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Abstract 

The United Arab Emirates (UAE) has undertaken huge efforts to green the desert and 

afforestation projects (planted mainly with date palms) hence, reducing its carbon 

footprint, which have never been accounted for, because of lack of implemented 

mechanisms and tools to assess the amount of biomass and carbon stock (CS) 

sequestered by plants in the country. The purpose of this dissertation is to implement 

a new approach towards assessing the carbon sequestered by date palm (DP) 

plantations in Abu Dhabi, in both their biomass compartment as well as the soils under 

beneath, using geospatial technologies (RS and GIS) assessed by field measurements. 

The methodology proposed in this dissertation relied on both fieldwork and labwork, 

besides the intensive use of geospatial technology including, digital image processing 

of multi-scale, multi-resolution satellite imagery as well as Geographical Information 

Systems (GIS) modelling. 

For detecting and mapping the DP, the research proposes a framework based on using 

multi-source/ multi-sensor data in a hierarchical integrated approach (HIA) to map DP 

plantations at different age stages: young, medium, and mature. The outcomes of the 

implemented approach were the creation of detailed and accurate maps of DP at three 

age stages. The overall accuracies for mixed-ages DP the value reached up to 94.5%, 

with an overall Kappa statistics estimated at 0.888 with total area of DP equal to 

7,588.04 ha and the total number of DP planted in the study area counted an estimated 

number of 8,966,826 palms. 

The study showed that the correlation of mature DP class alone (>10 years) with single 

bands was significant with shorwave infrared 1 (SWIR1) and shortwave infrared 2 

(SWIR2), while the correlation was significant with all tested vegetation indices (VI) 

except for tasseled cap transformation index for brightness (TCB) and for greenness 

(TCG). By using different types of regression equations, tasseled cap transformation 

index for wetness (TCW) showed the strongest correlation using a second-order 

polynomial equation to estimate the biomass of mature DP with R² equal to 0.7643 and 

P value equal to 0.007. The exponential regression equation that uses renormalized 

difference vegetation index (RDVI) as RS predictor was the best single VI and had the 

strongest correlation among all RS variables of Landsat 8 OLI for AGB of non-mature 

DP, with an R2 value of 0.4987 and P value equal 0.00002. 
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The findings of the dissertation work are promising and can be used to estimate the 

amount of biomass and carbon stock in DP plantations in the country as well as in arid 

land in general. Therefore, it can be applied to enhance the decision-making process 

on sustainable monitoring and management of carbon sequestration by date palms in 

other similar ecosystems. The research’s approach has never been developed 

elsewhere for date palms in arid areas.  

 

Keywords: Carbon Sequestration, Arid Lands, Remote Sensing, Biomass, UAE. 
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Title and Abstract (in Arabic) 

بإستخدام  نخيل التمر في أبوظبيالمحتجز في الكربون  كميةالجيومكانية لتقدير النمذجة 

 القياسات الحقلية وتقانات الاستشعار عن بعد ونظم المعلومات الجغرافية

 صالملخ

بذلت دولة الإمارات العربية المتحدة جهوداً جباّرة لزراعة الصحراء ومشاريع التشجير (المزرعة 

قار إلى أساساً بنخيل التمر) وبالتالي خفض بصمتها الكربونية التي لم يتم احتسابها قط بسبب الافت

الألآيات والأدوات المناسبة القابلة للتطبيق في لتقييم كمية الكتلة الحيوية والكربون المخزون والذي 

إن الغرض من هذه الأطروحة تطبيق مقاربة جديدة لتقدير الكربون  تحتجزه النباتات في الدولة.

المحتجََز بواسطة نخيل التمر في مزارع إمارة أبوظبي سواء في كتلته الحيوية أو في التربة 

المزروع عليها، باستخدام التقانات الجيومكانية (الاستشعار عن بعد ونظم المعلومات الجغرافية) 

 ً اعتمد منهجنا المقترَح في هذه الأطروحة على كل من العمل الميداني  .التي تم قياسها ميدانيا

تحليل بيانات الاستشعار عن بعد ري، وكذلك  .  للنمذجة المكانية ونظم المعلومات الجغرافية والمخب

عمدت الدراسة الى استخدام بيانات للاستشعار عن بعد متعددة المصادر/ متعددة المجسّات في 

وذلك بهدف رسم خرائط لمزارع النخيل في مختلف فئاته العمرية (صغير/  نهجٍ هرمي متكامل

هذه المقاربة التي تم تطبيقها هو رسم خرائط مفصلة ودقيقة لنخيل كانت نتائج متوسط/ كبير). 

نخيل التمر مختلط الأعمار هو  كانت درجات الدقة الكلية .التمر في مراحله العمرية المختلفة ل

تم تقدير إجمالي مساحة مزارع . 0.888الي لمعامل كاباّ الإحصائي عند % مع تقدير اجم94.5

كما تم تقدير أعداد نخيل التمر في إمارة أبوظبي  هكتار 7588.04نخيل التمر في إمارة أبوظبي بـ 

نخيل التمر كبير فئة الكتلة الحيوية لبين  الأرتباط عامل أظهرت الدراسة أن نخلة. 8,966,826بـ 

 قوياارتباطاً كان  ،8-الخاصة بالقمر الصناعي لاندسات) القنوات الفضائيةالنطاقات (مع العمر 

، وكان معامل الارتباط شعة تحت الحمراء الأولى والثانيةنطاقي الطول الموجي القصير للأ مع

أيضاَ مع كافة مؤشرات الغطاء النباتي التي تم استخدامها في هذا البحث عدا المؤشران اللذان  قويا

لسطوع (تي سي جي وأيضا تي سي يستخدمان تقنية تحويلات غطاء تاسلد لكشف الخضرة وا

. وعند استخدام أنواع مختلفة من معادلات الإنحدار، وجدنا أن تقنية تحويلات غطاء تاسلد بي)

، كمؤشر للغطاء النباتي قد أظهرت أقوى معامل ارتباط باستخدام (تي سي دبليو) لكشف الرطوبة

نخيل التمر الكبير بقيمة معامل معادلة مت عددة الحدود من الدرجة الثانية لتقدير الكتلة الحيوية في 

كما وجدت الدراسة أن معادلة .  0.007وقيمة احتمالية تساوي  0.7643تحديد وصلت إلى 
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الإنحدار الأسي والتي تستخدم مؤشر الفرق المُعادة معايرته للغطاء النباتي (آر دي في آي) للتنبؤ 

في معامل الأرتباط بين جميع متغيرات  الأقوىالكتلة الحيوية لنخيل التمر غير الكبير هي ب

وقي.. ا.ت.ا.ية  0.4987الاستشعار عن بعد المستخدمة في الدراسة، بقيمة معامل تحديد تساوي 

فضل هي تاج النخلة مساحةالنتائج أن  أظهرت. 0.00002معنوية تساوي  تقدير كل من الكتلة ل الأ

جذع ارتفاع  لتاجها وكذا الكربون العضوي في التربة المزروع عليها النخيل. كما أنالحيوية 

إن نتائج هذه الدراسة واعدة ويمكن استخدامها النخلة كان الأفضل لتقدير الكتلة الحيوية لجذعها. 

لك في الأقاليم عموم الدولة وكذ لتقدير الكتلة الحيوية والكربون المحتجز في مزارع نخيل التمر في

القاحلة بشكل عام. لذلك، يمكن تطبيقها لتعزيز عملية صنع القرار لرصدٍ وإدارةٍ مستدامين في 

احتجاز الكربون بواسطة نخيل التمر المزروع في أنظمة بيئية مماثلة. إن مقاربتنا المقترحة في 

اط. ا..ا.... هذه الأطروحة هي الأولى من نوعها من حيث تطبيقها على  نخيل التمر في المن

: احتجاز الكربون، المناطق الجافة، الاستشعار عن بعد، الكتلة الحيوية، مفاهيم البحث الرئيسية

 الإمارات.
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Chapter 1: Introduction 
 

1.1 Overview  

In 1990, the United Arab Emirates (UAE) was ranked at the 3rd place as one of 

the top, per capita, CO2 emitting countries (EU EDGAR, 2017). It has remained 

amongst the top, per capita, CO2 emitting countries during the period 1990 – 2016 (last 

published statistics), when it was ranked the 5th at 23.6 tons per capita CO2 emission 

in 2016 (EU EDGAR, 2017). Furthermore, the UAE became one of the first major oil-

producing countries to ratify the Kyoto Protocol when it entered into force in 2005. In 

contrast, the country has undertaken huge efforts to green the desert hence, reducing 

its carbon footprint, which have never been accounted for, because of lack of 

implemented mechanisms and tools to assess the amount of biomass and carbon stock 

sequestered by plants in the country. There is a common consent that afforestation and 

land-use conversion to a forest (reforestation) can be used to earn carbon credits and 

reduce the carbon footprint. This attitude has a growing interest among policymakers 

and governments (Baral & Guha, 2004). Estimation of carbon stock (CS) in forests 

and plantations is important to assess their mitigation effects and hence balancing the 

carbon footprint  (Ebuy et al., 2011). Many techniques exist to estimate sequestered 

carbon (Gibbs et al., 2007). All existing techniques ultimately rely on the ground 

measurement of plant biomass which is time-consuming, tedious, and destructive 

(Ebuy et al., 2011). Alternatively, most of the existing non-destructive methods using 

developed biomass estimation equations have been developed for tropical rainforests 

ecosystems because of their importance to the global carbon cycle (Basuki et al., 2009; 

Brown, 1997; Chave et al., 2005; Cole & Ewel, 2006; Makinde et al., 2017). 

Unfortunately, very few plant species biomass estimation equations are available for 
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desert ecosystems. Moreover, none of these equations were developed and used to fit 

one of the most important fruit crops in the arid regions, Phoenix dactylifera, date 

palm. Indeed, the only indigenous wild desert plant domesticated in its native harsh 

environments appears to be the date palm (Zohary & Hopf, 2000). Date palm is 

considered a renewable natural resource because it can be replaced in a relatively short 

period of time or used through conservation efforts without depletion (El-Juhany, 

2010). It is estimated that the UAE has the largest number of date palms for any single 

country in the world with a minimum of 200 cultivars, 68 of which are commercially 

considered to be the most important (El-Juhany, 2010). Consequently, date palm, with 

its various cultivars, possesses the potential capacity to store carbon and hence be 

considered as a good means of carbon sequestration in such an arid ecosystem. 

Nevertheless, the estimation of forest biomass raises scientific challenges to 

identify feasible approaches to assess carbon at the national-level (Gibbs et al., 2007). 

Effective management requires repetitive monitoring and accurate measuring of 

biomass which is a classical subject in plant population ecology (Joshi & Ghose, 2014; 

Avery & Burkhart, 2015; Elzinga et al., 1998; Husch et al., 1982; Schreuder et al., 

1993; Shiver & Borders, 1996). Traditional biomass assessment methods (both 

destructive and allometric), based on field measurements are the most accurate 

methods; however, they are difficult to conduct over large areas besides, they are not 

a practical approach for broad-scale assessments (Kumar & Mutanga, 2017; Yuen et 

al., 2016). These difficulties make monitoring activities more costly, time-consuming, 

and labour-intensive (Attarchi & Gloaguen, 2014; Khalid & Hamid, 2017). 

Furthermore, field-based resource inventories, are carried out for economic reasons 

and not environmental ones. They provide good historical data on patterns and trends 

but are not accurate enough to estimate fluxes for the entire landscape and all carbon 
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pools therein (Cihlar et al., 2002). Recently, remote sensing (RS) procedures have been 

applied to natural resources management and biomass assessment (Kankare et al., 

2013; Maynard et al., 2007; Salem Issa et al., 2019; Wannasiri et al., 2013). RS can 

obtain forest information over large areas with repetitive coverages, at a reasonable 

cost and with acceptable accuracy (Lu, 2006). Moreover, the integration of RS data 

into geographic information systems (GIS) models will benefit from the tools of both 

technologies; allowing for adding ancillary and field data to the analysis and increasing 

reliability in estimating the biomass, hence CS. Building GIS-based models to predict 

future scenarios for forest management and the implementation of afforestation plans 

is another more valuable product.  

1.2 Statement of the Problem 

The purpose of this dissertation is to implement a new approach towards 

assessing the carbon sequestered by date palm plantations in Abu Dhabi, in both their 

biomass compartment as well as the soils under beneath, using geospatial technologies 

(RS and GIS) assessed by field measurements. Therefore, the main questions of the 

dissertation are: Are geospatial technologies (RS and GIS), as an innovative method, 

capable of estimating biomass and CS in forests (date palm plantations in the current 

case) with minimum cost and time while keeping high levels of accuracies? And how? 

Can the geospatial technologies be considered as a reliable and feasible solution 

towards forest management in the UAE and hence be adopted as a long term strategy 

that can be integrated into the decision making process at the national level? 

On the other hand, as mentioned above, the country’s huge efforts undertaken 

to green the desert and hence, reduce its carbon footprint, have not been accounted for, 

because of the lack of implemented mechanisms and tools to assess the amount of 

biomass and CS sequestered by plants within its territories. Thus, Estimating CS in 
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forests and plantations by using a simple, practical, and an eco-friendly mechanism is 

an accompanying objective to assess decision makers and planners in their efforts for 

climate change mitigation and hence balancing the carbon footprint. 

1.3 Aim and Objectives 

Several specific objectives of the current study have been defined and 

specified, with the corresponding chapter in which they are treated, as follows: 

1. To calculate the biomass ratios in date palm including aboveground biomass 

(AGB), belowground biomass (BGB), total biomass, and the carbon 

percentage in both biomass and soil (SOC) at three age stages (young, medium, 

and mature) from selected date palm plantations in Abu Dhabi. (Chapter 3).  

2. To develop biomass allometric equations specifically for date palm for 

estimating its biomass and CS assessment. (Chapter 3).  

3. To map the main LULC classes in the study area and to extract and map the 

date palm plantations in Abu Dhabi. (Chapter 5). 

4. To build a RS-based spatial model for biomass and CS assessment of date 

palm. (Chapter 4 and 6). 

5. To quantify and visualize the amount of biomass and CS in Abu Dhabi, using 

the built RS-based spatial model. (Chapter 6). 

1.4 Literature Review 

Note: The substantive part of this Subsection (1.4 Literature Review) has been 

published in peer reviewed journals during the preparation of this dissertation. These 

published papers are: 
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 Dahy, B., Issa, S., Ksiksi, T., & Saleous, N. (2020). Geospatial Technology 

Methods for Carbon Stock Assessment: A Comprehensive Review. IOP 

Conference Series: Earth and Environmental Science, Volume 540.  

 Issa, S., Dahy, B., Ksiksi, T., & Saleous, N. (2020). A Review of Terrestrial 

Carbon Assessment Methods Using Geo-Spatial Technologies with Emphasis 

on Arid Lands. Remote Sensing, 12(12), 2008. 

 Dahy, B., Issa, S., Ksiksi, T., & Saleous, N. (2019). Non-Conventional 

Methods as a New Alternative for the Estimation of Terrestrial Biomass and 

Carbon Sequestered: Mini Review. World Journal of Agriculture and Soil 

Science.  

1.4.1 Phoenix dactylifera, Date Palm 

Date palms (Phoenix dactylifera L.) are resilient, productive over long terms, 

and possess multipurpose economic and environmental advantages (Figure 1). 

Moreover, date palms have been considered an important crop and part of the farming 

systems in arid and semiarid regions, especially in the oases and in the forms of small 

farm units or as large-scale plantations (FAO, 1982). Date palms are considered 

precious, and have strong religious, traditional and nutritional significance (Shahin & 

Salem 2014). In the Arabian gulf states, date palms are heavily planted and maintained, 

particularly in the UAE, using abundant desalinated water and can thus be considered 

as a good alternative for carbon sequestration in such arid ecosystems. The UAE’s 

economy has prospered since the discovery of oil, and the country witnessed an 

unprecedented pace of growth supported by revenues from oil. The government 

invested heavily in planting and maintaining green areas, including farms many of 

which are date palm plantations. During the past decades, the UAE date production 

https://iopscience.iop.org/journal/1755-1315
https://iopscience.iop.org/journal/1755-1315
https://iopscience.iop.org/volume/1755-1315/540
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increased, as an outcome of increased demand as the population swelled (AOAD, 

2008). 

 

Figure 1: Multipurpose advantages of date palms. The research is focused on the 
ecological advantages of date palm by assessing and quantifying the CS by date palm 
plantations in arid lands of Abu Dhabi. 

 

The date palm in Arab countries, in general, has been an integral part of the 

people’s culture and tradition. However, the number of the date palm, production, and 

consumption vary from one country to another due to varying ecological conditions 

(El-Juhany, 2010). The world’s highest production and consumption of dates is found 

in the Arabian Peninsula countries, such as UAE (Zohary & Hopf, 1993). According 

to Food and Agriculture Statistics Database (FAOSTAT, 2013), the total world 

number of date palms is about 120 million trees, distributed in 30 countries and 

producing nearly 7.5 million tons of fruit per year. Over two-thirds of this amount is 

found in the Arab countries; three of the top 10 dates producers worldwide are in the 

Arabian Peninsula, namely: Saudi Arabia, UAE, and Oman (Kader & Hussein, 2009; 

AOAD, 2008). It is estimated that the UAE has the largest number of date palms for 
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any single country in the world with a minimum of 200 cultivars, 68 of which are 

commercially considered to be the most important (El-Juhany, 2010). 

Arid lands in particular, have received less attention in recent decades despite 

their importance to society and their exceptional vulnerability to climate change. They 

provide ecosystem services to more than two billion people, including significant crop 

production and forage for wildlife and domestic livestock (Bestelmeyer et al., 2015). 

While arid lands are sparsely vegetated with low annual productivity, they have been 

identified as an important player in the global trends and variability in atmospheric 

CO2 concentrations (Ahlström et al., 2015; Biederman et al., 2017; Humphrey et al., 

2018; Poulter et al., 2014). Although biomass per unit area in arid and semiarid regions 

is normally low, their large extent gives them a significant role as a carbon pool for 

the supply of essential ecosystem services (Zandler et al., 2015). Monitoring the 

spatiotemporal dynamics of arid lands ecosystem structure and function is, therefore, 

a high research priority. Satellite RS particularly, has been instrumental in exposing 

the role of arid lands within the context of global carbon cycling and the broader Earth 

system (Humphrey et al., 2018; Poulter et al., 2014). Yet, none of the plant biomass 

assessment measurements and its capacity of storing and sequestering carbon, were 

conducted for the most important fruit crops in arid regions, Phoenix dactylifera, date 

palm. In UAE, where more than two-thirds of its land area is covered by desert 

ecosystems, date palm species is a good alternative for CS in such ecosystems. Date 

palm requires minimum water supply and tolerate harsh growth conditions such as 

high temperatures, drought, and high levels of salinity. In fact, it is the most salt 

tolerant plant of all fruit crops (Alhammadi & Kurup, 2012; El-Juhany, 2010; Zohary 

and Hopf, 2000). 
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1.4.2 Quantifying Terrestrial Carbon Sequestration 

Carbon sequestration is the process of capturing of CO2 gas in the atmosphere 

and it's storing in liquid or solid state. This process is already occurring naturally 

through trees, the ocean, soil and live organic matter (Lackner, 2003). Any reservoirs 

or stores of carbon are called carbon pools. Specifically, storing of CO2 occurs in three 

levels: in plants and soil (Terrestrial Sequestration), underground (Geological 

Sequestration) and deep in oceans (Ocean Sequestration) (Figure 2). Terrestrial or 

biologic sequestration is the process of storing atmospheric CO2 as carbon in the stems, 

roots of plants and soil. The bulk of carbon sequestered terrestrially is stored in forest 

biomass. 

 

Figure 2: Carbon pools. They include: (1) Terrestrial Sequestration pool (sequestering 
and storing of CO2 in plants and soil); (2) Geological Sequestration (underground) 
pool; (3) Ocean Sequestration (deep in oceans) pool; and (4) Atmospheric pool. After 
(Lal, 2004; Salem Issa et al., 2020a). 
 

Forests, as both carbon sources and sinks, can play a major role in combating 

global climate change (Dick OB, 2015; Ekoungoulou et al., 2014). Estimation of CS 

and assessing the role of forest ecosystems in regional and global carbon cycles, is 
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important for a better understanding of the impacts of land-cover changes on carbon 

fluxes, nutrient cycling and budgeting. Likewise, monitoring forest biomass, as a step 

in CS estimation, is not an environmental issue only; actually, more than 190 countries 

are committed to take action to implement and support sustainable management of 

forests and enhancement of forest CS according to Paris Agreement on Climate 

Change (United Nation, 2019).  

Carbon sequestration is becoming an essential component in the fight against 

global warming. Afforestation projects and land use conversion to forest 

(reforestation) can be used to earn carbon credits and reduce the carbon footprint, 

hence providing a long-term reduction in greenhouse gases (GHGs) levels through 

carbon sequestration (Singh et al., 2018). This attitude has a growing interest among 

policymakers and governments (Baral & Guha, 2004). Plantation cropping as a land 

use system has the potential to contribute to CS, maintain soil biodiversity and improve 

soil fertility (Prayogo et al., 2018). It can add economic value by providing more job 

opportunities, better income and food security, especially the smallholder systems in 

developing countries, and the timber exploitation (Khalid & Hamid, 2017; Singh et al., 

2018). The UN program for the reduction in emissions from deforestation and forest 

degradation (REDD+), is an international initiative to help nations earn financial 

incentives if they implement climate policies and if they demonstrate CO2 emission 

reduction (Gibbs et al., 2007).  

Precise CS estimation is a necessary step to define carbon emission mitigation 

strategies and programs at the local and regional level (Clerici et al., 2016a). This kind 

of studies is necessary for a better understanding of the long-term behaviour and 

drivers of carbon sequestration under different global climate change scenarios 

(Corona-Núñez et al., 2018). The total CS in any terrestrial ecosystem is the sum of 
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carbon in biomass and soil. A practical definition of forest biomass is the total amount 

of aboveground living organic matter in trees expressed as oven-dry tons per unit area 

(Brown, 1997). The estimation of biomass is a challenging task, especially in the areas 

with both complex stands and varying environmental conditions as well as in low 

vegetation cover density areas, such as arid lands. Both types of ecosystems require 

the use of accurate and consistent measurement methods. 

Eggleston et al. (2006) has listed five terrestrial ecosystem carbon pools 

involving biomass: above-ground biomass (AGB), below-ground biomass (BGB), 

litter, woody debris and soil organic matter. The total CS is estimated as the sum of 

two quantities representing the amounts of carbon in soil and in biomass. Therefore, 

two routes for achieving sequestered carbon estimation: First, estimating soil organic 

carbon (SOC) which is part of soil organic matter (SOM). Second, estimating 

vegetation biomass which can be achieved by estimating the AGB and then deriving 

the remaining components; BGB, Litter and Debris, from the AGB as shown in (Table 

1). As for SOM, it is most commonly estimated through soil sampling at various layers; 

SOC is then estimated using the total combustion method, as explained in (Walkley & 

Black, 1934). The content of SOC included in SOM may change depending on many 

factors (ecosystems, type of organic residues and land management, etc.). Many 

studies estimate SOC from SOM using the conventional factor of 1.724 (~ 58% of 

SOM). This figure is widely used and has appeared in many studies and published 

papers in the last century; while Brady and Weil (1999) concluded that this value (58% 

of SOM) probably applies only to highly stabilized humus. After his statistical analysis 

of 481 studies, Pribyl (2010) found that conventional factor varies from 1.35 to 7.50 

with a mean value of 2.20, concluding that any single-number conversion factor, 

universally applied, has the potential for serious error when used to estimate the carbon 
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content of soils. However, recent studies have accepted a generic quick, simple and 

inexpensive coefficient of 57% for measuring SOC as a percent of SOM (Ponce-

Hernandez et al., 2004). 

Table 1: Calculation methods of CS components in terrestrial ecosystems. 

No Component Calculation Method Source 

1 AGB Destructive OR Non-destructive 
Methods (Gibbs et al., 2007) 

2 BGB 20% of Above-ground biomass (Cairns et al., 1997) 
3 Litters 10–20% of Above-ground biomass  (Houghton et al., 2009) 4 Debris 
5 SOC Total combustion method (Walkley & Black, 1934) 

 

Of the above five pools, AGB is the most visible, dominant, dynamic and 

important pool of the terrestrial ecosystem, constituting around 30% of the total 

terrestrial ecosystem carbon pool which, in turn, represents 70–90% of the total forest 

biomass (Cairns et al., 1997). AGB estimation has received considerable attention over 

the last few decades because of increased awareness of climate warming and the role 

forest biomass plays in carbon sequestration and release of greenhouse gases due to 

deforestation (Kumar et al., 2015). While SOM holds two to three times more carbon 

than the total biomass carbon pool on a global scale, much of the soil carbon is more 

protected and not easily oxidized (Davidson & Janssen, 2006). On the other hand, 

AGB contributes to atmospheric carbon fluxes to a much greater extent due to fire, 

logging, land-use changes, etc., and so is of much greater interest. Therefore, it should 

be monitored and measured along the year, not only a one-time mapping; although the 

estimation of forest biomass is a scientific challenge as to identify efficient methods 

for its assessment at regional to national-levels (Gibbs et al., 2007). Moreover, 

estimates of AGB can also be used to predict root biomass (BGB), which is generally 

estimated at 20% of the AGB based on the predictive relationship applied by many 
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studies (Table 1) (Cairns et al., 1997; Mokany et al., 2006; Ramankutty et al., 2007). 

In addition, CS of dead wood or litter (e.g., felled or dead trees, dead or broken 

branches, leaves, etc.) in mature forests are generally assumed to be equivalent to 10 

to 20% of the calculated AGB (Gibbs et al., 2007; Houghton et al., 2009). 

Producing accurate maps for biomass estimation distribution is a serious 

challenge which has to be addressed when calculating CS. As mentioned before, plant 

biomass can be measured or estimated by both direct (destructive) and indirect (non-

destructive) methods. The direct method which is the most precise method for 

determining carbon biomass by destructively harvest all plants, partition each into 

various constituent components (e.g. stem, branches, leaves, flowers, fruits, roots) and 

subsequently determine the carbon content of the various components analytically OR 

calculated as a fraction of measured biomass (indirect) (Yuen et al., 2016). The 

destructive methods of biomass estimation are limited to a small area due to the 

destructive nature, time, expense and labor involved and sometime illegal especially 

for trees. In addition, these methods ultimately rely on ground measurement and can 

cause severe destruction to the forests as well as a risk of environmental deterioration 

(Khalid & Hamid, 2017; Maulana et al., 2016). The indirect methods include the 

estimation based on allometric equations (Subsection 1.4.3) or through non-

conventional methods using RS and GIS (Subsection 1.4.4). 

1.4.3 Biomass Allometric Equations 

There are many reasons that make developing biomass equations a very 

essential step towards guarantying an alternative to destructive methods. The main 

objective in developing allometric equations is to avoid destructing forests when 

estimating their biomass, hence its CS, and provide a cost effective and environment-

friendly option since it is done without harvesting (Brown et al., 1989). In general, 
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allometric equation is a statistical model to estimate the biomass of the trees using their 

biometrical characteristics (e.g., height, diameter at breast height (DBH) or crown 

size), which are non-destructive and simpler to measure (Picard et al., 2012). 

Therefore, non-destructive methods through allometric relationships are increasingly 

used. Such equations have also been proven to be fast, inexpensive, and more suitable 

for largescale estimation of forest CS (Koala et al., 2017). Allometric models are 

commonly used in forest inventories and ecological studies (Brown et al., 1989). The 

models relate biomass of an entire tree or individual tree components (e.g., stems, 

branches, leaves or roots) to one or more easily tree variables and dendrometric 

measures (e.g. height, diameter breast height or crown size), and to estimate CS (Ebuy 

et al., 2011; Picard et al., 2012). The proportions between height and diameter, 

between crown height and diameter, and between biomass and diameter follow rules 

that  are common to all trees which are grown under the same conditions and become 

more useful in uniform forests or plantations with similarly aged stands (Archibald & 

Bond, 2003; Bohlman & O’Brien, 2006; Dietze et al., 2008; King, 1990; Kumar & 

Mutanga, 2017).  

The selection of appropriate and robust models, therefore, have considerable 

influence on the accuracy of the obtained estimates (Mahmood et al., 2019). As 

mentioned above the aim of using allometric equations is to estimate biomass without 

the need to cut trees. However, these equations are based on the destructive sampling 

of vegetation in a given location, before they can be applied generally. In order for 

those equations to be validated, cutting and weighting tree components is necessary 

(Vashum & Jayakumar, 2012). The number of trees destructively sampled to build 

allometric equations differs from one study to another. Currently, there is no consensus 

on that number, as this is often dependent on resource availability and permission to 
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harvest trees (Yuen et al., 2016). For example, Russell (1983) and Deans et al. (1996) 

used 15 and 14 trees, while Brown et al. (1995) and Khalid et al. (1999a) used only 8 

and 10 trees, respectively to build their allometric equations. In their study of oil palm 

plantations of Benin forests, Aholoukpè et al. (2018) used 25 palms from several ages 

and different genetic origins to build a species specific allometric equation. However, 

a recent study showed that small sample size (≤10) results in biased allometric 

equations (Duncanson et al., 2015).  

Generally, there is no specific procedure to build allometric equations yet there 

is a recommended guideline for documenting allometric equations. (Jara et al., 2015) 

recommended that researchers should only report all the details in methods section of 

how they build up their equations. Furthermore, sampled trees should be randomly 

selected, regardless of health condition or degree of damage, because sampling only 

trees with fully intact structural characteristics will likely result in an equation that 

overestimates biomass for the general case. In this respect, data outliers should not be 

removed simply to improve model fit metrics (Yuen et al., 2016).  

Many allometric equations have been developed for various plant species. For 

example, the GlobeAllomeTree database contains over 706 equations from Europe, 

2843 from North America and 1058 from Africa (Sileshi, 2014). Some of these are 

volume equations, and the others are biomass equations. The biomass can be calculated 

from volume of the biomass per hectare (VOB/ha) by using a generalized volume 

model, wood density and a biomass expansion factor (Brown et al., 1995; Lugo & 

Brown, 1992). One of the limitations of volume equations is that it can only be applied 

to stem while allometric equations cover a wide range of vegetation components 

(Cheng et al., 2014).  
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Allometric models can be developed for either individual or multiple species 

(a mixture of species) to represent a community or bioregion. They also can be 

developed to cover specific sites, regional or pan-tropical scales (Mahmood et al., 

2019; Yuen et al., 2016). Most of biomass equations, species and multispecies, have 

been developed for tropical rainforests ecosystems because of their importance to the 

global carbon cycle (Basuki et al., 2009; Brown, 1997; Chave et al., 2005; Cole & 

Ewel, 2006; Makinde et al., 2017). The multispecies equations built because it is 

practically difficult to develop allometric equations for all species present in the 

ecosystem (Dick OB, 2015). Chave et al. (2005) have shown that one hectare of a 

tropical forest may shelter as many as 300 different tree species. Hence, the 

multispecies allometric models are more methodologically efficient for biomass 

estimation compared to those developed for individual species at specific locations. 

However, these models carry the potentiality to misrepresent local, species- or 

community-specific variations and anomalies. Therefore, they may fail to capture 

variations in both forest type and the full diversity of the natural vegetation 

communities hence leading to an increased level of uncertainty (Mahmood et al., 

2019). Hence, a tailored equation for each specific species is needed for a better 

accuracy in estimating the biomass. Nevertheless, such an equation will still be 

conditioned by the ecological zone based on which it had been built.  Hence weakening 

the estimation’s accuracy of the actual forest AGB when the equation is used in another 

area or region. Due to the different characteristics of plant species from site to site, 

pre-existing equations developed at locations that are different from the one in 

consideration may have limited applicability, even if the equation is species-specific. 

In their review of allometric equations in Asia, Yuen et al. (2016) concluded that 

applying existing allometric equations out of convenience is potentially a key source 



16 
 
of uncertainty in above- and below-ground CS estimates in many Asian landscapes.  

The selection of allometric equations can influence local, regional and global biomass 

estimates, therefore, there is an importance of site-specific equations for accurate 

estimation of biomass as generalized equations can overestimate AGB by 50% to 65% 

(Maulana et al., 2016). The locally developed models are expected to provide less 

uncertainty than generic equations (Jara et al., 2015). Site and species specific 

allometric models should logically provide a greater level of accuracy at a given 

location to assist the assessment of biomass carbon sequestration and that make the 

locally built equation a better option to produce more accurate site-specific biomass 

estimation. Finally, since the choice of the equations is the first critical step, there has 

been a rapid increase in efforts to develop locally appropriate equations (Sileshi, 2014). 

Only a few biomass assessment equations are available for plant species in desert or 

arid land ecosystems. None of these measurements were used to fit one of the most 

important fruit crops in the arid regions, Phoenix dactylifera, date palm. 

The mathematical model commonly used for modeling AGB is based on the 

power function (Yuen et al., 2016). This was founded on the basis that the growth of 

a plant is characterized by the relation of proportionality between its total biomass and 

its size (Fonton et al., 2017). Biometric variables measured in plant species were 

considered as independent variables (DBH, total height, crown variables, stem height, 

etc) and incorporated into a power function model (Da Silva et al., 2015). The 

allometry based on power model have good reliability as indicated by high coefficient 

of determination indices (R2) (Gevana & Im, 2016). Researchers involved in the 

development and application of biomass allometric equations are faced with many 

challenges. One of them is the choice between simple bivariate power-law (typical 

allometric) functions and models with multiple predictors (Sileshi, 2014). Different 
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variables (structural and non-structural) were considered when building biomass 

allometric equations. Most equations for AGB, or biomass of any component (stem, 

branch, leaves, other) use equations with diameter and/or height as independent 

variables. Other variables such as girth, basal area and crown dimensions have been 

used even less frequently— usually in special cases (Yuen et al., 2016). Using wood 

density, when it is available, as a predictor is considered as significantly improving the 

biomass prediction equation when dealing with multispecies dataset (Chave et al., 

2005). In their study to investigate the allometric equations in China, Cheng et al. 

(2014) found that the most frequently used predictive variable in single-variable 

models is DBH, and in two-variable models are DBH and tree height while wood 

density and crown diameter are presented in more complicated models. They found 

that diameter variables have a dominant proportion of 87.4% of the surveyed 

equations. However, DBH showed a weak correlation with biomass quantity in 

specific species, like palm for example (Carlos et al., 2015; Sajdak et al., 2014). Age 

can be used as a predictor for biomass estimation in many studies since there is a linear 

correlation between biomass accumulation and age (Henson & Chang, 2003; Singh et 

al., 2018). Many studies have highlighted the importance of tree height as a predictor 

variable in the AGB equation (Fonton et al., 2017; Khalid & Hamid, 2017; Picard et 

al., 2012; Prayogo et al., 2018). A single plant species can have more than one 

allometric equation, e.g., palm species (Appendix 1). Furthermore, more than one 

allometric equation can be developed for each plant species. The reasons behind that 

can be: (1) difference in ecoregion sites that these equations developed for (Tropical 

or Amazonian forests ..etc), (2) the decision of the developers of the allometric 

equations and choosing of the suitable variable/s (height, DBH, trunk height, etc.) to 

work as input (independent variable) to the model, (3) the use of the allometric 
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equations to cover either specific parts of the plant (AGB, crown biomass, trunk 

biomass, etc.) or specific age (young, mature, mixed, etc.), and (4) the selection of the 

mathematical equation form (power, linear, algorithmic, etc.).  

The use of crown variables as indicators for biomass estimation became of 

more interest lately due to the developments in RS technologies. More recently, 

allometric equations have been used, coupled with RS and field-based structural 

variables measurements (Cihlar et al., 2002; Dahy et al., 2019; Salem Issa et al., 2018, 

2019). For example, Cheng et al. (2014) recommended to develop more equations with 

different field structural variables that can be linked to RS predictors. Likewise, Jucker 

et al. (2017) suggested in their review of allometric equations to develop a new 

generation of allometric equations that estimate biomass based on attributes which can 

be remotely sensed. 

1.4.4 Geospatial Technologies for Estimation of Carbon Stock 

While direct field data measurements of biomass are the most accurate, they 

are not adequate to map AGB distribution at large scales. On the other hand, geospatial 

technologies proved to be practical and cost-time effective, and allows for imaging and 

studying inaccessible places by traditional field measurements. Geospatial 

technologies procedures have been applied to natural resources management and 

biomass assessment, hence CS (Kankare et al., 2013; Wannasiri et al., 2013). RS can 

obtain biomass information over large areas with repetitive coverages, at a reasonable 

cost and with acceptable accuracy (Lu, 2006). Various techniques and sensors have 

been used and tested in numerous studies. RS, both active and passive, provide some 

of the most time-efficient and cost-effective approaches to derive AGB estimation at 

the regional and national scale. Moreover, the integration of RS data into GIS models 
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provides advantages of both technologies, allowing for adding ancillary and field data 

to the analysis, besides increasing reliability in estimating AGB.  

A textual search on Google Scholar was performed, in order to identify 

statistically relevant temporal patterns of the use of terms such as ‘Carbon 

Sequestration’, ‘Carbon Sequestration + Remote Sensing’ and ‘Carbon Sequestration 

+ GIS’ in the literature. The search was customized to group results by ten-year 

intervals starting in 1951, to highlight the development of researches in the subject 

under review over time and the increase in the use of geospatial technologies in CS 

studies (Figure 3). Statistical analysis of the data revealed an exponential increase with 

time in the number of scientific studies on carbon sequestration considering both RS 

and GIS in their methodology. This can be attributed to the increase in volume of 

available satellite imagery and the ease of access to their archives witnessed over the 

last two decades to be become available to the end user either freely or commercially. 

Furthermore, the introduction of GIS in the late eighties contributed to this trend as 

well.  
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Figure 3: Textual analysis using Google Scholar. The terms used are: Carbon 
Sequestration, Remote Sensing and GIS. After (Dahy et al., 2019, 2020; Salem Issa et 
al., 2020a). 

 

Following, a systematic review was conducted in two databases other than 

Google Scholar, namely, Web of Science and Science Direct. The databases were 

accessed using the search terms: “carbon sequestration”, “above-ground biomass”, 

“remote sensing”, and “GIS”. The search was applied to articles that were published 

in peer-reviewed journals only. These searches collectively yielded 2,771 results. The 

results were pared down to 647 by applying three criteria: (1) the results were NOT 

“review papers” OR “conference proceeding” papers and only restricted to research 

articles; (2) the study belonged to terrestrial ecosystems excluding the marine and 

coastal ecosystems; and (3) the study is not a duplicate from a previous search. All 

articles were downloaded and stored using the reference management software 



21 
 
(ZOTERO). Based on reviewing the abstracts, the list was further reduced to 171 by 

retaining only articles that discuss correlation between AGB and RS-based parameters, 

and that use GIS in the analysis (not for mapping only!). Finally, the full-text 

assessment of the final articles was used to review geospatial technologies for 

estimation of CS. The following subjects will be covered and evaluated: RS data types 

for estimating AGB and CS (Subsection 1.4.4.1); the RS-based methods used to attain 

a certain level of accuracy at the species/plant communities (multispecies) level 

(Subsection 1.4.4.2); surveys all biophysical predictors used in RS technology 

(Subsection 1.4.4.4); identifies significant RS variables (Subsection 1.4.4.5); 

highlights RS-GIS integrated models (Subsection 1.4.4.6); and presents arid lands case 

studies with challenges and opportunities (Subsection 1.4.5). 

1.4.4.1 Remote Sensing Data Types 

Data from RS satellites are available at various scales, from local to global, and 

from several different platforms. There are also different types of sensors both passive, 

such as optical and thermal RS sensors, and active, such as Radar and Light Detection 

and Ranging (LiDAR) sensors, with each having its advantages and disadvantages. 

Benefits and limitations of these sensors are shown in Appendix 2. The optical sensors, 

sometimes called passive sensors, are RS systems relying on visible and reflected 

infrared light (Zhao et al., 2016). Appendix 3 shows the specifications of the RS optical 

sensors most commonly used for AGB estimation. While active sensors are the sensors 

that emit and record backscatter values or interferometry technique in a portion of the 

electromagnetic spectrum (Ghasemi et al., 2011). 

Despite the successful application of any sensors in AGB estimation, there are 

challenges related to acquisition costs, area coverage (swath width), and limited 

availability. RS data are nowadays abundant and widely available for a fraction of the 



22 
 
cost required only a decade ago. Furthermore, these data are captured with various, 

radiometric, spectral, spatial and temporal resolutions, hence meeting the needs for 

AGB detection, mapping and assessment. Selecting the “right” sensor is associated 

with the specific data availability of the area under study, project budget, technical 

skill requirements for data interpretation and software packages. The resolutions of the 

sensors used are pre-defined to meet the researcher’s needs and specifications, 

although it happens that a specific sensor’s data are the only available for a study area. 

Many software packages can perform digital images processing and spatial analysis 

like ERDAS imagine, ENVI, ArcGIS and other open source software like QGIS and 

Google Earth Engine. These packages are relatively easy to use and can produce 

exceptional results. 

Statistical analysis based on the 171 papers reviewed reveals that around two 

thirds of these studies used passive (optical) sensors (with different spatial resolutions), 

while the remaining third used active sensors (almost equally split between RADAR 

and LiDAR) (Figure 4).  

 

Figure 4: Geospatial input data used in reviewed papers at different forests. After 
(Dahy et al., 2019, 2020; Salem Issa et al., 2020a). 

 



23 
 

Around 40% of the studies using optical sensors used coarse spatial resolution 

(>100 meters) sensors like MODIS and SPOT VEG. Almost the same percentage of 

studies (40%) used moderate spatial resolution (~10- 100 meter) sensors like Landsat, 

IRS, and SPOT. Additionally, around 20% of these studies used fine spatial resolution 

sensors (sub-meter to 5 meters) like IKONOS, Quickbird and World View. To improve 

the accuracy of estimating AGB, integration of more than one sensor is becoming a 

trend (around 17% of the reviewed studies), as well as the integration with GIS-based 

approaches (around 14% of the reviewed studies). It was observed that more than 60 

studies were conducted using these two approaches. Statistical results further showed 

that the number of studies that estimate AGB at plant species levels, instead of forests 

in general or mixed species, was increasing. Many plant species are not separable 

targets using RS because they are indistinguishable from other plants due to their 

spectral similarities (detecting, mapping, and classification of vegetation will be 

discussed in separate Subsection, 1.4.4.3).  

Hence, resolution concerns such as high spatial resolution (e.g., IKONOS) and 

high spectral resolution (e.g., hyperspectral) should be taken into account as they help 

resolve such ambiguities and play essential roles in the quality of the resulting maps 

(Thenkabail et al., 2004). Nowadays, RS data are widely available for a fraction of 

their cost only a decade ago. Figure 4 shows the proportion of utilizing different 

sensors with different number of bands for the estimation of the biomass and carbon 

sequestered. Accurate image classification relies on the successful extraction of pure 

spectral signature for each species, which is often dictated by the spatial resolution of 

the observing sensor and the timing of observation (Xie et al., 2008). For example, 

archived and recent Landsat imageries are available and are freely downloadable from 

the USGS website, providing a globally consistent record of archived imageries since 
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1972; other resources are being continuously published and added to the internet. 

Bryceson (1991) used the habitat type, condition and soil type as the delineating 

parameters to locate Chortoicetes terminifera (Australian plague locust) by using 

Landsat-5 multispectral scanner data. Anderson et al. (1993) mapped Ericameria 

austrotexana infestation in a large homogenous area using Landsat Thematic Mapper 

(TM) imagery. The spectral radiances in the red and near-infrared regions, in addition 

to others, were used for vegetation mapping by RS technology. The spectral signatures 

of photosynthetically and nonphotosynthetically active vegetation showed noticeable 

differences and could be utilized to estimate forage quantity and quality of grass 

prairies (Xie et al., 2008). Moreover, discrimination of vegetation species from single 

imagery is only achievable where a combination of leaf chemistry, structure and 

moisture content culminates to form a unique spectral signature.  

As the detection and estimation of biomass are sensed from space, the crown 

biomass component has gained prominence in the majority of the relevant studies  

(Cheng et al., 2014; Clark et al., 2005; Jucker et al., 2017; N\a esset & Økland, 2002;  

Ozdemir, 2008; Popescu et al., 2003). The unique pattern of crown palm plantations, 

for example, makes them easily distinguishable from other trees on satellite imagery 

(Shafri et al., 2011). It is worth mentioning that most of these studies were conducted 

on boreal and tropical forests with a small portion conducted on arid and semiarid 

regions (around 10%). This could be due to the early availability of geo-spatial 

technologies in the developed northern countries (boreal forests) and the relative 

importance of the tropical rainforests to the global carbon cycle (Figure 4).  

1.4.4.2 Remote Sensing Based Methods 

To explore the potential of RS-based methods for extracting biomass 

information in different environments, various techniques and sensors have been used 
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and tested in numerous studies. Optical, RADAR, and LiDAR data have been 

extensively used to estimate AGB with a variety of methods (Clerici et al., 2016a). 

AGB studies using geospatial technologies can be aggregated according to the level of 

the methodological complexity to several tiers including different levels of detail and 

accuracy. The Intergovernmental Panel on Climate Change (IPCC) proposed three 

tiers: Tier-1, Tier-2, and Tier-3 (Gibbs et al., 2007; Henry et al., 2011; TSITSI, 2016). 

Tier-1 is the basic method based on the ‘biome average’ approach. It is the simplest 

level using the globally available data, generalized equations, and provides a rough 

approximation of biomass, and hence CS, and could be used as a starting point for 

decision-makers; however, it can provide inaccurate results with a high level of 

uncertainty (Gibbs et al., 2007). Tier-1 considered a generalized biomass equation for 

the ecological zones, and is typically used when no species-specific equations exist 

(Henry et al., 2011). Tier-2 is an intermediate level that is based on the volume 

equation and wood density. It is used when species-specific volume equations exist, 

and woody density for the specific plant species is available. The volume is then 

converted to biomass using wood density and a default biomass expansion factor 

(BEF) (see Subsection 1.4.3) (Eggleston et al., 2006; Henry et al., 2011). Finally, Tier-

3, the most demanding in terms of complexity and data requirements, is based on using 

a species-specific biomass equation to calculate either total or partial biomass. Partial 

biomass is obtained by adding up the biomass estimates obtained from the species-

specific equations for the different compartments. Tier-2 and Tier-3 levels are more 

dependent on ground-based measurements of the tree (i.e., DBH and height) and 

building the predictive relationships (allometric equations) (Gibbs et al., 2007). This 

makes these two levels more expensive to implement than Tier-1. It is worth noting 
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here that the precision for a given species generally increases with the increase in the 

Tier number (Henry et al., 2011). 

A geospatial approach is widely used to collect information regarding forest 

AGB and vegetation structure as well as to monitor and map vegetation biomass and 

productivity at large scales (Iizuka & Tateishi, 2015; Main-Knorn et al., 2011; 

Makinde et al., 2017; Pflugmacher, 2011). Using RS, GIS and modeling to study the 

current state of carbon sequestration and its future dynamics, are promising and have 

a potential ability as an innovative approach to tackle the ecological assessment 

problems (Lal, 2002). RS-based methods have seen widespread use among the 

research community thanks to their unique characteristics either in data collection or 

in results presentation. RS data can sense and record spatial variability, spatial 

distributions, spatial patterns of forests and assess their changes over time (Zhao et al., 

2016).  

For mapping vegetation using RS data, a multistep process is usually applied 

(detecting, mapping, and classification of vegetation will be discussed in separate 

Subsection, 1.4.4.3). The first step involves image preprocessing and aims at 

enhancing the quality of original images. For example, panchromatic band with 15 m 

spatial resolution, in Landsat imagery, that can be used to pan-sharpen other bands and 

hence increase their interpretability, has been added to Landsat’s multispectral sensors 

(Phiri & Morgenroth, 2017). Previous studies showed that such use of the 

panchromatic band helped achieve dramatic improvements (15%) in classification 

accuracies (Gilbertson et al., 2017). The second step involves determining the level of 

vegetation classification (at community or species level). The third step determines the 

correlation between the vegetation types and spectral characteristics of RS imagery. 

Vegetation data is identified by interpreting satellite images based on the elements 



27 
 
such as image color, texture, tone, pattern and association information. Lastly, the final 

step includes translating the spectral classes into vegetation types by assigning each 

pixel of the scene to one of the vegetation groups defined in the vegetation 

classification system selected in the second step. Classification methods are broadly 

based on the pixel-based classification (PBC) approach or the object-oriented based 

classification (OOC) approach. Both methods have their advantages and disadvantages 

depending on their areas of applications, and most importantly, the RS datasets that 

are used for information extraction (Jawak et al., 2015). OOC methods group several 

pixels with homogeneous properties into an object/objects instead of pixels, which are 

considered as the basic unit for analysis, while PBC approaches are based on 

combining reflectance pixel values into separated spectral clusters (Blaschke, 2010; 

Myint et al., 2011a). 

AGB and hence CS can be estimated from different RS data types using various 

approaches (Figure 5). Landsat series, for example TM, Enhanced Thematic Mapper 

(ETM+), and Operational Land Imager (OLI), have been historically used to map 

biomass and carbon in a variety of ecosystems, due to the relevance of their spectral 

bands, the continuity of the program, and the suitability of the 30 meter spatial 

resolution for regional mapping (Clerici et al., 2016a). Although biomass cannot be 

directly measured from space, the use of spectrally-derived parameters from sensor 

reflectance (bands), including vegetation indices (VIs) that were created to improve 

prediction accuracy, enables increased biomass prediction accuracy when combined 

with field-based measurements (Pandit et al., 2018). 
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Figure 5: Different RS/GIS procedures available for estimating AGB. After (Eisfelder 
et al., 2012; Salem Issa et al., 2020a). 
. 

RS data correlates with plot-based field measurements to estimate AGB and 

hence CS. In general, RS data are empirically linked to AGB measurements of field 

plots using different regression analyses and algorithms (Wani et al., 2015). There are 

many methods of image analysis that can be integrated to achieve a better accuracy. 

Algorithm development and implementation is an important subject in studies 

estimating biomass (Kumar & Mutanga, 2017). The advanced machine learning 

algorithms methods and/or other state-of-the-art processing techniques can reveal 

important information about the spatial and temporal biomass patterns by determining 

relationships between field measurements and RS data, especially over large areas 

(Kumar & Mutanga, 2017). To determine the relationship between above-ground field 

biomass and RS data, researchers have used linear regression models with or without 

log transformations of field biomass data, and multiple regressions with or without 

stepwise selection (Clewley et al., 2012; Robinson et al., 2013). Artificial neural 

networks, semi-empirical models, nonlinear regression, and nonparametric estimation 
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techniques (e.g., k-nearest neighbor and k-means clustering) have also been used 

(Castel et al., 2000; Lu, 2006; Wijaya & Gloaguen, 2009). However, few studies have 

investigated approaches other than the empirical relationship with spectral bands or 

VIs (Eisfelder et al., 2012). One of these approaches is Monteith’s efficiency model 

for obtaining indirect estimates of absorbed photosynthetically active radiation 

(APAR) from the red and IR reflectance characteristics of the vegetation where APAR 

is used as an indication of how efficiently absorbed energy is converted to dry biomass 

(Monteith, 1972). Rosema (1993) used a simulation of vegetation development from 

daily total evapotranspiration with the in/out radiation of METESTAT in order to 

estimate the herbaceous biomass in savannah grassland in Sahel countries. Other 

studies used canopy functioning process-based models coupled with physical radiative 

transfer models to estimate biomass production from RS data (Williams, 2010). 

Fourier transform textural ordination (FOTO) was used by Morel et al. (2012) with 

SPOT5 data for estimation AGB in Thailand with the R value equal to 0.83. 

Regression, ordinary kriging, co-kriging, and stepwise linear regression have been 

used in various studies and it was found that the combination of RS and geo-statistics 

can improve the accuracy of biomass estimates more than the use stepwise linear 

regression only (Mutanga & Rugege, 2006). Extensive field knowledge and expert 

knowledge may help improve classification accuracy. Studies have shown that 

classification accuracy can be greatly improved after applying expert knowledge 

(empirical rules) and ancillary data to extract thematic features (e.g., vegetation 

groups) (Xie et al., 2008). Fieldwork is the foundation for RS technology allowing to 

extend limited vegetation information to large scale predictions (Wu et al., 2016). This 

direct mapping approach is more accurate at depicting variations in biomass across the 

landscape, making it easier to update the maps as needed (Kelsey & Neff, 2014). 
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1.4.4.3 Detecting and Mapping Plant Species Using Satellite Imagery 

Accurate mapping of vegetation is a critical and important task for many 

environmental-related issues such as forest management, biomass estimation, or 

terrestrial CS quantification.  Geospatial technologies (RS & GIS) are well established 

for their capabilities of measuring and estimating forest AGB and for monitoring and 

mapping vegetation biomass at large scales (Dahy et al., 2019; Iizuka & Tateishi, 2015; 

Main-Knorn et al., 2011; Makinde et al., 2017; Maynard et al., 2007; Pflugmacher, 

2011; Salem Issa et al., 2020a). Methods for measuring and mapping vegetation cover 

using RS and GIS are well developed; however, they exhibit performance issues in 

certain ecosystems particularly, arid land ecosystems where a high background 

reflectance contribution to the pixel value remains a great challenge. Besides, several 

plant species are hardly distinguished from other objects because of their spectral 

resemblances. The advent of high spectral and spatial resolutions data helped in 

resolving such ambiguities and played an essential role in improving the quality of 

land cover maps (Thenkabail et al., 2004). Furthermore, satellite imagery variables are 

only capable of mapping and correlating environmental variables if the vegetation 

spectra are detectable within the pixel, a great challenge that can only be overcome in 

certain arid land environment (Aly et al., 2016a; Oldeland et al., 2010; Tian et al., 

2016). This last constraint presents a foremost challenge in the desert ecosystem, 

usually with sparse vegetation cover, producing a weak spectral object requiring a 

higher resolutions’ imagery to be captured (Bradley et al., 2019). Hyperspectral 

sensors showed plausible classification accuracies in mapping major forest species and 

predicting the susceptible areas of fruit malformation (Nagaraja, 2009). Hebbar et al. 

(2014) used LISS-IV data to classify fruit trees and found that old and mature 

plantations were classified more accurately while young and recently planted ones (3 
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years or less) showed poor classification accuracy due to mixed spectral signature, 

wider spacing and poor stands of plantations. While high-resolution data offer more 

spatial detail, they present certain disadvantages including high cost especially when 

it applies to broad areas, the need for large data storage, complex technicalities and 

long processing times. Furthermore, moderate resolution satellites (e.g. Landsat, and 

SPOT) proved to be effective in land cover classification for different research 

purposes and in different regions (Aly et al., 2016a; Elhag, 2016; Rembold et al., 2000; 

Shaker et al., 2012). Such multispectral optical sensors have been widely utilized 

operationally in estimating and mapping AGB (Eisfelder et al., 2012; Kumar et al., 

2015; Kumar & Mutanga, 2017; TSITSI, 2016; Vashum & Jayakumar, 2012). Indeed, 

moderate resolution satellite data offer plausible results after conducting specific 

approaches such as pan-sharpening or fusion techniques. Starting with Landsat-7 

ETM+, a panchromatic band with 15 m spatial resolution, that can be used to pan-

sharpen other bands and hence increase their interpretability, was added to the already 

existing Landsat’s multispectral sensors (Phiri & Morgenroth, 2017; Shaharum et al., 

2018). Previous studies showed that such use of the panchromatic band helped achieve 

dramatic improvements (more than 15%) in classification accuracies (Gilbertson et al., 

2017). The Landsat program, MSS, TM, ETM+ and the most recent Landsat-8 OLI, 

present unique advantages in land cover classification applications because: (1) it is 

the longest running uninterrupted Earth observation program since 1972; (2) its 

archives are the first to offer global images free of charge (free access approach since 

2008) (Phiri & Morgenroth, 2017; Turner et al., 2015); (3) the current effects of climate 

change make the research on land cover classification methods based on the archived 

Landsat images an important resource (Barbosa et al., 2014; De Sy et al., 2012); (4) it 

is a very good source for vegetation change detection over large areas due to its 
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relatively high temporal resolution (16-days revisit) and large swath (185 km); (5) 

another benefit of Landsat is to offer atmospherically corrected reflectances. 

Atmospheric correction is a critical step to minimize aerosol and cloud contamination 

and; (6) the suitability of the spatial resolution of Landsat series for regional mapping 

of biomass and carbon in a variety of ecosystems (Clerici et al., 2016b). Baumann et 

al. (2018) found that Landsat-8 OLI is reliable for mapping woody vegetation (tree 

cover and shrub cover) in their study in Gran Chaco, south America. In their study for 

mapping tree canopy cover and AGB in woodlands landscape of Burkina Faso using 

Landsat-8 OLI, Karlson et al. (2015) found that the image texture is more correlated 

to tree cover attributes, in particular AGB, in open canopy conditions compared to 

closed canopies due to its ability to capture shadow structures caused by large trees 

(Karlson et al., 2015). 

There is no universal classification system that can be used for all types of 

imagery, at different scales, and for different purposes. Classification methods are 

broadly divided in two categories: pixel-based classification (PBC) and object-based 

classification (OOC). They both have advantages and disadvantages depending on 

their areas of applications and, most importantly, the RS datasets they use for 

information extraction (Jawak et al., 2015). PBC methods are based on using 

reflectance values to group pixels into separate spectral clusters; while OOC methods 

group contiguous pixels with homogeneous properties into objects, referred to as 

segments, that serve as the basic units for analysis (Blaschke, 2010; Myint et al., 

2011b). OOC methods have gained increased interest with the advent of high and very 

high-resolution RS imagery (Jawak et al., 2013). Furthermore, OOC paves the way for 

combining spectral and spatial information, and in doing so potentially offers a more 

comprehensive classification approach  that increases the results’ accuracy (Wang et 
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al., 2016). However, under- and over-segmentation errors may occur in the 

segmentation phase and lead to a reduction of classification accuracy; especially when 

an image object covers multiple classes. This usually leads to classification errors as 

all pixels in each mixed image object are assigned to the same class (Jawak et al., 2015; 

Liu & Xia, 2010). 

PBC, on the other hand, has proven very successful with low to moderate 

spatial resolution data. It uses a combined spectral response from all pixels in a training 

set for a target class. The resulting signature comprises spectral responses from a group 

of different land covers in the training samples, while the classification system merely 

ignores the impact of mixed pixels (Lu & Weng, 2004). PBC is commonly divided 

into supervised and unsupervised classification methods. Both approaches, separately 

or together, were used widely to run LULC classification in many regions and both 

have advantages and disadvantages. The use of vegetation indices (such as NDVI, 

EVI, SAVI) is considered as part of the unsupervised classification method. These 

indices use vegetation spectral characteristics to assess the status of vegetation cover 

(see Subsection 1.4.4.5).  

The conventional PBC is quite limited because images of medium to low 

resolutions present a high level of heterogeneity and internal class variation within the 

same scene (Kux & Souza, 2012). OOC approach considers the organization of 

individual pixels into groups (segments) that correspond to real-world objects in the 

identification of classes. Object-oriented image analysis involves partitioning the 

image into meaningful segments that replace pixels as the basic processing units (Benz 

et al., 2004). In general, the OOC algorithm initially performs segmentation of the 

whole image, then, the user defines a set of knowledge-based classification rules 

(spectral, spatial, contextual and textual information) to describe each class. 
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Thereafter, the classifier is chosen to assign each segment to the proper class according 

to the user-defined rules (Jawak et al., 2015). The OOC procedure involves the 

selection of training samples that represent the features to be classified. These features 

(objects) are then defined within the software based on rules that are further used to 

model the individual or groups of objects based on color, size, shape, position, 

direction, distance, orientation, distribution throughout the image, texture, as well as 

other user-defined parameters. 

Many algorithms were developed for tree crown detection and mapping, 

(Chepkochei, 2011; Hebbar et al., 2014; Lack & Bleisch, 2010; Rizvi et al., 2019; 

Sahay et al., 2017). Nevertheless, different methods may give different results while 

working in the same environment. Consequently, the results of tree detection and 

mapping can be affected by algorithm features.  It is imperative to select the proper 

algorithm to get appropriate results. Likewise, for any algorithm to work properly, 

crowns should be detectable and segmented as an object in the image before 

classification. Training sets of the different classes to be identified and mapped must 

be selected very carefully for not to contain any contribution from the background nor 

any other class reflectance. This can be done by visual analysis and based on the 

interpreter’s expertise and knowledge of the study area.  

Hybrid classification approaches that combine supervised and unsupervised 

algorithms have gained importance. Since the early 1990s, several hybrid methods 

have been tried and refined in many cases to improve classification accuracy (Jawak 

et al., 2015; Kamusoko & Aniya, 2009; Kuemmerle et al., 2006; Lo & Choi, 2004; 

Pradhan et al., 2010; Rozenstein & Karnieli, 2011; Shila, 2010). Hybrid methods have 

demonstrated significant improvement in results’ interpretation where there is 

complex variability in the spectral data within information classes. The algorithms of 
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most hybrid methods involve: 1) initial arrangement of the imagery by spectral 

clustering, 2) assigning clusters to user-defined classes, and 3) classification of the 

entire image using supervised learning (Jawak et al., 2015). Lo and Choi (2004) 

suggested that a hybrid approach can be economically implemented in a standard 

image processing software package to produce LULC maps with higher accuracy (up 

to 96% in urban) from moderate spatial resolution data ETM+ (Lo & Choi, 2004). In 

their study in eastern Europe, Kuemmerle et al. (2006) combined the advantages from 

supervised and unsupervised methods to derive a land cover map from Landsat data 

(Kuemmerle et al., 2006). They conducted unsupervised classification to minimize 

bias in the selection of training areas and seed signatures, then eighty class signatures 

were extracted to run the supervised classification using the maximum likelihood 

classifier. The accuracy of the approach was estimated at 84%, 87%, and 91% for 

agriculture area, forests, and dense forests respectively. Shila (2010), used a hybrid 

classification method in Isfahan, Iran from ETM+ to increase automation and improve 

the accuracy of image data classification by taking advantage of both supervised and 

unsupervised classification methods. They found that the accuracy of the produced 

map reached 93%. Rozenstein and Karnieli (2011) examined combining signatures 

from both supervised and unsupervised training data (hybrid classification) and 

showed that they provided significantly more accurate results in Negev desert using 

TM image.  

The majority of the UAE’s territory is formed of desert ecosystems 

representing the mainland cover class of the country's land area. Date palm (DP) 

species are known for their resilience to hard conditions requiring minimum water 

supply, tolerating high temperatures and drought, and sustaining high levels of salinity 

(see Subsection 1.4.1). Measurement and analysis of DP in the UAE, using RS and 
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GIS techniques, are almost absent and have seen very limited application examples in 

the country and the Gulf Cooperation Council region at large (Issa & Al Shuwaihi, 

2012). Such investigations are vital for DP planning, management, and related 

resource studies. Sohl (1999) used multi-temporal TM imageries to provide locational, 

quantitative, and qualitative information on land cover change within the Abu Dhabi 

Emirate. His main concern was mapping changes in vegetation cover in Abu Dhabi 

emirate in general rather than DP. Goudie et al. (2000) have applied a cartographic 

approach to study coastal changes in Ras Al Khaimah (UAE); they reconstructed the 

history of coastal change in the study area. Alhameli and Alshehhi (2004) used 

historical aerial photographs, images and old documents to describe the rapid 

development of the UAE on selected sites with no measurements or analysis of DP 

mapping or other related parameters. Abdi and Nandipati  (2010) investigated land 

cover changes in Abu Dhabi capital city and surrounding regions from 1972 to 2000 

using Landsat images. The study conducted a simple change detection analysis of four 

land cover classes; none of them focused on DP plantations.  

1.4.4.4 Biophysical Predictors 

The biophysical predictors of vegetation growth need to be considered in RS 

studies due to the different rates of growth of various parts of vegetation (Chong et al., 

2017). These predictors can be detected by remote sensors and are manifested through 

shadow, roughness, and spectral response (McMorrow, 2001). RS variables measured 

and correlated with biomass quantification include the spectral reflectance of 

vegetation as the spectral properties of AGB obtained by the sensors have unique 

signature correlated with chlorophyll content in the plants (Lu, 2006). The signals are 

sensitive to AGB structure and influenced by density, shadow, texture, soil moisture 

and roughness, and constitutes one of the RS variables used in estimating biomass 
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(Baccini et al., 2008; Eisfelder et al., 2012). The biophysical predictors used for 

estimating biomass include leaf area index (LAI), chlorophyll content, leaf nutrient 

concentration, height, DBH, stand basal area, greenness of canopy, and crown 

measurements like crown area (CA) and crown diameter(CD). All of these predictors 

are traditionally used to estimate biomass, but only some are applicable for RS based 

estimation (Figure 6). 

 

Figure 6: Different biophysical parameters used in RS based estimation of AGB. After 
(Dahy et al., 2020; Salem Issa et al., 2020a). 
 

 Xiaoming et al. (2005) observed a robust logarithmic correlation between LAI 

and AGB. LAI can be defined as the area of one-sided leaf tissue per unit ground and 

measures the density of the leaves surface in a canopy. Tan et al. (2013) estimated LAI 

of oil palm in Malaysia using UK-DMC2 and ALOS PALSAR. They concluded that 

an increase in the LAI shows a proportional increase in the spectral reflectivity or 

Normalized Difference Vegetation Index (NDVI) during the initial growth stage; 

however, it presents little to no increase once it attains the full canopy cover due to 

sensor saturation. The ability of hyperspectral RS to collect reflectance in many narrow 

bands makes it particularly useful for extracting vegetation parameters, such as LAI, 
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chlorophyll content, and leaf nutrient concentration (Im & Jensen, 2008). Large scale 

photographs have been used to measure various forest characteristics, such as tree 

height, CD, crown closure, and stand area (Clark et al., 2005). In their study on the 

indirect estimation of biomass, Popescu et al. (2003) used RS data to determine tree 

canopy parameters, such as CD, using multiple regression analysis and canopy 

reflectance models. The CA can be measured by satellite imageries and, thus, provide 

biomass estimation. Suganuma et al. (2006) found that medium-resolution or more 

detailed spatial resolution data could be used for the crown coverage. Crown projection 

area (CPA), which is the canopy area that is covered by an individual tree, can be 

calculated by delineating trees using object-based image analysis (Chong et al., 2017; 

McMorrow, 2001). Greenberg et al. (2005) have effectively used IKONOS data 

(spatial resolution 4 meter) for estimating crown projected area, DBH and stem 

density. Song et al. (2010) estimated tree crown size from IKONOS and Quickbird 

images and concluded that this approach could provide estimates of average tree crown 

size for hardwood stands. 

Height information of a tree can be retrieved using various approaches of RS, 

e.g., LiDAR and Radar. Height has been shown to be a potentially successful indicator 

for age in oil palms, for example, and it is widely used in estimating forest biomass 

(Chong et al., 2017). Radar backscatters (P and L bands) are positively correlated not 

only with tree height and age but also with other major biophysical forest parameters 

such as DBH, basal area, and total AGB (Kumar et al., 2015). LiDAR sensor can 

directly measure three-dimensional (3D) components of vegetation canopy structure 

and is widely used in the estimation of forest biophysical parameters (Appendix 2). 

LiDAR data are used for biomass estimation for different forest environments; tropical 

forest biomass, temperate mixed deciduous forest biomass, and in measurements of 
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biophysical parameters such as tree height and stand volume, and CD and canopy 

structure in general. The two-dimensional data (2D) have limitations in estimating 

vertical vegetation structures such as canopy height, which is one of the critical 

biophysical parameters for biomass estimation (Appendix 2). Recently, optical data 

such as ALOS, panchromatic RS instrument for stereo mapping (PRISM), IKONOS 

stereo satellite images, and SPOT have been used to provide a stereo viewing 

capability that can be used to develop vegetation canopy height, thus improving 

biomass estimation performance. St-Onge et al. (2008) assessed the accuracy of the 

forest height and biomass estimates derived from an IKONOS stereo pair and a LiDAR 

digital terrain model. Reinartz et al. (2005) used SPOT 5 HRS for forest height 

estimations in Bavaria and Spain, while Wallerman et al. (2010) investigated 3-D 

information derived from SPOT 5 stereo imagery to map forest variables such as tree 

height, stem diameter and volume. 

1.4.4.5 Remote Sensing Variables 

Vegetation indices are generally used to estimate biomass in many studies 

(Clewley et al., 2012; Robinson et al., 2013; Schlerf et al., 2005; Salem Issa et al., 

2019; Terakunpisut et al., 2007). VIs are calculated from mathematical 

transformations of the original spectral reflectance data and can be used to interpret 

land vegetation cover (Das & Singh, 2012). VIs are applied to remove the variations 

caused by spectral reflectance measurements while also measuring the biophysical 

properties that result from the soil background, sun view angles, and atmospheric 

conditions (Lu, 2006). The notion of VI is well adapted for quantifying vegetation over 

large areas, for example, over areas covering many pixels of an image (Bannari et al., 

1995). VIs are quantitative measurements indicating the vigor of vegetation. They 

show better sensitivity for the detection of biomass than individual spectral bands 
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(Bannari et al., 1995). Previous studies have shown a significant positive relationship 

between biomass and VIs (Patel et al., 2007). In order to examine the relationship 

between AGB and RS variables including individual band reflectance values and VIs, 

Günlü et al. (2014) used Landsat TM in their study and found that VIs present better 

estimation of AGB in Anatolian pine forests with R2 equal to 0.606, compared to 

individual band reflectance with R2 of 0.465. 

AGB models could be developed using many available predictors, grouped into 

two distinct categories: raw bands of the sensor as reflectance and VIs, including the 

simple ratio (SR), difference vegetation index (DVI), NDVI, ratio vegetation index 

(RVI), global environmental monitoring index (GEMI), soil adjusted vegetation index 

(SAVI), enhanced vegetation index (EVI), tasseled cap index of greenness (TCG), 

tasseled cap index of brightness (TCB), tasseled cap index of wetness (TCW), and 

many others. All these indices can measure the presence and density of green 

vegetation, overall reflectance (e.g., differentiating light from dark soils), soil moisture 

content, and vegetation density and structure). Most VIs rely on red and infrared (IR) 

bands, which are the raw bands present in earth observation satellites and often contain 

more than 90% of the information related to vegetation (Baret et al., 1989; Huete, 

1988; Jiang et al., 2008; Pinty & Verstraete, 1992; Turner et al., 1999). Early studies 

have shown that both the simple ratio (Near Infrared /Red) and the NDVI were closely 

related to dry matter accumulation (Baret et al., 1989). The use of vegetation and other 

indices (e.g., NDVI, EVI, SAVI) are considered as part of the classification method. 

The principle of applying NDVI, for example in vegetation mapping, is that vegetation 

is highly reflective in the near infrared (NIR) and highly absorptive in the visible red. 

The contrast between these channels can be used as an indicator of the vegetation 

greeness (Xie et al., 2008, p. 200). Sonnenschein et al. (2011) used NDVI, SAVI and 



41 
 
TCG from Landsat imageries for forests mapping in Greece. In a study conducted in 

Saudi Arabia, Aly et al., 2016b found that NDVI images of Landsat could be classified 

into three classes of vegetation cover in arid regions, namely dense vegetation cover 

(NDVI > 0.5), moderate vegetation cover (NDVI 0.25–0.5), and sparse vegetation 

cover (NDVI < 0.25). The ability of VIs to separate the vegetation from its background 

varies from one ecoregion to another, and from one plant species to another. VIs 

commonly used to estimate biophysical variables such LAI, APAR and biomass 

include NDVI, EVI, and SAVI (Kumar et al., 2015, p. 20). NDVI is a prominent and 

frequently used index with different spatial resolutions of the optical sensors (Figure 

7). Thenkabail et al. (2004) implemented a regression model using NDVI and optical 

bands reflectance number 3 and 4 of IKONOS for estimation of AGB for oil palm in 

Africa, with 64–72% accuracy. Morel et al. (2012) found that the Normalized 

Difference Fraction Index (NDFI) of Landsat ETM+ data performs better when 

estimating AGB for oil palm in Malaysia with kappa coefficient equal to 0.87. 

Srestasathiern and Rakwatin (2014) found that the best performing VI to separate oil 

palms from its background was the Normalized Difference Greeness Index (NDGI), 

which is a normalized ratio of green to the red band, and displays the highest 

discriminating power using a histogram dissimilarity metrics. Nevertheless, these 

results could not be generalized as all VIs must be tested. Zhao et al. (2016) examined 

specific spectral bands of Landsat and their relationships with AGB in the Zhejiang 

province of Eastern China. They found that, when the forest stand structure is complex, 

VIs including shortwave infrared spectral bands (SWIR) had a higher correlation with 

AGB than others. However, the VIs including NIR wavelength improved correlations 

with AGB in relatively simple forest stand structures. VIs can maximize the sensitivity 

for recording the green vegetation situation (Günlü et al., 2014). The choice of 
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adequately performing VIs depends on the type of ecosystem, the environmental 

conditions and the spectral information available. In their study on forests in Bogotá, 

Colombia, Clerici et al. (2016a) estimated AGB and found that the best performing 

AGB estimation model was based on the RVI, with R2 equal to 0.582. They also found 

that atmospheric and topographic correction was vital in improving model fit, 

especially in high aerosol and rugged terrain. 

 

Figure 7: The use of vegetation indices and NDVI for estimating AGB. After (Dahy et 
al., 2020; Salem Issa et al., 2020a). 

 

However, some studies had shown poor relationship between biomass and VIs 

compared with using raw bands (Onisimo, Mutanga & Skidmore, 2004). Singh et al. 

(2014) used two optical sensors (Landsat TM and SPOT 5) to assess their efficacy and 

evaluate disparities in forest composition and AGB in Sabah, Malaysia. They found 

that NDVI derived from SPOT 5 could distinguish between pristine forests and oil 

palm plantations. In fact, the reflectance values of bands 3 (red sensitive) and 4 (NIR 

sensitive) of Landsat TM were strongly correlated with the field-based AGB values 

while both VIs derived from Landsat TM and SPOT 5 (such as NDVI) were weakly 

correlated with the field-based AGB values. The data saturation problem in Landsat 

imagery is well recognized and is regarded as an important factor resulting in 

inaccurate forest AGB estimation, especially when AGB is high (>130 Mg.ha−1) and 
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when the forest structure is heterogeneous (Zhao et al., 2016). In a study to estimate 

total living biomass of Miombo woodlands of Tanzania, Gizachew et al. (2016) found 

no clear evidence of data spectral saturation at higher biomass value in open canopy 

woodlands. They suggested that Landsat-8 OLI derived NDVI could be used as 

suitable auxiliary information for carbon monitoring in the context of the reducing 

emissions from deforestation and forest degradation program (REDD+). 

1.4.4.6 Remote Sensing/GIS Integrated Models 

GIS is a platform hosting spatial databases capable of assembling and integrating 

geographically referenced data, running spatial analysis, and integrating various types 

and formats of spatial data (Ardö & Olsson, 2003; Deng et al., 2011; Kamusoko & 

Aniya, 2009). A repository of various data  sources (e.g., forest inventory, land use 

maps, elevation and RS data) can be used to measure vegetation parameters over large 

areas (Labrecque et al., 2006). GIS is usually employed to process model inputs and 

to visualize results (Deng et al., 2011). However, building GIS-based models to predict 

future scenarios for forest management and the implementation of afforestation plans 

is another, more valuable product. In RS-GIS integrated models, RS data are used as 

input to the GIS model; where GIS act as a platform for data layering and database 

building in order to perform spatial data analysis and map creation. This not only saves 

time, but also allows for faster and better communication between research centers 

across the globe (Deng et al., 2011). The use of geospatial modeling to study the 

current state of carbon sequestration and its future dynamics is a promising technique; 

it has the potential ability to tackle the ecological assessment problems (Rattan Lal, 

2002). Furthermore, as mentioned above, the integration of RS data into GIS models 

enables adding ancillary and field data (soil, climate, topography, etc.), in the analysis 

and increasing reliability in estimating AGB. For example, there are different GIS-
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based AGB estimation models that integrate other data models such as: digital terrain 

model (DTM), rainfall models, canopy height models, atmospheric scattering models, 

biomass production models, grazing models, 3D forest structure models and regression 

models (Aranha et al., 2008; G. Baumann, 2009; Cho et al., 2012; Deng et al., 2011; 

Gernhardt et al., 2010; Greenberg et al., 2005; Holm et al., 2003; Le Maire et al., 2008; 

Li et al., 2008; Maynard et al., 2007; Montaghi et al., 2013; Ibrahim Ozdemir & 

Karnieli, 2011; Ramachandran et al., 2007; Thakur & Swamy, 2012; Wang et al., 

2010). An integrated classification approach, coupled with GIS analysis, has been 

employed successfully to improve LULC, forest, and biomass mapping for Landsat 

data (Kamusoko & Aniya, 2009; Labrecque et al., 2006; Ohmann & Gregory, 2002). 

Results show that an integration of RS and spatial analysis functions in GIS can 

increase the overall classification accuracy from 50.12% to 74.38% (Myint et al., 

2011a). Furthermore, the integration with GIS-based models are becoming more 

common, used in around 14% of the reviewed studies (Figure 4). 

1.4.5 Arid Lands Case Studies 

Mapping vegetation for accurate measuring of biomass and assessing CS is a 

significant challenge, specifically for arid lands, where RS has unique challenges that 

are not typically encountered in other sub-humid or humid regions. Major challenges 

include low vegetation signal-to-noise ratios, high soil background reflectance, 

presence of biological soil crusts, high spatial heterogeneity from plot to regional 

scales, and irregular growing seasons due to unpredictable seasonal rainfall and 

frequent periods of drought (Bestelmeyer et al., 2015; Cheng et al., 2017; Haughton et 

al., 2018; Wu & Archer, 2005). Additionally, there is a relative discontinuity in the 

long-term measurements in arid lands, which hampers reliable calibration and 
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evaluation of RS data products. Consequently, RS techniques developed in other 

ecosystems often result in inaccurate estimates of arid lands ecosystem CS.  

Arid lands, defined as regions where annual potential evapotranspiration 

substantially exceeds precipitation, are critically important to society, yet 

exceptionally vulnerable to climate change (Smith et al., 2019). Arid lands make up to 

40% of the Earth’s land surface and provide ecosystem services to more than two 

billion people, including supporting significant crop production and forage for wildlife 

and domestic livestock (Bestelmeyer et al., 2015). RS images can reduce the 

complexity of fieldwork by collecting quantitative and qualitative information at 

regular intervals and enabling the mapping of inaccessible places, as is the case in most 

arid regions (Abburu & Golla, 2015; Al-Ahmadi & Hames, 2009; Diouf & Lambin, 

2001; Holm et al., 2003; Mangiarotti et al., 2008; McGwire et al., 2000; Olsen et al., 

2015; Ibrahim Ozdemir & Karnieli, 2011; Qi, Huete, et al., 1994; Ren et al., 2011; 

Ritchie & Rango, 1996; Schucknecht et al., 2015; T. Svoray et al., 2001; Tal Svoray 

& Shoshany, 2003; Tucker et al., 1985; Wylie et al., 1995).  

In their review, Eisfelder et al. (2012) stated that RS studies of vegetation in 

arid regions are scarce, and additional methodological research is needed to address 

the specific challenges faced by RS techniques in these environments. In this review, 

out of the 171 reviewed studies conducted from 1984 to 2020 to estimate AGB, only 

15 studies were conducted in arid lands and another 24 studies in semiarid ecosystems 

(more than a third of these studies were conducted in Niger and Senegal). Figure 8 

shows the proportions of RS-based AGB estimation studies in arid and semi-arid 

regions taking into account the proportion of reviewed studies, sensors used and their 

spatial resolutions, the use of GIS tools and locations of the studies. 
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Figure 8: Studies on estimating AGB using RS in arid/semiarid ecosystems. After 
(Salem Issa et al., 2020a). 
 

As mentioned above, monitoring the spatiotemporal dynamics of arid lands 

ecosystem structure and function is therefore a high research priority. Although the 

methods detailing vegetation cover mapping and estimation integrating RS and GIS 

are well developed, research on RS-based biomass estimation for arid lands is 

relatively scarce compared to other ecosystems (tropical, subtropical, temperate and 

boreal forests) (Eisfelder et al., 2012). Very few biomass measurements are available 

for plant species in desert ecosystems. Although biomass per unit area is normally low 

in those regions, the vast extent of the Earth’s arid lands gives it a significant role as a 

carbon pool and for the supply of essential ecosystem services (Zandler et al., 2015). 

Studies showed a strong link between desertification and emission of CO2 from soil 

and vegetation to the atmosphere (Lal, 2001). Desertification, and degradation of soils 

and vegetation in arid lands resulting from climatic and anthropogenic factors, affects 

more than one billion hectares of soils and more than 2.5 billion hectares of rangelands 

globally. Furthermore, an alarming estimate of six billion hectares of land is affected 
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by desertification per year (Lal, 2001). Lal (2001) concluded that the total world 

historic loss of carbon due to desertification in the period between 1850 and 1998 was 

in the order of 19–29 petagram (Pg), an amount that could have been sequestered (1 

Pg = 1015 gram). Information on biomass helps to quantify the resilience of arid land 

systems and is thus essential for sustainable land-use management (G. Baumann, 

2009). Hence, suitable methods to map biomass in arid land regions still need to be 

developed (Mangiarotti et al., 2008). 

If plant species are very scattered, which is the case for most arid lands 

ecosystems, where vegetation is characterized by its patchiness pattern, the 

background reflection is mostly related to the soil. Hence, the selection of sites must 

be characterized by their relatively high density of plant species under study in order 

to reduce the background effects as much as possible. In addition, the selected sites 

must be relatively large in area and be homogenous, to enable the extraction of real 

spectral signature that represent the species to be mapped or to use a minimum number 

of field plots within each pixel as well as to increase the spatial/spectral resolution of 

the sensors used (Eisfelder et al., 2012). Moreover, using satellite images to map and 

correlate biomass is only possible if the target vegetation spectra are strong enough to 

be identified within the pixel (Aly et al., 2016b; Oldeland et al., 2010; Tian et al., 

2016). This presents a major challenge in the desert where vegetation is usually sparse, 

offering a small spectral target that requires higher resolutions to be detected (Bradley 

et al., 2019). In the desert environment in China, Ren et al. (2011) estimated crop 

biomass of individual components (e.g., leaves, stems) for the whole season using red 

edge reflectance of hyperspectral data. Optical RS probably provides the best 

alternative to biomass estimation using RS due to its historic global coverage, 

repetitiveness and cost-effectiveness and thus is useful and operational in dry lands. 



48 
 
Such regions can be found in most of the low-income developing or least developed 

countries. Zandler et al. (2015) used Landsat 8 OLI in the arid regions of Tajikistan to 

model total biomass in extremely low vegetation cover. The coverage of the SWIR 

spectral region showed the importance in detecting shrubs or nonphotosynthetic 

vegetation. To deal with soil brightness, the study used additional soil adjusted VIs 

variations such as SAVI, transformed soil-adjusted vegetation index (TSAVI), and 

modified soil-adjusted vegetation index (MSAVI) as VIs suffer from various soil 

effects, especially when vegetation cover is low. The study indicated that biomass 

quantification in this arid setting is feasible but is subject to large uncertainties. One 

of the main challenges is the extreme aridity and the associated strong influence of soil 

background. Another challenge is the fact that large parts of arid or desert plants 

consist of nonphotosynthetic, woody matter and hence the photosynthetic signal, 

captured by most spectral bands and indices, may be low in relation to the biomass 

amount. 

1.4.6 Learning Lessons from the Literature Review 

Geospatial technologies are practical, feasible and can provide an adequate 

mean for AGB assessment monitoring, modeling and management of carbon 

sequestration. This conclusion is the main outcome of this literature review and is 

consistent with the consensus of numerous scientific papers on the subject published 

in the last five decades. The use of these technologies is an efficient tool, especially 

for developing countries, for measuring, mapping, monitoring, modeling and 

management of their CS in biomass and soil; leading to improve soil and plant 

productivity, to increase food security, and to control land degradation. In their turn, 

these countries can play a significant role in reducing the negative impact of climate 

change, by mitigating carbon emissions. Of course, there are many methods that can 
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be used for estimating CS, and all of them have their advantages and disadvantages. 

Traditional methods, relying on heavy fieldwork measurements, are the most accurate, 

however, they require significant time, expense and labor, and can be damaging for 

the ecosystems.  

Building allometric equations can help avoid the destructive nature and other 

disadvantages of the fieldwork method. However, most of the allometric equations are 

mixed species-equations and not tailored for single one specie; most of them are also 

built for specific sites and ecosystems (less applicable for arid regions). Also, it is now 

more and more recommended to build allometric biomass equations that are correlated 

with and rely more on geospatial techniques to estimate biomass and CS (crown and 

height attributes). Building a database including the rates of carbon sequestered and 

stored for each plant species, especially those with high economic values, will fill the 

gap and increase the understanding of the atmospheric carbon sequestration potential 

of plant species and ecosystems. 

The use of geospatial technologies should always be accompanied by ground 

measurements for verification and model validation of results which are required at 

some stages in the estimation of biomass. The best fit methodology relies on both 

fieldwork and the analysis of RS data and GIS techniques. The suggested process 

involves three steps, including: pre-field preparations to identify sample areas of 

interest, fieldwork that includes sample collection and measurement of plant 

characteristics, and post-field activity that focuses on processing RS data, 

classification, GIS model development and validation. Assessing CS remotely and 

consistently over large areas varies greatly depending on the type of instruments used, 

and the platforms. Nevertheless, these difficulties can be solved and tackled using 

different sensor options and other innovative methods, and hence avoiding the 
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limitations that relate to these aspects such as scale, cost, and associated errors and 

uncertainties. 

High resolution RS data are the most accurate. However, moderate resolution 

satellite data, such as Landsat, have shown to be effective in estimating AGB and, 

consequently, CS, with good accuracy. Furthermore, these sensors provide invaluable 

historical data to monitor the change of CS over time. Developing algorithms that 

combine more than one remote sensor is highly important for tackling the challenges 

associated with estimating AGB and subsequently assessing carbon sequestration. 

Merging and fusion of more than one set of data have the potential to reduce 

uncertainty errors in biomass estimation. In such studies, it is important to consider the 

effects of bioclimatic factors depending on parameters such as plant age, species, forest 

type, rainfall, topography, vegetation structural variations, heterogeneity of 

landscapes, and seasonality. One of the common challenges in achieving this, is 

mapping the spatial patterns of vegetation and soil carbon and producing geo-

referenced estimates of carbon. Such maps provide a better understanding of carbon 

dynamics and help quantify the regional and global carbon budgets. In addition, this 

will provide decision-makers with a strong knowledge base to be able to identify and 

focus on the most essential issues. 

The arid lands RS-GIS research should be given a high research priority, 

especially given that more than 2 billion people depend on services provided by arid 

lands ecosystems. A combination of the field-based measurements and geo-spatial 

approaches reviewed have the potential to help improve carbon estimation to reduce 

emissions resulting from deforestation and forest degradation, and to design incentive 

programs in arid land regions. Therefore, it can be applied to enhance the decision-
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making process on sustainable monitoring and management of carbon sequestration 

like afforestation, reforestation, and forest conservation projects. 

1.5 Structure of the Dissertation 

Chapter 2 covers the overall methodology of the dissertation. Subsections 2.1 

and 2.2 specifically focus on the study area of Abu Dhabi and its geographic setting 

while Subsection 2.3 focuses on the RS data used during the course of this research. 

Subsections 2.5, 2.6, and 2.7 describe in details the proposed procedures of the 

developing of allometric equations for data palm (from 2.5.1 to 2.5.4), classification 

of LULC & accurate mapping of date palm plantations (from 2.6.1 to 2.6.4), and 

building RS-based models for biomass and carbon stock estimation of date palm 

plantations (from 2.7.1 to 2.7.6). 

Chapters 3, 4, 5, and 6 display the results of applying the proposed 

methodology explained in the previous chapter (Chapter 2). Chapter 3 shows the 

results of developing date palm biomass allometric equations and calculating the 

carbon stock both, in date palms and their soils. Subsections 3.2.2. and 3.2.3 focus on 

calculating the biomass of date palm at different biomass components, while 

Subsection 3.2.4 focuses on estimating the carbon stock in date palm at different age-

stages. Chapter 4 highlights the results of a pilot study in a date palm farm (AlFoah, 

north of AlAin city) to assess carbon stock in date palm plantations by using remote 

sensing and field measurements. Subsection 4.2.3 shows the built RS-based models to 

estimate biomass on different age classes (mature, non-mature, and mixed ages). 

Chapter 5 presents the mapping of LULC and vegetated areas of Abu Dhabi using the 

moderate resolution of Landsat-8 OLI images (5.2.1 and 5.2.2) and mapping of the 

young, medium, and mature date palms in Abu Dhabi using sub-meter world view-2 

images (5.2.3). Subsections 5.2.4 and 5.2.5 focus on assessing the accuracy of the 
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produced maps and counting the date palms of Abu Dhabi at different age stages using 

a remote sensing approach. Chapter 6 displays the results of conducting a regression 

analysis between remote sensing variables (single bands and vegetation indices) with 

54 field plots covering different age stages of date palms in the emirate of Abu Dhabi. 

Subsection 6.2.3 and 6.24 presents the final RS-based models and their validation to 

estimate biomass and carbons stock in mature (> 10 years) and non-mature date palms 

(≤ 10 years). The chapter ends up with an assessment map of the carbon stock by date 

palms of Abu Dhabi. 

Chapter 7 discusses some critical issues which have emerged during the course 

of this study, while Chapter 8 concludes the whole learned lessons and 

recommendations for this dissertation.  
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Chapter 2: Research Methodology 
 

2.1 Study Area 

The UAE lies in the west part of the Arabian Peninsula and borders Oman to 

the East, Saudi Arabia to the south and west, and the Arabian Gulf to the North (Figure 

9). The UAE has a coast line approaching 600 km on the Arabian Gulf and another 

100 km to the east on the Indian ocean. The study area encompasses the whole emirate 

of Abu Dhabi, the largest of the seven emirates composing the UAE. The Emirate of 

Abu Dhabi is located in the West and South West part of the UAE and is bounded by 

22° 55´ to 24° 48´ N, and 51° 30´ E to 56° 00´ E and extends over a land area of 67,340 

km2. It is administratively divided into 3 municipalities: Abu Dhabi, Al Ain and the 

Western Region. The Emirate, which hosts the capital city of Abu Dhabi, has 

witnessed dramatic conversions of its lands, supported by revenues from oil; from 

being desert / desert-like covered country to an urbanized and well-developed modern 

state. Furthermore, the government has heavily invested in large greening projects, to 

the extent that by the end of 2017, more than 540 afforested areas planted mainly with 

date palms (Abu Dhabi State of Environment Report, 2017; Salem Issa et al., 2019) 

have been added. 
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Figure 9: Study Area. 
 

2.2 Geographic Settings 

Elevations vary between zero main sea level in the coastal areas and increases 

smoothly in desert areas which constitute approximately 85% of the Emirate’s main 

land, averaging an altitude of about 200 m above sea level (where most date palm 

plantations are found). Its geomorphology is dominated by five main landforms: sand 

dunes, inter-dunal sands, coastal sabkhas (flat plains with salty crust), inland sabkhas 

and exposed rocks. The climate of the study area is affected by its location inside the 

desert with proximity to the coasts of the Arabian Gulf and the sea of Oman. The 

Emirate’s climate is manifested mainly by two seasons: summer and winter. In the 

summer season (April – September) temperature varies between 35° and 45°, with a 

climax of 48°C in July and August, accompanied with high concentration of water 

vapour boosting the relative humidity to reach up to 90%. On the other hand, the winter 
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season’s (October – March) temperatures range from 10 to 24°C. The humidity 

throughout all seasons is relatively higher in those areas near in Arabian Gulf and 

lower in the south, south-west, and AlAin region. In the summer season, there is a high 

incidence of suspended dust throughout the country brought by the prevailing wind 

from the head of the Arabian Gulf (Western, 1989). 

Rainfall occurs during winter season mainly between November and February 

with precipitation amounts barely reaching 12 cm per year (National Center of 

Meteorology 1995 -2018). The mean annual rainfall can be highly variable between 

one year to another. The western and southern deserts of Abu Dhabi are extremely dry, 

whereas the central desert around Al Wagan receives a relatively high amount of 

precipitation (Al-Rawai, 2004). The groundwater level is lowering and several wells 

have dried up or depleted, which increasing salinity levels, due to over-pumping, 

increasing in demand, and combined with scarce and sporadic rainfall (Dohai, 2007; 

Salem Issa & Dohai, 2008). 

Abu Dhabi’s soils can be categorized, broadly, into six categories: sandy, sandy 

calcareous, gypsiferous, saline, salinegypsiferous and hard pan soils (Shahid & 

Abdelfattah, 2008). Based on soil characteristics of the desert soils, “Saltation” as the 

dominant mechanism of soil particle movement is deduced, followed by surface creep 

and the suspension movement (Shahid & Abdelfattah, 2008). The only soils that tend 

to develop on the flat surface of a desert environment are fine-grained silts. The 

increase of calcium carbonate in soil, which is very high throughout the country, 

usually leads to many problems related to fertilization (e.g. fixing phosphorous and 

potassium elements), yellowness (deficiency of ferrous element), aeration of roots, and 

soil alkalinity. In general, biological activity in local soils is very low, and only about 

three percent of the whole country is naturally suitable for arable farming (Al-Rawai, 
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2004). About 60% of all plant species are annuals (Jongbloed, 2003). They germinate 

and flower soon after the first rain, generally from February to April. The perennial 

species generally flower from January to early May, and some in September and 

November (Jongbloed, 2003). 

Three private farms from Al Foah farms area, north of Al Ain city, were 

selected to conduct the field data collection for building the allometric biomass 

equations specifically for DP (see Chapter 3), namely: Masakin (24° 42' N and 55° 76' 

E), Qattara (24° 29' N and 55° 78' E) and Salamat West (24° 15' N and 55° 42' E) 

(Figure 10). Al-Ain city was established around an old date palms oasis and as the city 

expanded, the DP plantations expanded as well. The climate of AlAin is characterized 

by an average minimum temperature of 14.7C and an average maximum of 42.9C. 

The annual average long-term rainfall is 59.1 mm and the humidity is 44.3% (National 

Center of Meteorology 1995 -2018). The geographic setting is characterized by a sand 

dunes barrier to the west and the mountain chains to the east, protecting Al-Ain city 

from the effect of wind and sea breeze coming from both east and west directions. 
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Figure 10: DP farms selected to build the biomass allometric equations. They are 
located on: Masakin, Qattara, and Salamat West. Date palms were uprooted, destroyed, 
burned and analyzed to build the biomass allometric equations. After (Salem Issa et 
al., 2018). 
 

2.3 Remote Sensed Data 

 Six atmospherically corrected (Level-2) Landsat-8 OLI images, acquired in 

April and May 2017, were collected and downloaded from the U.S. Geological Survey 

website (https://earthexplorer.usgs.gov/) (Table 2). Additionally, six panchromatic 

bands (Level-1) of the same scenes were downloaded and later used for pan-

sharpening of the original Level-2 scenes. All image bands were georeferenced and 

co-registered to the Universal Transverse Mercator (UTM) projection (Zone 40, WGS 

84).  Band1 (coastal/aerosol), Band2 (blue), Band3 (green), Band4 (red), Band5 (NIR), 

Band6 (SWIR 1), and Band7 (SWIR 2) of each image were stacked and saved using 

https://earthexplorer.usgs.gov/
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ERDAS Imagine software. Furthermore, panchromatic band-8 (15 m resolution) and 

the stacked multispectral images were merged (pan-sharpened) to produce enhanced 

and pan-sharpened images of 15 m spatial resolution. The Nearest Neighborhood (NN) 

algorithm was applied during the resampling process.  

Table 2: Details of the six Landsat-8 OLI Level-2 scenes used in the study. 

No. Scene 
(Path/Row) 

Date 
(2017) 

Bands Used (m) Resolution/ 
Swath 

1 160/43 24th April Band1 (coastal): 0.433–0.453,  
Band2 (blue): 0.450–0.515, 
Band3 (green): 0.525–0.600, 
Band4 (red): 0.630–0.680, 
Band5 (NIR): 0.845–0.885, 
Band6 (SWIR 1): 1.560–1.660, 
Band7 (SWIR 2): 2.100–2.300, 
and  
Panchromatic: 0.500–0.680 

 
30 meters for 
multispectral 
bands and 15 
meters for 
panchromatic. 
Swath area is 
185 km. 

2 160/44 26th May 

3 161/43 15th April 

4 161/44 15th April 

5 162/43 22nd April 

6 162/44 22nd April 

 

The vector boundary shapefile of the Emirate of Abu Dhabi was used to subset 

the study area. To achieve the goal, a single large mosaic image was created using 

available scenes (Table 2). Illumination equalizing as a color balancing method was 

used for mosaicking the scenes. Mosaic operation based on weighted seamline 

generation procedure was applied for scenes: 160/43, 160/44, 161/43, and 161/44 as 

these images involve the most significant urban centers of the study area, while for 

scenes: 162/43 and 162/44, the geometry-based seamline generation procedure was 

applied as the images contain homogenous areas such as desert and sabkhas (Figure 

11), (Al Ahbabi, 2013).  
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Figure 11: Mosaicking of six pan-sharpened Landsat-8 OLI scenes. The six pan-
sharpened scenes were radiometrically adjusted using histogram equalization and 
displayed as false color; while the single large mosaic image displayed as natural color. 

 

Mapping DP at the three age stages: young, medium, and mature (see 

Subsections 2.6.3 and 5.2.3), required the use of about 829 scenes of World View 2 

(WV-2) acquired in 2014 (April/ May) and covering all the vegetated areas of Abu 

Dhabi were used. The WV-2 images have eight multispectral bands at a resolution of 

1.85 m and one panchromatic band at a resolution of 0.50 m. Only the following WV-

2 bands, described in Table 3, were used: Green (band 3), Red (band 5), NIR 1 (band 

7), in addition to the panchromatic band. The selected WV-2 multispectral bands are 

equivalent to bands 3, 4, and 5 of Landsat 8 OLI which were shown to exhibit a strong 

correlation with significant RS variables (Salem Issa et al., 2019). The pan-sharpening 

of the WV-2 multispectral bands was achieved using the NN algorithm to produce 

images with 0.50 m pixel size (Jawak et al., 2013). 
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Table 3: Details of the WV-2 scenes/bands used in the study. 

No. Band Width (m) Resolution/ Swath 
1 Band 3 (Green) 0.510 – 0.580 1.85 meters for multispectral bands and 

0.50 meters for panchromatic.  
The swath of each scene is 16 kilometers. 2 Band 5 (Red) 0.630 – 0.690 

3 Band 7 (NIR 1) 0.770 – 0.895 

4 Panchromatic  0.450 – 0.800 

 

2.4 Methodology Flowchart 

Figure 12 shows the flowchart of the whole research methodology. The 

methodology consists of: (1) Developing allometric equations for DP to calculate 

biomass and sequestered carbon as function of structural palm parameters, (2) 

Delineating and mapping date palm plantations using multispectral classification of 

moderate and high-resolution RS data, (3) Developing a RS-based biomass model to 

calculate biomass and sequestered carbon as function of variables measured from 

space, and (4) Applying the RS-based biomass model to create assessment maps of 

sequestered carbon in date palm plantations in the study area. 
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Figure 12: Methodology flowchart. 
 

2.5 Developing Allometric Equations for Date Palm 

2.5.1 Field Data Collection 

A number of DP were selected to measure AGB and BGB in order to build 

specific allometric equations and calculate the CS in both biomass and soil for DP 

plantations in the study area. Age is one of the most important factors that influence 
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the biomass of the palm and its structural measurements (Sunaryathy et al., 2015). A 

substantial amount of research has been undertaken and published on the estimation 

of oil palm biomass at various ages (Husin et al., 1987; Kamarudzaman et al., 1995; 

Khalid et al., 1999a; Rees & Tinker, 1963). In the current study, a similar approach 

has been adopted to estimate DP’ biomass at three different age stages:  

- Age stage One (young) for plantations younger than 5 years;  

- Age stage Two (medium) for plantations between 5 and 10 years; and 

- Age stage Three (mature) for plantations exceeding 10 years of age. 

Accordingly, five DP were selected, prepared and uprooted to represent each 

age stage. Another influencer factor in DP biomass storing is variety. Indeed, DP in 

the study area differ in their cultivars (varieties) with different palm growth rates as 

well. Therefore, field samples were selected to represent the different varieties as well 

as the three different age stages in the study area including Fardh, Bumaan, Khunaizi, 

Khlalas, Baghel, Jabri, Shahem, Jash Ramli, and Neghal (see Appendix 4). 

2.5.2 Field Measurements 

A fieldwork campaign was conducted during the fourth week of April 2018 

where five DP were uprooted for each age stage (total of 15 palms). Each sampled 

palm was partitioned into three parts: crown, trunk and roots (Khalid et al., 1999a). 

The term biomass, in this research, refers to the value of dry weight unless indicated 

otherwise. Although some researchers prefer to use the fresh weight instead of dry 

weight for building their equations (Dewi et al., 2009; Khalid et al., 1999a) (Appendix 

1). Hence, AGB is calculated as the sum of the crown and trunk weight while BGB is 

calculated as the weight of the root system. A large commercial scale balance was used 

to get the fresh weight of crown, trunk and roots in (Kg). From each part of the 
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uprooted palms, three samples were collected (3 crown samples, 3 trunk samples and 

3 root samples), (Figure 13).  

 

Figure 13: Uprooting, partitioning, and weighing date palms. After (Salem Issa et al., 
2018, 2020b). 

 

Structural variables of uprooted DP including total palm height, trunk height, 

diameter breast height (DBH), crown diameter (CD), crown area (CA) and number of 

fronds (#Frond), were measured and later used in the regression analysis to build 

specific biomass allometric equations of date palm. Before uprooting the palm, the 

following variables were measured: (i) DBH in cm by measuring the circumferences 

of the trunk at 1.3 m height and dividing by the number π. For small palms, with no 

developed trunk, the diameter was measured at the base of the palm, (ii) Number of 

palm fronds (#Frond), (iii) CD in meter, and (iv) CA in square meter was calculated 

using the sphere equation (CA = π CD2/4), assuming a rounded palm crown. After 

uprooting the palm, the following variables were measured: (i) Palm height (H) in 

meter, (ii) Palm trunk height (Ht) in meter, and (iii) Crown depth (Δheight), defined 

as the difference between total and trunk heights in meter. 
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2.5.3 Biomass and Soil Samples Processing for Measuring Palm Biomass and 

Carbon Contents 

A total of 120 biomass samples were collected during the fieldwork: (15 Crown 

+ 10 Trunk + 15 Root) x 3 replicates. Only 10 x 3 trunk samples were collected due to 

the absence of developed trunk in young palms. Four soil samples were collected from 

underneath each palm canopy, referred to as “In”. A total of 60 soil samples: 15 palms 

x 4 replicates were collected during the campaign. More soil samples were collected 

away from the palms’ canopy, referred to as “Out”, from two DP farms: [2 farms x 4 

replicates], for comparison and quantification of the effect of DP contribution to soil 

carbon sequestration. Immediately after reaching the UAEU/ Biology department’s 

Labs, the fresh weights of all samples were measured. Then, samples were air dried 

and transferred to paper bags to be ready for oven drying at 80℃ for 72-96 hours to 

measure the dry weight  (Allen et al., 1974; Corley et al., 1971; Khalid et al., 1999a). 

Samples were prepared and grinded to calculate the biomass components’ parameters 

using the formula listed in Table 4. Samples were weighted to get the percentage of 

dry weight to original fresh weight in each sample (dry to fresh factor=DF) (Figure 

14). Finally, samples were combusted for 4 hours at 550℃  (Allen et al., 1974)) to 

calculate organic matter (OM) and organic carbon (OC) as per the formula in Table 5.  
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Table 4: Calculation of different date palms biomass components. 

Parameter Formula 
Dry Weight of each 
palm part (Kg) 

Crown Dry Weight = Crown Fresh Weight × Crown DF* 
Trunk Dry Weight = Trunk Fresh Weight × Trunk DF 
Root Dry Weight = Root Fresh Weight × Root DF  

Percentage of BGB 
(Root system) from the 
AGB** 

BGB:AGB ratio = BGB/AGB × 100 

AGB weight in each 
palm (Kg) 
 

AGB = Crown Dry Weight + Trunk Dry Weight 

Total Biomass of each 
palm  

Total Biomass = AGB Weight + Root biomass Weight 
(BGB) 

*DF is dry to fresh factor 
** The ratio of each biomass component (crown, trunk, and roots) to the total biomass 
were calculated as well. 

 
Table 5: Calculation of OM and OC of the collected samples. 

Item Formula 
The percentage of 
OM to dry weight 
in each sample  

%OMD* = (1- Combustion Weight 550℃ /Dry Weight 80℃) 
× 100 

The OM Weight for 
palm parts in each 
palm (Kg) 

Crown OM Weight = Crown Dry Weight × % Crown OMD 
Trunk OM Weight = Trunk Dry Weight × % Trunk OMD 
Root OM Weight = Root Dry Weight × % Root OMD 

The OC weight 
palm parts in each 
palm (Kg)** 

Crown OC Weight = Crown OM Weight × 0.58 
Trunk OC Weight = Trunk OM Weight × 0.58 
Root OC Weight = Root OM Weight × 0.58 

The OC in AGB for 
each palm (Kg) 

OC in AGB = Crown OC Weight + Trunk OC Weight  

Total OC in each 
palm 

Total OC = OC in AGB + OC in Root biomass  

* OMD is OM to dry factor  
** OC is equal OM multiply by 0.58 
 
 

 

Figure 14: Lab works, preparing samples, grinding, weighing, and drying. 
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Soil samples were first air dried and prepared for further processing (Allen et 

al., 1974). They were then placed in crucibles and oven-dried at 105℃ for 72 hours. 

The different soil samples’ parameters were calculated using formulae listed in Table 

6 following the approach described in  (Ksiksi, 2012; Lemenih & Itanna, 2004). 

 

Table 6: Formulae used to calculate the different soil parameters. 

Item  Formula 
% Moisture 
content 

= (Initial Weight–Dry Weight 105℃)/Initial Weight × 100 

Bulk density 
(g/𝑐𝑚3) 

= dried-oven Weight (g)/ Total volume of the sample 

% SOM* = (Dry Weight 105℃ – Loss of Combustion)/ Dry Weight 105℃  
× 100 

% OC** = OM x 0.58  
Soil carbon 
(g/𝑚2)*** 

= Z x BD × C × 10 

Soil carbon in 
Kg/palm 

= (Soil C. (g/𝑚2) × CA) / 1000  

* Combustion was performed for 4 hours at 550℃ to estimate %SOM 
**% OC is estimated as 0.58 of the calculated OM 
*** Where Z = thickness of each sample depth (10 cm), BD = bulk density (1.7 g/𝑐𝑚3) 
of each sample depth and C is  the carbon concentration (g.C/Kg soil)  of each sample 
depth. Results are reported in tons per hectare. 

 

The total CS in and contributed by the DP is calculated as the sum of CS in the 

DP biomass itself plus the CS in the soil underneath the palm as explained and 

formulated as per equation 1 below: 

Total CS = Biomass C + Soil C  Eq. (1) 

 

2.5.4 Determination of Allometric Equations 

All statistical and graphical tests for the models were performed using SPSS 

and Excel software packages. First, correlation coefficients between biomass in each 

DP part (crown, trunk and root) and all collected field variables were calculated. 
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Linear, logarithmic, exponential, power and polynomial expressions, were fitted in the 

regression analyses to identify the highest coefficient of determination (R2). Single-

variable models are most frequently used in estimating the biomass as they are easy to 

apply compared to those with multiple variables (Cheng et al., 2014). In the current 

case, the linear and non-linear regression analyses were run to develop single-variable 

models to predict the biomass.  Individual single field measurements were considered 

as the independent variables (i.e. H, Ht, CD, CA, etc.), while the predicted biomass 

(AGB) was the dependent variable. Then, the associated R2 values for each model were 

calculated at P <0.05.  

2.6 LULC Classification and Accurate Mapping of Date Palm Plantations 

Hierarchical integrated approach (HIA) was applied to classify the LULC of 

Abu Dhabi and map the DP plantations at three age stages (for the RS data used, see 

Subsection 2.3). First, each pan-sharpened scene of Landsat-8 OLI was classified using 

a hybrid classification method (HCM) (supervised and unsupervised classification) to 

create LULC maps (Subsection 2.6.1). Next, the maps were recoded (reclassified) to 

create a bitmap comprising only two classes: vegetation and non-vegetation 

(Subsection 2.6.2). The HCM was applied to the areas covered by the vegetation class 

in order to delineate the date palms and create a bitmap containing date palms and non-

date palms classes (DP and non-DP) (Subsection 2.6.2). However, at this stage of the 

classification, only mature DP plantations were depicted due to the limitations of 

Landsat-8 OLI to differentiate soil background from the non-mature DP plantations 

(less than 10 years) with average crown diameter less than 5 meters. In order to map 

the other two age stages (medium, and young), object-oriented classification (OOC) 

method was applied on the already produced vegetation bitmap.  
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At this level, about 829 sub-meter world view -2 (WV-2) images were used 

covering only the vegetated areas. The HIA classification method was able to depict 

the three age stages of date palms: young, medium, and mature (Subsection 2.6.3). To 

validate the interim and final maps, an accuracy assessment procedure was 

implemented at different levels for the evaluation of the LULC maps, the vegetation 

bit-map, and the detailed DP maps. An error matrix was produced and helped 

determine the overall, user’s, and producer’s accuracies, in addition to the kappa 

coefficient (Subsection 2.6.4). All processes were implemented using ERDAS 

Imagine 2020 and ArcGIS 10.7.1 software packages. A brief description and a detailed 

flowchart of the implemented methodology is presented in the following Subsections 

and illustrated in Figure 15. 
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Figure 15: LULC classification and mapping the date palm plantations.  
 

2.6.1 LULC Classification 

Anderson classification scheme (Level 1) was adopted, to classify the Landsat 

data (Al-Ahmadi & Hames, 2009; Anderson, 1976; Rozenstein & Karnieli, 2011). 

Seven LULC classes were used to represent: vegetation, urban, sand sheets, sand 

dunes, deep water and shadows, shallow water, and sabkhas. The HCM approach was 

implemented: starting by performing unsupervised classification to minimize bias in 
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the selection of training areas and seed signatures; then, a set of spectral class 

signatures was created to be used as training data for the supervised classification 

phase (Bakr et al., 2010; Kuemmerle et al., 2006; Rozenstein & Karnieli, 2011). Each 

image was initially clustered into 80 classes with a maximum of 80 iterations (the 

optimum number of iteration for Landsat data), permitting the clustering process to 

stop naturally as it reaches the convergence threshold of 0.990 (Al-Shuwaihi, 2009; 

Kuemmerle et al., 2006; Mundia & Aniya, 2005; Yang & Lo, 2002). Next, all images 

were classified using the previously created signatures corresponding to the seven 

classes present in the study area. The signatures were collected by delineating 

polygons on the images to collect the training samples (total of 720 training sets). The 

signatures were assessed and evaluated by plotting the mean signature values of each 

class against the Landsat-8 OLI bands (Chapter 5, Subsection 5.2.1). The maximum 

likelihood classifier (MXL) was used and the resulting classes were then merged and 

recoded to form the final seven LULC classes. The resulting LULC map was smoothed 

and cleaned up using a Majority Filter with a window size of (3x3). Then, certain class 

boundaries were manually adjusted using the Fill Tool module in ERDAS Imagine. 

This is achieved by filling the misclassified pixels with the right values. Finally, the 

thematic LULC map was created and the area of each of the seven classes was 

computed in hectare (Chapter 5, Subsection 5.2.1). 

2.6.2 Mapping Vegetated Area & Delineating of Date Palm Plantations 

The Landsat-8 OLI images were first processed to produce a bitmap with two 

land cover classes: vegetated / non-vegetated (Al-Shuwaihi, 2009; Southworth et al., 

2002). To that end, the LULC map of Abu Dhabi was converted to a binary map by 

merging all non-vegetation classes: urban, sand sheets, sand dunes, deep water, 

shallow water, and sabkhas, into one class named non-vegetation. A “Recode” 
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function was used in the process to create a vegetation bitmap having two values: 1 for 

vegetated area class and 0 for non-vegetated class. Vegetated areas (pixels) were 

extracted from the original images by masking the non-vegetated pixels using 

Subset/Mask functions in ERDAS Imagine. To separate the DP plantations from other 

vegetation types, the HCM was run within the vegetated areas following the same 

procedure described above. The DP plantations were mapped and their areas in hectare 

were computed; however, only the mature DP plantations were depicted due to the 

limitations of Landsat-8 OLI to differentiate soil background from the non-mature DP 

plantations. Consequently, the vegetation bitmap was transformed and converted to 

vector format and exported to a vector shapefile using ArcGIS 10.7.1. The shapefile 

will then be used for the selection of the corresponding WV-2 scenes that cover the 

vegetated areas present in the study area. The OOC classification method is applied to 

classify the high-resolution WV-2 images for the separation and mapping of DP age 

classes and calculating their statistics (Chapter 5, Subsection 5.2.3). 

 

2.6.3 Mapping Young, Medium, and Mature Date Palm Plantations 

At this level of the classification, the 829 WV-2 scenes acquired in 2014 were 

used (for RS data used, see Subsection 2.3). The vegetated areas, in each of the 829 

scenes, were visually interpreted and subset to run the OOC. A semi-automatic object-

oriented feature model has been implemented for the detection and mapping of DP 

using ERDAS Objective Imagine (Chepkochei, 2011; Lack and Bleisch, 2010; Rizvi 

et al., 2019; Issa et al., 2020b). The same Al Foah farms area, north of Al Ain city 

(Figure 16) was used as a pilot area to create and calibrate the Feature Model Tree 

(FMT). It contains more than 60,000 palms of different ages and cultivars and was 

subject to many visits during the study period (Issa et al., 2018; Issa et al., 2019, Issa 
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et al., 2020c). The FMT was then run on the entire WV-2 sharpened images (Lack & 

Bleisch, 2010). This model became the basis for the extraction of DP at different age 

stages which consisted of several sequenced “process nodes” (Figure 16). Best 

parameters were selected and trained following a trial-and-error approach.  

 

Figure 16: Object-orianted classification of DP in Abu Dhabi. (a) The three age stages 
of date palms produced, after applying the object-oriented approach on WV-2 images 
on a testing area in Al Foah DP farms area, to optimize the selected parameters.  (b) 
FMT for the extraction of DP plantations with three age stage.  
 

An FMT is typically used to extract one type of the desired feature, it consists 

of the following main components (child nodes) (see Imagine Objective tools, ERDAS 

Imagine User Guide): Raster Pixel Processor (RPP); Raster Object Creator (ROC); 

Raster Object Operator (ROO); Raster to Vector Conversion (RVC); Vector Object 

Operator (VOO); Vector Object Processor (VOP); and Vector Cleanup Operator 

(VCO). These components, usually referred to as “Process Nodes”, represent the 

different stages of the FMT. A FMT may have all or only some of these process nodes 

activated. The following steps describe the application and use of the FMT in the 
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current case study showing the step-by-step feature extraction process for mature, 

medium, and young DP mapping: 

i. Raster Pixel Processor (RPP): Spectral band information and NDVI were input 

to generate single feature probability (SFP) layer with pixels extracted from 

training sets. The NDVI values ranging between (0.18 to 0.45) differentiated 

well between DP and other vegetation types. The chosen SFP uses a multi 

Bayesian network classifier (statistic classification). The proper definition of 

training sets for both the DP crown and the background pixels is vital to the 

outcome. Training sets were chosen carefully to exclude any reflectance from 

the background. Individual palms, selected from training polygons, were used 

to collect pixel values for the computation of pixel cue metrics in order to train 

the pixel classifier. In that way, the probability layer was created. 

ii. Raster Object Creator (ROC): A function that collects pixels with a probability 

equals or superior to a threshold value and assigns to these pixels the value of 

one. In the same time, other pixels will receive the value of zero. In subsequent 

steps, the function executes a contiguity (clump) operation on the created 

binary mask and convert the resulting layer into a raster probability (object) 

layer. In this study, the value of the threshold was set to 0.50. It should be noted 

here that a lower threshold would make possible the addition of non-tree pixels. 

iii. Raster Object Operators (ROO): The “Probability Filter” is used to retain pixel 

objects with high probability while assigning to all other pixels the status of 

‘background’. The rule set in this study states that: all objects (raster objects) 

with zonal probability mean less than 0.75 should be removed. The “Size 

Filter” filters out raster objects that are either too small, or too large hence 

permitting to limit the set of raster objects to match actual date palm crown 
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sizes (Chepkochei, 2011; Rizvi et al., 2019). The Sub-Meter World View (WV-

2) imagery was used efficiently to discriminate between three date palm age 

classes based on their crown size, as described below:  

a. Mature DP: with crown area ≥ 144 pixels (which corresponds to ≥ 3m 

of palm crown radius on the ground). 

b. Medium DP: with crown area ≥ 49 pixels and < 144 pixels (which 

corresponds to ≥ 1.75m and < 3m of palm crown radius on the ground) 

c. Young DP: with crown area < 49 pixels (which corresponds to < 1.75m 

of palm crown radius on the ground). 

iv. Raster to Vector Conversion (RVC): This step converts raster object layers 

created in the previous step to polygon layers using a polygon trace. 

v. Vector Object Operator (VOO): This step smoothens the boundaries of tree 

polygons created in the previous step using a “Smooth filter”. A smoothening 

factor of 0.5 was found to be optimum.  

vi. Vector Object Processor (VOP): Geometric processes run to compute the area 

of each polygon shape. Two object cues available were run in Imagine 

Objective: Area and Circularity, and finally, 

vii. Vector Clean-up operators: Vector layers are cleaned using ArcGIS 10.7.1 by 

visual interpretation to remove erroneous vector objects if any. 

The geo-processing tool (Merge) in ArcGIS was used to merge the shapefiles. Maps 

of mature, medium and young DP plantations were created and the area of each age 

stage class as well as the number of DP present in each plot were calculated.  
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2.6.4 Assessing Accuracy 

The accuracy assessment was run for the three levels of classification: (1) the 

initial LULC map including the seven classes, (2) the vegetation bit-map, and (3) the 

DP maps at different age classes (mature, medium, and young). For the LULC map, 

350 points (50 points for each class) were selected randomly using the stratified 

random sampling by ERDAS Imagine Accuracy Assessment Tools. For vegetation bit-

map, 100 points (50 points for vegetation class and 50 points for non-vegetation class) 

were selected using the same procedure mentioned before. These validation points 

were projected on the pan-sharpened image of Abu Dhabi, visually interpreted and 

assessed by the use of Google Earth, reference maps, and researchers’ knowledge of 

the area. Each point was subsequently, assigned to one of the classes defined before. 

For validation the classified maps of DP at different age stages (young, medium, and 

mature), GPS points (x,y) were collected from farms located in the study area (Wathba, 

Nahdha, AlAin, Swaihan, Yahar, Khatem, Salamat, Khazna, Yahar, Masakin, Hayar, 

and Al Foah). The collected points that represent homogeneity of one of the age stages 

were projected and displayed over the three age stages class (= 71 points) to assess 

their exact matching. A confusion matrix was produced, and accuracy metrics were 

computed for each class of the LULC map, as well as, the DP at different age-stages 

maps (Chapter 5, Subsection 5.2.4). The use of metrics such as overall accuracy, 

Kappa statistics, producer’s accuracy, and user’s accuracy, are quite common and 

explained in detail in numerous publications (Campbell & Wynne, 2011; Congalton, 

1991; Foody, 2002; Lillesand et al., 2014; Rosenfield & Fitzpatrick-Lins, 1986; 

Rozenstein & Karnieli, 2011). 
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2.7 Building Remote Sensing based Models for Biomass and Carbon Stock 

Estimation of Date Palm Plantations 
 
Note: The following method was applied at two phases. First, it was applied at a “Pilot 

Study” on Al Foah date palm farms area. At this level, only 19 field plots were 

considered applying the Subsections 2.7.1 to 2.7.4. The results of the “Pilot Study” are 

found in Chapter 4. Second, the following steps were applied on 54 field plots covering 

the whole study area (Chapter 6). 

 
2.7.1 Field Data Collection 
 
a. The Pilot Study 

To develop the remote sensing-based biomass model, the following approach 

was applied to the pilot study area in Al Foah with the remote sensing data extracted 

from a Landsat 8 OLI scene acquired on June 17, 2017.  Nineteen plots (from A to S 

plots), shown in Figure 17, with homogenous DP identified and where palms were 

counted, and their structural parameters measured (see Chapter 4 for the results). The 

approach can be summarized as follows:  

(1) Identify a set of RS variables (predictors) used to estimate AGB.  

(2) Select sample plots representing different age classes of DP in the study area.  

(3) Collect necessary field data to calculate AGB. The calculated AGB serves as 

reference data for the RS-based model to be built. 

(4) Build and validate the RS-based biomass estimation model by correlating AGB 

with significant RS predictors using different regression methods. 

(5) Create a map visualizing CS distribution throughout the study area. 
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Figure 17: Pilot study area in AlFoah, AlAin. After (Salem Issa et al., 2019). 
 

b. Emirate of Abu Dhabi 

DP plantation is part of the farming systems in Abu Dhabi and is used in road 

landscaping as well as for economic purposes. The DP plantations existed at different 

age stages, therefore, they are classified according to their age into three classes: 

mature DP (more than 10 years), medium DP (5-10 years), and young date palm (less 

than 5 years). Data from a total of 54 field plots were collected within the study area, 

including 17, 19, and 18 field plots of mature, medium, and young DP, respectively 

(Figure 18). Two field visits were conducted during the winter season of 2018; the first 

visit was from 10th -18th September and the second one from 14th November to 6th 

December. Each selected plot had dimensions of 40 × 40 m to ensure that the area on 

the ground occupied at least one full pixel of Landsat 8 OLI image with a 30- m pixel 

resolution (Salem Issa et al., 2019; Vicharnakorn et al., 2014) (Figure 19). All palms 

in all the 54 plots were counted and the GPS coordinates of the center of each plot 

were identified. Trunk height (Ht) and crown diameter (CD) for each palm were 
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measured. Then, the crown area (CA) was calculated for each palm using the sphere 

equation (CA = π CD2/4), assuming a rounded palm crown. 

 
 
Figure 18: Location of the field observation data sites. Fifteen-meter resolution 
vegetation cover map for 2017 was used. The boxes present the distribution of field 
data (54 plots) of three age stage classes of DP (mature, medium, and young). 

 

It is worth mentioning that collecting samples were started from 83 field plots 

of DP then; twenty-nine of them were excluded because of three reasons: (1) the sparse 

distribution of DP per plot (< 20 palm/plot), (2) the suffering of DP from abiotic 

stresses (e.g. drought), and (3) the high level of heterogeneity not representing, 

accurately, the age stage class (mature, medium, and young). Therefore, the size of 

sample plots was reduced from 83 to only 54 plots. 
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Figure 19: The 40 × 40 m plot design. The red window delimits the Landsat pixels 
covering the plot. After (Salem Issa et al., 2019). 

 

The AGB at plots level was estimated by using DP biomass allometric 

equations which developed specifically for DP of Abu Dhabi, UAE under arid land 

ecosystem conditions (see Chapter 3). These equations estimate the AGB as functions 

of Ht and CA of DP (Table 7). AGB for each DP was calculated as the sum of crown 

biomass (CB) and trunk biomass (TB) in (kg. palm−1). The resulting AGB of all DP in 

each plot was calculated and converted to tons per hectare (t. ha−1).  

 

Table 7: Equations used for AGB (kg. palm−1) estimation of DP in study area. 

Biomass Component Allometric Equation R2 P value Source 
Crown Biomass  = 14.034 × 1.057CA 0.8354 0.001 see Chapter 3 Trunk Biomass = 40.725 × Ht0.9719 0.8276 0.0004 
Total AGB  = CB + TB  

CB is crown biomass, TB is trunk biomass, AGB is aboveground biomass, CA is 
crown area (m2), Ht is trunk height, R2 is coefficient of determination. 
 

2.7.2 Identifying Remote Sensing Variables (Predictors) 

A combination of individual reflective bands and VIs were used as predictors 

to estimate AGB. Therefore, an approach combining multiple predictors was used in 

the regression analysis. RS predictors can be grouped into two distinct categories: (1) 
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single bands include B1, B, G, R, IR, SWIR1, and SWIR2 of Landsat 8 OLI (Table 2), 

and (2) traditional as well as a variety of modified VIs were tested (Table 8), this 

includes simple ratio (SR), ratio vegetation index (RVI), difference vegetation index 

(DVI), normalized difference greenness index (NDGI), normalized difference 

vegetation index (NDVI), transformed vegetation index (TVI), green normalized 

difference vegetation index (GNDVI), renormalized difference vegetation index 

(RDVI), soil-adjusted vegetation index (SAVI), modified soil adjusted vegetation 

index (MSAVI), and the three tasseled cap transformation indices for greenness 

(TCG), brightness (TCB) and wetness (TCW). VIs such as: NDVI, modified NDVI, 

GNDVI and NDGI have minimum and maximum values ranging between -1 and +1 

where green surfaces occupying digital number (DN) values ranging between 0.2 and 

0.9; with dense vegetation and higher biomass amount generally represented by higher 

DN values (more than 0.6) (Adeyeri et al., 2017). However, TVI, which is another 

modified NDVI, has a range of values between 0 and 1.4 with no negative values 

(Mróz & Sobieraj, 2004). Moreover, positive DN values of DVI and SR represents 

vegetation with higher values depicting higher biomass amount (Richardson & 

Wiegand, 1977; Rouse, 1974). Similarly, RVI shows higher values for thick vegetation 

than for sparse or non-vegetated surfaces (Adeyeri et al., 2017). SAVI index behaves 

similar to NDVI, ranging between -1 and 1 with lower values reflecting lower biomass 

amount/cover of green vegetation. 
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Table 8: The Landsat 8 OLI vegetation indices used in this study. 

VI Equation Reference 
SR NIR/R (Birth & McVey, 1968) 

RVI R/NIR (Pearson & Miller, 
1972) 

DVI NIR–R  (Tucker, 1979) 

NDGI (G-R)/(G+R) (Woebbecke et al., 
1993) 

NDVI (NIR-R)/(NIR+R) (Rouse, 1974) 

TVI 
 

(Srestasathiern & 
Rakwatin, 2014) 

GNDVI (NIR-G)/(NIR+G) (Gitelson et al. 1996) 

RDVI 
 

(Roujean & Breon, 
1995) 

SAVI 
 

(Huete, 1988) 

MSAVI 
 
(Qi, Chehbouni, et al., 
1994) 

TCG   
−0.2941 × B − 0.2430 × G −0.5424 × R + 
0.7276 × NIR + 0.0713 × SWIR1 − 0.1608 × 
SWIR2 

(Baig et al., 2014) 

TCB 
0.3029 × B + 0.2786 × G + 0.4733 × R + 
0.5599 × NIR + 0.5080 × SWIR1 + 0.1872× 
SWIR2 

(Baig et al., 2014) 

TCW 
0.1511 × B + 0.1973 × G + 0.3283 × R + 
0.3407 × NIR − 0.7117 × SWIR1 −0.4559 × 
SWIR2 

(Baig et al., 2014) 

 

The RS variables (single bands and VI’s) for all plots were extracted from the 

mentioned Landsat 8 OLI image and saved using spectral profile tools in ERDAS 

Imagine software. The mean values of the spectral variables for a 3 × 3 window 

centered over each plot were extracted to reduce the uncertainties in RS data resulting 

from plot positioning errors (Salem Issa et al., 2019; Vicharnakorn et al., 2014). These 

errors could be created because of the mismatching of sample plots with the image 
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pixels introduced when the sample plots were located using GPS and UTM coordinates 

(Lu et al., 2002; Salem Issa et al., 2019). 

 

2.7.3 Statistical Analysis  

Different regression analysis types were conducted (linear, logarithmic, 

exponential, power, and polynomial) to evaluate the relationship between RS 

predictors and AGB which calculated on the field using ground measurements and 

allometric equations (Table 7). Linear regression models based on single Landsat 8 

OLI bands and individual VIs (Appendix 5) were first used and their performance 

assessed by examining the resulting coefficients of determination (R2) and their 

statistical significance. Relationships were considered significant at P-value < 0.05. 

Subsequently, a stepwise multiple regression analysis (backwark elimination) was 

used to select the best predictors from all variables correlated with AGB of DP plots 

with the assumption that better correlation can be achieved. Scatter plots were drawn 

to visualize the relationships between field estimated AGB of DP correlated with RS 

predictors (see Chapter 4, Subsection 4.2.3 and Chapter 6, Subsection 6.2.3). 

 

2.7.4 Models Evaluation 

The models were evaluated using cross-validation by the plot. Root mean 

square error (RMSE), relative RMSE (RMSE%), and bias were calculated in 

percentage after randomly splitting the dataset into a calibration dataset (80%), and a 

validation dataset (20%). The results were validated by comparing RMSE, RMSE%, 

and bias. The RMSE, RMSE%, and bias were calculated using equations 2, 3, and 4. 

𝑅𝑀𝑆𝐸 = √
(ŷ𝑖− y𝑖) 2

𝑛
    Eq. (2) 
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𝑅𝑀𝑆𝐸 % = 100 ×

𝑅𝑀𝑆𝐸

ӯ
    Eq. (3) 

𝐵𝑖𝑎𝑠 =     Eq. (4) 

where (ŷi) is the predicted AGB of the ith plot, (yi) is the observed AGB of the 

ith plot, ( ) is the mean of predicted AGB, and (ӯ) is the mean observed AGB.  

 

2.7.5 Applying the Remote Sensing Based Models to Estimate Aboveground 
Biomass and Aboveground Carbon 

 
Maps of DP of Abu Dhabi that were generated from a previous study using 

sub-meter WV-2 imagery were used (see Chapter 2, Subsection 2.6.3 and Chapter 5, 

Subsection 5.2.3). These maps were overlaid on Landsat 8 OLI images and were subset 

using ERDAS imagine (see Subsection 2.3 Remote Sensed Data). The spatial model 

that calculates and presents the amount of AGB in each pixel is built and run in the 

Spatial Model Editor in ERDAS Imagine. The resulting values in each pixel (digital 

number) are representing the AGB (t. ha-1). These values were again multiplied by 

pixels’ sizes to figure out the AGB in tons in each pixel using the Attribute Table 

Function in ERDAS Imagine. Finally, a map illustrating the amount of aboveground 

carbon (AGC) in each pixel is presented and displayed as brightness value. The 

percentage of carbon content in AGB was found to be 53.87% (see Chapter 3) and 

(Salem Issa et al., 2018, 2020b). Therefore, AGC was estimated by multiplying the 

resulting value by a factor of 0.5387 (equation 5). 

AGC (t. ha-1) = 0.5387 × AGB (t. ha-1) Eq. (5) 

 

2.7.6 Calculating the Total Carbon Stock of Date Palm Plantations of Abu Dhabi  

The total CS was calculated as a sum of two quantities representing the 

amounts of carbon in biomass and soil respectively. The first involves estimating 
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vegetation biomass by calculating the AGB using it to derive the remaining 

components, i.e., BGB, litter, and debris. The second involves estimating SOC, which 

is part of SOM. The other carbon pools involving biomass of DP and SOC were 

presented in Chapter 6, Subsection 6.2.5, and calculated as follows: 

a.Belowground biomass (BGB): AGB amount can be used to predict root biomass 

(BGB), which is generally estimated at 20% of the AGB based on the predictive 

relationship applied by many studies (Cairns et al., 1997; Mokany et al., 2006; 

Ramankutty et al., 2007). However, the AGB: BGB ratios were found different for DP 

species (see Chapter 3, Subection 3.2.2) and varied among palm maturity stages with 

averages of 0.332, 0.925, and 0.496 for young DP, medium DP, and mature DP, 

respectively. Therefore, the BGB of DP was calculated in tons as per equations 6, 7, 

and 8. 

BGB Mature DP (t) = AGB × 0.496  Eq. (6) 

BGB Medium DP (t) = AGB × 0.925  Eq. (7) 

BGB Young DP (t) = AGB × 0.332  Eq. (8) 

The belowground carbon (BGC) was estimated in tons by multiplying the 

resulting value by a factor of 0.5127 (equation 9). 

BGC (t) = 0.5127 × BGB (t)   Eq. (9) 

b.  Litters and Debris: CS of dead wood or litter and woody debris (e.g., dead or broken 

branches, leaves, etc.) are generally assumed to be equivalent to 10 to 20% of the 

calculated AGB (Gibbs et al., 2007; Houghton et al., 2009). The boundaries between 

dead biomass and litter, and between dead biomass and SOM, are somewhat arbitrary 

as stated by (Houghton et al., 2009). Therefore, an assumption was made on this study 

that litter and debris ratio to AGB of DP are varied and depend on the palm maturity 
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stages to be 0.1 in young DP, 0.15 in medium DP and 0.2 in mature DP (Chapter 6, 

Subsection 6.2.5). 

c. Soil Organic Carbon (SOC): It was found that an estimated total of about 22.26 tons 

of SOC was added per hectare in the areas dominated by DP (see Chapter 3, Subsection 

3.2.3.2). Therefore, the SOC in tons of DP for the three age stages were calculated as 

per equation 10. 

 
SOC = Area × 22.26 t. ha-1   Eq. (10) 
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Chapter 3: Development of Date Palm Biomass Allometric Equations and 

Calculation of Carbon Stock in its Biomass Components and Soil 
 

Note: This Chapter presents the results of developing allometric equations for date 

palm in the study area (see Chapter 2, Subsection 2.5 for the methodology). The 

substantive part of this chapter has been published in a refereed International 

Conference proceeding as well as in a peer-reviewed journal while working on this 

dissertation: 

 Issa, S., Dahy, B., Ksiksi, T., & Saleous, N. (2018). Development of a new 

allometric equation correlated with RS variables for the assessment of date 

palm biomass. Proceedings of the 39th Asian Conference on Remote Sensing 

(ACRS 2018), Kuala Lumpur, Malaysia, 15–19 October 2018. 

 Issa, S., Dahy, B., Ksiksi, T., & Saleous, N. (2020). Allometric equations 

coupled with remotely sensed variables to estimate carbon stocks in date 

palms. Journal of Arid Environments, 182, 104264. 

3.1 Overview 

Some palm species are considered keystone and provide multiple ecosystem 

services, such as CS (van der Hoek et al., 2019). The amount of carbon that can be 

sequestered in palms is relatively high compared to some other plant species. In their 

study of the relationship between land use and CS in northeastern Brazil, Carlos et al. 

(2015) found that land planted with palms provided 40 t. C ha-1 while lands used for 

pasture and agriculture provided only 8 t. C ha-1 and 5 t. C ha-1, respectively. In another 

study in Northeast India, Singh et al. (2018) recorded considerably higher amounts of 

carbon in oil palm plantations than in shifting cultivation fallows. They concluded that 

a 10 years old oil palm plantation could sequester up to 3.7 t. C ha−1 year−1. Hence, 

palms generate economic benefit and contribute to carbon storage in a more 

sustainable way especially when planted in areas of low productivity or on degraded 

lands. 
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Afforestation projects can be used to earn carbon credits and reduce the carbon 

footprint. This type of supportive efforts has a growing interest among policymakers 

and governments (Baral & Guha, 2004). Therefore, estimation of CS in forests and 

plantations is an important measure towards assessing mitigation effects on global 

change (Ebuy et al., 2011). Many destructive techniques (felling or harvesting) exist 

to directly estimate CS (Gibbs et al., 2007). Although these techniques provide the 

most accurate measure of biomass, they ultimately rely on ground measurements and 

can cause severe destruction to the forests as well as a risk of environmental 

deterioration (Khalid & Hamid, 2017; Maulana et al., 2016). In addition, such methods 

are tedious and time consuming (Ebuy et al., 2011), hence they cannot be used 

routinely. Therefore, developing biomass equations (allometry) that rely on non-

destructive measurements, is very essential in estimating biomass. Subsequently, 

allometric equations have been developed and used to estimate tree biomass and CS 

from dendrometric measures, such as tree diameters and height (Ebuy et al., 2011; 

Picard et al., 2012). Notwithstanding, the number of trees destructively sampled to 

build allometric equations is not constant and differs from one study to another.  

Currently, there is no consensus on that number, as this is often dependent on resource 

availability and permission to harvest trees (Yuen et al., 2016). For example, Russell 

(1983), and Moran and Grace (1996) used 15 and 14 trees, while Brown et al. (1995) 

and Khalid et al. (1999a) used only 8 and 10 trees, respectively to build their allometric 

equations.  

Different quantitative variables were considered when building oil palm 

biomass allometric equations (Korom & Mastuura, 2016) (Appendix 1).  Henson and 

Chang (2003) used age as a predictor to estimate the standing biomass of oil palm in 

tons per hectare. Others used structural variables such as total height and trunk height 
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(Dewi et al., 2009; Khalid et al., 1999a; Thenkabail et al., 2004), while Corley et al. 

(1971) used DBH, number of fronds, leaf area, rachis and petiole length, rachis and 

petiole cross-sectional area at intervals,  and volume of petiole sections in their pioneer 

study to estimate the average yield of oil palms. More recently, allometric equations 

have been used, coupled with RS and field-based structural variables measurements 

(Fonton et al., 2017; Salem Issa et al., 2019). Furthermore, Cheng et al. (2014) 

recommended to develop more equations with different field structural variables that 

can be linked to RS predictors. Likewise, Jucker et al. (2017) suggested in their review 

of allometric equations to develop a new generation of allometric equations that 

estimate biomass based on attributes which can be remotely sensed. 

Most biomass equations, whether species-specific or multispecies, have been 

developed for tropical rainforest ecosystems because of their relevance to the global 

carbon cycle (Basuki et al., 2009; Brown, 1997; Chave et al., 2005; Cole & Ewel, 

2006; Makinde et al., 2017). A few plant species biomass assessment equations are 

available for desert ecosystems. Nonetheless, none of these were used to fit one of the 

most important fruit crops in arid regions, Phoenix dactylifera, date palm (DP). Over 

two-third of dates production amount worldwide are produced in the Arab World (El-

Juhany, 2010). Three of the top 10 date producers worldwide are located in the Arabian 

Peninsula, namely: Saudi Arabia, UAE, and Oman (Kader & Hussein, 2009; AOAD, 

2008). On the other hand, the UAE has the largest number of DP for any single country 

in the world. In 2008, the UAE had more than 16 million DP producing around three 

quarters of a million tons of dates (El-Juhany, 2010). Furthermore, the UAE possesses 

at least  200 cultivars, 68 of which are the most important commercially (El-Juhany, 

2010)..  
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DP possess multipurpose advantages, including environmental benefits, 

especially for the Arabian Peninsula population including the UAE, where DP have 

been an integral part of the farming system. More than 90% of the UAE territory is 

covered by desert ecosystems representing more than two-thirds of the country's land 

area. DP species are a good alternative for CS in such arid ecosystems. To estimate 

DP biomass and its carbon content, it is necessary to quantify the biomass in all palm 

components. Moreover, it would be more accurate to include both the AGB and BGB 

in estimating the CS, as both are available for recycling in the ecosystem at replanting 

(Khalid et al., 1999b).  

The current chapter meets objectives no. 1 and 2 of the dissertation (see 

Chapter 1, Subsection 1.3 Aim and Objective). Specifically, this chapter aims at: (1) 

Identifying the most relevant structural field variables for the estimation of DP 

biomass; (2) Developing specific allometric biomass equations that can be correlated 

with RS variables; (3) Estimating CS in date palms; and (4) Assessing the potential of 

DP species to improve soil CS in such desert ecosystems. 

3.2 Results 

3.2.1 Field Variables of Date Palm at Different Age-Stages 

The correlation coefficients between fresh and dry weight for the palm’s crown 

trunk and root components were estimated at 0.99, 0.97 and 0.97, respectively; while 

the correlation between the total fresh weight and the total dry weight gave a value of 

0.99. Furthermore, the dry to fresh ratio or factor (DF), for the BGB was estimated at 

0.45, while that of the AGB was calculated at 0.40 (Table 9). As for the non-structural 

variables, age proved to be an important factor influencing the storing of DP biomass 

(P < 0.05). The significant correlation between age of DP and its total biomass/ AGB 

remains positively strong for either fresh or dry weights (Table 10).  
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Table 9: Average of dry to fresh weight factor for each DP component.   

All Ages  Crown DF Trunk DF Root DF Total DF AGB DF 
(Mean ± SE)  (0.41 ± 0.01) (0.37 ± 0.02)  (0.45 ± 0.02) (0.42 ± 0.01) (0.4 ± 0.02) 

*DF is dry to fresh factor calculated as a ratio between dry to fresh weights.  
**AGB includes crown plus trunk only. 
*** SE is the standard error. 
 

3.2.2 Ratios of Date Palm Biomass Components 

Given that the correlation between fresh and dry weights of DP (0.99 for both 

aboveground and total weights) was found to be very strong; dry weight was used in 

all subsequent calculations as well as for building the biomass allometric equations of 

DP. For young DP, with non-developed trunk, CB ranged between 17.2 Kg and 34.1Kg 

with a mean value of 22.5 Kg, contributing 75.1% of the total palm biomass. While 

the BGB contributed about 24.9% of that total biomass (Table 11). It is worth noting 

that in the case of young DP, the AGB consists of only the CB. The contribution of the 

crown and root to the total biomass increased with age hence, with trunk growth of the 

palm. The ratio of CB to total biomass decreased to 35.75% and 34.89% of the total 

biomass for medium and mature DP, respectively. While the root system’s 

contribution to the total biomass increased to 35.38% as the palms grew older (Table 

11).  
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Table 10: Field variables of DP used to assess allometric equations.  

Field 
Variables 

Young (< 5 year) 
(Mean  SE) 

Medium (5-10 year) 
(Mean  SE) 

Mature (> 10 year) 
(Mean ± SE) 

DBH (cm) 33.87 ± 2.28 43.29 ± 7.45 51.57 ± 5.1 
H (m) 4 ± 0.167 4.85 ± 0.206 8.38 ± 0.48 
Ht (m) - 0.764 ± 0.196 3.21 ± 0.52 
 height (m) 4 ± 0.17 4.086 ± 0.22 5.17 ± 0.36 
CD (m) 3.09 ± 0.46 5.66 ± 0.25 7.2 ± 0.08 
CA (𝑚2) 8.15 ± 2.57 25.36 ± 2.28 40.73 ± 0.86 
# Fronds 29.8 ± 2.27 35 ± 5.17 61.6 ± 2.32 
Weight of fresh component (Kg.palm-1)   
Crown  50.65 ± 5.43 171.08 ± 34.47 367.24 ± 78.56 
Trunk  - 74.18 ± 13.61 365.28 ± 30.65 
Root  21.43 ± 6.39 187.36 ± 27.91 282.06 ± 25.25 
Total weight 72.08 ± 11.19 432.62 ± 66.41 1014.58 ± 95.92 
AG weight* 50.65 ± 5.43 245.26 ± 42.99 732.52 ± 91.38 
Weight of dry component (Kg.palm-1)  
Crown  22.51 ± 3.06 65.17 ± 11.87 148.5 ± 35.85 
Trunk  - 29.53 ± 8.62 135.91 ± 19.62 
Root  7.46 ± 1.88 87.61 ± 14.87 141.23 ± 13.59 
Total  29.97 ± 4.17 182.3 ± 32.07 425.63 ± 45.6 
AG weight* 22.51 ± 3.06 94.69 ± 18.45 284.41 ± 43.15 

*Aboveground weight equals crown weight plus trunk weight of the palm. 
**SE is the standard error. 
  

The trunk contained 16.20% of the total biomass in medium DP palms and 

31.93% of the total biomass in mature DP. The mean % of TB in all palm age stages 

(with no trunk in young palm) approaches 15.98% of the total biomass (Table 11). 

 

Table 11: DP component’s biomass calculated as a ratio of total or AGB.  

Component To Young DP% Medium DP% Mature DP%  Mean% 
CB  Total 75.11 35.75 34.89 48.59 
TB  - 16.2 31.93 15.98 
BGB  24.89 48.06 33.18 35.38 
AGB  75.11 51.94 66.82 64.31 
CB  AGB 100 68.82 52.21 73.68 
TB  - 31.18 47.79 26.32 
BGB  33.15 92.52 49.66 58.44 

Where CB is crown biomass, TB is trunk biomass, BGB is below ground biomass, 
AGB is above ground biomass, and Total is total biomass. 
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The AGB alone contained most of the DP biomass with an average of 75.11%, 

51.94% and 66.82% for young, medium and mature DP, respectively. The crown was 

found to retain most of the AGB at all ages. It was noted that each component of the 

DP followed a different rate of biomass storing at each age stage. The BGB to AGB 

ratios changed considerably during growth stages of the DP with values of 33.15%, 

92.52% and 49.66% for young, medium and mature DP, respectively.  The average 

mean percentage of BGB to AGB was 58.44% when averaged over all age stages. It 

increased to 71.1% when including DP with developed trunks from the medium and 

mature stages only (Table 11). 

 

3.2.3 Biomass Allometric Equations of Date Palm 

3.2.3.1 Crown Biomass (CB) 

All field variables showed significant correlation with CB except DBH and 

∆Height (Table 12). The four field variables that gave the highest correlation with CB 

were: Age, CA, CD and H. After applying different types of relationships (linear, 

polynomial, power, logarithmic, and exponential equations), it was found that the 

power equation (11) with ‘Age’ as independent variable had the highest R² (equal to 

0.857) (see Table 12). 

CB = 6.4575 × Age1.1019   Eq. (11) 

However, age is a non-structural variable and cannot be measured directly in 

the field. It has to be obtained from farmers or from the farm’s records. Furthermore, 

it was intended to identify potential field structural variables to develop specific DP 

allometric equations that would be used in a RS based CS assessment model of DP in 

the region. Therefore, the use of other well-correlated structural variables such as CA 
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to estimate CB was very appropriate. Equation (12) applying an exponential 

expression with CA as independent variable and depicted graphically in Figure 20, 

was found to have the best R2 (equal to 0.8354) (see Table 12). 

CB = 14.034 × e0.0554 x CA (CA ≠ 0)  Eq. (12) 

 

Table 12: Best prediction equations for crwon biomass estimation of DP. 

Regression Equations Variable 𝑹𝟐 P value 
CB= 6.4575 × Age1.1019 Age 0.857*** 0.00002 
CB= 0.2506 × DBH1.4548 DBH 0.3054* 0.229 
CB= 1.0874 × H2.3225 Height 0.8114*** 0.00002 
CB= 2.4525 Ht2 + 29.201 Ht + 30.12 Ht 0.7602** 0.00003 
CB= 0.3013 × ∆ Height3.5402  Height 0.4466* 0.02 
CB= 5.8364 × e0.4231 x CD CD 0.8143*** 0.002 
CB= 14.034 × e0.0554 x CA  CA 0.8354*** 0.001 
CB= 0.1113×#Frond2 -6.4461×#Frond +125.63 #Fronds 0.7181** 0.0003 

*weakly significant **moderately significant ***strongly significant 

 

Figure 20: Allometric equation for estimating CB of DP as function of CA (Salem 
Issa et al., 2020b).  
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3.2.3.2 Trunk Biomass (TB) 

All field variables were significantly correlated with TB except DBH and 

∆Height (Table 13). The three field variables that gave the highest correlation with TB 

were: Ht, H, and CA (Table 13). After applying same procedure as in 2.3.1, it was 

found that the power equation (13) using Ht as the independent variable, had the best 

R² (equal to 0.828) (see Table 13 and Figure 21).  

TB = 40.725 × Ht0.9719    Eq. (13) 

 

Table 13: Best prediction equations for trunk biomass estimation of DP.  

Regression Equations Variable 𝑹𝟐 P value 
TB= 0.5808 × Age1.9271 Age 0.753 0.002 
TB= 0.0816 × DBH1.7212 DBH 0.3967 0.197 
TB= 0.2879 × H2.8666 Height 0.8017 0.001 
TB= 40.725 × Ht0.9719 Ht 0.8276 0.0004 
TB= 0.4644 × ∆Height 3.1733 Height 0.3252 0.176 
TB= 0.1286 × e0.9487 x CD CD 0.7556 0.008 
TB= 2.356 ×  0.0966 x CA CA 0.7566 0.008 
TB= 0.008 × #Frond2.3274 #Fronds 0.7403 0.008 

 

 

Figure 21: Allometric equation for estimating TB of DP as function of Ht (Salem 
Issa et al., 2020b).  
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3.2.3.3 Total Biomass  

AGB is the resulting sum of crown biomass (CB) and trunk biomass (TB). It 

can be estimated from CA (Equation 12) and Ht (Equation 13) that were found to be 

the most significant field structural variables for predicting crown and trunk biomass, 

respectively. Finally, the resulting allometric equation to estimate AGB of DPs is given 

in equation (14) below. 

AGB = CB + TB    Eq. (14) 

Where: CB = 14.034e0.0554 x CA (with CA ≠ 0), and TB = 40.725 x Ht0.9719. While 

BGB is estimated as a ratio of AGB as per Table 11. 

 

3.2.4 Carbon Stock in Date Palm Plantations at Different Age-Stages 

Overall trunk of DP had a higher organic matter (OM) content of its dry weight 

than crowns and roots with averages of 93.3%, 92.43% and 88.39%, respectively 

(Table 14). The average percent OM was 91.38% for the whole DP (i.e. sum of the 3 

components) and 92.87% for AGB. The same was noted about the organic carbon 

(OC) content to dry weight of DP. The trunk had higher OC content than crown and 

roots (54.12%, 53.61% and 51.27%, respectively). The percentage of carbon content 

in the root system of DP (BGB) was found to be 51.27%, which is slightly lower than 

the carbon content in the AGB. The average percentage of OC for whole DP was 53% 

of the AGB. The total OM and OC stocks in the various DP components expressed per 

palm are shown in Table 14. The whole DP contains about 15.88 Kg of OC for young 

DP with increasing values of a maximum of 96.62 Kg and 225.58 Kg for medium and 

mature DP, respectively. While the AGB contained averages of 11.93 Kg, 50.19 Kg 

and 150.74 Kg of OC for young, medium and mature DP, respectively.  
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Table 14: OM and OC (Kg. palm-1) in DP components at a different age stages. 

DP 
Component 

Age 
Stage 

Dry  
Weight OM OC 

Crown 
  

Young 22.51 92.43% 20.81 53.61% 12.07 
Medium 65.17 60.24 34.94 
Mature 148.50 137.26 79.61 

Trunk 
  

Young - 93.31% - 54.12% - 
Medium 29.53 27.55 15.98 
Mature 135.91 126.82 73.55 

Root 
  

Young 7.46 88.39% 
  

6.59 51.27% 
  

3.82 
Medium 87.61 77.44 44.92 
Mature 141.23 124.83 72.41 

Total 
Biomass 
  

Young 29.97 91.38% 
  

27.39 53.00% 15.88 
Medium 182.30 166.59 96.62 
Mature 425.63 388.94 225.58 

AGB 
  

Young 22.51 92.87% 
  

20.91  53.87% 
  

12.13 
Medium 94.69 87.94 51.01 
Mature 284.41 264.13 153.21 

 

The average SOM content of samples taken from underneath the DP canopy 

(labeled “In”) increased with age, registering 4.28%, 5.02% and 5.06% for young, 

medium and mature DP, respectively, with an overall mean of 4.79% (Table 15). On 

the other hand, the average SOM content of samples taken away from the DP canopy 

(labeled “Out”) registered 3.0%. This percent represents only about two-third of that 

recorded from samples taken beneath (“In”) the date palms (Table 15). 

 
Table 15: Percent SOM and SOC for different canopy positions. 
 
Underneath/ 
Far Away DP 

Soil Organic Matter (%) Soil Organic Carbon (%) 
In Out In Out 

Qattara Farm 5.06 4.1  2.6 2.38 
Masakin Farm 4.28 1.9  2.48 1.1 
Average  4.67 3.0 2.54 1.74 
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Percent SOC was transformed into bulk tons of SOC per hectare (Table 16), 

The average bulk density ranged from 0.74 to 1.24 g/cm3 with a mean of 0.88 g/cm3. 

An estimated total of about 22.26 tons of SOC was added per hectare in the areas 

dominated by DP. Variations between different age stages were also detected. The 

average SOC at young, medium and mature DP were 20.29, 23.66 and 22.83 tons per 

hectare, respectively. At the individual palm level, the average SOC was 18.09 

Kg.palm-1, 62.59 Kg.palm-1 , and 92.91 Kg.palm-1 for young, medium and mature DP, 

respectively, with an overall average of 57.87 Kg.palm-1 (Table 16). There was a 

strong correlation between SOC (Kg.palm-1) and palm CA (m2) with R² equal 0.9523 

(Figure 22). Thus, CA can be used as a suitable predictor to estimate SOC using the 

power regression given in Equation (15). 

SOC (Kg.palm-1) = 1.5474 x CA1.1144  Eq. (15)  

 

Figure 22: Prediction equation of soil organic carbon as function of CA (Salem Issa 
et al., 2020b). 
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Table 16: SOM and SOC at 10 cm depth under DP at three different age stages. 

DP Age 
Stage 

Age 
(year) 

CA 
(𝒎𝟐) 

SOM 
(%) 

SOC 
(%) 

SOC  
(g/𝒎𝟐) 

SOC 
(Kg.palm-1) 

SOC 
(ton.ha-1) 

Young 2.5 3.98 3.08 1.79 1731.58 6.88 17.32 
2.5 4.52 4.48 2.6 1932.42 8.74 19.32 
3 7.55 3.75 2.18 2126.36 16.05 21.26 
3 6.61 3.48 2.02 1740.43 11.5 17.4 
4 18.1 6.59 3.82 2613.07 47.29 26.13 
Mean 8.152 4.276 2.482 2028.772 18.092 20.286 

Medium 

 

5 20.43 3.99 2.31 2003.73 40.93 20.04 
7 28.27 4.58 2.65 2359.16 66.7 23.59 
8 25.52 4.95 2.87 2430.97 62.03 24.31 
9 32.17 8.36 4.85 3446.96 110.89 34.47 
10 20.43 3.22 1.87 1587.22 32.42 15.87 
Mean 25.364 5.02 2.91 2365.608 62.594 23.656 

Mature 11 40.72 4.06 2.35 2277.49 92.73 22.77 
14 41.85 7.27 4.22 3151.01 131.88 31.51 
16 37.39 5.74 3.33 2392.35 89.46 23.92 
18 41.85 3.79 2.2 1571.99 65.79 15.72 
20 41.85 4.46 2.59 2023.26 84.68 20.23 
Mean 40.732 5.064 2.938 2283.22 92.908 22.83 

Averages 4.79 2.78 2225.87 57.87 22.26 
 

3.3 Summary 

In this chapter, specific allometric biomass equations were developed that can 

be integrated into a RS-based model for assessing carbon sequestered in DP. Assessing 

the potential of DP to improve soil carbon sequestration was another objective. The 

average amounts of DP biomass, organic matter, organic carbon, and soil organic 

carbon at different age stages were presented on Appendix 6. Here and based on field 

and lab work, relevant structural variables were identified and used in the development 

of allometric equations. Results showed that the crown area (CA) best estimated both 

crown biomass (CB) and soil organic carbon (SOC). Likewise, the trunk height (Ht) 

was the best estimator of trunk biomass (TB). Using these variables, allometric 

equations were developed for date palms at different age stages and were used to 
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estimate CB, TB and SOC with coefficients of determination (R2) of: 0.884, 0.835 and 

0.952, respectively. Furthermore, the average ratios of below ground biomass (BGB) 

to above ground biomass (AGB) varied with palm maturity stages averaging 0.332, 

0.925 and 0.496 for young, medium and mature palms, respectively. Moreover, the 

results demonstrated that the amounts of organic carbon (OC) stored in date palms 

were considerable with values of: 15.88 Kg. palm-1 for young DP, 96.62 Kg. palm-1 

for medium DP, and 225.58 Kg. palm-1 for mature DP. Substantially higher amounts 

of SOC were measured compared to other local plants with values of: 18.092 Kg. palm-

1, 62.594 Kg. palm-1, and 92.908 Kg. palm-1 under young, medium and mature DP 

palms, respectively. The main achievement was the development of new and 

unprecedented allometric equations for DP species in arid land. Such equations allow 

the development and calibration of a RS-based model for estimating biomass and CS 

of date palms in the region with high accuracy. 
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Chapter 4: A Pilot Study to Assess Carbon Stock in Date Palm 
Plantations Using Remote Sensing Data and Field Measurements 

 

Note: This Chapter presents the results of working on the “Pilot area” on Al-Foah area 

(north of Al-Ain city),by applying the methods detailed in sections 2.7.1 to 2.7.4 (see 

Chapter 2) in order to examine the approach and build the RS-based biomass model. 

The substantive part of this chapter has been published in a peer-reviewed journal 

while working on the dissertation: 

 Issa, S., Dahy, B., Saleous, N., & Ksiksi, T. (2019). Carbon stock assessment 

of date palm using remote sensing coupled with field-based measurements in 

Abu Dhabi (United Arab Emirates). International Journal of Remote Sensing, 

0(0), 1–20.  

4.1 Overview 

Forests act as large carbon pools where CO2 from the atmosphere is converted 

into plant biomass by photosynthesis (Chapter 1). It is estimated that carbon 

sequestration in forests amounts to 2-4 gigatons annually (Qureshi et al., 2012). 

However, around 60% of carbon sequestered in the forest is returned to the atmosphere 

by deforestation (Vicharnakorn et al., 2014). Thus, forests play an important role in 

the carbon cycle. Understanding the long-term behavior and drivers of carbon 

sequestration is indispensable under the global change scenarios, land-use land-cover, 

and in climate change studies (Corona-Núñez et al., 2018). Afforestation, known to 

compensate for the increase of carbon emission resulting from deforestation and land 

degradation, is costly and difficult to implement especially in arid lands due to water 

deficiency. DP plantations have a huge capacity of storing and sequestering terrestrial 

carbon in both the vegetative parts (shoot and root) as well as the soil compartment is 

of paramount significance for this research (Chapter 3). 

RS can obtain forest information (AGB and CS) over large areas with repetitive 

coverages, at a reasonable cost and with acceptable accuracy (Chapter 1, Subsection 
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1.4.4). In general, low-resolution and medium-resolution satellite images do not allow 

mapping land-cover change accurately. Landsat proved to be a good alternative and is 

frequently used for many applications as it is freely available. RS data have been 

correlated with plot-based field measurements to estimate AGB, hence CS. 

Furthermore, the integration of RS data into GIS models enables adding ancillary and 

field data in the analysis and increasing reliability in estimating AGB, hence CS. 

Building GIS-based models to predict future scenarios for forest management and the 

implementation of afforestation plans is another more valuable product.  

This Chapter meets objective no. 3 of the dissertation by characterizing the 

carbon stock of date palm using a RS-based biomass model (see Chapter 1, Subsection 

1.3 Aim and Objective). Specifically, this chapter aims at: (1) Identifying the most 

reliable RS variables to estimate AGB of DP in Abu Dhabi using Landsat 8 OLI 

imagery, (2) Building a RS-based biomass model to calculate CS in DP in the study 

area.   

4.2 Results 

4.2.1 Date Palm Plantations’ Structure and Plot Densities 

Table 17 shows the number of DP per plot, average crown area (CA), trunk 

height (Ht) and densities of DP plot. The number of DP in the tested plots was 401. 

The different numbers of DP in each plot led to different DP densities per hectare 

giving a range of 38 to 188 palm. ha-1. Plots L, N and K had the lowest number of DP 

(6, 8, and 12 respectively) and densities per hectare (38, 50, and 75 respectively). 

While plots C and D had the highest number of DPs (30 and 27 respectively) producing 

the highest densities per hectare (188 and 169 respectively).  
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The average DP’s CA values ranged between 4.85 to 43.57 m2. The average 

DP’s Ht values ranged between 0.13 to 2.79 meters. The plots that had the highest 

average of CA and Ht for DP (e., g., plot A, B, F) contained mature DP (22, 22, and 

21 years respectively). While the plots that had the lowest average of CA and Ht for 

date palms (e., g., Q, R, M, and S) contained recently planted DP (less than 9 years). 

It was found that some young DP had CA equal 0.07 m2 and Ht equal to 0 because 

their fronds were tied by rope with no main trunk.  

 

Table 17: Averages of CA, Ht, and density values of DP per plot. 

Plot Cultivar Spacing 
(m) 

Age No Ave. CA 
(m2) 

Avg. Ht 
(m) 

Density 
(palm.ha-1) 

A Khalas 7×6 Mature 25 43.57  2.56 156 
B Khalas 8×7 Mature 25 41.85 2.72  156 
C Khalas 7×6 Mature 30 40.63  2.8 188 
D Barhi 7×6 Mature 27 20.65  1.34 169 
E Barhi Sparse Mature 17 29.4  2.43 106 
F Khalas 7×7 Mature 25 41.45  2.79  156 
G Khalas 7×7 Mature 22 32.07  2.02 138 
H Khalas 7×7 Mature 22 22.81  1.52  138 
I Khalas 7×7 Mature 21 29.02  1.64  131 
J Barhi 7×7 Mature 20 29.39  1.85  125 
K Majdool Sparse Medium 12 20.65  0.97 75 
L Majdool Sparse Medium 6 23.98  0.88 38 
M Majdool 8×8 Medium 25 6.42  0.48 156 
N Barhi Sparse Medium 8 13.79  0.38  50 
O Barhi 8×8 Medium 21 15.26  0.59 131 
P Barhi  Sparse Medium 24 8.23  0.65 150 
Q Barhi  8×8 Young 23 4.85  0.28 144 
R Barhi  8×8 Young 23 5.86  0.19 144 
S Fahel  8×8 Young 25 7.02  0.13 156 

 

4.2.2 The Field-Based Biomass Estimation Model 

Regression analysis was performed following methodology described in 

Subsection 2.7.3. A summary of the AGB for the tested plots is shown in Table 18. 
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The highest crown biomass (CB) was found in the plot A, B, C, F while the lowest CB 

was found in the plot N, L, Q, and R. These results were largely influenced by the 

average of CA of these plots. Same can be said about trunk biomass (TB) which was 

largely influenced by the average of Ht. The average number of DP per plot was 23.4 

which, given a plot area of 1600 m2, corresponds to around 146 palm ha-1. The average 

AGB in ton.ha-1 was then calculated by multiplying the average AGB per palm by 146. 

For mature, medium and young DP, the average AGB was estimated at: 29.35, 9.59, 

and 4.11 ton.ha-1 respectively. For mixed ages class, the average was estimated at 

19.13 ton.ha-1 respectively. The total CS was estimated by multiplying the AGB 

(ton.ha-1) by 0.5387 according to Equation (5) (see Chapter 2, Subsection 2.7.5). 

Therefore, the CS for mature, medium and young DP were estimated at: 15.81, 5.17, 

and 2.22 ton.ha-1 respectively. For mixed ages class, the average CS was estimated at 

10.3 ton.ha-1. 
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Table 18: The AGB of each date palm component per palm, and per hectare. 
 

Plot Age No. Per Palm (Kg) Per Hectare (Ton) 
CB TB AGB CB TB AGB 

A Mature 25 180.42 112.99 293.41 26.34 16.50 42.84 
B Mature 25 151.86 117.92 269.77 22.17 17.22 39.39 
C Mature 30 141.41 120.43 261.84 20.65 17.58 38.23 
D Mature 27 52.58 58.59 111.17 7.68 8.55 16.23 
E Mature 17 81.43 103.76 185.19 11.89 15.15 27.04 
F Mature 25 143.79 120.66 264.44 20.99 17.62 38.61 
G Mature 22 90.46 92.11 182.56 13.21 13.45 26.65 
H Mature 22 53.32 71.41 124.73 7.78 10.43 18.21 
I Mature 21 73.38 77.43 150.81 10.71 11.30 22.02 
J Mature 20 73.83 85.93 159.76 10.78 12.55 23.32 
K Medium 12 45.05 47.77 92.82 6.58 6.97 13.55 
L Medium 6 54.37 43.48 97.85 7.94 6.35 14.29 
M Medium 25 22.18 14.6 36.78 3.24 2.13 5.37 
N Medium 8 30.98 18.07 49.05 4.52 2.64 7.16 
O Medium 21 33.26 28.78 62.04 4.86 4.20 9.06 
P Medium 24 22.24 32.18 54.42 3.25 4.70 7.95 
Q Young 23 18.49 12.91 31.4 2.70 1.88 4.58 
R Young 23 19.53 7.95 27.48 2.85 1.16 4.01 
S Young 25 21.3 3.9 25.2 3.11 0.57 3.68 

 

4.2.3 The RS-Based Biomass Estimation Model 

4.2.3.1 Mature Date palms 

Mindful of the effect of DP age on their biomass, the regression of RS variables 

with the field estimated biomass of DP was run for each one of the DP age classes 

defined earlier. For mature DP (10 plots), the correlation with single bands: SWIR1 

and SWIR2 was found significant; while the correlation was significant with all tested 

VI’s except for TCB vegetation index (Appendix 5). SWIR2 was the best single band 

for AGB DP with R² values equal to 0.570. While TCG, GNDVI, and DVI were among 

the best single VI’s for AGB of mature DP with R² values equal to 0.797, 0.790, and 

0.789 respectively. The results of the stepwise regression analysis on AGB of only the 
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mature DP showed that a combination of single bands (Red, SWIR1, and SWIR2) 

highly improved R² from 0.398 for Red band, 0.445 for SWIR1 band, and 0.553 for 

SWIR2 band to a higher value of 0.961 and P-value equal 0.0001 (Equation 16).  

AGB Mature DP (ton.ha-1) = -25.953+0.004(Red)+0.008(SWIR1)-0.011(SWIR2) Eq. (16) 

4.2.3.2 Non Mature Date palms 

For medium and young DP, none of the RS variables of Landsat showed any 

significant correlation with AGB (except with the single band, SWIR1, and TCB index 

for medium DP only) (Appendix 5). This could be attributed to the small sample size 

of medium and young DP (only three plots for each), but also may be due to the less 

developed crown (for young DP) to be able to compensate for the effect of the soil 

background reflectance values. Therefore, increasing the number of sample size and 

using higher spatial resolution data should improve largely the results of the regression 

analysis to predict the AGB and CS of non-mature DP (see Chapter 6, Subsection 

6.2.3). 

4.2.3.3 Mixed Ages Date Palms 

Considering all DP as one age class (mixed class) resulted in a stronger 

relationship between AGB (the dependant variable) and RS variables (the independent 

variables) in the regression analysis. All RS variables of Landsat 8 OLI, single bands 

and tested VI’s, were significantly correlated with AGB of DP (except NIR band, see 

Table 19). SWIR2 was found to be the best single band and had the strongest 

regression coefficient among other bands of Landsat 8 OLI for AGB of DP, with R² 

value of 0.754 and P-value equal 0.00001. The VIs increasingly improved the 

relationship between the AGB and the spectral signature for the AGB of DP (Figure 
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23). SR was the best single VI and had the strongest correlation among all RS variables 

of Landsat 8 OLI for AGB of DP, with R² value of 0.871 and P-value equal 0.0000001. 

 

Table 19: Linear correlation between RS variables and AGB of DP. 

Independent Variable Constant Coefficient R² P value 
Single Band 

B1 58.246 -0.004 0.635 0.0002 
B 43.039 -0.003 0.660 0.0001 
G 29.439 -0.002 0.670 0.0001 
R 19.964 -0.001 0.699 0.00005 
NIR 14.765 -0.001 0.036 0.482 
SWIR1 18.066 -0.001 0.725 0.00003 
SWIR2 15.398 -0.001 0.754 0.00001 
Vegetation Index 

DVI -7.247 0.002 0.859 0.0000003 
GNDVI -13.795 76.126 0.815 0.000002 
NDGI 6.287 0.768 0.731 0.00002 
NDVI -5.187 44.843 0.848 0.0000004 
RVI 25.284 -32.191 0.833 0.0000008 
SAVI -5.381 30.642 0.851 0.0000004 
SR -18.802 14.956 0.871 0.0000001 
TCB 24.918 -0.001 0.638 0.0002 
TCG 4.552 0.002 0.851 0.0000004 
TCW 7.939 0.001 0.816 0.000006 
TVI -110.982 104.816 0.864 0.0000002 

 

 

Figure 23: Coefficient of determinations versus RS variables. 
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By using different types of regression equations, SWIR2 showed the strongest 

Figure 24); while SR showed the strongest correlation using a second order polynomial 

equation with R² equal 0.8947 (Equation 18 and Figure 25). 

AGB Mixed DP (ton. ha-1) = 4 × 1021 × (SWIR2)- 4.907    Eq. (17)          

AGB Mixed DP (ton. ha-1) = 53.261(SR)2 - 68.472(SR) + 4.4894 Eq. (18) 

 

 

Figure 24: AGB of date palm as a function of SWIR2 of Landsat 8 OLI (Salem Issa 
et al., 2019). 

 

Figure 25: AGB of date palm as a function of SR of Landsat 8 OLI (Salem Issa et al., 
2019). 
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Although the analysis showed that a single band (e.g. SWIR2) or a single VI 

(e.g. SR) had a correlation that was sufficiently strong to allow the use of the model 

coefficient in developing biomass estimation model, a stepwise regression analysis 

indicated that the R2 is significantly improved if two or more independent variables 

(bands or VIs) were used in multiple regression models. Furthermore, Bands B1 and 

B were excluded from the stepwise regression analysis because they contained 

erroneous values. The results of the stepwise regression showed that a linear regression 

model combining single bands of Landsat 8 OLI (G, NIR and SWIR2) and VIs (DVI, 

NDGI, and RVI) improved the R² value for the prediction of AGB for DP and therefore 

giving more accurate results of biomass prediction and CS (Equations 19 and 20). The 

combination of VIs (DVI, NDGI, and RVI) showed and higher with R2 equal to 0.952 

compared with R2 values when using the same VIs separately (0.859 for DVI, 0.731 

for NDGI, and 0.833 for RVI). 

AGB Mixed DP (ton. ha-1) = -29.129+0.004(G)+ 0.001(NIR) - 0.002(SWIR2) 

 Eq. (19) 

With (R² = 0.927, P-value = 0.0000004) 

AGB Mixed DP (ton. ha-1) = -189.101+0.009(DVI) + 2.123(NDGI) + 213.612(RVI)   

Eq. (20) 

With (R² = 0.952, P-value = 0.00000004)  

4.2.3.4 Models Validation 

The model was established based on field measurement and on the statistical 

accuracy assessment. The accuracy statistics covered the RMSE and RMSE% as 

explained previously in Chapter 2, Subsection 2.7.4. Table 20 summarized the best 

regression models for estimation the AGB based on bands values and VIs obtained 

from the Landsat 8 OLI. The best models to estimate AGB for both, mixed age class 
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and mature age class, were determined as the model with highest R2 and lowest RSME, 

RSME%, and P-values. 

 

Table 20: Results of model performance evaluation (RMSE and RMSE%).   

Regression Models Class R2 P value RMSE RMSE% 

AGB=-89.101+0.009(DVI)+ 
2.123(NDGI)+213.612(RVI) Mixed 0.95 4E-08 6.05 35.73 

AGB=-25.953+0.004(R)+ 
0.008(SWIR1)-.011(SWIR2) Mature 0.96 0.0001 9.18 50.77 

 

4.2.3.5 Map Creation 

The CS map was constructed using the best performing AGB model 

constructed from three RS predictors variables as a combination the VI’s which are 

DVI, NDGI, and RVI. The AGB map multiplied by the conversion factor, 0.5387 as 

per the Equation 5 (see Chapter 2, Subsection 2.7.5) in order to visualize the CS map 

on part of the study area (Figure 26).  The map of CS for the best model of the study 

area produced by using the spatial modelling tool in ERDAS software.  
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Figure 26: The carbon stock map of the northern east part of study area (Salem Issa 
et al., 2019). 

 

4.3 Summary 

A RS-based biomass model was developed to estimate CS in DP in the study 

area. Data from Landsat 8 OLI were used to assess the correlation between spectral 

reflectance of single bands and different VIs on one side, and AGB derived from 

ground measurements on the other. AGB and CS (ton. ha−1) were estimated using 

allometric equations developed in a previous study for DP in the area (see Chapter 3). 

The relationships between the estimated AGB and parameters derived from RS data 

were tested using single and multiple linear regression analysis. The results indicated 

a significant correlation with certain RS parameters. For mature DP class alone (>10 

years), the correlation with single bands was only significant with SWIR1 and SWIR2 

while the correlation was significant with all tested VI’s except for TCB vegetation 

index. A combination of bands R, SWIR1, and SWIR2 improved the determination of 
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this class to an R2 value of 0.961. However, for the medium and young DP (10–5 and 

less than 5 years), the correlation was not significant (with the exception of SWIR1 

and TCB index for medium DP), where the use of higher spatial resolution should be 

a good alternative (see Chapter 5); in addition to expanding the actual field plots to 

include more plots representing all three age stages of DP (see Chapter 6). On the other 

hand, for mixed ages (young, medium and mature DP), the strongest correlations were 

found using SWIR2 single band and the SR vegetation index; having R2 values of 

0.753 and 0.871, respectively. A stepwise multiple regression analysis combining 

DVI, NDGI, and RVI vegetation indices improved the value the R2 to a value of 0.952. 

Finally, results obtained showed that CS represented 53.87% of the total AGB in DP. 

Subsequently, the average amount of CS for both mature and mixed DP was calculated 

at 15.81 and 10.3 ton. ha−1 respectively. To visualize the results on maps of DP’s CS 

accurately, an accurate mapping of DP plantations (at different age stages) is achieved 

in subsequent Chapter 5. 
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Chapter 5: LULC Classification of Abu Dhabi and Accurate Mapping of 

Date Palm Plantations at Different Age-Stages 
 

Note: This Chapter presents the results of applying the methods which discussed in 

Chapter 2, Subsection 2.6 in order to classify the main LULC classes of Abu Dhabi 

and map its date palm plantations. The substantive part of this Chapter has been 

published and submitted to peer-reviewed journals during the working on the 

dissertation as follows: 

 Dahy, B., Issa, S., & Saleous, N. (2021). Detecting and mapping of mature, 

medium, and young age date palms in the arid lands of Abu Dhabi, using multi-

source / multi-resolution satellite data. Journal of Remote Sensing 

Applications: Society and Environment (Submitted). 

 Issa, S. M., Dahy, B. S., & Saleous, N. (2020). Accurate mapping of date palms 

at different age-stages for the purpose of estimating their biomass. ISPRS 

Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 

V-3–2020, 461–467.  

5.1 Overview 

In this Chapter, a hybrid classification method (HCM) was developed to 

produce a classified map of the study area comprising seven LULC classes. A GIS-

based semi-automatic approach, benefiting from the researcher’s prior knowledge of 

the study area, was then implemented to group the classes and to produce a bitmap 

(binary mask) of only two types: vegetation and non-vegetation (the vegetation 

bitmap) (see Chapter 2, Subsections 2.6.1 and 2.6.2). Finally, a set of high-resolution 

WV-2 imagery was used to classify and map DP plantations at different age stages, 

within the vegetation bitmap, to create an accurate and reliable DP map (see Chapter 
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2, Subsections 2.6.3). The output product will be used as an input to the built RS-based 

biomass model to assess CS in DP plantations in the study area (see Chapter 6). This 

Chapter meets the objective no. 4 (see Chapter 1, Subsection 1.3 Aim and Objective). 

For the purpose of tree crown detection and delineation, many algorithms were 

developed (Chepkochei, 2011; Hebbar et al., 2014; Lack & Bleisch, 2010; Rizvi et al., 

2019; Sahay et al., 2017). However, results of tree detection and delineation can be 

affected by algorithm characteristics. Indeed, different approaches may give different 

results despite working in the same environment. Thus, it is important to select the 

appropriate algorithm to get the suitable results. Moreover, for any algorithm to work 

properly, crowns should be, at least, detectable and segmented as an object in the image 

before classification. Training areas of the classes that are to be extracted must be 

chosen very carefully for not to include any background pixels and non-targeted 

classes based on visual analysis and on previous knowledge of the area by the 

interpreter. By using the pan-sharpened WV-2 images (spatial resolution 0.5 meter) 

(see Chapter 2, Subsection 2.3), DP crowns can be differentiated from the background 

(soils, grasses, and weeds) and other shrubs and trees using colour, tone, texture, size 

and planting arrangement (Figure 27). In general, the steps followed could be divided 

to multi-levels (see Chapter 2 for more details): (1) raster data analysis which includes 

identifying DP from other vegetation and classifying their age stages (mature, medium, 

and young) according to their crowns, and (2) vectorising, cleaning up the vector layers 

and creating the maps. Furthermore, a pixel-based classifier relying on spectral, 

textural and site information, is used in the raster analysis part (Figure 28b, and 28c). 

The second level of analysis was done on the vector data model by first vectorising the 

three raster outputs (mature, medium, and young), smoothing the polygons, calculating 

the areas, and cleaning up the maps manually (Figures 29d, 29e, and 29f). 
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Figure 27: A subset of pan-sharpened WV-2 image. Green, red, and NIR1 bands were 
used with a spatial resolution of 0.5 meters. The image is displayed in false color. (A) 
The DP can be differentiated from bare soils and grass visually by using color, tone, 
and texture; and (B) The DP can be differentiated from other vegetation (grasses, trees, 
and shrubs) visually using the mentioned tools plus the planting arrangements and 
spacing. 

 

 

Figure 28: Separating age classes of date palm plantations. The example is from Al 
Foah DP farm: (a) Original WV-2 image (RGB:7,5,4); (b) SFP using Bayesian 
network; (c) Threshold and clump applied; (d) Mature palms layer; (e) Medium palms 
layer; and (f) Young palms layer (Salem Issa et al., 2020). 
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5.2 Results 

5.2.1 LULC Map Creation Using Hybrid Classification 

The evaluation of spectral signatures separability (total of 740 training sets) is 

displayed in Figure 29 where the Y-axis represents the mean signature value of each 

class (pixel or DN value) and the X-axis represents the Landsat-8 OLI bands. 

Shortwave infrared bands (SWIR1& SWIR2) had the best separability power of all 

Landsat 8 OLI bands. 

 

Figure 29: Mean signature value of LULC classes vs. Landsat-8 bands. 

  

Figure 30 displays the class distribution and Table 21 shows their respective 

areas and percentages in the study area. Sand dunes formed about 70% of the study 

area with nearly 5 million hectares. Sabkhas occupied 15.51%, while sand sheets, 

including gravel, made up 8.6% of the study area. Finally, Urban and Vegetation 

classes constituted only 0.49% with 32,333 hectares and 0.6% with 40,102.6 hectares 

of the study area, respectively. 
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Figure 30: LULC map of the study area. 
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Table 21: The area and percentage of each class LULC of Abu Dhabi. 

LULC  
Class 

Deep  
Water 

Shallow 
Water Urban Vegetation  Sand 

Dunes 
Sand 
Sheets Sabkha 

Area (ha) 9,677.7 11,847.2 40,102.6 32,333.3 4,957,180 572,665 1,032,170 
(%) 0.15 0.18 0.6 0.49 74.48% 8.6 15.15 

 

5.2.2 Mapping Vegetation and Date Palm Using Landsat-8 OLI Images 

5.2.2.1 Creating Vegetation Bitmap 

All non-vegetated classes of the LULC map were merged to produce one Non-

vegetated class (see Chapter 2, Subsection 2.6.2); where the vegetated class was given 

the value of One, while the Non-Vegetated class was set to Zero (Figure 31).  

 

 

Figure 31: Vegetation bitmap of Abu Dhabi. 

 

5.2.2.2 Mapping Date Palm Plantations 

Pure spectral signatures of DP were selected from pixels representing DP 

planted in Abu Dhabi. They all were collected during intensive field visits to different 
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locations of DP farms in the study area. These DP farms are different in their 

phenological cycle (mature, medium, and young). Besides, they have different farming 

systems, management practices (irrigation and fertilizing) and healthy conditions 

(stressed/ not stressed). In order to separate and map DP from other vegetation types, 

the spectral signature values (minimum, maximum, and mean) of DP plantations were 

analyzed. It was revealed that only mature DP had good separability and hence could 

be detected at this stage, using Landsat-8 OLI. This is due to the limitations of Landsat-

8 OLI to differentiate soil background from the non-mature DP plantations. The results 

are displayed in Figure 32; where the Y-axis represents the signature values (pixel or 

DN value) of DP (mature DP) while the X-axis represents the Landsat-8 OLI bands. It 

was noticed that the best discriminatory bands of the Landsat-8 OLI for mature DP 

spectral separation are found in the Red-Red edge-IR boundaries.  

 

Figure 32: Min., max., and mean signature value of DP versus Landsat bands. 

 

Therefore, non-mature DP (medium and young) were not mapped, and only 

mapping of mature DP was performed using the Landsat-8 OLI imagery at this stage. 

The HCM was applied to the vegetation bitmap produced previously and, the same 

procedure described above was implemented. Maps were created and their areas in 

hectare were computed (Figure 33). 
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Figure 33: Abu Dhabi DP plantations map (mature DP) using Landsat-8 OLI. It is 
shown that most of the DP plantations are found in AlAin (right box) and Liwa (left 
box). 
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The area (in hectare) of the DP plantations was estimated at 20,893.5 ha, hence 

contributing to more than 64% of the vegetated areas in the emirate. Most of DP 

plantations were found in AlAin (east of the emirate) and Liwa (south of the emirate). 

Note that these figures represent only the mature DP plantations (> 10 years) of Abu 

Dhabi as Landsat-8 OLI couldn’t depict the non-mature DP (medium and young) of 

an average crown diameter less than 5 meters due to mixed spectral signature with soil 

background and wider spacing. 

5.2.3 Mapping Young, Medium, and Mature Date Palm Plantations Using Sub-
Meter WorldView-2 Images 

Maps of DP at three age stages: young, medium, and mature were created using 

the sub-meter WV-2 imagery. GIS tools for cleaning up the vector shapefile resulting 

from the OOC method were used successfully to enhance and improve highly the 

accuracy of the final maps. Figure 34 shows the final DP map at three different age 

stages in AD emirate (mature, medium, and young); while Table 22 displays areas (in 

hectare) of each category with a total area equal to 7,588.04 ha. It can be noted that 

more than half of the Abu Dhabi DP plantations areas were mature DP (> 10 years).  

 

Table 22: Mature, medium, and young DP total areas and percentages in AD. 
 
Class Mature DP Medium DP Young DP Total 
Area (ha) 4,193.86 1,672.14 1,722.05  7,588.05 
Percentage (%) 55.27 22.04 22.69 100 
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Figure 34: Map of DP plantations showing three age stages using WV-2. The boxes 
represent the DP maps at different scales and different locations (Alfoah, Alain Oasis, 
Alkhatem, Liwa west, Liwa east, and Ghiathi). 

 

5.2.4 Maps Validation  

The accuracy of the classified maps was assessed using standard statistical 

tools. The results are summarized and shown in (Table 23), they show a good overall 

performance of the classification process with an overall accuracy of about 81.7% for 

LULC map and 87% for the vegetation bit-map using Landsat-8 OLI. Furthermore, 

the overall accuracies of the DP maps, produced using the sub-meter WV-2, at 

different age stages, were determined to be 86.8%, 88% to 90.7%, for young, medium, 

and mature DP plantations respectively. Also, the accuracy of the DP map derived 

from WV-2 was assessed for all three age stages combined (considered as one DP class 

only). The resulting map had an overall accuracy of 94.5% and a kappa coefficient of 
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88% (Table 23). These figures are considered a great achievement considering the 

efforts exerted by the government to inventory DP in the emirate.  

 

Table 23: Accuracy assessment of the classified maps. 

Data 
Source Classified map Producer’s 

Accuracy % 
User’s 
Accuracy % 

Overall 
Accuracy % 

Overall 
Kappa  

Landsat-8  LULC (7 classes) 

81.71 0.8094 

Deep Water 92.68 76.00 
Shallow Water 95.65 88.00 
Urban 85.71 72.00 
Vegetation  74.07 80.00 
Sand Dunes 81.81 90.00 
Sand Sheets 74.07 80.00 
Sabkha 74.14 86.00 

Landsat-8  Vegetation bitmap  
87.00 
 

0.7400 Vegetation 97.44 76.00 
Non-vegetation 80.33 98.00 

Landsat-8 DP bitmap    
77.5 0.5500 DP 92.24 61.67 

Non-DP 70.89 93.33 
WV-2 Mature  100.0 81.48 90.74 0.8148 

Medium  95.34 80.00 88.00 0.7600 
Young  93.75 78.95 86.82 0.7368 
All Ages  

94.5 
 
0.888 DP 94.59 95.45 

Non-DP 94.38 93.33 
 

5.2.5 Date Palm Counting  

Mapping DP using the sub-meter WV-2 instrument allowed not only to 

delineate the edges of DP crowns but also provide with the ability to count their 

numbers in Abu Dhabi. The counting of DP was simpler for non-mature DP (medium 

and young), where there is no overlapping between DP crowns, hence each palm was 

delineated by only one polygon “one entity”. However, the counting became more 

complicated for mature DP (i.e., full canopy producing non-district objects 

representing each mature DP) or, in dense planting farming systems (small spacing 

among palms is the common practice), where the straight forward method of counting 

polygons become difficult. Each category (age stage) was processed separately; 
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therefore, the count of DP in each planted area (young, medium, and mature) was 

determined by dividing the area (in meter) by the mean crown area (CA) of each DP 

age stage which were: 2.41 m2, 17.72 m2, and 47.78 m2, for young, medium, and 

mature respectively. The total number of DP planted in the study area counted an 

estimated number of:  8,966,826 palms (Table 24).  

 

Table 24: The preliminary results of the total numbers of the DP in AD.  

Age stage (year) Number (palm) 
Young (< 5) 7,145,436 
Medium (5 – 10) 943,646 
Mature (> 10) 877,744 
Total 8,966,826 

 

5.3 Summary 

A framework for mapping DP in the study area with varying age stags and 

based on integrating multi-source/multi-sensor data in a hierarchical integrated 

approach (HIA) was proposed.  Landsat-8 OLI scenes succeeded in delineating and 

mapping mature DP plantations with acceptable accuracy. However, it failed to depict 

young and medium DP, because of inadequate sensor resolutions at such level of 

detail. Consequently, an object-oriented classification (OOC) approach was applied 

using sub-meter WorldView-2 (WV-2) imagery, at the DP plantation level, to depict 

and map medium and young aged DP. GIS helped in converting from raster to vector 

formats, allowing for manual editing of certain polygons hence, increasing the 

accuracy of the produced maps, more specifically for young DP. The outcomes of the 

implemented approach were the creation of detailed and accurate maps of DP at three 

age stages. This step is essential in the building process of the RS-based biomass 

estimation model, for the assessment of the CS of DP (see Chapter 6). The produced 
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maps were validated using existing ancillary data and field checks. The overall 

accuracies for young, medium, and mature DP plantations were 86.8%, 88% to 90.7%, 

respectively; while for mixed-ages DP the value reached up to 94.5%, with an overall 

Kappa statistics estimated at 0.888.  
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Chapter 6: Remote Sensing Based Models for Assessing Date Palm 
Biomass and Carbon Stock in Abu Dhabi 

 

Note: This Chapter presents the results of applying the methods discussed in Chapter 

2, Subsection 2.7 to build the RS-based spatial model for biomass and CS assessment 

of DP, quantify and visualize the amount of biomass and CS at the Emirate of Abu 

Dhabi level. It presents the results of extending the models derived from the pilot study 

area discussed in Chapter 4 to the entire emirate. The RS-based model development 

methods were applied using 54 field plots covering the whole study area as opposed 

to the 19 field plots used in the pilot study (see Chapter 4). A substantive part of this 

Chapter has been prepared to be published and submitted to a peer-reviewed journal 

as follows: 

 Dahy, B., Issa, S., Saleous, N., & Ksiksi, T., (2021). Modeling Above-ground 

Biomass (AGB) and Carbon Stock (CS) Assessment of Date Palm Plantations 

in Abu Dhabi (UAE) Using Landsat-8 (OLI). Remote Sensing (Under 

preparation). 

6.1 Overview 

The number of field plots was increased to 54 collected across the study area 

(see Chapter 4, Subsection 4.3). They included 17 plots representing mature DP, 19 

plots representing medium DP, and 18 plots representing young DP (see Chapter 2, 

Subsection 2.7.1 b). A regression analysis using RS predictors derived from Landsat 

OLI and the AGB predicted using field measurements and the allometric equations 

developed earlier in the study allowed the identification of the most significant RS 

predictors and the development of AGB estimation RS-based models for the different 

age stages of DP. These models were then applied to Landsat OLI data to DP 
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plantations at different age stages as identified in the DP maps created previously from 

sub-meter WV-2 imageries (see Chapter 5, Subsection 5.2.3). The areas of DP were 

estimated at 7,588.04 hectares (1,722.05 ha for young DP, 1,672.14 ha for medium 

DP, and 4,193.86 ha for mature DP) with overall accuracy reached up to 94.5%, with 

an overall kappa statistics estimated at 0.888 (see Chapter 5, Tables 22 and 23). This 

Chapter meets objectives 5 and 6 of the dissertation (see Chapter 1, Subsection 1.3 

Aim and Objective). Specifically, this chapter presents (1) building a RS-based spatial 

model for biomass and CS assessment of DP, and (2) quantifying and visualizing the 

amount of biomass and CS in Abu Dhabi, using the built RS-based spatial models. 

6.2 Results 

6.2.1 Descriptive Statistics of the Field Variables Assessed 

Structural variables of 2063 palms included in the 54 plots were measured in 

the field. Statistics about these measurements including the number of DP for each age 

stage class, average CA, Ht, and densities of DP per hectare, are summarized in Table 

25. The average palm CA’s of the mature DP, medium DP, and young DP plots were 

36.00, 22.51, and 6.65 m2, respectively. The average palm Ht’s of the mature DP, 

medium DP, and young DP plots were 2.89, 1.07, and 0.15 meters, respectively. It is 

obvious that CA and Ht increase as DP age. It is noticeable that there is a significant 

overlap between the range of CA in the mature and medium DP because palms, in 

general, are subject to regular pruning of their fronds by the farmers. The pruning 

process aims to keep a specific number of fronds in the palm allowing more 

carbohydrates to go to the fruits (dates) than the fronds. It is rare to find Ht of DP taller 

than 5 meters in modern DP farms as the farmers tend to remove tall palms as they are 

more difficult to maintain and manage. However, during field measurements, the 

researcher observed some DP that exceed 5 meters. Some were extremely tall with Ht 
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reaching 15.2 m, especially in the oases and old farms. In contrast, it was found that 

most young DP had Ht equal to zero and some of them has CA equal to 0.07 m2 

because their fronds were tied by rope with no main trunk. The average number of DP 

per plot for mature, medium, and young DP were 41, 38, and 35, respectively. Given 

a plot area of 1600 m2, this corresponds to densities of around 258, 238, and 221 palm. 

ha-1, respectively. The highest average of DP density was found on mature DP plots. 

In two cases, the number of mature DP reached 88 and 96 palms per plot corresponding 

to around 550 and 600 palm. ha-1, respectively. This could be due to an old farming 

systems used when the mature DP were planted where the palms were distributed 

randomly in the farm and the spacing among them was small to get the benefits from 

the traditional irrigation practices (e.g. Aflaj irrigation systems). Nowadays, the DP 

inside the farms are distributed in more organized ways with wider spacing among 

palms (7m×7m, 8m×8m, and 9m×9m) which led to lower densities in modern DP 

farms allowing agricultural tractors and machinery to navigate more easily. 

 

Table 25: Average CA, Ht, and density values of DP at 54 field plots. 

DP  
Age Stage  

No. 
Palms 

Average  
CA (m2) 

Average  
Ht (m) 

Avg. Density 
(palm. ha-1) 

Mature 701 36.00 (19.54 – 44.15) 2.89 (1.90 – 5.07) 258 (131 – 600) 
Medium 725 22.51 (11.85 – 32.45) 1.07 (0.39 – 1.64) 238 (131 – 450) 
Young 637 6.65 (2.52 – 13.94) 0.15 (0 – 0.37) 221 (144 – 306) 

 

6.2.2 The Aboveground Biomass Analysis and Estimating its Carbon Content 

A summary of the AGB for the tested plots is shown in Table 26. The highest 

CB was found in mature DP plots while the lowest CB was found in young DP plots. 

These results were largely influenced by the average CA of these plots (Table 26). The 

same can be said about TB which was largely influenced by the average of Ht (Table 



128 
 
26). The averages of AGB in tons per hectare of mature, medium, and young DP were 

estimated at 59.39, 23.33, and 6.15 t. ha-1, respectively. The aboveground carbon 

(AGC) in (t. ha-1) was estimated by multiplying the average AGB in tons per hectare 

by 0.5387 (Salem Issa et al., 2018, 2020b). Therefore, the averages AGC for mature, 

medium, and young DP plots were estimated at 31.99, 12.57, and 3.31 t. ha-1, 

respectively. 

 

Table 26: The AGB of DP components by age stages at all 54 field plots. 

DP Age 
Stages 

No. 
Plots 

Biomass (ton. ha-1) 
Crown Biomass Trunk Biomass AGB 

Mature 17 29.02  
(12.45 – 49.49) 

30.37  
(11.95 – 106.76) 

59.39  
(24.41 – 149.35) 

Medium 19 13.34  
(5.62 – 27.21) 

9.98  
(4.18 – 20.63) 

23.33  
(11.11 – 44.60) 

Young 18 4.85  
(2.72 – 8.16) 

1.30  
(0 – 4.08) 

6.15  
(2.72 – 9.90) 

 

6.2.3 Models Development and RS Variables Importance 

As the age of DP has an important role in their biomass and CS (see Table 26), 

the regression of RS variables with the estimated biomass of DP in the field plots was 

calculated according to the DP age stages defined earlier. 

6.2.3.1 Mature Date Palms  

In mature DP plots (17 plots), the linear correlation between AGB and single 

bands was significant for SWIR1 and SWIR2, while that correlation was significant 

for all tested VI’s except TCB and TCG (see Appendix 7). SWIR1 and SWIR2 were 

among the most highly correlated single band to AGB of mature DP with R2 values 

equal to 0.302 and 0.290, respectively. While NDGI and SR were among the best 

single VIs for estimation of AGB of mature DP with R2 values equal to 0.609 and 

0.545, respectively. The use of a stepwise multiple regression analysis revealed that 
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TCW showed the strongest correlation to AGB using a second-order polynomial 

equation. Results of that regression analysis are summarized in Table 27 for all 

predictors.  

 

Table 27: The prediction equations for AGB estimation of the mature DP. 

Regression 
Equations Predictor 𝐑𝟐 P value RMSE RMSE% Bias 

AGB= 0.00003x2 - 
0.1908x + 330.1 

SWIR1* 0.7019 0.022 15.3528 36.2101 -2.9669 

AGB= 0.00004x2 - 
0.1723x + 235.59 

SWIR2 0.6834 0.026 64.3271 151.7179 19.5399 

AGB= 34.878x2 - 
146.61x + 196.93 

SR* 0.7357 0.0007 10.3136 24.3250 2.9513 

AGB= 1494.8x2 - 
1511.1x + 417.6 

RVI 0.6400 0.019 10.5130 24.7954 2.7318 

AGB= 0.0002x2 - 
0.7534x + 687.29 

DVI 0.6244 0.006 175.0286 412.8114 -57.9171 

AGB= 9820.7x2 + 
1589.1x + 106.87 NDGI* 0.7581 0.0002 13.4727 31.7758 3.0822 

AGB= 1540x2 - 
1043.4x + 215.2 NDVI* 0.7012 0.007 9.2559 21.8303 2.5235 

AGB= 8584.3x2 – 
19786x + 11438 

TVI 0.6836 0.009 7.6617 18.0704 1.7423 

AGB= 3565x2 - 
2922.1x + 634.81 

GNDVI 0.6301 0.020 12.396 29.2364 3.2638 

AGB= 0.5244x2 - 
24.955x + 336.14 

RDVI 0.6918 0.005 13.3152 31.4044 3.2562 

AGB= 664.06x2 - 
667.46x + 206.36 

SAVI* 0.7156 0.005 8.0556 18.9993 2.0658 

AGB= 1527.9x2 - 
1501.9x + 404.79 

MSAVI 0.6967 0.013 10.4487 24.6437 3.0979 

AGB= 0.00006x2 + 
0.1212x + 96.708 

TCW* 0.7643 0.007 6.3224 14.9118 1.4248 

*The strongest RS predictors for AGB estimation of mature DP. 

 

Additionally, the results of the stepwise multiple regression analysis on AGB 

of the mature DP showed that a combination of single bands or of VIs does not improve 

the R2. Therefore, the second-order polynomial equation that uses only TCW as RS 

predictor is the strongest model to estimate the biomass of mature DP with R² equal 

0.7643 and P-value equal of 0.007 (Equation 21 and Figure 35). 



130 
 
AGB Mature DP (ton.ha-1) = 0.00006 (TCW)2 + 0.1212 (TCW) + 96.708 Eq. (21) 

6.2.3.2 Non-Mature Date Palms  

a. Medium DP 

For medium DP (19 plots), the correlation was not significant with all single 

bands and all tested VI’s except DVI and RDVI with R2 values equal to 0.208 and 

0.205, respectively (see Appendix 7). The R2 was slightly improved by using a second-

order polynomial equation with DVI as RS predictor, increasing from 0.208 to 0.229. 

The results of the stepwise regression analysis on AGB of medium DP showed that a 

combination of single bands or a combination of VIs does not improve the R2. 

Therefore, the second-order polynomial equation that uses only DVI as RS predictor 

is the strongest model to estimate the biomass of medium DP with R² equal to 0.2286 

and P value equal to 0.049 (Equation 22). 

AGB Medium DP (ton.ha-1) = 0.00002(DVI)2 + 0.0819(DVI) – 49.454  Eq. (22) 

 

b. Young DP 

For young DP (18 plots), the correlation was found to be significant with only 

NIR with R2 value equal to 0.283 (see Appendix 7). No improvement in R2 was 

achieved when using various type equations (logarithmic, exponential, power, and 

polynomial regression). Besides, the results of the stepwise regression analysis on 

AGB of the young DP showed that a combination of single bands does not improve 

the R2. Therefore, the linear regression equation that uses only NIR as RS predictor is 

the strongest model to estimate the biomass of young DP with R² equal 0.2828 and P 

value equal 0.023 (Equation 23). 

AGB Young DP (ton.ha-1)  = 0.0034(NIR) - 7.1855  Eq. (23) 
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c. Non-Mature DP 

Although Equation 22 and Equation 23 for estimating AGB of medium DP and 

young DP using the RS predictors DVI and NIR, respectively, were significant (P 

value < 0.05), it was found that R2 could be improved by considering medium and 

young DP as one age class, the non-mature class (non-mature DP). Running the 

regression analysis for non-mature DP (37 plots = the combine of medium and young 

DP) resulted in a stronger relationship between AGB and RS variables. Except for B, 

G, and NIR bands and NDGI, all RS variables of Landsat 8 OLI, single bands, and 

tested VIs, were significantly correlated with AGB of the non-mature DP (Table 28). 

The exponential regression equation that uses RDVI as RS predictor was the best 

single VI and yielded the strongest correlation with AGB of non-mature DP, resulting 

in an R2 value of 0.4987 and P value equal 0.00002 (Equation 24 and Figure 35). Table 

28 summarizes the prediction equations for estimating AGB in the non-mature DP.  

 

Table 28: The prediction equations for AGB estimation of the non-mature DP. 

Regression Equations Predictor 𝑹𝟐 P value RMSE RMSE% Bias 
AGB= 24002x - 1.156 B1 0.1722 0.044 10.4856 67.0020 -6.6021 
AGB= 0.0000002x -1.858  R 0.2454 0.018 18.5347 118.4350 -15.650 
AGB= 121.96 e-0.0006 x SWIR1 0.2502 0.019 7.2303 46.2007 -4.5065 
AGB= 99.508 e-0.0007 x SWIR2 0.2943 0.012 8.0543 51.4664 -5.7480 
AGB= 0.1533 e2.6274 x SR* 0.4852 0.0003 20.0397 128.0516 0.7865 
AGB= 1.4914 x-4.25 RVI* 0.4623 0.0005 9.4645 60.4776 -3.8157 
AGB= 0.00000001 x2.8765 DVI* 0.4718 0.0003 9.4193 60.1885 -7.6892 
AGB= 1.3797 e8.987x NDVI* 0.4658 0.0004 8.8506 56.5545 -4.3188 
AGB=0.000000003 e19.759x TVI* 0.4556 0.0007 10.3655 66.2349 -7.2824 
AGB= 0.5001 e8.7867x GNDVI 0.3104 0.005 8.9697 57.3157 -6.8684 
AGB= 0.8257 e0.1469x RDVI* 0.4987 0.00002 8.0402 51.3762 -5.0426 
AGB= 1.3436 e6.0627x SAVI* 0.4698 0.0004 8.9735 57.3400 -4.2404 
AGB= 0.9026 e6.7631x MSAVI* 0.4578 0.0005 7.9429 50.7547 -5.2735 
AGB= 94.527 e-0.0003x TCB 0.1841 0.044 7.9370 50.7170 -4.1559 
AGB= 5.0314 e0.0019x TCG 0.4177 0.0006 8.1560 52.1164 -6.4067 
AGB= 75.625 e0.0012x TCW 0.3505 0.006 7.6676 48.9952 -4.1108 

*The strongest RS predictors for AGB estimation of non-mature DP. 
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The results of the stepwise regression analysis on AGB of the non-mature DP 

showed that a combination of single bands or a combination of VIs does not improve 

the R2. Therefore, the exponential equation that uses only RDVI as RS predictor is the 

strongest model to estimate the biomass of non-mature DP with R² equal to 0.4987 and 

P value = 0.00002 (Equation 24, Figure 35). 

AGB Non-Mature DP (ton.ha-1)  = 0.8257 x e0.1469(RDVI)  Eq. (24) 

 

6.2.4 Models Validation 

The models were established based on field measurement and the statistical accuracy 

assessment. The accuracy statistics covered the RMSE, RMSE%, and bias as explained 

previously in the methods chapter (Chapter 2, Subsection 2.6.4). Table 29 summarizes 

the best regression models for the estimation of AGB based on band values and VIs 

obtained from Landsat 8 OLI. The best models to estimate AGB for both, mature DP 

and non-mature DP classes, were determined as the model with the highest R2 and 

lowest RSME, RSME%, bias, and P values. 
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(a) 

 

 

(b) 

 

Figure 35: AGB for DP in function of TCW and RDVI. TCW for mature DP (a), and 
RDVI for non-mature DP (b). 

 

Table 29: Models used for AGB estimation for mature and non-mature DP.  

Regression  
Model 

DP 
Class R2 P value RMSE RMSE% Bias 

AGB= 0.00006(TCW)2 + 
0.1212(TCW) + 96.708 

Mature 0.764  0.007 6.322 14.912 1.43 

AGB= 0.8257 × 1.1582(RDVI) Non-
mature 

0.4987 0.00002 8.040 51.376 -5.04 
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6.2.5 Creation of the AGB Map of DP and Estimating Total CS in the Study Area 

The final AGB map was created using the best performing models constructed 

from two RS VI predictors: TWC for mature DP and RDVI for non-mature DP 

(medium plus young DP). The aboveground carbon (AGC), shown in Figure 36, was 

then created by multiplying the estimated AGB by a conversion factor of 0.5387 as 

explained in the methods chapter (Chapter 2, Subsection 2.7.5).  

 

 

Figure 36: The aboveground carbon (AGC) map of DP in the study area. The lighter 
pixels, the more amount of AGC (t. ha-1). The black area represents area without DP. 
The histogram in lower left represents the proportion of each AGC class. 

 

The results of the CS analysis are presented in Table 30. This analysis found 

that the overall CS by DP plantations in Abu Dhabi is 2,447,856.87 tons with an 

average of 322.6 ton.ha-1.  
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Table 30: The total CS by DP plantations in megaton (Mt) in Abu Dhabi. 

DP  
Class 

Above Ground Below Ground Litter & Debris SOC Total AGB BGC BGB BGC Biomass C 
Mature 1.210 0.652 0.600 0.308 0.242 0.130 0.093 1,183 
Medium 0.384 0.207 0.356 0.182 0.058 0.031 0.037 0.458 
Young 1.008 0.543 0.335 0.172 0.101 0.054 0.038 0.807 
Total 2.602 1.402 1.290 0.662 0.400 0.216 0.169 2.448 

1 Mt = million tons. 

6.3 Summary 

This chapter presented the expansion of the RS-based models to estimate CS 

in DP in the pilot study area presented in chapter 4, to cover the whole Emirate of Abu 

Dhabi by using additional field plots and rerunning the statistical analysis. Data from 

Landsat 8 OLI were used to assess the correlation between spectral reflectance and 

different VIs on one side, and AGB derived from ground measurements on the other. 

RS data of moderate resolution such as the freely available long record of Landsat 

satellite imagery were used successfully to build a RS-based biomass estimation 

models at different age stages of DP (mature DP and non-mature DP). The allometric 

equations developed previously (see Chapter 3) provided an important element in the 

design, calibration, and implementation of a novel approach to assess AGB (ton. ha−1) 

and to estimate CS stored (ton. ha−1) in DP plantations. The relationships between the 

estimated AGB and parameters derived from RS data were tested using single and 

multiple linear regression analysis. The results helped identify the RS predictors that 

exhibited the highest and most significant correlation with AGB calculated from field 

measurements and the allometric equations developed in this study. Models using 

theses predictors were adopted to estimate AGB from RS data for the different age 

classes of DP consequently map and estimate CS for the whole study area (see Table 

31).  For mature DP class alone (>10 years), the strongest correlation between AGB 

and RS predictors was found for the VI TCW using a second-order polynomial 
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equation with R² equal to 0.7643 and P value equal to 0.007. For medium DP, the 

second-order polynomial equation that uses only DVI as RS predictor is the strongest 

model to estimate the biomass of medium DP with R² equal to 0.2286 and P value 

equal to 0.049. While for young DP, the linear regression equation that uses only NIR 

as RS predictor is the strongest model to estimate the biomass of young DP with R² 

equal to 0.2828 and P value equal to 0.023. However, combining these two classes 

into one non-mature class yielded a stronger and more significant correlation. An 

exponential regression equation that uses RDVI as RS predictor was the best single VI 

and had the strongest correlation among all RS variables of Landsat 8 OLI for AGB of 

non-mature DP, with an R2 value of 0.4987 and P value equal 0.00002. Finally, the 

models applied on the DP maps of Abu Dhabi that were produced previously (Chapter 

5) to map and quantify the CS of DP of Abu Dhabi. The overall CS by DP plantations 

in Abu Dhabi (including the five components: AGB, BGB, litter, debris, and SOC) is 

2,447,856.87 tons with an average of 322.6 ton.ha-1 (see Table 30). 

 

Table 31: RS predictive variables used in the RS based biomass models  

RS Model Vegetation Indices  Significant Variables 
Model 1 (Mature): 
 
AGB= 0.00006(TCW)2 + 
0.1212(TCW) + 96.708 

TCW:  
(= 0.1511 × B + 0.1973 
× G + 0.3283 × R + 
0.3407 × NIR − 0.7117 
× SWIR1 −0.4559 × 
SWIR2) 

B (0.450–0.515 m) 
G (0.525–0.600 m) 
R (0.630–0.680 m) 
NIR (0.845–0.885 m) 
SWIR1(1.560–1.660 m) 
SWIR2 (2.100–2.300 m) 

Model 2 (Non-Mature): 
 
AGB= 0.8257 × 1.1582(RDVI) 

RDVI: 
(NIR – R)/√(NIR+R)  
 

R (0.630–0.680 m) 
NIR (0.845–0.885 m) 

Where B is blue band, G is green band, R is red band, NIR is near infrared band, and 
SWIRs are shortwave infrared bands. 
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Chapter 7: Discussion 
 

One of the first steps in the development of models for estimation CS was the 

development of allometric equations that relate AGB to palm structural variables. In 

previous studies, some authors used fresh weight to build allometric equations, as it 

was the case in some southern Asia oil palms studies (Dewi et al., 2009; Khalid et al., 

1999a). Others used dry weight as in some tropical and west African regions (Corley 

et al., 1971; Thenkabail et al., 2004) (see Appendix 1). For DP, it was found that the 

correlation coefficient between the total fresh and dry weights of DP to be 0.99, in 

agreement with values usually recorded in palm experiments (Corley et al., 1971). 

Consequently, dry weight was adopted as a surrogate to develop specific allometric 

equations for the calculation of AGB of DP in the UAE. Results showed that the dry 

weight of DP averaged 42% of their fresh weight (Chapter 3, Table 9). When 

considering the trunk alone, that ratio averaged around 37%. This is higher than trunk 

dry/wet ratios of 20% reported in  other studies (Khalid et al., 1999a) and can be  

attributed to the conditions of desert ecosystems where plants adapt to water stress due 

to the limited availability of water intake (Aronson et al., 1992; Felker, 2009; 

Figueiredo et al., 1999; Kappen et al., 1972; Mwanamwenge et al., 1999; Ramos et al., 

2003).  

The total palm biomass was calculated as the sum of AGB and BGB, where 

BGB was derived from AGB using different ratios according to age stage. The ratio of 

BGB to AGB in DP was estimated at 0.33 for young DP. Such ratio increased to 0.92 

for medium DP and decreased to about 0.5 for mature DP. The increase observed in 

medium age may be attributed to the substantial growth of the palm’s root system at 

this age stage to support the emergence of the trunk and help the palm keep balance. 
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Resource allocation within plants generally is affected by biotic and abiotic stresses 

(Ketterings et al. 2001; Koala et al. 2017; Litton and Boone Kauffman 2008; Adam 

and Jusoh 2018; Diédhiou et al. 2017). Still, in the current case the BGB to AGB ratios 

in DP, at all age stages, were found to be consistently higher than the ratio of 0.2, 

commonly used  by many researchers for other forest species biomass estimation 

(Achard et al., 2002; Cairns et al., 1997; Gibbs et al., 2007; Houghton et al., 2009; 

Mokany et al., 2006; Ramankutty et al., 2007). It is important to note that these 

published ratios were derived from regular tree species, other than palms, in tropical, 

boreal and temperate ecosystems which are completely different from those growing 

in desert ecosystems (Mokany et al., 2006). DP species in particular, show unique plant 

architecture and anatomical characteristic (Da Silva et al., 2015).  

Age stages have substantially affected biomass accumulating in DP. In young 

DP, with no developed trunk, the AGB averaged 22.5 Kg.palm-1. Progressively, AGB 

increased with age where medium palms AGB increased to an average of 94.7 

Kg.palm-1 due to the trunk development and the increase in number and diameter of 

crown fronds (Figure 37). The increase in AGB continued in mature palms to exceed 

284 Kg. palm-1. The percentage of AGB to total biomass also varied during growth 

with averages of 75.1%, 51.9% and 66.8% for young, medium and mature palms, 

respectively. The average AGB to total biomass ratio was found to be 64.3%. 
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Figure 37: The biomass (dry weight) of DP versus age stages. 

The high correlation between age and biomass indicated that age was the best 

parameter to estimate AGB of DP with three distinguished stages of storing biomass. 

Firstly, young DP stage, where most of the biomass was stored in its crown 

representing about 75.11% of the total biomass. Secondly, medium aged DP where 

trunk started developing and taking a portion from the total biomass (around 16.2%). 

This portion was offset by doubling that of the root biomass from 24.89% to 48.06% 

of the total biomass. Thirdly, mature DP where the dry biomass was distributed equally 

among the three palm components (crown, trunk and root). Similarly, Henson and 

Chang (2003) used age to calculate the standing biomass of oil palm while Corley and 

Tinker (2008) found that the density of dry trunk increased with palm age. The 

regression analysis of age with AGB of the DP showed that CB increased at about 14% 

per year and that TB increased 18% yearly. 

Nonetheless, age is a non-structural variable that cannot account for biomass 

variations within the same stage in a plantation and measured directly in the field 
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(Korom et al., 2016). In addition, it does not satisfy the aim of identifying variables 

that can be directly measured by RS and hence provide an alternative approach to 

estimating the biomass and CS in DP plantations (Salem Issa et al., 2019). Therefore, 

using structural variables such as H, Ht and DBH, to build AGB regression equations 

are preferred (Corley & Tinker, 2008; Dewi et al., 2009; Khalid et al., 1999a; 

Thenkabail et al., 2004). Generally, DBH is widely used in biomass equations in 

tropical regions because of the high correlation between DBH and AGB (Brown, 

1997). However, in the current study, a weak to intermediate correlation between DBH 

and biomass was found. The correlation was insignificant with both CB (P value = 

0.229) and TB (P value = 0.197) (see Chapter 3, Tables 13 and 14). This may be due 

to the growing effects of the palm trunk where the DBH becomes more stable and there 

is no significant increase in DBH from medium to mature DP. In addition, palms being 

monocots, have a different anatomy and form than other trees. The DBH does not 

increase with age, which may explain the weak relationship observed with biomass 

(Sajdak et al., 2014). 

As the AGB is the resulting sum of crown and trunk biomasses, it could be 

estimated from CA and Ht, which were found to be the most significant field predictors 

(see Chapter 3, Tables 13 and 14). CB was highly correlated with CA with the highest 

R² of 0.8354 obtained using an exponential regression equation. While the TB was 

highly correlated with the Ht with the highest R2 of 0.828 reached using a power 

regression equation. Correlations between CB and CA in one hand, and TB and Ht in 

the other, were also observed by others. Carlos et al. (2015), for instance, found that 

foliage (crown) biomass was strongly correlated with palm crown variables in Brazil.  

Similarly, Korom and Matsuura (2016) studied the AGB of oil palms in Malaysia and 

analyzed different allometric equations. They reported that AGB could be estimated 
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using CD of oil palms consistently at all ages with R2 ranging between 0.95 and 0.97. 

The same can be said about CA as it could be calculated from CD using sphere 

equation (CA = π 𝐶𝐷2/4), assuming a rounded palm crown. Palm species height was 

reported to be more useful as an independent variable than DBH in AGB estimations 

(Yuen et al., 2016). Likewise, in a study conducted in Malaysia, Asari et al. (2013) 

concluded that palm height was more strongly associated with age. Carlos et al. (2015) 

found that the biomass was strongly correlated with age and very strongly with Ht. 

Recently, Singh et al. (2018) found that AGB was highly correlated with the Ht in their 

study on oil palm plantations in India. This could be explained by the fact that palm 

species growth pattern were nonlinear and each biomass component had its unique 

characteristics which would be reflected in the allometric model for estimating 

biomass (Korom et al., 2016; Da Silva et al., 2015).  Crown dimensions have been 

used less frequently in equations for AGB or biomass of any component (Yuen et al., 

2016). However, as the detection of biomass and its estimation by RS techniques 

greatly increase the efficiency in forest monitoring and measurement (Holmgren et al., 

1994), CB component has gained prominence in most research (Kumar & Mutanga, 

2017).  

The novelty introduced in the current study highlighted the value of integrating 

allometric equations with RS. The predictive power of such variables derived from 

moderate resolution satellite data, such as Landsat TM and ETM+ imagery, were valid 

to estimate palm biomass. The results of the regression analysis for the estimation of 

AGB and CS from the allometric equations on one hand, and the RS indicators on the 

other (Issa et al., 2019), showed high correlation (see Chapter 4, Table 19 and Chapter 

6, Table 31). The significant correlations reported here supported the aim of the study 
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to ultimately use RS data for estimating CS (see Chapter 1, Subsection 1.3 Aim and 

Objectives). The approach provided a significant advantage by enabling the 

calculation of AGB and CS for large areas based on field measurements at a limited 

number of representative sites used to derive the allometric equations.  

The regression analysis yielded positive correlation between CA and SOC with 

a coefficient of 0.903 (P<0.0001), concluding that for DP’s CA could be used as a 

good predictor of SOC in DP. The average SOC added to the area dominated by DP 

ranged from 15.7 ton. ha-1 to 34.5 ton. ha-1 with a mean of 22.26 ton. ha-1(see Chapter 

3, Table 16). These figures were determined from the fifteen DP destructively sampled 

measurements belonging to age stages ranging from 2.5 to 20 years. Comparatively, 

in Southern Ethiopia, Lemenih & Itanna (2004) found that semiarid acacia woodland 

added 14.7 ton. ha–1 of SOC in the top 10 cm of the soil, while Nyssen et al. (2008) 

found that grazing lands of Ethiopia could add 26 ton. ha–1 of SOC.  In the UAE,  

Acacia tortilis added around 14.7 tons of SOC per hectare while Colotropis procera 

added only 6.6 tons of SOC per hectare (Ksiksi, 2012). It is worth noting that different 

land management practices can lead to differences in the accumulation of SOC in 

different date palms plantations  (El Tahir et al., 2009). Likewise, plant species differ 

markedly in their impact on soil carbon concentration and distribution, mainly because 

of differences in their root systems (Ksiksi, 2012; Lal, 2002). LULC change leads to 

change in SOC stock (Guo & Gifford, 2002). Afforestation, for instance, results in 

sequestration of new C and stabilization of old C in physically protected SOM 

fractions, associated with micro-aggregates and silt and clay (Nyssen et al., 2008).  

Objective number 3 of this dissertation is to map DP plantations in the study 

area with high accuracy, regardless of their age stages, using different types of 
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available RS data (see Chapter 1, Subsection 1.3 Aim and Objectives). The accuracy 

of capturing all DPs is crucial to the current research, as these layers are used as an 

input to a RS-based biomass and CS estimation model (see Chapter 6, Subsection 6.1). 

Because of the reasons explained in Chapter 1 (Subsections 1.4.4.3), the moderate 

resolution Landsat-8 OLI imagery was chosen. However, this choice raised many 

challenges, particularly when mapping the non-mature DP (< 10 years), with an 

average CD of fewer than 5 meters. The low canopy cover combined with the high 

contribution of desert background reflectance limited the efficiency of capturing the 

less developed and sparse DP plantations at moderate resolution. Therefore, an 

integrated approach was proposed in this research, the HIA, applied to the multi-source 

/ multi-resolution data from moderate Landsat-8 OLI and high-resolution WV-2 

integrated with GIS. The HIA was able to depict the three age stages of DPs: mature, 

medium, and young with high accuracy.  

First, a LULC map of the major seven classes in the study area was created, 

namely: urban, vegetation (including DP), sand sheets, sand dunes, deep water and 

shadows, shallow water, and sabkhas. The PBC method was applied to the Landsat-8 

OLI scenes to perform this task, which was achieved successfully. The seven LULC 

classes were mapped and their spectral reflectance separability was achieved 

effectively. Although the overall accuracy of the LULC map was below the 85% level 

set as satisfactory for planning and management purposes (Anderson, 1976). However, 

there is a debate about the usefulness to take this level as standard; many publications 

reported accuracies mostly below the usually advised 85% target (Foody, 2002; 

Rozenstein & Karnieli, 2011). Further light was shed by examining the user’s and the 

producer’s accuracies, which measure the commission and omission errors, 

respectively. The analysis of misclassified pixels in the LULC map indicates that most 
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of the errors are mainly of omission (see the accuracies of vegetation, sand dunes, sand 

sheets, and sabkhas layers at the LULC map in Chapter 5, Table 24). The HCM, which 

combines both supervised and unsupervised classification, seems to provide an 

acceptable accuracy especially in the case of arid lands. This fact has also been 

reported by other researchers (Rozenstein & Karnieli, 2011) as well as in other 

ecoregions (Kamusoko & Aniya, 2009; Lo & Choi, 2004). The created LULC map 

showed that vegetated and urban areas constituted only 0.6% with 40,102.6 hectares, 

and 0.49% with 32,333 hectares of the total area of the emirate respectively. It is worth 

noting that sand dunes, sabkhas, and sand sheets areas were the dominant LULC 

classes in the whole emirate, making up more than 98% of the total area (see Chapter 

5, Figure 31). Finally, the overall classification accuracy of the LULC maps was 

81.71% with an overall Kappa Statistics equal to 0.81.  

Second, a vegetation bitmap of Abu Dhabi was created by merging all non-

vegetation classes into one class. The “recode” function in ERDAS Imagine was used 

to produce the binary mask with only two values: the value of “1” for the vegetation 

class, and the value of “0” for the non-vegetation class.  Vegetation in the study area 

were sparse and small in size (=32,333.3 ha, representing only 0.49% of the total study 

area). The overall classification accuracy of the created vegetation bitmap was 87%, 

with a Kappa coefficient equal to 0.74 (see Chapter 5, Table 24). The second phase of 

the classification approach of DP was run on the vegetation bitmap using the same 

HCM to isolate the DP plantation pixels. However, at this stage of the classification, 

only the mature DP plantations were depicted due to the limitations of Landsat-8 OLI 

to differentiate soil background from the non-mature DP plantations (≤ 10 years and 

have an average CD of fewer than 5 meters). Therefore, a different approach using 
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different sensor characteristics was needed to map the other DP categories (medium 

and young) with accuracy.  

Third, mapping of DP at all age stages was achieved using the OOC method 

applied to the sub-meter WV-2 imagery. Using high-resolution sensors such as WV-

2, to detect low-density DP and map of the spatial distribution of DP in AD at different 

age stages: young (< 5 years), medium (5-10 years), and mature (> 10 years), proved 

very successful and added innovation to the actual research. Indeed, many studies 

upraised the use of high spatial-resolution for depicting and revealing information 

about the distribution and type of vegetation, especially in arid lands, and hence 

increase their distinguishability (Bradley et al., 2019; Immitzer et al., 2012; Li et al., 

2015; Mugiraneza et al., 2019; Xie et al., 2008). Several software packages supporting 

OOC and feature extraction are available. ERDAS Imagine 2020 Objective tool was 

used, it employs “feature model tree” which applies to objects created by image 

segmentation and other pixel-based algorithms which, after being vectorized, can be 

processed using geometric and textural parameters (Lack & Bleisch, 2010). The “cue 

metrics” are the result of many trials and errors (see Chapter 2, Subsection 2.5.3). 

There were two-level steps of analysis: (1) raster data analysis and, (2) vectorizing (the 

three raster outputs: mature, medium, and young) and cleaning up the vector layers by 

visual interpretation to remove erroneous vector if any.  

The OOC comprised many steps summarized as follows: i) starting with 0.5 m 

pan-sharpened WV-2 images covering a test site (AlFoah farm, east of study area), 

optimum RS parameters were initially selected, analyzed and defined, for 

discriminating DP plantations at three different age stages; ii) applying the produced 

parameters to the whole WV-2 dataset; iii) differentiating DP crowns visually from the 
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background; iv) training areas were carefully selected to exclude any background pixel 

and; v) pixels of individual palms were submitted to compute pixel cue metrics to train 

the classifier. However, it should be noted here that, one should familiarize himself 

with the study area to be able to train the representative signatures.   

Evaluation of the three classified maps was carried out using classification 

accuracy assessment in terms of mapping accuracy where results are summarized in 

Table 24 (see Chapter 5). The overall accuracies of DP maps were 86.8%, 88%, and 

90.7% for young, medium, and mature DP respectively. The area of each category was 

calculated and found to be 4,193.86 ha 1,672.14 ha, and 1,722.05 ha for mature, 

medium, and young DP plantations respectively. It was revealed that the total DP 

plantations areas represented around 64.62% of the total vegetated areas in Abu Dhabi 

(mostly located in the east and south parts). This was expected due to the importance 

given to DP in the farming system of the emirate and the adopted government policies 

in granting farms to the local population. 

Furthermore, comparing the results of DP maps produced using Landsat-8 OLI 

and WV-2 imagery, showed a big difference between the two methods. Landsat-8 OLI 

gave an area equal to 20,893.5 ha while; classifying WV-2 images gave an area of only 

7,588.05 ha. It is well known that, in general, classifying the Landsat-8 OLI images 

would overestimate the areas of DP plantations compared to the classified WV-2 ones. 

A similar remark was noticed also by (Stych et al., 2019) who ran a comparison study 

between Landsat-8 OLI and WV-2 for the classification of forests in Czech and they 

found that the area of wetland class was almost doubled on the classified Landsat-8 

OLI images compared to the classified WV-2 images. This is explained by the fact that 

DP class areas estimated by the classified Landsat-8 images include the spacing areas 
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(empty areas) among DP while the classified WV-2 images completely excluded these 

empty areas considering them as part of the pure soil class. Hence, only DP crowns 

were delineated and mapped (especially for non-mature DP where there is no 

overlapping of DP crowns). This is illustrated in a practical example in Figure 38.  

Furthermore, it was observed that mature DP showed better overall 

classification accuracy followed by medium and young DP respectively. This could be 

attributed to the less background contribution in the overall reflectance of the pixel 

because of large crown areas covering mature DP; while medium and younger (smaller 

canopy cover) result in wider spacing and higher exposure of the soil background 

resulting in a mixed spectral signature. Finally, a marginal improvement in 

classification was achieved through manual intervention editing in a GIS. The 

implemented approach proved very promising, with little cost compared to more 

complex algorithms and expensive data, especially for researches with limited budget, 

which is the case in most developing countries.  
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Figure 38: Differences in estimating DP plantations areas at the same farm. The 
classifying of Landsat-8 OLI image as present in (a) gave 14.02 hectares of DP (yellow 
color), while (b) classifying of WV-2 image gave 3.77 hectares only (yellow color). 
This difference is caused by spacing areas among palms that were added to the DP 
total cover with Landsat-8 images (because of low resolution); while the classified 
WV-2 images captured and classified these areas as background (non-DP). 

 

The DP plantations structure and plots densities had an effect on the estimation 

of AGB. It was observed that the palms spacing was different among plots. Moreover, 

some plots had sparse distribution of DP with no regular spacing system due to human 
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disturbances. Additionally, other factors than age, such as cultivar and different land 

management practices, affect the size of CA and Ht of date palms and thus play a role 

in accumulating biomass and carbon sequestration in DP. For example, DP in some 

plots were severely suffering from drought stress as they were prepared to be cleared 

for management purposes (farmers’ personal communication). Those plots were 

excluded latter from the regression analysis thus reducing the size of sample plots from 

19 to 16 in the pilot study (Chapter 4) and from 83 to 54 plots in the whole emirate of 

Abu Dhabi (see Chapter 6 and also Chapter 2, Subsection 2.7.1 Field Data Collection). 

For mature DP plots, the study showed that the correlation with single bands 

was significant only with SWIR bands (see Appendices 6 & 7). Likewise, for mixed 

age class (see Chapter 4, Table 19) and non-mature DP (see Chapter 6, Table 28), 

SWIR was found to be the best single bands. These results were consistent with the 

findings of (Zandler et al., 2015) in their study to model total biomass in extremely 

low vegetation cover in arid land regions in Tajikistan. They concluded that the SWIR 

bands of Landsat 8 OLI were useful in detecting shrubs or non-photosynthetic 

vegetation.  

Using a stepwise multiple regression to model AGB in mature DP in the pilot 

study where 10 field plots were used (see Chapter 4), a combination of SWIR and Red 

bands yielded best results and improved R2 value of the model to 0.961 (see Chapter 

4, Subsection 4.2.3.1, Equation 16) compared with R2 values when using the same 

bands separately (0.398 for R band, 0.445 for SWIR1 band, and 0.553 for SWIR2 

band). While the results of the stepwise regression analysis on AGB of the mature DP, 

after increasing the plot fields to 17 plots (see Chapter 6), showed that a combination 

of single bands or a combination of VIs does not improve the R2. 
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The results of the regression analysis on the AGB of the medium DP and young 

DP in the pilot study (see Chapter 4) revealed that none of the RS variables of Landsat 

showed any significant correlation with AGB (except with the single band, SWIR1, 

and TCB index for medium DP only). This could be attributed to the small sample size 

of medium and young DP (only three plots for each) which was avoided by increasing 

the number of sample size to 19 plots for medium DP and 18 plots for young DP (see 

Chapter 6). For medium DP (19 plots), the correlation was not significant with all 

single bands and all tested VI’s except for DVI and RDVI with R2 values equal to 

0.208 and 0.205, respectively (see Appendix 7). While for young DP (18 plots), the 

correlation was found to be significant with only NIR with R2 value equal to 0.283 

(see Appendix 7). Although of the significance (P value < 0.05) of the regression 

analysis for estimating AGB using the RS predictors DVI and RDVI (medium DP) 

and NIR (young DP), it was found that there was a possibility to improve R2 by 

considering medium and young DP as one age class, the non-mature class (non-mature 

DP) (see Chapter 6, Subsection 6.2.3.2). The regression analysis was run for the 37 

non-mature DP plots combining both medium and young DP plot. This has resulted in 

a stronger relationship between AGB and RS variables in the regression analysis. 

Except for B, G, and NIR bands and NDGI, all RS variables of Landsat 8 OLI, single 

bands, and tested VIs, were significantly correlated with AGB of the non-mature DP 

(see Chapter 6, Table 28). 

For both mature DP (> 10 years) and non-mature DP (≤ 10 years), the VIs 

correlated better with AGB of DP. The findings were consistent with previous studies 

that used Landsat imageries in estimation forest biomass in different regions. For 

instance, while examining the relationships between AGB and RS variables including 

individual band reflectance values and VI’s, Günlü et al. (2014) used Landsat TM 
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reflective bands and found that VI’s present better estimation of AGB in Anatolian 

pine forests with R2 equal to 0.606 as compared to individual band reflectance with R2 

equal to 0.465. VI’s allowed to maximize the sensitivity for recording the green 

vegetation status (Günlü et al., 2014). The choice of adequately performing VI’s 

depends on type of ecosystem and environmental conditions and spectral information 

available. As showed in Chapter 4, SR proved to be the best single VI and yielded the 

strongest correlation among all RS variables of Landsat 8 OLI for AGB of the mixed 

age DP (using 16 plots). This result agreed with (Clerici et al., 2016b) in their study of 

forests in Bogotá, Colombia where they found that the best performing AGB 

estimation model, with an R2 of 0.582, was based on the ratio vegetation index (RVI), 

the reciprocal of SR. RVI also appeared in the stepwise multiple regression of VI’s 

combined with DVI and NDGI where they improved the R² values for the prediction 

of AGB for mixed age DP (see Chapter 4, Subsection 4.2.3.3 Equation 20) and 

therefore giving more accurate estimates of biomass and CS. The R² obtained in the 

multiple regression was 0.952 (see Chapter 4, Subsection 4.2.3.3 Equation 20) 

compared with R2 values when using the same VI’s separately (0.859 for DVI, 0.731 

for NDGI, and 0.833 for RVI). 

Generally speaking, the model that used a combination of VI’s (DVI, NDGI, 

and RVI) to predict AGB of the mixed age class DP plantation estimated the AGB 

with R2 equal 0.952 and RMSE equal 6.05 ton.ha-1 in the pilot study area(see Chapter 

4, Table 20). While for the emirate wide study area, the model of the second-order 

polynomial equation that uses only TCW as RS predictor was the strongest to estimate 

the biomass of mature DP with R² equal 0.7643 and P-value equal to 0.007 (see 

Chapter 6, Equation 21 and Figure 35), and RMSE of 6.322 ton.ha-1. For non-mature 

DP, the model of the exponential Equation that uses only RDVI as RS predictor 
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provided the strongest estimate of biomass with R² equal to 0.4987 and P value equal 

to 0.00002 (see Chapter 6, Equation 24 and Figure 35), while the model validation 

showed RMSE of 8.040 ton.ha-1. These results are consistent with published literature 

for other species and study areas such as (Karlson et al., 2015) where Landsat 8 OLI 

was used for mapping tree canopy cover and predicting AGB in in woodlands 

landscape of Burkina Faso with R2 of 0.57 and RMSE of 17.6 ton.ha-1.  

The emirate-wide RS-based models to estimate AGB presented in Chapter 6 

were applied to Landsat OLI data to estimate AGB. The DP age stage class derived 

from the high spatial resolution WV-2 data was used to determine the proper model to 

use when estimating AGB. The resulting map was an emirate wide map of AGB the 

was subsequently used to calculate CS. This step highlights the strength and 

uniqueness of the approach adopted in this study where RS-based models, once 

calibrated, enabled the creation of CS maps from remote sensing data without the need 

for additional field measurements. 
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Chapter 8: Conclusion and Recommendations 
 

One of the key objectives of this study was to develop specific allometric 

biomass equations for assessing carbon sequestration in DP of the UAE and to estimate 

the potential of DP species to improve soil carbon sequestration in such desert 

ecosystems (see Chapter 1, Subsection 1.3 Aim and Objectives). Allometric equations 

using structural variables that could be linked to RS observations were developed for 

DP at different age stages. Based on field and lab works, CA was found to best estimate 

CB and SOC, while Ht was the best estimator of TB. The allometric equations 

developed using these variables allowed the estimation of CB, TB and SOC with 

coefficients of determination (R2) of 0.884, 0.835 and 0.952, respectively (see Chapter 

3). The allometric equations developed in the early stages of the dissertation were 

crucial for the development of the RS-based model to predict AGB as they provided 

the needed input to calibrate the model without further recourse to destructive 

procedures for measuring AGB in the field. Furthermore, the dissertation showed that 

the average ratios of the BGB to AGB in DP varied with their maturity stages at values 

of 0.332 for young, 0.925 for medium (due to the substantial growth of the palm’s root 

system at this stage to support the emergence of the trunk) and 0.496 for mature DP. 

Additionally, the study showed that the amounts of CS in or contributed by DP were 

substantial, with significantly higher amounts of SOC compared to other local plants.  

AGB and OC values obtained from the allometric equations for a set of pilot 

sites were used to identify the most significantly correlated RS variables derived from 

Landsat imagery (see Chapter 4). A combination of Red and Shortwave (SWIR 1 and 

2) reflectances yielded the highest correlation for mature DP (> 10 years), whereas a 

combination of DVI, NDGI and RVI worked better for mixed age palms (see Chapter 
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4). Expanding the field plots to 54 field plots showed that TCW has the strongest 

correlation using a second-order polynomial equation to estimate the biomass of 

mature DP with R² equal to 0.7643 and P value equal to 0.007, while the exponential 

regression equation that uses RDVI as RS predictor was provided  the strongest 

correlation among all RS variables of Landsat 8 OLI for AGB of non-mature DP (≤ 10 

years), with an R2 value of 0.4987 and P value equal to 0.00002. 

The development of AGB and OC estimation equations using RS data enabled 

the calculation of CS over large areas without further need for extensive field work 

(see Chapter 3), a key tool to accomplish the other objectives of this dissertation (see 

Chapter 4, 5, and 6).  

RS data sets (Landsat-8 OLI and WV-2 imageries) were used for the accurate 

delineation of DP plantations at different age stages for the whole study area. The 

dissertation proposes a novel framework based on using multi-source/ multi-sensor 

data in a hierarchical integrated approach (HIA) to map DP plantations in the Emirate 

of Abu Dhabi at different age stages (see Chapter 5). First, each pan-sharpened scene 

of Landsat-8 OLI was classified using an HCM (supervised and unsupervised 

classification) to create LULC maps. The evaluation of the spectral signatures 

separations was performed to select the best discriminatory Landsat-8 OLI bands. 

Interpretation of the seven signatures demonstrated that the shortwave infrared 

(SWIR1& SWIR2) had the best separability power of all Landsat 8 OLI bands. 

However, some other combinations were found to be efficient in identifying and 

mapping the vegetation class such as (RED, SWIRE1, SWIRE2), (RED, GREEN, 

SWIR1), (RED, GREEN, SWIR2) or (GREEN, SWIR1, SWIR2). Next, the maps were 

reclassified (recoded) to create a vegetation bitmap encompassing only two classes: 
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vegetation and non-vegetation. The HCM was applied to the vegetation bitmap to 

delineate and map DP in the study area. However, at this stage of the classification, 

mature DP plantations only were depicted due to the limitations of Landsat-8 OLI to 

separate soil background from the non-mature DP plantations (≤ 10 years, with 

average crown diameter less than 5 meters). Therefore, the sub-meter WV-2 imagery, 

covering vegetated areas, were classified using the object-oriented classification 

(OOC) method, to separate and map the other two DP age stages (medium, and young). 

At this level, about 829 sub-meter WV-2 images were classified and interpreted to 

extract and map all categories of DP in the study area. The suitability of the WV-2 

satellite data for the identification of tree species was demonstrated. Furthermore, the 

OOC proved to outperform the pixel-based approach with the near-infrared, red-edge, 

and green bands being always more important than the other bands to classification.  

The areas of DP plantations at the various age stages was calculated and were 

found to be 4,193.86 ha 1,672.14 ha, and 1,722.05 ha for mature, medium, and young 

DP, respectively. The total DP plantations areas represented around 65% of the total 

vegetated areas in Abu Dhabi (mostly located in the eastern and southern parts of the 

emirate). This was expected due to the importance given to DP in the farming system 

of the emirate and the adopted government policies in granting farms to the local 

population. Furthermore, comparing the results of DP maps produced using Landsat-

8 OLI and WV-2 imagery, showed a big difference between the two methods. This is 

because DP class areas estimated by the classified Landsat-8 images include the 

spacing areas (empty areas) among DP while the classified WV-2 images completely 

excluded these empty areas considering them as part of the pure soil class. Note that 

the difference between Landsat and WV-2 results can be reduced if the OOC is tuned 

to segment the whole farm rather than patches of DP. 
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The results of the classified maps accuracy assessment indicated a good overall 

performance of the classification process with an overall accuracy value of about 

81.7% for the LULC map and 87% for the vegetation bit-map using Landsat-8 OLI as 

source data. For DP age stages maps using WV-2 data, the overall accuracies were 

86.8%, 88% to 90.7% for young, medium, and mature DP, respectively. Besides, the 

accuracy of the DP map considering all DP ages had an overall accuracy of 94.5% and 

a kappa coefficient of 88%. 

Furthermore, it was observed that mature DP showed better overall 

classification accuracy followed by medium DP and young DP respectively. This 

could be attributed to the less background contribution in the overall reflectance of the 

pixel because of large crown area coverage of mature DP; while medium and younger 

(smaller canopy cover) result in wider spacing and higher exposure of the soil 

background resulting in a mixed spectral signature. Finally, a marginal improvement 

in classification was achieved through manual editing in a GIS.  A final and accurate 

DP map at three age stages in the emirate of Abu Dhabi (mature, medium, and young) 

was created.  Most of the DP plantations in Abu Dhabi were found to be in Al Ain 

(east of the emirate) and Liwa (south of the emirate) with more than half of those at 

the mature stage (> 10 years). The produced DP map was converted to a GIS layer and 

used as an input to a RS-based biomass model to assess CS in DP plantations in the 

study area (see Chapter 6). 

The implemented approach proved very promising, with minimal cost 

compared to more complex algorithms and data, especially for limited-budget 

researches, which is the case in most developing countries. The approach was 

successful in identifying and mapping mature, medium, and young DP in the study 
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area with high accuracies. The accurate mapping of three age stages permitted for a 

better estimation of their CS. The created maps opened the road toward applying a 

non-destructive approach and to build a RS-based biomass estimation model for 

assessing AGB and CS in DP in the arid environment of UAE (see Chapter 6). 

Moreover, the approach can easily be extended to larger areas in the region. 

RS-based biomass assessment models for DP were built for quick and reliable 

estimation of the amounts of AGB and CS which allow for the establishment of a 

benchmark DP CS map for the Emirate of Abu Dhabi. The methodology proposed in 

this dissertation relied on both fieldwork and analysis of RS data (see Chapter 2, 

Subsection 2.4 Overall Methods Flowchart). The work procedures included pre-field 

preparations to identify sample areas of interest, fieldwork that included sample 

collection and measurement of plant characteristics, and post-field activity that 

focused on processing RS data and model development and validation.  

In conclusion, the field-based measurements and geospatial approach 

introduced in this study has the potential to help improve carbon estimation in DP 

plantations to reduce emissions resulting from deforestation and forest degradation 

(REDD+) and to design incentive programs in the UAE. The findings are promising 

and can be used to estimate the amount of AGB and CS in DP plantations in the whole 

country as well as in arid land in general. Therefore, it can be applied to enhance the 

decision-making process on sustainable monitoring and management of carbon 

sequestration by DP in other similar ecosystems. 
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Appendices 
 

Appendix 1: Different field variables used in allometric equations to estimate palm 
biomass, mostly oil palm (Elaeis guineensis).  
 

Source Output Allometric Equations Field 
Variables 

(Saldarriaga et al., 
1988) 

AGB = 1.697 × 10−3 × DBH1.754 × H2.151 DBH and 
H 

(Brown, 1997) Biomass =10.0 + 6.4 × H 
= 4.5 + 7.7 × Ht 

H and Ht 

(H. Khalid et al., 
1999a) 

AGB = 725 + 197 ×  H H 

(Hughes et al., 
1999) 

AGB = 0.3060 × DBH1.837 × 1.035 DBH 

(Henson & Chang, 
2003) 

Biomass = -0.00020823Age4 + 
0.000153744Age3 – 0.011636Age2 + 
7.3219Age – 6.3934 

Age 
 

(Thenkabail et al., 
2004) 

AGBfresh 
AGBdry 

= 1.5729  Ht − 8.2835  
= 0.3747  Ht + 3.6334 

Ht 

(R. Hereward V. 
Corley & Tinker, 
2008) 

Trunk biomass 
Frond biomass 

= 0.1 𝜋 x TD x H x (DBH/2)2 
= 0.02 x W x D + 0.21  

H, TD, 
DBH, W, 
D, and 
Age 

(Dewi et al., 2009) AGB = 0.0976 x H + 0.0706 H 
(Goodman et al., 
2013) 

AGB = 13.59 x H − 108.8 H 

(Goodman et al., 
2013) 

AGB = 0.0950 x (DF x DBH2 x H) DF, DBH, 
and H 

(Da Silva et al., 
2015) 

AGB = 0.167 × (DBH2 x H x TD)0.883 DBH, H, 
and TD 

(Prayogo et al., 
2018) 

AGB = 0.03883 x H x DBH1.2 DBH and 
H 

(Zahabu et al., 
2018) 

AGB = 3.7964 x H1.8130 H 

 

Where DBH is diameter breast height, H is palm height, Ht is trunk height, TD is trunk 

density, W is frond width, D is frond depth, and DF is dry to fresh weight ratio. 
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Appendix 2: A summary of limitations and benefits of Optical, RADAR, and 
LiDAR sensors used for estimating the Above Ground Biomass (AGB) of standing 
forests. 
 

Sensor 
Types 

Approaches/ 
Resolutions 

Limitations Benefits 

Optical 
Sensors 
 

Coarse Resolution 
Spatial  

(>100 m) 

 

Examples: MODIS, 
AVHRR, NOAA, 
METEOSAT and SPOT 
Vegetation 

- Average R value of 
0.58, with average 
predictive of 42%  
- Saturation of spectral 
data at high biomass 
density 
- Mismatch between the 
size of field plots, field 
measurements and pixel 
size (mixed pixels) 
- Cloud cover 
- Limited to 
discriminating vegetation 
structure 

- Availability of data 
with huge datasets 
archived  
- Estimation and 
mapping of AGB at 
continental and global 
scale 
-Repetitive, with high 
temporal frequency 
increasing the 
probability of acquiring 
cloud-free data 
- Provide consistent 
spatial data  
 

Medium Spatial 

Resolution  

(10-100 m)  

 

Examples: TM Landsat, 
ETM+, OLI and SPOT 

- Average R value of 0.68 
with average predictive 
error of 32%  
- Single pixel can 
encompass many tree 
crown or non-crown 
features 
- No reliable indicators of 
biomass in closed canopy 
structure  
- Not all texture measures 
can effectively extract 
biomass information  

-Provide consistent 
global data 
- Archived datasets 
back to 1972 for 
Landsat 
- Small to large-scale 
mapping  
- Cost-effective (Free) 

Fine Spatial Resolution 

(<5 m) 

 
Examples: Quickbird, 
WorldView-2, and 
IKONOS 

- Need large data storage 
and processing time 
- High cost, and more 
costly when it applies on 
large areas  
  

- Average R value of 
0.75 and average 
predictive error (27%)  
- Estimate tree crown 
size 
-Validation at localized 
scale 

Hyperspectral  
Many, very narrow, and 
contiguous spectral bands 
  
Examples: AISA Eagle, 
HYDICE and ALOS 

-Cloud cover 
-High cost 
-Suffer from band 
redundancy and 
saturation in dense 
canopy 
-Computationally 
intensive and technically 
demanding  
 

-Average R value of 
0.83 
-Allows discrimination 
of subtler differences 
(species level) 
-Potential for the future 
of RS-based biomass 
estimation models  
-Integration with 
LiDAR can improve 
results. 
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Appendix 2: A summary of limitations and benefits of Optical, RADAR, and 
LiDAR sensors used for estimating the Above Ground Biomass (AGB) of standing 
forests. Continued. 
 

Sensor 
Types 

Approaches/ 
Resolutions 

Limitations Benefits 

RADAR 
Sensors 

Approaches involve the use 
of either backscatter values 
or interferometry techniques 
 
Examples:  
Microwave/radar i.e., ALOS 
PALSAR, ERS-1, Envisat 
and JERS-1. 

-Not accurate in 
mountainous region due 
to spurious relation 
between AGB and 
backscatter values. 
-Signal saturation in 
mature forests at various 
wavelengths (C, L and P 
bands) 
-Polarization (e.g., HV 
and VV) problems 
-Low spatial resolution 
makes it inaccurate for 
AGB assessment at the 
species level. 
-Cannot be applied on 
any vegetation type 
without considering 
stand characteristics and 
ground conditions. 

-Measure forest 
vertical structure 
-Generally free  
-Can be accurate for 
young and sparse 
forests 
-Repetitive data 
Can give an average 
R value of 0.74, with 
average predictive 
error of 25%. 
Integrating RADAR 
with multi source 
data (optical, 
microwave data and 
GIS modeling 
techniques) is a 
promising approach. 

 
LiDAR 
Sensors 

Using laser light  
Spatial Resolution:  
(0.5 cm – 5 m) 
 
Examples: Carbon 3-D 

- Repetitive at high cost 
and logistics deployment 
-Requires extensive field 
data calibration 
-Highly expensive 
-Technically demanding 
 

-Penetrate cloud 
cover and canopy 
-Among all sensors 
option, LiDAR is the 
easiest to use for the 
extraction of tree 
attributes for 
estimating AGB with 
great accuracy 
-Accurate for 
estimating forest 
biomass in all spatial 
variability (sparse, 
young or mature 
forests) 
- Average R value of 
0.89, with average 
predictive error equal 
14% 
-Potential for 
satellite-based system 
to estimate global 
forest carbon stock 
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Appendix 3: Specifications of the RS optical sensors most commonly used for AGB 
estimation. 
 

Sensor Type  Bands Spatial 
Resolution  

Temporal 
Resolution  

Swath Cost 

AVHRR Multispectral 5 bands (Red, 
IR, and 3 
Thermal IR) 

1,100 
meters 

12 hours 2,500 
km 

Free 

MODIS Multispectral 36 bands (from 
Blue to Thermal 
IR) 

250, 500 
and 1,000 
meters 

1-2 days 2,330 
km 

Free 

SPOT 
VEG 

Multispectral 4 bands (Blue, 
red, NIR, and 
SWIR) 

1,000 
meters 

1 day 2,250 
km 

Free 

TM Multispectral 7 bands (3 VIS, 
3 IR and 
Thermal IR) 

30 and 120 
meters 

16 days 185 
km 

Free 

ETM+ Multispectral 9 bands (3 VIS, 
3 IR and 2 
Thermal IR and 
1 PAN) 

15, 30 and 
60 meters 

16 days 185 
km 

Free 

SPOT Multispectral 4 bands (2 VIS, 
1 NIR, and 1 
PAN) 

5, 10 and 
20 meters 

26 days 60 km Commercial 

Landsat 8 
OLI 

Multispectral 11 bands (1 
Ultra, 3 VIS, 3 
IR, 1 Cirrus, 2 
Thermal IR, 
and 1 PAN) 

15, 30 and 
100 meters 

16 days 185 
km 

Free 

LISS-III 
(IRS) 

Multispectral 5 bands (2 VIS, 
2 IR, and 1 
PAN) 

5.3, 23 and 
50 meters 

5-24 days 142 
km 

Commercial 

Sentinel-
2 

Multispectral 13 bands (4 
VIS, 6 NIR and 
3 SWIR) 

10, 20, and 
60 meters 

5-10 days 290 
km 

Free 

IKONOS Multispectral 5 bands (3 VIS, 
1 IR, and 1 
PAN) 

1 and 4 
meters 

3 days 11 km Commercial 

World 
View2 

Multispectral 9 bands (6 VIS, 
2 IR, 1 PAN) 

1.84 and 
0.46 meter 

1.1 days 16 km Commercial 

Quickbird Multispectral 5 bands (4 
bands and 1 
PAN) 

0.61 and 
2.44 meter 

3 days 16 km Commercial 

HyMap Hyperspectral 126 bands 2-10 
meters 

Airborne 2.3 
km 
and 
4.6 
km 

Commercial 

AVIRIS Hyperspectral 224 bands 
(from VIS to 
MIR) 

2.5 to 20 
meters 

Airborne 1.9 
km 
and 
11 km 

Not 
Commercial 
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Appendix 4: Different cultivars and age stages from three different farms of the 
study area are selected to run the destructive method and to build the allometric 
equations. 
 

No. Palm Cultivar 
Destruction 
Date Location 

Age 
(year) 

1 LuLu 24-Apr-18 Masakin 2.5 
2 Khalas 24-Apr-18 Masakin 2.5 
3 Fardh 24-Apr-18 Masakin 3 
4 Bumaan 24-Apr-18 Masakin 3 
5 Khunaizi 24-Apr-18 Masakin 4 
6 Khalas 29-Apr-18 Salamat W. 5 
7 Fahel (Male) 29-Apr-18 Salamat W. 7 
8 Khunaizi 29-Apr-18 Salamat W. 8 
9 Fardh 29-Apr-18 Salamat W. 9 
10 Bumaan 29-Apr-18 Salamat W. 10 
11 Baghel 25-Apr-18 Qattara 11 
12 Jabri 25-Apr-18 Qattara 14 
13 Shahem 25-Apr-18 Qattara 16 
14 Jash Ramli 25-Apr-18 Qattara 18 
15 Neghal 25-Apr-18 Qattara 20 
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Appendix 5: Linear correlation between RS variables and AGB of date palm 
(mature, medium, and young). Here, only limited no. of field plots used as a pilot 
study (see Chapter 4). 
 

Age Class RS Variable Constant Coefficient R2 P value 
Mature 
  

Single 
Bands 

B1 82.854 -0.006 0.368 0.083 
B 61.208 -0.005 0.402 0.067 
G 39360.136 -2.968 0.338 0.100 
R 28059.820 -1.918 0.398 0.068 
NIR -27103.714 1.687 0.418 0.060 
SWIR1 25730.727 -1.306 0.445 0.049 
SWIR2 22573.920 -1.382 0.553 0.022 

VI's DVI -7158.285 1.739 0.792 0.001 
GNDVI -12773.617 73226.070 0.800 0.001 
NDGI 7264.605 1285.609 0.472 0.041 
NDVI -7305.021 54391.857 0.760 0.002 
RVI 31001.713 -41113.182 0.772 0.002 
SAVI -6850.855 35207.940 0.754 0.002 
SR -20323.290 15959.319 0.762 0.002 
TCB 27435.814 -0.671 0.177 0.259 
TCG 4580.293 2.061 0.797 0.001 
TCW 9663.430 1.743 0.709 0.004 
TVI -132382.068 124232.050 0.783 0.002 

Medium 
  

Single 
Bands 

B1 9929.699 -0.673 0.812 0.286 
B 8090.877 -0.542 0.832 0.269 
G 7105.073 -0.435 0.915 0.189 
R 6000.544 -0.311 0.971 0.108 
NIR 8259.282 -0.354 0.697 0.371 
SWIR1 6023.921 -0.229 1.000 0.010 
SWIR2 5683.790 -0.248 0.942 0.155 

VI's DVI 72.613 0.246 0.284 0.642 
GNDVI -58.159 6495.838 0.256 0.662 
NDGI 3016.837 246.754 0.990 0.065 
NDVI -188.916 11067.297 0.579 0.450 
RVI 6713.056 -7129.192 0.652 0.402 
SAVI 122.490 5545.053 0.436 0.541 
SR -3647.018 3729.177 0.488 0.508 
TCB 7327.815 -0.152 1.000 0.006 
TCG 1846.698 0.281 0.433 0.543 
TCW 3842.979 0.389 0.973 0.105 
TVI -19545.673 19487.514 0.256 0.662 
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Appendix 5: Linear correlation between RS variables and AGB of date palm 
(mature, medium, and young). Here, only limited no. of field plots used as a pilot 
study. Continued. 
 

Age 
Class RS Variable Constant Coefficient R2 P value 
Young 
 

Single Bands B1 3754.984 -0.244 0.450 0.532 
B 3102.912 -0.198 0.488 0.507 
G 2443.837 -0.135 0.428 0.546 
R 1989.402 -0.089 0.396 0.567 
NIR 2071.747 -0.070 0.128 0.767 
SWIR1 1543.352 -0.043 0.157 0.741 
SWIR2 1372.940 -0.041 0.162 0.736 

VI's DVI -1145.877 0.353 0.926 0.175 
GNDVI -247.854 4399.789 0.233 0.680 
NDGI 1106.782 65.046 0.329 0.611 
NDVI 16.133 4399.789 0.233 0.233 
RVI 3996.000 -4506.168 0.732 0.346 
SAVI -329.921 4506.168 0.732 0.346 
SR -3682.755 3233.889 0.880 0.225 
TCB 1955.148 -0.033 0.242 0.673 
TCG 1053.884 0.226 0.675 0.386 
TCW 916.026 0.040 0.053 0.852 
TVI 661.436 0.000 0.480 0.513 
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Appendix 6: The average amounts of date palm biomass, organic matter, organic 
carbon, and soil organic carbon at different age stages. 
 

Item 
Average amount (Kg palm-1) 
Young  
(< 5 year) 

Medium 
(5 – 10 years) 

Mature  
(>10 years) 

Crown Biomass (CB) 22.51 65.17 148.5 
Trunk Biomass (TB)  0 29.53 135.91 
AGB 22.51 94.69 284.41 
BGB 7.46 87.61 141.23 
Total Biomass 29.97 182.3 425.63 
Organic Matter (OM)  27.39 166.56 388.94 
Organic Carbon (OC)  15.88 96.62 225.58 
SOC 18.09 62.59 92.91 
Total Carbon Stock (CS) 33.97 159.21 318.49 
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Appendix 7: Linear correlation between RS variables and AGB of date palm 
(mature, medium, and young). Here, 54 field plots were used covering the whole 
study area of Abu Dhabi (see Chapter 6). 
  

Age Class RS Variable Constant Coefficient R2 P value 
Mature 
  

Single 
Bands 

B1 85.270 -0.047 0.113 0.187 
B 93.557 -0.043 0.143 0.135 
G 107.820 -0.036 0.187 0.083 
R 103.466 -0.029 0.230 0.052 
NIR 149.462 -0.026 0.086 0.255 
SWIR1 115.464 -0.021 0.302 0.022 
SWIR2 102.826 -0.023 0.290 0.026 

VI's SR -32.033 37.696 0.545 0.0007 
RVI 131.267 -164.234 0.315 0.019 
DVI -98.847 0.084 0.412 0.006 
NDGI 100.560 636.247 0.609 0.0002 
NDVI -17.970 194.545 0.398 0.007 
TVI -476.939 454.517 0.379 0.009 
GNDVI -53.452 249.782 0.311 0.020 
RDVI -47.289 3.911 0.418 0.005 
SAVI -18.985 131.919 0.413 0.005 
MSAVI -38.643 175.245 0.337 0.013 
TCB 123.051 -0.013 0.227 0.053 
TCG 0.146 0.060 0.313 0.20 
TCW 84.780 0.037 0.396 0.007 
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Appendix 7: Linear correlation between RS variables and AGB. Continued. 
 

Age Class RS Variable Constant Coefficient R2 P value 
Medium 
  

Single 
Bands 

B1 28.817 -0.007 0.027 0.504 
B 29.653 -0.006 0.026 0.507 
G 31.553 -0.004 0.030 0.479 
R 33.809 -0.005 0.057 0.327 
NIR 24.178 -0.0002 0.0001 0.966 
SWIR1 37.538 -0.004 0.075 0.256 
SWIR2 35.052 -0.004 0.074 0.260 

VI's SR -7.827 17.892 0.195 0.058 
RVI 53.020 -50.018 0.159 0.091 
DVI -3.322 0.018 0.208 0.049 
NDGI 36.484 108.230 0.128 0.132 
NDVI 6.605 64.310 0.164 0.085 
TVI -125.108 132.281 0.131 0.128 
GNDVI 1.429 59.096 0.081 0.239 
RDVI 0.224 1.191 0.205 0.052 
SAVI 6.695 42.842 0.159 0.091 
MSAVI 3.003 50.018 0.159 0.091 
TCB 34.810 -0.002 0.041 0.407 
TCG 15.280 0.015 0.164 0.085 
TCW 34.943 0.008 0.125 0.137 

Young 
 

Single 
Bands 

B1 1.126 0.005 0.172 0.087 
B 1.137 0.004 0.159 0.101 
G 0.260 0.003 0.157 0.103 
R -0.217 0.002 0.154 0.107 
NIR -7.186 0.003 0.283 0.023 
SWIR1 -1.031 0.002 0.105 0.190 
SWIR2 0.620 0.002 0.079 0.258 

VI's SR 8.420 -1.581 0.006 0.753 
RVI 3.403 3.907 0.008 0.723 
DVI 3.091 0.003 0.044 0.404 
NDGI 9.509 23.810 0.036 0.451 
NDVI 7.367 -6.913 0.012 0.661 
TVI 18.283 -11.195 0.007 0.738 
GNDVI 9.674 -11.393 0.031 0.485 
RDVI 5.550 0.042 0.002 0.855 
SAVI 6.978 -3.095 0.006 0.767 
MSAVI 7.310 -3.907 0.008 0.723 
TCB -2.488 0.001 0.174 0.085 
TCG 6.290 -0.001 0.004 0.802 
TCW 5.885 -0.0001 0.0002 0.951 
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Appendix 8: Parts from first pages of papers that have been published in refereed 
International Conference proceeding as well as in a peer-reviewed journal while 
working on this dissertation. 
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