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Abstract—This paper presents a method to quantify noise
in superregenerative oscillators. A frequency domain technique,
originally intended to determine the signal response, can also
be used to determine the noise response. This paper focuses on
the procedure required to achieve this. Signal and noise spectra
are obtained and their shape is compared. Finally, signal-to-noise
ratio is computed for different quench signals.

Index Terms—Superregenerative oscillator, noise, frequency
domain analysis, wireless receiver.

I. INTRODUCTION

SUPERREGENERATIVE (SR) receivers have lately caught
renewed attention as a low-power and low-complexity

receiver. Even if we have to go back as far as to 1922 [1]
to see the birthday of the SR principle, the full understanding
of the intricate relations between the input parameters and the
performance of the SR receiver still poses a challenge, with
new findings and applications being reported in the last years.
For instance, the SR receiver has been extended to receive
almost any type of modulation: analog and digital modulations,
AM, FM [2], [3], and PM [4], [5] modulations, narrow-band
and ultra-wide band modulations [6], with a variety of recent
SR applications ranging from the IoT field [7] [8], to baseband
amplification [9] or to an ultrasound wake-up receiver [10].

The analysis of SR receiver operation, in linear and logarith-
mic modes, can be made using different techniques. Analytical
results can be obtained under some restrictions. Simulations
have difficulties due to the different orders of magnitude
between the RF signal and the quench signal, with envelope-
based simulation techniques being most efficient for this kind
of problem, in contrast with transient techniques. Harmonic
balance methods can also be used to simulate the SR receiver
when periodic excitations are used. Commercial simulators,
such as ADS will rarely provide insight into the operation
of the SR core. In contrast, the frequency domain technique
presented in [11] can be used in order to understand the
operation of the SR principles. This frequency domain method
has been used to efficiently compute the relevant waveforms
both in the time and frequency domains, including the exact
envelope and the instantaneous phase and frequency of the
generated responses to sinusoidal input signals.

Noise analysis is a relevant issue in communications re-
ceivers. Some remarks on the signal-to-noise ratio of SR
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Fig. 1. Block diagram of the SR receiver.

circuits were already given in [2]. The response of a direct-
sequence spread-spectrum SR receiver has been described
in [12] basing on approximate analytic results. Closed form
results for the SNR of a SR receiver were given in [13],
also basing on approximate analytic results. More recently, the
sensitivity of a SR oscillator (SRO) processing PSK signals has
been investigated with a convolution model in the frequency
domain [14], following the work in [15].

In this paper, the frequency domain technique [11] will be
used to determine how the noise at the input, with a given
spectral distribution, is transferred to the output of the SRO
operating in the linear mode. The same method will be used
to compute the output of the SRO given a sinusoidal input
signal. This way, signal-to-noise ratio (SNR) will be easily
computed.

II. FREQUENCY DOMAIN ANALYSIS

The frequency domain technique [11] computes the output
of a SRO for a sinusoidal input signal vi(t) of frequency ωin,
and a periodic (not necessarily sinusoidal [16]) quench signal
ka(t) of frequency ωq (see Fig. 1). The SR output vo(t) will be
a combination of sinusoids, each one of frequency ωin+kωq ,
with k integer. For the purpose of studying noise, this tech-
nique can also be applied when the input is a combination
of sinusoids, each one of frequency ωi = ωin + iωq/m,
with i and m integers. Each sinusoid of frequency ωi will
give an output as a combination of sinusoids, each one of
frequency ωi,k = ωi+kωq . The total output will be computed
applying superposition, under the restriction of linear mode of
operation, i.e. adding the particular outputs of each sinusoid
at the input.

III. NOISE COMPUTATION PROCEDURE

Our goal is to compute the power spectral density (PSD)
of noise at the output of the SRO when the PSD of noise



at the input is known. In order to present the main ideas we
will consider white noise at the input, i.e. a constant double-
sided PSD of value η/2. This value is computed assuming
that the SR receiver has a LNA (of 0 dB gain) as a front end
that matches the impedance R of the source and with an ideal
voltage controlled source at the output, connected to the SRO
input. In the following we will consider η/2 = RkBT/2, with
R = 50Ω, kB the Boltzmann constant and T = 290 K. This
value is approximately

η/2 = 1× 10−19 V2/Hz or −190 dBV/Hz. (1)

In order to use the previously described frequency domain
technique, we will transfer the white noise power (with PSD=
η/2) present in each bandwidth ∆ω (in rad), i.e. η

2
∆ω
2π , onto

a train of impulses spaced at intervals of ∆ω. So, to preserve
the total power, the amplitude A of each impulse is chosen in
a way that its power is equal to

A2 =
η

2

∆ω

2π
. (2)

This procedure is exact when ∆ω → 0.
Figure 2 and 3 show the output power spectra due to

impulses at some selected frequencies. Each impulse generates
an output spectrum with a similar envelope shape. When the
impulse frequency ωi is equal to ω0, the center frequency of
the selective network

G(s) = k0
sω0/Q0

s2 + sω0/Q0 + ω2
0

(3)

of the SRO in Fig. 1, the amplitude of this envelope is max-
imum. As expected, each impulse at frequency ωi generates
an output with impulses at frequencies ωi+kωq . So, impulses
separated by a multiple of ωq will give spectra that overlap.
This overlap has been avoided in Fig. 2 and 3, thanks to the
chosen values of the impulse frequencies, to clearly show the
output spectrum due to each input.

As we have chosen ∆ω = ωq/m to ease the procedure,
some spectra will overlap. The way to deal with this overlap
is straightforward thanks to the statistical properties of noise.
Instead of repeatedly computing the output signal spectrum
generated by a train of impulses with random phase, to
compute the total output power spectrum from the mean of
each output signal spectrum, we can simply add the output
power spectrum generated by each of the impulses of a train
of impulses, which can have an arbitrary phase.

As a result of this procedure we have an output power
spectrum made of impulses at frequency ωi′ with power |Ci′ |2.
Now we reverse the initial transfer of power by distributing
the power of each impulse over the bandwidth ∆ω around
its frequency. This way, the final double-sided PSD(ω) in the
interval ωi′ −∆ω/2 ≤ ω < ωi′ + ∆ω/2 is constant an equal
to

PSD(ωi′) = |Ci′ |2
2π

∆ω
, (4)

where |Ci′ |2 is measured in V2 and PSD in V2/Hz.
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Fig. 2. SR output power spectrum in V2 due to impulses at frequencies ω0

(blue), ω0 + 4ωq/3 (red) and ω0 + 8ωq/3 (yellow).
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Fig. 3. SR output power spectrum in dBV due to impulses at frequencies ω0

(blue), ω0 + 4ωq/3 (red) and ω0 + 8ωq/3 (yellow).

IV. NOISE SPECTRUM

Next we will follow the procedure explained in the previous
section to compute the noise PSD at the output of the SRO
when at its input we have white noise with PSD= η/2. First
we consider a frequency impulse train at intervals ∆ω =
ωq/m

A(ω) =

i=K2∑
i=−K1

Aδ(ω − ωi), (5)

with A given by (2) and

ωi = ω0 + i∆ω = ω0 +
i

m
ωq. (6)

As the input is band-pass filtered by G(s), with bandwidth
BW= ω0/Q0, we have limited the input noise in the frequency
range around ω0, i.e ω0+K2∆ω ≈ ω0+rBW = ω0(1+r/Q0)
and ω0−K1∆ω ≈ ω0/(1+r/Q0). We have found no relevant
differences in the results when r > 3. Notice that only the
positive part of the spectrum is considered in (5).

Next, we consider a periodic quench signal ka(t) of fre-
quency ωq whose spectrum is

B(ω) =

l=L∑
l=−L

Blδ(ω − lωq), (7)

with B−l = B∗l . Now we can solve the linear system of
equations given by [11]

c−Ga−GDc = 0 (8)

for each one of the impulses in (5), of amplitude A and
frequency ωi, that will give the output

Ci(ω) =

n=N2∑
n=−N1

Ci,nδ(ω − ωi,n). (9)



where
ωi,n = ωi + nωq, (10)

and N1 and N2 limit the frequency range of the output
spectrum. Substituting (6) in (10) we have

ωi,n = ω0 + (
i

m
+ n)ωq = ω0 +

i′

m
ωq = ωi′ , (11)

with
i′ = i+mn. (12)

Notice that various combinations of i and n gives the same i′,
and the range of i′ is

−K1 −mN1 ≤ i′ ≤ K2 +mN2. (13)

The total output power |Ci′ |2 at each frequency ωi′ will
be computed taking into account (9) for each i, i.e. adding
the power of all the coefficients Ci,n whose frequencies ωi,n
coincide:

|Ci′ |2 =
∑

i′=i+mn

|Ci,n|2 . (14)

As our goal is to compute the output spectrum in the same
range as the input A(ω) in (5), we have chosen the summation
limits in (9) to be N1 = N2 = N ≥ (ωK2 − ω−K1)/ωq =
(K2 + K1)/m. In addition, we only consider the output
spectrum in the range

ω−K1
≤ ωi′ ≤ ωK2

(15)

to avoid discontinuities caused by the finite value of N in the
output spectrum. Equation (15) means that instead of the range
in (13), i′ will take the truncated range

−K1 ≤ i′ ≤ K2. (16)

So, the output power at each frequency can be extracted from

Cnoise(ω) =

i′=K2∑
i′=−K1

Ci′δ(ω − ωi′). (17)

Finally, the total SRO noise output power taking into account
all the spectrum, positive and negative frequencies, is given
by

Pnoise = 2

i′=K2∑
i′=−K1

|Ci′ |2 . (18)

Figure 4 shows the envelope of the power of the coefficients
Ci′ at frequencies ωi′ compared with the open-loop output, in
which the output is directly the input filtered out by G(s).
Using the transformation (4) we compute the PSD of noise
shown in Fig. 5. Both figures have been obtained using the
following set of parameters: a selective network (3) with k0 =
1, Q0 = 50 and f0 = 2.4 GHz, a sinusoidal quench signal (7)
with fq = 2.4 MHz, B0 = 0.8 and B1 = 0.2465, and white
noise at the input with a PSD given by (1). With this set of
parameters the SRO has an amplification factor K = 60 dB.
This amplification factor K is the peak amplitude gain of the
envelope of the SR output pulse vo(t) referred to the amplitude
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Fig. 4. Envelope of the noise power spectrum in dBV at the output of the
SRO due to the impulse train (5) for a sinusoidal quench.
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Fig. 5. PSD of noise in dBV/Hz at the output of the SRO due to white
noise of PSD= η

2
for a sinusoidal quench.
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Fig. 6. Instantaneous damping factor ξ(t) for sinusoidal, rectangular and
sawtooth quench signals ka(t). The last two take L = 101 harmonics in (7).

of a sinusoidal signal at the input vi(t), which is different
from the power gain. According to the value of m, that has
been chosen equal to 10, i.e ∆ω = ωq/10, the difference
between Fig. 4 and Fig. 5 is 10∗ log10( 2π

∆ω ) = −53.80 dB. In
order to observe the dependence of the noise spectrum with
the shape of the quench signal, we have repeated the previous
computations with the same set of parameters, but changing
the sinusoidal quench by a rectangular and a sawtooth quench.
The parameters of each quench signal have been tuned in order
to maintain the hangover effect: B0 in (7) is constant, and the
amplification factor is fixed to K = 60 dB (to achieve this
result the peak-to-peak amplitude of the rectangular quench is
0.7049 and that of the sawtooth quench is 1.1693). Figure 6
shows the instantaneous damping factor

ξ(t) =
1− k0ka(t)

2Q0
(19)

for each one of the quench signals ka(t). We observe the Gibbs
phenomenon in the rectangular and sawtooth quenches due to
the truncation of the Fourier series: L = 101 harmonics in
(7). Figure 7 shows the results for these three types of quench
signal. The total SRO noise output power computed using
(18) is: −66.4 dBV for a sinusoidal quench, −69.2 dBV for
a rectangular quench and −74.4 dBV for a sawtooth quench.
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Fig. 7. PSD of noise in dBV/Hz at the output of the SRO due to white
noise of PSD= η

2
for each of the quench signals ka(t) in Fig. 6.

V. SIGNAL SPECTRUM

In this section we will compute the spectrum due to a
continuous sinusoidal signal tuned to the selective network
G(s), i.e. of frequency ω0. Results of the previous chapter
obtained to compute noise are easily particularized for i = 0.
For a single impulse of frequency ω0 and amplitude A0 (5),
becomes

A(ω) = A0δ(ω − ω0), (20)

and (9) becomes

C0(ω) =

n=N2∑
n=−N1

C0,nδ(ω − ω0,n). (21)

or, in a more friendly notation,

C0(ω) =

n=N2∑
n=−N1

Cnδ(ω − (ω0 + nωq)). (22)

In order to study the signal spectrum in the same range as
the noise spectrum, we will consider ω0 + nωk in the range
given by (15), i.e.

−K1/m ≤ n ≤ K2/m. (23)

This way, the signal spectrum is given by

Csignal(ω) =

n=n2∑
n=−n1

Cnδ(ω − (ω0 + nωq)), (24)

where −n1 and n2 are the lower and upper limits of n in (23).
The total SRO signal output power taking into account all the
spectrum is given by

Psignal = 2

n=n2∑
n=−n1

|Cn|2 . (25)

Notice that the components Cn of the signal spectrum
(24) are separated ωq while the components Ci′ of the noise
spectrum (17) are separated ∆ω = ωq/m. Fig. 8 shows the
power of each coefficient Cn in (24) for each one of the
quench signals previously used. The power of the input signal
has chosen to be −80 dBm over a resistance of 50Ω, i.e.
−93.0 dBV. So, A2

0 = 2.5× 10−10 V2. The total SRO signal
output power computed using (25) is −41.6 dBV (a power
gain of 51.4 dB) for a sinusoidal quench, −44.8 dBV (a power
gain of 48.2 dB) for a rectangular quench and −48.1 dBV (a
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Fig. 8. Signal power spectrum in dBV at the output of the SRO due to a
sinusoidal signal for each of the quench signals ka(t) in Fig. 6.
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Fig. 9. PSD of noise in dBV/Hz and signal power spectrum in dBV at the
output of the SRO for each of the quench signals ka(t) in Fig. 6. For each
quench signal, the PSD of noise has been scaled to make its maximum value
in dBV/Hz equal to the maximum value of the signal power spectrum in
dBV.

power gain of 44.9 dB) for a sawtooth quench. This power
gain is lower that the peak amplitude gain K = 60 dB. Fig. 9
plots noise and signal spectra simultaneously. The shape of
the envelope of the signal spectrum is almost equal to the
noise PSD for the rectangular and sawtooth quenches. This
is also true for the sinusoidal quench at frequencies close to
ω0, while, when moving away from ω0, the signal spectrum
doesn’t flatten to follow the frequency response of the selective
network G(s), showing a much narrower spectrum than that
of noise. The SNR at the output of the SRO is computed in a
straightforward form from (18) and (25):

SNR =
Psignal

Pnoise
=

∑n=n2

n=−n1
|Cn|2∑i′=K2

i′=−K1
|Ci′ |2

. (26)

The SNR is 24.8 dB for a sinusoidal quench, 24.3 dB for
a rectangular quench and 26.3 dB for a sawtooth quench.
The difference between the best SNR, given by the sawtooth
quench, and the worst SNR, given by the rectangular quench,
is just 2 dB.

VI. CONCLUSION

A procedure to study the PSD of noise in a SRO operating
in the linear mode has been presented. The method is based
on transferring the input noise power present in a small
bandwidth onto an impulse. Then, the output spectrum for
each single impulse is computed using a frequency domain
technique. Finally, the overall response is computed applying
superposition, considering some statistical properties of noise,
and distributing the power of each output impulse over a small
bandwidth around its frequency. SNR results for different
quench signals have been obtained.
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[16] P. Palà-Schönwälder, J. Bonet-Dalmau, F. del Águila López,
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