2,423 research outputs found

    A direct-sequence spread-spectrum super-regenerative receiver

    Get PDF
    Current applications of the super-regenerative receiver use narrowband modulations. In this paper a new architecture that allows incoherent detection of spread-spectrum signals is presented. A pseudorandom code generator has been added to the original circuit. It is clocked by the quench oscillator and takes advantage of the characteristic broad reception bandwidth. CDMA can be achieved via ASK and FSK modulated signals with high simplicity in the RF stage as well as low power consumption.Peer ReviewedPostprint (published version

    Superregeneration revisited: from principles to current applications

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Wireless communications play a central role in our modern connected lives; at the same time, they constitute a very broad and deep area of research. The elements that make wireless communications possible are a transmitter, which sends information through electromagnetic waves; a medium that is able to transport these waves; and, finally, a receiver, which extracts the information from the-usually very small-amount of energy it is able to collect from the medium.Peer ReviewedPostprint (author's final draft

    ULTRA LOW POWER FSK RECEIVER AND RF ENERGY HARVESTER

    Get PDF
    This thesis focuses on low power receiver design and energy harvesting techniques as methods for intelligently managing energy usage and energy sources. The goal is to build an inexhaustibly powered communication system that can be widely applied, such as through wireless sensor networks (WSNs). Low power circuit design and smart power management are techniques that are often used to extend the lifetime of such mobile devices. Both methods are utilized here to optimize power usage and sources. RF energy is a promising ambient energy source that is widely available in urban areas and which we investigate in detail. A harvester circuit is modeled and analyzed in detail at low power input. Based on the circuit analysis, a design procedure is given for a narrowband energy harvester. The antenna and harvester co-design methodology improves RF to DC energy conversion efficiency. The strategy of co-design of the antenna and the harvester creates opportunities to optimize the system power conversion efficiency. Previous surveys have found that ambient RF energy is spread broadly over the frequency domain; however, here it is demonstrated that it is theoretically impossible to harvest RF energy over a wide frequency band if the ambient RF energy source(s) are weak, owing to the voltage requirements. It is found that most of the ambient RF energy lies in a series of narrow bands. Two different versions of harvesters have been designed, fabricated, and tested. The simulated and measured results demonstrate a dual-band energy harvester that obtains over 9% efficiency for two different bands (900MHz and 1800MHz) at an input power as low as -19dBm. The DC output voltage of this harvester is over 1V, which can be used to recharge the battery to form an inexhaustibly powered communication system. A new phase locked loop based receiver architecture is developed to avoid the significant conversion losses associated with OOK architectures. This also helps to minimize power consumption. A new low power mixer circuit has also been designed, and a detailed analysis is provided. Based on the mixer, a low power phase locked loop (PLL) based receiver has been designed, fabricated and measured. A power management circuit and a low power transceiver system have also been co-designed to provide a system on chip solution. The low power voltage regulator is designed to handle a variety of battery voltage, environmental temperature, and load conditions. The whole system can work with a battery and an application specific integrated circuit (ASIC) as a sensor node of a WSN network

    Envelope-domain analysis and modeling of super-regenerative oscillators

    Get PDF
    An envelope-domain methodology for the numerical modeling of super-regenerative oscillators (SROs) is presented. The main advantage is its generality of application to transistor-based oscillators with arbitrary topology. Initially, a stability analysis of the nonoscillatory steady-state solution, forced by the quench signal, is performed. It is based on the calculation of a linear-time-variant (LTV) transfer function, obtained by linearizing the circuit envelope-domain equations about the nonoscillatory regime. Under moderate quench frequencies, it will be possible to estimate the SRO normalized envelope and sensitivity function from the detected dominant pair of complex-conjugate poles. In the general case, the SRO oscillatory response is modeled with a numerical method, valid under linear operation with respect to the input signal. This is based on the calculation of the LTV impulse response from a time-frequency transfer function obtained under a small-signal sinusoidal excitation. The LTV impulse response enables a straightforward determination of the sensitivity time interval and time distance to the envelope maximum. An integral expression, in terms of the LTV transfer function, will provide the SRO response to any small-signal input with any arbitrarily carrier frequency and modulation. The methodology has been successfully validated through its application to an SRO at 2.7 GHz, which has been manufactured and measured.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (ERDF/FEDER) under Research Project TEC2014-60283-C3-1-R and Research Project TEC2017-88242-C3-1-

    Millimeter-Wave Super-Regenerative Receivers for Wireless Communication and Radar

    Get PDF
    Today’s world is becoming increasingly automated and interconnected with billions of smart devices coming online, leading to a steep rise in energy consumption from small microelectronics. This coincides with an urgent push to transform global energy production to green energies, causing disruptions and energy shortages, and making the case for efficient energy use ever more pressing. Two major areas where high growth is expected are the fields of wireless communication and radar sensors. Millimeter-wave frequency bands are planned for fifth-generation (5G) and sixth-generation (6G) cellular communication standards, as well as automotive frequency-modulated continuous wave (FMCW) radar systems for driving assistance and automation. Fast silicon-based technologies enable these advances by operating at high maximum frequencies, such as the silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) technologies. However, even the fastest transistors suffer from low and energy expensive gains at millimeter-wave frequencies. Rather than incremental improvements in circuit efficiency using conventional approaches, a disruptive revolution for green microelectronics could be enabled by exploring the low-power benefits of the super-regenerative receiver for some applications. The super-regenerative receiver uses a regenerative oscillator circuit to increase the gain by positive feedback, through coupling energy from the output back into the input. Careful bias and control of the circuit enables a very large gain from a small number of transistors and a very low energy dissipation. Thus, the super-regenerative oscillator could be used to replace amplifier circuits in high data rate wireless communication systems, or as active reflectors to increase the range of FMCW radar systems, greatly reducing the power consumption. The work in this thesis presents fundamental scientific research into the topic of energy-efficient millimeter-wave super-regenerative receivers for use in civilian wireless communication and radar applications. This research work covers the theory, analysis, and simulations, all the way up to the proof of concept, hardware realization, and experimental characterization. Analysis and modeling of regenerative oscillator circuits is presented and used to improve the understanding of the circuit operation, as well as design goals according to the specific application needs. Integrated circuits are investigated and characterized as a proof of concept for a high data rate wireless communication system operating between 140–220 GHz, and an automotive radar system operating at 60 GHz. Amplitude and phase regeneration capabilities for complex modulation are investigated, and principles for spectrum characterization are derived. The circuits are designed and fabricated in a 130 nm SiGe HBT technology, combining bipolar and complementary metal-oxide semiconductor (BiCMOS) transistors. To prove the feasibility of the research concepts, the work achieves a wireless communication link at 16 Gbit/s over 20 cm distance with quadrature amplitude modulation (QAM), which is a world record for the highest data rate ever reported in super-regenerative circuits. This was powered by a super-regenerative oscillator circuit operating at 180 GHz and providing 58 dB of gain. Energy efficiency is also considerably high, drawing 8.8 mW of dc power consumption, which corresponds to a highly efficient 0.6 pJ/bit. Packaging and module integration innovations were implemented for the system experiments, and additional broadband circuits were investigated to generate custom quench waveforms to further enhance the data rate. For radar active reflectors, a regenerative gain of 80 dB is achieved at 60 GHz from a single circuit, which is the best in its frequency range, despite a low dc power consumption of 25 mW

    Theoretical Analysis & Practical Implementation of a Super-Regenerative Receiver for Amplitude Modulated Radio Signals

    Get PDF
    The Super-Regenerative Receiver invented by Edwin Armstrong in 1922 provides simple but effective reception and amplification of modulated radio signals. Despite its age and the increased complexity of communication systems over the years, Super-Regenerative Receivers still find use in various specialized applications due to the simplicity and low-power consumption of the design. This paper aims to provide a thorough mathematical analysis of Super-Regenerative Receivers applied to both a system level model and an electrical band pass circuit while offering a practical implementation for receiving amplitude modulated signals to be compared with simulated results

    A -5 dBm 400MHz OOK Transmitter for Wireless Medical Application

    Get PDF
    A 400 MHz high efficiency transmitter forwireless medical application is presented in this paper. Transmitter architecture with high-energy efficiencies isproposed to achieve high data rate with low powerconsumption. In the on-off keying transmitters, the oscillatorand power amplifier are turned off when the transmittersends 0 data. The proposed class-e power amplifier has highefficiency for low level output power. The proposed on-offkeying transmitter consumes 1.52 mw at -5 dBm output by 40Mbps data rate and energy consumption 38 pJ/bit. Theproposed transmitter has been designed in 0.18µm CMOStechnology

    A 24GHz Synchronized Super-regenerative receiver in 65nm CMOS

    Get PDF
    Questo lavoro presenta il progetto di un ricevitore super-rigenerativo sincronizzato, sviluppato in tecnologia CMOS 65 nm. Il ricevitore adotta una frequenza operativa di 24 GHz ed è progettato per raggiungere una velocità massima di ricezione pari a 2 Gbps, a partire da un minimo di 100 Mbps. La tecnica super-rigenerativa viene impiegata per realizzare un ricevitore a bassa potenza, da utilizzare nella comunicazione a breve distanza (1-10 m), e la simulazione dimostra che, lavorando ad 1 Gbps, il ricevitore manifesta un rendimento energetico di 3.38 pJ/bit. Il diagramma a blocchi del circuito presenta tre blocchi principali: l'LNA, collegato all'antenna, che garantisce un S11 di 19.62 dB a 24 GHz; l'oscillatore super-rigenerativo (SRO), che è il cuore del circuito; e l'oscillatore ad anello che viene utilizzato per generare il segnale di quench che deve pilotare l'SRO. Teoria, metodi di progettazione e risultati ottenuti sono ampliamente illustrati all'interno della Tesi. This work presents the design of a synchronized super-regenerative receiver developed in 65 nm CMOS technology. The receiver is working with an operating frequency of 24 GHz and it is projected to achieve a maximum data bit rate of 2 Gbps, starting from a minimum of 100 Mbps. The super-regenerative technique is used to realize a low power receiver for short-range distance (1-10 m), and the simulation shows that working at 1 Gbps the receiver has an energy efficiency of 3.38 pJ/bit. The block diagram of the circuit presents three main blocks: the LNA (Low-Noise Amplier), connected to the antenna, which guarantees an S11 of 19.62 dB at 24 GHz; the Super-Regenerative Oscillator (SRO), which is the heart of the circuit; and the Ring Oscillator which is used to generate the quench signal that has to drive the SRO. Theory, design methods and final results are fully explained inside the Thesi

    Signal and noise power spectra in superregenerative oscillators

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a method to quantify noise in superregenerative oscillators. A frequency domain technique, originally intended to determine the signal response, can also be used to determine the noise response. This paper focuses on the procedure required to achieve this. Signal and noise spectra are obtained and their shape is compared. Finally, signal-to-noise ratio is computed for different quench signalsPeer ReviewedPostprint (author's final draft
    corecore