AGB (Mg/ha)", x = "Observed AGB (Mg/ha)", title = 

"AGB Model (a) Linear regression") 

gg 

 

rmse_xy<-gg + theme( 

  plot.title = element_text(colour="black", size=20, face="bold.italic"), 

  axis.title.x = element_text(colour="black", size=16, face="bold"), 

  axis.title.y = element_text(colour="black", size=16, face="bold"), 

  axis.text=element_text(colour="black", size=14) 

) 

rmse_xy 

 

#Calculate the residuals  

chobe.MLR <-lm(AGBL~B3+B5+S1_VV, data =S2chobezam_wo.num) 

predicted_AGB <- predict(chobe.MLR, S2chobezam_wo.num) 

err<-predicted_AGB- S2chobezam_wo.num$AGBL 

df<-data.frame(residuals=err, fitted.values=predicted_AGB )  

df2<-df[order(df$fitted.values),] 

 

#Plot  the residuals  

plot(residuals~fitted.values, data=df2, ylab="Residuals", xlab="AGB (Mg/ha)",  

     main="AGB residuals (a) Linear regression ", cex.lab=1.5, cex.main=1.5, 

cex.axis=1.5) + 

    abline(0,0, col="black") 
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 Validate Estimated AGB vs Field-based AGB for Linear Models 
 

#split the data 70 and 30% for validation  

training <- sample(nrow(S2chobezam_wo.num), 0.7 * 
nrow(S2chobezam_wo.num)) 

 

#fit the model 

chobe.MLR <-lm(AGBL~B3+B5+S1_VV, data =S2chobezam_wo.num[-training,]) 

summary(chobe.MLR) 

predicted_AGB <- predict(chobe.MLR, S2chobezam_wo.num[-training,]) 

goof(observed = S2chobezam_wo.num[-training,]$AGBL, predicted= 

predicted_AGB) 

RF.pred.C <- predict(chobe.MLR, newdata =S2chobezam_wo.num[training, ]) 

 

#calibration 

goof(observed = S2chobezam_wo.num$AGBL[training], predicted = RF.pred.C, 
plot.it=TRUE) 

 

#Validation  

MLR.pred.V <- predict(chobe.MLR, newdata = S2chobezam_wo.num[-training, ]) 

goof(observed = S2chobezam_wo.num$AGBL[-training], predicted 
=MLR.pred.V,plot.it = TRUE) 

 

 Estimates the AGB using Random Forest Model (Raster data) 
 
#Split the data into calibration and validation dataset 

set.seed(123) 

training <- sample(nrow(S2chobezam_wo.num), 0.7 * 
nrow(S2chobezam_wo.num)) 

#fit the RF model 

chobe.rf.mod <-randomForest(AGBL~B3+B5+S1_VV, data 

=S2chobezam_wo.num,mtry=3,importance=TRUE,ntree=1000) 

print(chobe.rf.mod) 
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#Plot variable importance 

varImpPlot(chobe.rf.mod) 

 

#check the model residuals  

S2chobezam_wo.num$residual <- S2chobezam_wo.num$AGBL- 

predict(chobe.rf.mod, 

newdata = S2chobezam_wo.num, plot.it=True) 

hist(S2chobezam_wo.num$residual) 

mean(S2chobezam_wo.num$residual) 

 

# backtransform the log data to original 

map.RF.r1 <- exp(predict(S2_03_chobe, chobe.rf.mod, "Chobe Biomass_RF.tif", 

format = "GTiff", datatype = "FLT4S", overwrite = TRUE)) 

 

#Plot the data 

plot(map.RF.r1 , main = "Random Forest model predicted Biomass") 

 

 Estimated AGB vs Field-based AGB for Random Forest Model 
(Calibration Data: 70%) 
 

#Plot the predicted vs the observed  

#fit the model 

chobe.rf.mod <-randomForest(AGBL~B3+B5+S1_VV, data 

=S2chobezam_wo.num,mtry=3,importance=TRUE,ntree=1000, trace=true) 

print(chobe.rf.mod) 

predicted_AGB <- predict(chobe.rf.mod, S2chobezam_wo.num) 

goof(observed = S2chobezam_wo.num$AGBL, predicted= predicted_AGB) 

 

#plot the model 

gg0 <- ggplot(S2chobezam_wo.num,aes(  
AGBL,predicted_AGB))+geom_point(aes()) #colour by forest types   

gg0<-gg0+geom_point( size=4) 



 

Page | 371  
 

gg1 <- gg0 + geom_smooth(method="randomForest", 

colour="black")+geom_abline(linetype="dashed",col="red") 

gg1<-gg1+geom_abline(intercept = 0,slope=1,col="black") 

glm1<-  gg1+stat_regline_equation (aes(label =  paste(..adj.rr.label.., sep = 

"~~~~")), label.x.npc = "left", label.y.npc = 0.9,hjust=0,size=5.5,face="bold")    
#include Y  

 

# Calculate RMSE  

chobe.rf.mod1 <-randomForest(AGBL~predicted_AGB, data 
=S2chobezam_wo.num,importance=TRUE,ntree=1000) 

rmse_function<-function(pred,actual){ 

  sqrt(sum(pred-actual)^2) 

} 

rmse<-round(rmse_function( predicted_AGB,S2chobezam_wo.num$AGB),2) 

rmse 

 

#plot the rmse  

gg<-glm1 + geom_text(aes(x=0.5, y=4.3,size=30,face="bold", label= paste("RMSE= 

", rmse, "Mg/ha"), hjust=0)) 

gg<-gg+theme_bw() 

gg<-gg + labs(y="Predicted AGB (Mg/ha)", x = "Observed AGB (Mg/ha)", title = "(b) 
RFR AGB Model") 

 

gg 

rmse_xy<-gg + theme( 

  plot.title = element_text(colour="black", size=20, face="bold.italic"), 

  axis.title.x = element_text(colour="black", size=20, face="bold"), 

  axis.title.y = element_text(colour="black", size=20, face="bold"), 

  axis.text=element_text(colour="black", size=20, face="bold") 

) 

rmse_xy 

#Calculate the residuals  

chobe.rf.mod <-randomForest(AGBL~B3+B5+S1_VV, data 

=S2chobezam_wo.num,mtry=3, importance=TRUE,ntree=1000) 
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print(chobe.rf.mod) 

predicted_AGB <- predict(chobe.rf.mod, S2chobezam_wo.num) 

err<-predicted_AGB- S2chobezam_wo.num$AGBL 

df<-data.frame(residuals=err, fitted.values=predicted_AGB )  

df2<-df[order(df$fitted.values),] 

 

#Plot the residuals  

plot(residuals~fitted.values, data=df2, ylab="Residuals", xlab="AGB (Mg/ha)",  

     main="(b) RFR AGB residuals ", cex.lab=2.0, cex.main=2.0, 

cex.axis=2.0,pch=19,cex=1.4, font = 2, font.lab=2,font.main=4) + 

    abline(0,0, col="black",lwd=2.5)  

 

 Validate Estimated AGB vs Field-based AGB for Random Forest 
Model 
 
#split the data 70 and 30% for validation  

training <- sample(nrow(S2chobezam_wo.num), 0.7 * 
nrow(S2chobezam_wo.num)) 

 

#fit the model 

chobe.rf.mod <-randomForest(AGBL~B3+B5+S1_VV, data 
=S2chobezam_wo.num,mtry=3,importance=TRUE,ntree=1000) 

print(chobe.rf.mod) 

predicted_AGB <- predict(chobe.rf.mod, S2chobezam_wo.num) 

goof(observed = S2chobezam_wo.num$AGBL, predicted= predicted_AGB) 

 

# Internal validation 

RF.pred.C <- predict(chobe.rf.mod, newdata =S2chobezam_wo.num[training, ]) 

goof(observed = S2chobezam_wo.num$AGBL[training], predicted = RF.pred.C, 

plot.it=TRUE) 

 

#External validation 

RF.pred.V <- predict(chobe.rf.mod, newdata = S2chobezam_wo.num[-training, ]) 
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goof(observed = S2chobezam_wo.num$AGBL[-training], predicted = 

RF.pred.V,plot.it = TRUE) 

 

 Computing variables correlation  

 
(i) PEARSON CORRELATION WITH S2 BANDS 

#Read the csv data 

S2chobezam_wo.num<-read.csv(paste(path," File.csv ",sep="",collapse=""))  

 

#Choose the variable (Sentinel 1, Sentinel 2 and Landsat 8 bands and indices)  

S2chobezam_wo.num2=dplyr::select(S2chobezam_wo.num,AGBL, 

B2,B3,B4,B5,B6,B7,B8,B8A,B11,B12,S1_VH,S1_VV,ndvi,grvi,evi,savi,msav,nbr,nbr2,

gndvi,nR1,nR2,nR3,nR4,ndi45,ireci,srtm, HeightL, DenHAL) 

 

compute the correlation matrix 

cor2<-rcorr((as.matrix(S2chobezam_wo.num2))) 

 

# compute variable p-values 

cor2$P 

 
(ii) CREATE A SCATTER PLOTS FOR CORRELATION 

 

#SAR sentinel 1 scatterplot 

 

#Plot S1_VV and AGB  

S1_VV <- ggplot(data = S2chobezam_wo.num, aes(x =S1_VV, y = AGBL))+ 

geom_point(aes())  

S1_VV<-S1_VV+geom_point( size=4) 

S1_VV<-S1_VV+geom_smooth(method = "lm", se=FALSE, colour="black", formula = 

y ~ x) #to exclude the line in the middle set (se=FALSE), 

 

# Get equation and r-squared as string 

#make a function to plot the equation  

lm_eqn <- function(S2chobezam_wo.num){ 

  m <- lm(AGBL~S1_VV, S2chobezam_wo.num); 

  eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(r)^2~"="~r2,  

                   list(a = format(unname(coef(m)[1]), digits = 2), 

                        b = format(unname(coef(m)[2]), digits = 2), 

                        r2 = format(summary(m)$r.squared, digits = 2))) 

  as.character(as.expression(eq));} 

S1_VV_eq <- S1_VV + geom_text(x = -15.0, y = 4.8, size=5.5,label = 

lm_eqn(S2chobezam_wo.num), parse = TRUE) 

S1_VV_eq 
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# Calculate RMSE  

S1_VV_model<-lm(AGBL~S1_VV, data=S2chobezam_wo.num) 

rmse <- round(sqrt(mean(resid(S1_VV_model)^2)), 2) 

 

# Plot  RMSE  

S1_VV_rmse<-S1_VV_eq + geom_text(aes(x=-16.0, y=4.5, size=35,label= 

paste("RMSE= ", rmse, "Mg/ha"), hjust=0))+theme_bw() 

S1_VV_rmse_xy <- S1_VV_rmse + labs(y="AGB (Mg/ha)", x="S1 VV 

Polarisation",title="(a) Sentinel-1 Backscatter Value on VV") 

S1_VV_rmse_xy<-S1_VV_rmse_xy + theme(text = element_text(size = 14))                     

S1_VH_rmse_xy 

 

 

#Sentinel 2 scatterplot 

#Plot Sentinel 2 variable ands AGB  

B2 <- ggplot(data = S2chobezam_wo.num, aes(x =B2, y = AGBL))+ 

geom_point(aes())  

 

B2<-B2+geom_smooth(method = "lm",  colour="black", formula = y ~ x) #to 

exclude the line in the middle set (se=FALSE), 

 

#Get equation and r-squared as string 

#make a function to plot the equation  

lm_eqn <- function(S2chobezam_wo.num){ 

  m <- lm(AGBL~B2, S2chobezam_wo.num); 

  eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(r)^2~"="~r2,  

                   list(a = format(unname(coef(m)[1]), digits = 2), 

                        b = format(unname(coef(m)[2]), digits = 2), 

                        r2 = format(summary(m)$r.squared, digits = 2))) 

  as.character(as.expression(eq)); 

} 

 

B2_eq <- B2 + geom_text(x = 0.06, y = 2, label = lm_eqn(S2chobezam_wo.num), 

parse = TRUE) 

 

# Calculate RMSE  

B2_model<-lm(AGBL~B2, data=S2chobezam_wo.num) 

rmse <- round(sqrt(mean(resid(B2_model)^2)), 2) 

 

# Plot  RMSE  

B2_rmse<-B2_eq + geom_text(aes(x=0.05, y=1.5, label= paste("RMSE= ", rmse, 

"mg/ha"), hjust=0))+theme_bw() 

B2_rmse 

B2_rmse_xy <- B2_rmse + labs(y="AGB (Mg/ha)", x="Reflectance in 

B2",title="Sentinel 2") 

B2_rmse_xy<-B2_rmse_xy + theme(text = element_text(size = 14))               
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 Simple and Multivariate regression models 
 
 CREATE THE SIMPLE MODEL FOR AGB USING SAR S1, S2 SPECTRAL 
BANDS, S2 INDICES. NB: Only showed certain models, the rest of the models can be 
provided upon request 

#B3 

B2_lm <-lm(AGBL~B2, data =S2chobezam_wo.num) 

summary(B2_lm) 

r2(B2_lm) 

model_performance(B2_lm) 

 

#B3 

B3_lm <-lm(AGBL~B3, data =S2chobezam_wo.num) 

summary(B3_lm) 

r2(B3_lm) 

model_performance(B3_lm) 

 

#B5 

B5_lm <-lm(AGBL~B5, data =S2chobezam_wo.num) 

summary(B5_lm) 

r2(B5_lm) 

model_performance(B5_lm) 

 

#NDVI 

ndvi_m <-lm(AGBL~ndvi, data =S2chobezam_wo.num) 

summary(ndvi_lm) 

r2(ndvi_m) 

model_performance(ndvi_m) 

 

#GRVI 

grvi_m <-lm(AGBL~grvi, data =S2chobezam_wo.num) 

summary(grvi_lm) 
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r2(grvi_m) 

model_performance(grvi_m) 

 

#S1_VV 

S1_VV_lm <-lm(AGBL~S1_VV, data =S2chobezam_wo.num) 

summary(S1_VV_lm) 

r2(S1_VV_lm) 

model_performance(S1_VV_lm) 

 

#S1_VH 

S1_VH_lm <-lm(AGBL~S1_VH, data =S2chobezam_wo.num) 

summary(S1_VH_lm) 

r2(S1_VH_lm) 

model_performance(S1_VH_lm) 

 

 

 

 

 #CREATE THE MULTIVARIATE MODEL AND PREDICTION FOR ABOVE 
GROUND BIOMASS USING SAR S1, S2 SPECTRAL BANDS, S2 INDICES 
COMBINATIONS. NB: Only showed certain models, the rest of the models can be provided 
upon request 

 

# a)model SAR S1  

sar.model<-lm(AGBL~S1_VH+S1_VV, data=S2chobezam_wo.num) 

summary(sar.model) 

r2(sar.model) 

model_performance(sar.model) 

vif(sar.model) 

 

# b)Sentinel 2 bands 

sentinel2.model<-lm(AGBL~B3+B5+B4+B5+B6+B7+B8+B8A+B11+B12, 

data=S2chobezam_wo.num) 
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summary(sentinel2.model) 

r2(sentinel2.model) 

model_performance(sentinel2.model) 

vif(sentinel2.model) 

 

# c)Sentinel 2 and Sentinel 1 bands 

sentinel2SAR.model<-

lm(AGBL~B3+B5+B4+B5+B6+B7+B8+B8A+B11+B12+S1_VV+S1_VH, 

data=S2chobezam_wo.num) 

summary(sentinel2SAR.model) 

r2(sentinel2SAR.model) 

model_performance(sentinel2SAR.model) 

vif(sentinel2SAR.model) 

 

# d) S2 indices only  

S2ind.model<-

lm(AGBL~ndvi+grvi+evi+savi+msav+nbr+nbr2+gndvi+nR1+nR2+nR3+nR4+ndi4

5+ireci, data=S2chobezam_wo.num) 

summary(S2ind.model) 

r2(S2ind.model) 

model_performance(S2ind.model) 

vif(S2ind.model) 
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CHAPTER 4 

 

 GOOGLE EARTH ENGINE CODE FOR THE VEGETATION 
INDICES 

Google Earth Engine Code for the vegetation Indices time series time 

series  

https://code.earthengine.google.com/fe5b816a2cde4a03c63183cb3f1b2cfb?noloa
d=1 /*//////////////////////////////////////////////////////////////  

Code generated for calculating different vegetation Indices using 8 day MODIS at 

500m, developed by-Ruusa David August 2020 

*/////////////////////////////////////////////////////////////// 

//add the shapefile to the map 

Map.addLayer(Chobe, ndviVis,'NDVI 8 days') 

Map.addLayer(Chobe, ndviVis,'NDVI 8 days') 

 

// mask out cloud and bad pixels 

var maskclouds = function(image) { 

      return image.updateMask(image.select("SummaryQA").eq(0)); 

    }; 

     

var maskcloudsQC = function(image) { 

  var QA = image.select('StateQA') 

  var bitMask = 1 << 10; 

  return image.updateMask(QA.bitwiseAnd(bitMask).eq(0)) 

} 

 

// Load  MODIS image collection  

var MODIS = ee.ImageCollection("MODIS/006/MOD09A1") 

.filterDate('2019-12-01', '2019-12-31') 

  .map(maskcloudsQC).max().clip(Chobe); 
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  //create a function to calculate NDVI  

var addNDVI = function(image){ 

  var newImg = image.normalisedDifference(['sur_refl_b02', 

'sur_refl_b01']).double() 

  .rename('ndvi'); 

  return newImg. 

    set({ 

      'system:index' : image.get('system:index'), 

      'system:time_start' : image.get('system:time_start') 

    }); 

}; 

var ndvi =addNDVI(MODIS); 

 

//Define visualisation parameters  

var ndviVis = { 

        min: 0.0, 

        max: 1.0, 

        palette: [ 

          'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901', 

          '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01', 

          '001E01', '011D01', '011301' 

        ], }; 

Map.addLayer(ndvi, ndviVis,'NDVI 8 days') 

 

//create EVI function  

var addEVI = function(image) { 

  return image.expression( 

       '(NIR-RED) / (NIR + 6*RED - 7.5*BLUE + 1)', 

    { 

      'NIR': image.select('sur_refl_b02'), 
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      'RED': image.select('sur_refl_b01'), 

      'BLUE': image.select('sur_refl_b03') 

    } 

  ).rename('evi') } 

var evi = addEVI(MODIS) 

Map.addLayer(evi,ndviVis,'EVI 16 days') 

 

//create a function to calculate GNDVI  

var addGNDVI = function(image){ 

  var newImg = image.normalisedDifference(['sur_refl_b02', 

'sur_refl_b04']).double() 

  .rename('gndvi'); 

  return newImg. 

    set({ 

      'system:index' : image.get('system:index'), 

      'system:time_start' : image.get('system:time_start') 

    }); }; 

var gndvi =addGNDVI(MODIS); 

Map.addLayer(gndvi, ndviVis,'GNDVI 16 days') 

 

//Export the NDVI data 

Export.image.toDrive({ 

  image:ndvi , 

  folder: 'ChobeMODIS_1', 

  fileNamePrefix: 'ND_12_2020', 

  description:"Modis_ndvi_8_days_02_500m", 

  region: Chobe, 

   crs:"EPSG:32735 ", 

  scale: 500, 

  maxPixels:1e13 

}); 
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//Export the EVI data 

Export.image.toDrive({ 

  image: evi, 

  folder: 'ChobeMODIS_1', 

  fileNamePrefix: 'EV_12_2020', 

  description:"Modis_evi_8_days_02_500m", 

  region: Chobe, 

   crs:"EPSG:32735 ", 

  scale: 500, 

  maxPixels:1e13 

}); 

 

//Export the GNDVI data 

Export.image.toDrive({ 

  image: gndvi, 

  folder: 'ChobeMODIS_1', 

  fileNamePrefix: 'GN_12_2020', 

  description:"Modis_gndvi_8_days_02_500m", 

  region: Chobe, 

   crs:"EPSG:32735 ", 

  scale: 500, 

  maxPixels:1e13 

}); 

 

 R CODE FOR ANALYSING TIME SERIES OF DIFFERENT 
VEGETATION INDICES, AND CLIMATE DATA  

This part of the R code is for analysing time series of different 

vegetation indices, climate data with  change detection algorithms  

 

 Script for gap filling Vegetation Index e.g. NDVI values derived 
from MODIS composites. 
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# Script for gap filling site level NDVI values derived from MODIS composites.  

# Install needed packages through the  pkgTest  

pkgTest <- function(x) 

{ 

  if (x %in% rownames(installed.packages()) == FALSE) { 

    install.packages(x, dependencies= TRUE) 

  } 

  library(x, character.only = TRUE) 

} 

neededPackages <- c("r imputeTS "," (lubridate ) 

for (package in neededPackages){pkgTest(package)} 

 

# load Libraries 

library(tidyverse) 

library(imputeTS) 

library(lubridate) 

 

#Read the data 

MODIS<-read.csv(paste("File.csv",sep="",collapse="")) 

 

# Convert date to Date format 

MODIS$Date <- as.Date(MODIS$Date, "%d.%m.%Y")  

 

# Plot all the  land cover types (forest, grassland, water etc) to analyse the data 

ggplot(MODIS %>% filter(NDVI > -1)) + 

  geom_point(aes(Date, NDVI, col = PlotType)) + 

  facet_wrap(~PlotType, ncol = 1) 

 

# Plot one land cover types (forest, grassland, water etc) for all the 12 months 

to see data distribution 

ggplot(MODIS %>% filter(NDVI > -1) %>% filter(PlotType == "grass")) + 

  geom_point(aes(Date, NDVI, col = PlotType)) + 
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  facet_wrap(~month) 

 

# In this section, remove the lowest 1% of values in each month  

#  this method assumes low values are contamination and not real change so 

use with caution 

#   1% could be changed to 5% by swapping 'probs=0:100/100' for 
'probs=0:20/20' or by selecting 

MODISa <- MODIS %>% 

  filter(NDVI > -1) %>% 

  group_by(PlotType,month) %>% 

  mutate(quantile = as.integer(cut(NDVI, quantile(NDVI, probs=0:100/100), 

include.lowest=TRUE)), 

         NDVI=replace(NDVI, quantile==1, NA)) %>% 

  drop_na(NDVI) %>% 

  ungroup() %>% 

  select(!c(Year,month)) 

 

# Reformat data in preparation for gap filling 

## Expand data frame to include all date values for every site id 

MODISb <- MODISa %>%   

  complete(Date = seq(floor_date(min(MODISa$Date),unit = "month"),  

                      floor_date(max(MODISa$Date), unit = "month"), by = "month"),  

           nesting(ForestID,PlotType)) 

ggplot(MODISb) + 

  geom_point(aes(Date, NDVI, col = PlotType)) + 

  facet_wrap(~PlotType, ncol = 1) 

 

# Reformat data and fill missing metadata values 

MODISb <- MODISb %>%  

  mutate(DATE = as.Date(Date,"%Y-%m-%d"), 

         DOY  = lubridate::yday(DATE)) %>% 

  separate(Date, into = c("YEAR","MONTH","DAY"), sep = "([-])")  
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MODISb <- MODISb %>% 

  group_by(ForestID) %>% 

  fill(PlotType, .direction = "updown") 

 

 

# check how many na values are there in the NDVI series? 

sum(is.na(MODISb$NDVI)) 

 

# Gap fill missing NDVI data 

# This first stage will only be carried out where there is 1 missing value. if 

there are 2 or more 

# consecutive missing values then this first step will not fill the gap 

MODISb <- MODISb %>% 

  arrange(DATE) %>% 

  group_by(ForestID) %>% 

  mutate(GapFill1 = na_interpolation(NDVI, option = "stine", maxgap = 1)) 

 

#check how many na values are there in the NDVI series? 

sum(is.na(MODISb$GapFill1)) # in this dataset we have no filled all of the missing 

data 

 

# If there are still missing values then we can fill gaps based on the next 

nearest matching month from a different year 

# using the linear interpolation between the values in  

MODISb <- MODISb %>% 

  arrange(DATE) %>% 

  group_by(ForestID, MONTH) %>% 

  mutate(GapFill2 = na_interpolation(GapFill1, option = "linear"))  

 

# check how many na values are there in the NDVI series? 

sum(is.na(MODISb$GapFill2)) 
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# Plot restulant data 

ggplot(MODISb) + 

  geom_point(aes(DATE, GapFill2, col = PlotType)) + 

  facet_wrap(~PlotType, ncol = 1) 

 

# investigate difference in Gapfill 1(filled from the month immediately 
adjacent to missing value) 

# and 2(filled from nearest matching month) 

ggplot(MODISb %>% filter(ForestID == "STATE128")) + 

  geom_point(aes(DATE, GapFill2), col = "red") + 

  geom_point(aes(DATE, GapFill1), col = "blue") + 

  geom_point(aes(DATE, NDVI), col = "black") + 

  ylab("NDVI") 

 

# Write csv for future use 

write_csv(MODISb,"modis_ndvi_2000_2020_Gapfilled.csv" ) 

 

 Script for BFAST and BEAST algorithm on time series data 
 
# load Libraries  

library(tidyverse) 

library(imputeTS) 

library(lubridate) 

library(zoo) 

library(bfast) 

library(strucchange) 

library(ggplot2) 

library(tidyverse) 

library(Rbeast) 

library(sp) 

library(stringr) 
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library(raster) 

library(devtools) 

library(bfastSpatial) 

library(rgdal) 

 

# Read MODIS and climate monthly data 

modisall<-read.csv(paste("File.csv",sep="",collapse="")) 

str(modisall) 

 

#cconvert the date from factor to DATE format 

modisall$DATE=as.Date(modisall$DATE, "%d/%m/%Y") 

 

#convert the csv to a dataframe  

modisall.df<-as.data.frame(modisall) 

 

# aggregate the data and calculate average based on plottype and 
location(e.g., Namibia and Botswana)  

mean<-aggregate(modisall.df[,13:18], 

list(PlotType=modisall.df$PlotType,Location=modisall.df$Location, 

Date=modisall.df$DATE ), mean) 

 

#Plot Different types of land cover/ forest types 

# create the time series for mediumforest 

NDVI_QA_zammedium.ts <- ts( 

  data = meanmedium.zam$NDVI_QA,  

  start = c(2002, as.numeric(format(meanmedium.zam$NDVI_QA[1], 07))),  

  end = c(2020,as.numeric(format(meanmedium.zam$NDVI_QA[1], 10))),  

  frequency = 12 #number of observations per year) 

plot(NDVI_QA_zammedium.ts ,type='b',  ylab="NDVI",xlab="Year", main =" Average 

of mediumforest plots (n=48)",cex=2.0,lwd = 3.5, pch=16,cex.main = 
2.0,cex.lab=3.5) 

 

# create the time series for closedforest 
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NDVI_QA_zamclosed.ts <- ts( 

  data = meanclosed.zam$NDVI_QA,  

  start = c(2002, as.numeric(format(meanclosed.zam$NDVI_QA[1], 07))),  

  end = c(2020,as.numeric(format(meanclosed.zam$NDVI_QA[1], 10))),  

  frequency = 12 # number of observations per year 

plot(NDVI_QA_zamclosed.ts ,type='b',ylab="NDVI",xlab="Year", main =" Average of 

closedforest plots (n=16), Zambezi Namibia",cex=2.0,lwd = 3.5, pch=16,cex.main = 
2.0,cex.lab=3.5) 

 

#create the time series for agriculture  

NDVI_QA_zamagri.ts <- ts( 

  data = meanagri.zam$NDVI_QA,  

  start = c(2002, as.numeric(format(meanagri.zam$NDVI_QA[1], 07))),  

  end = c(2020,as.numeric(format(meanagri.zam$NDVI_QA[1], 10))),  

  frequency = 12 # number of observations per year) 

plot(NDVI_QA_zamagri.ts ,type='b', ylab="NDVI",xlab="Date", main =" Average of 
agricultural plots (n=7)",cex=2.0,lwd = 3.5, pch=16,cex.main = 2.0,cex.lab=3.5) 

 

#Alternatively choose a single plot type 

mean_Chobe001<-mean%>%  dplyr::filter( 

        ForestID=="STATE035") 

 

#create the NDVI time series for the chosen plot 

NDVI_Chobe001.ts <- ts( 

  data = mean_Chobe001$NDVI,  

  start = c(2002, 7),  

  end = c(2019,12),  

  frequency = 12 # number of observations per year) 

plot(MSAVI_Chobe001.ts ,type='b', ylab="MSAVI",xlab="Year", main =" Disturbed 
forest plot",cex=2.0,lwd = 3.5, pch=16,cex.main = 2.0,cex.lab=3.5) 

#axis(side=1, at=c(2002:2020)) 

axis(side=1, at=seq(2002, 2019, by=1)) 

#box() 
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#create the GNDVI time series for the chosen plot 

GNDVI_Chobe001.ts <- ts( 

  data = mean_Chobe001$GNDVI,  

  start = c(2002,7),  

  end = c(2019,12),  

  frequency = 12 #number of observations per year) 

plot(MSAVI_Chobe001.ts ,type='b', ylab="MSAVI",xlab="Year", main =" Disturbed 
forest plot",cex=2.0,lwd = 3.5, pch=16,cex.main = 2.0,cex.lab=3.5) 

#axis(side=1, at=c(2002:2020)) 

axis(side=1, at=seq(2002, 2019, by=1)) 

#box() 

 

#create the EVI time series for the chosen plot 

EVI_Chobe001.ts <- ts( 

  data = mean_Chobe001$EVI,  

  start = c(2002, 7),  

  end = c(2020,6),  

  frequency = 12 # number of observations per year) 

plot(EVI_Chobe001.ts ,type='b', ylab="EVI",xlab="Year", main =" Disturbed forest 

plot",cex=2.0,lwd = 3.5, pch=16,cex.main = 2.0,cex.lab=3.5) 

 

#Run BFAST algorithm on NDVI 

# define the ratio of distance between breaks (time steps) and length of the 

time series  

rdist <- 15/length(NDVI_Chobe001.ts)  

fit <- bfast(NDVI_Chobe001.ts, h=rdist,  

             season="harmonic", max.iter=1) 

plot(fit, xlab="DATE", main="NDVI",axes=F)   

 

#Run BEAST algorithm on NDVI 

fit <- beast(NDVI_Chobe001.ts,12) 
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plot(fit,xlab="", main="NDVI",axes=FALSE,labels=F) 

 

 

#Run BFAST algorithm on GNDVI 

rdist <-15/length(GNDVI_Chobe001.ts)  #I tried 25 , but 15 work best 

fit <- bfast(GNDVI_Chobe001.ts, h=rdist,  

             season="harmonic", max.iter=1) 

plot(fit, main="GNDVI")  

 

#Run BEAST algorithm on GNDVI 

fit <- beast(GNDVI_Chobe001.ts,12) 

plot(fit,main="GNDVI") 

 

 

 Script for SPATIAL ANALYSIS OF BFAST ALGORITHM (RASTER 
ANALYSES) 
 

 PREPROCESS and ANALYSE THE RASTER DATA WITH 
BFAST  

# Define path to files 

VIpathGNDVI <- "Path/" 

 

# Load list of raster file names 

MODIS8GNDVI.fileList <- list.files(VIpathGNDVI , pattern = "*.tif") 

 

# load individual files into a raster brick 

MODIS8dayGNDVI <- 
do.call("brick",lapply(paste0(VIpathGNDVI,"/",MODIS8GNDVI.fileList[1:216]), 

                                    FUN = function(x){ 

                                      r <- raster(x) 

                                    })) 

 

#project the raster 
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crs(MODIS8dayGNDVI) 

 

#rename the files 

names(MODIS8dayGNDVI) <- MODIS8GNDVI.fileList 

 

# create object for original names 

MODISnamesGNDVI <- names(MODIS8dayGNDVI) 

# Create object for each part of the required name 

band <- str_sub(MODISnamesGNDVI, 1,2) 

month <- str_sub(MODISnamesGNDVI, 4,5) 

year  <- str_sub(MODISnamesGNDVI, 7,10) 

 

# create a new object with the new layernames 

MODISnamesGNDVI.new <- paste(band,month,year,sep = ".") 

 

# relabel modis data with new names 

names(MODIS8dayGNDVI) <- MODISnamesGNDVI.new 

 

# reorder the raster brick according to new names 

MODIS8dayGNDVI.reordered <- subset(MODIS8dayGNDVI, 

order(MODISnamesGNDVI.new)) 

names(MODIS8dayGNDVI.reordered) 

 

# Save the stacked image data in a single file, .grd with ENVI header file 

preserves the layer names 

MODISStackGNDVI <- 

writeRaster(MODIS8dayGNDVI.reordered,paste0(VIpathGNDVI,"/MODIS_NDVIsta

ck.grd"), format="raster",overwrite=TRUE) 

s<-hdr(MODISStack, format = "ENVI") 

 

par(mar=c(1,2,2,1)) 

#assign dates from 2002 to 2019 

dtGNDVI<-c('2002-01-01','2003-01-01','2004-01-01','2005-01-01','2006-01-01', 
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           '2007-01-01','2008-01-01','2009-01-01','2010-01-01','2011-01-01','2012-

01-01', 

           '2013-01-01','2014-01-01','2015-01-01','2016-01-01','2017-01-01','2018-

01-01', 

           '2019-01-01','2002-02-01','2003-02-01','2004-02-01', 

           '2005-02-01','2006-02-01','2007-02-01','2008-02-01','2009-02-01','2010-

02-01', 

           '2011-02-01','2012-02-01','2013-02-01','2014-02-01','2015-02-01','2016-
02-01', 

           '2017-02-01','2018-02-01','2019-02-01', 

           '2002-03-01','2003-03-01','2004-03-01','2005-03-01','2006-03-01','2007-
03-01', 

           '2008-03-01','2009-03-01','2010-03-01','2011-03-01','2012-03-01','2013-

03-01', 

           '2014-03-01','2015-03-01','2016-03-01','2017-03-01','2018-03-01','2019-

03-01', 

           '2002-04-01','2003-04-01','2004-04-01', 

           '2005-04-01', '2006-04-01','2007-04-01', '2008-04-01','2009-04-01','2010-
04-01', 

           '2011-04-01','2012-04-01','2013-04-01','2014-04-01','2015-04-01','2016-
04-01', 

           '2017-04-01','2018-04-01', '2019-04-01', 

           '2002-05-01', '2003-05-01', '2004-05-01',  '2005-05-01','2006-05-01','2007-
05-01', 

           '2008-05-01', '2009-05-01','2010-05-01','2011-05-01','2012-05-01','2013-

05-01', 

           '2014-05-01','2015-05-01', '2016-05-01','2017-05-01','2018-05-01', '2019-
05-01', 

         '2002-06-01','2003-06-01','2004-06-01', 

           '2005-06-01','2006-06-01', '2007-06-01','2008-06-01','2009-06-01','2010-
06-01', 

           '2011-06-01','2012-06-01','2013-06-01','2014-06-01','2015-06-01','2016-
06-01', 

           '2017-06-01','2018-06-01','2019-06-01',  

           '2002-07-01','2003-07-01','2004-07-01','2005-07-01','2006-07-01', '2007-

07-01', 
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           '2008-07-01','2009-07-01', '2010-07-01','2011-07-01','2012-07-01', '2013-

07-01', 

           '2014-07-01','2015-07-01','2016-07-01','2017-07-01','2018-07-01', '2019-

07-01', 

          '2002-08-01','2003-08-01','2004-08-01', 

           '2005-08-01','2006-08-01','2007-08-01','2008-08-01','2009-08-01','2010-

08-01', 

           '2011-08-01','2012-08-01','2013-08-01','2014-08-01','2015-08-01','2016-
08-01', 

           '2017-08-01','2018-08-01','2019-08-01', 

           '2002-09-01', '2003-09-01','2004-09-01','2005-09-01','2006-09-01','2007-
09-01', 

           '2008-09-01', '2009-09-01','2010-09-01','2011-09-01','2012-09-01','2013-

09-01', 

           '2014-09-01', '2015-09-01','2016-09-01','2017-09-01','2018-09-01','2019-

09-01', 

           '2002-10-01','2003-10-01','2004-10-01', 

           '2005-10-01','2006-10-01','2007-10-01','2008-10-01','2009-10-01','2010-
10-01', 

           '2011-10-01','2012-10-01', '2013-10-01','2014-10-01' ,'2015-10-01','2016-
10-01', 

           '2017-10-01','2018-10-01', '2019-10-01', 

           '2002-11-01','2003-11-01','2004-11-01','2005-11-01','2006-11-01','2007-
11-01', 

           '2008-11-01','2009-11-01','2010-11-01',  '2011-11-01','2012-11-01','2013-

11-01', 

           '2014-11-01','2015-11-01',  '2016-11-01','2017-11-01','2018-11-01','2019-
11-01', 

         '2002-12-01','2003-12-01','2004-12-01','2005-12-01', 

           '2006-12-01','2007-12-01','2008-12-01','2009-12-01','2010-12-01','2011-
12-01', 

           '2012-12-01','2013-12-01','2014-12-01', '2015-12-01', '2016-12-01','2017-
12-01',  

           '2018-12-01','2019-12-01')# corresponding dates to all rasters 

my_datesGNDVI <- as.Date(dtGNDVI, format ="%Y-%m-%d") 
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# define the function that will be applied across the brick using the calc 

function 

bfmRaster = function(pixels) 

{ 

  tspx <- timeser(pixels, my_datesGNDVI) # create a timeseries of all pixels 

  bfm <- bfastmonitor(tspx, response ~ trend + harmon, order = 3, start = 
c(2014,1)) # run bfast on all pixels 

  return(c(bfm$breakpoint, bfm$magnitude))  

} 

 

# calc function  

bfmRGNDVI <- calc(MODIS8dayGNDVI.reordered, bfmRaster) 

names(bfmRGNDVI ) <- c('time of break', 'magnitude of change') 

plot(bfmRGNDVI ) # resulting time and magnitude of change 

# Ensure the raster images have correct number of rows and 
collumnsrGNDVI<- raster(ncol= 210, nrow=166) 

sGNDVI <- stack(lapply(1:216, function(x) setValues(rGNDVI, 

runif(ncell(rGNDVI))))) 

MODIS8dayGNDVI.reordereds <- setZ(MODIS8dayGNDVI.reordered,  

my_datesGNDVI) 

MODIS8dayGNDVI.reordereds 

getZ(MODIS8dayGNDVI.reordereds) 

plot(MODIS8dayGNDVI.reordereds[[1]]) 

 

# Define path to files to export  

VIpathGNDVI_out <- "path/" 

 

#Define output path 

outsGNDVI <- file.path(VIpathGNDVI_out , 

"bfmSpatial_start2010,1_gndvi_until2019.tif") 

 

#Run the  bfmSpatial on raster data starting 2010 

bfmSpatial(MODIS8dayGNDVI.reordereds, start = c(2010, 1),formula = 

response~harmon,order = 1, filename = outsGNDVI)  



 

Page | 394  
 

 

  PREPARE THE RASTER DATA AND EXTRACT THE 
MAGNITUDE  

#Read in the data 

gndvistate2010_ha1 <- brick("File.tif") 

plot(gndvistate2010_ha1,1, main="Monitoring period 2013-2020, gndvi ") 

 

# extract change raster 

changegndvistate2010_ha1 <- raster(gndvistate2010_ha1, 1) 

# extract magn raster 

magngndvistate2010_ha1 <- raster(gndvistate2010_ha1, 2) 

# make a version showing only breakpoing pixels 

magn_bkpgndvistate2010_ha1 <- magngndvistate2010_ha1 

magn_bkpgndvistate2010_ha1[is.na(changegndvistate2010_ha1)] <- NA 

op <- par(mfrow=c(1, 3)) 

plot(magn_bkpgndvistate2010_ha1, main="Magnitude: breakpoints") 

plot(magngndvistate2010_ha1, main="Magnitude: all pixels") 

 

# extract and rescale magnitude and apply a threshold 

magn09threshgndvistate2010_ha1  <- magngndvistate2010_ha1  

magn09threshgndvistate2010_ha1 [magngndvistate2010_ha1  > 0.00] <- NA 

 

# compare all magn rasters 

op <- par(mfrow=c(2, 2)) 

plot(magn09threshgndvistate2010_ha1, main="magnitude") 

plot(magn09_sievegndvistate2010_ha1, main="pixel sieve") 

plot(magn09_areasievegndvistate2010_ha1, main="0.5ha sieve") 

plot(magn09_as_rookgndvistate2010_ha1, main="0.5ha sieve, rook's case") 

 

changeSize_queengndvistate2010_ha1 <- 
clumpSize(magn09_areasievegndvistate2010_ha1) 
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changeSize_rookgndvistate2010_ha1 <- 

clumpSize(magn09_areasievegndvistate2010_ha1, directions=4) 

 

#Calculate the change size 

op <- par(mfrow=c(1, 2)) 

plot(changeSize_queengndvistate2010_ha1, col=bpy.colours(50), main="Clump 
size: Queen's case") 

plot(changeSize_rookgndvistate2010_ha1, col=bpy.colours(50), main="Clump size: 

Rook's case") 

changeSize <- clumpSize(magn09_areasievegndvistate2010_ha1, 

f=250000/10000) 

plot(changeSize, col=bpy.colours(50), main="Pixel size gndvi (hectares)") 

 

#export path 

writeFormats() 

GNDVI_VIpath <-"path/" 

 

#Write the year of change and magnitude of change raster and export it out 

for further analysis in ArcGIS 

MODISStack <- writeRaster(changegndvistate2010_ha1,paste0(File.tif"), format = 
"GTiff",overwrite=TRUE) 

MODISStack <- writeRaster(magngndvistate2010_ha1,paste0(File.tif"), format = 

"GTiff",overwrite=TRUE) 

 

CHAPTER 5  

 GOOGLE EARTH ENGINE CODE FOR FIRE 

Google Earth Engine Code for the fire time series  

https://code.earthengine.google.com/7a868676bc7ac534247a19d7cdc6b150?nol

oad=1 

 

/*//////////////////////////////////////////////////////////////  

Code geerated for MODIS Burned Area Monthly at 500m, developed by-Ruusa 

David August 2020 

https://code.earthengine.google.com/7a868676bc7ac534247a19d7cdc6b150?noload=1
https://code.earthengine.google.com/7a868676bc7ac534247a19d7cdc6b150?noload=1
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*/////////////////////////////////////////////////////////////// 

//This is a code to get the monthly Burned pixels 

// Get list of images  

var MODISBurn_Image = ee.ImageCollection(MonthlyBurnedArea) 

   .filterDate('2019-09-01', '2019-09-30')  //define the month, change this to the 

month of your choice 

   .filterBounds(kaza).mean().clip(kaza);  //get the mean and clip the data 

 

//Get the burn date 

var MODISBurn_Image =  MODISBurn_Image.select('BurnDate'); 

var firesVis = { 

  min: 325.0, 

  max: 400.0, 

  palette: ['red', 'orange', 'yellow'],}; 

 

//Display on the map 

Map.addLayer(MODISBurn_Image, firesVis, 'Fires'); 

print(MODISBurn_Image)   

print('ImageList') 

 

//export the burned data out  

Export.image.toDrive({ 

image: MODISBurn_Image, 

  folder: 'MCD64A1_fireUncertainty_2019', 

  description:"MCD64A1_fire_2019_12_500m", 

  region: kaza.geometry().bounds(), 

   crs:"EPSG:32735 ", 

  scale: 500, 

maxPixels:210984237950}); 

 

//This is a code to get the uncertainity of the Burned pixels 
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// Get list of images to test 

var MODISUncertainty_Image = ee.ImageCollection(MonthlyBurnedArea) 

   .filterDate('2019-12-01', '2019-12-30') 

   .filterBounds(kaza).mean().clip(kaza); 

 

//Get the uncertainity burn date 

var MODISUncertainty_Image =  MODISUncertainty_Image.select('Uncertainty'); 

var firesVis = { 

  min: 325.0, 

  max: 400.0, 

  palette: ['red', 'orange', 'yellow'],}; 

 

//Display on the map 

Map.addLayer(MODISUncertainty_Image, firesVis, 'Fires'); 

print(MODISUncertainty_Image)   

print('ImageList') 

 

//export the uncertainity out 

Export.image.toDrive({ 

image: MODISUncertainty_Image, 

  folder: 'MCD64A1_fireUncertainty_2019', 

  description:"MCD64A1_fireUncertainty_2019_12_500m", 

  region: kaza.geometry().bounds(), 

   crs:"EPSG:32735 ", 

  scale: 500, 

maxPixels:210984237950}); 

 

 GOOGLE EARTH ENGINE CODE FOR THE CLIMATE DATA  

 

Google Earth Engine Code for the climate time series  
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https://code.earthengine.google.com/93b50f3bd714cb527ce6573fbd1f23dc?nolo

ad=1 

/*//////////////////////////////////////////////////////////////  

Code generated for comparing Ground precipitation and satellite based 

precipitation, developed by-Ruusa David June 2019 

*/////////////////////////////////////////////////////////////// 

//Add the ground preciptation on the map 

Map.addLayer(gpcc1981) 

Map.addLayer(gpcc2016) 

 

//extract all the climate data 

var collections = [  {  

    name: 'CHIRPS', scale: 5000,  

    collection: ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD') 

  }, 

   { 

    name: 'gpcc', scale: 3000, 

    collection: ee.ImageCollection('users/ruusadavid2/gpccCollection_1891') 

  }, 

  { 

    name: 'cru', scale: 3000, 

    collection: ee.ImageCollection('users/ruusadavid2/cruCollection') 

  }, 

  {  

    name: 'CFSV2', scale: 5000, 

    collection: ee.ImageCollection('NOAA/CFSV2/FOR6H') 

      .select('Precipitation_rate_surface_6_Hour_Average') 

      .map(function(i) {  

        return i.multiply(60 * 60 * 6) // convert to mm by 6 since it is in mm/second 

and is a 6 hour basis 

          .copyProperties(i, ['system:time_start']) 

      })}  ]; 

https://code.earthengine.google.com/93b50f3bd714cb527ce6573fbd1f23dc?noload=1
https://code.earthengine.google.com/93b50f3bd714cb527ce6573fbd1f23dc?noload=1
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    //create a function to define the the range of date to be mapped through 

function getDates(start, stop, step) { 

  return ee.List.sequence(start, stop).map(function(year) { 

    return ee.List.sequence(1, 12, step).map(function(month) { 

      return ee.Date.fromYMD(year, month, 1) 

    }) 

  }).flatten() 

} 

 

//create a function to compute the sum and  mean through all precipitation 

bands in all images  

function compute(start, stop, step) { 

  var dates = getDates(start, stop, step) 

  var features = collections.map(function(c) { 

    return dates.map(function(d) { 

      var p = c.collection 

        .filterDate(d, ee.Date(d).advance(step, 'month')) 

        .sum() 

        .reduceRegion(ee.Reducer.mean(), southAfrica,  c.scale).values().get(0) 

              return ee.Feature(null) 

        .set('system:time_start', ee.Date(d).millis()) 

        .set(c.name, p)         

    }) 

  }) 

    return ee.FeatureCollection(ee.List(features).flatten()) 

} 

 

//define the the time period to be computed on  

var monthly = compute(1981, 2016, 1) 

var annual = compute(1981, 2016, 12) 
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//set a function to define the chart titles, x and y axis titles 

function chart(features, title) { 

  var chart = ui.Chart.feature.byFeature(features, 'system:time_start') 

  chart.setOptions({ 

    vAxis: { title: 'Precipitation [mm]' }, 

    title: title 

  }) 

  print(chart) 

} 

 

//create the charts 

chart(monthly, 'Monthly precipitation in Southern Africa Subcontinent (2001-
2015)') 

chart(annual, 'Raingauge and satellite-based annual precipitation in Central 
Angola, coordnates[18.71,-11.00)(1981-2016)') 

 

 R CODE FOR ANALYSING TIME SERIES OF VEGETATION DATA 

AND CLIMATE DATA   

This part of the R code is for analysing time series of Vegetation Data 

and Climate Data  

 ANALYSE AND PLOT THE GROUND RAINFALL AND 

TEMPERATURE  

 
#Load the Library 

library(corrr) 

library(dplyr) 

library(tidyverse) 

library(igraph) 

library(ggraph) 
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library(Hmisc ) 

library(corrplot) 

library(sp) 

library(zoo) 

library(xts) 

library(hydroTSM) 

library(ggplot2)   

library(dplyr)   

 

#Import the data 

precip8<-read.csv(paste("File.csv",sep="",collapse="")) 

 

#prepare the data 

#convert to data frame  

x<-as.data.frame(precip8) 

 

# Convert date to Date format 

x$Dates=as.Date(x$Date, "%d.%m.%Y") 

#anyDuplicated(x$Dates) 

#duplicated(x$Dates) | duplicated(x$Dates, fromLast = TRUE) 

 

#create a zoo object for  time series  

x<- zoo(x$Rainfall,x$Dates) 

 

#plot rainfall 

plot(x, main="rainfall", ylab="precipitation (mm)", xlab="Time") 

#find the number of years  

( nyears <- yip(from=start(x), to=end(x), out.type="nmbr" ) ) 

 

#plot the prepared  data with hydroplot 

hydroplot(x, var.type="Precipitation", main="at Chobe National Park", 



 

Page | 402  
 

          pfreq = "dm", from="1975-01-01") 

dwi(x) 

 

#Analyse the rainfall time series data 

#Monthly analysis 

monthlyfunction(x, FUN=median, na.rm=TRUE) 

cmonth <- format(time(x), "%b") 

months <- factor(cmonth, levels=unique(cmonth), ordered=TRUE) 

 

#Boxplot of the monthly values 

boxplot( coredata(x) ~ months, col="lightblue", main="Monthly Precipitation", 

         ylab="Precipitation, [mm]", xlab="Month") 

 

#Average seasonal values of precipitation 

seasonalfunction(x, FUN=sum, na.rm=TRUE) / nyears 

 

#Extracting the seasonal values for each year 

m<-monthlyfunction(x, FUN=sum, na.rm=TRUE) 

( DJF <- dm2seasonal(x, season="DJF", FUN=sum) ) 

(MAM <- dm2seasonal(x, season="MAM", FUN=sum) ) 

(JJA  <- dm2seasonal(x, season="JJA", FUN=sum)) 

(SON  <- dm2seasonal(x, season="SON", FUN=sum) ) 

 

#Extract the seasonal values for each year  

hydroplot(x, pfreq="seasonal", FUN=sum, stype="default",ylab="Precipitation 
(mm)",lwd=2) 

   

    # Mean winter (DJF) values of streamflow for each year of 'x' 

  dm2seasonal(x, FUN=sum, season="DJF") 

   dm2seasonal(x, FUN=sum, season="MAM") 

  dm2seasonal(x, FUN=sum, season="JJA") 
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  dm2seasonal(x, FUN=sum, season="SON") 

   

 # Selecting only a three-year time slice for the analysis 

  x <- window(x, start=as.Date("1975-01-01")) 

  #Plotting the selected time series 

  hydroplot(x,  FUN=sum, ptype="ts", pfreq="ma", 

var.unit="mm",ylab="Precipitation",lwd=1.8) 

 

 Create the Climograph from the rainfall and temperature data 
#Read the Preciptation and Temperature data 

 preciptemp<-read.csv(paste("File.csv",sep="",collapse="")) 

#convert to data frame 

 y<-as.data.frame( preciptemp) 

 

  # Convert date to Date format 

  Dates=as.Date(y$Date, "%d.%m.%Y") 

 

  #create a zoo for time series  

   z <- zoo(y[, 2:4], as.Date(as.character(y[, 1]), format="%d.%m.%Y")) 

   colnames(z) <- c("Precipitation", "Max Temperature", "Min Temperature") 

     

    # extracting individual ts of precipitation, maximum and minimum 
temperature 

  pcp <-z[,1] 

  tmx <- z[,2] 

 tmn <-z[, 3] 

   

 # Plotting the climograph 

  m <- climograph(pcp=pcp, tmx=tmx, tmn=tmn, na.rm=TRUE, main="Monthly 

Precipitation, Min and Max Temperature") 

 plot(z, main = "Monthly Rainfall, Maximum and Minimum 

Temperature",xlab="Years", lwd=2, col=c("blue",  "red","black"),cex.axis 
=1.5,cex.main = 2) 
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 CALCULATING SPEI FROM GROUND RAINFALL AND 

TEMPERATURE  
#Calculating SPEI using Ground rainfall and temperature from Kasane Chobe 
Botswana 

#Read the data 

raintemp<-read.csv(paste("File.csv",sep="",collapse="")) #with all data and 
outliers removed 

 

#convert points into dataframe 

raintemp<-data.frame(raintemp) 

str(raintemp) 

 

#calculate potentioal evapotranspiration 

raintemp$PET<-hargreaves(Tmin=raintemp$Tempmin, 
Tmax=raintemp$Tempmax, lat =-17.82947 ) 

raintemp$PET 

 

#calculate climatic water balance 

raintemp$ClWaBAL<-raintemp$Precip-raintemp$PET 

raintemp$ClWaBAL 

ClWaBAL<-raintemp$Precip-raintemp$PET 

 

#calculate standardised precipitation evapotranspiration index, and define 
the scale by 1 moth or two months or 12 etc  

SPEI1<-spei(raintemp$ClWaBAL,1)   #for 1 month  

raintemp$SPEI1.dataframe=as.data.frame(fitted(SPEI1))   #convert to dataframe 

par(mar=c(5, 4, 4, 6) + 0.1) 

 

#calculate SPEI for 1 month 

plot.spei(spei(ts(raintemp$ClWaBAL, 

freq=12,start=c(1983,1)),1,ref.start=c(1983,1),ref.end=c(2020,10)),main 

="Standardised Precipitation Evapotranspiration Index (SPEI-1 months)",textSize 

= 8 ) 
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mtext(side=1, line=2, "Time",  font=2,cex=1.2) 

 

#calculate SPEI for 2 month 

plot.spei(spei(ts(raintemp$ClWaBAL, 

freq=12,start=c(1983,1)),2,ref.start=c(1983,1),ref.end=c(2020,10)),main 

="Standardised Precipitation Evapotranspiration Index (SPEI-2 months)",textSize 

= 8 ) 

mtext(side=1, line=2, "Time",  font=2,cex=1.2) 

 

#calculate SPEI for 12  month 

plot.spei(spei(ts(raintemp$ClWaBAL, 

freq=12,start=c(1983,1)),12,ref.start=c(1983,1),ref.end=c(2020,10)),main 

="Standardised Precipitation Evapotranspiration Index (SPEI-12 months)",textSize 

= 8 ) 

mtext(side=1, line=2, "Time",  font=2,cex=1.2) 

 

#Plot all three SPEI timescale (1,3,12 months) in one plot 

par(mar=c(5, 4, 5, 6) + 0.1) 

par(mfrow=c(1,1)) 

 

#Plot first plot for 1 month 

plot.spei(spei(ts(raintemp$ClWaBAL, 

freq=12,start=c(2002,7)),1,ref.start=c(2002,7),ref.end=c(2019,12)),main 

="Standardised Precipitation Evapotranspiration Index (SPEI-1month)",textSize 

=12, xlab="", ylab="", axes=FALSE, ) 

#mtext(side=1, line=2, "Time", cex=1.5) 

mtext(side=2, line=2, "SPEI", cex=1.5) 

axis(side=1, at=seq(2002, 2019, by=1),cex.axis = 1.0, cex.lab = 1) 

box() 

 

#Plot second plot for 2 months 

plot.spei(spei(ts(raintemp$ClWaBAL, 

freq=12,start=c(1983,1)),3,ref.start=c(1983,1),ref.end=c(2019,12)),main 

="Standardised Precipitation Evapotranspiration Index (SPEI-3 months)",textSize 

=12, xlab="", ylab="", axes=FALSE, ) 
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mtext(side=1, line=2, "Time", cex=1.5) 

mtext(side=2, line=2, "SPEI", cex=1.5) 

axis(side=1, at=seq(1982, 2019, by=1),cex.axis = 1.0, cex.lab = 1) 

box() 

 

#Plot second plot for 22 months 

plot.spei(spei(ts(raintemp$ClWaBAL, 

freq=12,start=c(1982,1)),12,ref.start=c(1982,1),ref.end=c(2019,12)),main 

="Standardised Precipitation Evapotranspiration Index (SPEI-12 months)",textSize 
=12, xlab="", ylab="", axes=FALSE, ) 

mtext(side=1, line=2, "Time", cex=1.5) 

mtext(side=2, line=2, "SPEI", cex=1.5) 

axis(side=1, at=seq(1982, 2019, by=1),cex.axis = 1.0, cex.lab = 1) 

box() 

 

 ANALYSE THE CLIMATE DATA AND VEGETATION DATA (NDVI) 
#Plotting climate and NDVI 

#Read the data 

preciptemp<-read.csv(paste("File.csv",sep="",collapse="")) 

head( preciptemp) 

 

#Covert the data to a dataframe 

y<-as.data.frame( preciptemp) 

 

#Covertto the Date understood by r 

y$Dates=as.Date(y$Date, "%d.%m.%Y") 

tail( preciptemp) 

 

# Plot first set of data (NDVI in this case)  and draw its axis 

plot(y$Dates, y$NDVI, pch=16, axes=TRUE, ylim=c(0,1), xlab="", ylab="",  

     cex.axis = 1.3, cex.lab = 2, type="b",col="black", main="NDVI and Precipitation") 

#axis(2, ylim=c(0,1),col="black",las=1)  # las=1 makes horizontal labels 



 

Page | 407  
 

mtext("NDVI",side=2,line=2.5, cex=1.5) 

box() 

 

# Allow a second plot on the same graph 

par(new=TRUE) 

 

# Plot the second plot (precipitation)  and put axis scale on right 

plot(y$Dates, y$Precip, pch=15,  xlab="", ylab="", ylim=c(0,500), axes=FALSE, 
type="b", col="dark red", ) 

# add lables 

mtext("PRECIPITATION",side=4,col="dark red",line=4, cex=1.5)  

axis(4, ylim=c(500), col="dark red",col.axis="dark red",las=1,cex.axis = 1.3, cex.lab 
= 2) 

 

# Draw the time axis 

mtext("Time",side=1,col="black",line=2.5, cex= 1.8)   

 

# Add Legend 

legend("topleft",legend=c("NDVI","PRECIPITATION"),bty = "n", 

       text.col=c("black","dark red"),pch=c(16,15), col=c("black","dark red")) 

 

 ANALYSE THE RELATIONSHIP BETWEEN CLIMATE DATA (SOIL 

MOISTURE, SPEI, RSM, PRECIPITATION, TEMPERATURE) 

ANDVEGETATION DATA 
#Read the data 

modis8<-read.csv(paste("XFile.csv",sep="",collapse="")) 

 

#Create a function to plot  

flattenCorrMatrix <- function(cormat, pmat) { 

  ut <- upper.tri(cormat) 

  data.frame( 

    row = rownames(cormat)[row(cormat)[ut]], 

    column = rownames(cormat)[col(cormat)[ut]], 
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    cor  =(cormat)[ut], 

    p = pmat[ut] 

  ) 

} 

s2corAll3<-rcorr(as.matrix(modis8.num[])) 

flattenCorrMatrix(s2corAll3$r,s2corAll3$P) 

 

# Mark the insignificant coefficients according to the specified p-value 
significance level 

cor_5 <- rcorr(as.matrix(modis8.num)) 

M <- cor_5$r 

p_mat <- cor_5$P 

col <- colourRampPalette(c("#BB4444", "#EE9988", "#FFFFFF", "#77AADD", 

"#4477AA")) 

corrplot(M, method = "colour", col = col(200),   

         type = "upper", order = "hclust",  

         addCoef.col = "black", # Add coefficient of correlation 

         # Combine with significance level 

         p.mat = p_mat, sig.level = 0.01,   

         # hide correlation coefficient on the principal diagonal 

         diag = FALSE ) 

 


