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Abstract 
 

Genetic algorithms (GA) play a very noticeable role for solving optimization problems, 

including many scientific, economic and socially relevant ones. GAs, along with genetic 

programming (GP), evolutionary programming (EP), and evolution strategies, are the major 

classes of evolutionary algorithms (EAs), i.e. algorithms that simulate natural evolution. In real-

world applications the runtime of GAs can be computationally demanding mainly due to the 

requirements on the population size. This issue can be mitigated using parallelization, which 

can lead to faster and better performing GAs. Although most of the existing implementations 

of Parallel Genetic Algorithms (PGAs) use either clusters or massively parallel processing 

(MPP), grid computing is economically relevant (can be built with out-of-date computers) and 

has some advantages over clusters such as no centralized control, security and access to 

distributed heterogeneous resources in dynamic worldwide virtual organizations. This research 

uses the real-world Travelling Salesman Problem (TSP) as a benchmark for the parallelization 

of GAs in a grid computing framework. TSP is a well-known NP-hard combinatorial 

optimization problem that can be formally described as the problem of finding the shortest 

Hamiltonian cycle in a graph. In fact, many routing, production and scheduling problems found 

in engineering, industry and business, can be shown to be equivalent to TSP, thus its interest. 

Informally, the problem can be described as follows.  A salesman has a large number of cities 

to visit and he needs to find the shortest path to visit all the cities, without revisiting any of 

them. The main difficulty in finding optimal solutions to TSP is the large number of possible 

tours; (n-1)!/2 for symmetric n cities tour. As the number of cities in the problem increases, the 

number of possible tours also increases, in a factorial way. TSP is therefore computationally 

intractable, thus fully justifying the employment of a stochastic optimization method such as 

GA. However even stochastic optimization algorithms may take too much time to compute, as 

the problem size increases. In a GA for large populations the time required to solve the problem 

may be excessively long. One way of speeding up such algorithms is to use additional resources 

such as additional processing elements running in parallel and collaborating to find the solution. 

This leads to concurrent implementations of GAs, suitable to be deployed on parallel and/or 

distributed collaborating resources. Parallel evolutionary algorithms (PEAs) are intended to 

implement faster and better performing algorithms, using structured populations, i.e., spatial 

distributions of individuals.  
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A possible way of decentralizing a population is distributing it by a set of processing nodes 

(islands) which periodically exchange (migrate) candidate solutions; the so-called Island 

Model. The island model allows for a considerable number of migration topologies and, to the 

best of our knowledge, there is a lack of research work concerning the comparison of those 

migration topologies, when implementing PEAs in grid computing frameworks. In fact, the 

comparison of migration topologies using a grid computing framework, as proposed in this 

work, does not seem to be present in the literature. This comparison aims at providing a 

technically sound question to the research question:  

What is the fastest Island Model topology for solving TSP instances using an order-based 

genetic algorithm, in a distributed heterogeneous grid computing environment, without losing 

significant fitness comparatively to the correspondent sequential panmictic implementation of 

the same algorithm? 

A hypothesis aiming at answering the research question can be stated as follows: 

For solving TSP instances using an order-based genetic algorithm, in a distributed 

heterogeneous grid computing environment, without losing significant fitness comparatively to 

the correspondent sequential panmictic implementation of the same algorithm, choose a 

coordinated Island Model topology, from any of the tested topologies (star, cartwheel, tree, 

fully connected multilayered, rooted tree-ring, ring), with as many nodes as possible (even slow 

ones) and select the migration frequency that optimizes the execution time for the chosen 

topology. 

The research methodology is primarily experimental, observing and analysing the behaviour of 

the algorithm while changing the properties of the island model. 

Results show that the GA is speeded up when deployed in a grid environment, while 

maintaining the quality of the results obtained in the sequential version. Furthermore, even 

obsolete computers can be used as nodes contributing to speed up the execution time of the 

algorithm. This work also argues the suitability of an asynchronous approach for deploying GA 

in a grid computing environment.  

Keywords   

Genetic Algorithms; Island Model; Asynchronous Genetic Algorithm; Grid Computing; 

Globus Toolkit; Travelling Salesman Problem;  
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Resumo 
 

Os algoritmos genéticos (AG) desempenham um papel importante na resolução de muitos 

problemas de otimização, incluindo científicos, económicos e socialmente relevantes. Os AGs, 

conjuntamente com a programação genética (PG), a programação evolutiva (PE), e as 

estratégias de evolução, são as principais classes de algoritmos evolutivos (AEs), ou seja, 

algoritmos que simulam a evolução natural. Em aplicações do mundo real o tempo de execução 

dos AGs pode ser computacionalmente exigente, devido, principalmente, aos requerimentos 

relacionados com o tamanho da população. Este problema pode ser atenuado através da 

paralelização, que pode levar a GAs mais rápidos e com melhor desempenho. Embora a maioria 

das implementações existentes de Algoritmos Genéticos Paralelos (AGPs) utilize clusters ou 

processamento massivamente paralelo (PMP), a computação em grid é economicamente 

relevante (uma grid pode ser construída utilizando computadores obsoletos) e tem algumas 

vantagens sobre os clusters, como por exemplo a não existência de controlo centralizado, 

segurança e acesso a recursos heterogéneos distribuídos em organizações virtuais dinâmicas em 

todo o mundo. Esta investigação utiliza o problema do mundo real denominado de Problema 

do Caixeiro Viajante (PCV) como referência (benchmark) para a paralelização de AGs numa 

infraestrutura de computação em grid. O PCV é um problema NP-difícil de otimização 

combinatória, bem conhecido, que pode ser formalmente descrito como o problema de 

encontrar, num grafo, o ciclo hamiltoniano mais curto. De facto, muitos problemas de 

roteamento, produção e escalonamento encontrados na engenharia, na indústria e outros tipos 

de negócio, podem ser equiparados ao PCV, daí a sua importância. Informalmente, o problema 

pode ser descrito da seguinte forma: Um vendedor tem um grande número de cidades para 

visitar e precisa encontrar o caminho mais curto para visitar todas as cidades, sem revisitar 

nenhuma delas. A principal dificuldade em encontrar as melhores soluções para o PCV é o 

grande número de caminhos possíveis; (n-1)! / 2 para um caminho de n cidades simétricas. À 

medida que o número de cidades aumenta, o número de caminhos possíveis também aumenta 

de uma forma fatorial. O PCV é, portanto, computacionalmente intratável, justificando 

plenamente a utilização de um método de otimização estocástica, como os AGs. No entanto, 

mesmo um algoritmo de otimização estocástica pode demorar demasiado tempo para calcular, 

à medida que o tamanho do problema aumenta. Num AG para grandes populações, o tempo 

necessário para resolver o problema pode até ser excessivamente longo.  
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Uma forma de acelerar tais algoritmos é usar recursos adicionais, tais como elementos 

adicionais de processamento funcionando em paralelo e colaborando para encontrar a solução. 

Isto leva a implementações simultâneas de AGs, adequadas para a implementação em recursos 

colaborando em paralelo e/ou de forma distribuída. Os Algoritmos evolutivos paralelos (AEPs) 

destinam-se a implementar algoritmos mais rápidos e com melhor desempenho, usando 

populações estruturadas, ou seja, distribuições espaciais dos indivíduos. Uma das maneiras 

possíveis de descentralizar a população é distribuí-la por um conjunto de nós de processamento 

(ilhas) que trocam periodicamente (migram) potenciais soluções; o chamado modelo de ilhas. 

O modelo de ilhas permite um número considerável de topologias de migração e, pela 

Informação que foi possível apurar, há uma carência de trabalhos de investigação sobre a 

comparação dessas topologias de migração, ao implementar AEPs em infraestruturas de 

computação em grid. De facto, a comparação de topologias de migração, utilizando uma 

infraestrutura de computação em grid, como proposto neste trabalho, parece não estar 

disponível na literatura. Esta comparação tem como objetivo fornecer uma resposta 

tecnicamente sólida para a questão de investigação:  

Qual é a topologia, de modelo de ilhas, mais rápida para resolver instâncias do PCV usando 

um algoritmo genético baseado em ordem, num ambiente de computação em grid, heterogéneo 

e distribuído, sem uma perda significativa de fitness, comparativamente com a implementação 

sequencial e panmítica do mesmo algoritmo? 

Uma hipótese para responder à questão de investigação pode ser expressa da seguinte forma: 

Para resolver instâncias TSP, usando um algoritmo genético baseado em ordem, num ambiente 

de computação em grid, heterogéneo e distribuído, sem uma perda significativa de fitness, 

comparativamente com a implementação sequencial e panmítica do mesmo algoritmo, escolha 

qualquer uma das topologias coordenadas do modelo de ilhas, de entre as topologias testadas 

(estrela, roda, árvore, matriz totalmente conectada, árvore-anel, anel) com o maior número de 

nós possível (mesmo os mais lentos) e selecione a frequência de migração g que otimiza o 

tempo de execução para a topologia escolhida. 

 

 

 



8 
 

A metodologia de investigação é essencialmente experimental, observando e analisando o 

comportamento do algoritmo ao alterar as propriedades do modelo de ilhas. Os resultados 

mostram que o AG é acelerado quando implementado num ambiente grid, mantendo a 

qualidade dos resultados obtidos na versão sequencial. Além disso, mesmo os computadores 

obsoletos podem ser usados como nós contribuindo para acelerar o tempo de execução do 

algoritmo. Este trabalho também discute a adequação de uma abordagem assíncrona para a 

implementação do AG num ambiente de computação em grid. 

 

Termos Chave   

Genetic Algorithms; Island Model; Asynchronous Genetic Algorithm; Grid Computing; 

Globus Toolkit; Travelling Salesman Problem; 
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CHAPTER 1: Introduction 
 

 

Genetic algorithms (GA) play a very noticeable role for solving optimization problems, 

including many scientific, economic and socially relevant ones. GAs, along with genetic 

programming (GP), evolutionary programming (EP), and evolution strategies, are the major 

classes of evolutionary algorithms (EAs), i.e. algorithms that simulate natural evolution. A GA 

operates on a population of individuals each one of them being a candidate solution to the 

considered optimization problem. In the classical form, each individual is composed by one or 

more chromosomes which in turn are viewed as a set of genes. In real-world applications the 

runtime of GAs can be computationally demanding mainly due to the requirements on the 

population size. Another potential issue is the premature convergence of the population. It is 

well-known that both of these issues can be mitigated using parallel genetic algorithm (PGA) 

(Alba and Troya, 1999; Cantú-Paz, 1999; Cantú-Paz, 2000; Alba and Tomassini, 2002). 

Unfortunately, relatively to GA, PGA increases the number of parameters the practitioner has 

to deal with. Currently, there is a wealth of work on PGA, e.g., see (Alba, 2005; Knysh and 

Kureichik, 2010; Umbarkar and Joshi, 2013; Luque and Alba, 2011; Johar et al., 2013; Alba, 

Luque, and Nesmachnow, 2013) for some recent reviews. 

 

Classical taxonomies of PGA distinguish between single population (panmictic) models and 

multi-population or structured models (Cantú-Paz, 2000; Nowostawski and Poli, 1999). The 

former can be viewed as a master-slave architecture where the master runs a panmictic GA and 

is the evaluation of individuals that is performed in parallel by slave processors. This model is 

also known as the parallel panmictic model has it does not change the behavior of the panmictic 

GA. In the multi-population (or deme) PGA the two main models are i) the cellular or fine-

grained GA, and ii) the coarse-grained, distributed, or island model (IM). In the fine-grained 

the population is partitioned into a high number of small sub-populations typically one 

individual per processing unit (crossover is restricted to a small overlapping neighborhood. 

Although hybrid and hierarchal models are also common the IM is by far the more popular 

model, and is also adopted in this work. 
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The island model has its roots in a model used to describe natural sub-populations (or demes) 

that evolve in a semi-isolated way as it happens in islands (Cohoon et al., 1987). Following this 

metaphor, in an IM each deme is processed by an island, i.e., a GA in its own processing unit. 

Occasionally, demes exchange some of their individuals (migrants) with other demes. The 

details of the exchange include the migration frequency (how often migration occurs), the 

number of migrants, the policy of migrants (which individuals migrate and which are replaced 

at the receiving deme), and the topology of migrations. Topology establishes the 

communication pathways between islands. In another words, a topology defines the flow of 

migrants from one subpopulation to another. The topology is arguably the less studied of the 

above aspects, especially in the asynchronous heterogeneous case. Migration can be 

synchronous or asynchronous. Synchronous migration is typically easier to analyze as it occurs 

periodically at the same time instant for all islands. Asynchronous migration is harder to analyze 

as it depends on the events occurring in each island and, thus each island migrates at its own 

time independently of the others, as found often in nature. Islands can be homogeneous or 

heterogeneous depending on whether they are based on the same GA with the same parameters 

and deployed over similar processing elements, or not. The deployment can be either in 

hardware, or simulated in software. 

 
Although most of the existing implementations of Parallel Genetic Algorithms (PGAs) use 

either clusters or massively parallel processing (MPP), grid computing is economically relevant 

and has some advantages over clusters such as no centralized control, security and access to 

distributed heterogeneous resources in dynamic worldwide virtual organizations. In fact, a grid 

computing framework can be constructed using commodity computing, i.e. normal, open-

standards and often outdated hardware for parallel computing, in the antipodes of the high-

performance and high-cost supercomputing. Given the past and current pace of replacement of 

computing hardware in teaching, development, and research labs, more and more processing 

power is becoming available for useful computing at low cost, if any. This has the potential to 

allow the study larger instances of hard problems under modest budgets, e.g., (Brightwell et al., 

2000; Myers and Cummings, 2003; Plaza et al., 2006; Bernabe and Plaza, 2011).  
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A grid can be viewed as a form of distributed computing where a virtual super computer is built 

out of many networked, loosely coupled, and geographically dispersed computing nodes 

(Foster, Kesselman, and Tuecke, 2001). Each node (desktop pc, laptop, workstation, transputer, 

cluster, etc.) may be physically connected using conventional network hardware, thus being an 

effective way of sharing commodity computing resources. However, the characteristics of such 

computing environment rises some interesting challenges. For instance: it is expected a high 

level of heterogeneity among nodes (different processing speeds and different storage). Also, 

as nodes can be geographically separated and connected over the internet, communication times 

among the units are random variables with high variability. Consequently, parallel synchronous 

computing (where nodes synchronize at specific times) does not serve the purpose of shortest 

completion times without some kind of load balancing. Asynchronous parallel approaches are 

therefore preferred. Moreover, as each subpopulation of the PGA is assigned to a processing 

node, and as processing nodes exhibit different processing characteristics, each subpopulation 

has its own evolutionary pace. In other words, different islands evolve at different rates.  

 

In the past, several studies used grid-enabled computing for parallelizing genetic and 

evolutionary algorithms. These make use of the master-slave model, e.g., (Durillo et al., 2008; 

Nebro et al., 2008); the cellular model, e.g., (Dorronsoro et al., 2007; Luque, Alba, and 

Dorronsoro, 2009); the island model, e.g., (Limmer and Fey, 2010; Luna et al., 2008; Melab, 

Cahon, and Talbi, 2006; Talbi, Cahon, and Melab, 2007); and hierarchical and hybrid models, 

e.g. (Lim et al., 2007; Tantar et al., 2007). However, none of these works evaluates the influence 

of the topologies. Typically, the ring topology is used. If computing nodes can dynamically 

enter or leave the grid, ring topologies are among the more vulnerable ones. Nevertheless, the 

island model allows for a considerable number of migration topologies but, to the best of our 

knowledge, there is a lack of research on the impact of topologies on the performance of the 

whole optimization process, when deployed over a grid computing framework. Also, studies 

on island models based on heterogenous islands, using different GA and different GA settings, 

are available, e.g., (Cantú-Paz, 2000; Alba, Nebro, and Troya, 2002; Baugh and Kumar, 2003; 

Jakobović, Golub and Čupić, 2014). Unfortunately, the migration topology issue is not 

discussed in the mentioned studies neither.  
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This research focus on the comparison of topologies for parallelizing order-based genetic 

algorithms when distributed over heterogeneous computing environments. To the best of our 

knowledge, no study either theoretical or experimental is available for such scenario. In 

particular, the study focus on the analysis of the influence of the migration topologies and their 

relationship with migration frequency. Given heterogeneity, all the analyzed topologies can be 

viewed as coordinated topologies. In such type of topologies there is one island (the 

coordinator) that is responsible for generating the solution, and for stopping the evolution of all 

other (coordinated) islands once the solution is found. Notice that this is the sole function of the 

coordinator; no synchronism is implied. We study three notable cases: i) the case where no 

migration takes place (isolated island), ii) the case where migration flows only in the direction 

of the coordinator (star, cartwheel, rooted tree-ring, trees, fully connected multi-layered), as 

well as iii) the case where migration flows to, and from, the coordinator (rings). 

 

This work uses the real-world Travelling Salesman Problem (TSP) as a benchmark for the 

parallelization of GA in a grid computing framework. The Travelling Salesman Problem (TSP) 

is a well-known, and widely studied, NP-hard (Garey and Johnson, 1979) combinatorial 

optimization problem. Many routing, production and scheduling problems found in 

engineering, industry and business can be shown to be equivalent to TSP, thus its interest. One 

may expect that the techniques and findings observed for TSP could be also applied to other 

combinatory problems (Applegate et al., 2007). Moreover, there are several real-world 

benchmark instance and their optimal solutions freely available (Reinelt, 1991). TSP seems to 

show a good trade-off between complexity and the type of computation resources we are 

interested in this study. Many studies on (P)GA also adopt the same problem, not necessarily 

using the same instances, e.g., (Grefenstette et al., 1985; Braun, 1990; Potvin, 1996; Sena, 

Megherbi, and Isern, 2001; Wang et al., 2005; Weise et al., 2014). Informally, the problem can 

be described as follows.  A salesman has a large number of cities to visit and he needs to find 

the shortest visiting path to all cities, without revisiting any of them (Lawler, 1985). More 

formally, TSP can be described as the problem of finding the shortest Hamiltonian cycle in a 

graph. Figure 1.1 presents the TSPLIB (Reinelt, 1991) data set for 13509 cities in the USA 

(USA13509). TSPLIB is a library of sample instances for the TSP (and related problems) from 

various sources and of various types. Furthermore, TSPLIB also provides the best known 

solutions for those sample instances.  
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Figure 1.1: TSPLIB USA13509 data set. 

 

The main difficulty in finding optimal solutions to TSP is the large number of possible tours; 

(n-1)!/2 for symmetric n cities tour. As the number of cities in the problem increases, the 

number of possible tours also increases, in a factorial way. TSP is therefore computationally 

intractable, thus justifying the employment of a stochastic optimization method such as   GA. 

For illustration purposes, figure 1.2 presents the optimal tour for the USA13509 data set, found 

by (Applegate et al., 1998). 

 

 

Figure 1.2: TSPLIB USA13509 optimal tour. 

 

 

 



15 
 

1.1. Thesis Contributions 
 

The main contribution of this research is to provide a technically sound answer to the following 

question:  

 

What is the fastest Island Model topology for solving TSP instances using an order-based 

genetic algorithm, in a distributed heterogeneous grid computing environment, without losing 

significant fitness comparatively to the correspondent sequential panmictic implementation of 

the same algorithm?  

 

In order to answer this question, a comparison of migration topologies, using a grid computing 

framework, was performed. To the best of our knowledge, this comparison, in a distributed 

heterogeneous environment such as proposed in this work, cannot be found in the literature. 

The research methodology is primarily experimental, observing and analysing the behaviour of 

the algorithm while changing the properties of the island model.  

 

 

1.1. Thesis Organization 
 

The organization of the text is as follows: Chapter 2 introduces Evolutionary Algorithms, points 

their application in real-world optimization problems and identifies Genetic Algorithms as one 

of their major classes. Evolutionary algorithms models are presented and the Travelling 

Salesman Problem is introduced as well as the elected baseline Genetic Algorithm to solve this 

optimization problem. Chapter 3 introduces Parallel Evolutionary Algorithms as well as a 

taxonomy of these algorithms. The parallelization of the baseline GA is presented, arguing the 

suitability of coordinated island model topologies for deployment of GAs in distributed 

heterogeneous environments such as grid. In chapter 4, a comparison of the selected island 

model topologies is presented. Some of the most important results are presented and discussed. 

Finally, chapter 5 presents the most noticeable conclusions of this work, providing an answer 

to the research question. The thesis ends with some future work considerations pointing further 

possible investigation directions.  
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CHAPTER 2: Evolutionary Algorithms 
 

Evolutionary algorithms (EAs) are stochastic optimization algorithms which simulate natural 

evolution, i.e. they are based on Darwin’s evolution theory of natural selection and “survival of 

the fittest”. First proposed by (Rechenberg, 1965), evolutionary algorithms have been widely 

applied to combinatorial optimization problems in several different domains such as biology, 

chemistry, computer aided design, cryptanalysis, medicine, microelectronics, pattern 

recognition, production planning, robotics, telecommunications, etc. The major classes of EAs 

are the genetic algorithms (GAs) (Holland, 1975), genetic programming (GP) (Koza, 1992), 

evolutionary programming (EP) (Fogel, 1962), and evolution strategies (ESs) (Rechenberg, 

1965).  

 

In GAs, the search space of a problem is represented by a collection, i.e., a population, of 

individuals, often referred to as chromosomes. Each individual, i.e., chromosome, is, in fact, a 

candidate solution for the problem. The goal of using a GA is to find the individual in the 

population which has the best “genetic material”, i.e., that represents the best solution for the 

problem been solved. The quality of an individual is calculated using an evaluation function, 

also known as fitness function. The process of natural evolution is simulated by using genetic 

operators, namely selection, crossover and mutation. A simple genetic algorithm works as 

follows (Goldberg, 1989): 

 

1) The initial population is randomly generated; 

2) In every iteration of the algorithm, i.e., generation: 

a. Individuals are evaluated using the fitness function; 

b. Parents are selected from the population; 

c. Parents produce children by crossover; 

d. Mutation is performed over the newly created children; 

e. Some individuals, selected according to a given criteria, are removed from the 

population, assuring that the initial population size is maintained; 

3) When stopping criteria is achieved the algorithm stops, otherwise it proceeds to next 

generation (step 2). 
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2.1. Evolutionary Algorithm Models 
 

There are two main subclasses of Evolutionary Algorithms (EAs): panmictic and structured 

EAs (Alba and Tomassini, 2002). In panmictic or global EAs, selection operation is executed 

globally, i.e., any individual can compete or mate with any other and can be replaced by a new 

one. In the case of structured EAs, individuals are arranged spatially and thus the population is 

divided in several subpopulations.   

Panmictic EAs can be classified as generational or steady-state algorithms. Generational 

models assume that at each step, i.e., generation, the whole population of N individuals is 

replaced by a new one. On the other hand, in a steady-state EA, one single individual is replaced 

at each step. Steady-state and generational can be considered as the two extremes of generation 

gap algorithms where a given number of the individuals M (mortality) are replaced with new 

ones (Jakobovic et al., 2013). M=1 for steady-state EAs and M=N for generational EAs. 

As for structured EAs, island models and cellular (cEA) algorithms are very popular 

optimization procedures (Alba and Troya, 1999). Island models are also known as coarse-

grained as they deal with isolated subpopulations which exchange individuals between 

them, i.e., every g generations, n individuals migrate from one subpopulation to another. 

On the other hand, in cEAs (fine-grained EAs), an individual has its own pool of potential 

mates defined by neighbouring individuals, as shown in Figure 2.1.1. 

 

 

Figure 2.1.1:  Panmictic EA (a), Island Model (b), Cellular EA (c), in (Alba and Tomassini, 2002). 
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Distributed EAs and Cellular EAs provide a better sampling of the search space and improve 

the behaviour of the basic algorithm (Gordon and Whitley, 1993). A distributed model is usually 

faster than a panmictic EA, as the run time and the number of evaluations are potentially 

reduced thanks to its separate search in several regions from the problem space, featuring high 

diversity and species formation (Alba and Tomassini, 2002). 

 

So far, all the presented models assume that the genetic material, as well as the evolutionary 

conditions, e.g., selection and recombination methods, are the same for all individuals and all 

populations of a structured EA. According to (Alba and Tomassini, 2002), these algorithm types 

are called uniform. If different subpopulations are allowed to evolve with different parameters 

and/or with different individual representations for the same problem, then the distributed 

algorithm is called nonuniform. The first to study the use of different mutation and crossover 

rates in different populations was (Tanese, 1987). An example of nonuniform dEAs was 

provided by (Lin et al., 1994) with their injection island GA (iiGA), which considers multiple 

populations encoding the same problem but using a different representation size in different 

islands. In iiGA, the migration of individuals is one-way only, i.e., from a low-resolution node 

to a high-resolution node. Similar topology approaches have been used, such as (Herrera et al., 

1998) or (Sefrioui and Périaux, 2000).  
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2.2. The Baseline Genetic Algorithm to Solve TSP 
 

An important decision in this work was the selection of the baseline genetic algorithm for 

solving TSP, to be first implemented in its sequential version. In order to reduce the enormous 

number of possibilities, the programming language was the first filter to be applied. Some 

authors argue that the features of Java make it a candidate language for grid computing (Getov 

et al., 2001). In the past years, C/C++ and Java have been the most commonly used languages 

to develop parallel metaheuristics implementations (Parejo et al., 2012). Assuming Java as the 

chosen programming language, the next step was the choice of a known efficient, and fast (for 

challenging reasons), a genetic algorithm implemented in that programming language. The Java 

implementation proposed by (Saiko, 2005), has been reported as very efficient and has been 

referred in recent scientific publications such as (Rzeźniczak, 2012) and (Saračević et al., 2012). 

Saiko’s implementation is inspired on the original algorithm proposed in A Fast TSP Solver 

Using GA on Java (Sengoku and Yoshihara, 1998) that obtained quite good results while 

increased the execution speed of the algorithm. The chosen algorithm combines:  

a) Greedy Crossover (Grefenstette et al., 1985) mating, based on the crossover engine 

from JGAP (Meffert and Rotstan, 2014); 

b) Mutation, by random permutation; 

c) Path optimization, provided by the 2-opt method (Croes, 1958).  

 

The Greedy Crossover operator selects the first city of one parent, compares the cities next to 

that city in both parents, and chooses the closer one to extend the tour. If one city has already 

appeared in the tour, it chooses another city. If both cities have already appeared, it randomly 

selects another city. Mutation is based on random permutation, i.e. swapping two randomly 

selected cities from the chromosome. The 2-opt optimization method is a simple local search 

algorithm that allows eliminating path crossings in a fast and efficient way, as illustrated on 

figure 2.2.1. 

 

Figure 2.2.1: The 2-opt optimization method, in (Sengoku and Yoshihara, 1998). 
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Figure 2.2.2 presents the pseudo code for the sequential panmictic version of the chosen 

algorithm. Given a dataset of N cities, each one placed at (x,y) coordinates, each chromosome, 

i.e., each individual of the population, is represented by an ordered list of cities, corresponding 

to a possible tour of the salesman. The goal of the algorithm is to find the optimal tour, 

corresponding to the minimal distance travelled to visit all the cities. So, the fitness of each 

chromosome is determined by the tour length and the main goal is to minimize that value, i.e., 

minimize the total distance travelled by the salesman. 

 

Set the population size N, the number of migrants k, and the migration frequency g; 

Randomly initialize population; 

Sort population by fitness (from smaller distance to larger); 

repeat 

 for j := 1 to N/2 do 

  Randomly select parents p1 and p2 from the best half of the population; 

  child1 := Permutation (Clone (p1)); 

  child2 := Permutation (Clone (p2)); 

  child3 := Crossover (p1; p2); 

  child4 := Crossover (p2; p1); 

  child5 := Permutation (Clone (child3)); 

  child6 := Permutation (Clone (child4)); 

  Apply 2opt method to all children; 

  Add all children to the population; 

 end 

 Sort population by fitness (from smaller distance to larger); 

 Remove the last (worst) individuals beyond the initial population size; 

until no change in the best individual for a LIMIT (s); 

 

Figure 2.2.2: Pseudo-code for the baseline sequential panmictic version of the GA. 
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The initial population is randomly generated, assuring that there is no chromosome duplication, 

and then ordered through fitness evaluation. Although the original size of the population, as 

proposed by the author, was N=1000, one could conclude that, as far as this research goes, there 

is no fitness improvement when the population size goes beyond the number of cities of the 

data set we want to run.  

Looking at figure 2.2.3., one can observe that the best tour length decreases as population size 

increases and stabilizes when the population size equals the number of cities on the data set. 

These results were obtained for the N=280 instance of the TSP problem. From this point, even 

duplicating the population size (N=560), the algorithm found the same best tour length. Similar 

results are observed for other instances of TSP. In each generation, the best solution is compared 

with the best solution from the previous generation. The algorithm stops when the best solution 

remains unchanged for s consecutive generations. The original value proposed by the author 

was s=100 generations but one could experimentally conclude that s=52 was enough and thus 

this was the parameter value used for all the performed experiments on this research.  

 

 

Figure 2.2.3: Average Best Tour Length (280 cities data set). 
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Every generation, after checking the best solution age, the second half, i.e., the worst half of 

the population is removed. Then for as many iterations as half the initial population size, the 

following process is repeated:  

a) Two parents are randomly selected; 

b) Four children (children 1, 2, 5 and 6) are obtained by cloning both parents and two 

children (children 3 and 4) by mating using GreedyCrossover; 

c) Children 1, 2, 5 and 6 are then mutated, with a probability of mutation Pm=0.25, by 

random permutation; 

d) All new children are optimized by the 2-opt heuristic method and finally added to 

the existing population.  

After this set of iterations, the resulting population is once again sorted by fitness evaluation 

(from smaller distance to larger) and the worst chromosomes, that exceed the initial population 

size, are removed from the population in order to maintain the initial population size.   
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CHAPTER 3: Parallel Evolutionary Algorithms 
 

Considering that genetic algorithms have an inherent property of implicit parallelism (Holland, 

1975), they are appropriate candidates for parallelization. Such parallel implementations enable 

the evolution, in parallel, of distinct populations and allow scalability to larger ones. A parallel 

genetic algorithm (PGA) is usually faster, less prone to finding only sub-optimal solutions, and 

able to cooperate with other search techniques in parallel (Alba and Troya, 1999). Commonly, 

a parallel program divides a task into chunks which are simultaneous processed using multiple 

processors. If these chunks are ran in different computers the implementation of the program is 

also addressed as distributed. 

According to (Hart et al., 1996), PGAs provide the following benefits: 

 Reduce the time to locate a solution; 

 Reduce the number of function evaluations; 

 Explore the large populations size over the parallel platforms used for running the algorithms; 

 Improve the quality of the solutions; 

 Solves large scale, large dimensions problems with more efficacy and efficiency. 

 

The parallelization method can use a single population while parallelizing the most time 

consuming tasks, or divide the population into several subpopulations. Although the fact that 

genetic algorithms are natural candidates for parallelization, in some cases the parallel 

implementation of an algorithm may produce worst results than its sequential version, e.g., in 

cases where the communication delay between processing elements is not negligible. This may 

occur when the problem to solve has a lower level of complexity and therefore the execution of 

the algorithm is not especially time-consuming. The most recent studies on PEAs still adopt 

island models as a privileged approach for implementation of PEAs. (Andalon-Garcia and 

Chavoya, 2012) present a comparison of different topologies of the Island model, (Jakobović 

et al., 2014) propose the design and the application of asynchronous models of parallel 

evolutionary algorithms, (Lopes et al., 2013, 2014) study the dynamic selection of migration 

flows and the configuration of migratory flows, (Lässig and Sudholt, 2013) present a rigorous 

analysis of migration in PEAs and (Märtens and Izzo, 2013) propose an asynchronous island 

model for multi-objective evolutionary optimization on heterogeneous and large-scale 

computing platforms.  
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Notice that a sequential algorithm may also divide the global population in subpopulations. 

Thus, hereafter, serial stands for the sequential implementation of the panmictic version of the 

algorithm. 

 

3.1. Parallel Evolutionary Algorithm Models 
 

Parallel evolutionary algorithms (PEAs) can be classified as i) master-slave or global, ii) 

distributed (coarse grained or fine grained), and iii) hybrid (Jakobović et al., 2014). Master-

slave or global PEA has a single population and usually only parallelizes the fitness evaluation 

operation. Each individual may compete for selection and mate with any other individual, as 

for the panmictic version of the EA. Assuming that fitness evaluation operation is the most time 

consuming genetic operation, several authors have been used global PEAs, applying parallel 

methods exclusively to fitness evaluation, such as (Cantú-Paz, 1997; Borovska, 2006; Cantú-

Paz, 2007).  

Distributed EAs (DEAs) are also called multiple-deme parallel EAs, island EAs or coarse 

grained EAs. DEAs have a relatively small number of demes, i.e., subpopulations, and 

individuals occasionally migrate between demes. The migration mechanism requires the 

definition of several additional parameters, e.g., communication topology, migration condition, 

number of migrants, migrant selection and integration method. Considering that demes may 

overlap, the same set of individuals may belong to more than one deme (Nowostawski and Poli, 

1999). DEAs have been extensively used, taking advantage of the availability of numerous 

computing nodes in order to achieve high execution speedups (Park et al., 2008; He et al., 2007; 

Melab et al., 2006; Nowostawski and Poli, 1999; Alba et al., 2002; Alba et al., 2004). On the 

other hand, a small number of cellular PEAs implementations is reported, such as (Eklund, 

2004), as they often need a specialized hardware platform for their implementation. 

 

Hybrid parallel EAs can implement both global and distributed methods in a single algorithm, 

e.g., multiple-deme models with master-slave algorithms run on each deme (Jakobović et al., 

2014). This kind of approach was presented by (Acampora et al., 2011), providing a hybrid 

solution for the e-learning experience binding problem, and by (Iturriaga et al., 2013) presenting 

a hybrid PEA for the optimization of broker virtual machines subletting in cloud systems.  
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Regarding synchronicity, an EA can be synchronous or asynchronous. In a synchronous 

algorithm, when an individual is being accessed by a processing element, e.g., its fitness is 

being evaluated or its genetic material changed, this individual cannot be changed by any other 

processing element, e.g., the master node waits for all the worker nodes to finish evaluating the 

individuals. A synchronous master-slave EA has therefore the same properties as a serial EA, 

while reducing the execution time of the algorithm. According to one of most recent works on 

parallel evolutionary algorithms (Jakobović et al., 2014), the asynchronous PEA models have 

not been extensively investigated nor used in practice and are shown to be a viable alternative 

to traditional models. Also, asynchronous implementation of the island model is better suited 

for large-scale and heterogeneous computing architectures (Märtens and Izzo, 2013), e.g., 

computational grids such as the one used on this research. Therefore, the proposed model, 

presented on section 4.2, is an asynchronous one, unlike synchronous approaches that use 

migration as a synchronization point so that an island has to wait until all other islands have 

finished their generations to migrate and proceed.  

 

Migration can be defined as the process by which the islands are able to exchange information. 

Migration topology is defined by the graph of inter-island links, i.e., the means of 

communication between the islands. Standard migration assumes exchanging n individuals 

(migration size) every g generations (migration interval or frequency). According to (Skolicki 

and De Jong, 2005), migration size and interval are arguably the two most important migration 

parameters, and (Tanese, 1989) performed some of the first studies about their impact. 

Another important parameter is migration policy, which defines how to select migrators from 

the source island and individuals that will be replaced in the target island. A common migration 

policy consists in replacing the worst individuals in the target population by the best individuals 

from the source population (best-worst policy), which is the migration policy used in this work. 

However, other migration policies may be used, such as random-random, i.e., random 

individuals are selected from the source island to replace random ones at the target island, and 

any other possible combination of worst, best or random individuals selection either at source 

or target island. As shown by (Cantú-Paz, 2001), random-random policy should not increase 

the selection intensity, and thus seems appropriate to be used when the investigation focus on 

other migration parameters than policy. 
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The migration topology describes the flow of individuals between the islands. Considering 

graph theory, an island PEA can be represented as a graph in which vertices correspond to 

islands and edges represent the migration flows of individuals. From this analogy to graph 

theory, one can design many possible topologies. The process of migration, by introducing new 

characteristics through the exchange of individuals between the islands, promotes the evolution 

of the subpopulations (Lopes et al., 2014).  (Ruciński et al., 2010) presents a detailed study on 

the impact of the migration topology on the island model, comparing fourteen different 

migration topologies. However, Ruciński and colleagues’ experiments were ran on an 8-core 

Apple OSX 64-bit server, using multiple threads to implement islands model, preventing us to 

reproduce their results since in this study a grid environment is used. Up-to-date literature on 

the Island Model and parallel optimization, commonly refer to static topologies as Ring (Figure 

3.1.1), Torus, Cartwheel and Lattice (Figure 3.1.2), Hypercube, Broadcast and Fully Connected 

(Figure 3.1.3) and Barabási-Albert (Figure 3.1.4).   

 

 

Figure 3.1.1: Ring (a), Ring+1+2 (b) and Ring+1+2+3 (c) topologies, in (Ruciński et al., 2010). 

 

In the Ring topology (Figure 3.1.1a) communication is allowed only between neighbour islands 

and may be either unidirectional or bidirectional. Extending the Ring topology, one can add 

edges that connect every second island (Figure 3.1.1b), every third island (Figure 3.1.1c) and 

so on. In our experiments, we only consider the unidirectional case for the basic Ring topology 

(See figure 3.1.1a). 
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Figure 3.1.2: Torus (a), Cartwheel (b) and Lattice (c) topologies, in (Ruciński et al., 2010). 

 

The Torus topology may appear in many variants, depending on the number and arrangement 

of “rings” and on the allowed paths of communication where some edges may be unidirectional 

while others bidirectional. Figure 3.1.2a presents a generic variant of Torus topology, i.e. the 

one in which islands are distributed in two parallel rings with corresponding islands connected 

and with all the communication links bidirectional.  

The Cartwheel topology (Figure 3.1.2b) is a ring with additional edges connecting all pairs of 

islands laying on opposite “ends” of the basic structure. Lattice is a matrix like topology (Figure 

3.1.2c) where nodes are connected to the upper, lower, left and right neighbours, which is very 

popular in the context of fine-grained parallelization studies. 

 

 

Figure 3.1.3: Hypercube (a), Broadcast (b) and Fully Connected (c) topologies,  

in (Ruciński et al., 2010). 
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Hypercube topology (Figure 3.1.3a) offers the best diameter (the maximum shortest distance 

between any pair of nodes) to number of edges ratio, with very low and homogeneous degree 

of connectivity (the number of edges incident to the node) what eliminates potential bottlenecks 

(Ruciński et al., 2010). This topology is obtained by putting islands in vertexes of a hypercube 

and routing connections according to the edges of this geometrical structure, implying that the 

number of islands must be powers of 2. Broadcast topology (Figure 3.1.3b), also known as Star 

topology, is rather associated with the Master-Slave model. The biggest problem in this kind of 

topology is that the central node may become either communicational or processing bottleneck. 

In the Fully Connected topology (Figure 3.1.3c), all pairs of nodes are directly connected. While 

it presents the lowest possible diameter, its drawback is the quickly increasing number of 

connections, becoming an issue in applications where the number of nodes is high.  

 

Figure 3.1.4: Three examples of Barabási-Albert topologies with 16 islands, in (Ruciński et al., 2010). 

 

The Barabási-Albert (BA) model is an algorithm for generating random scale-free networks 

topologies are based on scale-free networks, i.e. networks where the number of nodes having a 

specified degree of connectivity follows a power plan, a property that is found in many natural 

phenomena such as the network of protein interaction in cells and the network of hyperlinks in 

the World Wide Web. In order to obtain a scale-free network, the BA model incorporates the 

features of incremental growth and preferential attachment. The algorithm that constructs the 

network has two parameters: initial cluster size m0 and the number of links added at each step 

m. Figure 3.1.4 presents three example networks obtained using the BA algorithm with the same 

parameter values: m0 = 3, m = 2. 
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All these topologies have a static configuration, i.e., the same pre-defined topology is 

maintained during the execution of the algorithm.  (Lässig and Sudholt, 2013), (Lopes et al., 

2013) and (Lopes et al., 2014) introduced random topologies and probabilistic methods of 

selection of migration flows, e.g., roulette wheel and tournament selection, into the comparison 

set of topologies. Concerning computing platforms used to run the experiments, (Tang et al,. 

2004) and (Andalon-Garcia and Chavoya, 2012) compared the model performance using 

different migration topologies for a PGA implementation on a cluster platform, (Ruciński and 

Biscani, 2010) studied the impact of the migration topology on the island model running the 

experiments on an 8-core (Intel Xeon processors) Apple OSX 64-bit server. (Lässig and 

Sudholt, 2013), (Lopes et al., 2013) and (Lopes et al., 2014) do not specify the platforms that 

were used to run the experiments. To the best of our knowledge, the comparison of migration 

topologies using a grid computing framework, as proposed in this work, cannot be found in the 

literature. 

3.2. A Review of Studies on Comparison of Island Model Topologies 
 

Studies on PGA first appeared in the 1980's, cf. (Gordon and Whitley, 1993; Cantú-Paz and 

Meja-Olvera, 1994; Alba, 2005). Currently there is a vast number of works on PGA and in 

particular on IM. See (Knysh and Kureichik, 2010; Umbarkar and Joshi, 2010; Luque and Alba, 

2011; Johar et al., 2013; Alba, Luque, and Nesmachnow, 2013) for some recent reviews on 

these works. 

 

There are relatively less studies on the impact of the migration topology on the performance of 

PGA. In the own words of (Cantú-Paz, 1998): "A traditionally neglected aspect of parallel GAs 

has been the topology of the interconnection between demes". Actually, one of the earliest and 

more influential works on PGA suggests that "the choice of topology is not considered to be 

important. The network should have high connectivity and a small diameter to ensure adequate 

"mixing" as time progresses." (Cohoon et al., 1987). 

 

This section focus on the studies on the comparisons of IM migration topologies. Migration 

topologies can be either static or dynamic. This work concerns only static topologies, i.e., 

topologies that are defined a priori and do not change during the whole optimization process. 

The reader interested in dynamic topologies, which are adjusted during the evolution process, 

is referred to (Candan et al., 2012; Lopes et al., 2013; Lopes et al., 2014). 
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Currently there are theoretical and experimental comparative studies on migration topologies. 

It seems consensual to credit the first theoretical study on PGA to (Pettey and Leuze, 1989) 

where a generalization of the schema theorem is derived to PGA where migrants are uniformly 

sampled from arbitrary neighbor islands at every generation. The first theoretical study on 

migration topologies is due to (Cantú-Paz, 1999) and is particularly relevant. The assumptions 

include islands running until convergence to a unique solution, exchanging migrants at that 

moment, and restarting afterwards. The main conclusion being that the quality of the results are 

independent of the topology as long as all islands use the same migration rates and the same 

number of neighbors. Unfortunately, some popular topologies do not meet the last criteria. For 

instance, that is the case of star and the cartwheel topologies.  

 

Also, letting the islands run until convergence before allowing migration can be a strong 

assumption when the goal is the minimization of the completion time. The work of (Skolicki 

and De Jong, 2007) adopts the intra- and inter-island perspective to analyze the dynamics of 

the Island model. More recently (Lässig and Sudholt, 2013) contributed with a runtime analysis 

for a problem where a parallel (crossover less) evolutionary strategy requires polynomial time 

while the corresponding panmictic algorithm requires exponential time. 

 
(Cantú-Paz and Meja-Olvera, 1994) seems to be the first of experimental comparative studies, 

in which it is shown that dense topologies (fully connected, 4-D hypercubes, toroidal mesh) are 

better than sparsely connected ones (unidirectional and bidirectional rings) in the sense that the 

former finds the global solution with fewer function evaluations. (Wang et al., 1998; Wang et 

al., 2005) use an order-based GA as the base GA for solving TSP instances in each one of the 

following five scenarios: i) Isolated islands with an equally divided population among the 

islands. Isolated island run in parallel without any communication. The optimization process 

stops when all islands stop. This is equivalent to run several time the base GA with different 

small size populations; ii) IM with migration. In this case an iterated ring is used where a copy 

of the local best individuals in island I are send to the island (I + i) mod v (i refers to the iteration 

number and v to number of islands; iii) partitioned IM. The difference from i) is that now, the 

population in each island is disjoint from the population of any other island. Thus, each island 

focus on a small region of the search space; iv) IM with tour segmentation and recombination, 

i.e., each island evolves part of a TSP tour, and v) IM with both segmentation and migration. 

The studied topologies are homogeneous as all the islands are similar.  
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The main conclusion is that the scenarios involving migration operate in the shortest execution 

time. (He, Sýkora, and Salagean, 2006) resort to a parallel machine and to the standard Message 

Passing Interface (MPI) library to compare three types of topologies (linear array, Cartesian 

lattice, and random graphs) for each main type of PGA (master-slave, fine-grained and coarse-

grained). In the last case (IM), periodical synchronization was considered. (Sekaj, 2004) 

presents a comparison of six topologies, each one with nine islands. Both unidirectional (star, 

ring, tree, and fully connected layers structure) and bidirectional (Cartesian lattices) were 

considered. Although both the homogeneous and the heterogeneous cases (different 

parametrization of the GA for different islands) were considered, no reference is made to 

synchronism or to deployment.  

 

(Tang et al., 2004) studied two topologies: the unidirectional coordinated (rooted) ring, and the 

coordinated random topology, where at each migration instant an island receives migrants from 

one random island. The study concludes that the ring topology outperforms the random one in 

the tested instances of a quadratic assignment problem (QAP). (Andalon-Garcia and Chavoya, 

2012) compared the star, the coordinated unidirectional and bidirectional ring topologies 

running in cluster platform through standard MPI, over a set of benchmark functions. The 

obtained results clearly show that the completion times decrease with an increase of the number 

of islands, up to a certain limit, and that it is more likely for the star to be the faster topology. 

(Guan and Szeto, 2013) propose a very interesting study on topology comparison. The study 

compares a continuous of topologies starting from a fully connected one and, and by 

systematically removing links, go over more and more sparse topologies until that the 

traditional ring is reached. The study concludes that for a set of four benchmark functions the 

optimal performance of the IM is obtained when the number of links ranges in 40-70% of the 

maximum number of links, i.e., the number of links in a fully connected topology. The study 

assumes that all islands are equally important leaving out coordinated topologies such as stars 

or trees. (Lopes et al., 2014) studied migrations topologies using Differential Evolution as the 

base evolutionary algorithm. The study compares two classic topologies, ring and star, with 

five stochastically generated dynamic ones. Unfortunately, no reference is made to synchronism 

or to deployment.  
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From the above review it is apparent that ring topology is, by far, the most studied one, both in 

PGA in general, and in topology studies in particular. It is also clear that no study either 

theoretical or experimental seems to be available that fully satisfy the premises of this work. 

 

3.3. Deployment of PGAs in Grid Computing Frameworks 
 

Concerning hardware and computer architecture, most of the existing parallel implementations 

of PGAs use either cluster or massively parallel processing (MPP) (Umbarkar and Joshi, 2013). 

According to the same authors, grid has many advantages over clusters such as no centralized 

control, security, access to distributed heterogeneous resources, and easy and reliable access to 

remote data sources and service to any available application. Using a grid (Kesselman and 

Foster, 1999) is both economically relevant and a technically challenging topic considering the 

potential heterogeneity of computer systems that compose a grid and the additional 

communication issues on this kind of distributed frameworks. 

The need for High-performance computing (HPC) at a lower cost, led to the replacement of 

supercomputers by clusters. A cluster is a collection of parallel or distributed computers which 

are interconnected using high-speed networks such as Ethernet (Sadashiv and Kumar, 2011). 

These computers work together in the execution of intensive computing tasks, providing high 

availability, enabling a standby node when other node fails, and load-balancing by sharing the 

computational workload as a single virtual computer. 

A grid is a form of distributed computing whereby a super virtual computer is composed of 

many networked, loosely coupled, and geographically dispersed computers acting together to 

perform large tasks. As proposed by (Chetty and Buyya, 2002), a computing grid may be 

analogously compared to the electrical power grid. In a grid, each computing node (Desktop 

and laptop computers, clusters, supercomputers, etc.) may be physically connected to any 

organization using conventional network hardware, thus being an effective way of sharing 

resources and solving problems in dynamic worldwide virtual organizations.  
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BOINC (Anderson, 2004), which stands for Berkeley Open Infrastructure for Network 

Computing, is a very good example of grid computing application. This open source 

middleware system was originally developed to support the SETI@home (Anderson et al., 

2002) project but, at this moment, is used for other distributed applications in areas like 

mathematics, medicine, molecular, biology, and astrophysics. The main goal of BOINC is to 

make it possible for researchers to tap into the enormous processing power of personal 

computers from volunteer PC owners all around the world.  

The challenges faced in grid computing (Sadashiv and Kumar, 2011) include:   

a) Dynamicity: Resources in grid are owned and managed by more than one organization 

which may enter and leave the grid at any time causing burden on the grid; 

b) Administration: To form a unified resource pool, a heavy system administration burden 

is raised along with other maintenance work to coordinate local administration policies 

with global ones; 

c) Development: Problems are concerned with ways of writing software to run on grid 

computing platforms, which includes to decompose and distribute to processing 

elements, and then assembling solutions; 

d) Accounting: Finding ways to support different accounting infrastructure, economic 

model and application models that can cope well with tasks that communicate 

frequently and are interdependent; 

e) Heterogeneity: Finding ways to create a wide area data intensive programming and 

scheduling framework in heterogeneous set of resources; 

f) Programming: The low-coupling between nodes and the distributed nature of 

processing increase the complexity of programming applications over grids when 

compared to a sequential programming. However, have less complexity then tightly-

coupled parallel applications that can be ran on a cluster.  

In parallel computing, both hardware and software issues must be considered. Hardware issues 

are directly related to parallel architectures, while software issues have to do with parallel 

programming models. Multiprocessor computers require shared-memory programming to run 

parallel programs, unlike distributed systems that use distributed-memory programming. PGAs 

can be implemented using low-level inter-process communications, e.g., sockets or pthreads.  
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At a higher level of abstraction, the most commonly used libraries for parallel implementations 

include MPI (Gropp et al., 1994) and MPI-2 (Gropp et al., 1999) for distributed memory 

platforms and OpenMP (Chapman et al., 2008) for shared memory architectures. When 

developing PGAs in Java, the most commonly used method to implement the communication 

and synchronization is the built-in remote method invocation (RMI) (Grosso, 2001) which 

enables the Java program to export an object that will be accessible across the network through 

a TCP port.  Knowing that a grid is composed of loosely coupled, heterogeneous and 

geographically dispersed computers, this kind of environment is suitable for a loosely coupled 

model of parallelism, requiring little or no communication of results between tasks, e.g., 

communication of intermediate results.  

Globus (Foster and Kesselman, 1997) is often referred as the de facto standard grid technology 

(Develder et al., 2012), providing support for security, information discovery, resource 

management, data management, communication, fault detection and portability (Alba, 2005). 

Aiming the exploitation of large-scale availability of computing resources on grid computing 

platforms, a few parallel implementations of EAs, adapted to this environment, have been 

proposed. Concerning PEA models, these implementations include: 

a) Master-slave model (Nebro et al., 2008; Durillo et al., 2008); 

b) Distributed subpopulation model, i.e., island model (Melab et al., 2006; Talbi et al., 

2007; Luna et al., 2008; Limmer and Fey, 2010) ; 

c) Cellular model (Dorronsoro et al., 2007; Luque et al., 2009); 

d) Hierarchical parallel models (Lim et al., 2007); 

e) Parallel hybrid multi-objective evolutionary algorithms (MOEAs) (Tantar et al., 

2007).   

The main trend in the last years is using Parallel Metaheuristics Frameworks, instead of 

developing ad-hoc implementations of parallel metaheuristics. Due to its versatility for solving 

problems in several application domains, EAs have been the parallel metaheuristics of 

preference and therefore implemented in most of the parallel metaheuristics frameworks (Alba 

et al., 2013). Although about twenty of these frameworks have been proposed, the most 

relevant, which allow execution in grid infrastructures, are as follows: 
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a) ParadisEO-CMW (Cahon et al., 2005): An object-oriented framework, developed in 

C++, portable on Windows, Unix and MacOS, which provides support for parallel and 

distributed architectures using MPI and for grid computing systems such as Globus. 

However, its use is only intended for grids using Condor (Liu et.al., 2009) scheduling 

system and only implements ring migration topology for island EAs. 

 

b) Java Grid-enabled Genetic Algorithm (JG2A) (Bernal et al., 2009): An object-oriented 

framework, developed in Java, which provides support for the parallel execution of GAs 

in Globus-based grids. Like ParadisEO-CMW , this framework also imposes the use of 

Condor as the Local Resource Manager (LRM) (Thain et al., 2003) in both server and 

slave nodes.  Concerning PEA models, this framework does not implement island 

models, being limited to a master-slave approach with a single population and a 

parallelization strategy based on the distribution of the fitness evaluations. 

 

c) pALS (Bernal and Castro, 2010):  acronym for Parallel Adaptive Learning Search is an 

object-oriented framework for the development of parallel and cooperative 

metaheuristics, developed in Java, which includes a module for execution of PGAs in 

Globus-based grids. Although pALS allows the implementation of island models, one 

could only find references to ring topology. Like the previous frameworks, pALS also 

imposes Condor as the resource manager.  

 

d) (Limmer and Fey, 2010): The authors propose a framework which is presented as the 

first one for distributed EAs in generic Globus based computational grids. Unlike pALS, 

JG2A and ParadisEO-CMW, this framework does not impose the use of Condor LRM, 

thus providing a more flexible solution. The parallelization strategies available on this 

framework are the distribution of all the fitness evaluations in a master-slave approach 

and a ring migration topology for island EAs, as shown in figure 3.3.1. 
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Figure 3.3.1: Ring migration topology, in (Limmer and Fey, 2010). 

Considering the available literature, most of the existing frameworks which provide the 

implementation of distributed versions of EAs, i.e., island EAs, focus on ring topology. 

(Limmer and Fey, 2010) state that ring topology can be seen as the most suitable parallelization 

approach for the application in grids, although without presenting any comparison to other 

topologies. 

To sum up, to the best of our knowledge there is a lack of investigation work concerning the 

comparison of different migration topologies, when implementing PEAs in heterogeneous 

asynchronous grid computing frameworks, such as Globus. Therefore, the current work 

presents a comparison of several migration topologies, using TSP as an application benchmark, 

without using any of the above frameworks.  

 

3.4. A concurrent implementation of the Baseline Genetic Algorithm 
 

There are two main questions that have driven a concurrent implementation, parallel or 

distributed, of the serial base algorithm, presented in section 2.2. The first question refers to the 

synchronicity of the concurrent algorithm. The choice of an asynchronous approach is justified 

by the fact that a grid is composed of loosely coupled, heterogeneous and geographically 

dispersed computers. In this kind of computing environment, a typical synchronous approach, 

where a computing node waits for the previous one before proceeding its computation, is hardly 

suitable when the goal of the implementation is to speed up processing time. As the nodes in 

the grid are heterogeneous, with potentially significant different performances, the execution 

time of the algorithm would not be reduced and, in some cases, could even increase. 
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Furthermore, the computing nodes of a grid may belong to different worldwide institutions and, 

for that reason, can eventually add an additional communication overhead to the global 

processing time. If the synchronous case was to be considered, load balancing would be 

necessary for optimizing processing time. A periodically online process would be necessary to 

check the grid nodes availability and rate their performances. Based on that rate, the algorithm 

would distribute the computing effort by the grid nodes, according to their performance rate. 

Although this may be a viable technical solution to assure load-balancing, this method may fail 

because of the inexistence of a centralized control of the grid nodes, i.e. the performance rate 

of a grid node, at a given moment, is not necessarily maintained in time as the node’s local 

users may launch any other processes that impact on the system performance. For these reasons, 

the implementation of the algorithm was definitively driven to an asynchronous approach. 

The second question is related to the choice of migration topology when implementing island 

model. As reviewed in section 3.3, most of the existing frameworks which provide the 

implementation of distributed versions of EAs, i.e., island EAs, focus on ring topology. 

Moreover, some authors, such as (Limmer and Fey, 2010), argue that ring topology can be seen 

as the most suitable approach for the application in grids, although without presenting a 

comparison to other topologies. Considering a ring topology, as presented in figure 3.3.1, how 

would the algorithm perform if one, or more, computing nodes fails or if it has a considerable 

lower performance when compared to the other nodes? This work argues that, in that case, the 

performance of the algorithm could be negatively affected, namely in terms of the quality of 

the results, if the algorithm is asynchronous, as the grid node will not benefit from the 

neighbor’s migrant chromosomes. If the synchronous case is considered, the execution time 

can also increase as a node may be waiting for a slow neighbor before proceeding its 

computation. A coordinated topology may thus provide a better fault-tolerance to this kind of 

situations. In coordinated island models, as proposed in this work, the grid nodes periodically 

share their best solutions with their parent and/or sibling nodes, providing population diversity 

and preventing local optima. On the other hand, child nodes are expected to provide quality 

solutions for their parents which will need less generations to reach their best solution to the 

problem and, thus, reducing the processing time of the algorithm. Moreover, the obtained 

experimental results, discussed in chapter 4, show that adding more nodes to the coordinated 

topology, allows obtaining significant gains in terms of processing time.      
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The concurrent implementation proposed in this work may be classified as an asynchronous 

coordinated genetic algorithm, implementing an island model based genetic algorithm. The 

concurrent algorithm is distributed over a set of grid computing nodes. (Marin et al., 1994) 

proposed a centralized master-slave scheme in which slave processors execute a GA on their 

population and periodically send their best partial results to the master. Then, the master 

chooses the fittest individuals, found by any processor, and sends them to the slaves. (Cantú-

Paz, 1999) proposed a coordinated topology for GAs with multiple populations, introducing a 

tree representation of the extended neighbourhood of root deme (0), as shown in figure 3.4.1.  

 

 

Figure 3.4.1: Tree representation of the extended neighbourhood of root deme, in (Cantú-Paz, 1999). 

 

Some years later, (Sekaj, 2004) proposed a 3-level migration topology where each third-level 

node shares its results with all the second-level nodes, as shown in figure 3.4.2. 

 

 

Figure 3.4.2: 3-level PEA topology, in (Sekaj, 2004). 
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More recently, (Filipowicz et al, 2011) presented a study using a similar topology, with four 

levels. However, their work was published in Polish, in their university journal, and an English 

version could not be found, except for the abstract of the document. The analysis of Filipowicz 

and colleagues’ work could be very interesting and some of its results could eventually be 

compared with the ones produced in this thesis, as they both use the Travelling Salesman 

Problem (TSP) as real-world application of PGAs. However, as far as one can understand, using 

available online translation tools, the work of Filipowicz and colleagues does not specify 

implementation details such as the used hardware infrastructure preventing its reproduction and 

consequent fair comparison to the current investigation work. On the other hand, it is clearly 

possible to understand that the author only ran the experiments five times for each pair of 

TSPLIB dataset/migration topology, for small instance, i.e., up to 159 cites (TSPLIB u159 data 

set), and did not provide any statistical validation of the results. Therefore, although one could 

not ignore that work, knowing that the experiments should be ran at least 30-100 times (Alba 

et al., 2013) and a statistical assessment of the results should be performed, e.g., by an analysis 

of variance (ANOVA) test, no significant conclusion can be drawn from it. 

 

According to the EAs’ models presented on section 2.1, the tested topologies in this research 

can be classified as structured EAs, more precisely uniform distributed EAs, as they deal with 

isolated subpopulations. Each computing node runs the same EA, as well as the evolutionary 

conditions, e.g., selection and recombination methods, are the same for all individuals and all 

subpopulations. Each node loads its initial subpopulation randomly from the global population 

and the subpopulation size is determined by the position of the computing node on the tree and 

by its number of child nodes.   

To the best of our knowledge, studies on coordinated topologies are limited to the above 

mentioned ones.  

In principle, the depth of the tree levels in a coordinated topology is limited only by the number 

of available nodes and by the size of the population. Currently, the work is limited to 7 

processing nodes. In future work considerations, presented on section 5, a new topology is 

proposed, combining a coordinated topology and multithreading, that can virtually provide an 

unlimited number of computing nodes.    
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In order to clarify some concepts, let us analyse the topologies that were experimentally tested 

in this research. These topologies, presented in tables 3.4.1 and 3.4.2, were called grid maps. 

Each grid map (GM) specifies a different island topology used to run the algorithm and is 

physically defined by a comma-separated-value (CSV) file. The original algorithm was thus 

adapted to dynamically change its behaviour, assuring automation and minimizing the user 

interaction in the process of producing experimental results. For this purpose, a set of scripts 

were developed to automate the execution of the experiments. For instance, the command line 

“./launch_tsp_sharing a280 2 False” launches the experiments for the TSPLIB data set with 

280 cities (a280), telling the algorithm to migrate periodically 2 chromosomes not randomly 

chosen, i.e. choose the best 2 chromosomes to migrate. If the last parameter is “True”, then the 

migrators will be randomly chosen. Tested TSPLIB data sets were eil51 (51 cities), st70 (70 

cities), eil76 (76 cities), eil101 (101 cities), ts225 (225 cities) and a280 (280 cities). 

The algorithm runs 100 times each possible configuration. Programmatically, possible run 

configurations are defined by a set of nested loops: a first loop for the grid maps, a second one 

for the number of generations before migration (epoch) and a last loop for the population 

distribution technique.  

Initially, the grid computing test bed only had 5 nodes, as shown in figure 3.5.1. The first 

experiments were performed on that test bed, for GM1 and GM3 which are presented in table 

3.4.1. 

 

 

 

a) Grid map 1. (A star) b) Grid map 3. (An incomplete rooted tree) 

 

Table 3.4.1: Tested topologies (grid maps) on the 5 nodes test bed. 

 

 



41 
 

For the 7 nodes test bed, grid maps vary from 1 to 9, as presented in table 3.3.4, possible epoch 

values are g = {1,2,3,4,5,10,20,50,100,1000} and population distribution (pd) may be Equally-

Distributed (E) or Tree-Distributed (T). In the case of an equally-distributed population, each 

grid node will deal with an initial subpopulation of size N/7 where N is the global population 

size. For tree-distributed population, considering the example of grid map 2, nodes {1, 3, 4, 5} 

will load an initial subpopulation of size N/5 and nodes {2, 6, 7} will start with a population of 

size (N/5) / 3, i.e., N/15. Notice that for GM1, E technique results in the same distribution as T. 

In fact, these techniques produce different population distributions only for trees with more 

than 2 levels such as GM2. Therefore, a possible run configuration is a combination of a grid 

map, an epoch and the population distribution technique, e.g., GM = 1 / g = 2 / pd = E. 

 

 

 

 

a) Grid map 1. (A star) 

 

 

b) Grid map 2. (An incomplete rooted 

tree) 

 

 

c) Grid map 3. (An incomplete rooted tree) 

 

 

d) Grid map 4. (A complete rooted 

binary tree) 
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e) Grid map 5. (Three-fully connected 

layers) 

 

 

f) Grid map 6.(A Cartwheel) 

 

g) Grid map 7. (A rooted tree-ring)  

 

h) Grid map 8. (A ring) 

 

i) Grid map 9. (A complete rooted binary 

tree) 

 

j) Grid map 10. (A ring, only with the 

fastest nodes) 

 

Table 3.4.2: Tested topologies (grid maps) on the 7 nodes test bed. 

 

In grid map 1, at every epoch, the root node will benefit from the solutions shared by its child 

nodes, i.e., all remaining nodes. In the case of tree-distributed population, all computing nodes 

load an initial subpopulation of size N/7 where N is the global population size. 
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As for grid map 2, the root node will benefit from the solutions shared by nodes 2, 3, 4 and 5. 

In the same way, node 2 will receive the shared results from its child nodes, i.e., nodes 6 and 7. 

In this case, node 2 acts simultaneously as a parent and child node. For tree-distributed 

population, nodes 1, 3, 4 and 5 will load an initial subpopulation of size N/5. Nodes 2, 6 and 7 

will start with a population of size (N/5) / 3, i.e., N/15. 

In the case of grid map 3, the root node will benefit from the solutions shared by nodes 2, 3, 

and 4. In the same way, node 2 will receive the shared results from its child nodes, i.e., nodes 

5 and 6. At last, node 3 will benefit from the solutions shared by node 7. If population is tree-

distributed, nodes 1 and 4 will load an initial subpopulation of size N/4. Nodes 2, 5 and 6 will 

start with a population of size (N/4) / 3, i.e., N/12. Finally, nodes 3 and 7 will have an initial 

subpopulation of size (N/4) / 2, i.e., N/8.  

Grid map 4 represents a complete binary tree topology, where all nodes, except the root one, 

have parent nodes. Root node will benefit from the solutions shared from nodes 2 and 3. Node 

2 will receive the shared results from nodes 4 and 5 and node 3 will benefit from the solutions 

shared by nodes 6 and 7. In the case of tree-distributed population, the root node will load an 

initial subpopulation of size N/3 and all remaining nodes will start with an initial subpopulation 

of size (N/3) / 3, i.e., N/9. 

In grid map 5, each mid-level node (2, 3 and 4) receives, every epoch, the migrators from nodes 

5, 6 and 7. The root node receives the migrators from the nodes 2, 3 and 4. For tree-distributed 

population, root node has a population of size N/4, nodes 2, 3 and 4 have a population of size 

(N/16) and nodes 6, 7 and 8 have a population of size (N/16) * 3.    

Grid map 6 implements a ring topology, although limited to the bottom level of the tree. In 

terms of distribution of the population is identical to grid map 1.  

In the same way, grid map 7 is similar to grid map 4, however ring topology is implemented in 

both middle and bottom levels of the tree. 

Grid map 8 corresponds to a typical ring topology where migration between islands occurs to 

the immediately clockwise neighbour.  

Finally, grid map 9 is similar to grid map 4, except for the position of the worker nodes in the 

complete binary tree, i.e., the fastest nodes appear in the higher levels of the tree. Root node 

(sbgrid1), which is the fastest grid node, maintains its isolated top level position. The 

intermediate level is occupied by nodes 2 and 6 and the bottom-level by nodes 5, 3, 7 and 8. 
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Grid map 10 corresponds to a typical ring topology as for GM8, but only using the fastest nodes 

from our test bed. The detailed system specifications of each grid node are presented in section 

3.5. 

In order to insure fair comparisons with the serial version of the algorithm, each one of the 

tested topologies was developed using the baseline GA, tested on the same set of traveling 

salesman problem instances, and started running with the same set of initial populations, as 

(Wang et al., 1998) did on his research which compared several PGAs using TSP as a 

benchmark function. This means that, for each of the 100 runs of the serial algorithm, for each 

TSPLIB data set, the initial population is stored to be later used by the corresponding iteration 

of the concurrent run. For instance, every different configuration for the 10th run of for the a280 

data set, will use the same initial population as the 10th run of the serial version of the algorithm 

did, for the same data set (a280). 

The concurrent implementation uses mostly the same parameters as the serial algorithm does. 

In each generation, the best solution is compared with the best solution from the previous 

generation. The algorithm stops when the best solution remains unchanged for s consecutive 

generations.  Every generation, after checking the best solution age, the second half, i.e., the 

worst half of the population is removed. Then for as many iterations as half the initial population 

size, the following process is repeated:  

 

a) Two parents are randomly selected; 

b) Four children (children 1, 2, 5 and 6) are obtained by cloning both parents and two 

children (children 3 and 4) by mating using GreedyCrossover; 

c) Children 1, 2, 5 and 6 are then mutated, with a probability of mutation Pm=0.25, by 

random permutation; 

d) All new children are optimized by the 2-opt heuristic method and finally added to 

the existing population.  
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After this set of iterations, the algorithm checks for migration files from the other nodes. When 

available, migrant individuals are added to the current population. The resulting population is 

once again sorted by fitness evaluation (from smaller distance to larger) and the worst 

chromosomes, that exceed the initial population size, are removed from the population in order 

to maintain the initial population size. Finally, if the current generation corresponds to the 

defined migration epoch, the fittest individuals are sent to the parent node(s), if any.  

 

Set the population size N, the number of migrants k, and the migration frequency g; 

Randomly initialize population; 

Sort population by fitness (from smaller distance to larger); 

i := 0; 

repeat 

 for j := 1 to N/2 do 

  Randomly select parents p1 and p2 from the best half of the population; 

  child1 := Permutation (Clone (p1)); 

  child2 := Permutation (Clone (p2)); 

  child3 := Crossover (p1; p2); 

  child4 := Crossover (p2; p1); 

  child5 := Permutation (Clone (child3)); 

  child6 := Permutation (Clone (child4)); 

  Apply 2opt method to all children; 

  Add all children to the population; 

 end 

 [When available] Add received migrants to the current population; 

 Sort population by fitness (from smaller distance to larger); 

 Remove the last (worst) individuals beyond the initial population size; 

 i := i + 1; 

 if (i mod g == 0) then 

  Send the k first (best) individuals to parent node(s) [if any]; 

 end 

until no change in the best individual for a LIMIT (s); 

Figure 3.4.3: Pseudo-code for the concurrent version of the GA. 
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As one may observe in figure 3.4.3, the main differences between the sequential and concurrent 

versions of the algorithm are the inclusion of the features that allow chromosomes migration 

and their integration on the target subpopulation. Considering a tree topology, the root node is 

the top-level one and only has the migrant chromosomes integration feature. The remaining 

nodes (worker nodes) may have both migration and integration features, depending on the 

topology. Concerning migration process, additional parameters are required, namely migration 

frequency and migration size. Migration frequency defines how frequently chromosomes 

migrate, i.e. the number of generations before migration (epoch). Tested epoch values were 

{1,2,3,4,5,10,20,50,100,1000}. Migration size specifies the number of migrant chromosomes, 

i.e. the number of chromosomes to be migrated every epoch. (Starkweather et al., 1991) and 

(Limmer and Fey, 2010) argue that migration size should be rather small. 

Every epoch, each worker node creates a CSV file, containing their migrant chromosomes, and 

sends it to the corresponding parent node(s), which include those chromosomes in their 

population. The file communication is performed using globus-url-copy command, a Globus 

scriptable command line tool. At each generation, the grid nodes check the working directory 

for the existence of migrant chromosomes files. If exists, they will integrate those chromosomes 

in their population and, if not, they proceed their computation without any waiting time, 

regarding the asynchronous characteristics of the concurrent algorithm.     

 

3.5. Grid Computing Test Beds 
 

Grids are often constructed using general-purpose grid middleware software. Globus® Toolkit 

(Foster and Kesselman, 1997) and Glite (Sipkova et al., 2006) are two of the most used open 

source middleware solutions. Unlike Glite, Globus® Toolkit is compatible with several Linux 

distributions, having a specific package for Debian Linux, the selected operating system for this 

project. For these facts, Globus® Toolkit was the selected middleware for this project grid 

construction. For the purpose of this project, two test beds were fully installed and set up, with 

5 and 7 nodes respectively. All grid nodes, on both test beds, were formatted and installed with 

the current latest versions of Debian Linux (7.4) operating system and Globus® Toolkit (5.2.5). 
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The first test bed, presented in table 3.5.1, contains a total of 5 grid nodes, i.e., the root node 

and 4 worker nodes. 

 

Name Type Processor Model CPU (MHz) Memory (kB) 

sbgrid1 Root Intel(R) Pentium(R) 4 2800 1.034.224 

sbgrid2 Worker Intel (R) Celeron (R) 2400 709.108 

sbgrid3 Worker Pentium III (Coppermine) 997 384.344 

sbgrid4 Worker Pentium III (Coppermine) 650 384.412 

sbgrid5 Worker AMD Athlon(TM) XP 2200+  1800 774.132 

 

Table 3.5.1: 5 nodes test bed based on Globus® Toolkit Middleware. 

The second test bed, presented in table 3.5.2, contains a total of 7 grid nodes, i.e. the root node 

and 6 worker nodes. 

 

Name Type Processor Model CPU (MHz) Memory (kB) 

sbgrid1 Root Intel(R) Pentium(R) 4 2800 1.034.224 

sbgrid2 Worker Intel (R) Celeron (R) 2400 709.108 

sbgrid3 Worker Intel Pentium III (Coppermine) 997 384.344 

sbgrid4 Worker Intel Pentium III (Coppermine) 650 384.412 

sbgrid5 Worker AMD Athlon(TM) XP 2200+  1800 774.132 

sbgrid6 Worker Intel(R) Pentium(R) 4  1700 254.472 

sbgrid7 Worker Intel Pentium III (Katmai) 500 514.460 

 

Table 3.5.2: 7 nodes test bed based on Globus® Toolkit Middleware. 
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All the nodes are connected to the same switching equipment of our local area network (LAN), 

using conventional 10/100 Mbit/s Ethernet network cards. The proposed test beds demonstrate 

why grid computing is an economically attractive solution when compared to Cluster and MPP. 

As shown at image 3.5.1, one can build a grid computing framework using out-of-date 

computers that, when working together, may provide a relevant processing power to run PGAs. 

 

 

Image 3.5.1: A picture of our grid computing framework, built with out-of-date computers. 
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CHAPTER 4: An Experimental Study on Selected IM 

Topologies 
 

This chapter presents, an experimental comparative study between serial and distributed 

versions of the genetic algorithm for a carefully selection of island model topologies. In order 

to assure a fair comparison, the serial runs of the algorithm were performed on the fastest grid 

node, i.e., node 1 (root node). The appendix A contains all the figures corresponding to the 

complete set of performed analysis. Besides the data being analyzed (execution time, fitness  or 

number of generations), each figure also contains the p and F values from the analysis of 

variance (ANOVA) test and the p value from the Kruskal-Wallis test, assuring the statistical 

validation of the results. The default value for p was set to 0.05, i.e. providing a confidence 

interval of 95%. If p < 0.05 then the differences in the results are statistically significant, 

otherwise those differences are not statistically significant. When the differences in the results 

are not statistically significant, it briefly means that there is no significant difference between 

the data series being analyzed.  

 

4.1. GA Tuning – Experimental choices 
 

As previously explained in section 3.3, each possible configuration, i.e., combination of grid 

map, number of generations before migration and population distribution technique, was run 

100 times. Grid maps vary from GM1 to GM9, possible epoch (g) values are 

{1,2,3,4,5,10,20,50,100,1000} and population distribution technique (pd) may be Equally-

Distributed (E) or Tree-Distributed (T). Notice that, as far as this investigation goes, testing 

g=1000 is equivalent to test the algorithm with no migration topology, knowing that even in 

the worst cases, the total number of generations never reaches that value and thus migration of 

chromosomes will never be performed in g=1000 configurations. 

As stated in section 3.4, migration size specifies the number of migrant chromosomes, i.e. the 

number of chromosomes to be migrated every epoch. Some authors, such as (Starkweather et 

al., 1991) and (Limmer and Fey, 2010) argue that migration size should be rather small. In fact, 

one could experimentally conclude that, as far as this investigation goes, n=2 is a suitable value. 
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4.2. GA Performance Measure 
 

Table 4.2.1 presents the comparison of the experimental results (serial and concurrent versions) 

with TSPLIB known optimal solutions. As one can observe, the average fitness, obtained by 

both the serial and concurrent versions of the GA, is near the best known solutions provided by 

TSPLIB. Also, the concurrent version of the algorithm allows to significantly reduce the 

execution time of the algorithm, while maintaining the quality of the results. 

 

 Serial GA Concurrent GA  

Data 

set 

Avg. 

Time (s) 

Avg. Min. 

Fitness 

Configuration Avg. 

Time (s) 

Avg. Min. 

Fitness 

Best known 

fitness (TSPLIB) 

a280  793 2587 GM1-g4 139 2588,6 2579 

ts225  407 126645 GM1-g4 61,4 126649 126643 

eil101  35,4 641,18 GM4-g4 4,68 643,2 629 

eil76  12 544,09 GM1-g4 1,17 544,89 538 

st70  7,9 677 GM1-g5 1 677,5 675 

eil51  3,09 428,3 GM2-g3 0 428,81 426 

 

Table 4.2.1 Comparison of the experimental results with TSPLIB known optimal solutions. 

 

Before starting discussing the experimental results, it is important to state that GAs’ 

performance is often measured by the number of times the evaluation (fitness) function is 

invoked by the algorithm. Knowing that, in our case, the evaluation function is called in every 

generation, the performance of the algorithm should be measured by the product of the total 

number of performed generations and population size. However, one could observe that, in a 

few cases, there is no direct relationship between the execution time and the total number of 

generations. An example of this fact can be observed in figures 4.2.1 and 4.2.2, for the ts225 

TSPLIB data set (225 cities). Considering this fact, comparison of topologies is based on 

execution time of the algorithm, in order to answer the initial research question. As for fitness, 

the goal of the algorithm is to minimize the fitness of the solution, in order to find the shortest 

path to the travelling salesman. 
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Figure 4.2.1: Execution time of GM1, for the ts225 data set (Nodes: 7; Pop.: 32 per node). 

 

 

Figure 4.2.2: Total number of generations of GM1, for the ts225 data set (Nodes: 7; Pop.: 32 per 

node). 
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4.2.1 Speedup 

 

An issue related to topology is the concept of speedup. In deterministic parallel computing, 

speedup is defined as S = Ts/Tp where Ts is the completion time of the best sequential algorithm 

and Tp is completion time of the parallel algorithm when ran over p processors. This definition 

is not directly applicable to the island model. On one hand, PGA are stochastic optimization 

algorithms meaning that completion times can be different for different runs of exactly the same 

algorithm. Also, it is not acceptable to compare times for algorithms whose produced solutions 

have different fitness, as it can happen in successive runs of the same algorithm. On the other 

hand, due to migration, an island model based PGA is intrinsically different from a GA. Several 

different variant definitions have been proposed for PGA, e.g. (Cantú-Paz, 2000; Alba and 

Tomassini, 2002; Alba, Nebro, and Troya, 2002; Lim et al., 2007; Luque and Alba, 2011; 

Jakobović, Golub and Čupić, 2014). 

 

Given the types of topologies analyzed (asynchronous with heterogeneous processors) and the 

stochastic optimization technique employed, the following is proposed: 

 

Definition 1. The expected root speedup (ERS) is ERS = E(Tpanmictic) / E(Tparallel) where 

E(Tpanmictic) is the average execution time as measured in the fastest node with the total 

population of size N; and E(Tparallel) is the average execution time as measured in the same 

node acting as root in a topology where N is equally divided among the v nodes, given that: 

 

a) All other experimental conditions are equal (e.g., same problem instance, same parameters 

and same stop criteria); 

b) There is no statistically significant difference in the fitness of the solutions obtained in the 

panmictic and parallel cases. 

 

According to (Alba, 2005), this definition corresponds to a weak speedup which compares the 

parallel algorithm developed by a researcher against his own serial version.  
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One remark is in order here. In a sense, the proposed definition is a competitor of the definition 

proposed in (Jakobović, Golub and Čupić, 2014). In that work, the definition involve a certain 

acceptable quality level (fitness) that the obtained solutions are supposed to reach before times 

can be measured. This is an extra user-defined, problem specific, parameter that the analyst 

need to worry about. In this respect, the proposed definition is independent of the studied 

problem or its instances. Table 4.2.1.1 presents the ERS results for the star topology, ran on the 

7 nodes test bed. No statistically significant difference was found for the other studied 

topologies. 

 

Instance (Reinelt, 1991) E(Tpanmictic) E(Tparallel) – Star topology ERS 

eil51 3.1 0 ----- 

st70 7.9 1.0 7.9 

eil76 12 1.17 10.26 

eil101 35.4 4.68 7.56 

ts225 407 61.4 6.63 

a280 793 139 5.71 

 

Table 4.2.1.1: Expected Root Speedup (ERS) for the star topology with 7 nodes. 

 

Speedup can be sub-linear (ERS < v), linear (ERS = v), and super-linear (ERS > v). In short, 

the sources for super-linear speedup, observed in the st70, eil76 and eil101 data sets, are (Alba, 

2002): 

 

 The higher chances of finding an optimum by using more processors, due to the 

intrinsically heuristic multipoint nature of PGAs; 

 Splitting the global large population into smaller subpopulations that fit into the 

processor caches provides faster algorithms than using a single main memory; 

 The operators work on much smaller data structures, and they do so in parallel, which 

is an additional source of speedup. 
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The minimum fitness (distance), obtained with both the panmictic and the PGA versions for the 

star topology with optimized migration frequency, is near the optimal solution. The minimum 

average fitness obtained by the sequential algorithm has a systematic difference which is less 

than 2% from the optimal solution for each one of the tested instances. The times of the PGA 

are significantly lower than the corresponding panmictic ones. Also the expected root speedup 

decreases with the size of the problem (number of cities). 

 

4.3. Comparing the 5 nodes and 7 Nodes Test Beds 
 

A first important statement is that, for both 5 and 7 nodes test beds, concurrent versions run 

much faster than the serial version of the algorithm, independently of the tested topology and 

the TSPLIB data set. This fact can be observed in Figures 4.3.1 and 4.3.2 for the 5 nodes and 7 

nodes test beds, respectively. 

 

 

Figure 4.3.1: Execution time of best configurations on the 5 nodes test bed, for the a280 data set 

(Nodes: 5; Pop.: 56 per node). 
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Figure 4.3.2: Execution time of best configurations on the 7 nodes test bed, for the a280 data set 

(Nodes: 7; Pop.: 40 per node). 

 

The first experiments were performed on the 5 nodes test bed, presented in table 3.5.1 and were 

limited to GM1 and GM3 for the a280 TSPLIB data set (280 cities). Inserting two additional 

nodes to the grid, originated the 7 nodes test bed, presented in table 3.5.2, in which several 

additional grid maps were tested. The grid map sets for the 5 nodes and 7 nodes test beds are 

presented in tables 3.4.1 and 3.4.2, respectively.   

Studying the impact of the number of grid nodes running a given topology, it was possible to 

observe that, for the a280 data set, adding 2 nodes to the grid test bed allows to obtain significant 

gains in terms of processing time either in GM1 (star topology) or in GM3 (incomplete rooted 

tree topology). Figure 4.3.3 shows statistically significant differences in the results (p < 0.05) 

when comparing execution time of the best configuration of GM1 for both 5 and 7 nodes. 

Comparing fitness results, showed in figure 4.3.4, one can observe that the differences in the 

results are also statistically significant, with a value of p very close to 0.05 (0.04). This means 

that additional nodes allowed to significantly reduce the execution time, without a relevant 

degradation of fitness. 
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Figure 4.3.3: Execution Time of best GM1 configuration for 5 and 7 nodes test beds  

(Nodes: 5; Pop.: 56 per node / Nodes: 7; Pop.: 40 per node). 

 

Figure 4.3.4: Minimum fitness of best GM1 configuration for 5 and 7 nodes test beds 

(Nodes: 5; Pop.: 56 per node / Nodes: 7; Pop.: 40 per node). 
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Repeating the same analysis for GM3, figure 4.3.5 shows statistically significant differences in 

the results (p < 0.05) when comparing execution time of the best configuration of GM3 for both 

5 and 7 nodes. On the other hand, comparing fitness results, showed in figure 4.3.6, one can 

observe that the differences in the results are not statistically significant (p >= 0.05). This 

means that additional nodes promoted a significant reduction on the execution time, without a 

significant degradation of fitness. 

 

 

Figure 4.3.5: Execution Time of best GM3 configuration for 5 and 7 nodes test beds 

(Nodes: 5; Pop.: 56 per node / Nodes: 7; Pop.: 40 per node). 
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Figure 4.3.6: Minimum Fitness of best GM3 configuration for 5 and 7 nodes test beds 

(Nodes: 5; Pop.: 56 per node / Nodes: 7; Pop.: 40 per node). 

The observation of figures 4.3.3 to 4.3.6 allows one to conclude that additional grid nodes 

promoted a significant reduction on the execution time, without a significant degradation of 

fitness for both GM1 (star topology) and GM3 (incomplete rooted tree topology). Considering 

the utility of the additional grid nodes, all further results, and correspondent discussion, will 

therefore refer to the 7 nodes test bed. 

4.4. Population Distribution Technique 
 

Using the 7 nodes test bed, an additional variable was introduced, related with the population 

distribution technique. The goal was to test if different population distribution techniques would 

impact on the performance of the algorithm. Figures 4.4.1 and 4.4.2 show an example, for the 

eil101 TSPLIB data set (101 cities), that demonstrates that, in fact, the way the population is 

distributed through the islands does impact on the performance of the algorithm. According to 

the population distribution techniques presented on section 3.3, each node will process a 

population of N/7 individuals, in the case of the Equally-distribution technique (E). As for the 

Tree-distribution technique (T), considering GM4 (a complete rooted binary tree), the root node 

will have a population of N/3 individuals and all other nodes will have a population of N/9 

individuals.    
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Figure 4.4.1: Execution time for eil101 data set (GM4), using Equally-Distributed Population (E) 

(Nodes: 7; Pop.: 14 per node). 

 

Figure 4.4.2: Execution time for eil101 data set (GM4), using Tree-Distributed Population (T)  

(Nodes: 7; Pop.: 33 for node 1 / 11 for nodes 2, 3, 4, 5, 6 and 7).     

 



60 
 

For all the tested data sets (eil51, st70, eil76, eil101, ts225 and a280), a similar behaviour was 

repeatedly verified for GM1 to GM5 and ep = {1, 2, 3, 4, 5} for each GM. One could observe 

that the algorithm performed systematically faster in the cases where the population is equally-

distributed (E), rather than tree-distributed (T). Possible explanations to this fact are that in the 

case of tree-distributed population:  

a) Root node has a larger population; 

b) Worker nodes have a smaller population and, for that reason, produce lower quality 

solutions; 

c) A combination of both a) and b). 

Keeping in mind the initial research question, the results presented and discussed in this chapter 

will thus refer to equally-distributed population (E).  

4.5. Serial vs Grid Results 
 

It is also important to present the comparison between the serial (or sequential) version of the 

GA and its concurrent version. In order to do so, the serial version was compared with the 

fastest configurations for each grid map (GM). These configurations, presented in table 4.5.1, 

were selected using the following criteria: 

1) Configuration with the lowest execution time;  

2) Configuration with the lowest fitness, in case of tie in 1);  

3) Any configuration, in case of tie in 2). 

 

Data set GM1 GM2 GM3 GM4 GM5 GM6 GM7 GM8 GM9 GM10 

a280 g=4 g=4 g=2 g=1 g=2 g=1 g=1 g=1 g=1 g=5 

ts225 g=4 g=4 g=2 g=1 g=2      

eil101 g=5 g=5 g=5 g=4 g=5      

eil76 g=4 g=3 g=2 g=2 g=5      

st70 g=5 g=3 g=5 g=2 g=5      

eil51 g=3 g=3 g=3 g=3 g=5      

 

Table 4.5.1: Fastest configurations for the tested topologies, using 7 nodes. 
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As an example of how this table is constructed, consider GM1 and dataset a280, and fig. 4.5.1 

below. From this figure, it is clear that for the a280 data set, g=4 yields the best results. 

 

Figure 4.5.1: Execution time of GM1, for the a280 data set (Nodes: 7; Pop.: 40 per node). 

 

Figures 4.5.2 to 4.5.7 demonstrate the usefulness of deployment on a grid environment, 

showing significant gains in terms of execution time, for every TSPLIB data set that was tested. 

In all these figures, the x-axis has the fastest grid map/epoch combination, i.e., the configuration 

with better performance for the specified data set, as detailed in table 4.5.1. For instance, in 

figure 4.5.2, GM1-g3 corresponds to the grid map 1/epoch 3 configuration (3 generations before 

migration), which is the fastest configuration for the eil51 data set. 
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Figure 4.5.2: Execution time for the eil51 data set (Nodes: 7; Pop.: 7 per node). 

 

Figure 4.5.3: Execution time for the st70 data set (Nodes: 7; Pop.: 10 per node). 
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Figure 4.5.4: Execution time for the eil76 data set (Nodes: 7; Pop.: 10 per node). 

 

Figure 4.5.5: Execution time for the eil101 data set (Nodes: 7; Pop.: 14 per node). 
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Figure 4.5.6: Execution time for the ts225 data set (Nodes: 7; Pop.: 32 per node). 

 

 

Figure 4.5.7: Execution time for the a280 data set (Nodes: 7; Pop.: 40 per node). 
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Observing figures 4.5.2 to 4.5.7, one can conclude that the differences between execution times, 

for different topologies, get more accentuated with the size of the problem, i.e., as the number 

of cities increases. Another conclusion is that distributing the computing effort by several grid 

nodes, the performance is much better than the serial implementation, no matter the chosen 

topology.  

As for fitness, the goal of the algorithm is to minimize the fitness of the solution, in order to 

find the shortest path to the travelling salesman. Figures 4.5.8 to 4.5.13 present a similar 

analysis for fitness values, for the same TSP instances presented before. 

 

 

Figure 4.5.8: Minimum fitness for the eil51 data set (Nodes: 7; Pop.: 7 per node). 
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Figure 4.5.9: Minimum fitness for the st70 data set (Nodes: 7; Pop.: 10 per node). 

 

 

Figure 4.5.10: Minimum fitness for the eil76 data set (Nodes: 7; Pop.: 10 per node). 
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Figure 4.5.11: Minimum fitness for the eil101 data set (Nodes: 7; Pop.: 14 per node). 

 

 

Figure 4.5.12: Minimum fitness for the ts225 data set (Nodes: 7; Pop.: 32 per node). 
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Figure 4.5.13: Minimum fitness for the a280 data set (Nodes: 7; Pop.: 40 per node). 

Observing figures 4.5.8 to 4.5.13, one can observe that the deployment of the algorithm on a 

grid test bed does not considerably degrades the quality of the results (fitness) obtained with 

the serial implementation. Furthermore, for the ts225 data set, the differences in the fitness 

results are not statistically significant (p >= 0.05), meaning that there is no significant 

difference between the data series which are being analysed.     

Looking in more detail at the results for each data set, one can observe, for the eil51 data set, 

that g=1 promotes a delay in the execution time in all the GMs, with a slight improvement of 

the fitness for GM1. However, in most of the cases, g=1000 (no migration at all) has similar 

time results to the remaining configurations (g = 2, 3, 4 or 5). This can be interpreted as follows: 

eil51 is a small enough data set that can be solved by the root node along (even with a small 

population equals to T/7).  In this case, the grid is to a great extend useless. However, it is 

interesting to note for such small population a share of good quality individuals can improve 

the fitness. Obviously, this sharing has to be fast enough to be used by the root, thus g=1 is the 

only value that affects the results; all the other g being equally equivalent to a no-sharing setup. 

Figures 4.5.14 and 4.5.15 illustrate this fact, in terms of execution time and fitness, respectively. 
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Figure 4.5.14: Execution time of GM1 for the eil51 data set (Nodes: 7; Pop.: 7 per node). 

 

 

Figure 4.5.15: Minimum fitness of GM1 for the eil51 data set (Nodes: 7; Pop.: 7 per node). 
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Regarding the st70 data set, in most of the cases, g=1000 has similar results to the remaining 

configurations (g = 1, 2, 3, 4 or 5). However, there is an exception for GM5. Looking at figure 

4.5.16, one can observe that g=1000 configuration is the slowest one, especially when 

compared to g=5. As for the fitness, presented in figure 4.5.17, the differences in the results are 

not statistically significant, which, no matter the g value  

 

 

Figure 4.5.16: Execution time of GM5 for the st70 data set (Nodes: 7; Pop.: 10 per node). 
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Figure 4.5.17: Minimum fitness of GM5 for the st70 data set (Nodes: 7; Pop.: 10 per node). 

For the eil76 data set, g=1000 has similar results to the remaining configurations (g = 1, 2, 3, 

4 or 5), except for GM3 and GM5. In the case of GM5, only execution time has statistically 

significant differences in the results, where g=1000 increases the execution time of the 

algorithm. In its turn, GM3 presents both execution time and fitness with statistically significant 

differences in the results, as shown in figures 4.5.18 and 4.5.19. 
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Figure 4.5.18: Execution time of GM3 for the eil76 data set (Nodes: 7; Pop.: 10 per node). 

 

Figure 4.5.19: Minimum fitness of GM3 for the eil76 data set (Nodes: 7; Pop.: 10 per node). 
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As for the eil101 data set, it is interesting to verify that the benefits of using the grid become 

much clearer. Looking at figures 4.5.20 to 4.5.24 (GM1 to GM5), one can observe that 

execution times for g = {1, 2, 3, 4, 5} are above g=1000. Figure 4.5.20 shows that, for GM1 (a 

star), the execution time for g=1000, i.e. without migrations, is lower than for any other value 

of g.  

 

Figure 4.5.20: Execution time of GM1 for the eil101 data set (Nodes: 7; Pop.: 14 per node). 
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Figure 4.5.21: Execution time of GM2 for the eil101 data set (Nodes: 7; Pop.: 14 per node). 

In the case of GM2 (an incomplete rooted tree), the g=4 and g=5 configurations are faster than 

g=1000, as shown in figure 4.5.21. This tendency continues with GM3, where only g=1 

performs slower than g=1000, as one can observe in figure 4.5.22. 

 

Figure 4.5.22: Execution time of GM3 for the eil101 data set (Nodes: 7; Pop.: 14 per node). 
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Figure 4.5.23: Execution time of GM4 for the eil101 data set (Nodes: 7; Pop.: 14 per node). 

With GM4, all configurations g = {1, 2, 3, 4, 5} perform faster than g=1000 (see figure 4.5.23) 

and g=4 has the lowest execution time. 

 

Figure 4.5.24: Execution time of GM5 for the eil101 data set (Nodes: 7; Pop.: 14 per node). 
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Using GM5, the results are identical to GM4. The configurations g = {2, 3, 4, 5} perform faster 

than g=1000 while g=1 is very similar to g=1000, as one can observe in 4.5.24. 

In terms of fitness, one can observe that g=4 and g=5 configurations were able to obtain better 

results, from GM1 to GM4 (see figures 4.5.25 to 4.5.29). 

 

Figure 4.5.25: Minimum fitness of GM1 for the eil101 data set (Nodes: 7; Pop.: 14 per node). 
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Figure 4.5.26: Minimum fitness of GM2 for the eil101 data set (Nodes: 7; Pop.: 14 per node). 

 

 

Figure 4.5.27: Minimum fitness of GM3 for the eil101 data set (Nodes: 7; Pop.: 14 per node). 
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Figure 4.5.28: Minimum fitness of GM4 for the eil101 data set (Nodes: 7; Pop.: 14 per node). 

 

Figure 4.5.29: Minimum fitness of GM5 for the eil101 data set (Nodes: 7; Pop.: 14 per node). 
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In the case of GM5, figure 4.5.29 shows that there are no significant differences between the 

different values of g, i.e., regarding fitness one can choose any of the configurations for GM5 

when applied to the TSPLIB eil101 data set (101 cities). 

Regarding the ts225 data set, let us look at figures 4.5.30 and 4.5.31 which are similar to figures 

4.5.6 and 4.5.12 respectively, but without the Serial values. Figure 4.5.30 presents the execution 

time of best g for each GM. The differences in these results are not statistically significant and 

the same applies to fitness, as shown in figure 4.5.31. The fact that the differences in the results, 

for both time and fitness, are not statistically significant means that, no matter the chosen GM, 

the algorithm takes about the same time while maintaining the quality of the results.  

 

Figure 4.5.30: Execution time for the ts225 data set (Nodes: 7; Pop.: 32 per node). 
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Figure 4.5.31: Minimum fitness for the ts225 data set (Nodes: 7; Pop.: 32 per node). 

 

4.6. Topologies Comparison - 280 Cities data set 
 

The largest tested data set was the TSPLIB a280 (280 cities). On this data set, additional g 

values and GMs were tested, namely g = {10, 20, 50, 100} and GM6, GM7, GM8 and GM9. 

For simplicity reasons, these data sets’ analysis will focus on the comparison of best 

configuration for each GM. From this point, all presented figures will refer to this data set 

assuming topologies with 7 grid nodes with a population of N/7 (40) individuals each.  

The first noticeable fact, for this data set, is that the differences in the execution time results are 

not statistically significant, when comparing the best configuration for each grid map, as shown 

in figure 4.6.1.  
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Figure 4.6.1: Execution time for the a280 data set. 

In terms of fitness, for the a280 data set, the differences in the results were also not statistically 

significant until GM6, as shown in figure 4.6.2.  

 

 

Figure 4.6.2: Minimum fitness for the a280 data set, for the best g from GM1 to GM6. 
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Regarding fitness, the results became statistically significant with the addition of GM7 (see 

figure 4.6.3), considering the results from the Kruskal-Wallis test. 

 

Figure 4.6.3: Minimum fitness for the a280 data set, from GM1 to GM7. 

 

Notice that figure 4.6.3 also presents a difference between the results provided by ANOVA and 

Kruskal-Wallis tests. According to ANOVA, the differences in the results are not statistically 

significant. In the opposite, Kruskal-Wallis test concludes that the differences in the results are 

statistically significant. Considering these facts, one can conclude that GM7 provides the best 

fitness results, if there is an effective difference in these results.   

Replacing GM7 with GM8, the differences in the results became, once again, not statistically 

significant, as shown in figure 4.6.4.  
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Figure 4.6.4: Minimum fitness for the a280 data set, with GM1 to GM6 and GM8. 

 

Observing figures 4.6.2 to 4.6.4, one can conclude that, as far as this investigation goes, GM7 

(rooted tree-ring topology) promoted a statistically significant improvement of the fitness, 

unlike the other tested topologies.  

Notice that GM9 was obtained by maintaining the complete binary tree topology in GM4, while 

changing the nodes distribution, placing the fastest ones on the top levels of the tree. Looking 

at the comparison between those two grid maps, presented in figures 4.6.5 and 4.6.6, one can 

observe that the differences in the results are not statistically significant. This means that 

placing the fastest nodes in the top levels of the tree has no significant impact on the 

performance of the algorithm, in both execution time and fitness.  

 



84 
 

 

Figure 4.6.5: Execution time comparison for the a280 data set. 

 

Figure 4.6.6: Fitness comparison for the a280 data set. 
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4.7. The Contribution of Slower Grid Nodes 
 

Considering the heterogeneity of the test beds and the asynchronous properties of the GA, an 

important issue to address was verifying the effective contribution of all computing nodes, 

namely the slowest ones. GM10 was specifically designed for this purpose, by selecting GM8 

(one could select any other topology, knowing that the differences are not statistically 

significant in terms of execution time, for the a280 data set) and removing the slowest nodes 

(sbgrid3, sbgrid4 and sbgrid7). If these nodes provide an effective contribution, their removal 

would promote a degradation of the execution time of the algorithm. In fact, this working 

hypothesis was verified to the a280 data set.  

 

 

Figure 4.7.1: Execution time comparison for the a280 data set. 

 

Comparing the best configurations of GM10 and GM8, as shown in figure 4.7.1, one can 

observe that GM10 did promote a statistically significant degradation of the execution time, 

when compared to GM8.  
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Figure 4.7.2: Fitness comparison for the a280 data set. 

 

In fact, besides promoting a significant degradation of the execution time, GM10 also promoted 

a significant degradation of the fitness results, as shown in figure 4.7.2. Therefore, the working 

hypothesis was verified to the a280 data set, i.e., the slowest nodes provide an effective 

contribution as their removal of the test bed promote a statistically significant degradation of 

the results, for both execution time and fitness. 

 

4.8. Statistical Validation  
 

ANOVA and Kruskal-Wallis default values for p were set to 0.05, i.e. providing a confidence 

interval of 95%. ANOVA test assumes that samples are drawn from normally distributed 

populations and homoscedasticity (homogeneity of variance), i.e. the variance of data in groups 

should be the same. The homogeneity of variances can be tested with Levene´s test (Levene, 

1960), by checking the null hypothesis that the population variances are equal. If the resulting 

p value of Levene´s test is less than the chosen value of significance (typically 0.05) the null 

hypothesis of equal variances is rejected and one can conclude that there is a difference between 

the variances in the population.  
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Levene´s original test relies on group mean values, but (Brown and Forsythe, 1974) extended 

it to median and trimmed mean values. The studies performed by these authors indicated that 

the trimmed mean version performed best when the underlying data followed a heavy-tailed 

distribution, and the median version performed best when the underlying data followed a 

heavily skewed distribution. The mean value provided the best performance for symmetric, 

moderate-tailed, distributions. Although the optimal choice of the Levene’s test version 

depends on the underlying distribution, the median version provides good robustness against 

several types of non-normality, while retaining good statistical power. Table 4.8.1 presents the 

results of the Levene’s test, applied to the data from section 4.6, concerning the a280 data set. 

 

Levene’s Test 

Type p-value 

Mean 0,00258031 

Median 0,103325446 

Trimmed mean 0,010252713 

 

Table 4.8.1: Results of the Levene’s test, applied to the data from the a280 data set. 

Applying the median version of the Levene’s test to the source data of figure 4.6.1 (the 

execution time results for the a280 data set), one could obtain p = 0.103 and conclude that there 

is no significant difference between the variances. The other ANOVA assumption, i.e., the 

normally distribution of the population, was verified by the Shapiro-Wilk test (Shapiro and 

Wilk, 1965). In this test, if the resulting p value is less than 0.05, we reject the null hypothesis 

that the data is normally distributed. Applying the Shapiro-Wilk test to the same source data, 

one could obtain p = 0 and conclude that samples are not drawn from normally distributed 

populations. This fact can increase the chance of false positive results when analyzing data with 

a test that assumes normality, such as ANOVA. Although some authors argue that the false 

positive rate is not very affected by the violation of the normality assumption (Glass et al., 1972; 

Harwell et al., 1992; Lix et al., 1996), we decided to provide an additional statistical validation 

using the Kruskal-Wallis test (Kruskal and Wallis, 1952), a non-parametric test where no 

assumptions are made about the distribution of data. The null hypothesis of the Kruskal-Wallis 

test is that the samples come from populations with the same distribution. Applying the 

Kruskal-Wallis test to the same source data, one could obtain p = 0.085 and conclude that the 

null hypothesis cannot be rejected, i.e. there are no significant differences between the results, 

which is exactly the same conclusion obtained with the ANOVA test.  
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Furthermore, all figures presented in chapter 4 included the results of both ANOVA and 

Kruskal-Wallis tests, in order to clarify any eventual doubts related to the suitability of the 

ANOVA test when applied to non-normal distributions. 
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CHAPTER 5: Conclusions and Future Work 
 

In order to provide a technically sound answer to the research question:  

What is the fastest Island Model topology for solving TSP instances using an order-based 

genetic algorithm, in a distributed heterogeneous grid computing environment, without losing 

significant fitness comparatively to the correspondent sequential panmictic implementation of 

the same algorithm?  

a comparison of migration topologies, using a grid computing framework, was performed. To 

the best of our knowledge, this comparison, in a distributed heterogeneous environment such 

as proposed in this work, could not be found in the literature. The research methodology was 

primarily experimental, observing and analysing the behaviour of the algorithm while changing 

the properties of the island model, using the Travelling Salesman Problem (TSP) as a 

benchmark for the parallelization of GA in a grid computing framework. The main difficulty in 

finding optimal solutions to TSP is the large number of possible tours; (n-1)!/2 for symmetric 

n cities tour. As the number of cities in the problem increases, the number of possible tours also 

increases, in a factorial way. TSP is therefore computationally intractable, thus fully justifying 

the employment of a stochastic optimization method such as GA. 

This work has verified the benefits of using parallel evolutionary algorithms (PEAs), i.e., a 

faster and better performing algorithm, due to the use of a structured population, i.e. a spatial 

distribution of individuals (Alba and Tomassini, 2002). Population decentralization was 

achieved by distributing the population by a set of processing nodes (islands) which periodically 

exchange (migrate) candidate solutions. For all the tested data sets, no matter the chosen 

topology, the concurrent versions of the algorithm performed much faster than the serial 

version. Furthermore, this work argues on the suitability of an asynchronous approach, 

considering the dynamic and potentially heterogeneous characteristics of the grid. Furthermore, 

coordinated topologies are presented as the most suitable approach when deploying GA in a 

grid computing environment. Besides providing a better fault-tolerance to slow or faulty nodes, 

the periodically share of best solutions with parent nodes does provide population diversity and 

prevents getting trapped in local optima. On the other hand, child nodes are expected to provide 

quality solutions to their parents who will need less generations to reach their best solution to 

the problem, reducing the processing time of the algorithm. 
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As far as this investigation went, one could conclude that parallelization allows to significantly 

reduce the execution time of GAs, without affecting significantly the quality (fitness) of the 

results obtained in the serial version.  

The influence of the number of nodes in a given topology was also addressed. It was possible 

to observe that, for the a280 data set, adding 2 nodes to the grid test bed allowed to obtain 

significant gains in terms of processing time, without a significant degradation of fitness.  

Two different techniques for population distribution were addressed, concluding that the 

algorithm performed systematically faster in the cases where the population is equally-

distributed (E), rather than tree-distributed (T). Possible explanations to this fact were also 

presented. 

It was possible to observe that the differences between execution times, when comparing with 

the serial version, get more accentuated with the increasing size of the problem, i.e., as the 

number of cities increases. The benefits of using the grid become much clearer at eil101 data 

set (101 cities) and beyond, without significant fitness degradation. Furthermore, for the largest 

tested data sets (ts225 and a280), the differences, for both execution time and fitness, were not 

statistically significant, meaning that, no matter the chosen topology, the algorithm took about 

the same time to perform while maintaining the quality of the results. In fact, GM7 (rooted tree-

ring topology) promoted a small, but statistically significant, improvement of the fitness, when 

compared with the other tested topologies. 

Another noticeable fact was that GM9 (complete binary tree with the fastest nodes on the top 

levels of the tree) did not produce statistically significant differences in the results when 

compared to GM4, i.e., a complete binary tree but with one of the fastest nodes swapped to the 

bottom of the tree. This means that, at least for this dataset, placing the fastest nodes in the top 

levels of the tree has no significant impact on the performance of the algorithm, in both 

execution time and fitness. 
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Answering our research question:  

For the largest tested problems, all tested topologies, with a carefully chosen g, produced the 

same results in terms of execution time of the algorithm. Furthermore, one could observe that 

the rooted tree-ring topology (GM7) promoted a statistically significant improvement of the 

fitness, unlike the other tested topologies. This suggests that one can choose any of the tested 

topologies, only considering the execution time of the algorithm. Considering both execution 

time and fitness, one should choose the rooted tree-ring topology (GM7). On the other hand, 

adding more nodes to our grid, allowed obtaining significant gains in terms of processing time, 

without a significant degradation of fitness. To sum up, a hypothesis aiming at answering the 

research question can be stated as follows: 

For solving TSP instances using an order-based genetic algorithm, in a distributed 

heterogeneous grid computing environment, without losing significant fitness comparatively to 

the correspondent sequential panmictic implementation of the same algorithm, choose a 

coordinated Island Model topology, from any of the tested topologies (star, cartwheel, tree, 

fully connected multilayered, rooted tree-ring, ring), with as many nodes as possible (even slow 

ones) and select the migration frequency that optimizes the execution time for the chosen 

topology. 

Considering that even slow nodes can contribute to speed up the processing time, in future 

work, it would be interesting to measure the contribution of each node to the running algorithm, 

determining a contribution rate directly related to the processing power of each computing node.   

Although this work addressed several different TSPLIB data sets (from 51 to 280 cities), it 

would be very interesting to analyse the results for bigger data sets, such as att532 (532 cities), 

pr1002 (1002 cities) or even pla85900 (85.900 cities) which is the largest data set available 

from TSPLIB.    

All the presented models can also be implemented using multithreading technology on multi-

core machines, becoming widely available nowadays, which could reduce the potential 

communication delays associated to grid frameworks. Moreover, considering that each node of 

a computing grid can run a multithread PEA, one can conceive the execution of a PEA where 

each island applies, in turn, a PEA to its subpopulation using multithreading technology. Figure 

5.4 shows an example of a possible island topology for a coordinated multithread PEA. 
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Figure 5.4: Coordinated multithread PEA example. 

 

Considering the inexistence of a PEA framework for generic Globus-based grids providing 

different migration topologies for the island model, future work can also address the 

development of such a framework, based on the current work. That framework should be 

flexible enough to provide the execution of other PEAs than the presented in this work.  

 

Future research work is intended to be a part of an international cooperation project between 

the Moroccan Centre National pour la Recherche Scientifique et Technique (CNRST) and the 

Portuguese Fundação para a Ciência e a Tecnologia (FCT), currently being evaluated by these 

institutions in both countries. This cooperation project aims: 

 

a) The development of a software framework aiming at delivering support for deployment 

of a classical GA in parallel and distributed infrastructures (grid computing, clusters and 

symmetric multiprocessing). This implementation will be based on the knowledge 

produced by the current research; 

 

b) The application of the proposed framework to analysis of raw data received 

continuously from the satellite Eumetsat (www.eumetsat.int) for early warning and 

mitigation of natural disasters. 
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Appendix A – Experimental Results 
 

This work was supported by a wide set of experiments which generated a considerable amount 

of results. Those experimental results were the source to several hundreds of files, mostly 

graphical representations of the results. The most relevant figures are included in the text of this 

document. To access the full set of results, and their graphical representation, please refer to 

the “Experimental Results” folder in the digital support (CD-ROM).    

 

 


