1,502 research outputs found

    Quantification of the pressures generated during insertion of an epidural needle in labouring women of varying body mass indices

    Get PDF
    Objective: The primary aim of this study was to measure pressure generated on a Tuohy needle during the epidural procedure in labouring women of varying body mass indices (BMI) with a view of utilising the data for the future development of a high fi delity epidural simulator. High-fi delity epidural simulators have a role in improving training and safety but current simulators lack a realistic experience and can be improved. Methods: This study was approved by the National Research Ethics Service Committee South Central, Portsmouth (REC reference 11/SC/0196). After informed consent epidural needle insertion pressure was measured using a Portex 16-gauge Tuohy needle, loss-of-resistance syringe, a three-way tap, pressure transducer and a custom-designed wireless transmitter. This was performed in four groups of labouring women, stratifi ed according to BMI kg/m2: 18-24.9; 25-34.9; 35-44.9 and >=45. One-way ANOVA was used to compare difference in needle insertion pressure between the BMI groups. A paired t-test was performed between BMI group 18-24.9 and the three other BMI groups. Ultrasound images of the lumbar spine were undertaken prior to the epidural procedure and lumbar magnetic resonance imaging (MRI) was performed within 72h post-delivery. These images will be used in the development of a high fi delity epidural simulator. Results: The mean epidural needle insertion pressure of labouring women with BMI 18-24.9 was 461mmHg; BMI 25-34.9 was 430mmHg; BMI 35-44.9 was 415mmHg and BMI >=45 was 376mmHg, (p=0.52). Conclusion: Although statistically insignifi cant, the study did show a decreasing trend of epidural insertion pressure with increasing body mass indices

    Devices for accurate placement of epidural Tuohy needle for Anaesthesia administration

    Get PDF
    The aim of this project is to design two sterile devices for epidural needle insertion which can measure in real time (i) the depth of needle tip during insertion and (ii) interspinous pressure changes through a pressure measurement device as the epidural needle is advanced through the tissue layers. The length measurement device uses a small wireless camera with video processing computer algorithms which can detect and measure the moving needle. The pressure measurement device uses entirely sterile components including a pressure transducer to accurately measure syringe saline in mmHg. The data from these two devices accurately describe a needle insertion allowing comparison or review of insertions. The data was then cross-referenced to pre-measured data from MRI or ultrasound scan to identify how ligament thickness correlates to our measured depth and pressure data. The developed devices have been tested on a porcine specimen during insertions performed by experienced anaesthetists. We have obtained epidural pressures for each ligament and demonstrated functionality of our devices to measure pressure and depth of epidural needle during insertion. This has not previously been possible to monitor in real-time. The benefits of these devices are (i) to provide an alternative method to identify correct needle placement during the procedure on real patients. (ii) The data describing the speed, depth and pressure during insertion can be used to configure an epidural simulator, simulating the needle insertion procedure. (iii) Our pressure and depth data can be compared to pre-measured MRI and ultrasound to identify previously unknown links between epidural pressure and depth with BMI, obesity and body shapes

    Towards a realistic in vitro experience of epidural Tuohy needle insertion.

    Get PDF
    The amount of pressure exerted on the syringe and the depth of needle insertion are the two key factors for successfully carrying out epidural procedure. The force feedback from the syringe plunger is helpful in judging the loss of pressure, and the depth of the needle insertion is crucial in identifying when the needle is precisely placed in the epidural space. This article presents the development of two novel wireless devices to measure these parameters to precisely guide the needle placement in the epidural space. These techniques can be directly used on patients or implemented in a simulator for improving the safety of procedure. A pilot trial has been conducted to collect depth and pressure data with the devices on a porcine cadaver. These measurements are then combined to accurately configure a haptic device for creating a realistic in vitro experience of epidural needle insertion

    Design and development of an epidural needle puncture and retraction device

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (page 21).Over 2 million epidural procedures are performed every year in the United States, but many result in complications caused by over puncture, where the needle punctures farther than the epidural space. A usable model of a previously developed flexure-based solution was made and utilized in designing a new epidural device which may reduce the risk of over-puncture. A clinical background of epidurals is presented, along with the usable model and new design. Prototypes were manufactured and tested to validate the model and fabrication method. Potential improvements and future steps are outlined. The proposed device has the potential to minimize epidural complications and the model may also be used to expand the number of applications of this flexure-based solution to over puncturing.by Alan K. Xu.S.B

    A review of epidural simulators: Where are we today?

    Get PDF
    Thirty-one central neural blockade simulators have been implemented into clinical practice over the last thirty years either commercially or for research. This review aims to provide a detailed evaluation of why we need epidural and spinal simulators in the first instance and then draws comparisons between computer-based and manikin-based simulators. This review covers thirty-one simulators in total; sixteen of which are solely epidural simulators, nine are for epidural plus spinal or lumbar puncture simulation, and six, which are solely lumbar puncture simulators. All hardware and software components of simulators are discussed, including actuators, sensors, graphics, haptics, and virtual reality based simulators. The purpose of this comparative review is to identify the direction for future epidural simulation by outlining necessary improvements to create the ideal epidural simulator. The weaknesses of existing simulators are discussed and their strengths identified so that these can be carried forward. This review aims to provide a foundation for the future creation of advanced simulators to enhance the training of epiduralists, enabling them to comprehensively practice epidural insertion in vitro before training on patients and ultimately reducing the potential risk of harm. © 2013 IPEM

    Spinal epidural hematoma related to an epidural catheter in a cardiac surgery patient -A case report-

    Get PDF
    The addition of thoracic epidural anesthesia to general anesthesia during cardiac surgery may have a beneficial effect on clinical outcome. However, epidural catheter insertion in a patient anticoagulated with heparin may increase the risk of epidural hematoma. We report a case of epidural hematoma in a 55-year-old male patient who had a thoracic epidural placed under general anesthesia preceding uneventful mitral valve replacement and tricuspid valve annular plasty. During the immediate postoperative period and first postoperative day, prothrombin time (PT) and activate partial thromboplastin time (aPTT) were mildly prolonged. On the first postoperative day, he complained of motor weakness of the lower limbs and back pain. An immediate MRI of the spine was performed and it revealed an epidural hematoma at the T5-6 level. Rapid surgical decompression resulted in a recovery of his neurological abnormalities to near normal levels. Management and preventing strategies of epidural hematoma are discussed

    A pilot study to measure the insertion force of a Tuohy needle in a porcine spine. Abstract

    Get PDF
    There is a complex interplay of forces during an in-vivo epidural needle insertion and without accurate measurement of these forces it is difficult to create realistic epidural simulators. Previous models have relied upon expert user opinion rather than numerical force data, thus making validity difficult to assess. This pilot study presents the results of insertion pressures as a Tuohy needle is advanced through to the epidural space on a porcine cadaver. The primary aim was to test novel and innovative wireless pressure measuring and receiving equipment to facilitate a clinical trial in labouring parturients

    Investigation of an Intelligent System for Fiber Optic-Based Epidural Anesthesia

    Get PDF
    • …
    corecore