989 research outputs found

    Long-term trapping of Stark-decelerated molecules

    Get PDF
    Trapped cold molecules represent attractive systems for precision-spectroscopic studies and for investigations of cold collisions and chemical reactions. However, achieving their confinement for sufficiently long timescales remains a challenge. Here, we report the long-term trapping of Stark-decelerated OH radicals in their X (2)Pi(3/2) (nu = 0, J = 3/2, M-J = 3/2, f) state in a permanent magnetic trap. The trap environment is cryogenically cooled to a temperature of 17 K to suppress black-body-radiation-induced pumping of the molecules out of trappable quantum states and collisions with residual background gas molecules which usually limit the trap lifetime. The cold molecules are thus confined on timescales approaching minutes, an improvement of up to two orders of magnitude compared with room temperature experiments, at translational temperatures of similar to 25 mK. The present results pave the way for new experiments using trapped cold molecules in precision spectroscopy, in studies of slow chemical processes at low energies and in the quantum technologies

    Laser Cooling of Optically Trapped Molecules

    Full text link
    Calcium monofluoride (CaF) molecules are loaded into an optical dipole trap (ODT) and subsequently laser cooled within the trap. Starting with magneto-optical trapping, we sub-Doppler cool CaF and then load 150(30)150(30) CaF molecules into an ODT. Enhanced loading by a factor of five is obtained when sub-Doppler cooling light and trapping light are on simultaneously. For trapped molecules, we directly observe efficient sub-Doppler cooling to a temperature of 60(5)60(5) μK\mu\text{K}. The trapped molecular density of 8(2)×1078(2)\times10^7 cm3^{-3} is an order of magnitude greater than in the initial sub-Doppler cooled sample. The trap lifetime of 750(40) ms is dominated by background gas collisions.Comment: 5 pages, 5 figure

    Cold and Ultracold Molecules: Science, Technology, and Applications

    Full text link
    This article presents a review of the current state of the art in the research field of cold and ultracold molecules. It serves as an introduction to the Special Issue of the New Journal of Physics on Cold and Ultracold Molecules and describes new prospects for fundamental research and technological development. Cold and ultracold molecules may revolutionize physical chemistry and few body physics, provide techniques for probing new states of quantum matter, allow for precision measurements of both fundamental and applied interest, and enable quantum simulations of condensed-matter phenomena. Ultracold molecules offer promising applications such as new platforms for quantum computing, precise control of molecular dynamics, nanolithography, and Bose-enhanced chemistry. The discussion is based on recent experimental and theoretical work and concludes with a summary of anticipated future directions and open questions in this rapidly expanding research field.Comment: 82 pages, 9 figures, review article to appear in New Journal of Physics Special Issue on Cold and Ultracold Molecule

    Formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics

    Full text link
    Progress on researches in the field of molecules at cold and ultracold temperatures is reported in this review. It covers extensively the experimental methods to produce, detect and characterize cold and ultracold molecules including association of ultracold atoms, deceleration by external fields and kinematic cooling. Confinement of molecules in different kinds of traps is also discussed. The basic theoretical issues related to the knowledge of the molecular structure, the atom-molecule and molecule-molecule mutual interactions, and to their possible manipulation and control with external fields, are reviewed. A short discussion on the broad area of applications completes the review.Comment: to appear in Reports on Progress in Physic

    Rydberg Molecules and Circular Rydberg states in Cold Atom Clouds.

    Full text link
    In this dissertation I investigate cold Rydberg atoms and molecules in which the angular-momentum character of the quantum states involved strongly influences their properties and dynamics. In the first part I focus on long-range diatomic Rydberg molecules formed by a rubidium D-state Rydberg atom and a second rubidium atom in its ground state. Spectroscopic measurements of molecular binding energies are presented showing the effect of the Rydberg atom size and fine-structure coupling on the molecular potentials. A theoretical model is introduced that takes into account all relevant angular-momentum couplings between the molecular constituents, successfully reproducing experimental observations. Calculations of adiabatic potentials and binding energies, molecular-state lifetimes, electric and magnetic dipole moments are also presented. In the second part, I describe the production and magnetic trapping of cold circular Rydberg atoms. The circular Rydberg atoms are generated out of a cold gas of rubidium using the crossed-fields method and magnetically trapped. The trapping force is employed to induce center-of-mass oscillations of the trapped atom sample. Trap parameters and observed oscillation frequencies are used to measure the magnetic moments of the circular Rydberg atoms. Trap losses and the atomic internal-state evolution in the 300 Kelvin thermal background are also investigated.PHDApplied PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111347/1/anderda_1.pd

    Molecular regimes in ultracold Fermi gases

    Full text link
    The use of Feshbach resonances for tuning the interparticle interaction in ultracold Fermi gases has led to remarkable developments, in particular to the creation and Bose-Einstein condensation of weakly bound diatomic molecules of fermionic atoms. These are the largest diatomic molecules obtained so far, with a size of the order of thousands of angstroms. They represent novel composite bosons, which exhibit features of Fermi statistics at short intermolecular distances. Being highly excited, these molecules are remarkably stable with respect to collisional relaxation, which is a consequence of the Pauli exclusion principle for identical fermionic atoms. The purpose of this review is to introduce theoretical approaches and describe the physics of molecular regimes in two-component Fermi gases and Fermi-Fermi mixtures, focusing attention on quantum statistical effects.Comment: Chapter of the book: "Cold Molecules: Theory, Experiment, Applications" edited by R. V. Krems, B. Friedrich and W. C. Stwalley (publication expected in March 2009

    A molecular line study of NGC 1333/IRAS 4

    Get PDF
    Molecular line surveys and fully sampled spectral line maps at 1.3 and 0.87 mm are used to examine the physical and chemical characteristics of the extreme Class I sources IRAS 4A and 4B in the L1450/NGC 1333 molecular cloud complex. A very well collimated, jetlike molecular outflow emanates from IRAS 4A, with a dynamical age of a few thousand years. Symmetric, clumpy structure along the outflow lobes suggests that there is considerable variability in the mass-loss rate or wind velocity even at this young age. Molecular emission lines toward IRAS 4A and 4B are observed to be weak in the velocity range corresponding to quiescent material surrounding the young stellar objects (YSOs). Depletion factors of 10-20 are observed for αll molecules, including CO, even for very conservative mass estimates from the measured millimeter and submillimeter dust continuum. However, abundances scaled with respect to CO are similar to other dark molecular cloud cores. Such depletions could be mimicked by high dust optical depths or increased grain emissivities at the observing frequencies of 230 and 345 GHz, but the millimeter and submillimeter spectral energy distributions suggest that this is unlikely over the single-dish size scales of 5000-10,000 AU. Dense, outflowing gas is found to be kinematically, but not spatially, distinct from the quiescent material on these size scales. If CO is used as a chemical standard for the high-velocity gas, we find substantial enhancements in the abundances of several molecules in outflowing material, most notably CS, SiO, and CH_30H. The SiO emission is kinematically well displaced from the bulk cloud velocity and likely arises from directly shocked material. As is the case for CO, however, the outflow features from more volatile species are centered near the cloud velocity and are often characterized by quite low rotational temperatures. We suggest that grain-grain collisions induced by velocity shear zones surrounding the outflow axes transiently desorb the grain mantles, resulting in large abundance enhancements of selected species. Similar results have recently been obtained in several other low-mass YSOs, where the outflowing gas is often both kinematically and spatially distinct, and are illustrative of the ability of accretion and outflow processes to simultaneously modify the composition of the gas and dust surrounding young stars
    corecore