209 research outputs found

    Migrants Selection and Replacement in Distributed Evolutionary Algorithms for Dynamic Optimization

    Get PDF
    Many distributed systems (task scheduling, moving priorities, changing mobile environments, ...) can be linked as Dynamic Optimization Problems (DOPs), since they require to pursue an optimal value that changes over time. Consequently, we have focused on the utilization of Distributed Genetic Algorithms (dGAs), one of the domains still to be investigated for DOPs. A dGA essentially decentralizes the population in islands which cooperate through migrations of individuals. In this article, we analyze the effect of the migrants selection and replacement on the performance of the dGA for DOPs. Quality and distance based criteria are tested using a comprehensive set of benchmarks. Results show the benefits and drawbacks of each setting in dynamic optimization.Universidad de Málaga. Proyecto roadME (TIN2011-28194). Programa de movilidad de la AUIP

    Parallelism and evolutionary algorithms

    Full text link

    A study on the deployment of GA in a grid computing framework

    Get PDF
    Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015Os algoritmos genéticos (AG) desempenham um papel importante na resolução de muitos problemas de otimização, incluindo científicos, económicos e socialmente relevantes. Os AGs, conjuntamente com a programação genética (PG), a programação evolutiva (PE), e as estratégias de evolução, são as principais classes de algoritmos evolutivos (AEs), ou seja, algoritmos que simulam a evolução natural. Em aplicações do mundo real o tempo de execução dos AGs pode ser computacionalmente exigente, devido, principalmente, aos requerimentos relacionados com o tamanho da população. Este problema pode ser atenuado através da paralelização, que pode levar a GAs mais rápidos e com melhor desempenho. Embora a maioria das implementações existentes de Algoritmos Genéticos Paralelos (AGPs) utilize clusters ou processamento massivamente paralelo (PMP), a computação em grid é economicamente relevante (uma grid pode ser construída utilizando computadores obsoletos) e tem algumas vantagens sobre os clusters, como por exemplo a não existência de controlo centralizado, segurança e acesso a recursos heterogéneos distribuídos em organizações virtuais dinâmicas em todo o mundo. Esta investigação utiliza o problema do mundo real denominado de Problema do Caixeiro Viajante (PCV) como referência (benchmark) para a paralelização de AGs numa infraestrutura de computação em grid. O PCV é um problema NP-difícil de otimização combinatória, bem conhecido, que pode ser formalmente descrito como o problema de encontrar, num grafo, o ciclo hamiltoniano mais curto. De facto, muitos problemas de roteamento, produção e escalonamento encontrados na engenharia, na indústria e outros tipos de negócio, podem ser equiparados ao PCV, daí a sua importância. Informalmente, o problema pode ser descrito da seguinte forma: Um vendedor tem um grande número de cidades para visitar e precisa encontrar o caminho mais curto para visitar todas as cidades, sem revisitar nenhuma delas. A principal dificuldade em encontrar as melhores soluções para o PCV é o grande número de caminhos possíveis; (n-1)! / 2 para um caminho de n cidades simétricas. À medida que o número de cidades aumenta, o número de caminhos possíveis também aumenta de uma forma fatorial. O PCV é, portanto, computacionalmente intratável, justificando plenamente a utilização de um método de otimização estocástica, como os AGs. No entanto, mesmo um algoritmo de otimização estocástica pode demorar demasiado tempo para calcular, à medida que o tamanho do problema aumenta. Num AG para grandes populações, o tempo necessário para resolver o problema pode até ser excessivamente longo. Uma forma de acelerar tais algoritmos é usar recursos adicionais, tais como elementos adicionais de processamento funcionando em paralelo e colaborando para encontrar a solução. Isto leva a implementações simultâneas de AGs, adequadas para a implementação em recursos colaborando em paralelo e/ou de forma distribuída. Os Algoritmos evolutivos paralelos (AEPs) destinam-se a implementar algoritmos mais rápidos e com melhor desempenho, usando populações estruturadas, ou seja, distribuições espaciais dos indivíduos. Uma das maneiras possíveis de descentralizar a população é distribuí-la por um conjunto de nós de processamento (ilhas) que trocam periodicamente (migram) potenciais soluções; o chamado modelo de ilhas. O modelo de ilhas permite um número considerável de topologias de migração e, pela Informação que foi possível apurar, há uma carência de trabalhos de investigação sobre a comparação dessas topologias de migração, ao implementar AEPs em infraestruturas de computação em grid. De facto, a comparação de topologias de migração, utilizando uma infraestrutura de computação em grid, como proposto neste trabalho, parece não estar disponível na literatura. Esta comparação tem como objetivo fornecer uma resposta tecnicamente sólida para a questão de investigação: Qual é a topologia, de modelo de ilhas, mais rápida para resolver instâncias do PCV usando um algoritmo genético baseado em ordem, num ambiente de computação em grid, heterogéneo e distribuído, sem uma perda significativa de fitness, comparativamente com a implementação sequencial e panmítica do mesmo algoritmo? Uma hipótese para responder à questão de investigação pode ser expressa da seguinte forma: Para resolver instâncias TSP, usando um algoritmo genético baseado em ordem, num ambiente de computação em grid, heterogéneo e distribuído, sem uma perda significativa de fitness, comparativamente com a implementação sequencial e panmítica do mesmo algoritmo, escolha qualquer uma das topologias coordenadas do modelo de ilhas, de entre as topologias testadas (estrela, roda, árvore, matriz totalmente conectada, árvore-anel, anel) com o maior número de nós possível (mesmo os mais lentos) e selecione a frequência de migração g que otimiza o tempo de execução para a topologia escolhida. A metodologia de investigação é essencialmente experimental, observando e analisando o comportamento do algoritmo ao alterar as propriedades do modelo de ilhas. Os resultados mostram que o AG é acelerado quando implementado num ambiente grid, mantendo a qualidade dos resultados obtidos na versão sequencial. Além disso, mesmo os computadores obsoletos podem ser usados como nós contribuindo para acelerar o tempo de execução do algoritmo. Este trabalho também discute a adequação de uma abordagem assíncrona para a implementação do AG num ambiente de computação em grid

    A study on the deployment of GA in a grid computing framework

    Get PDF
    Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015Os algoritmos genéticos (AG) desempenham um papel importante na resolução de muitos problemas de otimização, incluindo científicos, económicos e socialmente relevantes. Os AGs, conjuntamente com a programação genética (PG), a programação evolutiva (PE), e as estratégias de evolução, são as principais classes de algoritmos evolutivos (AEs), ou seja, algoritmos que simulam a evolução natural. Em aplicações do mundo real o tempo de execução dos AGs pode ser computacionalmente exigente, devido, principalmente, aos requerimentos relacionados com o tamanho da população. Este problema pode ser atenuado através da paralelização, que pode levar a GAs mais rápidos e com melhor desempenho. Embora a maioria das implementações existentes de Algoritmos Genéticos Paralelos (AGPs) utilize clusters ou processamento massivamente paralelo (PMP), a computação em grid é economicamente relevante (uma grid pode ser construída utilizando computadores obsoletos) e tem algumas vantagens sobre os clusters, como por exemplo a não existência de controlo centralizado, segurança e acesso a recursos heterogéneos distribuídos em organizações virtuais dinâmicas em todo o mundo. Esta investigação utiliza o problema do mundo real denominado de Problema do Caixeiro Viajante (PCV) como referência (benchmark) para a paralelização de AGs numa infraestrutura de computação em grid. O PCV é um problema NP-difícil de otimização combinatória, bem conhecido, que pode ser formalmente descrito como o problema de encontrar, num grafo, o ciclo hamiltoniano mais curto. De facto, muitos problemas de roteamento, produção e escalonamento encontrados na engenharia, na indústria e outros tipos de negócio, podem ser equiparados ao PCV, daí a sua importância. Informalmente, o problema pode ser descrito da seguinte forma: Um vendedor tem um grande número de cidades para visitar e precisa encontrar o caminho mais curto para visitar todas as cidades, sem revisitar nenhuma delas. A principal dificuldade em encontrar as melhores soluções para o PCV é o grande número de caminhos possíveis; (n-1)! / 2 para um caminho de n cidades simétricas. À medida que o número de cidades aumenta, o número de caminhos possíveis também aumenta de uma forma fatorial. O PCV é, portanto, computacionalmente intratável, justificando plenamente a utilização de um método de otimização estocástica, como os AGs. No entanto, mesmo um algoritmo de otimização estocástica pode demorar demasiado tempo para calcular, à medida que o tamanho do problema aumenta. Num AG para grandes populações, o tempo necessário para resolver o problema pode até ser excessivamente longo. Uma forma de acelerar tais algoritmos é usar recursos adicionais, tais como elementos adicionais de processamento funcionando em paralelo e colaborando para encontrar a solução. Isto leva a implementações simultâneas de AGs, adequadas para a implementação em recursos colaborando em paralelo e/ou de forma distribuída. Os Algoritmos evolutivos paralelos (AEPs) destinam-se a implementar algoritmos mais rápidos e com melhor desempenho, usando populações estruturadas, ou seja, distribuições espaciais dos indivíduos. Uma das maneiras possíveis de descentralizar a população é distribuí-la por um conjunto de nós de processamento (ilhas) que trocam periodicamente (migram) potenciais soluções; o chamado modelo de ilhas. O modelo de ilhas permite um número considerável de topologias de migração e, pela Informação que foi possível apurar, há uma carência de trabalhos de investigação sobre a comparação dessas topologias de migração, ao implementar AEPs em infraestruturas de computação em grid. De facto, a comparação de topologias de migração, utilizando uma infraestrutura de computação em grid, como proposto neste trabalho, parece não estar disponível na literatura. Esta comparação tem como objetivo fornecer uma resposta tecnicamente sólida para a questão de investigação: Qual é a topologia, de modelo de ilhas, mais rápida para resolver instâncias do PCV usando um algoritmo genético baseado em ordem, num ambiente de computação em grid, heterogéneo e distribuído, sem uma perda significativa de fitness, comparativamente com a implementação sequencial e panmítica do mesmo algoritmo? Uma hipótese para responder à questão de investigação pode ser expressa da seguinte forma: Para resolver instâncias TSP, usando um algoritmo genético baseado em ordem, num ambiente de computação em grid, heterogéneo e distribuído, sem uma perda significativa de fitness, comparativamente com a implementação sequencial e panmítica do mesmo algoritmo, escolha qualquer uma das topologias coordenadas do modelo de ilhas, de entre as topologias testadas (estrela, roda, árvore, matriz totalmente conectada, árvore-anel, anel) com o maior número de nós possível (mesmo os mais lentos) e selecione a frequência de migração g que otimiza o tempo de execução para a topologia escolhida. A metodologia de investigação é essencialmente experimental, observando e analisando o comportamento do algoritmo ao alterar as propriedades do modelo de ilhas. Os resultados mostram que o AG é acelerado quando implementado num ambiente grid, mantendo a qualidade dos resultados obtidos na versão sequencial. Além disso, mesmo os computadores obsoletos podem ser usados como nós contribuindo para acelerar o tempo de execução do algoritmo. Este trabalho também discute a adequação de uma abordagem assíncrona para a implementação do AG num ambiente de computação em grid

    Fault tolerant and dynamic evolutionary optimization engines

    Get PDF
    Mimicking natural evolution to solve hard optimization problems has played an important role in the artificial intelligence arena. Such techniques are broadly classified as Evolutionary Algorithms (EAs) and have been investigated for around four decades during which important contributions and advances have been made. One main evolutionary technique which has been widely investigated is the Genetic Algorithm (GA). GAs are stochastic search techniques that follow the Darwinian principle of evolution. Their application in the solution of hard optimization problems has been very successful. Indeed multi-dimensional problems presenting difficult search spaces with characteristics such as multi-modality, epistasis, non regularity, deceptiveness, etc., have all been effectively tackled by GAs. In this research, a competitive form of GAs known as fine or cellular GAs (cGAs) are investigated, because of their suitability for System on Chip (SoC) implementation when tackling real-time problems. Cellular GAs have also attracted the attention of researchers due to their high performance, ease of implementation and massive parallelism. In addition, cGAs inherently possess a number of structural configuration parameters which make them capable of sustaining diversity during evolution and therefore of promoting an adequate balance between exploitative and explorative stages of the search. The fast technological development of Integrated Circuits (ICs) has allowed a considerable increase in compactness and therefore in density. As a result, it is nowadays possible to have millions of gates and transistor based circuits in very small silicon areas. Operational complexity has also significantly increased and consequently other setbacks have emerged, such as the presence of faults that commonly appear in the form of single or multiple bit flips. Tough environmental or time dependent operating conditions can trigger faults in registers and memory allocations due to induced radiation, electron migration and dielectric breakdown. These kinds of faults are known as Single Event Effects (SEEs). Research has shown that an effective way of dealing with SEEs consists of a combination of hardware and software mitigation techniques to overcome faulty scenarios. Permanent faults known as Single Hard Errors (SHEs) and temporary faults known as Single Event Upsets (SEUs) are common SEEs. This thesis aims to investigate the inherent abilities of cellular GAs to deal with SHEs and SEUs at algorithmic level. A hard real-time application is targeted: calculating the attitude parameters for navigation in vehicles using Global Positioning System (GPS) technology. Faulty critical data, which can cause a system’s functionality to fail, are evaluated. The proposed mitigation techniques show cGAs ability to deal with up to 40% stuck at zero and 30% stuck at one faults in chromosomes bits and fitness score cells. Due to the non-deterministic nature of GAs, dynamic on-the-fly algorithmic and parametric configuration has also attracted the attention of researchers. In this respect, the structural properties of cellular GAs provide a valuable attribute to influence their selection pressure. This helps to maintain an adequate exploitation-exploration tradeoff, either from a pure topological perspective or through genetic operations that also make use of structural characteristics in cGAs. These properties, unique to cGAs, are further investigated in this thesis through a set of middle to high difficulty benchmark problems. Experimental results show that the proposed dynamic techniques enhance the overall performance of cGAs in most benchmark problems. Finally, being structurally attached, the dimensionality of cellular GAs is another line of investigation. 1D and 2D structures have normally been used to test cGAs at algorithm and implementation levels. Although 3D-cGAs are an immediate extension, not enough attention has been paid to them, and so a comparative study on the dimensionality of cGAs is carried out. Having shorter radii, 3D-cGAs present a faster dissemination of solutions and have denser neighbourhoods. Empirical results reported in this thesis show that 3D-cGAs achieve better efficiency when solving multi-modal and epistatic problems. In future, the performance improvements of 3D-cGAs will merge with the latest benefits that 3D integration technology has demonstrated, such as reductions in routing length, in interconnection delays and in power consumption

    Observations in using parallel and sequential evolutionary algorithms for automatic software testing

    Get PDF
    Computers & Operations Research, 35 (10),2007, pp.3161-3183In this paper we analyze the application of parallel and sequential evolutionary algorithms (EAs) to the automatic test data generation problem. The problem consists of automatically creating a set of input data to test a program. This is a fundamental step in software development and a time consuming task in existing software companies. Canonical sequential EAs have been used in the past for this task. We explore here the use of parallel EAs. Evidence of greater efficiency, larger diversity maintenance, additional availability of memory/CPU, and multi-solution capabilities of the parallel approach, reinforce the importance of the advances in research with these algorithms. We describe in this work how canonical genetic algorithms (GAs) and evolutionary strategies (ESs) can help in software testing, and what the advantages are (if any) of using decentralized populations in these techniques. In addition, we study the influence of some parameters of the proposed test data generator in the results. For the experiments we use a large benchmark composed of twelve programs that includes fundamental algorithms in computer science.Ministry of Education and Science and FEDER under Contract TIN2005-08818-C04-01 (the OPLINK Project). Francisco Chicano was supported by a Grant (BOJA 68/2003) from the Junta de Andalucía (Spain)

    A new initialization procedure for the distributed estimation of distribution algorithms

    Full text link
    Estimation of distribution algorithms (EDAs) are one of the most promising paradigms in today’s evolutionary computation. In this field, there has been an incipient activity in the so-called parallel estimation of distribution algorithms (pEDAs). One of these approaches is the distributed estimation of distribution algorithms (dEDAs). This paper introduces a new initialization mechanism for each of the populations of the islands based on the Voronoi cells. To analyze the results, a series of different experiments using the benchmark suite for the special session on Real-parameter Optimization of the IEEE CEC 2005 conference has been carried out. The results obtained suggest that the Voronoi initialization method considerably improves the performance obtained from a traditional uniform initialization

    Graphics Processing Unit–Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks

    Get PDF
    Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes—master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)—is carried out for this problem. Several procedures that optimize the use of the GPU’s resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs)
    corecore